Provisional Translation

Global Warming

February 27, 2018

Agency for Natural Resources and Energy Ministry of Economy, Trade and Industry

Table of Contents

The strategies of major countries for 2050 · · · · · · · p.2
Progress for mid-term CO2 targets in Europe p.9
Transition of electricity market
CO2 emissions of EU and U.S
Power demand and supply in Denmark, Germany and UK ····· p.20

The strategies of major countries for 2050

	0				
Reduction		Elovibility	Main Strategy, Posture		
	Target	Flexibility	Zero Emission	Energy Conservation 	Overseas
United States	▲80% or more (as percentage of 2005)	Ambitious vision towards reduction target (not intended as current policy proposals) providing an ambitious vision to reduce net GHG emissions by 80 percent or more below 2005 levels by 2050.	Variable renewable energy + Nuclear power	Large-scale electrification (20%→45~60%)	Contribution through expanding market for US products
Canada	▲ 80% (as percentage of 2005)	Informing the conversation (not a blue print for action) not a blue print for action. Rather, the report is meant to inform the conversation about how Canada can achieve a low-carbon economy.	Securing the electricity Hydro power Variable renewables + Nuclear power Approx. 80% of electricity source already zero emission	Large-scale electrification (20%→40~70%)	Looking to contribute internationally (0~15%)
France	▲75% (as percentage of 1990)	Possible path for achieving objectives (not an action plan) the scenario is not an action plan: it rather presents a possible path for achieving our objectives.	Securing the electricity Renewable energy + Nuclear power *Zero emission rate already at m	(half as percentage of 1990	Contribution through international development support by French businesses
United Kingdom*	▲80% or more (as percentage of 1990)	Helps players identify steps to take in the next few years by exploring potential pathways (long-term predictions are difficult) exploring the plausible potential pathways to 2050 helps us to identify low-regrets steps we can take in the next few years common to many versions of the future	Increase Variable renewables + Nuclear power	Promote energy conservation/elect rification	Lead the world through environmental investment
Germany	▲ 80~95% (as percentage of 1990)	Point to the direction towards reducing emissions (not a search for masterplan) **Conduct regular reviews not a rigid instrument; it points to the direction needed to achieve a greenhouse gas-neutral economy.	Increase Variable renewable energy	Large-scale energy conservation (half as percentage of 1990)	Maintaining and bolstering investment sentiment in LDCs

^{*} Not yet submitted to UNFCCC as long-term strategy. Created from *The Clean Growth Strategy* (November 2017).

National Long-term Strategies (United States)

Long-term Strategy Summary

Reduction Target: ▲ 80% or more (as percentage of 2005)

Status: Ambitious Vision aimed at Reduction Targets

		Main Entries	Quantita	tive Target	
ission	Renewable Energy	Infrastructure and regulatory support necessary such as batteries, systems buildup towards expanding variable renewable energy.	Year 2015 13% (VRE* 5%)	Year 2050 55~65% (VRE 45~59%)	
Shift to Zero Emission	Nuclear Power	Necessary to extend lifespan of existing plants and invest in light water reactors and next-generation nuclear power.	Year 2015 19%	Year 2050 17~26%	
nius	Thermal Power	Map out future without thermal power depending on CCS technology development.	Year 2015 0% CCS thermal power)	Year 2050 0~25% (CCS Thermal power	
u u	Energy conservation	Enhance efficiency of energy system as a whole Smart grids, raising fuel efficiency, making industrial processes more efficient, etc.	▲ 24	2050 -30% tage of 2005)	
Electrification	Electrification	Greater electrification of autos, household heat demand, industrial steam, etc.	Year 2015 21%	Year 2050 45~60%	
Energy Conservation/ Electrification	CCUS/ Hydrogen	Hydrogen may play important role in areas where electrification is difficult. (FCV, aircraft, industrial cogeneration)	No Quantitative Target		
seas	Overseas Contributions	Contribute to global emissions reduction by expanding market for US goods and services.	No Quantitative Target		

National Long-term Strategies (Canada)

Long-term Strategy Summary

Reduction Target : ▲80% and more (as percentage of 2005)

Status: Informing the Conversation

	ummar y	Status. Informing the Conversation		
		Main Entries	Quantitat	tive Target
Zero Emission	Renewable Energy	Expand use of wind power, photovoltaics and hydro power.	Year 2015 63% (Hydro Power 57%)	Year 2050 50~80% Hydro Power 30~70%)
	Nuclear Power	250 USD investment expected in 10 plants over the next 15 years.	Year 2015	Year 2050 5∼50%
Shift to	Thermal Power	Thermal power equipped with CCS may exist depending on scenario.	Year 2015 0% (CCS Thermal Power)	Year 2050 0~10% (CCS Thermal Power)
ation/ on	Energy conservation	Improving energy efficiency and demand management are the main elements of long-term emissions reduction strategy.	▲ 5°	2050 ~35% 014 level)
Energy Conservation/ Electrification	Electrification	Electrification of Automobiles, buildings, heat systems, industry, etc. is essential to reducing emissions.	Year 2015 22%	Year 2050 40~72%
Ener	CCUS/ Hydrogen	Room for reduction in major emitting industries (gas and petroleum, iron and steel, paper manufacturing, chemicals, etc.) with CCS Potential for using hydrogen in heavy industries, shipping, etc.	Year 2015 0%	Year 2050 0~32%
Overseas Contributions		Encouraging international cooperation contributes to efficient global cost reduction. Include cross-border reduction in international contribution.	Year 2015	Year 2050 0~15%

National Long-term Strategies (France)

Long-term Strategy Summary

Reduction Target : ▲ 75% (as percentage of 1990)

Status: Possible Path for achieving Objectives

Renewable Energy Further flexibility necessary to integrate renewable energy (utilizing hydropower for peak demand, energy storage, international grids) Year 2015 16% (VRE* 5%) 40% (Details unknown to 50% by 2025. (Energy Conversion Act) Year 2025 78% Year 2025 Year 2015 Year 2025 Ye			Main Entries	Quantitative	Target	
Thermal Power Shift to zero emission CCS essential in complete shift to zero emission scenario. Energy conservation Large-scale energy conservation in industry, construction and transport sectors. Electrification Electrification Electrification Timeframe for developing EV infrastructure, etc. important CCUS/ Hydrogen Restrain carbon intensity of products through CCS in industrial processes in iron and steel, cement, etc. Promote carbon intensity reduction through support for international development by French businesses (utilize No Quantitative Target No Quantitative Target No Quantitative Target	o Zero Emission		(utilizing hydropower for peak demand, energy storage,	16%	40%	
Power zero emission scenario. CCS Thermal Power CCS Thermal Power		_ ,	Reduce weight in electricity composition to 50% by 2025. (Energy Conversion Act) *French government announced in 7/11/2017 that the target year will be postponed to			
CCUS/ Hydrogen Promote carbon intensity reduction through Sectors Construction Larget Scale energy conservation A 50% (as percentage of 1990)	Shift		zero emission scenario.	0%	Target	
Hydrogen industrial processes in iron and steel, cement, etc. Promote carbon intensity reduction through support for international development by French businesses (utilize Contributions Target No Quantitative Target	tion/	-		▲ 50%		
Hydrogen industrial processes in iron and steel, cement, etc. Promote carbon intensity reduction through support for international development by French businesses (utilize Contributions Target No Quantitative Target	Energy Conserva Electrification	Electrification	1 1 0 0.			
Overseas international development by French businesses (utilize Target				•		
*VRE: Variable Renewable En	Over seas	Overseas international development by French businesses (utilize		Target	•	

National Long-term Strategies (United Kingdom)

Long-term Strategy Summary

Reduction Target : ▲ 80% or more (as percentage of 1990)

Status: Help identifying steps for the next few years by exploring potential pathways*

* Content aimed at achieving UK's "Fifth Carbon Budget" (2028-2032). Some entries up to 2050. **Main Entries Quantitative Target** Support more renewable energy market entries such as Year 2030 Year 2015 Renewable offshore wind Develop electricity storage, DR and new grid Shift to Zero Emission 25% 44% **Energy** stabilization methods. (VRE* 14%) (Details unknown) Reduce cost, maintain stability (support new construction) Nuclear Year 2015 Year 2030 Support innovation towards developing next-generation 28% **Power** 21% nuclear power, etc. No Year 2015 **Thermal** Decommission coal-fired power plants without CCS by quantitative 0% **Power** 2025. target (CCS Thermal Power) (CCS Thermal Power) Achieve 20% energy conservation in the office and Year 2030 **Energy** industrial sectors by 2030, raise energy efficiency in all **▲** 10% conservation Energy Conservation/ Electrification (as percentage of 2008) households to specific levels. Electrify energy intensive industries, utilize heat pumps in Year 2015 Year 2030 Electrification 21% household Promote adoption of EVs 23% Lead the world in CCUS technology development (invest 100 million GBP) No Quantitative CCUS/ Hydrogen to be used in FCVs, industrial processes, and heat supply to Hydrogen Target households and offices Lead the world in environmental investment (establish task force to encourage public No Quantitative **Overseas** and private investment, 20 million GBP investment in immature technologies, etc.) *UK actions to date are expected to save almost 500 million tons of CO2, while they do not count **Contributions** Target these results against the domestic budgets

XVRE: Variable Renewable Energy

National Long-term Strategies (Germany)

Long-term Strategy Summary

Reduction Target : ▲80~95% (as percentage of 1990)

Status: Point to the Direction towards reducing Emissions

~	ammar y	Status. I offic to the Birection to wards reading i			
		Main Entries	Quantitative Target		
Shift to Zero Emission	Renewable Energy	Fully promote renewable energy in areas where it is usable (mainly wind power). Optimize variable renewable energy by sector-coupling.	Year 2015 29% (VRE* 18%) Year 2050 80% (Details unknown)		
	Nuclear Power	No entry.	Year 2015 Year 2050 0%		
Shift	Thermal Power	New construction of coal-fire power plants will not be supported.	Year 2015 0% (CCS Thermal Power) No Quantitative Target (CCS Thermal Power)		
tion/ n	Energy conservation	Energy conservation first. (promote energy conservation in all sectors)	Year 2050 ▲ 50% (as percentage of 2005)		
Energy Conservation/ Electrification	Electrification	Increase electricity demand through electrification of automobiles and heat use in buildings.	Year 2015 20% Year 2050 Approximately 30%		
Energ	CCUS/ Hydrogen	Consider CCU and CCSin that orderwhen carbon reduction through new technology is difficult in the industrial sector. Hydrogen has potential for FCVs and as alternative fuel source.	Torgot		
Over	Overseas Contributions	Contribute through partnerships for climate action plan. (maintain and strengthen investment sentiment in LDCs and contribute to their fundraising)	No Quantitative Target		
			XVRE: Variable Renewable Ener		

Transition of electricity market (1990 -> 2010 -> 2015)

Transition of Germany's CO2 emissions from power generation

^{*}Numbers are rounded. Totals may not match due to rounding errors.

Transition of the UK's CO2 emissions from power generation

^{*}Numbers are rounded. Totals may not match due to rounding errors.

Transition of the EU's CO2 emissions from power generation

^{*}Numbers are rounded. Totals may not match due to rounding errors.

Transition of the China's CO2 emissions from power generation

^{*}Numbers are rounded. Totals may not match due to rounding errors.

Transition of the Japan's CO2 emissions from power generation

^{*} Numbers are rounded. Totals may not match due to rounding errors.

^{*} Definition of kgCO2/kWh in METI and IEA may be different.

CO2 emissions of EU and U.S. (2015)

Emission coefficient and the electrical power generation mix of each country

Emission coefficient and the electrical power generation mix of US states

Power demand and supply in Denmark, Germany and UK

Power demand and supply in Germany (2017/4/29~4/30)

Electricity balance in 2017/4/29~4/30 in Germany

Flexibility (kW) and power generation (kWh) for the 2 days

		Fossil	Pumped	Ex/Import	Total
V)	Cross section 1 (Flexibility "up"	5 GW (45%)	2 GW (18%)	4 GW (36%)	10 GW (100%)
Flexibility (kW)	Cross section 2 (Flexibility "down")	13 GW (45%)	4 GW (14%)	12 GW (41%)	29 GW (100%)
	Cross	10	(16	40
	section	18 GW	6 GW	GW	40 GW
		_	_		
	section 1 + 2	GW (45%)	GW	GW	GW
	section 1 + 2 (total)	GW (45%)	GW	GW	GW

*Preliminary calculation assuming fossil power increases as alternative energy of import, fossil decreases for 4/29 and renewables are curtailed for 4/30 instead of exporting power

860

▲60

(▲**7**%**)**

GWh

GWh

900

▲300

(▲25%**)**

GWh

GWh

300

±0

 $(\pm 0\%)$

GWh

GWh

2,100

▲400

(▲15%)

GWh

GWh

Power demand and supply in Denmark (2017/5/11~5/13)

Electricity balance in 2017/5/11~5/13 in Denmark

Flexibility (kW) and power generation (kWh) for the 3 days

		Fossil	Pumped	Ex/Import	Total		
Flexibility (kW)	Cross section 1 (Flexibility "up")	1.0 GW (40%)	0 GW (0%)	1.5 GW	2.4 GW (100%)		
	Cross section 2 (Flexibility "down")	0 GW	0 GW (0%)	2.8 GW (100%)	2.8 GW (100%)		
	Cross section 1+2 (total)	1.0 GW	0 GW (0%)	4.3 GW (80%)	5.3 GW (100%)		
	*Totals might not match due to rounding						

		Renewable	Fossil	Nuclear	Total
(kWh)	With Ex/Import (actual case)	120 GWh	130 GWh	0 GWh	250 GWh
Generation	Without Ex/Import*	70 GWh	160 GWh	0 GWh	240 GWh
Power	Difference	▲50 GWh (▲39 %)	+30 GWh (+27%)	±0 GWh (±0%)	▲10 GWh (▲5%)

※Preliminary calculation assuming fossil power increases as alternative energy of import, renewables are curtailed instead of exporting power.

Power demand and supply in United Kingdom (2017/3/18~3/19)

Electricity balance in 2017/3/18~3/19 in UK

Flexibility (kW) and power generation (kWh) for the 2 days

		Fossil	Pumped	Ex/Import	Total
V)	Cross section 1 (Flexibility "up"	8.5 GW	1.9 GW (12%)	5.3 GW (34%)	15.6 GW (100%)
Flexibility (kW)	Cross section 2 [Flexibility "down"]	5.8 GW (64%)	0 GW (0%)	3.2 GW (36%)	9.0 GW (100%)
FIe	Cross section 1+2 (total)	14.2 GW (58%)	1.9 GW (8%)	8.5 GW (35%)	24.6 GW (100%)

*Totals might not match due to rounding

,		Renewable	Fossil	Nuclear	Total
Generation (kWh)	With Ex/Import (actual case)	430 GWh	600 GWh	340 GWh	1,370 GWh
	Without Ex/Import*	410 GWh	810 GWh	340 GWh	1,560 GWh
Power	Difference	▲20 GWh (▲4 %)	+210 GWh (+34%)	±0 GWh (±0%)	+190 GWh (+14%)

※Preliminary calculation assuming fossil power increases as alternative energy of import, renewables are curtailed instead of exporting power.

V-RE ratio and power import/export in Denmark, Germany and UK

		Denmark	Germany	UK	Japan
Power demand (annual generation)		30 _{TWh}	600TWh	300 _{TWh}	1,100 _{TWh}
vari	Ratio of able renewables	51% (PV2% Wind49%)	> 18% > (PV6% Wind12%)	> 14% > (PV2% Wind12%)	6% (PV5% Wind1%)
	International grid [Interconnection level*]	44%	> 10%	> 6%	Not connected
port	<kw> Dependence of</kw>	80%	> 40% >	> 35%	No
Power Export/Import	flexibility on abroad Ex/Import on the day with high V-RE ratio	4.3GW Export: 2.8GW Import: 1.5GW	Export: 12GW Import: 4GW	8.5GW Export: 3.2GW Import: 5.3GW	Export/ Import
	<kwh> Export Annual</kwh>	33% (10 _{TWh})	> 13% (85TWh)	1% (2TWh)	No Export/
	export/ import Import	55% (16TWh)	5% (34 _{TWh})	8% (24TWh)	Import

^{*} Ratio of international grid capacity and installed power production capacity

V-RE ratio and power import/export in Denmark, Germany and UK

		Denmark	Germany	UK	Japan
Power demand (annual generation)		30TWh	600TWh Increase the rate	300TWh of renewable end	1,100 TWh
Ratio of variable renewables		51% (PV2% Wind49%)	> 18% > (PV6% Wind12%)	> 14% > (PV2% Wind12%)	6 % (PV5% Wind1%)
	International grid [Interconnection level*]	44%	> 10%	> 6%	Not connected
Power Export/Import	<kw> Dependence of flexibility on abroad Ex/Import on the day with high V-RE ratio</kw>	80% 4.3GW Export: 2.8GW Import: 1.5GW	Expand system control 40% 16GW Export: 12GW Import: 4GW	**SGW Export: 3.2GW Import: 5.3GW	No Export/ Import
Power E	<kwh>Export Annual export/ import Import</kwh>	33% (10 _{TWh}) 55% (16 _{TWh})	> 13% (85TWh) > 5% (34TWh)	1% (2TWh) 8% (24TWh)	No Export/ Import

^{*} Ratio of international grid capacity and installed power production capacity

(Reference) Transition of Electricity mix, CO2, Price in EU countries

		Group1: Continental, High V-RE ratio					
		Germany		Spain		Denmark	
		2010	2015	2010	2015	2010	2015
	Fossil	61% (Coal 44, Gas14)	56% (Coal 44, Gas 10)	46% (Coal 9, Gas 32)	44% Coal 19 Gas 19)	68% (Coal 44, Gas 20)	34% (Coal 25, Gas 6)
Power Mix	Stable zero emission	31% (Nuclear 22, Hydro 3)	25% (Nuclear 14, Hydro 3)	36% (Nuclear 21, Hydro 14)	33% (Nuclear 21, Hydro 10	12%) (Nuclear 0, Hydro 0) **All biomass	15% (Nuclear 0, Hydro 0) **All biomass
	Variable zero emission	8% (PV 2, Wind 6)	18% (PV 6, Wind 12)	17% (PV 2, Wind 15)	23% (PV 3, Wind18)	20% (PV 0, Wind 20)	51% (PV 2, Wind 49)
CO2 emission [kgCO2/kWh]		0.48kg	0.45kg	0.24kg	0.29 _{kg}	0.36kg	0.17kg
Price for household [Yen/kWh]		32 _{yen}	40 _{yen}	24 _{yen}	26 _{yen}	36 _{yen}	41 _{yen}
Commnets		<points> ✓ V-RE: Increase ✓ Nuclear: Decrease ✓ Coal: Remain ⇒CO2 emission: Remain ⇒Price: Increase</points>		<points> ✓ V-RE: Increase ✓ Nuclear: Remain Hydro: Decrease ✓ Coal: Increase ⇒CO2 emission: Increase ⇒Price: Increase</points>		<points> ✓ V-RE: Increase ✓ Stable Zero Emission: Remain ✓ Fossil (Coal): Decrease ⇒CO2 emission: Decrease ⇒Price: Increase</points>	

(Reference) Transition of Electricity mix, CO2, Price in EU countries

		Group2: Island, B	oth RE & Nuclear	Group3: High stable zero emission ratio				
		United Kingdom		France		Sweden		
		2010	2015	2010	2015	2010	2015	
Power Mix	Fossil	77% (Coal 29, Gas 46)	54% (Coal 23, Gas 30)	10% (Coal 5, Gas 4)	7% (Coal 2, Gas 4)	6% (Coal 2, Gas 2)	2% (Coal 1, Gas 0)	
	Stable zero emission	21% (Nuclear 16, Hydro 1)	32% (Nuclear 21, Hydro 2)	88% (Nuclear 76, Hydro 11)	88% (Nuclear 78, Hydro 10)	92% (Nuclear 39, Hydro 45	88%) (Nuclear 35, Hydro 47)	
	Variable zero emission	3% (PV 0, Wind 3)	14% (PV 2, Wind 12)	2% (PV 0, Wind 2)	5% (PV 1, Wind 4)	2% (PV 0, Wind 2)	10% (PV 0, Wind 10)	
CO2 emission [kgCO2/kWh]		0.45kg	0.35kg	0.08kg	0.05kg	0.03 _{kg}	0.01kg	
Price for household [Yen/kWh]		18 _{yen}	23 _{yen}	17 _{yen}	22 _{yen}	22 _{yen}	20 _{yen}	
Commnets		<points> ✓ V-RE: Increase ✓ Nuclear: Increase Hydro: Increase ✓ Coal(Fossile): Decrease ⇒CO2 emission: Decrease ⇒Price: Increase</points>		<points> ✓ V-RE: Increase ✓ Stable zero emission: Remain ✓ Coal: Slightly decrease ⇒CO2 emission: Decrease ⇒Price: Increase</points>		<points> ✓ V-RE: Increase ✓ Stable zero emission: Remain ✓ Fossil: Slightly decrease ⇒CO2 emission: Decrease ⇒Price: Decrease</points>		

(Reference) Transition of CO2 emission and Electricity Price in EU countries

