Document 3

Provisional Translation

Global Warming

February 19, 2018

Agency for Natural Resources and Energy Ministry of Economy, Trade and Industry

Table of Contents

Power demand and supply in Denmark and Germany ••• p.18

The strategies of major countries for 2050

The strategies of major countries for 2050

	Reduction	Flovibility	Main Strategy, Posture			
	Target	Flexibility	Zero Emission	Energy Conservation	Overseas	
United States	▲ 80% or more (as percentage of 2005)	Ambitious vision towards reduction target (not intended as current policy proposals) providing <u>an ambitious vision</u> to reduce net GHG emissions by 80 percent or more below 2005 levels by 2050.	Increase Variable renewable energy + Nuclear power	Large-scale electrification (20%→45~60%)	Contribution through expanding market for US products	
Canada	▲ 80% (as percentage of 2005)	Informing the conversation (not a blue print for action) not a blue print for action. Rather, the report is meant to inform the conversation about how Canada can achieve a low-carbon economy.	Securing the electricity Hydro power • Variable renewables + Nuclear power Approx. 80% of electricity source already zero emission	Large-scale electrification (20%→40~70%)	Looking to contribute internationally (0~15%)	
France	▲75% (as percentage of 1990)	Possible path for achieving objectives (not an action plan)the scenario is not an action plan: it rather presents a possible path for achieving our objectives.	Securing the electricity Renewable energy + Nuclear power *Zero emission rate already at mo 90%	Large-scale energy conservation d (half as percentage of 1990)	Contribution through international evelopment support by French businesses	
United Kingdom [*]	▲ 80% or more (as percentage of 1990)	Helps players identify steps to take in the next few years by exploring potential pathways (long-term predictions are difficult) exploring the plausible potential pathways to 2050 helps us to identify low-regrets steps we can take in the next few years common to many versions of the future	Increase Variable renewables + Nuclear power	Promote energy conservation/elect rification	Lead the world through environmental investment	
Germany	▲ 80~95% (as percentage of 1990)	Point to the direction towards reducing emissions (not a search for masterplan) *Conduct regular reviews not a rigid instrument; it points to <u>the direction</u> needed to achieve a greenhouse gas-neutral economy.	Increase Variable renewable energy	Large-scale energy conservation (half as percentage of 1990)	Maintaining and bolstering investment sentiment in LDCs	

* Not yet submitted to UNFCCC as long-term strategy. Created from The Clean Growth Strategy (November 2017).

National Long-term Strategies (United States)

Long-term Strategy Summary

Reduction Target: ▲ 80% or more (as percentage of 2005) Status: Ambitious Vision aimed at Reduction Targets

		Main Entries	Quantitative Target		
nission	Renewable Energy	Infrastructure and regulatory support necessary such as batteries, systems buildup towards expanding variable renewable energy.	Year 2015 13% (VRE [*] 5%)	Year 2050 55~65% (VRE 45~59%)	
o Zero En	Nuclear Power	Necessary to extend lifespan of existing plants and invest in light water reactors and next-generation nuclear power.	Year 2015	Year 2050 17~26%	
Shift	Thermal Power	Map out future without thermal power depending on CCS technology development.	Year 2015 0%	Year 2050 0~25% (CCS Thermal power)	
ition/ n	Energy conservation	Enhance efficiency of energy system as a whole Smart grids, raising fuel efficiency, making industrial processes more efficient, etc.	Year 2050 ▲ 24~30% (as percentage of 2005)		
Energy Conserva Electrification	Electrification	Greater electrification of autos, household heat demand, industrial steam, etc.		Year 2050 45~60%	
	CCUS/ Hydrogen	CCUS/ HydrogenHydrogen may play important role in areas where electrification is difficult. (FCV, aircraft, industrial cogeneration)		No Quantitative Target	
Over seas	Overseas Contributions	Contribute to global emissions reduction by expanding market for US goods and services.		No Quantitative Target	

XVRE: Variable Renewable Energy

National Long-term Strategies (Canada)

Long-term Reduction Target : \blacktriangle 80% and more (as percentage of 2005) Strategy Status: Informing the Conversation Summary **Main Entries Quantitative Target** Year 2050 Year 2015 **Renewable** Expand use of wind power, photovoltaics and hydro power. 50~80% Shift to Zero Emission 63% Energy Hydro Power 30~70% (Hydro Power 57%) **Nuclear** Year 2015 250 USD investment expected in 10 plants over the next 15 Year 2050 $5 \sim 50\%$ Power 15% years. Year 2015 _ Year 2050 Thermal Thermal power equipped with CCS may exist depending on 0% 0~10% **Power** scenario. (CCS Thermal Power) (CCS Thermal Power) Improving energy efficiency and demand management are Year 2050 Energy the main elements of long-term emissions reduction ▲5~35%conservation Energy Conservation/ Electrification (from 2014 level) <u>strategy.</u> Electrification of Automobiles, buildings, heat systems, Year 2050 Year 2015 Electrification $40 \sim 72\%$ 22% industry, etc. is essential to reducing emissions. Room for reduction in major emitting industries (gas and petroleum, CCUS/ Year 2050 Year 2015 iron and steel, paper manufacturing, chemicals, etc.) with CCS Hydrogen 0~32% 0% Potential for using hydrogen in heavy industries, shipping, etc. Encouraging international cooperation contributes to efficient global Year 2050 Over seas **Overseas** Year 2015 cost reduction. 0~15% **Contributions** 0% Include cross-border reduction in international contribution.

National Long-term Strategies (France)

Long-term Strategy Summary Reduction Target : ▲75% (as percentage of 1990) Status: Possible Path for achieving Objectives

		Main Entries	Quantitative Targ	get
ission	Renewable Energy	Further flexibility necessary to integrate renewable energy (utilizing hydropower for peak demand, energy storage, international grids)	Year 2015 16% (VRE [*] 5%) Year 20 40% (Details unkn)30 nown)
to Zero Emi	Nuclear Power	Reduce weight in electricity composition to 50% by 2025. (Energy Conversion Act) * French government announced in 7/11/2017 that the target year will be postponed to 2030 ~ 2035.	Year 2015 Year 20 78% Year 20 50%)25
Shift	Thermal Power	Shift to zero emission CCS essential in complete shift to zero emission scenario.	Year 2015 0% (CCS Thermal Power) No Quantita Target (CCS Thermal Power)	tive
n	Energy conservation Large-scale energy conservation in industry, construction and transport sectors.		Year 2050 ▲ 50% (as percentage of 1990)	
Energy Conserval Electrification	Electrification	Electrification important to promoting energy conservation Timeframe for developing EV infrastructure, etc. important	Year 2015 Year 20 25% Year 20 Approx.)25 40%
	CCUS/ Hydrogen Restrain carbon intensity of products through CCS in industrial processes in iron and steel , cement, etc.		No Quantitative Target	
Over seas	Overseas Contributions	Promote carbon intensity reduction through support for international development by French businesses (utilize export credit insurance, etc.)	No Quantitative Target	
			※VRE: Variable Renewable	e Energy

National Long-term Strategies (United Kingdom)

Lo S Si	ong-term Strategy ummary	Reduction Target : ▲ 80% or more (as percentage of 1990) Status: Help identifying steps for the next few years by exploring potential pathways*					
		28-2032). Some entr Quantita	ies up to 2050. tive Target				
ission	Renewable Energy	Support more renewable energy market entries such as offshore wind Develop electricity storage, DR and new grid stabilization methods.	Year 2015 25% (VRE* 14%)	Year 2030 44% (Details unknown)			
to Zero Em	Nuclear Power	Reduce cost, maintain stability (support new construction) Support innovation towards developing next-generation nuclear power, etc.	Year 2015	Year 2030 28%			
Shift 1	Thermal Power	Decommission coal-fired power plants without CCS by 2025.	Year 2015 0% CCS Thermal Power) (No quantitative target CCS Thermal Power)			
ation/ on	Energy conservation	Achieve 20% energy conservation in the office and industrial sectors by 2030, raise energy efficiency in all households to specific levels.	Year 2030 ▲ 10% (as percentage of 2008)				
Energy Conserva Electrificatio	Electrification	Electrify energy intensive industries, utilize heat pumps in household Promote adoption of EVs	Year 2015	Year 2030 23%			
	CCUS/ Hydrogen	Lead the world in CCUS technology development (invest 100 million GBP) Hydrogen to be used in FCVs, industrial processes, and heat supply to households and offices	No Q	uantitative Target			
Over seas	Overseas Contributions	Lead the world in environmental investment (establish task force to encourage pull and private investment, 20 million GBP investment in immature technologies, etc. % UK actions to date are expected to save almost 500 million tons of CO2, while they do not coun these results against the domestic budgets	blic .) No Q	ic No Quantitative Target			

National Long-term Strategies (Germany)

Long-term Strategy	Reduction Target : $\blacktriangle 80 \sim 95\%$ (as percentage of 1990)
Summary	Status: Point to the Direction towards reducing Emissions

		Main Entries	Quantitative Target		
o Zero Emission	Renewable Energy	Fully promote renewable energy in areas where it is usable (mainly wind power). Optimize variable renewable energy by sector-coupling.	Year 2015 29% (VRE* 18%)	Year 2050 80% (Details unknown)	
	Nuclear Power	No entry.	Year 2015	Year 2050 0%	
Shift	Thermal Power	New construction of coal-fire power plants will not be supported.	Year 2015 0% (CCS Thermal Power)	No Quantitative Target (CCS Thermal Power)	
n	Energy conservation Energy conservation first. (promote energy conservation in all sectors)		Yea (as percer	r 2050 50% ntage of 2005)	
Energy Conserva Electrification	Electrification	Increase electricity demand through electrification of automobiles and heat use in buildings.	Year 2015	Year 2050 Approximately 30%	
	CCUS/ Hydrogen Consider CCU and CCSin that orderwhen carbon reduction through new technology is difficult in the industrial sector. Hydrogen has potential for FCVs and as alternative fuel source.		No Quantitative Target		
Over seas	Overseas Contributions	Overseas intributionsContribute through partnerships for climate action plan. (maintain and strengthen investment sentiment in LDCs and contribute to their fundraising)		antitative arget	

XVRE: Variable Renewable Energy

Transition of electricity market (1990 -> 2010 -> 2015)

Transition of Germany's CO2 emissions from power generation

*Numbers are rounded. Totals may not match due to rounding errors.

Transition of the UK's CO2 emissions from power generation

*Numbers are rounded. Totals may not match due to rounding errors.

Transition of the EU's CO2 emissions from power generation

*Numbers are rounded. Totals may not match due to rounding errors.

Transition of the China's CO2 emissions from power generation

*Numbers are rounded. Totals may not match due to rounding errors.

Transition of the Japan's CO2 emissions from power generation

		1990	2010)	2015
Power Generation		870 TWh	+ <u>200</u> 1,10	O 100 TWh	1,100 TWh
	Renew- able	98 TWh	+10 110	TWh +50	160 TWh
	Nuclear	200 _{TWh}	100 290	TWh	20 TWh
	Thermal	570 TWh (coal 100, gas 200, oil 300)	(coal 300, gas 300	TWh (c	870 TWh oal 300, gas 400, oil 100)
CO2 Emissions (Power generation)		350 Million tons (0.46 kgCO2/kWh) Thermal genera Thermal break	+80 Million to (0.42 kgCO2/k ated volume change: +90 eakdown change: -10	ns Wh) Thermal generated volume ch Thermal breakdown chang	500 Million tons (0.52 kgCO2/kWh)

* Numbers are rounded. Totals may not match due to rounding errors.

* Definition of kgCO2/kWh in METI and IEA may be different.

CO2 emissions of EU and U.S. (2015)

Emission coefficient and the electrical power generation mix of each country

Source: IEA CO2 emissions from fuel combustion 2017, Comprehensive Energy Statistics 16

Emission coefficient and the electrical power generation mix of US states

Power demand and supply in Denmark and Germany

Power demand and supply in Germany (2017/4/29~4/30)

Electricity balance in 2017/4/29~4/30 in Germany

Flexibility (kW) and power generation (kWh) for the 2 days

% Preliminary calculation assuming fossil power increases as alternative energy of import, fossil decreases for 4/29 and renewables are curtailed for 4/30 instead of exporting power

Power demand and supply in Denmark (2017/5/11~5/13)

Electricity balance in 2017/5/11~5/13 in Denmark

Flexibility (kW) and power generation (kWh) for the 3 days

		Fossil	Pumped	Ex/Import	Total
Flexibility (kW)	Cross section 1 (Flexibility "up")	1.0 GW (40%)	0 GW (0%)	1.5 GW (60%)	2.4 GW (100%)
	Cross section 2 (Flexibility "down")	0 GW (0%)	0 GW (0%)	2.8 GW (100%)	2.8 GW (100%)
	Cross section 1 + 2 (total)	1.0 GW (20%)	0 GW (0%)	4.3 GW (80%)	5.3 GW (100%)
	*Totals might not mate	h due to rounding	Fossil	Nucloar	Total
Generation (kWh)	With Ex/Import (actual case)	120 GWh	130 GWh	0 GWh	250 GWh
	Without Ex/Import*	70 _{GWh}	160 _{GWh}	0 GWh	240 _{GWh}
Power	Difference	▲ 50 GWh (▲ 39%)	+30 GWh (+27%)	±0 _{GWh} (±0%)	▲ 10 GWh (▲5%)

% Preliminary calculation assuming fossil power increases as alternative energy of import, renewables are curtailed instead of exporting power.

V-RE ratio and power import/export in Denmark and Germany

			Denmark		Germany		Japan
Power demand (annual generation)		nd ¹⁾	30 _{TWh}	<	600 t Wh	<	1,100 тwh
Ratio of variable renewables		bles	51% (PV 2% Wind 49%)	>	18% (PV 6% Wind 12%)	>	• 6% (PV 5% Wind 1%)
Import	<kw> Dependence of flexibility on abroad Ex/Import on the day with high V-RE ratio</kw>		80%	>	40% 16GW Import: 12GW Export: 4GW	>	No Export/ Import
Power Export/I	<kwh> Annual</kwh>	port	33% (10 _{TWh})	>	13% (85 _{TWh})	>	No Export/
	import Imp	iport	55% (16twh)	>	5% (34 _{TWh})	>	Import

(Reference) Transition of Electricity mix, CO2, Price in EU countries

			G	roup1: Continental, High V-RE ratio				
		Gern	nany	Spa	ain	Denmark		
		2010	2015	2010	2015	2010	2015	
	Fossil	61% (Coal 44, Gas14)	56% (Coal 44, Gas 10)	46% (Coal 9, Gas 32)	44% Coal 19 Gas 19)	68% (Coal 44, Gas 20)	34% (Coal 25, Gas 6)	
Power Mix	Stable zero emission	31% (Nuclear 22, Hydro 3)	25% (Nuclear 14, Hydro 3)	36% (Nuclear 21, Hydro 14)	33% (Nuclear 21, Hydro 10)	12% (Nuclear 0, Hydro 0) *All biomass	15% (Nuclear 0, Hydro 0) *All biomass	
	Variable zero emission	8% (PV 2, Wind 6)	18% (PV 6, Wind 12)	17% (PV 2, Wind 15)	23% (PV 3, Wind18)	20% (PV 0, Wind 20)	51% (PV 2, Wind 49)	
CO2 emission [kgCO2/kWh]		0.48 kg	0.45 _{kg}	0.24kg	0.29 kg	0.36 kg	0.17 kg	
Price for household [Yen/kWh]		32yen	40yen	24 _{yen}	26yen	36 yen	41 _{yen}	
Commnets		<points> ✓ V-RE: Increase ✓ Nuclear: Decrease ✓ Coal: Remain ⇒CO2 emission: Remain ⇒Price: Increase</points>		<points> ✓ V-RE: Increase ✓ Nuclear: Remain Hydro: Decrease ✓ Coal: Increase ⇒CO2 emission: Increase ⇒Price: Increase </points>		<points> ✓ V-RE: Increase ✓ Stable Zero Emission: Remain ✓ Fossil (Coal): Decrease ⇒CO2 emission: Decrease ⇒Price: Increase</points>		

(Reference) Transition of Electricity mix, CO2, Price in EU countries

Group2: Island, Both RE & Nuclear			Group3: High stable zero emission ratio				
		United K	Kingdom	Fra	ince	Sweden	
		2010	2015	2010	2015	2010	2015
	Fossil	77% (Coal 29, Gas 46)	54% (Coal 23, Gas 30)	10% (Coal 5, Gas 4)	7% (Coal 2, Gas 4)	6% (Coal 2, Gas 2)	2% (Coal 1, Gas 0)
Power Mix	Stable zero emission	21% (Nuclear 16, Hydro 1)	32% (Nuclear 21, Hydro 2)	88% (Nuclear 76, Hydro 11)	88% (Nuclear 78, Hydro 10)	92% (Nuclear 39, Hydro 45)	88% (Nuclear 35, Hydro 47)
	Variable zero emission	3% (PV 0, Wind 3)	14% (PV 2, Wind 12)	2% (PV 0, Wind 2)	5% (PV 1, Wind 4)	2% (PV 0, Wind 2)	10% (PV 0, Wind 10)
CO2 emission [kgCO2/kWh]		0.45kg	0.35kg	0.08 kg	0.05kg	0.03kg	0.01 kg
Price for household [Yen/kWh]		18yen	23 _{yen}	17 _{yen}	22yen	22yen	20yen
Commnets		<points> ✓ V-RE: Increase ✓ Nuclear: Increase ✓ Hydro: Increase ✓ Coal(Fossile): Decrease ⇒CO2 emission: Decrease ⇒Price: Increase</points>		<points> ✓ V-RE: Increase ✓ Stable zero emission: Remain ✓ Coal: Slightly decrease ⇒CO2 emission: Decrease ⇒Price: Increase</points>		<points> ✓ V-RE: Increase ✓ Stable zero emission: Remain ✓ Fossil: Slightly decrease ⇒CO2 emission: Decrease ⇒Price: Decrease</points>	

*Rough calculation assuming EUR 1 = JPY 135, GBP 1 = JPY 150

Source: IEA Energy Balances, CO2 Emissions from Fuel Combustion, Energy Prices & Taxes etc. 23

(Reference) Transition of CO2 emission and Electricity Price in EU countries

