The Energy White Paper is an annual report based on the Basic Act on Energy Policy. It has been published annually since June 2004.

Based on studies to review the Basic Energy Plan, information on issues, especially the current state of affairs inside and outside Japan, was carefully collected and analyzed.

Part 1 Current Energy Situation and Key Measures (Topics)

Chapter 1 Progress in the recovery of Fukushima
1. Approach to the Fukushima Daiichi Nuclear Power Station accident
2. Support for nuclear victims
3. The Fukushima Plan for a New Energy Society
4. Nuclear Damage Compensation
5. TEPCO Reform

Chapter 2 Global warming countermeasures and energy policy based on the Paris Agreement
1. Trends on Global Warming Countermeasures (Effectuation of the Paris Agreement, etc.)
2. Greenhouse gas reduction targets in various countries and recent progress
3. Energy situation in each country viewed by data

Chapter 3 Efforts to cope with recent disasters and enhance resilience
1. Summary of major disasters that occurred in 2018
2. Emergency inspection of critical infrastructure and its countermeasure package

Part 2 Energy Trends (Data)

Part 3 Measures Taken in FY2018 concerning Energy Supply and Demand (Measures)

* Article 11 of the Basic Act on Energy Policy: The Government is required to submit to the Diet an annual report outlining measures taken in the previous fiscal year concerning energy supply and demand.
- History of changes in Japan's situation and energy choices from the Meiji Restoration to the Great East Japan Earthquake | Progress in Fukusima’s Reconstruction
- Efforts towards the decommissioning of reactor units 1-4 at TEPCO’s Fukushima Daiichi Nuclear Power Station
- Amendments to the roadmap toward the decommissioning (fuel debris retrieval etc.)
- Measures taken in evacuation order areas | Changes in energy situation inside and outside Japan
- Progress and challenges toward 2030 energy mix
- Changes of energy situation and challenges toward 2050 (Measures against global warming being taken in major countries, the current status of energy security in Japan, energy technology and the possibilities of Japanese companies, etc.) |
- Efforts towards the Decommissioning of TEPCO’s Fukushima Daiichi Nuclear Power Station Units 1-4
- Basic Policy for Accelerating Fukushima's Reconstruction from the Nuclear Disaster Revisions of the Act on Special Measures for the Reconstruction and Revitalization of Fukushima and the Act on Nuclear Damage Compensation and Decommissioning Facilitation Corporation, etc. | New Direction of Energy Policy
- Enhancement of energy security (e.g. revision of the JOGMEC Act)
- Energy conservation policy and new energy policy that strike a balance between environmental restrictions and growth (e.g. enforcement of the revised FIT Act)
- Response to problems related to the public interest under invigoration of competition and liberalization on energy supply (e.g. thorough pursuit of the electricity system reform) | Energy System Reform in Japan and Abroad and Trends in the Energy Industry
- Changes in the business environment surrounding overseas energy industries (changes in the market and systems, etc.)
- Trends in the response of overseas energy industries to changes in the business environment (example cases in the United States and Europe)
- Trends in the Japanese energy industry |
- Recent crude oil prices and forecast
- Need for investment in upstream development and measures
- Responses to oil price fluctuation risks (LNG)
- Reduction of dependence on crude oil on the demand side (energy conservation) | Responses to the Great East Japan Earthquake and the Accident at Tokyo Electric Power Company’s (TEPCO) Fukushima Daiichi Nuclear Power Station and the Nuclear Energy Policy Based on the Lessons thereof
- Efforts towards the Decommissioning
- Support for nuclear disaster victims and the New Energy-Oriented Society Scheme
- New nuclear power policy | Changes in energy policy based on the Paris Agreement
- Influence of the Paris Agreement
- Innovative Energy Strategy
- New mechanism in the electricity sector |
- Changes brought about by the Shale Revolution
- Impact on and changes in energy security
- Future changes in the global energy situation | Responses to the Great East Japan Earthquake and the Accident at TEPCO's Fukushima Daiichi Nuclear Power Station
- Activities related to decommissioning, support for accident victims, compensation and regulation | Dealing with energy costs
- Changes in energy and electricity prices
- Impact on households and industries
- Measures to deal with energy costs |
Chapter 1 Progress in the recovery of Fukushima
Current status of efforts for reconstruction and revitalization of Fukushima

Off-site

Contaminated Water

- **2011 (just after accident)**
 - Tomioka: app. 25mSv/yr (●Kobama)
 - Naraha: app. 16mSv/yr (● Kamishigeoka)
 - Tamura: app. 7mSv/yr (● vic. Kasuga Shrine)
 - Concentration of radioactive materials in the sea around the site: app. 10,000Bq/L

- **2017 (6 yrs after)**
 - Evacuation orders lifted for all habitation restricted and preparation areas except Okuma/Futaba Towns by Apr. 2017
 - Concentration of radioactive materials in the sea reduced below 1/10,000 by management of contaminated water

- **2019 (8 yrs after)**
 - As low as almost undetectable (app. 0.6Bq/L or less)

Decommissioning

- International Research Institute for Nuclear Decommissioning (IRID) established (Aug. 2013)
- Nuclear Damage Compensation and Decommissioning Facilitation Cooperation (NDF) established (Aug. 2014)
- Continuing action toward decommissioning: Policy for retrieval of fuel debris determined (Sept. 2017)
- Started removal of fuel from Unit 3 (Apr. 2019)

Measures for Returning

- Promotion of Fukushima Innovation Coast Framework
- Industrial revitalization in Hamadori
- Reconstruction of business/livelihood
- Clearing reputational damage for agricultural/marine products
- To Improve the environment of the Specified Reconstruction and Revitalization Bases

Effects of Decommissioning

- Physical Attenuation
- Weathering Effect
- Decontamination

- **2017**
 - app. 0.5mSv/yr
 - ※estimate assuming constant

- **2019**
 - app. 1.1mSv/yr
 - ※estimate assuming constant

- **2019**
 - app. 1.6mSv/yr
 - ※estimate assuming constant

Frozen-soil wall

- Impermeable wall (sea-side)

Reactor building

- Contaminated water
- Decontamination/paving

Measuring Instruments

- Radiation meters: Tamura app. 7mSv/yr (● vic. Kasuga Shrine)
- Tomioka app. 25mSv/yr (●Kobama)
- Naraha app. 16mSv/yr (● Kamishigeoka)

Internal investigation of the containment vessel of Unit 2 was conducted toward retrieval of fuel debris (Jan. 2018)

Contacted to deposit during internal investigation of Unit 2 (Feb. 2019)

Started removal of fuel from Unit 3 (Apr. 2019)
The latest approach to reconstruction and revitalization of Fukushima

On-site

- **Preventive and multi-layered measures against contaminated water progressed**
 - According to the assessment of experts, the water blocking effect of the frozen soil wall was clearly recognized, and the water level management system, together with the function of sub-drain etc., was established to control the groundwater stably so that it could be kept away from the building (March 2018).
 - The amount of contaminated water generated has decreased from approximately 540 tons per day (May 2014) before the countermeasures to approximately 180 tons per day (April 2018-February 2019).

- **Progress towards fuel removal**
 - Unit 1 began removal of rubble from operating floor on the top of the reactor building in January 2018.
 - At Unit 2, the opening for access to the inside of the operating floor was installed in February 2018 prior to the dismantling of top of the building, and the inside of the operating floor is under investigation.
 - At Unit 3, the dome roof was installed in February 2018, and fuel removal started in April 2019.

- **Internal investigation for fuel debris retrieval**
 - At Unit 2, the internal investigation of the reactor containment vessel was conducted in January 2018, and the deposits that were thought to be fuel debris were confirmed. In February 2019, it was confirmed that the investigation equipment could be brought into contact with the deposit thought to be fuel debris, and the pebble like deposit could be grasped and lifted up.

- **Progress confirmation by International Organization (IAEA)**
 - In November 2018, the fourth peer review mission by the International Atomic Energy Agency (IAEA) Expert Team was conducted.
 - "The transition from emergency to steady state has been achieved at the Fukushima Daiichi Nuclear Power Station, and it has been evaluated that there have been many improvements since the previous review (February 2015)".

- **Working environment improved**
 - From June 2018, ordinary working clothes is used in about 96% of on-site area.

Off-site

- **Lifting of evacuation order, development, of specific revival reproduction base**
 - By May 2018, the Specified Reconstruction and Revitalization Base area plan was approved for all six municipalities that have been promoting development. Aim for the lifting of evacuation orders approximately five years later.
 - In April 2019, the evacuation order was lifted in some areas of Okuma Town (That was the first time that the evacuation order was lifted at the local town where Fukushima Daiichi Nuclear Power Station locates).

- **Fukushima robot test field partial opening**
 - "Communication tower" opened in July 2018, and "test plant" opened in February 2019 (to be fully opened in 2020)
 - The field is being used by the public and private sectors, including the research and development project of the Cabinet Office.

- **Development of living environment advances**
 - From April 2018, elementary and junior high schools are established and resumed, and schools are resumed in all municipalities where evacuation instructions have been lifted.
 - Development of environment for return progresses, such as opening of secondary emergency medical care facilities and opening of fire department.

- **Construction of a hydrogen refueling hydrogen proof base starts**
 - In Namie Town, with the world's largest water electrolyzer, demonstration of hydrogen production from renewable energy
 - Construction of "Fukushima Hydrogen Energy Research Field" started in July 2018
Chapter 2 Global warming countermeasures and energy policy based on the Paris Agreement
Progress of GHG reduction in major countries

~JP and UK progress towards the goal. FR and DE stagnated at present. Balanced efforts such as non-fossil power supply, gas conversion, energy saving etc. are important.~

FY2016 Medium-term goals and progress on GHG reduction

<table>
<thead>
<tr>
<th>Country</th>
<th>Goal</th>
<th>Progress</th>
</tr>
</thead>
<tbody>
<tr>
<td>JP</td>
<td>1.1 billion ton-CO₂</td>
<td>+1.7%p/year</td>
</tr>
<tr>
<td></td>
<td>0.9 billion ton-CO₂/capita</td>
<td>Same level as target line</td>
</tr>
<tr>
<td></td>
<td>26% BELOW 2013 LEVELS</td>
<td>The latest trend is reduction (Last 3 years average, same below)</td>
</tr>
<tr>
<td>UK</td>
<td>0.4 billion ton-CO₂</td>
<td>+2.7%p/year</td>
</tr>
<tr>
<td></td>
<td>0.57 billion ton-CO₂/capita</td>
<td>Same level as target line</td>
</tr>
<tr>
<td></td>
<td>57% BELOW 1990 LEVELS</td>
<td>The latest trend is reduction</td>
</tr>
<tr>
<td>US</td>
<td>4.8 billion ton-CO₂</td>
<td>+1.0%p/year</td>
</tr>
<tr>
<td></td>
<td>1.49 billion ton-CO₂/capita</td>
<td>Run above target line</td>
</tr>
<tr>
<td></td>
<td>40% BELOW 2005 LEVELS</td>
<td>The latest trend is flat</td>
</tr>
<tr>
<td>FR</td>
<td>0.3 billion ton-CO₂</td>
<td>+0.3%p/year</td>
</tr>
<tr>
<td></td>
<td>0.89 billion ton-CO₂/capita</td>
<td>Run above target line</td>
</tr>
<tr>
<td></td>
<td>55% BELOW 1990 LEVELS</td>
<td>The latest trend is flat</td>
</tr>
<tr>
<td>DE</td>
<td>0.7 billion ton-CO₂</td>
<td>+0.2%p/year</td>
</tr>
<tr>
<td></td>
<td>0.64 billion ton-CO₂/capita</td>
<td>Same level as target line</td>
</tr>
<tr>
<td></td>
<td>40% BELOW 1990 LEVELS</td>
<td>The latest trend is flat</td>
</tr>
<tr>
<td>EU</td>
<td>3.1 billion ton-CO₂</td>
<td>26% BELOW 1990 LEVELS</td>
</tr>
<tr>
<td></td>
<td>0.64 billion ton-CO₂/capita</td>
<td>20% BELOW 1990 LEVELS</td>
</tr>
</tbody>
</table>

Factor 1: Non-fossil power ratio (Renewable, Nuclear)

- **Non-fossil is low but increasing**
 - Renewable energy and Nuclear power gradually increases

 - Non-fossil is increasing
 - Renewable energy increases and Nuclear power maintains.
 - Convert coal to gas

 - Non-fossil is already high
 - Renewable energy increases but Nuclear power decreases.
 - Coal accounts for 40%.

Factor 2: Energy consumption reduction

- **Non-fossil is low but increasing**
 - Renewable energy and Nuclear power gradually increases

 - Non-fossil is increasing
 - Renewable energy increases and Nuclear power maintains.
 - Convert coal to gas

 - Non-fossil is flat
 - Renewable energy increases but Nuclear power decreases.
Japan's energy-induced CO2 emissions are **9 tons per capita** annually, **27th among OECD 35 countries**.

Looking at the causes of emissions, Japan has **strengths on the demand side** but **weaknesses on the supply side. 4th out of 5 major countries**.

It is important for Japan to **strengthen CO2 emission reduction on the supply side**.

Per capita CO2 emissions (OECD 35 countries*)

<table>
<thead>
<tr>
<th>Country</th>
<th>CO2 emissions (Annual)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latvia</td>
<td>3.4</td>
</tr>
<tr>
<td>Mexico</td>
<td>2.6</td>
</tr>
<tr>
<td>Sweden</td>
<td>3.8</td>
</tr>
<tr>
<td>Turkey</td>
<td>4.3</td>
</tr>
<tr>
<td>France</td>
<td>4.4</td>
</tr>
<tr>
<td>Hungary</td>
<td>4.3</td>
</tr>
<tr>
<td>Switzerland</td>
<td>4.5</td>
</tr>
<tr>
<td>Portugal</td>
<td>4.6</td>
</tr>
<tr>
<td>Chile</td>
<td>4.7</td>
</tr>
<tr>
<td>Spain</td>
<td>5.1</td>
</tr>
<tr>
<td>Italy</td>
<td>5.4</td>
</tr>
<tr>
<td>Slovak Republic</td>
<td>5.6</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>5.7</td>
</tr>
<tr>
<td>Greece</td>
<td>5.8</td>
</tr>
<tr>
<td>Denmark</td>
<td>5.9</td>
</tr>
<tr>
<td>Slovenia</td>
<td>6.5</td>
</tr>
<tr>
<td>New Zealand</td>
<td>6.5</td>
</tr>
<tr>
<td>Norway</td>
<td>6.8</td>
</tr>
<tr>
<td>Iceland</td>
<td>7.0</td>
</tr>
<tr>
<td>Austria</td>
<td>7.2</td>
</tr>
<tr>
<td>Israel</td>
<td>7.5</td>
</tr>
<tr>
<td>Japan</td>
<td>9.0</td>
</tr>
<tr>
<td>Belgium</td>
<td>8.1</td>
</tr>
<tr>
<td>Finland</td>
<td>8.3</td>
</tr>
<tr>
<td>Germany</td>
<td>8.9</td>
</tr>
<tr>
<td>Netherlands</td>
<td>9.2</td>
</tr>
<tr>
<td>Korea</td>
<td>9.6</td>
</tr>
<tr>
<td>Estonia</td>
<td>11.5</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>12.6</td>
</tr>
<tr>
<td>Canada</td>
<td>14.2</td>
</tr>
<tr>
<td>US</td>
<td>14.9</td>
</tr>
<tr>
<td>Australia</td>
<td>16.0</td>
</tr>
</tbody>
</table>

Average: 7.6 ton/capita

*1: Lithuania is not included because it became a member in 2018

Source: IEA CO2 Emissions from Fuel Combustion, World Energy Balances, OECD stat

How to calculate the score

Deviation values are calculated in the OECD 35 countries and normalized so that deviation value 35 is 0 and deviation value 65 is 10 (10 for deviation value 65 or more, 0 for 35 or less)
Challenges of renewable energy becoming the main electric power source

Problem / Direction of energy plan

Power generation cost
- Twice as much as in Europe
- Previous national burden annual amount
 - 2 trillion yen / year Renewable energy + 5% (10%→15%)
 - Japan needs + 9% (15% → 24%) for 1 trillion yen / year from now on

Grid constraints
- Inconsistency between existing grid and renewable energy location potential
- Structural decline in grid demand
- Expanded introduction of variable renewable energy

Steady implementation of action plans

Business environment
- Environment to support long-term stable power generation is immature
- Location restrictions on offshore wind power etc.

Renewable energy as main power source

Main initiatives taken so far

To cope with uncommissioned projects
- Solar power projects that have not reached the operation preparation stage by a certain time are to be awarded reduced prices.
- In addition, measures to secure early operation start

To move forward price targets and expand the scope of auction
- Target of solar power for business to be 7 yen 2025
- Auction scope of solar for business to be revised
 - [2,000 kW or more]⇒[500 kW or more]

Establishment of information liaison meeting aiming at regional symbiosis
- Sharing of advanced cases such as ordinance enactment among local governments
- Toward the expansion of offshore wind power, formulation of rules for long-term occupancy of sea area together with competitive tender

NW cost reform in the age of mass introduction of renewable energy
- Mechanism to promote thorough reduction of NW costs
- Study for improvements of system environment toward the transition to the next-generation NW

Future direction

<table>
<thead>
<tr>
<th>① Promote development of power sources using renewable energy ⇒ Incentives according to individual power supply characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>• For renewable energy with rapid cost reduction (solar, wind, large-scale biomass), consideration will be conducted for the ideal measures for integration into the market while promoting cost reduction acceleration.</td>
</tr>
<tr>
<td>• For local symbiosis renewable energy (geothermal, small/medium-scale hydro, local biomass), consideration will be conducted for the ideal way of development promotion not limited to FIT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>② Strengthen business discipline ⇒ Reinforcement of responsibility system towards long-term stable power supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Strengthen enforcement of Electric Business Act in coordination with Act on FIT</td>
</tr>
<tr>
<td>• Cases of innovative local governments including ordinance enactment to be shared with other local governments</td>
</tr>
<tr>
<td>• Discussion on disposal cost securing method from a professional point of view (toward external funding in principle with internal funding as some exceptions)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>③ Improvements of renewable energy business environment ⇒ Support maximum renewable energy introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Further consideration to overcome location restrictions = Implementation of the Sea Area Utilization Law, etc.</td>
</tr>
<tr>
<td>• Further consideration to overcome grid constraints = Realization of Japanese version “Connect & Manage” + Securing necessary investment in the grid system including the review of consignment etc.</td>
</tr>
</tbody>
</table>
In Japan, the introduction of renewable energy per unit area is at a high level. On the other hand, it is difficult to increase the renewable energy ratio because the power demand is large.

<table>
<thead>
<tr>
<th>Land area</th>
<th>Group ① (Similar size as Japan)</th>
<th>Group ② (Similar size as Kyushu)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Germany</td>
<td>Norway</td>
</tr>
<tr>
<td></td>
<td>350 thousand km²</td>
<td>370 thousand km²</td>
</tr>
<tr>
<td>Renewable energy generation</td>
<td>190 billion kWh</td>
<td>145 billion kWh</td>
</tr>
<tr>
<td></td>
<td>Wind: 80</td>
<td>Hydro: 143</td>
</tr>
<tr>
<td></td>
<td>Renewable energy per unit land area</td>
<td>540 thousand kWh/km²</td>
</tr>
<tr>
<td>Demand scale (Net import and export)</td>
<td>640 billion kWh</td>
<td>150 billion kWh</td>
</tr>
<tr>
<td>※The demand is the total power generation</td>
<td>(Net import and export 50 billion kWh)</td>
<td>(Net import and export 20 billion kWh)</td>
</tr>
<tr>
<td>Renewable energy ratio</td>
<td>29% Wind: 12% Biomass: 8% Solar: 6%</td>
<td>98% Wind: 96% Biomass: 1%</td>
</tr>
<tr>
<td>※Figures of renewable energy power generation, demand and import/export have been rounded off to the nearest.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The greater the population, the greater the demand for electricity.

The greater the demand for electricity, the more difficult it is to raise the renewable energy ratio.

Norway

Renewable energy ratio : 98%
Country area : 370 thousand km²
△Renewable energy ratio 1 % : 1.5 billion kWh

About 5 million people

Germany

Renewable energy ratio : 29%
Country area : 350 thousand km²
△Renewable energy ratio 1 % : 64 billion kWh

Required energy other than renewable energy
About 100 billion kWh

Renewable energy generation
About 150 billion kWh

Japan

Renewable energy ratio : 15%
Country area : 380 thousand km²
△Renewable energy ratio 1 % : 105 billion kWh

About 190 billion kWh

※ About 5 billion kWh

△Renewable energy ratio 1 %:

The relationship between electricity demand and renewable energy ratio:

- Norway: Renewable energy ratio 98%
- Germany: Renewable energy ratio 29%
- Japan: Renewable energy ratio 15%
Chapter 3 Efforts to cope with recent disasters and enhance resilience
Recent Natural Disasters

- Since 2000, **number of earthquakes with seismic intensity 5+ has increased** with **trend of increasing precipitation**
- **2018 in particular saw large scale disasters** and suffered significant damage from earthquakes and wind/flood

Occurrence of earthquakes with seismic intensity 5

Annual occurrence of hourly precipitation 50mm+

List of earthquake insurance claims due to earthquakes
(in the order of amount paid)

List of insurance claims due to wind and water disasters
(in the order of amount paid)

Source: Japan Meteorological Agency

Source: The General Insurance Association of Japan
Efforts to cope with major disasters during 2018

<table>
<thead>
<tr>
<th>Event</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb. Heavy snowfall Fukui</td>
<td>Heaviest since 1981 (140cm+)</td>
</tr>
<tr>
<td>Jun. Earthquake N. Osaka</td>
<td>Earthquake with seismic intensity 6- occurred in North Ward of Osaka City</td>
</tr>
<tr>
<td>Sept. Earthquake E. Iburi, Hokkaido</td>
<td>Blackout all over Hokkaido</td>
</tr>
<tr>
<td>July Torrential rains W. Japan</td>
<td>Downpour due to typhoon 7 and other causes</td>
</tr>
<tr>
<td>Sept. Typhoon #21</td>
<td>Power cuts throughout country</td>
</tr>
<tr>
<td>Sept. Typhoon #24</td>
<td>Power cuts throughout country</td>
</tr>
</tbody>
</table>

Snow

- 1500 vehicles stuck for several days on National Highway #8
- 22 service stations including major ones “ended up with nil stocks”

Earthquake

- In Osaka/Hyogo Prefectures. power failure at about 170,000 houses
- Immediately after earthquake, supply of town gas to about 112,000 houses stopped
- After earthquake, blackout affected 2.95 million houses in whole Hokkaido area
- Despite gradual restart of power stations, request for power saving made due to critical S/D situation
- Power failure at max 80,000 houses mainly in Chugoku and Shikoku areas
- To prevent heatstroke, 541 air conditioning units installed. Staff of 352 sent from 4 power companies.
- Power failure at 2.4 million houses mainly in Kansai and Chubu areas
- More than 1,000 utility poles went down, which required a long time for restoration
- It passed through the Japanese archipelago, causing power cuts at 1.8m houses throughout the country, mainly in Chubu area
- It took about one week for restoration in Chubu Electric Power Company’s service area

Typhoon

- Power failure at max 80,000 houses mainly in Chugoku and Shikoku areas
- To prevent heatstroke, 541 air conditioning units installed. Staff of 352 sent from 4 power companies.
- Power failure at 2.4 million houses mainly in Kansai and Chubu areas
- More than 1,000 utility poles went down, which required a long time for restoration
- It passed through the Japanese archipelago, causing power cuts at 1.8m houses throughout the country, mainly in Chubu area
- It took about one week for restoration in Chubu Electric Power Company’s service area

Typhoon #21

- Power failure at max 80,000 houses mainly in Chugoku and Shikoku areas
- To prevent heatstroke, 541 air conditioning units installed. Staff of 352 sent from 4 power companies.
- Power failure at 2.4 million houses mainly in Kansai and Chubu areas
- More than 1,000 utility poles went down, which required a long time for restoration
- It passed through the Japanese archipelago, causing power cuts at 1.8m houses throughout the country, mainly in Chubu area
- It took about one week for restoration in Chubu Electric Power Company’s service area

Typhoon #24

- Power failure at max 80,000 houses mainly in Chugoku and Shikoku areas
- To prevent heatstroke, 541 air conditioning units installed. Staff of 352 sent from 4 power companies.
- Power failure at 2.4 million houses mainly in Kansai and Chubu areas
- More than 1,000 utility poles went down, which required a long time for restoration
- It passed through the Japanese archipelago, causing power cuts at 1.8m houses throughout the country, mainly in Chubu area
- It took about one week for restoration in Chubu Electric Power Company’s service area

Inspection of Electricity infrastructure

Hokkaido : Review/verification made including actual operational modifications in case complete shutdown of Tomatoatsuma P.S.

E. Japan/W. Japan : Areas are connected by robust linkage lines for integration to minimize relative effects of missing power sources, “blackout is not foreseen” should all the largest power sources be shut down

Okinawa : “Blackout is not foreseen” if proper operational measures are taken

Inspection of gas infrastructure

Confirmed that main production facilities and high-pressure/mid-pressure pipes fully conform to anti-earthquake design guidelines

Confirmed that independent power generating equipment installed at 95% of the LNG receiving terminals with the remaining 5% backed up by other terminals

Quick dispatch of staff for immediate assistance implemented. 5100 staff were sent 5 days after earthquake N. Osaka

Inspection of fuel infrastructure

263 “local base service stations” in Japan have their own power generators (as at end Jan.) ※to be increased up to 8,000 by the end of 2019

22 oil refineries have their own generators for emergency with reinforcement being in progress. About 60% of oil depots have their own generators of emergency