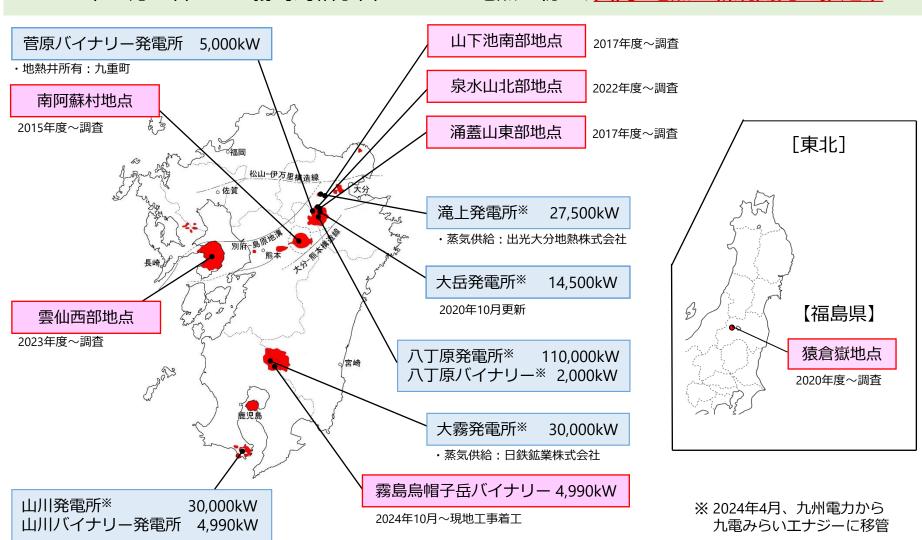

次世代型地熱への期待と課題認識

2025年4月14日 九電みらいエナジー株式会社


従来型地熱への取組み状況

: 既存発電所

:調査·開発中

【凡例】

- 1967年の大岳発電所運開を第一歩として、約60年にわたり<u>九州内6地点で地熱発電所を運営</u>
- 2024年10月に着工した霧島烏帽子岳バイナリー地点を初め、<mark>国内7地点で新規開発を推進中</mark>

●:第四紀更新世後期火山(12万年前~)

九電みらいエナジー

- ・地熱開発においては、従来型・次世代型を問わず<u>地熱資源リスク(調査、運用)を根本的に内包</u>
- 次世代型地熱への取組みが、

 地熱資源リスクの低減に資することを期待

				適用対象*1			
主な課題			課題解決策(例示)	従来型	次世代型		
					EGS*2	CL*2	超臨界
地熱資源の探査リスク			探査技術の高度化、高精度化	0	0	0	0
地熱資源利用範囲の拡大	温度		掘削長延伸による大深度・高温度域の開発	Δ	Δ	_	0
	透水性		透水性改善技術の高度化	Δ	0	_	Δ
			低透水性の地熱資源利用技術の開発	_	_	0	
	流体性状	低pH	耐腐食性材料の開発	0	0	Δ	0
			流体性状に依らない地熱資源利用技術の開発	_	_	0	
天	状	成分	スケール析出対策技術の高度化	0	0	_	0
地熱井掘削技術の向上			掘削技術・仕上げ技術の高度化	0	0	0	0
貯留層管理技術の向上 (温度、圧力)			貯留層モニタリング技術の高度化	0	0	Δ	0
周辺温泉への影響回避			環境モニタリング技術の高度化	0	0	Δ	Δ

*1 ◎:主たる対象、○:対象、△:可能性有、一:対象外

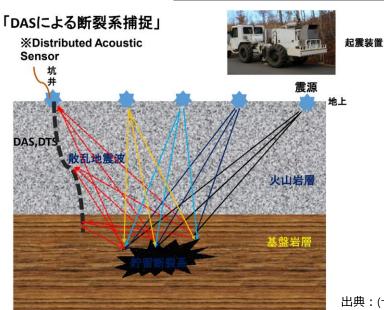
*2 EGS: 貯留層造成、CL: クローズドループ

・今後、国や関係団体、研究機関等を中心とした研究開発他により、技術面や経済性の課題が克服されることを期待

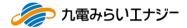
項目	課題(当社認識)			
EGS	・貯留層造成過程における水圧破砕の <u>地震誘発リスクへの対応</u>			
(貯留層造成)	・熱回収における <u>循環水の回収率の向上</u>			
クローズド	・開発時における 高い掘削コストの低減			
ループ	・地層の冷却による 熱回収量の減衰リスクの評価			
超臨界地熱	 ・大深度の高温地熱資源に起因する技術的課題への対応 (高精度な深部探査技術、高温高圧に耐えうる掘削・セメンチング・ 計測技術、高温環境下の耐腐食性材料の開発など) ・大深度掘削コストの低減 ・既存の浅部地熱貯留層との棲み分け(貯留層モニタリング含む) 			

次世代型地熱に関連する当社取組の紹介

1. NEDO 地熱発電導入拡大研究開発「超臨界地熱資源技術開発」への協力(2023,2024)


九重地域に立地する八丁原発電所にて、光ファイバーDASによる弾性波探査の実証試験 (深部地熱探査手法の開発)において、**既存地熱井を試験用に提供**

光ファイバーウインチ



出典:(一財)エンジニアリング協会 2022年度成果報告書

2. 掘削関連(参考)

- (1) 深部掘削(八丁原発電所:1997年)
 - ・深部貯留層の確認・開発を目指し、深部掘削を実施(<u>掘削長3,031m</u>)
 - ・深部(基盤岩)では相対的に低透水性
- (2) 高温地層掘削(八丁原発電所:2010年)
 - ・300℃超の高温地層を掘削
 - ・掘削時逸水によりビット冷却が不十分となり、ベアリング劣化に伴う頻繁なビット交換

