

資料 6

超臨界地熱発電技術開発について

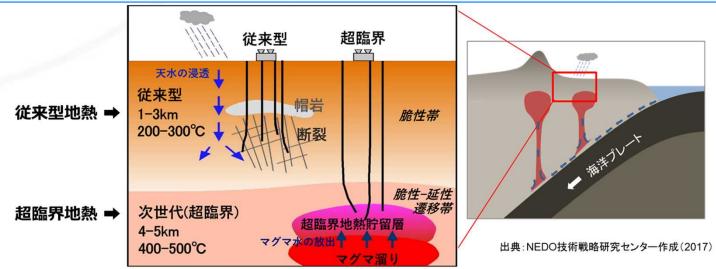
2025年4月

国立研究開発法人 新エネルギー・産業技術総合開発機構再生可能エネルギー部

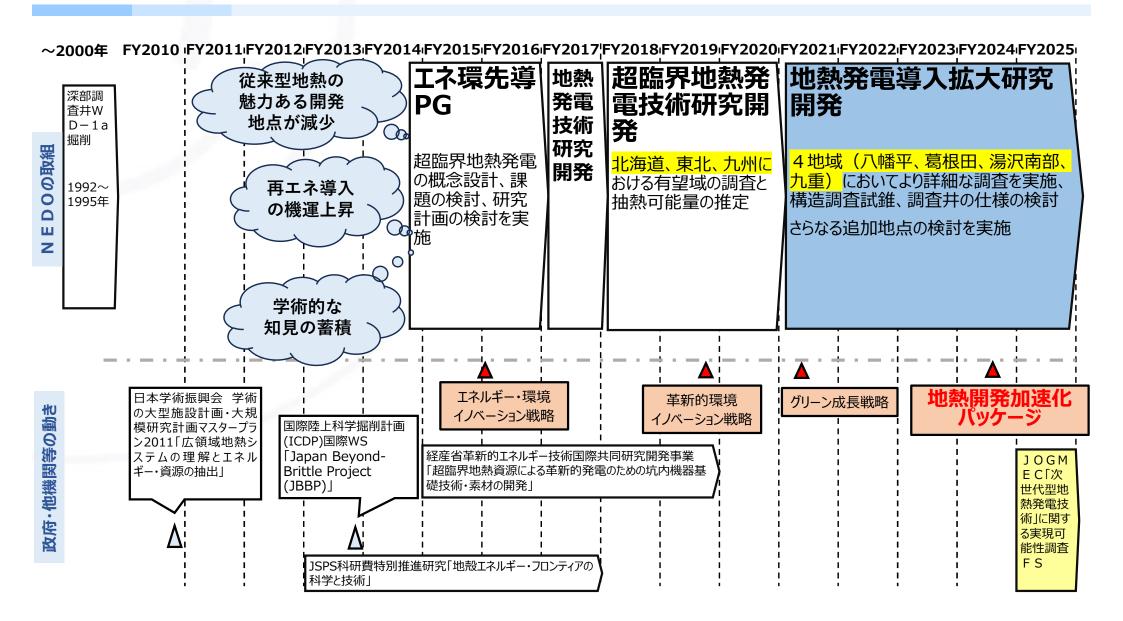
目次

1. 従来型地熱と超臨界地熱

2. これまでの取り組み

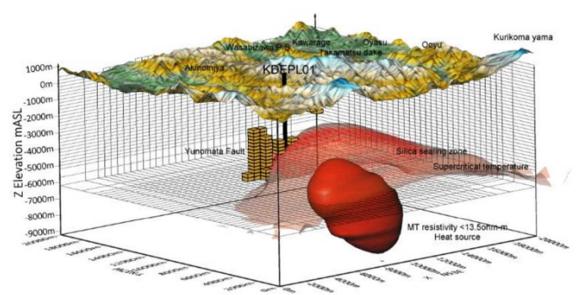

3. 超臨界地熱発電実現の課題

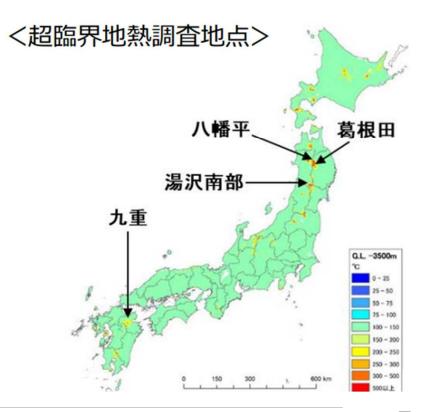
1. 従来型地熱と超臨界地熱


- →超臨界地熱は、従来型よりも深部に存在するエネルギーの大きい(より高温・高圧の)地熱流体(超臨界状態またはそれに準ずる状態)を利用することで、発電容量の増大が可能。
- ➤ 従来型と比べて k Wあたりの敷地改変面積を縮小可能なため、環境負荷の低減も可能。

	深さ	温度	地熱流体	開発規模(1基)	
従来型地熱	1~3km程度	200-300°C	主に天水起源	~3万kW程度	
超臨界地熱	4~5km程度	400-500°C	海水起源	10万kW程度	

2. これまでの取り組み (1) 超臨界地熱関連の技術開発


これまでの取り組み (2) 資源量評価


地熱発電導入拡大研究開発(2021~2023Fy)

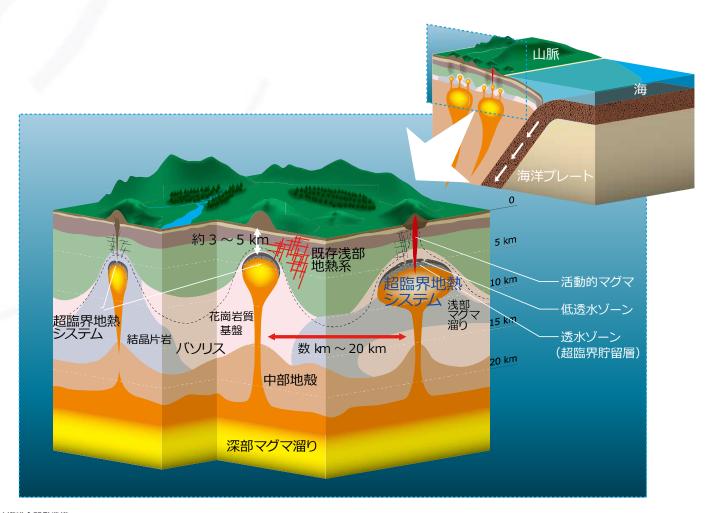
地表調査と概念モデル構築、生産予測シミュレーションを実施。 調査した4地域において、**特定の条件下で発電出力10万kW で30** 年間発電が可能と試算。

<貯留層モデリングイメージ>

超臨界地熱資源量評価(湯沢南部地域)成果報告書抜粋

これまでの取り組み 経済性の評価

○深部構造調査試錐・調査井の検討、経済性評価 結果抜粋


比較項目 ※条件の違いもあるため、参考		葛根田		湯沢南部 地域	八幡平	九重		
		直接利用	熱交換方式	直接利用	直接利用	直接利用	熱交換方式	
深部	構造調査試錐							
	概算費用(百万円)	4,433		3,450	2,130	5,077		
超臨	超臨界地熱調査井							
	概算費用(百万円)	6,518		6,506	(3,800以 上)	9,828		
経済	経済性評価			1	3			
	初期生産井本数(本)	3	3	4	5	2	2	
	初期還元井本数(本)	4	7	2	2	1	7	
	総建設費(百万円)	84,516	96,023	88,842	87,032	72,894	127,973	
	30年間の補充生産井本数(本)	2	2	1	0	2	0	
	30年間の補充還元井本数(本)	6	12	0	0	2	12	
	設備利用率(30年間)(%)	90.6	91.8	91.8	58.8	91.40	91.40	
	発電コスト(30年間)(円/kWh)	10.9	13.2	9.7	14.4	9.3	18.9	
	IRR(15年)(%)	10.8	6.8	12.2	9.9	14.0	0.12	

国立研究開発法人 新エネルギー・産業技術総合開発機構

3. 超臨界地熱発電実現の課題(1) 超臨界地熱資源の性状

- ・超臨界地熱流体資源量の確認
- ・経済性を持った地熱発電への使用可否の確認

3. 超臨界地熱発電実現の課題 (2)技術開発

想定される技術開発課題

- ○掘削における技術開発課題
 - ・暴噴防止装置(BOP)を始めとした安全装置の開発
 - ・安全に試験を実施するための坑井仕上げ技術等の開発
- ○発電するための技術開発課題
 - ・耐腐食性材料の開発
 - ・酸性を考慮し、発電設備の手前で薬液を注入し、中和させる等の対応策の検討
- ○実用化し、普及していくための技術開発課題
 - ・掘削コスト、耐腐食材料コストの低減するための技術・対策の検討
 - ・付加価値向上(熱水利用、流体からの金属回収等)の検討

など