平成21年度
地層処分技術調査等委託費
高レベル放射性廃棄物処分関連
処分システム工学要素技術高度化開発
報告書
（第3分冊）
－モニタリング技術の開発－

平成22年3月

公益財団法人 原子力環境整備促進・資金管理センター
本報告書は、経済産業省からの委託研究として、公益財団法人 原子力環境整備促進・資金管理センターが実施した平成 21 年度地層処分技術調査等委託費（高レベル放射性廃棄物処分関連：処分システム工学要素技術高度化開発）のうちモニタリング技術の開発の成果を取りまとめたものです。
報告書の構成

平成 21 年度地層処分技術調査等委託費（高レベル放射性廃棄物処分関連：処分システム工学要素技術高度化開発）報告書は、以下の分冊により構成されている。

<table>
<thead>
<tr>
<th>当該報告書</th>
<th>分冊名</th>
<th>報告書の標題</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>第 1 分冊</td>
<td>平成 21 年度地層処分技術調査等委託費 高レベル放射性廃棄物処分関連 処分システム工学要素技術高度化開発 －遠隔操作技術高度化開発－</td>
</tr>
<tr>
<td></td>
<td>第 2 分冊</td>
<td>平成 21 年度地層処分技術調査等委託費 高レベル放射性廃棄物処分関連 処分システム工学要素技術高度化開発 －人工バリア品質評価技術の開発－</td>
</tr>
<tr>
<td></td>
<td>第 3 分冊</td>
<td>平成 21 年度地層処分技術調査等委託費 高レベル放射性廃棄物処分関連 処分システム工学要素技術高度化開発 －モニタリング技術の開発－</td>
</tr>
</tbody>
</table>
目 次

第1章 調査の概要...1-1
1.1 本調査の背景...1-1
 1.1.1 高レベル放射性廃棄物の地層処分に係る工学技術での検討内容......................1-1
1.2 モニタリング技術の開発の目的及びこれまでの開発経緯..1-2
 1.2.1 本年度の目的 ...1-2
 1.2.2 これまでの開発経緯 ...1-2
1.3 構成及び概要...1-5
参考文献...1-7

第2章 地層処分モニタリングの目的等の整理 ...2-1
2.1 目的及び実施概要 ...2-1
 2.1.1 目的 ...2-1
 2.1.2 実施概要 ...2-1
2.2 国内外動向調査 ...2-1
 2.2.1 モニタリング国際共同研究 MoDeRn の検討状況...2-1
 (1) MoDeRn の概要 ...2-1
 (2) モニタリング国際共同研究 MoDeRn の目的 ...2-2
 (3) MoDeRn の参加機関 ...2-2
 (4) MoDeRn の実施内容 ...2-3
 (5) MoDeRn の検討概要 ...2-5
 2.2.2 我が国の安全規制の検討状況 ...2-6
 (1) 現在までの経緯 ...2-6
 (2) 諸外国における段階的規制について ...2-8
2.3 モニタリングのあり方に関する検討 ..2-13
 2.3.1 これまでの目的等に関する検討概要 ...2-13
 2.3.2 モニタリングのあり方における検討すべき事項...2-14
 2.3.3 閉鎖時の意思決定の重要性 ..2-15
 (1) 処分事業の手順及び着工した段階 ...2-15
 (2) 地下施設の閉鎖時の意思決定の観点からの検討の重要性...............................2-15
 2.3.4 閉鎖時意思決定における地層処分モニタリングの制約条件..............................2-17
 (1) モニタリングの要件 ...2-17
 (2) 人工パリアシステムへの計測機器の設置に伴うパリア機能や性能への影響........2-17
 (3) 前提条件となる閉鎖時の意思決定における地層処分モニタリングの制約条件........2-18
 2.3.5 閉鎖時意思決定のための基本論理構造及びモニタリングの役割2-21
(1) 安全確保原則 .. 2-21
(2) 安全確保原則に基づく閉鎖時の意思決定のための基本論理構造の構築 2-21
(3) 論理構造をサポートするエビデンスとしてのモニタリング
（モニタリングの役割） .. 2-23
2.3.6 閉鎖時の意思決定におけるモニタリング計画検討方法 .. 2-26
 (1) モニタリング計画の検討における考慮事項 .. 2-26
 (2) モニタリング項目の選定方法 .. 2-26
 (3) 閉鎖時の意思決定におけるモニタリング結果の判断基準 2-27
2.3.7 モニタリングを実施することによる他への制約 ... 2-29
 (1) 調査段階のポーリング孔を活用した天然バリのモニタリングに関する留意事項 2-29
 (2) 地質環境モニタリングが施設レイアウトに与える影響 2-29
2.3.8 地中無線通信技術の適用による閉鎖時の意思決定における地層処分モニタリング
の制約条件に与える影響 ... 2-31
 (1) 地中無線通信技術の概要 .. 2-31
 (2) 地中無線通信技術が閉鎖時の意思決定における地層処分モニタリングの制約条件
へ与える影響 .. 2-31
2.4 モニタリング項目の抽出に関する検討 ... 2-33
 2.4.1 閉鎖措置に資するモニタリング項目の抽出に関する検討の考え方 2-33
 (1) 検討方針 ... 2-33
 (2) 閉鎖要件を踏まえたモニタリング項目の抽出 2-33
 2.4.2 閉鎖措置計画における安全評価に係るパラメータ抽出試行検討 2-62
 (1) 検討の前提 ... 2-62
 (2) 検討結果 .. 2-65
 2.4.3 モニタリング項目の絞込み及び基準の試検討 .. 2-84
 (1) 試検討の考え方 ... 2-84
 (2) 絞込み試検討（計測場所に基づく検討） 2-84
 (3) 絞込み試検討（判断基準と手法に基づく検討） 2-85
2.5 まとめ及び今後の課題 ... 2-95
 2.5.1 本検討のまとめ .. 2-95
 2.5.2 今後の検討の方向性 .. 2-96
参考文献 ... 2-98

第 3 章 モニタリング技術メニューの整備 ... 3-1
 3.1 目的及び実施概要 ... 3-1
 3.2 モニタリング技術メニューの整備 ... 3-1
 3.2.1 ツリー表示の改良（項目の見直し） .. 3-1
3.2.2 技術要件と計測方法報告一覧の表示方法の改良...3-1
3.2.3 簡易ツリーチョッショへの追加..3-2
3.2.4 処分施設での人工バリア関連計測データの発送機能の追加.........................3-5
3.2.5 計測時期と計測場所に基づく結果の表示機能の追加....................................3-7
3.2.6 シーライオンの項目名とデータとのデザイン変更..3-9
3.2.7 検索機能の強化（技術情報データベース）..3-10
3.2.8 管理者ユーザによる編集機能の追加..3-10
3.2.9 一般ユーザからのコメント収集機能の改良..3-11
3.2.10 管理者ユーザによるライブラリ及びリンクへのデータ追加機能の追加.........3-11
3.3 モニタリング情報の整理..3-12
3.3.1 調査方法..3-12
3.3.2 機器情報データベースの整備...3-12
3.3.3 モニタリングデータベース..3-13
3.3.4 情報収集と保存..3-14
3.4 新規モニタリング機器のデータベースへの追加..3-15
3.4.1 調査方法..3-15
3.4.2 機器情報データベースへの追加..3-15
3.4.3 情報収集と保存..3-15
3.5 物理探査技術の地層処分モニタリングへの適応性の整理....................................3-16
3.6 まとめ及び今後の課題...3-17
3.6.1 まとめ...3-17
3.6.2 今後の課題..3-17

第 4 章 地中無線通信技術の調査研究...4-1
4.1 目的及び実施概要...4-1
4.1.1 目的...4-1
4.1.2 実施概要..4-1
4.2 地層処分モニタリングにおけるデータ伝送方法の検討..4-2
4.2.1 対象とするモニタリング手法...4-2
4.2.2 データ伝送方法...4-5
(1) 有線方式...4-5
(2) 無線方式...4-8
(3) 伝送方法の比較と組み合わせ..4-9
4.2.3 モニタリング箇所と時期及びデータ伝送...4-11
(1) 地下環境（天然バリア）...4-12
(2) 処分施設...4-14
(3) 地下調査施設 I（模擬廃棄体）………………………………………………………… 4-17
(4) 地下調査施設 II（実廃棄体）………………………………………………………… 4-22
(5) URL 処分場サイト外…………………………………………………………………… 4-24
4.2.4 モニタリング機器設置……………………………………………………………… 4-26
(1) 緩衝材、埋め戻し材原位置締固め方式における施工手順（有線方式）…………4-26
(2) 緩衝材ブロック施工における施工手順（有線方式）……………………………4-28
(3) 緩衝材原位置締固め方式における施工手順（地中無線）……………………4-30
(4) 緩衝材ブロック施工における施工手順（地中無線）……………………………4-32
4.2.5 モニタリング機器設置工程………………………………………………………… 4-33
(1) 緩衝材、埋め戻し材原位置締固め方式における施工手順（有線方式）…………4-33
(2) 緩衝材ブロック施工における施工手順（有線方式）……………………………4-34
(3) 緩衝材原位置締固め方式における施工工程（地中無線）……………………4-35
(4) 緩衝材ブロック施工における施工工程（地中無線）……………………………4-36
4.2.6 モニタリング箇所と時期を踏まえたデータ伝送…………………………………4-37
4.3 アクティブ通信技術に関する検討…………………………………………………… 4-39
4.3.1 アクティブ通信技術の概要………………………………………………………… 4-39
4.3.2 送信装置の小型化に関する課題の整理………………………………………… 4-42
4.3.3 小型送信装置の設計………………………………………………………………… 4-48
(1) 検討項目…………………………………………………………………………………4-48
(2) 耐圧容器（筒体）の検討 ………………………………………………………………4-49
(3) アンテナの検討………………………………………………………………………4-51
(4) 回路の検討……………………………………………………………………………4-57
(5) 電池の検討……………………………………………………………………………4-64
(6) 小型送信装置プロトタイプの設計図面………………………………………………4-65
4.3.4 小型送信装置プロトタイプの製作…………………………………………………4-68
4.3.5 データ取得……………………………………………………………………………4-70
(1) 通信試験…………………………………………………………………………………4-70
(2) 全体動作確認……………………………………………………………………………4-74
(3) 温度試験…………………………………………………………………………………4-74
(4) 測定値確認試験…………………………………………………………………………4-77
(5) 耐水試験…………………………………………………………………………………4-77
(6) 評価…………………………………………………………………………………4-78
4.3.6 小型送信装置設置方法に関する検討……………………………………………4-79
(1) 実施方法…………………………………………………………………………………4-79
(2) 含水比調整………………………………………………………………………………4-80
(3) 緩衝材吹付施工方法…………………………………………………………………4-82
第4章 パッシブ通信技術に関する検討

4.3.7 課題の抽出 ... 4-92
4.3.8 深部岩盤中実環境下における通信特性確認試験方法... 4-93

4.4 パッシブ通信技術に関する検討 .. 4-95

4.4.1 予備的試験 ... 4-95
4.4.2 研究計画方法に関する検討.. 4-99
4.4.3 パッシブ無線センサの開発事例... 4-102
 (1) 13.56MHz パッシブ型センサ付RFID 4-102
 (2) 無線タグ温度センサ ... 4-103
 (3) LF帯RFIDアンテナ無線通信技術 4-106

4.5 まとめ及び今後の課題 .. 4-107

4.5.1 まとめ .. 4-107
 (1) 地層分布モニタリングにおけるデータ伝送方法の検討 .. 4-107
 (2) アクティブ通信技術に関する検討 4-108
 (3) パッシブ通信技術に関する検討 4-108
4.5.2 今後の課題 ... 4-109
 (1) 地層分布モニタリングにおけるデータ伝送方法の検討 .. 4-109
 (2) アクティブ通信技術に関する検討 4-109
 (3) パッシブ通信技術に関する検討 4-110

第5章 光ファイバセンサ測定技術の調査研究 5-1

5.1 目的及び実施概要 ... 5-1
5.2 光ファイバセンサの概要 .. 5-1
 5.2.1 光ファイパの特性 ... 5-1
 5.2.2 光ファイバの構造 ... 5-2
 5.2.3 光ファイバの種類 ... 5-2
 5.2.4 光ファイパセンシング ... 5-3
5.3 ベントナイト膨潤圧計測による光ファイバセンサの耐久性評価 5-5
 5.3.1 光ファイバセンサの長期試験による耐久性評価 ... 5-5
 5.3.2 光ファイバセンサの同時多点計測への適用性の検討 5-9
5.4 工学的規模の熱・水・応力連成試験設備（COUPLE）における適用 5-19
 5.4.1 熱・水・応力連成試験設備（COUPLE）の概要 5-19
5.4.2 光ファイバセンサによる計測結果...5-21
5.5 実用化に向けた研究計画の立案 ...5-28
 5.5.1 敷設方法を考慮した研究計画の立案 ..5-28
 5.5.2 pH 計及び水分計の技術評価 ...5-34
 (1) pH 計..5-34
 (2) 水分計..5-40
 5.5.3 pH 及び水分に対する光ファイバセンサ技術の技術評価5-45
 (1) 想定される計測環境 ..5-45
 (2) 技術評価結果 ..5-46
 5.5.4 センサの耐放射線性に関する調査 ..5-48
 (1) 発電所施設における状況 ...5-48
5.6 まとめ及び今後の課題 ..5-51
 5.6.1 まとめ ..5-51
 (1) 光ファイバセンサの耐久性評価...5-51
 (2) 敷設方法を考慮した研究計画の立案 ..5-51
 (3) pH 計及び水分計の技術評価 ...5-52
 (4) センサの耐放射線性に関する調査 ..5-52
 5.6.2 今後の課題 ..5-53
 (1) 光ファイバセンサの耐久性評価...5-53
 (2) 敷設方法を考慮した研究計画の立案 ..5-53
 (3) pH 計及び水分計の技術評価 ...5-53
 (4) センサの耐放射線性に関する調査 ..5-54

参考文献...5-55

第 6 章 記録保存技術の調査研究 ..6-1
 6.1 目的及び実施概要 ...6-1
 6.2 国内外の動向調査 ...6-1
 6.2.1 英国 ...6-1
 (1) 長期安全性のための記録保存 ..6-2
 (2) 英国の国立原子力公文書館 ...6-3
 (3) Nirex の法令順守レター記録の管理 ...6-5
 6.2.2 フランス ..6-6
 6.2.3 OECD/NEA...6-8
 6.2.4 我が国の公文書管理法の制定 ...6-8
 (1) 経緯 ...6-8
 (2) 法律の概要 ..6-9
(3) 課題 .. 6-11
(4) 調査の結果 .. 6-12
6.3 記録保存計画を策定する際の判断材料となる考え方の検討 ... 6-13
 6.3.1 国際機関文書 ... 6-13
 (1) IAEA による基準文書 .. 6-13
 (2) IAEA-TECDOC-1079 .. 6-14
 (3) IAEA-TECDOC-1222 及び IAEA-TECDOC-1398 ... 6-18
 6.3.2 永久保存すべき記録についての考え方 ... 6-22
 6.3.3 これまでの検討概要と判断材料の更新 ... 6-25
6.4 まとめ及び今後の課題 .. 6-26
 6.4.1 まとめ .. 6-26
 6.4.2 今後の課題 ... 6-26
参考文献 ... 6-28

第 7 章 まとめ ... 7-1
 7.1 まとめ ... 7-1
 7.1.1 地層処分モニタリングの目的等の整理 .. 7-1
 7.1.2 モニタリング技術メニューの整備 .. 7-2
 7.1.3 地中無線通信技術の調査研究 ... 7-2
 7.1.4 光ファイバセンサ測定技術の調査研究 ... 7-3
 7.1.5 記録保存技術の調査研究 ... 7-4
 7.2 今後の課題 ... 7-4
 7.2.1 地層処分モニタリングの目的等の整理 ... 7-4
 7.2.2 モニタリング技術メニューの整備 .. 7-5
 7.2.3 地中無線通信技術の調査研究 .. 7-5
 7.2.4 光ファイバセンサ測定技術の調査研究 ... 7-5
 7.2.5 記録保存技術の調査研究 ... 7-6
表 2.2.2-1 IAEA 国際安全条約に記された“放射性廃棄物管理の安全”に関する記述……2-10
表 2.2.2-2 各国の許認可規制段階（米国・フィンランド・スウェーデン）…………………………2-12
表 2.2.2-3 各国の許認可規制段階（フランス・ドイツ・スイス）……………………………………2-12
表 2.4.1-1 閉鎖措置に係わる規制内容……………………………………………………………………2-35
表 2.4.1-2 閉鎖措置計画申請時のアクションから想定されるモニタリング抽出の
試行結果……………………………………………………………………………………………………2-42
表 2.4.1-3 計測場所・部位ごとの概要及び機器選定の考え方…………………………………………2-48
表 2.4.1-4 地層処分モニタリングにおいて考慮すべき計測環境条件………………………………2-54
表 2.4.1-5 SKB 社による各段階におけるモニタリング項目…………………………………………2-55
表 2.4.1-6 検討対象としたモニタリングパラメータ……………………………………………………2-56
表 2.4.1-7 想定される閉鎖措置計画申請時に利用可能なモニタリングパラメータ（案）…2-57
表 2.4.2-1 本検討対象としたパラメータ………………………………………………………………2-63
表 2.4.2-2 安全機能及びそれに影響を与える可能性のある要因と FEP の関係………………2-66
表 2.4.2-3 安全機能とレファレンスケースの概念モデル及びデータ設定の考え方
（1/5）……………………………………………………………………………………………………2-67
表 2.4.2-4 安全機能とレファレンスケースの概念モデル及びデータ設定の考え方
（2/5）……………………………………………………………………………………………………2-68
表 2.4.2-5 安全機能とレファレンスケースの概念モデル及びデータ設定の考え方
（3/5）……………………………………………………………………………………………………2-69
表 2.4.2-6 安全機能とレファレンスケースの概念モデル及びデータ設定の考え方
（4/5）……………………………………………………………………………………………………2-70
表 2.4.2-7 安全機能とレファレンスケースの概念モデル及びデータ設定の考え方
（5/5）……………………………………………………………………………………………………2-71
表 2.4.2-8 地層処分システムへの影響が無視できるほど小さいと判断した FEP……………………2-72
表 2.4.2-9 モニタリング項目抽出試行検討結果
（安全評価シナリオ、モデル及びデータの仮定）………………………………………………2-73
表 2.4.3-1 絞込み試検討（計測場所に基づく検討）の結果…………………………………………2-85
表 2.4.3-2 放射線管理区域に関する基準………………………………………………………………2-92
表 2.4.3-3 絞込み試検討（判断基準に基づく検討）結果…………………………………………2-94
表 2.4.3-4 絞込み試検討（手法に基づく検討）結果………………………………………………2-94
表 4.2.1-1 データ伝送に関するモニタリングの種類………………………………………………4-3
表 4.2.2-1 伝送方法の比較………………………………………………………………………………4-9
表 4.2.3-1 モニタリング箇所と時期……………………………………………………………………4-11
表 4.2.5-1 原位置締め方式による施工工法（有線方式）……………………………………4-34
表 4.2.5-2 緩衝材ブロック施工における工法（有線ケーブル）…………………………4-35
表 4.2.5-3 原位置における工法（地中無線）……………………………………………….4-36
表 4.2.5-4 緩衝材ブロックにおける工法（地中無線）……………………………………4-36
表 4.2.6-1 モニタリング箇所と時期の検討結果………………………………………………4-37
表 4.3.2-1 アクティブ無線通信技術の地層処分関連モニタリングへの適用概念……4-44
表 4.3.2-2 段階ごとに想定されるニーズ………………………………………………….4-45
表 4.3.3-1 容器材料の特性………………………………………………………………………4-49
表 4.3.3-2 電源・電圧試験結果………………………………………………………………4-58
表 4.3.3-3 消費電流確認試験結果……………………………………………………………4-59
表 4.3.3-4 変温パターン………………………………………………………………………4-60
表 4.3.3-5 電圧測定確認結果 ………………………………………………………………4-62
表 4.3.3-6 温度測定試験結果………………………………………………………………4-62
表 4.3.3-7 採用電池の総数…………………………………………………………………4-64
表 4.3.3-8 各測定・通信条件下における運用可能期間の算出結果…………………4-65
表 4.3.5-1 通信試験中の温度データ………………………………………………………4-73
表 4.3.5-2 試験内容（各機能）と試験結果………………………………………………4-74
表 4.3.6-1 使用材料の質量比………………………………………………………………4-80
表 4.3.6-2 品質確認用吹付け結果…………………………………………………………4-86
表 4.3.6-3 センサ周りの緩衝材の乾燥密度………………………………………………4-90
表 4.4.1-1 含水率測定結果…………………………………………………………………4-96
表 5.2.3-1 光ファイバの種類………………………………………………………………5-2
表 5.2.4-1 ひずみの計測方式の比較………………………………………………………5-4
表 5.2.4-2 光ファイバによる計測の適用事例 ……………………………………………5-4
表 5.3.2-1 ベントナイトブロックの仕様……………………………………………………5-14
表 5.5.2-1 計測対象とセンサ技術動向調査のまとめ………………………………………5-35
表 5.5.2-2 pH センサの現状技術の測定可能性（緩衝材内で計測を想定した場合）……5-36
表 5.5.2-3 光ファイバ式 pH センサの現状調査結果………………………………………5-39
表 5.5.2-4 水分センサの適用性評価（緩衝材内）………………………………………5-41
表 5.5.2-5 水分（湿度）センサに関する調査結果のまとめ…………………………5-43
表 5.5.3-1 地下の処分場環境………………………………………………………………5-45
表 5.5.3-2 光ファイバ pH 及び水分センサの適用性評価結果…………………………5-47
表 5.5.4-1 発電所施設における光ファイバセンサの放射線性…………………………5-49
表 6.3.1-1 IAEA-TECDOC-1079 における階層化された情報の内容…………………6-16
表 6.3.1-2 閉鎖時を含む閉鎖前までの発生する可能性がある記録の例……………………6-17
表 6.3.1-3 能動的な閉鎖後制度的管理期間中に発生する可能性のある記録の例……6-18
表 6.3.1-4 広域物の記録管理において階層化アプローチを採用しない場合に想定される
結果... 6-19
表 6.3.1-5 操業前に一般的に作成される記録例とその利用、長期保存すべき情報6-20
表 6.3.1-6 操業中に一般的に作成される記録例とその利用、長期保存すべき情報6-21
表 6.3.1-7 閉鎖期間中に一般的に作成される記録例とその利用、長期保存すべき情報6-22
表 6.3.2-1 将来世代による意思決定のシナリオ（例） ... 6-23
表 6.3.2-2 廃棄体に関する情報の例 ... 6-24
表 6.3.2-3 地下施設の仕様に関する情報の例 ... 6-25
図目次

<table>
<thead>
<tr>
<th>篇</th>
<th>内容</th>
<th>頁数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1-1</td>
<td>処分システム工学要素技術高度化開発の目的</td>
<td>1-1</td>
</tr>
<tr>
<td>2.2.1-1</td>
<td>開設された MoDeRn の web 番号（2010年2月現在）</td>
<td>2-4</td>
</tr>
<tr>
<td>2.2.1-2</td>
<td>各 WP の関係及び原環センターが関与する部分</td>
<td>2-5</td>
</tr>
<tr>
<td>2.2.2-1</td>
<td>改正解法の概要</td>
<td>2-7</td>
</tr>
<tr>
<td>2.3.1-1</td>
<td>原環センターによるモニタリング目的の変遷（平成16年度〜20年度）</td>
<td>2-13</td>
</tr>
<tr>
<td>2.3.3-1</td>
<td>モニタリングにおいて「閉鎖時の意気決定の観点」からの検討の必要性</td>
<td>2-16</td>
</tr>
<tr>
<td>2.3.4-1</td>
<td>緩衝材への計測機器設置方法</td>
<td>2-18</td>
</tr>
<tr>
<td>2.3.4-2</td>
<td>処分施設における閉鎖前のモニタリング</td>
<td>2-19</td>
</tr>
<tr>
<td>2.3.5-1</td>
<td>地下調査施設 I（模擬廃棄体）における閉鎖前のモニタリング</td>
<td>2-20</td>
</tr>
<tr>
<td>2.3.5-2</td>
<td>地下調査施設 II（実廃棄体）における閉鎖前のモニタリング</td>
<td>2-20</td>
</tr>
<tr>
<td>2.3.5-3</td>
<td>「現在の状況において閉鎖することが妥当である。」ことが真であるための基本論理構造</td>
<td>2-22</td>
</tr>
<tr>
<td>2.3.5-4</td>
<td>閉鎖に資する論理構造におけるモニタリング結果の適用先</td>
<td>2-23</td>
</tr>
<tr>
<td>2.3.6-1</td>
<td>JAEA 統合化データフローにおけるモニタリングの適用例</td>
<td>2-24</td>
</tr>
<tr>
<td>2.3.6-2</td>
<td>数値解析による予測結果と長期観測との比較によるモデルの検証</td>
<td>2-25</td>
</tr>
<tr>
<td>2.3.6-3</td>
<td>地層処分における設計と安全評価の前提条件（例）</td>
<td>2-25</td>
</tr>
<tr>
<td>2.3.6-4</td>
<td>プロセスの妥当性（場の理解）と結果の妥当性（場の確認）の関係</td>
<td>2-26</td>
</tr>
<tr>
<td>2.3.7-1</td>
<td>エポス岩盤研究所のスポイラル状の斜坑の鳥瞰像</td>
<td>2-30</td>
</tr>
<tr>
<td>2.3.7-2</td>
<td>エポス岩盤研究所における計画時と施工後のレイアウトの違い</td>
<td>2-30</td>
</tr>
<tr>
<td>2.3.8-1</td>
<td>小型化地中無線通信装置</td>
<td>2-31</td>
</tr>
<tr>
<td>2.3.8-2</td>
<td>地下調査施設 I（模擬廃棄体）における閉鎖後のモニタリング</td>
<td>2-32</td>
</tr>
<tr>
<td>2.3.8-3</td>
<td>処分施設における閉鎖後のモニタリング</td>
<td>2-32</td>
</tr>
<tr>
<td>2.4.1-1</td>
<td>想定される埋設施設</td>
<td>2-40</td>
</tr>
<tr>
<td>2.4.1-2</td>
<td>本検討範囲（計測時期に関する考え方）</td>
<td>2-43</td>
</tr>
<tr>
<td>2.4.1-3</td>
<td>本検討範囲（計測場所に関する考え方）</td>
<td>2-44</td>
</tr>
<tr>
<td>2.4.1-4</td>
<td>計測場所と各場所でのモニタリングの考え方</td>
<td>2-47</td>
</tr>
<tr>
<td>2.4.1-5</td>
<td>EKRA の長期間監視付地層処分の概念</td>
<td>2-54</td>
</tr>
<tr>
<td>2.4.1-6</td>
<td>SKB 社による先行操作エリア</td>
<td>2-54</td>
</tr>
</tbody>
</table>
図 2.4.2-1 地層処分システムに期待する安全機能と影響要因 .. 2-65
図 2.4.2-2 レファレンスケースで考慮する核種の移行に関係する現象・特性 2-65
図 2.4.3-1 人工バリア内の温度の経時変化 .. 2-87
図 2.4.3-2 廃棄体処分後の岩盤内の圧力水頭変化 ... 2-89
図 2.4.3-3 処分孔周辺岩盤の応力状態 .. 2-90
図 2.4.3-4 試験溶液の pH と間隙水の pH の関係（炭酸塩水溶液（0.1 mol l⁻¹）） 2-91
図 2.4.3-5 掘削影響領域からの移行率の経時変化（左：Pu-239/右：Cs-135） 2-93
図 3.2.2-1 技術要件と計測方法候補一覧の表示方法の改良結果のイメージ 3-2
図 3.2.3-1 簡易ツリー並びにツリー切り替えボタン（赤丸部分）のイメージ 3-3
図 3.2.3-2 簡易ツリーにおける計測方法候補の表示画面イメージ（2W） 3-4
図 3.2.3-3 簡易ツリーにおける計測方法候補の表示画面イメージ（3W） 3-5
図 3.2.4-1 処分施設での人工バリア関連計測データの移転機能イメージ（その 1） 3-6
図 3.2.4-2 処分施設での人工バリア関連計測データの移転機能イメージ（その 2） 3-6
図 3.2.5-1 技術メニューのサブメニューのイメージ ... 3-7
図 3.2.5-2 計測時期と場所とパラメータのマトリックス表示のイメージ 3-8
図 3.2.5-3 計測時期と場所とパラメータのマトリックス表示のイメージ 3-8
図 3.2.5-4 計測時期と場所とパラメータのマトリックス表示のイメージ（結果表示画面） ... 3-9
図 3.2.6-1 ソリードアイコンのイメージ ... 3-9
図 3.2.8-1 記述の編集画面のイメージ ... 3-10
図 3.2.9-1 コメント登録画面のイメージ ... 3-11
図 3.3.2-1 機器情報データベースにおけるコード追加状況（一部抜粋） 3-13
図 3.3.3-1 モニタリングデータベースにおける機器 ID 追加状況 ... 3-14
図 4.2.2-1 平衡対ケーブルの断面構造例 .. 4-5
図 4.2.2-2 エスポ硬岩研究所のプロトタイププロジェクト .. 4-6
図 4.2.2-3 光ファイバの構造 .. 4-7
図 4.2.2-4 ANDRA ビューレ地下研究所におけるケーブル配線例 4-8
図 4.2.2-5 伝送方法の組み合わせ .. 4-10
図 4.2.3-1 ファーフィールド岩盤 機器配置 .. 4-12
図 4.2.3-2 ニアフィールド岩盤 機器配置 .. 4-14
図 4.2.3-3 坑道（アクセス坑道、主要・連絡坑道）内モニタリング機器配置 4-15
図 4.2.3-4 坑道（主要・連絡坑道）内モニタリング機器配置 4-16
図 4.2.3-5 坑道（主要・連絡坑道）モニタリング機器配置（処分坑道埋没） 4-16
図 4.2.3-6 坑道（主要・連絡坑道）モニタリング機器配置（施設の閉鎖後） 4-16
図 4.2.3-7 処分坑道 モニタリング機器配置 .. 4-17
図 4.3.3-10 L=100mm アンテナの対向・平行試験 ... 4-55
図 4.3.3-11 共振点調整機器 .. 4-55
図 4.3.3-12 鞘和磁界強度確認に用いる機器 ... 4-56
図 4.3.3-13 共振点調整後通信試験結果 ... 4-56
図 4.3.3-14 電源電圧試験 ... 4-58
図 4.3.3-15 消費電流確認試験状況 .. 4-59
図 4.3.3-16 温度試験で用いた恒温槽 .. 4-60
図 4.3.3-17 温度試験結果 ... 4-61
図 4.3.3-18 電圧測定結果 ... 4-62
図 4.3.3-19 温度測定試験結果 .. 4-63
図 4.3.3-20 振動試験状況 ... 4-63
図 4.3.3-21 採用電池概観 ... 4-64
図 4.3.3-22 小型送信装置プロトタイプ設計図（その1） ... 4-66
図 4.3.3-23 小型送信装置プロトタイプ設計図（その2） ... 4-67
図 4.3.4-1 プロトタイプ小型送信装置の概観 .. 4-68
図 4.3.4-2 小型送信装置プロトタイプ内部機構 .. 4-69
図 4.3.5-1 試験方法 ... 4-70
図 4.3.5-2 小型送信装置プロトタイプ通信試験 .. 4-71
図 4.3.5-3 通信試験結果 .. 4-71
図 4.3.5-4 送信機埋設状況 ... 4-72
図 4.3.5-5 砂中埋設通信試験結果 .. 4-72
図 4.3.5-6 アンテナ内側に挿入された影響の確認 ... 4-73
図 4.3.5-7 恒温槽内での試験 .. 4-75
図 4.3.5-8 温度試験結果（小型送信装置プロトタイプ） .. 4-75
図 4.3.5-9 環境温度と温度測定結果の関係（小型送信装置プロトタイプ） 4-76
図 4.3.5-10 環境温度と電圧測定結果の関係（小型送信装置プロトタイプ） 4-76
図 4.3.5-11 測定値試験結果（小型送信装置プロトタイプ） 4-77
図 4.3.6-1 実験システム ... 4-80
図 4.3.6-2 凍結混合方式による含水比調整のための冷凍コンテナ、及び強制2軸
ミキサー ... 4-81
図 4.3.6-3 凍結混合方式による含水比調製手順および設備 4-81
図 4.3.6-4 緩衝材ブロック ... 4-82
図 4.3.6-5 ベース型枠設置 ... 4-82
図 4.3.6-6 外型枠設置 .. 4-83
図 4.3.6-7 内型枠設置の様子 .. 4-83
図 4.3.6-8 仕切り板設置の様子 ... 4-83
図 4.3.6-9 吹付けによる施工 .. 4-84
図 4.3.6-10 センサ設置 .. 4-84
図 4.3.6-11 上部緩衝材施工 .. 4-84
図 4.3.6-12 2.45GHz 緱位置を観点とする施工品質管理の流線図 ... 4-85
図 4.3.6-13 压力計 .. 4-86
図 4.3.6-14 空気圧計 .. 4-86
図 4.3.6-15 無線センサ（容器のみ）と有線温度計 ... 4-87
図 4.3.6-16 受信装置 .. 4-87
図 4.3.6-17 緩衝材内への無線センサ設置に関する実験状況 4-88
図 4.3.6-18 センサ周りの緩衝材充填状況 .. 4-89
図 4.3.6-19 サンプリング位置 .. 4-89
図 4.3.6-20 緩衝材ブロック内外温度計測結果 4-92
図 4.3.8-1 MHM URL での通信試験イメージ .. 4-93
図 4.3.8-2 坑道間通信による低周波電磁波挙動の確認 4-93
図 4.3.8-3 ボーリング孔対応受信機 ... 4-94
図 4.4.1-1 ベントナイト供試体 .. 4-95
図 4.4.1-2 含水率測定状況 ... 4-96
図 4.4.1-3 水平坑方向アンテナ位置 ... 4-97
図 4.4.1-4 鉛直方向アンテナ間距離 .. 4-97
図 4.4.1-5 粉体中への送信・受信アンテナ挿入状況 4-97
図 4.4.1-6 電磁波伝播速度測定状況 .. 4-98
図 4.4.1-7 電磁波伝播速度測定結果 .. 4-98
図 4.4.2-1 パッシブアンテナの通信性能の確認 4-99
図 4.4.2-2 ネットワーク化に関する検討 4-100
図 4.4.2-3 緩衝材内のパッシブセンサのネットワーク化に関する検討 4-100
図 4.4.2-4 フィールド実験での実証 ... 4-101
図 4.4.3-1 パッシブ無線センサのシステム構成 4-102
図 4.4.3-2 鉄筋に取付けられているひずみセンサ部と RFID タグ ... 4-102
図 4.4.3-3 鉄筋へのセット状況と計測状況 4-103
図 4.4.3-4 2.45GHz 帯パッシブ無線タグの試作品事例 4-104
図 4.4.3-5 860-950MHz 帯パッシブ無線タグの試作品事例 4-104
図 4.4.3-6 試作された UHF 帯パッシブ無線タグの受電電源 DC 電圧のキャリア 4-105
図 4.4.3-7 周波数特性 .. 4-105
図 4.4.3-8 2.45GHz 帯無線タグによる温度測定の実験結果 4-106
図 4.4.3-9 Visible Assets 社製タグ .. 4-106

xv
<table>
<thead>
<tr>
<th>図 标号</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4.3-10</td>
<td>アンテナ事例具体的示例</td>
</tr>
<tr>
<td>5.2.2-1</td>
<td>光ファイバ構成</td>
</tr>
<tr>
<td>5.3.1-1</td>
<td>スペースクリエイション社製光ファイバ式圧力計</td>
</tr>
<tr>
<td>5.3.1-2</td>
<td>共和電業社製光ファイバ式圧力計</td>
</tr>
<tr>
<td>5.3.1-3</td>
<td>スペースクリエイション社製光ファイバ式圧力計</td>
</tr>
<tr>
<td>5.3.1-4</td>
<td>共和電業社製光ファイバ式圧力計</td>
</tr>
<tr>
<td>5.3.1-5</td>
<td>長期耐久性試験容器の寸法図</td>
</tr>
<tr>
<td>5.3.1-6</td>
<td>計測システム</td>
</tr>
<tr>
<td>5.3.1-7</td>
<td>ベントナイト膨潤圧長期試験に用いた試験容器</td>
</tr>
<tr>
<td>5.3.1-8</td>
<td>光ファイバ圧力計による圧力及び温度の計測結果</td>
</tr>
<tr>
<td>5.3.2-1</td>
<td>スペースクリエイション社製二連式光ファイバ式圧力計</td>
</tr>
<tr>
<td>5.3.2-2</td>
<td>二連式光ファイバ式圧力計の構成</td>
</tr>
<tr>
<td>5.3.2-3</td>
<td>大気圧一定において温度を昇降させたときのプルガフ波長変化</td>
</tr>
<tr>
<td>5.3.2-4</td>
<td>圧力1MPa一定において温度を昇降させたときのプルガフ波長変化</td>
</tr>
<tr>
<td>5.3.2-5</td>
<td>温度0℃一定における荷重除荷時のプルガフ波長変化</td>
</tr>
<tr>
<td>5.3.2-6</td>
<td>温度100℃一定における荷重除荷時のプルガフ波長変化</td>
</tr>
<tr>
<td>5.3.2-7</td>
<td>室温環境（25℃）における荷重除荷時のプルガフ波長変化</td>
</tr>
<tr>
<td>5.3.2-8</td>
<td>ベントナイト膨潤圧試験容器の寸法図</td>
</tr>
<tr>
<td>5.3.2-9</td>
<td>二連式光ファイバ圧力計を取り付けたベントナイト膨潤圧試験容器</td>
</tr>
<tr>
<td>5.3.2-10</td>
<td>二連式光ファイバ圧力計のケーブル部分のシール</td>
</tr>
<tr>
<td>5.3.2-11</td>
<td>電気式圧力計</td>
</tr>
<tr>
<td>5.3.2-12</td>
<td>二連式光ファイバ圧力計と電気式圧力計を試験容器にセットした状況</td>
</tr>
<tr>
<td>5.3.2-13</td>
<td>ベントナイトブロックを設置した状況</td>
</tr>
<tr>
<td>5.3.2-14</td>
<td>試験容器との間際にベントナイトを充填した状況</td>
</tr>
<tr>
<td>5.3.2-15</td>
<td>試験容器をセットした状況（二連式光ファイバ圧力計側）</td>
</tr>
<tr>
<td>5.3.2-16</td>
<td>試験容器をセットした状況（電気式圧力計側）</td>
</tr>
<tr>
<td>5.3.2-17</td>
<td>試験状況</td>
</tr>
<tr>
<td>5.3.2-18</td>
<td>二連式光ファイバ圧力計による計測結果</td>
</tr>
<tr>
<td>5.4.1-1</td>
<td>熱・水・応力連成試験設備（COUPLE）の概要図（平面図）</td>
</tr>
<tr>
<td>5.4.1-2</td>
<td>熱・水・応力連成試験設備（COUPLE）の概要図（断面図）</td>
</tr>
<tr>
<td>5.4.1-3</td>
<td>緩衝材試験体の概要図</td>
</tr>
<tr>
<td>5.4.2-1</td>
<td>COUPLEへ導入したFBG温度センサ</td>
</tr>
<tr>
<td>5.4.2-2</td>
<td>COUPLEへ導入したFBG圧力センサ</td>
</tr>
<tr>
<td>5.4.2-3</td>
<td>COUPLEへ導入したFBG温度センサ</td>
</tr>
<tr>
<td>5.4.2-4</td>
<td>COUPLEへ導入したFBG圧力センサ</td>
</tr>
<tr>
<td>5.4.2-5</td>
<td>COUPLEへのFBGセンサの設置概要</td>
</tr>
</tbody>
</table>
図 5.4.2-6 緩衝材への FBG 温度センサの設置時の状況……………………………………………………………5-24
図 5.4.2-7 緩衝材への FBG 温度センサの設置状況………………………………………………………………5-25
図 5.4.2-8 模擬岩体に埋設した固定治具への FBG 压力センサの設置状況……………………………………5-25
図 5.4.2-9 固定治具と FBG 压力センサとの隙間を粘土で充填した状況……………………………………5-25
図 5.4.2-10 FBG センサによる計測結果………………………………………………………………………………5-26
図 5.4.2-11 FBG 温度センサと熱電対の計測結果の比較………………………………………………………5-26
図 5.4.2-12 FBG 压力センサと電気式圧力センサの計測値の比較………………………………………………5-26
図 5.4.2-13 電気式圧力センサの温度計測値を用いて FBG 压力センサの圧力値を評価した場合……
図 6.3.1-1 処分施設のライフサイクルと RMS のライフサイクルの関係6-15
図 6.3.1-2 IAEA-TECDOC-1079 における情報の階層化 ...6-16
図 6.3.1-3 処分場開発で発生する情報の階層化 ...6-18
図 6.3.2-1 遭遇する情報と意思決定の例 ..6-24
図 6.3.3-1 記録保存計画を策定する際の判断材料となる考え方のまとめ6-25
第1章 調査の概要
第1章 調査の概要

1.1 本調査の背景

1.1.1 高レベル放射性廃棄物の地層処分に係る工学技術での検討内容

高レベル放射性廃棄物の地層処分に係る工学技術（処分システム工学要素技術高度化開発）では、平成19年度から5年の期間において、処分場操業の際のオーバーパックの溶接・検査及び廃棄体等の搬送・定置に係る「(1)遠隔操作技術」、遠隔操作で製作されたオーバーパック等の健全性等評価に係る「(2)人工バリア品質評価技術」、処分システムの状況等のモニタリングに係る「(3)モニタリング技術」の高度化開発を行い、これら工学技術の信頼性や成立性等の向上に資する技術基盤を確立する。図1.1.1-1に、処分システム工学要素技術高度化開発の全体像を示す。

本調査では、図1.1.1-1に示す高レベル放射性廃棄物の地層処分に係る工学技術（処分システム工学要素技術高度化開発）のうち、モニタリング技術の開発を対象としている。

研究開発の目的

高レベル放射性廃棄物地層処分に係わる工学技術として、

(1)遠隔操作技術高度化開発: 操業に係る遠隔操作技術である、オーバーパックの遠隔溶接・検査技術、及びオーバーパックと緩衝材の遠隔搬送・定置技術

(2)人工バリア品質評価技術の開発: 製作・施工された人工バリアの品質等の評価技術

(3)モニタリング技術の開発: 処分システムの状況等に対するモニタリング技術

を対象とした高度化開発を行い、各工学要素技術の信頼性や成立性等の向上に資する技術選択肢の整備をもって、技術基盤を確立することを目的とする。さらに、これをもって円滑な事業推進と国民理解に資する。

図1.1.1-1 処分システム工学要素技術高度化開発の目的
1.2 モニタリング技術の開発の目的及びこれまでの開発経緯

モニタリング技術の開発（以下、「本調査」と記す）は、昨年度より第2フェーズの検討に着手した。なお、第1フェーズは平成12年度から平成18年度の間に行なったモニタリング機器技術高度化調査として実施された。

第2フェーズのモニタリング技術については、地層処分事業において調査や操業段階から閉鎖後までを扱ったモニタリングの意義や技術等に関し、国内外の最新の知見の調査検討及び中核的な技術の基礎試験等を行い、モニタリング計画等の策定に資する技術基礎を整備する。

具体的には、性能評価パラメータの測定・モニタリングの妥当性・可能性評価、中核的なモニタリング技術（地中無線伝送技術、光ファイバセンサ技術、パッシブ無線センサ技術）の適用性評価試験、モニタリング技術メニューの整備、記録保存技術の調査・分析等を実施することにより技術基盤を整備する。

このような検討の必要性に関しては、高レベル放射性廃棄物の地層処分基盤研究開発に関する全体計画[1]の「制度的管理技術等」に関する検討において示されている。

1.2.1 本年度の目的

高レベル放射性廃棄物の地層処分事業では、概要調査・精密調査等のサイト調査の前段階に始まり、建設・操業・部分閉鎖の段階を経て、処分場を最終閉鎖した後も一定の期間にわたり、様々な目的で地層処分モニタリングを実施することが考えられている。第2フェーズの3年目である本年度の研究では、モニタリングの意義や目的についてサイト調査前から最終閉鎖後の各段階での計測・モニタリングを対象に、国内外の新たな動向を踏まえ整理を行い、地層処分におけるモニタリングのあり方について検討する。モニタリングの中核技術については、地中無線伝送技術、光ファイバセンサ技術等を対象に、国内外の深地層研究施設（URL）への反映を考慮し調査研究を継続して実施する。モニタリング技術メニューについては、段階的な整備の一環としてプログラムの一部を改訂を行い、上記の検討成果を反映すると共に、モニタリング情報の拡充する。

また、記録保存については、記録保存システム案の整備に資するために、関連する最新動向の調査、整理を継続して実施する。

1.2.2 これまでの開発経緯

平成12年度に着手した第1フェーズでは、地層処分の周辺基盤技術整備の観点に立ち、制度的管理として位置付けられるモニタリングに関する国内外情報の収集及び整理を行ない、さらにわが国におけるモニタリングに関する位置付けを検討しつつ、技術の適用性について体系的に情報整備し、国や実施者等の各機関がモニタリング分析及び計画等を検討する際の判断材料を供することを目的とした。

平成12年11月には原子力委員会より「高レベル放射性廃棄物の処分に係る安全規制の基本的考え方について（第1次報告）」[2]が公開された。ここでは、「処分場においては、立地段階から事業廃止に至るまで、各段階に応じたモニタリングや巡視・点検等を実施することが必要」と述
べられ、「地下施設の閉鎖に際しては、建設段階及び操業段階に得られたデータを追加し、安全評価の結果が妥当であることの確認を行う。また、その妥当性を確認するまでの期間は、高レベル放射性廃棄物の回収の可能性を維持することが重要」と述べられた。

平成 12 年度に本調査を開始し、平成 13 年度までに広くモニタリングにかかわる国内外の動向及び関連技術の調査を行なうとともに、わが国における地層処分モニタリングの考え方について議論を行なった。平成 14 年度はこれらの成果に基づき、地層処分モニタリングの位置付けに関する整理を行なうとともに、地層処分モニタリングにかかわる課題を具体的に検討するためのケーススタディを実施した。さらに、関連機器の地層処分環境における適用可能性を示すことを目的として、センサ及び伝送系の要素技術について検討を実施した。平成 15 年度は、前年度に引き続き、ケーススタディ検討を継続するとともに、他分野での計測機器技術に関する調査を行ない、地層処分環境での利用可能性について検討を行なった。さらに、将来のモニタリング実施者がモニタリング計画を立案する際に、モニタリングの実施目的、実施時期、実施場所等に応じて、何をどのように測定することにより、どのような情報が入手可能かを示した技術選択肢（地層処分モニタリング技術メニュー）を整備することの重要性を提示した。

平成 16 年度は、地層処分技術メニューを具体的に整備するにあたり、ユーザーの視点からモニタリング計画立案の流れに符合した構成内容を検討試行した。メニューの基本構成案は、目的に応じて必要なモニタリング情報とそれに関連する技術・手法の選択肢を順次示すことのできるものとした[4]。

平成 17 年度には、処分事業実施者、安全規制機関、地方自治体等でのモニタリング計画の策定への活用可能性を視野に入れ、各機関の計画立案ニーズに柔軟に資することができるよう、モニタリング対象や期間について網羅的な情報源として、理解の容易さや追跡性をもたせることを目的に、コンピュータ検索、階層化を具体化させたメニュー構成の試作を行った。また、適用技術やその実施目的など技術メニューの信頼性に資するため、諸外国で既に実施されつつあるモニタリングに関する事例等の調査を、引き続き行なうとともに、今後の地層処分環境での計測やデータ通信技術は、処分場の安全性能への影響を最小にしつつ、適切に情報取得するための基礎的課題として継続的に調査研究を実施した。

平成 18 年 9 月に総合資源エネルギー調査会 原子力安全・保健公社 廃棄物安全小委員会より「放射性廃棄物の地層処分に係る安全規制制度のあり方について」[5]が公開された。ここでは、「事業の各段階に応じた安全規制のあり方」として、許可申請から事業廃止前までの段階毎に適切なモニタリングに関する記載が含まれた。

平成 18 年度（第 1 フェーズの最終年度）には、地層処分モニタリングの考え方を整理し、多岐にわたるモニタリング項目に対応する機器の実用レベルを評価し、今後の開発課題を摘出した。また、地層処分モニタリング技術メニューの整備と地中無線伝送技術及び光ファイバセンサ技術
等のモニタリング技術調査を実施した。さらに、IT化手法を用いた地層処分モニタリング技術メニューの整備手法に見通しを得ることができた。平成19年2月には公益財団法人原子力環境整備促進・資金管理センター（旧：財団法人原子力環境整備促進・資金管理センター（以下、原環境センター））が開催した国際ワークショップ（於：スイス、ジュネーブ）では、無線データ伝送技術と光ファイバセンサを用いたモニタリング技術の開発の重要性が国際的に認識され、特に、国際的に最も先行している地中無線通信技術は高く評価された。

これらの検討内容は、地層処分専門家等で構成した「地層処分モニタリングシステム調査検討委員会」にて継続的な審議を実施してきた。上述の調査研究を踏まえ、今後の課題を摘出し、第2フェーズでの調査研究計画を策定した。

第2フェーズの初年度である平成19年度は、地層処分モニタリングの意義等の整理として、操業時の作業不良の判断等の工学的対策の妥当性、処分方法の安全性等の妥当性の確認及び法令要件に対する適合性の確認など、操業から閉塞後までの各段階におけるモニタリングの意義等について、国内外の最新動向調査を通じて具体的に整理した。また、地中無線技術、光ファイバセンサ技術、パッシブ無線センサ技術等のモニタリングに係る中核的な技術について、基礎的な調査や試験を行い、その信頼性や適用範囲等を評価した。さらに、web版技術メニューを改良し、測定方法データベースの整備に資することを目的に、数社の測定機器メーカー等に限定して技術メニュー公開した。記録保存では、公開予定のIAEAのセーフティレポート等及び我が国の規制側の公開報告書の内容を調査・整理した。

平成20年度には、地層処分モニタリングの意義等の整理として、国内外の新たな動向の調査、性能評価パラメータ計測・モニタリングの検討を受けて、モニタリング目的と分類の見直しを行った。また、段階的に整備を進めている地層処分モニタリング技術メニューに関しては、その全体構成を見直し、5W1H（ユーザー、目的、計測時期、計測場所・部位、パラメータ、及び計測方法）で表記可能なシステムを整備した。更に、中核技術として地中無線通信技術、光ファイバセンサ技術、パッシブ無線センサ技術等のフィジシティ試験を継続し、特に配線によると処分安全性能の影響を低減することが可能な地中無線通信技術については、その信頼性や適用範囲等を評価することを目的として、解析技術の向上に関する検討を行うと共に、さらに国内外のURL等の状況を調査し、それらへの反映方法を検討した。記録保存技術に関しては、高レベル放射性廃棄物地層処分にかかわる記録保存の具体的な策及び技術的可能性等を検討し、国及び関連機関等が地層処分に対する社会的信頼性の向上につながる計画を策定する際の判断材料を整備した。

平成21年度の検討に着手する際に、欧州における共同研究として、平成21年5月に欧州原子力共同体（EURATOM）のFP7プログラムMoDeRn（Monitoring Developments for safe
Repository operation and staged closure）が正式に開始した[8]。

1.3 構成及び概要

本報告書は、第1章から第7章までの7部構成となっている。

第1章では「調査の概要」として、本調査の背景や目的、概要を示した。

第2章では「地層処分モニタリングの目的等の整理」として、モニタリングの意義や目的についてサイト調査前から最終閉鎖後の各段階での計測・モニタリングを対象に、国内外の新たな動向を踏まえ整理を行い、地層処分におけるモニタリングのあり方について検討した。具体的には、処分事業において最も重要と考えられる閉鎖時の意思決定の観点から、“閉鎖時の意思決定における地層処分モニタリングのあり方”を提案した。この閉鎖時の意思決定における地層処分モニタリングのあり方は、技術的な視点で①閉鎖時の意思決定において実施可能なモニタリング、②閉鎖時の意思決定のための基本論理構造及びモニタリングの役割、③モニタリング計画検討方法（モニタリング項目の選定方法、及びモニタリング結果の判断基準の考え方）を示すものである。

第3章では「モニタリング技術メニューの整備」として、段階的な整備の一環としてプログラ
ムの一部改造を行い、モニタリング情報を拡充した。具体的には、①表示機能の拡張及びそれ
に伴うデータベース構造の改良、②モニタリングのあり方に関する検討を踏まえた機能拡張及びそ
れに伴うデータベース構造の追加、及び③機器情報のレビューデ及び新規機器の調査、並びに調査
結果を踏まえたデータベースの拡充を実施した。

第4章では「地中無線通信技術の調査研究」として、国内外のURLへの反映を考慮した上で、
地層処分モニタリングにおけるデータ伝送方法の検討を行った。更に、アクティブ通信技術及び
パッシブ通信技術に関する調査研究を継続した。具体的には、データ伝送方法の検討として、地
層処分モニタリングに関して、モニタリングが実施可能な箇所と時期について、モニタリング機
器の配置を検討し、メタルケーブル、光ファイバによる有線方式のデータ伝送、及び地中無線装
置による無線方式のデータ伝送の適用範囲を取りまとめた。また、アクティブ通信技術に関して、
小型送信機の設計、試作、及びデータ通信試験を行い、送信機を小型化した場合の通信特性と吹
付け工法による緩衝材中への設置方法の有効性を確認した。更に、パッシブ通信技術に関して、
緩衝材の電気特性を確認し複数のセンサを緩衝材に設置し緩衝材の挙動を分布として捉えるモニ
タリング方法の実現性に関する試験計画を立案するとともに、開発に向け今後の方向性を示した。

第5章では「光ファイバセンサ測定技術の調査研究」として、国内外のURLへの反映を考慮
して調査研究を継続した。具体的には、単式センサ（温度、圧力計測用Fiber Bragg Grating (FBG)
センサ内蔵）、及び二連式センサ（単式×2セット）を用い、光ファイバセンサの長期試験による
耐久性評価に向け、膨潤圧計測を実施した。また、工学実験試験への反映の一環として、前述の
単式センサ等を(独)日本原子力研究開発機構（JAEA）にて実施されている熱・水理・応力・化学（THMC）連成挙動の室内試験（COUPLE）にて適用した。

第6章では「記録保存技術の調査研究」として、記録保存システム案の整備に資するために、関連する最新動向の調査、整理を継続して実施した。具体的には、昨年度実施した英国調査を継続するとともに、2010年に第2回の記録保存が実施予定のフランスの放射性廃棄物管理機関（ANDRA）によるLa Mancheセンターでの実施状況についての調査を行った。

第7章では第2章「地層処分モニタリングの目的等の整理」から第6章「記録保存技術の調査研究」までの調査研究を取りまとめると共に、今後の課題を示した。
参考文献

[7] 総合資源エネルギー調査会 原子力安全・保安部会 廃棄物安全小委員会, 「高レベル放射性廃棄物等の地層処分に係る安全規制について」平成20年1月18日（2008）。

第2章 地層処分モニタリングの目的等の整理
第2章 地層処分モニタリングの目的等の整理

2.1 目的及び実施概要

2.1.1 目的

高レベル放射性廃棄物の地層処分事業では、概要調査・精密調査等のサイト調査の前段階（URL等における研究段階）に始まり、建設・操作・部分閉鎖の段階を経て、処分場を最終閉鎖した後も一定の期間にわたり、様々な目的で地層処分モニタリングを実施することが考えられている。

本章では、モニタリングの意義や目的についてサイト調査前から最終閉鎖後の各段階での計測・モニタリングを対象に、国内外の新たな動向を踏まえ整理を行い、地層処分におけるモニタリングのあり方について検討した。特に本検討では、閉鎖措置計画申請前に事業者が行う閉鎖の判断に着目して実施した。

2.1.2 実施概要

昨年度の地層処分モニタリングの目的等の整理では、天然バリアの地下水流動特性の性能評価・バラメータを対象に、計画可能性等の調査を行い、サイトによっては処分場建設による地下水流動へのインパクトに伴う坑道内での地下水水質や年代の変化のデータを積み重ねることが重要であることを見出し、その成果を後述（図2.3.1-1）するモニタリングの目的に反映した。モニタリングの目的に関する検討は一通り実施されており、今後モニタリングのあり方を具体的に示していくためには、より具体的な意思決定に繋げる検討を進めていく必要がある。そこで、今年度からは高レベル放射性廃棄物地層処分事業において最も重要な段階となる閉鎖に着目し、「閉鎖措置計画申請前に事業者が行う閉鎖の判断」に関する検討を実施することとした。

本章では、先ず国内外調査としてモニタリング国際共同研究や我が国の安全規制に関する検討状況の調査を行った。そして、処分事業の各段階を踏まえ閉鎖時の意思決定に着目し、閉鎖時の意思決定におけるモニタリングのあり方を検討した。本検討においては、地層処分におけるモニタリングの要件、人工バリアシステムへの計測機器の設置に伴うバリア機能や性能への影響、安全確保原則の考え方などを踏まえ、実施した。

また、具体的なモニタリング項目の抽出に係わる試行として、閉鎖措置計画申請や安全評価パラメータ抽出の観点でも検討を加えた。

2.2 国内外動向調査

2.2.1 モニタリング国際共同研究 MoDeRn の検討状況

(1) MoDeRn の概要

Monitoring Developments for safe Repository operation and staged closure (MoDeRn) は、
地層処分事業の各段階（サイト調査から始まり、建設、操業、閉鎖及び閉鎖後の制度的管理）において、ステークホルダの関与を踏まえモニタリングに関する開発及びモニタリングの実施に向け参照すべきフレームワークの提供を目指し、2009年5月から開始された。研究期間は4年間である。

MoDeRnはthe European Atomic Energy Community（EURATOM）の7th Framework Programme（対象範囲：Management of radioactive waste）により実施されている。MoDeRnには17の研究機関（EUの機関、米国、日本及びイス）が参加している。

原環センターは、モニタリングに関し海外の最新の検討状況を把握しモニタリングのとり方に関し討議するために、基盤研究の一環としてモニタリング国際共同研究MoDeRnに参画している。

(2) モニタリング国際共同研究 MoDeRn の目的

一方、前述のThematic networkの次のフェーズとしてANDRAを中心として、より具体的なモニタリング方策や技術要件の明確化、あるいは計測技術の限界並びに課題抽出等を行うEURATOMのFP7プログラム MoDeRnが開始されることになった。

MoDeRnの目的は次のとおりである。

① 広範に受け入れられる最新のモニタリング目的を設定すること。
② 処分の段階的アプローチ期間内において、より具体性のあるモニタリングイメージを開発すること。
③ 開発したモニタリングが、専門家や非専門家がステークホルダ（lay stakeholders）の要望に沿っているかどうかを確認すること。
④ モニタリング活動によって得られる知見並びに処分環境で利用可能な技術について提示すること。
⑤ 将来のステークホルダとの関わり方についての提言を行うこと。

(3) MoDeRn の参加機関

現状の参加機関は下記の17機関である。MoDeRnの幹事会社はANDRAである。

① Agence nationale pour la gestion des déchets radioactifs (ANDRA), France
② Asociación para la Investigación y el Desarrollo Industrial de los Recursos Naturales (AITEMIN), Spain,
③ DBE Technology GmbH (DBETEC), Germany

1 原環センターは既往の本調査において、これら文書についての調査を実施している[21][22]。
モニタリングに関する共同研究に関しては各国からの関心が高く、来年度からはカナダ核燃料廃棄物管理機関（NWMO）やスウェーデン核燃料・廃棄物管理会社（SKB 社）も参加する予定である。

(4) MoDeRn の実施内容

MoDeRn は下記に示す 6 つの技術的ワークパッケージ(WP1~6)と全体を管理するワークパッケージ(WP0)により構成されている。現在活動が実施中であり、詳細の内容及び結果については随時 MoDeRn の公開ホームページ http://www.modern-fp7.eu/home/で更新されていく計画である。

WP1: Monitoring Objectives and Strategies（目的と戦略）
技術的及び社会科学的観点からモニタリングの主要な目的を分析し、有益なモニタリング戦略を提示する。

WP2: State-of-the-art and RTD of relevant monitoring technologies（先端技術・技術開発）
モニタリングの最先端技術を整理し、処分システムの要求に応じた技術開発を行う。

WP3: In-situ demonstration of innovative monitoring techniques（原位置試験）
最先端技術を用いたモニタリング技術の実証を原位置で実施する（フランス Bure, ベルギー Hades, スイス Grimsel）。

WP4: Case study of monitoring at all stages of the disposal process（ケーススタディ）
処分事業の各段階においてモニタリングのケーススタディを実施する。このケーススタディにおいては予想外の結果が得られた場合などにモニタリング結果をどのように取り扱うかに関するガイダンスの提供に向けた特別なシナリオも考慮している。

WP5: Knowledge Dissemination（結果の普及）
規制機関等ステークホルダとの議論、EC 主催の国際学会等も含め、検討結果の普及を
行う。

WP6: Reference framework for repository monitoring (リファレンスフレームワーク)

上記全ての WP を統合し、地層処分モニタリングのための参照すべきフレームワークの
提供を行う。このフレームワークにおいては、実施可能なモニタリングの記述、ステークホルダとの取り決め等に関する提案、意思決定におけるモニタリング結果の適用方法
などを含んでいる。

図 2.2.1-1 開設された MoDeRn の web サイト（2010 年 2 月現在）

各 WP の関係を整理すると図 2.2.1-2 のようになる。同図には併せて原環センターが関与す
る部分を示している。
図 2.2.1-2 各 WP の関係及び原環センターが関与する部分

(5) **MoDeRn の検討概要**

MoDeRn については各機関において業務を分担すると共に、2009 年 6 月 23 日、24 日に第 1 回ワークショップが、2009 年 11 月 18、19 日に第 2 回ワークショップが開催され、主に WP1 と WP2 に関する議論が開始されている。

1) **検討状況**

現在の検討状況を取りまとめる下記のようなようになる。

- 例えば、放射性廃棄物管理共同組合（NAGRA）は閉鎖後モニタリングに関する責任は無い等、各国の状況が異なるため、幹事会社である ANDRA の取りまとめに対する責任は大きくなくなっている。

- 当初の MoDeRn の研究計画には「社会科学の観点での検討」が含まれていなかったが、最終的には EU からの要望で加わっている。このことより、特にモニタリングに関しては社会科学に関する検討の重要性が伺える。

- モニタリングの目的は、規制への対応や、建設による擾乱の把握など地質環境調査が中心、処分場の可逆性の管理など、国によって異なるのが現状である。

- オランダエネルギー研究機構（NRG）が地中無線通信に着目した検討を開始するなど、モニタリングでの地中無線通信技術に対する期待度が大きい。今後、原環センターとしては地中無線通信技術に関し多くの研究実績があるため、積極的に情報発信をしていくことが重要となる。
2) 主な議論内容
現在の主な議論内容を以下に示す。今後のワークショップにおける討議を踏まえ、MoDeRnとしての方向性を幅広く示していく計画である。
● モニタリング期間に関する討議：限られた時間では、例えば処分場における腐食等の現象を観察することは困難ではないか。変化が無いことを確認することに意味があるのか？やることが重要か？また、バイロット施設においては加速試験（例えば、強制的な再処理）などを用いることも必要ではないか？
● モニタリングの目的に関する討議：モニタリングの役割は建設による影響を計測することである。一方では、モニタリングの役割は予想通りか否かを確認することである。特性を調査することではない。
● モニタリングにおけるバイロット施設の役割に関する討議：バイロット施設はメイン施設から空間的にも水理的にも離れている必要がある。しかし、バイロット施設はメイン施設の状態を代表している必要がある。
● 社会科学に関する討議：「社会科学」におけるミニスタディでは地層処分の専門家と一般の人々におけるモニタリングの実施に関する認識が異なる。専門家は閉鎖後のモニタリングは不要であると考えている人が多いが、非専門家はモニタリングの実施を求めている。
3) 来年度の展開
各機関で分担した作業の実施や、内部のワークショップの実施に加え、2010年6月にはモニタリング技術の最先端技術を調査するため、外部機関を招いたモニタリング技術に関するワークショップの開催が計画されている。また、同年12月には同様に外部機関を招いたステークホルダーとのコミュニケーションに関するワークショップも開催する計画となっている。
4) 成果の反映
MoDeRnでの成果については随時「モニタリングのあり方」に関する検討に盛り込むと共に、公開された情報についてはその内容を具体的に提示していくことが重要となる。

2.2.2 我が国の安全規制の検討状況

1) 現在までの経緯
一方、処分事業においては、立地手続きに加え、安全規制の法令、原子力安全委員会の安全性査指針等を踏まえ、事業者が処分場立地地点の選定、処分施設の設計、建設、操業、閉鎖等の
事業計画を策定することから、あらかじめ、これらの安全確保上の要求事項が明確になっていくことが必要であるが、特則法においては、HLW処分の安全規制に関して、「(安全の確保の規制)第二十条 機構がこの法律の規定に基づき特定放射性廃棄物の最終処分場の業者）を行う場合についての安全の確保のための規制については、別に法律で定めるとところによる。」と規定されており[4]、未整備となっていた。このため、総合資源エネルギー調査会原子力安全・保安部会廃棄物安全小委員会は、HLWに加えて地層処分対象のTRU処分に係る安全規制の法的枠組みについての検討を行い、平成18年9月、「放射性廃棄物の地層処分に係る安全規制制度のあり方について」[9]を公表し、次いで平成19年6月には「核燃料物質、核燃料物質及び原子炉の規制に関する法律（以下「炉規則」）」[9]及び特則法4の改正12月に「核燃料物質、核燃料物質及び原子炉の規制に関する法律施行令」を改正がなされた。図2.2.2-1に改正炉規法における安全規制体系の概要を示す。ここで、高レベル放射性廃棄物処分については、第一種廃棄物埋設に分類されており、法第51条の2第一項において下記が規定されている。

法第51条の2第一項
核燃料物質又は核燃料物質によって汚染された物であって、これらに含まれる政令で定める放射性物質についての放射能濃度が人の健康に重大な影響を及ぼすおそれがあるものとして当該放射性物質の種類ごとに政令で定める基準を超えるもの埋設の方法による最終的な処分（以下「第一種廃棄物埋設」という。）

改正炉規法の概要

![図2.2.2-1 改正炉規法の概要](image)

2 改正炉規法により地層処分（ガラス固化体、TRU）に関しては第一種廃棄物埋設事業とされた。なお、第二種廃棄物理設事業については、トレンチ、コンクリートピット及び余裕深度処分（LLW、TRU）が対象となっている。図2.2.2-1において黄色の部分は改正された内容、赤の部分は新規に追加された内容である。
次いで、廃棄物安全小委員会は、埋設規則を始めとする技術基準（経済産業省令）の策定に資することを目的として、国内外の考え方を参考に規定すべき技術基準等についての検討を行い、平成２０年１月１８日、「高レベル放射性廃棄物等の地層処分に係る安全規制について」[11]を公開し、さらに平成２０年４月の「核燃料物質、核燃料物質によって汚染された物の第一種廃棄物埋設の事業に関する規則（以下、「第一種廃棄物埋設規則」）」[12]の制定、及び「特定廃棄物処理施設又は特定廃棄物管理施設の設計及び工事の方法の技術基準に関する規則（平成４年総理府令第４号）」並びに「加工施設、再処理施設、特定廃棄物処理施設及び特定廃棄物管理施設の溶接の技術基準に関する規則（平成１２年総理府令第１２３号）」を改正し、事業内容に係る主な法整備が行われた。

また、上記の法令のほか、HLW処分に関わる法令／指針類としては、原子力発電環境整備機構（NUMO）の概要調査法の公募に当たり、明らかに処分地として不適切と考えられる環境要件を定めた「高レベル放射性廃棄物処分の概要調査地区選定段階において考慮すべき環境要件について（平成１４年９月）」[15]、国際的動向を勘案したHLWを含む今後の我が国の放射性廃棄物処分の安全規制の検討方向性を示した「放射性廃棄物処分の安全規制における共通的な重要事項について（平成１６年６月）」[16]が、共に原子力安全委員会によって取りまとめられている。

現在、我々の原子力関連の規制に関しては、これまで国によって制定されてきた告示や技術指針類に代わり、民間（原子力学会）による標準として取りまとめることとなってきている[17]。地層処分についての標準は、現在、廃棄体製作及び施設確認について作成準備段階であり、その他の標準に関しては未検討である。

(2) 諸外国における段階的規制について

前項(1)に示した我が国の安全規制検討においては「規制制度の構築に当たっても、段階的な事業進展、技術的な特徴、事業者の意思決定に係る社会的合意形成機会の確保等の観点を考慮して、事業の開始から廃止までの段階的進展を念頭に、それぞれの段階において確保されるべき安全要件を踏まえた規制制度の法的枠組みを整備する」[8]とされており、事業の段階的進展を踏まえた規制制度が制定されている。ここでは参考情報として、原環センターが「原子力安全委員会 特定放射性廃棄物処分安全調査会 制度検討分科会」及び「総合資源エネルギー調査会 原子力安全・保安部会 廃棄物安全小委員会」向けに作成した国際機関（IAEA及び経済協力開発機構原子力機関（OECD／NEA））[39]及び主な諸外国の段階的な安全規制の考え方[38]についてその概要を整理した。

1) IAEA

地層処分の安全基準文書である安全要件 No.WS-R-4“放射性廃棄物の地層処分”（2006年6月）[23]において、段階的開発及び評価に関する要件として、「地層処分施設は、一連の段階を踏んで開発されなければならず、各々に、必要に応じて、サイト、設計及び管理面での選択肢、並びに地層処分システムの性能及び安全性を反復的に評価することによって裏付けられる」との考え方を示し、それは規制及び政策の意思決定プロセスにより決まるものとし
ている。また、我が国の加盟している「使用済燃料管理及び放射性廃棄物管理の安全に関する条約（安全条約）」[26]においては、放射性廃棄物管理の安全（第3章）の中で、放射性廃棄物管理における異なる段階が相互に依存していることを考慮に入れることとしており、施設の立地、設計及び建設、安全に関する評価、施設の使用、閉鎖後の制度的な措置に関する要件が規定されている。表2.2.2-1に安全条約に示されている各段階における制度的な措置に関する要件[39]を示す。

2) OECD/NEA
OECD／NEAは、地層処分の進め方を取りまとめた次の文書の中で段階的アプローチに関する考え方を示している[39]。
- 「放射性廃棄物の地層処分に向けた進展：我々はどこにいるのか／国際的評価」（1999年）においては、段階的処分の実施が社会的な意思決定の機会を与えるものであるとの認識が示されている。
- 「長期的な放射性廃棄物管理に関する意思決定の段階的なアプローチ」（2004年）では、放射性廃棄物管理の長期的な解決策を実施するには、一般的に数十年の期間が必要であるが、段階的な意思決定の一つが、立案と実施に関する主要な決定を下す上での実現可能な手段であると考えられることとされている。
- 「放射性廃棄物管理の戦略的領域－NEA放射性廃棄物管理委員会の見解と活動の方向性」（1999年）においては、次の段階に進めるための決定はセーフティケース（定量的な性能評価や、性能評価及び処分場システムの安全上の品質や信頼性の確度に関するより定性的な論拠）で通常裏付けられているとされている。

3) 海外各国[38]
米国、フィンランド、スウェーデン、ドイツ、スイス及びフランスについて、各国の許認可規制段階を併記した。なお、表2.2.2-2及び表2.2.2-3に掲げた以外の国としてカナダ、英国、スペイン及びベルギーに関しては規制手続きが明確になっていないとされている。また立地段階については、我が国と同様にいずれの国も許認可手続き対象とはならない。
ここで「許可」とは、法律で定める基準等に適合していても行政官庁の裁量により不許可の可能性がある。また、「認可」とは、基本的には法律で定める基準に適合していても申請された行為を行うことが可能である。また、「承認」とは、基本的には法律で定める事項に適合していれば行為を行うことが可能である。
表 2.2.2-1 IAEA 国際安全条約に記された“放射性廃棄物管理の安全”に関する記述[39]

<table>
<thead>
<tr>
<th>安全条約に示されている段階</th>
<th>該当する条文（要件）</th>
</tr>
</thead>
</table>
| 第 13 条 施設の立地 | 1. 締約国は、計画されている放射性廃棄物管理施設に関し、次のことについて手続が定められ及び実施されることを確保するため、適切な措置をとる。
(i) 当該施設の使用期間中及び処分施設の閉鎖後にその安全に影響を及ぼすおそれのある立地に関するすべての関連要因を評価すること。
(ii) 当該施設が個人、社会及び環境に対して及ぼすおそれのある安全上の影響を評価すること。この場合において、処分施設については、閉鎖後に起こり得る立地状態の変化についても考慮するものとする。
(iii) 当該施設の安全に関する情報を公衆が利用可能なものとすること。
(iv) 当該施設が影響を及ぼすおそれがある限りにおいて、当該施設の近隣にある締約国と協議を行い、及び当該施設が当該締約国領域内に及ぼすおそれのある安全上の影響について当該締約国が評価することを可能とするため当該施設に関する一般的なデータを当該締約国の要請に応じて提供すること。 |
| 第 14 条 施設の設計及び建設 | 締約国は、次のことを確保するため、適当な措置をとる。
(i) 放射性廃棄物管理施設の設計及び建設に当たって、個人、社会及び環境に対して及ぼすおそれのある放射線による影響（排出又は制御されない放射によるもの含む。）を制限するための適切な措置がとられること。
(ii) 設計段階において、放射性廃棄物管理施設（処分施設を除く。）の廃止措置に関して想定される手順及び必要に応じて当該廃止措置に関する技術的な規定が考慮されること。
(iii) 設計段階において、処分施設の閉鎖のための技術的な規定が作成されること。
(iv) 放射性廃棄物管理施設の設計及び建設に用いられた技術が適切なものであることが、経験、試験又は解析により裏付けられること。 |
| 第 15 条 施設の安全性評価 | 締約国は、次のことを確保するため、適当な措置をとる。
(i) 放射性廃棄物管理施設の建設前に、安全に関する体系的な評価及び環境評価であって、当該施設がもたらす危険について適切であるか、かつ、その使用期間を対象とするものが実施されること。
(ii) 処分施設の建設前に、閉鎖後の期間についての安全に関する体系的な評価及び環境評価が実施され、規制機関が定めた基準に従ってその結果が評価されること。
(iii) 放射性廃棄物管理施設の使用を開始する前に、(i)に規定する安全に関する評価及び環境評価を補完することが必要と認められる場合には、これらの評価が更新され及び詳細なものとされること。 |
| 第 16 条 施設の使用 | 締約国は、次のことを確保するため、適当な措置をとる。
(i) 放射性廃棄物管理施設の使用の許可が、前条に規定する適当な評価に基づき、かつ、建設された当該施設が設計及び安全に関する要件に合致していることを示す使用実験の完了を条件として与えられること。
(ii) 試験、使用の経験及び前条に規定する評価から得られる使用上の制限及び条件が定められ、必要に応じて修正されること。 |

-2-10
<table>
<thead>
<tr>
<th>安全条約に示されている段階</th>
<th>該当する条文（要件）</th>
</tr>
</thead>
<tbody>
<tr>
<td>(iii) 放射性廃棄物管理施設の使用、保守、監視、検査及び試験が定められた手続きに従って行われること。処分施設については、このようにして得られた結果が、前提条件の妥当性を検証し及び検討するため並びに前条に規定する閉鎖後の期間についての評価を更新するために利用されること。</td>
<td></td>
</tr>
<tr>
<td>(iv) 放射性廃棄物管理施設の使用期間中、安全に関するすべての分野における工学的及び技術的な支援が利用可能であること。</td>
<td></td>
</tr>
<tr>
<td>(v) 放射性廃棄物の特性の決定及び分別のための手続きが適用されること。</td>
<td></td>
</tr>
<tr>
<td>(vi) 許可を受けた者が、安全上重大な事象につき規制機関に対し時宜を失することなく報告すること。</td>
<td></td>
</tr>
<tr>
<td>(vii) 使用の経験についての情報を蓄積及び解析するための計画を作成され、必要に応じてその結果に基づいて行動がとられること。</td>
<td></td>
</tr>
<tr>
<td>(viii) 放射性廃棄物管理施設（処分施設を除く。）の廃止措置計画が、当該施設の使用期間中に得られた情報を利用して作成され若しくは必要に応じて更新され、又は規制機関によって検討されること。</td>
<td></td>
</tr>
<tr>
<td>(ix) 処分施設の閉鎖のための計画が、当該施設の使用期間中に得られた情報を利用して作成され若しくは必要に応じて更新され、又は規制機関によって検討されること。</td>
<td></td>
</tr>
</tbody>
</table>

第 17 条　閉鎖後の制度的な措置
締約国は、処分施設の閉鎖後に次のことを確保するため、適当な措置をとる。

(i) 当該施設の所在地、設計及び在庫目録に関する記録であって、規制機関が要求するものが保存されること。
(ii) 必要な場合には、監視、立入制限等の能動的又は受動的な制度的管理が実施されること。
(iii) 能動的な制度的管理の間に放射性物質の環境への計画されていない放出が検出された場合において、必要なときは、介入措置を実施すること。

注記 下線部分はモニタリングが関与する可能性がある内容
表 2.2.2-2 各国の許認可規制段階（米国・フィンランド・スウェーデン） [38]

<table>
<thead>
<tr>
<th>国名</th>
<th>規制機関</th>
<th>実施機関</th>
<th>規制機関</th>
<th>実施機関</th>
</tr>
</thead>
<tbody>
<tr>
<td>米国</td>
<td>NRC, EPA</td>
<td>DOE</td>
<td>フィンランド</td>
<td>STUK, 環境省</td>
</tr>
<tr>
<td>安全基準</td>
<td>安全確認</td>
<td>実施機関</td>
<td>安全基準</td>
<td>実施機関</td>
</tr>
<tr>
<td>規制法令</td>
<td>①放射線保全法</td>
<td>①放射線保全法</td>
<td>①放射線保全法</td>
<td>①放射線保全法</td>
</tr>
<tr>
<td></td>
<td>②1992年エネルギー規制</td>
<td>②放射防護規制</td>
<td>②放射防護規制</td>
<td>②放射防護規制</td>
</tr>
<tr>
<td></td>
<td>③規制機関活動法</td>
<td>③放射防護法</td>
<td>③放射防護法</td>
<td>③放射防護法</td>
</tr>
<tr>
<td></td>
<td>④放射防護法</td>
<td>④放射防護法</td>
<td>④放射防護法</td>
<td>④放射防護法</td>
</tr>
<tr>
<td></td>
<td>⑤環境省</td>
<td>⑤環境省</td>
<td>⑤環境省</td>
<td>⑤環境省</td>
</tr>
</tbody>
</table>

表 2.2.2-3 各国の許認可規制段階（フランス・ドイツ・スイス） [38]

<table>
<thead>
<tr>
<th>国名</th>
<th>規制機関</th>
<th>実施機関</th>
<th>規制機関</th>
<th>実施機関</th>
</tr>
</thead>
<tbody>
<tr>
<td>フランス</td>
<td>ASN</td>
<td>ANDRA</td>
<td>ドイツ</td>
<td>BML, 医療品, BIS</td>
</tr>
<tr>
<td>安全基準</td>
<td>安全確認</td>
<td>実施機関</td>
<td>安全基準</td>
<td>実施機関</td>
</tr>
<tr>
<td>規制法令</td>
<td>①原子力安全・機器検定</td>
<td>①原子力法</td>
<td>①原子力法</td>
<td>①原子力法</td>
</tr>
<tr>
<td></td>
<td>②原子力基本規制（BWR等）</td>
<td>②原子力法</td>
<td>②原子力法</td>
<td>②原子力法</td>
</tr>
<tr>
<td></td>
<td>③核燃料棒検査</td>
<td>③核燃料棒検査</td>
<td>③核燃料棒検査</td>
<td>③核燃料棒検査</td>
</tr>
<tr>
<td></td>
<td>④放射性物質の安全管理</td>
<td>④放射性物質の安全管理</td>
<td>④放射性物質の安全管理</td>
<td>④放射性物質の安全管理</td>
</tr>
</tbody>
</table>

①〜⑤ 各国の法律、安全基準・安全指針（リスクの評価に相当）に基づく規制機関の行為
2.3 モニタリングのあり方に関する検討

2.3.1 これまでの目的等に関する検討概要

本検討では、地層処分モニタリングシステムについて、調査や操業段階から閉鎖後まで至る各段階での意義や目的について整理し、適用可能性のある測定方法を見出せ技術メニューを整備している。このうち、モニタリングの定義については特に明確に示されていないものの、IAEA-TECDOC-1208[2]に記されている“処分システムの構成要素の挙動、または処分場とその操作が環境に及ぼす影響を評価する上で役立つような、工学・環境あるいは放射線の各分野におけるパラメータの継続的または定期的観察及び測定3”であることを認識して検討を進めてきている。

また、モニタリングの目的については、平成12年度以降、地層処分モニタリングシステム検討委員会での議論を踏まえた検討を行い、現在に至っている。図 2.3.1-1 にこれまでのモニタリング目的の変遷を示す。

平成16年度（RWMC-TR-0403）
① 処分場の安全性と工学的対策の妥当性の確認
② 法令要件に対する適性の確認
③ 政策及び事業実施上の意思決定に資する情報提供
④ 情報調査地区等における地質環境特性のベースライン把握
⑤ 社会的な意思決定に向けた情報提供

平成18年度
① 地質環境特性のベースライン把握
② 工学的対策の妥当性の観察
③ 処分場の安全性とその変動の把握
④ 法令要件に対する適性の観察
⑤ 情報の蓄積と提供

注記：実線は検討により変更・追加・分割等がなされた目的／点線は変更なし

図 2.3.1-1 原環センターによるモニタリング目的の変遷 （平成16年度～20年度）

ここで注意すべきは、先に示した IAEA-TECDOC-1208[2]の定義では、モニタリングは、単なる連続的あるいは定期的な観察及び測定行為そのものを意味しており、決してモニタリングありがで何らかのアクションを行うものではないことに注意が必要である。

3 continuous or periodic observations and measurements of engineering, environmental or radiological parameters, to help evaluate the behaviour of components of the repository system, or the impacts of the repository and its operation on the environment.
例えば、平成20年度の検討成果としてモニタリング目的の一つに「処分場の安全評価の妥当性の確認」がある。これの意味するところは、今後段階的かつ定期的に実施される処分事業における安全評価（アクション）において、その妥当性を確認する方法の一つとして、「連続的あるいは定期的な観察及測定行為」が含まれた場合、それはモニタリングと呼ぶことが出来るという意味である。すなわち、このことは先述の IAEA-TECDOC-1208[2]がモニタリングの定義づけの前提として考慮した「地層処分の主要目的である長期安全性に関する信頼感の強化」のうち、「地層処分の主要目的である長期安全性に関する信頼感」を安全評価で担保するということであるとすれば、モニタリングはその「強化」のため、「連続的あるいは定期的な観察及測定行為」により取得したデータを利用することができる可能性があるということに過ぎず、決して「モニタリングを行うことで安全評価の妥当性を確認できる」ということではない。

上記のように、モニタリングの目的に関する検討はこれまで一通り実施されており、今後モニタリングのあり方を具体的に示していくためには、より具体的な意志決定に繋げて検討を進めていく必要がある。そこで、今年度からは高レベル放射性廃棄物地層処分事業において最も重要な段階となる閉鎖に関する検討、「閉鎖措置計画申請前事業者が行う開鎖の判断」に関する検討を実施することとした。

2.3.2 モニタリングのあり方における検討すべき事項

現在、我が国では原子燃料サイクルの過程で発生する高レベル放射性廃棄物を、数万年以上といった長期にわたり人間の生活環境から隔離するため、地層処分が計画されている。この地層処分施設は、操業安全性と閉鎖後安全性の両方を確保するように設計される必要があり、操業安全性は工学機能及び操業管理によって提供され、閉鎖後安全性は施設が閉鎖された後に、モニタリングまたは制度的管理に依存することなく、人工バリア及び天然バリアによって提供されることとなる[23]。

しかしながら、処分費用の合理的な見積りの前提条件として、「坑道を閉鎖し、その後300年間、モニタリング等の閉鎖後の措置を実施する」との方針[24]も示されている上、最近では閉鎖措置の一環で「例えば、埋め戻し完了後における地質環境が基本設計にないし基本的設計方針において想定した状況に移行しつつあることを確認するための地下水モニタリング」[11]なども、検討対象となっている。

このように、地層処分事業におけるモニタリングの重要性が再認識され出していることを踏まえ、本検討では処分事業において最も重要と考えられる閉鎖時の観点から、地層処分の基本的考え方と現状のモニタリング技術を踏まえ、「地層処分のモニタリングのあり方」について検討した。この“地層処分のモニタリングのあり方”には下記の3項目が含まれている。

- 閉鎖時の観点から、地層処分のモニタリングはどのようにあるべきか？（①閉鎖時の意思決定における地層処分モニタリングの制約条件）
- 閉鎖時の意思決定におけるモニタリングの役割は？（②閉鎖時の意思決定のための基本論理構造及びモニタリングの役割）

strengthen confidence in long term safety, which is the key objective of radioactive waste disposal
閉鎖時の意思決定のためのモニタリング計画立案時の留意事項は？（③モニタリング計画検討方法）

モニタリングは一般国民を含めた社会との合意形成の観点からも重要視されているが、ここでは技術的観点に絞って取りまとめている。

2.3.3 閉鎖時の意思決定の重要性

(1) 処分事業の手順及び着目した段階

高レベル放射性廃棄物の地層処分事業には、建設地選定に向けた調査（文献調査、概要調査、及び精密調査）から、処分場の建設、処分場の操作、地下施設の閉鎖、地上施設解体撤去、（必要があれば）閉鎖後の管理、そして管理終了後という段階までが含まれており、閉鎖までで約100年に及ぶプロジェクトである[25]。処分事業は、安定した地下深部の岩盤において、天然バリエと人工バリエを組み合わせた多重バリエシステムにより、廃棄物を埋設（処分）することを目的としている事業である。つまり、処分事業は、安全性を確保できる条件において“埋設すること”が主目的であるため、前述した各段階の中では「地下施設の閉鎖」に向けた意思決定が最も重要な意思決定段階となる。この意思決定は処分事業における閉鎖までの廃棄体の回収可能性の維持の観点からも重要となる。

(2) 地下施設の閉鎖時の意思決定の観点からの検討の重要性

“埋設すること”が主目的とした処分事業において「処分場の閉鎖」に向けた意思決定は最も重要な判断であるため、この意思決定に先立ち、必要な情報は事前に取得しておくことが求められる。ベースラインや処分場建設時の擾乱の影響等、閉鎖前段階において実施すべきモニタリング項目は、閉鎖時の意思決定を踏まえ選定すべきであり、更に、閉鎖後のモニタリングが要求された場合、実施すべきモニタリングは、長期安全性の観点から実施される閉鎖時の意思決定で活用されるモニタリング項目のうち、実施可能で、かつ要望されるモニタリングを継続して実施していくことが長期安全性評価を行ううえで重要となる。つまり、サイト調査前から最終閉鎖後の各段階を対象に一貫性を持ったモニタリング計画を検討するためには、閉鎖時の意思決定の観点で実施すべきモニタリング計画に準拠した形で、検討すべきである（図2.3.3-1参照）。

このような理由から、地層処分事業におけるモニタリング計画の検討では、先ず閉鎖時の意思決定の観点で実施することが重要となる。本検討では処分場の閉鎖時の意思決定方法として、「現状の状況において閉鎖することが妥当である。」ことの評価に着目している。
図 2.3.3-1 モニタリングにおいて「閉鎖時の意志決定の観点」からの検討の必要性

また、図 2.3.3-1 で示したように閉鎖時の意志決定に資するモニタリング項目の抽出の観点から前段階のモニタリング項目の検討とは逆に、図 2.3.3-2 に示すように前段階のモニタリングの実施が次段階以降のプロジェクトの実施にあたり制約事項（例えば、モニタリングの実施により潜在的水みちが増える等）となることも生じることから、次段階以降に影響を与える可能性としてモニタリング実施に関する留意事項を整理することも重要となる。

図 2.3.3-2 モニタリングを実施することによる他への制約

本検討では、地層処分多重バリアシステムである人工バリア（地下施設を含む）と天然バリアに焦点を当て、地上環境（生物圈）のモニタリングは対象外としている。
2.3.4 閉鎖時の意思決定における地層処分モニタリングの制約条件

(1) モニタリングの要件

地層処分におけるモニタリングは、処分場計画の様々な段階を問題なく完了するために欠かせない情報も含め、そうすることによって放射性廃棄物処分の主要目的である長期安全性の信頼性を高めることに資すると考えられている。しかしながら、モニタリングの実施は処分システムの構成要素の挙動に関するデータを取得できるメリットに加え、下記に示すようなモニタリングプロセスから発生するデメリットもあり、実際のモニタリング計画においては、両者の間で整合を図ることが求められる[2]。

① モニタリングを行う作業員が受ける放射線被ばく
② モニタリングの実施に伴う工学的バリアシステム設置の遅延により生じえる処分場材料の劣化（工学的バリアシステムが所定の機能を発揮できない可能性がある）
③ 処分場内部または周辺でのモニタリング機器の設置に伴う放射性物質の移動に係わる潜在的水みちの形成
④ モニタリングを実施するために処分場へのアクセス坑道を残存した場合の人間侵入、あるいは自然または誘発された現象（例えば、大浸水）による悪影響が生じる可能性の增大
⑤ その他処分場操作への干渉

この中で、“③潜在的水みちの形成”に対しては工学的対策が困難であり、地層処分の長期安全性の信頼性を高めるために他の対策によるトレードオフを行うことが特に困難であると考えられるため、避けることが望まれる。そのため、本検討では基本的なモニタリングの要件として、「モニタリングの行為がバリアの機能や性能を損なってはいけない」ことを掲げた。

(2) 人工バリアシステムへの計測機器の設置に伴うバリア機能や性能への影響

前節において、モニタリング要件として“モニタリングの行為がバリアの機能や性能を損なってはいけない”ことを掲げた。そのため、本節では人工バリアシステムにおけるモニタリングの実施を対象に、モニタリングのどのような行為が、バリア機能や性能の低下に影響するかを整理した。

先ず人工バリアシステムのうち緩衝材のモニタリングに関し、緩衝材中への計測機器設置方法を整理した（図 2.3.4-1 参照）。緩衝材の原位置締め固めの場合は、図 2.3.4-1 上に示すように①底部緩衝材の施工、②計測機器設置・ケーブル配線用トレンチ掘削、③計測機器設置及びケーブル配線、④埋戻し、⑤底部緩衝材施工の手順を繰り返して行われることとなる。この施工工程の中で、計測機器設置・ケーブル配線用トレンチ掘削は緩衝材自体にゆるみを生じさせ、①埋戻しでは計測機器やケーブルの損傷を防ぐために十分な締め固めができず、バリアの機能や性能を損なう（弱部が生じ、潜在的水みちが形成される）こととなる。また、緩衝材ブロック施工の場合も図 2.3.4-1 下に示すように類似した作業が行われるため、同様の課題（緩衝材自体がゆるむ、及び不十分な締め固め）が残されている。廃棄体定置後の緩衝材の施工は作業の安全性の確保の観点から、全て遠隔作業で行うことが必要になるため、廃棄体周辺及び
上部における緩衝材の施工においてモニタリングを実施する場合は前述した“潜在的水みちが形成”が更に顕著になることが考えられる。検討の詳細は後述する 4.2.4 項を参照のこと。

図 2.3.4-1 緩衝材への計測機器設置方法

また、人工バリアシステムのうちオーバーパックのモニタリングについては、例えば材料の腐食に関連する項目的モニタリング等が考えられるが、その場合のバリア機能や性能の低下に関連する事項としては計測装置の設置に伴うオーバーパックの損傷等の可能性に加え、計測機器のケーブルを緩衝材中に配線する必要があるため、最終的には前述した緩衝材中の計測機器設置方法と同様に、“潜在的水みちが形成”が課題として残されている。

(3) 前提条件となる閉鎖時の意思決定における地層処分モニタリングの制約条件

どのような項目をモニタリングすべきかを考えた場合、前(1)項で示したモニタリング要件と前(2)項で示した人工バリアシステムへの計測機器の設置を踏まえ、前提条件となる閉鎖時の意思決定における地層処分モニタリングの制約条件を定義する必要がある。そこで本検討では下記に示す閉鎖時の意思決定における地層処分モニタリングの制約条件を定義した。

① 人工バリア（地下施設を含む）

● 処分場の処分坑道、人工バリアシステムでのモニタリングは実施しない（閉鎖時の判断に活用できない）。閉鎖前段階においてアクセス可能な主要坑道のみは、モニタリングが可能である。処分場の閉鎖後は主要坑道のモニタリングを中止する（閉鎖時においては水みちになる可能性がある主要坑道のケーブルは撤去、図 2.3.4-2 参照）。

● 人工バリアシステムのモニタリング情報どうしても必要であれば、処分場とは異なる
処分坑道のモニタリング情報がどうしても必要であれば、処分場と異なる場所に実験施設を設置して実験を進める。実験の結果をもとに、処分坑道でのモニタリングを行う。この場合においても処分場と同様に、人工バリアシステムのモニタリングを実施する。閉鎖後、処分坑道内でのセンサやケーブルは撤去し、坑道を再度埋め戻す（閉鎖後、地下調査施設 II は、許認可手続きでの対応が可能であれば、処分施設の一部とする。図 2.3.4-3 参照）。

2.3.4 天然バリア
処分坑道、人工バリアでのモニタリングは実施しない（閉鎖時の判断には活用できない）。主要坑道のみは可能。閉鎖後は主要坑道のモニタリングを中止する（ケーブルは撤去）。

図 2.3.4-2 処分施設における閉鎖前のモニタリング
図 2.3.4-3 地下調査施設 I（模擬廃棄体）における閉鎖前のモニタリング

図 2.3.4-4 地下調査施設 II（実廃棄体）における閉鎖前のモニタリング
2.3.5 閉鎖時の意思決定のための基本論理構造及びモニタリングの役割

(1) 安全確保原則

高レベル放射性廃棄物の処分の安全性を長期に亘って確保するためには、①長期的安全確保対策として地層処分にとっては適切な地質環境を有する処分地が選定（サイト選定）され、人工バリア及び処分施設から構成される処分場がそこに適切に設計・施工（工学的対策）される必要がある。更に、②安全確保のための措置が適切であって、長期に亘って人間とその生活環境に対してその影響が及ぼすそれがないことをあらかじめ確認（安全評価等による安全確認）することが必要となる[7]。

そこで、閉鎖時の意思決定のため「現状の状況において閉鎖することが妥当である。」ことを示す論理構造を構築するに当たっては、①長期的安全確保対策と②安全評価等による安全確認の視点が重要となる。

(2) 安全確保原則に基づく閉鎖時の意思決定のための基本論理構造の構築

処分場の操業後、「現在の状況において閉鎖することが妥当である。」ことが真であることを示すためには、前(1)項で示した①長期的安全確保対策と②安全評価等による安全確認の視点を含む必要がある。ここで、①長期的安全確保対策には“サイト選定”と“工学的対策”が含まれるが、“サイト選定”に係る要件はサイト選定過程における最終処分施設建設地の選定時に満足していることが前提条件となる。②安全評価等による安全確認については、安全評価結果である被ばく線量が基準値以下であることが前提条件となる。そのため、本論理構造では、これらの前提条件が満足していることとした上で、次の2つの命題が共に真であることが必要となる。実際のプロジェクトにおいて時系列を考えれば、工学的な対策が適切に実施された上で、安全評価による安全性の確認となるが、論理構造としては2つの命題共に真であることが必要となるため、同一階層に列した。

● 工学的な対策が妥当である。
● 安全評価上妥当である。

命題「工学的な対策が妥当である。」が真であるためには、以下の2つのサブ命題が真である必要がある。

● 工学的な対策の実施プロセスが妥当である。
● 工学的な対策に基づく結果が妥当である。

ここで、サブ命題「工学的な対策の実施プロセスが妥当である。」とは、工学的な対策に基づく結果に至る過程の妥当性を評価するものであり、例えば、最終的な温度分布の評価に至る熱解析モデル構築方法（地質環境特性の把握や適切な熱伝導特性等の物性値の設定など）の妥当性等が含まれる。また、サブ命題「工学的な対策に基づく結果が妥当である。」とは、最終的な結果が妥当であるかであり、例えば、意思決定段階における温度分布の結果が妥当であることなどが含まれる。
命題「安全評価上妥当である。」が真であるためには、同様に以下の2つのサブ命題が真である必要がある。

- 安全評価に資するプロセスが妥当である。
- 安全評価に資する結果が妥当である。

ここで、サブ命題「安全評価に資するプロセスが妥当である。」とは、安全評価に必要な性能を評価するモデルとして、例えば、水理地質構造モデル構築方法の妥当性などが含まれる。また、サブ命題「安全評価に資する結果が妥当である。」とは、安全評価に必要な性能を評価するモデルとして、例えば、地下水の流動・流速の結果が妥当であることなどが含まれる。

これらの結果を取りまとめると、「現在の状況において閉鎖することが妥当である。」ことが真であるための基本論理構造は、図 2.3.5-1 のようになる。この論理構造は、事前に実施されている調査研究や実際に原位置で得られる様々な知識・情報によりサポートされることとなる。

図 2.3.5-1 「現在の状況において閉鎖することが妥当である。」ことが真であるための基本論理構造

図 2.3.5-1 に示す論理構造を具体的な知識・情報に繋げていくためには、対象とする処分サイトの特性を踏まえ、安全性を長期にわたって確保するための“戦略（例えば、不確実性をどのように担保していくか？等）”に基づきトップダウンで展開（細分化）していくこととなる。本検討では、具体的な論理構造の展開に向け、モニタリングの観点からの留意事項を以下に示す。

- 前 2.3.4 節(1)項で示したようにモニタリングの実施は処分システムの構成要素の挙動に関するデータを取得できるメリットに加え、モニタリングプロセスから発生するデメリットもある。そのために、「現在の状況において閉鎖することが妥当である。」ことが真であることを示す論理構造は、できるだけモニタリングに依存しない論理構造とすべきである。
- この論理構造においてモニタリングをエビデンスとして活用することを考える場合には、実際に原位置で計測可能なモニタリング項目とする必要があるため、事前に
ボトムアップの観点での検討が重要となる。

- この論理構造においてモニタリングの結果は、この主命題を支持するエビデンスになる場合もあるが、結果によっては不支持するエビデンスの場合もあり得る。そのため、不支持するエビデンスの場合の取り扱い方法は、十分に注意する必要がある。

(3) 論理構造をサポートするエビデンスとしてのモニタリング（モニタリングの役割）

一般にモニタリングの結果は、地質環境特性の把握等、つまり“場の理解”に活用されるケースと、予測した結果の妥当性の確認、つまり“場の確認”に活用されるケースがあると考えられる。

モニタリングの役割は論理構造をサポートするエビデンスになると考えられるため、具体的に“場の理解”に活用されるケースのモニタリング結果は、主にプロセスの確認をサポートするエビデンスとなり、“場の確認”に活用されるケースは、主に結果の妥当性をサポートするエビデンスとなる。この“場の確認”に活用されるケースには①数値解析による予測値との比較に加え、②設計や安全評価の前提条件の確認があると考えられる（図2.3.5-2参照）。

図 2.3.5-2 閉鎖に資する論理構造におけるモニタリング結果の適用先

“場の理解”に活用されるケースは、例えば JAEA 統合化データフロー[35]（図2.3.5-3参照）に示されているように、地上からのポーリング調査において立坑や他のポーリング孔等の掘削による水圧応答に関する長期計測等であり、水みちの連続性や遮水性断層の有無など地質環境の理解に活用される。また、“場の確認”のうち、①数値解析による予測値との比較に活用されるケースは、例えば、2000年レポート[36]の「地下深部の地下水流動特性に関する調査・解析事例（図2.3.5-4参照）」に示されているように、水理特性データを取得し、水理地質構造
モデルを構築した上で、地下水流動解析を行い、その結果と長期観測との比較によるモデルの検証に活用される。更に、“場の確認”のうち、②設計や安全評価の前提条件の確認に活用されるケースは、例えば緩衝材の温度が 100℃を超えないように設計されている場合、緩衝材の温度が 100℃以下であることをモニタリングにより確認することとなる（図 2.3.5-5 参照）。

上記のうち、例えば地下水圧に関するモニタリング結果は、“結果の妥当性（場の確認）”のうち、①数値解析による予測値との比較に活用される以前に、図 2.3.5-6 に示すように最終段階に至るまで繰り返し“プロセスの妥当性（場の理解）”にも活用できるものである。

各ケースにおけるモニタリングの判断基準は、“場の理解”の場合は、“モニタリング結果と場の理解（モデル）との間で、整合が取れていること”であり、“場の確認”のうち、①数値解析による予測値との比較の場合は、“モニタリング結果が、予測範囲に入っていること”であり、②設計や安全評価の前提条件の確認の場合は、“モニタリング結果が、設計や安全評価の前提条件を満足していること”となる。

図 2.3.5-3 JAEA 統合化データフローにおけるモニタリングの適用例（[35]に加筆）
調査・解析手法

(1) 水理特性データの取得（場の理解）
(2) 水理地質構造モデルの構築（場のモデル化）
(3) 地下水流動解析（数値解析）
(4) 長期観測との比較によるモデルの検証
（モニタリング結果の反映先）

判断基準：モニタリング結果が、予測範囲に入っている。

図 2.3.5-4 数値解析による予測結果と長期観測との比較によるモデルの検証（[36]に加筆）

設計の前提条件（例）
→ 緩衝材の温度100℃以下
（地下特性施設Ⅰにて計測）

安全評価の前提条件（例）
→ 地下水が還元性であること
（処分場及びその近傍にて計測）

判断基準：モニタリング結果が、設計や安全評価の前提条件を満足している。

図 2.3.5-5 地層処分における設計と安全評価の前提条件（例）（[37]に加筆）
2.3.6 閉鎖時の意思決定におけるモニタリング計画検討方法

(1) モニタリング計画の検討における考慮事項

“現在の状況において閉鎖することが妥当である。”ことが真であるための論理構造は、セーフティケースの考え方に基づき、トップダウンで展開されるものである。ここではボトムアップの観点で、エビデンスとして適用可能なモニタリングの計画検討に向け、モニタリング項目の選定方法及びモニタリング結果の判断基準の考え方を示す。

モニタリング計画としては、モニタリング項目とそのモニタリング方法、及びそのモニタリング結果の判断基準を設定する必要がある。このモニタリング計画の検討においては、まず、「定義した“閉鎖時の意思決定における地層処分モニタリングの制約条件（前 2.3.4 篇(3)項参照)”を満足すること」が重要であり、そして技術的観点で実施可能なモニタリング項目であること（要求事項を満足するモニタリング（計測）手法があること）、かつ実施する意義があるものであること（ある一定期間のモニタリング結果が主命題の判断に有効であること）が必要となる。

モニタリング結果の判断基準に関し、“場の理解”については閉鎖時の意思決定の前段階において、基本的に整合が取れるまで場の理解を進めることにより対応することになるため、ここでは、結果の妥当性をサポートするエビデンスになる“場の確認”に着目して検討した。

(2) モニタリング項目の選定方法

前(1)項示した考慮事項を踏まえ、構築したモニタリング項目の選定方法を図 2.3.6-1 に示す。モニタリング項目の選定は、先ず論理構造に基づき“閉鎖時の意思決定における地層処分モニタリングの制約条件”を満足するモニタリング項目の抽出を行う。そして、2 段階の選定基準に基づき適用可能なモニタリング項目を抽出することとなる。選定基準に適合しない場合は、
モニタリング項目の見直しを行うこととなる。

1. 段目の選定基準は「要求事項（環境条件や測定期間、データへのアクセス方法等）を満足するモニタリング（計測）手法があるか？」であり、これを満足した場合は満足した手法がモニタリング方法となる。2. 段目の選定基準は「ある一定期間のモニタリング結果が主命題の判断に有効か？」であり、これも満足した場合はモニタリング項目となり、その選定基準がモニタリング結果の判断基準に寄与することとなる。ここでの“ある一定期間”とは計測手法の寿命やモニタリング項目の挙動（例えばピークの時期まで）により決定される期間である。

図 2.3.6-1 モニタリング項目の選定方法

(3) 閉鎖時の意思決定におけるモニタリング結果の判断基準

閉鎖時の意思決定におけるモニタリング結果の判断基準は、結果の妥当性として考えられる“場の確認”に関連するものとして、具体的には①数値解析による予測値との比較に加え、②設計や安全評価の前提条件の確認がある。そのため、判断基準としても、基準①数値解析による予測値との比較に加え、基準②設計や安全評価の前提条件の確認が考えられる。

上記した各基準の考え方を緩衝材中の温度計測を対象に示すと、図 2.3.6-2 に示すように基準①では設計時の解析結果の妥当性を確認することであり、判断基準としては解析結果に基づく許容範囲であることの確認となる。また、基準②では設計上の仮定である温度との比較となる。
図 2.3.6-2 緩衝材の温度を対象とした適用イメージ

上記した考え方を基に、モニタリング結果の判断基準を整理すると図 2.3.6-3 に示すようになる。先ずモニタリング結果の品質管理を行い、基準①での判断となる。基準①を満足した場合、このエビデンスは主命題を支持することとなる。もし、基準①を満足しない場合は、基準②での判断となり、基準②を満足できた場合、このエビデンスは主命題を支持する証拠となる。ここで、基準②も満足しない場合、このエビデンスは主命題を不支持することとなるが、最終判断は論理構造全体による総合的判断となる。ここでの重要なことは論理構造の展開方法（モニタリングに依存しない論理構造）と仕方であり、例えば、基準②を満足していないても、主命題に影響が少ない展開方法を考慮すべきである。

この判断基準はバックグラウンドとの比較など、バックグラウンドの計測などを要求することとなる。つまり、閉鎖時の意思決定におけるモニタリングの検討は前段階のモニタリング（例えば、ベースラインの計測）に関与することとなる。
2.3.7 モニタリングを実施することによる他への制約

(1) 調査段階のボーリング孔を活用した天然パリアのモニタリングに関する留意事項

モニタリングの実施が次段階以降の制約事項に関係することとしては、前 2.3.4 節(1)項で示したように、緩衝材の中のケーブル沿いやボーリング孔沿いにおいて潜在的水みちが形成されることが考えられる。そのため、本調査では関連時の意思決定における地層処分モニタリングの制約条件を定義し、特に人工パリアにおいて潜在的水みちの形成を防ぐ方策をたてている。ここでは特に天然パリアのモニタリングに関する留意事項の例として、これまで留意してこなかった処分場の設計・建設に影響を与える可能性に関して、SKB 社の事例を示して示す。

(2) 地質環境モニタリングが施設レイアウトに与える影響

地質環境モニタリングが施設レイアウトに与える影響として、SKB 社が地層処分場の設計及び適切なサイト選定を目的として、科学的な研究を行うために建設した、エスポ岩盤研究所での事例を示す。エスポ岩盤研究所はオーストリア自治体のエスポ島に建設され、その地下部分は、スパイラル状の斜坑が深さ約 460m まで達しており、坑道の総延長は約 3,600m、地下約 220m と約 420m に主な実験場がある（図 2.3.7-1 参照）。エスポ岩盤研究所は 1991 年の 9月に建設の途中で図 2.3.7-2 に示すように施設レイアウトを変更している。このような変更が生じた理由はトンネルがモニタリングを実施しているボーリング孔 KBH02 に当たたり、モニタリングを優先したためである [27][28]。
図 2.3.7-1 ロブ岩盤研究所のスパイラル状の斜坑の鳥瞰図[27]

図 2.3.7-2 ロブ岩盤研究所における計画時と施工後のレイアウトの違い[27]

このように地層処分に係わるモニタリングにおいては、モニタリングの実施が最優先事項となる場合もあり、モニタリングを計画するに当たっては、様々な観点で次段階以降に与える影響を考慮しておく必要がある。また、この事例を踏まえると、モニタリングの実施においては終了させる基準を事前に設けることも重要となる。
2.3.8 地中無線通信技術の適用による閉鎖時の意思決定における地層処分モニタリングの制約条件に与える影響

(1) 地中無線通信技術の概要
地中無線通信技術は伝送ケーブルが不要なため、ケーブルの破断等を防ぐための養生が必要になり、施工効率が向上するため、土木分野において着目される新技術である。地層処分においてはケーブルが存在すると一般的の土木工事の課題に加え、ケーブル周辺に放射性核種の移行経路となる潜在的水準が形成され、処分場のバリア性能を低下させる可能性があるという課題が残されているため、その解決に向けた技術開発が現在進められている[29][30]。

この地中無線通信技術では、地盤や海水など導電率の大きい媒質の中の減衰特性を抑えるため、ラジオ・テレビ放送や携帯電話など一般の気中での無線通信技術で利用されている数 MHz 〜数 GHz の範囲の周波数をもつ電波（電磁波）ではなく、数 kHz 以下の周波数の低い電磁波を適用している。最近では φ 5cm × h 13cm に小型化された地中無線伝送装置（温度センサ内蔵）が開発されている（図 2.3.8-1 参照）。また、高密度で密実な施工が可能であるベントナイトの吹き付け施工技術[31]と地中無線通信技術を組み合わせることにより、前 2.3.4 節(3)項で示した課題（緩衝材自体がゆるむ、及び不十分な締め固め）の解決が可能となる。詳細は後述する 4.3.6 項参照のこと。

![小型送信器プロトタイプ](image)

図 2.3.8-1 小型化地中無線通信装置

(2) 地中無線通信技術が閉鎖時の意思決定における地層処分モニタリングの制約条件に与える影響
地中無線通信技術にはケーブルが不要であるというメリットがあるが、それに伴う伝送距離が限られ、伝送速度が遅く、かつ機器の寿命に加えバッテリーの寿命も考慮する必要があることなど、デメリットも有している。そのため、地中無線通信技術を適用しても前 2.3.4 節(3)項で示した閉鎖時の意思決定における地層処分モニタリングの制約条件を根幹的に変えるだけの可能性を有している訳ではないが、前 2.3.5 節(2)項で示した論理構造をサポートするエビデンスを増やす観点で、操業時の坑道埋め戻し後や閉鎖後の限られた期間に限定されるが、「モニタリングの行為がバリアの機能や性能を損なってはいけない。」ことを維持しつつ、例えば図 2.3.8-2 と図 2.3.8-3 に示すようなモニタリングを別途実施することが可能となる。詳細は後述
4.2.3 参観のこと。

図 2.3.8-2 地下調査施設 I（模擬廃棄体）における閉鎖後のモニタリング
（地中無線通信技術を活用した場合）

図 2.3.8-3 処分施設における閉鎖後のモニタリング（地中無線通信技術を活用した場合）
2.4 モニタリング項目の抽出に関する検討

2.4.1 閉鎖措置に資するモニタリング項目の抽出に関する検討の考え方

(1) 検討方針

ここでは“モニタリングのあり方”検討の一環として実施する“閉鎖措置に資するモニタリング”について、現行の安全規制内容から閉鎖措置の考え方を整理し、閉鎖措置時においてモニタリングとなる可能性のあるアクション及びその場合に想定される項目についての抽出を試みた。

なお、“モニタリングのあり方”検討の一環として実施する“閉鎖措置に資するモニタリング”については、前回 2.3.3-1 に示すとおり、閉鎖の判断に資するために“地下施設の閉鎖”以前に想定されるモニタリングの抽出を目的としていることから、“地下施設の閉鎖”以降に実施される可能性があるモニタリングについては検討範囲外とする。ただし、閉鎖後のモニタリング項目については閉鎖時の判断に活用されたモニタリングが一部継続される可能性が高いと考えられるため、本検討は閉鎖後のモニタリングに資する情報にもなる。また、現行法令範囲外であるが実際には事業者が自主的に実施する可能性がある環境モニタリング5についても今後の課題とし、詳細な検討は行わないこととした。

(2) 閉鎖要件を踏まえたモニタリング項目の抽出

1) 閉鎖措置に係わる安全規制

前項 2.2.2 に示した平成１年 6 月に改正された“核燃料物質、核燃料物質及び原子炉の規制に関する法律”（炉規法）[9]は、これまでの低レベル放射性廃棄物（LLW）処分事業に加え、HLW 及び TRU を対象とする地層処分についても第一種廃棄物埋設事業として規制の対象とされた。地層処分を対象とするにあたり、改正及び新規に条文として加えられた内容は次のとおりである（前回 2.2.2-1 参照）。

- 設計及び工事の方法の認可（第五十一条の七）
- 使用前検査（第五十一条の八）
- 核物質防護検査（第五十一条の十六・三十三）
- 施設定期検査（第五十一条の十）
- 閉鎖措置計画認可・確認（第五十一条の二十四の二）

炉規法に改正・追加された規定のうち、地層処分特有であり、新規に追加された項目として“閉鎖措置計画認可・確認”がある。ここでは、次の規定がなされている。

5 現在、環境省を中心に地下開發事业にも環境影響評価法の枠を拡大する検討は進められているものの、現時点では地層処分場は対象事業ではない。また将来サイトが決定した段階で地方自治体の環境影響評価法の対処となる可能性もある。

2-33
（坑道の閉鎖に伴う措置）

第五十一条の二十四の二　第一種廃棄物埋設事業者は、坑道を閉鎖しようとするときは、あらかじめ、経済産業省令で定めるところにより、当該坑道について、坑道の埋戻し及び坑口の閉塞その他の経済産業省令で定める措置（以下「閉鎖措置」という。）に関する計画（以下「閉鎖措置計画」という。）を定め、経済産業大臣の認可を受けなければならない。

2　第一種廃棄物埋設事業者は、経済産業省令で定めるところにより、その講じた閉鎖措置が前項の認可を受けた閉鎖措置計画（次項において準用する第十二条の六第三項又は第五項の規定による変更の認可又は届出があったときは、その変更後のもの）に従って行われていることについて、経済産業省令で定める坑道の閉鎖の工程ごとに、経済産業大臣が行う確認を受けなければならない。

3　第十二条の六第三項から第七項までの規定は、第一種廃棄物埋設事業者の閉鎖措置について準用する。この場合において、これらの規定中「廃止措置計画」とあるのは「閉鎖措置計画」と読み替えるほか、同条第三項中「前項」とあるのは「第五十一条の二十四の二第一項」と、同条第四項中「前二項」とあるのは「第五十一条の二十四の二第一項及び前項」と、同条第五項及び第六項中「第二項」とあるのは「第五十一条の二十四の二第一項」と読み替えるものとする。

※法第十二条の六の読み替え

第十二条の六

3　製鉄事業者は、前項（⇒第五十一条の二十四の二第一項）の認可を受けた廃止措置計画（⇒閉鎖措置計画）を変更しようとするときは、経済産業省令で定めるところにより、経済産業大臣の認可を受けなければならない。ただし、経済産業省令で定める軽微な変更をしようとするときは、この限りでない。

4　経済産業大臣は、前二項（⇒第五十一条の二十四の二第一項及び前項）の認可の申請に係る廃止措置計画（⇒閉鎖措置計画）が経済産業省令で定める基準に適合していると認めるときは、前二項（⇒第五十一条の二十四の二第一項及び前項）の認可をしなければならない。

5　製鉄事業者は、前二項（⇒第五十一条の二十四の二第一項）の認可を受けた廃止措置計画（⇒閉鎖措置計画）について第三項ただし書の経済産業省令で定める軽微な変更をしたときは、その旨を経済産業大臣に届け出なければならない。

6　製鉄事業者は、前二項（⇒第五十一条の二十四の二第一項）の認可を受けた廃止措置計画（⇒閉鎖措置計画）（第三項又は前項の規定による変更の認可又は届出があったときは、その変更後のものに従って廃止措置を講じなければならない。

7　経済産業大臣は、前項の規定に違反して廃止措置を講じた製鉄事業者に対し、核燃料物質又は核燃料物質によって汚染された物による災害を防止するために必要な措置を命ずることができる。

2-34
表 2.4.1-1 閉鎖措置に係わる規制内容

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(坑道の閉鎖に伴う措置)</td>
<td>(閉鎖措置として行うべき事項)</td>
<td>-</td>
</tr>
<tr>
<td>第五十四条の二第四条 廃棄物埋設事業者は、坑道を閉鎖しようとするときは、あらかじめ、経済産業省令で定めるところにより、当該坑道について、坑道の埋没及び坑口の閉塞その他の経済産業省令で定める措置（以下「閉鎖措置」という。）に関する計画（以下「閉鎖措置計画」という。）を定め、経済産業大臣の認可を受けなければならない。</td>
<td>第七十七条 法第五十四条の二第四条の二第一項の経済産業省令で定める措置は、坑道の埋没及び坑口の閉塞その他の経済産業省令で定める措置（以下「閉鎖措置」という。）に関する計画（以下「閉鎖措置計画」という。）を定め、経済産業大臣の認可を受けなければならない。</td>
<td></td>
</tr>
<tr>
<td>(坑道の閉鎖に伴う措置)</td>
<td>(坑道の閉鎖の工程)</td>
<td>-</td>
</tr>
<tr>
<td>第五十四条の二第四条（略）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 第一種廃棄物埋設事業者は、経済産業省令で定めるところにより、その講じた閉鎖措置が前項の認可を受けた閉鎖措置計画（次項において準用する第十二条の六第三項又は第五項の規定による変更の認可又は届出があったときは、その変更後のもの）に従って行われていることについて、経済産業省令で定める坑道の閉鎖の工程ごとに、経済産業大臣が行う確認を受けなければならない。</td>
<td>第七十八条 法第五十四条の二第四条の二第二項に規定する経済産業省令で定める坑道の閉鎖の工程は、同条第一項又は同条第三項において準用する法第十二条の六第三項の認可に係る申請書に記載された閉鎖措置の工程とする。</td>
<td></td>
</tr>
<tr>
<td>(坑道の閉鎖に伴う措置)</td>
<td>(閉鎖措置計画の認可の申請)</td>
<td>-</td>
</tr>
<tr>
<td>第五十四条の二第四条（略）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 前項の申請書には、次の各号に掲げる書類又は図面を添付しなければならない。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>一 氏名又は名称及び住所並びに法人にあっては、その代表者の氏名</td>
<td></td>
<td></td>
</tr>
<tr>
<td>二 閉鎖措置に係る事業所の名称及び所在地</td>
<td></td>
<td></td>
</tr>
<tr>
<td>三 閉鎖措置の対象とする坑道</td>
<td></td>
<td></td>
</tr>
<tr>
<td>四 閉鎖措置の方法</td>
<td></td>
<td></td>
</tr>
<tr>
<td>五 閉鎖措置の工程</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2-35
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>三．第一種廃棄物施設の廃棄物物理設置の定期的な評価等の結果に関する調査書</td>
<td>四．閉鎖措置に伴う放射線被ばくの管理に関する調査書</td>
<td>（廃棄物物理設施の定期的な評価等）</td>
</tr>
<tr>
<td>五．閉鎖措置中の過失、機械又は装置の故障、浸水、地震、火災等があった場合に発生すると想定される廃棄物施設の事故の種類、程度、影響等に関する調査書</td>
<td></td>
<td>規則第五十八条 法第五十一条の十六第一項の規定により、第一種廃棄物施設事業者は、法第五十条の二第二項の許可を受けた日から十年を超えない期間ごとに、廃棄物施設地について、次の各号に掲げる措置を講じなければならない。</td>
</tr>
<tr>
<td>六．閉鎖措置期間中に機能を維持すべき廃棄物施設及びその性能並びにその性能を維持すべき期間に関する調査書</td>
<td>八．閉鎖措置の実施体制に関する調査書</td>
<td>一．最新の技術的知見を踏まえて、核燃料物質等による放射線の被ばく管理に関する調査を行うこと。</td>
</tr>
<tr>
<td>七．閉鎖措置に要する資金の額及びその調達計画に関する調査書</td>
<td>九．品質保証計画に関する調査書</td>
<td>二．前項の評価の結果を踏まえて、廃棄物施設の健全のために必要な措置を講じること。</td>
</tr>
<tr>
<td>十．前各号に掲げるもののほか、経済産業大臣が必要とする調査書又は図面</td>
<td>三．第一項の申請書の提出部数は正本一通、写し一通とする。</td>
<td>二．第一種廃棄物施設事業者は、前項に規定するほか、法第五十一条の二十四の二第二項に規定する閉鎖措置計画又は法第五十一条の二十五第二項に規定する廃止措置計画を定めようとするときは、廃棄物施設地について、前各号に掲げる措置を講じなければならない。</td>
</tr>
<tr>
<td>第十二条の六（略）</td>
<td>三．第一種廃棄物施設事業者は、第五十条の二十四の二第二項の認可を受けた閉鎖措置計画を変更しようとするときは、経済産業省令で定める軽微な変更をしようとするときは、この限りでない。</td>
<td></td>
</tr>
<tr>
<td>三．変更に係る申請書の提出期日等</td>
<td>三．変更に係る申請書の提出期日等</td>
<td>（閉鎖措置計画の変更の認可の申請）</td>
</tr>
<tr>
<td>四．変更の理由</td>
<td>四．変更の理由</td>
<td>規則第七十三条 法第五十条の二十四の二第二項の規定により閉鎖措置に関する計画（以下「閉鎖措置計画」という。）について認可を受けるようとする者、次の各号に掲げる事項について閉鎖措置計画を定め、これを記載した申請書を経済産業大臣に提出しなければならない。 (略)</td>
</tr>
<tr>
<td>二．前項の申請書には前条第二項各号に掲げる事項のうち変更に係るものについて、説明した資料を添付しなければならない。</td>
<td>二．閉鎖措置の対象とする坑道</td>
<td></td>
</tr>
<tr>
<td>三．第一項の申請書の提出部数は正本一通、写し一通とする。</td>
<td>四．閉鎖措置の方法</td>
<td>四．閉鎖措置の方法</td>
</tr>
<tr>
<td></td>
<td>五．閉鎖措置の工程</td>
<td>五．閉鎖措置の工程</td>
</tr>
</tbody>
</table>

2-36
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>第十二条の六 (略) 3 第一種廃棄物理設事業者は、第十五条の二第四の二第一項の認可を受けた閉鎖措置計画を変更しようとするときは、経済産業省令で定めるところにより、経済産業大臣の認可を受けなければならない。ただし、経済産業省令で定める軽微な変更をしようとするときは、この限りでない。</td>
<td>(閉鎖措置計画に係る軽微な変更) 第七十五条 法第五十一条の二十四の二第三項において準用する法第十二条の六第三項ただし書に規定する経済産業省令で定める軽微な変更は、閉鎖措置の実施に伴う災害の防止上支障のない変更とする。2 法第五十一条の二十四の二第一項の規定による認可を受けた者は、前項の変更をしたときは、その変更の日から三十日以内に、その旨を経済産業大臣に届け出なければならない。</td>
<td>1 (閉鎖措置の確認の申請) 第七十六条 法第五十一条の二十四の二第二項の規定により、坑道の閉鎖の工程ごとに経済産業大臣が行う確認を受けようとする者、次の各号に掲げる事項を記載した申請書を経済産業大臣に提出しなければならない。一 氏名又は名称及び住所並びに法人にあっては、その代表者 の氏名 二 閉鎖措置に係る事業所の名稱及び所在地 三 閉鎖措置の対象とする坑道 四 閉鎖措置の実施状況 五 確認の対象とする坑道の閉鎖の工程 2 前項の申請書には、次に掲げる事項を記載した書類を添付しなければならない。一 閉鎖措置の実施後の地形、地質及び地下水流の状況に関する説明書 二 前号に掲げる事項のほか、経済産業大臣が必要と認める事項 3 第一項の申請書の提出部数は、正本一通、写し一通とする。</td>
</tr>
<tr>
<td>(坑道の閉鎖に伴う措置) 第五十四条の二十四の二 (略) 2 第一種廃棄物理設事業者は、経済産業省令で定めるとおり、その講じた閉鎖措置が前項の認可を受けた閉鎖措置計画（次項において準用する第十二条の六第三項又は第五項の規定による変更の認可又は届出があつたときは、その変更後のもの）に従って行われていることについて、経済産業省令で定める坑道の閉鎖の工程ごとに、経済産業大臣が行う確認を受けなければならない。</td>
<td>1 (閉鎖措置計画の認可の基準) 第七十七条 法第五十一条の二十四の二第三項において準用する法第十二条の六第四項に規定する経済産業省令で定める基準は、次の各号に掲げるとおりとする。一 閉鎖措置の実施が許可申請書等に記載したところによるものであること。二 閉鎖措置の実施が核燃料物質等による災害の防止上適切なものであること。</td>
<td>注記1 法第五十一条の二十四の二第三項において準用する法第十二条の六は読替え後の条文を記載 注記2 表中の二重下線の規定内容は、右欄の一重下線の規定内容に対応する。</td>
</tr>
</tbody>
</table>
2) 閉鎖措置に係る想定されるアクション

安全規制に記載された内容から想定される事業者と国（経済産業大臣）の閉鎖措置時のアクションは次の通りである。なお、次に示すとおり、安全規制側から、閉鎖措置にモニタリングが直接的な要件になることはない。

a. 事業者による閉鎖措置計画の作成及び経済産業大臣への提出（申請）

第一種埋設事業者（以下、事業者）が、坑道を閉鎖する場合、予め、当該坑道に関して、(1)坑道の埋戻し、(2)坑口の閉塞、(3)地下に設置した廃棄物埋設施設の解体・撤去（規則第十七条）に関する計画を定め、経済産業大臣に提出する申請書を作成し、経済産業大臣へ提出する。申請書本文に記載すべき内容（規則第十七条）は次のとおりである。

① 氏名又は名称及び住所並びに法人にあっては、その代表者の氏名
② 閉鎖措置に係る事業所の名称及び所在地
③ 閉鎖措置の対象とする坑道
④ 閉鎖措置の方法
⑤ 閉鎖措置の工程

また申請書には次の書類及び図面を添付（規則第十七条）することが規定されている。

① 廃棄物埋設施地及び坑道を設置した場所における地形、地質及び地下水の状況を明らかにする書類及び図面
② 閉鎖措置の対象とする坑道の図面及び閉鎖措置に係る工事作業区域図
③ 第五十八条の規定による廃棄物埋設施設の定期的な評価等の結果に関する説明書
④ 閉鎖措置に伴う放射線被ぼくの管理に関する説明書
⑤ 閉鎖措置中の中止、機械又は装置の故障、浸水、地震、火災等があった場合に発生すると想定される廃棄物埋設施設の事故の種類、程度、影響等に関する説明書
⑥ 閉鎖措置期間中に機能を維持すべき廃棄物埋設施設及びその性能並びにその性能を維持すべき期間に関する説明書
⑦ 閉鎖措置に要する資金の額及びその調達計画に関する説明書
⑧ 閉鎖措置の実施体制に関する説明書
⑨ 品質保証計画に関する説明書
⑩ 前各号に掲げるもののほか、経済産業大臣が必要と認める書類又は図面

なお、法第五十一条の二十四の二第二項に定める「経済産業省令で定める坑道の閉鎖の工程」とは、規則第十七条において、「申請書に記載された閉鎖の工程」としている。よって、事業者が定め申請を行い、経済産業大臣が認可する「閉鎖措置の工程」が「経済産業省令で定める坑道の閉鎖の工程」となる。

また、上記書類⑫に記載された「第五十八条の規定」とは、法第五十一条の十六の「保
安及び特定核燃料物質の防護のために講ずべき措置の一環として実施が規定される「廃棄物設施の定期的な評価等（定期安全レビュー）」であり、次のアクションが求められている（規則第五十八条）。

① 最新の技術的知見を踏まえた核燃料物質等による放射線の被ばく管理に関する評価
② 評価結果を踏まえた廃棄物設施の保全のための必要な措置

b. 経済産業大臣による閉鎖措置計画の認可

事業者により申請された閉鎖措置計画に関して、経済産業大臣は、次の基準に適合している場合に閉鎖措置の認可が行われる。

① 閉鎖措置の実施が許可申請書等に記載したところによるものであること。
② 閉鎖措置の実施が核燃料物質等による災害の防止上適切なものであること。

c. 閉鎖措置計画の変更（申請及び確認）

事業者が閉鎖措置計画を変更する場合には、変更の認可のため、次の内容を申請書本文とした書類を提出する（規則第七十四条）。

① 氏名又は名称及び住所並びに法人にあっては、その代表者の氏名
② 閉鎖措置に係る事業所の名称及び所在地
③ 閉鎖措置の対象とする坑道
④ 閉鎖措置の方法
⑤ 閉鎖措置の工程
⑥ 変更の理由
⑦ また次のうち変更に関する説明書を添付する必要がある（規則第七十四条／第
七十三条）。
⑧ 廃棄物埋設地及び坑道を設置した場所における地形、地質及び地下水の状況を
明らかにする書類及び図面
⑨ 閉鎖措置の対象とする坑道の図面及び閉鎖措置に係る工事作業区域図
⑩ 第五十八条の規定による廃棄物設施設の定期的な評価等の結果に関する説
明書
⑪ 閉鎖措置に伴う放射線被ばくの管理に関する説明書
⑫ 閉鎖措置中の過失、機械又は装置の故障、浸水、地震、火災等があった場合に
発生すると想定される廃棄物設施設の事故の種類、程度、影響等に関する説
明書
⑬ 閉鎖措置期間中に機能を維持すべき廃棄物設施設及びその性能並びにその
性能を維持すべき期間に関する説明書
⑭ 閉鎖措置に要する資金の額及びその調達計画に関する説明書
⑮ 閉鎖措置の実施体制に関する説明書
⑯ 品質保証計画に関する説明書
⑰ 前各号に掲げるもののほか、経済産業大臣が必要と認める書類又は図面

ただし、この変更が閉鎖措置の実施に伴う災害の防止上支障のない変更である場合には、
上記の申請ではなく、変更の日から 30 日以内の届出を行う（法第十二条の六第三項及び規
d. 事業者による閉鎖措置の実施及び経済産業大臣による確認の申請

経済産業大臣により、閉鎖措置の認可がなされた事業者は申請書に記載された坑道の閉
鎖の工程ごとに閉鎖措置を実施していることを経済産業大臣に確認を受けるための申請を
行う。

① 事業者が作成する申請書本文に記載すべき内容（規則第七十六条）は次のとお
りである。
② 氏名又は名称及び住所並びに法人にあっては、その代表者の氏名
③ 閉鎖措置に係る事業所の名称及び所在地
④ 閉鎖措置の対象とする坑道
⑤ 閉鎖措置の実施状況
⑥ 確認の対象とする坑道の閉鎖の工程

また申請書には、次の書類を添付（規則第七十六条）することが規定されている。

① 閉鎖措置の実施後の地形、地質及び地下水の状況に関する説明書
② 前号に掲げる事項のほか、経済産業大臣が必要と認める事項

e. 経済産業大臣による閉鎖措置の確認

経済産業大臣は、事業者より提出された確認の申請に基づき、閉鎖措置の確認を行う（た
だし閉鎖措置の確認の基準については法制化されておらず、将来策定される技術基準に基
に基づき実施されると想定される）。

なお、法第五十一条の十六（核物質防護措置）の廃棄物埋設施設の保全の措置が必要な
範囲として、施行令第三十六条の二で「地表から深さ五メートル以上の地下に設置され
た廃棄物埋設施設（当該廃棄物埋設施設のすべての坑道について坑道の埋戻し及び坑口の
閉塞を行ったものを除く。）において防護対象特定核燃料物質を取り扱う場合」と規定して
おり、閉鎖措置が完了した廃棄物埋設施設に関しては計画申請時のような保全のための措
置に関連する内容は対象外となる。

図 2.4.1-1 想定される埋設施設[11]

地層処分の廃棄物埋設施設は、事業実施主体の今後の構想により具体化されるものの、これまでの国内外で
の検討状況を踏まえれば、施設は主として、廃棄物の受け入れや検査等を行う地上施設と廃棄物を埋設する
廃棄物埋設地で構成され、これらをアクセス坑道によって連絡することが想定される。
3）閉鎖措置計画申請に資するモニタリングのあり方（案）

前述にて整理した法規制における閉鎖措置計画申請時に必要なアクションから、モニタリングが関わると考えられる内容の抽出を試みた。

表 2.4.1-2 に閉鎖措置計画申請時のアクションから想定されるモニタリング抽出の試行結果を示す。ただし、前2.3.2項(1)に示したとおり、本試行は、“地下施設の閉鎖”の判断に資するために“処分場の操業”段階以前に想定されるモニタリングの抽出を目的としていることから、“地下施設の閉鎖”確認段階及びそれ以降に実施される可能性があるモニタリングについては検討範囲外とする。

a. 閉鎖措置計画申請時

表 2.4.1-2 の試行結果より、閉鎖措置計画申請時に提出される申請書のうち、次の内容の一部が本検討のモニタリングに関わる可能性があると考えた。

① 廃棄物埋設地及び坑道を設置した場所における地形、地質及び地下水の状況把握のため
② 廃棄物埋設施設の定期的な評価等に資するため（法第五十条の十六／規則第五十八条）
③ 核燃料物質等による放射線の被ばく管理に関する評価
④ 評価結果を踏まえた廃棄物埋設施設の保全のための必要な措置
⑤ 閉鎖措置に伴う放射線被ばく管理方法の一部として
⑥ 閉鎖措置中の遺失、機械又は装置の故障、浸水、地震、火災等の検知のため
⑦ 閉鎖措置期間中に機能を維持すべき廃棄物埋設施設及びその性能並びにその性能を維持すべき期間に関する説明書

b. 閉鎖措置計画変更申請時

閉鎖措置計画変更申請時に提出される申請書は、計画申請時のうち変更する内容に関して上記と同様の計測・モニタリングが関わる可能性がある。
<table>
<thead>
<tr>
<th>法令(9)に記された閉鎖措置計画申請書（添付書類）の内容</th>
<th>申請書内容から想定される記載内容/アクション</th>
<th>想定されるモニタリングの関与</th>
</tr>
</thead>
<tbody>
<tr>
<td>①廃棄物収集地域及び道路を設置した場所における地形、地質及び地下水の状況を明らかにする書類及び図面</td>
<td>閉鎖措置によって地形及び地質及び地下水環境に有り）</td>
<td>サイト開発により変動する可能性がある地形、地質及び地下水のデータに関しては建設機器の移設状態から閉鎖前の変動を受けた状態若しくは新規採用のためのデータ取得が必要であり、これらの取得行為をモニタリングと呼ぶことが出来る。</td>
</tr>
<tr>
<td>②廃棄物収集施設の定める変数の結果に関する説明書(法第五十条の改変/改変第五十条)</td>
<td>事業許可申請で実施した安全評価に相当、定期的な安全評価により不確実性の低減やモニタリングの高度化がなされていく評価システム、又は設施ごとに取扱・蓄積されていくデータを利用した安全評価結果が記載される。また安全評価結果を踏まえた工学的な対策についても記載される。</td>
<td>安全評価結果を評価に使用したモデルやデータが妥当であるかを示すために、連続的あるいは定性的なデータを利用する場合、その計測行為はモニタリングであるといえる。また、安全評価に使用するパラメータのうちの数分は、場合によっては、モニタリングで得られたデータを利用する可能性もある。ただし、申請書に記載する内容の一部にモニタリングデータを利用する場合、評価期間又は生産の計画的・計画的な観点から、現在の計測技術の性能に限界があり、可視エリアでの環境豊か及びその周辺での計測結果を利用することは多くの課題を有する。このため、これらのデータは URLや事前への地下観測施設での計測結果を以て確認することが現実的である。</td>
</tr>
<tr>
<td>③閉鎖措置に伴う放射線被ばくの管理に関する説明書</td>
<td>閉鎖措置の工程による公衆・作業者への被ばく防護のための措置が記載される。</td>
<td>閉鎖措置時の被ばく防護措置を行う際、廃棄物定置前からのバックグランドマップを計測する行為をモニタリングであるといえる。</td>
</tr>
<tr>
<td>④閉鎖措置中の過失、機械又は装置の故障、浸水、地震、火災等があった場合に発生すると想定される廃棄物収集施設の事故の種類、程度、影響等に関する説明書</td>
<td>閉鎖措置中に想定される事故事例とその影響、事故の対策法が記載される。</td>
<td>想定される事故のよう、異常を検知するためバックワームレジの必要性（浸水、ガス、坑道の変形など）について、連続的にデータを取得する行為はモニタリングであるといえる。</td>
</tr>
<tr>
<td>⑤閉鎖措置期間中に機能を維持すべき廃棄物収集施設及びその性能並びにその性能を維持すべき期間に関する説明書</td>
<td>閉鎖措置期間中に機能を維持すべき処分場構成要因としては、例えば平地（健全性）、パリア（劣化）が想定される。これらが閉鎖措置期間中に、維持しうる可能性がある数値、サイト開発以来の取扱データによる評価・講じられる工学的な対策等により説明されると考えられる。さらに閉鎖措置工法から維持すべき期間についても記載される。</td>
<td>閉鎖措置期間中に機能を維持することが可能かどうかについては、評価や工学的な対策で示されることが考えられる。モニタリングは、これらの評価や工学的な対策が妥当であるかを確認する場合に利用される可能性がある。ただし、計測対象によって、これらの確認は現状の技術レベルでは多くの課題を含んでいる場合もあり、その場合には、URLや事前の地下観測施設での計測結果を以て確認することが現実的である。なお、閉鎖措置期間中に実際の確認が行えない場合は対象ではない。</td>
</tr>
</tbody>
</table>

注1: 閉鎖措置計画変更申請書については変更内容に応じて記載したモニタリングが対象とする。
注2: 本条の安全規制内容及び閉鎖措置計画申請書に必要となる可能性のあるモニタリングについて示したが、これ以外に閉鎖措置によって大気、土壌、水環境に有害なマインジ異常を及ぼす可能性を示すために環境モニタリング結果の変動が視認される可能性もある。
4) 閉鎖措置段階において適用可能なモニタリング項目

前(2)項で整理した閉鎖措置計画申請時のアクションから想定されるモニタリングより、計測対象となる可能性がある項目を網羅的に抽出した。なお、抽出に当たっての前提や仮定は次のとおりである。

a. 計測時期

計測時期は、モニタリング項目抽出に際して、その計測方法、特に計測対象へのアクセス性及びアクセス性に伴うデータの精度と関連する。例えば、同じ地質環境パラメータを計測する場合でも、処分場開発初期においては、地表踏査により間接的に行われるが、処分場開発の進展に伴いポーリング孔や坑道からより直接的な計測が可能となる。

検討にあたり対象となる計測時期の区分に関しては、NUMO の“処分場の概要”[18]を考慮する。本検討の計測時期に関する考え方図2.4.1-2に示す。

図2.4.1-2 本検討範囲（計測時期に関する考え方）

本検討全体の前提となる考え方は第1章に示した通り、“閉鎖の判断に資するために“地下施設の閉鎖”以前に想定されるモニタリングの抽出を目的としていることから、“地下施設の閉鎖”以降に実施される可能性があるモニタリングについては検討範囲外とした。“地下施設の閉鎖”以前でモニタリングが関与する時期（段階・工程）は次のとおりとした。

① 概要調査

* 図2.4.1-2の通り“操業段階”と“地下施設の閉鎖”との間には“長期安全性の確認”を行うこととされている。処分場の概要では“地下施設の閉鎖”的説明として記載されているが、本検討では“閉鎖の判断”に資するモニタリングを対象としており、“長期安全性の確認”の後に閉鎖の判断が行われると考えられることから考慮すべき時期に含めている。
② 精密調査
③ 処分場の建設
④ 処分場の操業（パネル単位で展開され、下記の工程を含めるものとした）
 a. 処分坑道建設
 b. 定置（ここでは処分孔経置き方式とし、下記の詳細工程を含めるものとした）
 (a) 処分孔施工
 (b) 緩衝材定置
 (c) 廃棄体定置
 (d) 上部緩衝材定置
 c. 処分坑道埋戻し
⑤ 長期安全性の確認
b. 計測場所
計測場所については、計測時期以上にモニタリング項目抽出に関連性が高いと考えられる。検討にあたり考慮した対象となる計測場所の区分に関しては、NUMOの技術資料[19]、一般の環境影響評価での環境要素区分、既往の原発センターによる検討（地下調査施設、URL、地上施設）を参考とし、次の通りとした（図 2.4.1-3）。

![図 2.4.1-3 本検討範囲（計測場所に関する考え方）](image-url)

① 地上環境（生物圏）: 環境影響評価の区分に基づき、大気、水、土壌、生物、社会環境とした。なお、処分場から数 km 遠方にある地下水や地形・地質についても本区分に含めることとした。ただし、本検討全体の前提として環境影響評価項目については対
象外であるため、パラメータ抽出の際には考慮すべき区分ではない。

② 地下環境: 数 km²程度の地表の処分場敷地境界から、地下の処分施設が設置される数百メートル以深までの天然母岩（天然バリア）を対象とする。さらにこの天然バリアは、処分施設建設により影響を受ける可能性が大きい近傍域をニアフィールドと処分場開発により影響を受ける可能性が小さい遠方域をファーフィールドとした。なお、次の③、④及び⑤の地下施設は、同一の処分場敷地境界内の地下に建設されるため、天然バリアは共通であると仮定した。

③ 処分施設: 処分場に設置される工事構造物を対象とし、アクセス及び連絡坑道、並びに廃棄体が処置される腐分坑道を地下施設、処分坑道に定置される緩衝材、オーバーパック及びガラス固化体を人工バリアが含まれる。なお、ここで地下施設に含まれる“坑道”とは、掘削した坑道に施工される人工構造物を想定している。また、次の④及び⑤の調査を目的とした地下施設と当該処分施設とはアクセス及び連絡坑道は共通であるとした。なお、処分施設における計測については、機器寿命やサイズなどの現状機器の状況を踏まえると、特に人工バリア関連の計測については、処分性能への影響やデータ精度に対する課題が多く、現実的であるとはいいえないことから、実施しないものとした。また、処分坑道に関しては適切な品質管理体制の下で操業中に定置が実施され、即時坑道埋め戻しが実施されることとした。なお、当該環境における計測については、計測対象へのアクセス性、計測機器が与える処分場性能への影響及び計測機器の寿命を考慮することが重要となる。例えば、仮に安全評価の妥当性を判断するために閉鎖後の人工バリア計測を行う場合、評価で考慮される期間は長期であり、その間、継続的に計測を実施することが可能な現状技術はほとんどないと考えられる。また、もしも初期状態を把握することが目的であったとしても、諸外国の

不均質性はあるものの、モニタリング項目抽出という観点では影響はないと考えられる。
URL等で実施されているバリア(緩衝材)内での計測(例えばSKB社のエスポHRL)のように、配線による水みちが課題となっており、データ取得行為と処分場の安全性とのバランスを勘案すれば、施設内での計測行為を行うことは現実的ではないと考えられる。なお、処分坑道に関しても閉鎖後の有線計測は水みちの影響が懸念されるため、例えば小型のセンサ機器を使用した無線によるデータ通信や間接的な計測手法の利用が有用であると考えられる。

④ 地下調査施設Ⅰ：NUMOの“処分場の概要”[18]では、精密調査段階後半に“地下に調査のための施設を建設し、地下の特性の調査や試験(地下調査施設)”を行うことが記されている(図2.4.1-2参照)。本検討では、この地下調査施設に、スイスの「長期間監視付地層処分概念(EKRA10概念)」に含まれるパイロット施設及び試験施設の考え方(図2.4.1-5)を加味し、アクセス坑道から水理学的に独立した位置に小規模な処分パネルあるいは坑道を設置し、ヒータ付の模擬廃棄体を封入したオープンバック及び緩衝材を定置し、処分坑道をアクセス坑道閉鎖の段階まで埋め戻さず、積極的に人工バリア及びその周辺の計測を行うものとした。この役割としては、実際の処分エリアでの計測による擾乱を回避した処分場環境でのデータ取得・性能評価等の確認、あるいはスイスのように実証としての意味合いを有する。このように当該環境での計測は、処分施設と異なり、積極的に実施されることから、後述するURL(処分サイト外の環境)で有効な結果が得られた機器に関しては実際の処分環境で利用し、その結果を以って処分施設でのデータ取得の代替とすることは有意義であるといえる。なお実際の機器選定はURLでの計測に応じて行われるべきであると考えられるが、基本的にはできるだけ実際の処分施設の環境を模擬し、計測機器による擾乱影響を抑えた計測システムを構築することが必要であると考えられる。例えば無線によるデータ送信は有用であると考えられる。

⑤ 地下調査施設Ⅱ：上記④の地下調査施設Ⅰでは、処分エリアとは独立した位置に模擬廃棄体を含む人工構造物を設置するものであったのに対して、地下調査施設Ⅱでは、事業許可申請後、処分エリア内に実際廃棄体を用いて試験的な定置を行う施設を想定した。このような施設の参考例としては、例えば上記④のEKRA概念における“試験施設(図2.4.1-5)”やスウェーデンにおける全廃棄物の約10%(キャニスタ200-400体)を通常操業(regular operation)前の2〜3年間に定置する先行操業(initial operation)がある(図2.4.1-6)。ただし、これらの事例において具体的な計測項目等については明確には決まっていないことから(例えば表2.4.1-5)、本検討においては、積極的な人工バリア及びその周辺の計測は上記④の地下調査施設Ⅰで実施するとし、地下調査施設Ⅱでは上記③の処分施設と同様に積極的な計測は原則実施しない。なお、上記③の処分施設との差異としては、処分坑道を閉鎖前に開放し、坑道での監視(人工バリアへの間接的な計測、坑道内での直接計測)を実施することも可能である。当該環境の中での計測は、基本的に処分施設と同様である。

10 Entsorgungs-konzepte für radioaktive Abfälle（放射性廃棄物処分概念専門家グループ）
6. **URL**: URLは処分場サイト外に設置し、計測技術の性能確認やノウハウ蓄積のための計測を実施することとした。なお、実際の処分場サイトとは異なることから、上記②の地下の天然環境についての計測については、その方法や項目が異なる可能性がある。よって、本検討においては対象外とすることとし、人工構造物のみに着目することとした。ここでは上記④の地下調査施設Ⅰと同様に模擬廃棄体を定置し、積極的に計測が行われるものとした。

7. **地上施設**: 地上施設では、地中に埋められる人工構造物のうち、緩衝材、オーバーパック、ガラス固化体の品質管理が行われると想定し、これらの管理項目についてモニタリングが行われるとして設定した。

上記①〜⑦について、図 2.4.1-4 に想定した計測場所・部位の概要を整理するとともに、各計測場所・部位での機器選定の考え方について表 2.4.1-3 に示した。

c. 計測パラメータ

本検討で対象とするパラメータについては、既往の原環センターによるモニタリング目的とパラメータとの関連性についての検討成果に基づき技術メニューのデータとして搭載するために再分類したパラメータ区分より抽出することとした。表 2.4.1-6 に想定するパラメータ区分を示す。大分類としては、THMCRB（熱・水理、力学、化学、放射能及び微生物）、環境、天然現象、作業安全、品質及びプロセス管理である。

5) パラメータの抽出試行検討

上記の対象や考え方を踏まえ、前項②で検討した防護措置申請書に記載すべき事項に資するモニタリングパラメータの抽出試行検討を実施した。表 2.4.1-7 に想定される防護措置計画申請時に利用可能なモニタリングパラメータ（案）を示した。

![図 2.4.1-4 計測場所と各場所でのモニタリングの考え方](image-url)
<table>
<thead>
<tr>
<th>大分類名</th>
<th>中分類名</th>
<th>小分類名</th>
<th>要旨 (ビオラシシング実施の観点から)</th>
<th>機器選定の考え方</th>
</tr>
</thead>
<tbody>
<tr>
<td>地上環境</td>
<td>大気環境</td>
<td></td>
<td>[想定される計測]</td>
<td>• 制限はなと思われる</td>
</tr>
<tr>
<td>(生物圈)</td>
<td></td>
<td></td>
<td>[想定される計測]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[想定される計測]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[想定される計測]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[想定される計測]</td>
<td></td>
</tr>
<tr>
<td>大分類名</td>
<td>中分類名</td>
<td>小分類名</td>
<td>概要（モニタリング実施の観点から）</td>
<td>機器選定の考え方</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>--------------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>処分施設</td>
<td>地下施設</td>
<td>坑道 (アクセス+連絡)</td>
<td>各施設で実施されるモニタリング実施の観点から</td>
<td>処分施設の設定時に検討が必要とする。</td>
</tr>
<tr>
<td>処分施設</td>
<td>地下施設</td>
<td>処分坑道 (処分孔)</td>
<td>各施設で実施されるモニタリング実施の観点から</td>
<td>処分施設の設定時に検討が必要とする。</td>
</tr>
<tr>
<td>処分施設</td>
<td>人工バリア</td>
<td>[緩衝材]</td>
<td>各施設で実施されるモニタリング実施の観点から</td>
<td>処分施設の設定時に検討が必要とする。</td>
</tr>
</tbody>
</table>

- 処分施設の設定時に検討が必要とする。
<table>
<thead>
<tr>
<th>大分類名</th>
<th>中分類名</th>
<th>小分類名</th>
<th>概要（モニタリング実施の観点から）</th>
<th>機器選定の考え方</th>
</tr>
</thead>
<tbody>
<tr>
<td>処分施設</td>
<td>人工バリア</td>
<td>[オーバーパック]</td>
<td>・ URL及び地下調査施設Iで計測を実施（該当する機器はない）</td>
<td></td>
</tr>
<tr>
<td>処分施設</td>
<td>人工バリア</td>
<td>[ガラス固化材]</td>
<td>・ URL及び地下調査施設Iで計測を実施（該当する機器はない）</td>
<td></td>
</tr>
<tr>
<td>地下調査施設I (模擬廃棄体)</td>
<td>地下施設</td>
<td>処分坑道（模擬処分孔含）</td>
<td>2.4.1-4</td>
<td></td>
</tr>
<tr>
<td>地下調査施設I (模擬廃棄体)</td>
<td>人工バリア</td>
<td>緩衝材</td>
<td>2.4.1-4</td>
<td></td>
</tr>
<tr>
<td>地下調査施設I (模擬廃棄体)</td>
<td>人工バリア</td>
<td>オーバーパック</td>
<td>2.4.1-4</td>
<td></td>
</tr>
</tbody>
</table>

- 想定される計測
 - 処分坑道内の人工構造物（支保やグラウト等）を対象とした処分坑道内の計測
 - 処分孔での計測（緩衝材との境界）
 - 作業安全

- 想定される計測可能な時期
 - 地下調査施設Iが建設される詳細調査から連絡坑道無し前までの計測が可能
 - 连絡坑道無し（処分孔にない）では廃棄体定置後も計測を実施し、連絡坑道無し時に機器を回収（処
 分坑道内の無機材、処分孔内の人工バリア等を撤去し、再度埋め戻し）

- 坑道開発時
 - センサ交換が可能であるので耐長期性に関する課題は少ない
 - 地下環境による制約（耐熱、耐腐食、耐化学等）、耐水、耐圧、耐生物等の考慮が必要である。想定した処分場環境条件は表2.4.1-4参照

- 坑道無し後～機器回収まで
 - センサ交換は困難であり計測環境中での数10年程度の耐久性（動力源を含む）を考慮する必要がある
 - 地下環境による制約（耐熱、耐腐食、耐化学）、耐水、耐圧、耐生物等の考慮が必要である。想定した処分場
 環境条件は表2.4.1-4参照

- 機器による計測対象への影響（配線や電源等のサイズ）を考慮する必要がある。
<table>
<thead>
<tr>
<th>大分類名</th>
<th>中分類名</th>
<th>小分類名</th>
<th>概要（モニタリング実施の観点から）</th>
<th>機器選定の考え方</th>
</tr>
</thead>
<tbody>
<tr>
<td>地下調査施設Ⅰ (模擬廃棄体)</td>
<td>地下施設</td>
<td>処分坑道 (処分孔内)</td>
<td>検査から連絡坑道埋し前（オーバーパック撤去）までの計測が可能</td>
<td>マイクロバオを考慮する必要がある。想定した処分場環境条件は表 2.4.1-4 参照。</td>
</tr>
<tr>
<td></td>
<td>人工バリア</td>
<td>模擬廃棄体</td>
<td>【想定される計測】
・処分坑道からオーバーパック内に封入される模擬廃棄体表面の計測
【想定される計測可能な時期】
・地下調査施設Ⅰが建設され、模擬廃棄体が放置される精密検査から連絡坑道埋し前（模擬廃棄体撤去）までの計測が可能</td>
<td>センサー設置から機器回収まで
・数 10 年程度の耐久性（設置後のセンサー交換は困難・動力源を含む）を考慮する必要がある。
・地下環境による製茂、耐放射線（数値値）を考慮する。想定した処分場環境条件は表 2.4.1-4 参照。</td>
</tr>
<tr>
<td>地下調査施設Ⅱ (実廃棄体)</td>
<td>地下施設</td>
<td>処分坑道 (処分孔内)</td>
<td>検査から連絡坑道埋し前（オーバーパック撤去）までの計測が可能</td>
<td>マイクロバオを考慮する必要がある。想定した処分場環境条件は表 2.4.1-4 参照。</td>
</tr>
<tr>
<td></td>
<td>人工バリア</td>
<td>[緩衝材]</td>
<td>URL 及び地下調査施設Ⅰで計測を実施（該当する機器はない）</td>
<td>センサー交換が可能であるので耐長期性に関する課題は少ない</td>
</tr>
</tbody>
</table>

2.4.1-4
<table>
<thead>
<tr>
<th>大分類名</th>
<th>中分類名</th>
<th>小分類名</th>
<th>概要（モニタリング実施の観点から）</th>
<th>機器選定の考え方</th>
</tr>
</thead>
<tbody>
<tr>
<td>地下調査施設Ⅱ (実施状態)</td>
<td>人工バリア</td>
<td>[オーバーパック]</td>
<td>・URL及び地下調査施設Ⅰで計測を実施（該当する機器はない）</td>
<td></td>
</tr>
<tr>
<td>地下調査施設Ⅱ (実施状態)</td>
<td>人工バリア</td>
<td>[ガラス固化材]</td>
<td>・URL及び地下調査施設Ⅰで計測を実施（該当する機器はない）</td>
<td></td>
</tr>
</tbody>
</table>

URL (処分場サイト外)

処分坑道 (模擬処分孔含)

<table>
<thead>
<tr>
<th>概要</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>【想定される計測】</td>
<td>・別サイトに建設されるURLの処分坑道内の人工構造物（安 保や格柵等）を対象とした処分坑道内の計測</td>
<td>・作業安全</td>
</tr>
<tr>
<td></td>
<td>・処分孔での計測（緩衝材との境界）</td>
<td></td>
</tr>
<tr>
<td>【想定される計測可能な時期】</td>
<td>・本検討での仮定に基づき処分場建設前（便宜上文献調査段 階）に計測を実施</td>
<td></td>
</tr>
<tr>
<td></td>
<td>➢ 処分坑道埋設後（処分孔にあたっては廃棄体定置後）</td>
<td></td>
</tr>
<tr>
<td></td>
<td>も計測を実施</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

URL (処分場サイト外)

人工バリア

<table>
<thead>
<tr>
<th>概要</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>【想定される計測】</td>
<td>・URL内の処分坑道から模擬廃棄体周辺に配置する緩衝材内 あるいは緩衝材と処分孔との境界で計測</td>
<td></td>
</tr>
<tr>
<td></td>
<td>・積極的な計測が可能（たとえば強制的な加水による再冠水 の機能）</td>
<td></td>
</tr>
<tr>
<td>【想定される計測可能な時期】</td>
<td>・本検討での仮定に基づき処分場建設前（便宜上文献調査段 階）に計測を実施</td>
<td></td>
</tr>
<tr>
<td></td>
<td>➢ 処分坑道埋設後（処分孔にあたっては廃棄体定置後）</td>
<td></td>
</tr>
<tr>
<td></td>
<td>も計測を実施</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

URL (処分場サイト外)

処分坑道 (模擬処分孔含)

<table>
<thead>
<tr>
<th>概要</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>【想定される計測】</td>
<td>・設置後のセンサ交換が困難であり緩衝材中の数 年から数10年程度の耐久性（動力源を含む）を考 慮する必要がある。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>・地下環境による制約（耐熱、耐腐蝕（酸化還元）、</td>
<td></td>
</tr>
<tr>
<td></td>
<td>耐化学（腐食）、耐水、耐圧、耐微生物等）を考 慮する必要がある。想定した処分場環境条件は表 2.4.1-4参照</td>
<td></td>
</tr>
<tr>
<td></td>
<td>➢ 機器による計測結果への影響（電源や電源等のサイ ズによるデータ精度等への影響）を考慮する必要が ある。</td>
<td></td>
</tr>
</tbody>
</table>

URL (処分場サイト外)

人工バリア

<table>
<thead>
<tr>
<th>概要</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>【想定される計測】</td>
<td>・設置後のセンサ交換が困難であり緩衝材中の数 年から数10年程度の耐久性（動力源を含む）を考 慮する必要がある。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>・地下環境による制約（耐熱、耐腐蝕（酸化還元）、</td>
<td></td>
</tr>
<tr>
<td></td>
<td>耐化学（腐食）、耐水、耐圧、耐微生物等）を考 慮する必要がある。想定した処分場環境条件は表 2.4.1-4参照</td>
<td></td>
</tr>
<tr>
<td></td>
<td>➢ 機器による計測への影響（電源や電源等のサイズに</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>大分類名</td>
<td>中分類名</td>
<td>小分類名</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
</tbody>
</table>
| URL (処分場サイト外) | 人工バリア | オープバック | 【想定される計測】
・URL内の処分坑道から緩衝材内に設置されるオープンバック表面の計測
・積極的な計測が可能
【想定される計測可能な時期】
・本検討での仮定に基づき処分場建設前（便宜上文献調査段階）に計測を実施
 ➢ 処分坑道廃棄後（処分孔にあっては廃棄体定置後）も計測を実施 | ◆計測技術の性能確認やノウハウ蓄積のために実施
・センサ設置以降
 ➢ 数年から10年程度の耐久性（設置後のセンサ交換は困難）を考慮する必要がある。
 ➢ 地下環境による制約（腐食、耐圧性（変形）、耐化学（腐食）、耐水、耐久（地域性・地圧）、耐微生物等）を考慮する必要がある。想定した処分場環境条件は表2.4.1-4参照。
 ➢ 機器による計測への影響（処理液や電波等のサイズによるデータ精度等への影響）を考慮する必要がある。 |
| URL (処分場サイト外) | 人工バリア | 模擬廃棄体 | 【想定される計測】
・URL内の処分坑道からオープンバック内に設置される模擬廃棄体表面の計測
・積極的な計測が可能
【想定される計測可能な時期】
・本検討での仮定に基づき処分場建設前（便宜上文献調査段階）に計測を実施
 ➢ 処分坑道廃棄後（処分孔にあっては廃棄体定置後）も計測を実施 | ◆計測技術の性能確認やノウハウ蓄積のために実施
・センサ設置以降
 ➢ 数年から10年程度の耐久性（設置後のセンサ交換は困難）を考慮する必要がある。
 ➢ 地下環境による制約（腐食、耐圧性（変形）、耐化学（腐食）、耐水、耐久（地域性・地圧）、耐微生物等）を考慮する必要がある。想定した処分場環境条件は表2.4.1-4参照。
 ➢ 機器による計測への影響（処理液や電波等のサイズによるデータ精度等への影響）を考慮する必要がある。 |
| 地上施設 | 人工バリア | 緩衝材 | 【想定される計測】
・品質管理にかかる計測
【想定される計測可能な時期】
・操業時 | ・制御はないと想される |
| 地上施設 | 人工バリア | オープバック | 【想定される計測】
・品質管理にかかる計測
【想定される計測可能な時期】
・操業時 | ・計測対象からの影響（固化体封入後の耐熱、耐放射線性） |
| 地上施設 | 人工バリア | ガラス固化体 | 【想定される計測】
・品質管理にかかる計測
【想定される計測可能な時期】
・廃棄体製造から操業時 | ・計測対象からの影響（耐熱、耐放射線性） |
表 2.4.1-4 地層処分モニタリングにおいて考慮すべき計測環境条件[18]

<table>
<thead>
<tr>
<th>項目</th>
<th>廃棄体近傍</th>
<th>廃棄体遠方</th>
</tr>
</thead>
<tbody>
<tr>
<td>温度</td>
<td>最大 100°C</td>
<td>45°C（深度 1000m）*</td>
</tr>
<tr>
<td>壓力</td>
<td>11MPa**（深度 1000m）</td>
<td>10MPa（深度 1000m）</td>
</tr>
<tr>
<td>水質</td>
<td>塩水／淡水</td>
<td>塩水／淡水</td>
</tr>
<tr>
<td>放射線***</td>
<td>3×10⁻⁶mGy/h（ガンマ線）</td>
<td>考慮する必要なし</td>
</tr>
<tr>
<td></td>
<td>3×10⁻²mGy/h（中性子線）</td>
<td></td>
</tr>
</tbody>
</table>

*（核燃料サイクル開発機構、1999）
**深度 1000m での静水压（10MPa）+ 水衡材の膨潤圧力（1MPa）を想定
***オーバーパック厚さ 190mm の場合のオーバーパック表面での値（核燃料サイクル開発機構、1999）

図 2.4.1-5 EKRA の長期監視付地下処分の概念[34]

図 2.4.1-6 SKB 社による先行操業エリア[33]
<table>
<thead>
<tr>
<th>Site investigation phase</th>
<th>Construction and detailed characterization phase</th>
<th>Initial operation, regular operation, closure phases</th>
<th>Post-closure phase during institutional control</th>
</tr>
</thead>
</table>
| **Environmental monitoring programme**
- disturbance of surface investigations | **Environmental monitoring programme**
- disturbance of supplementary surface investigations
- impact of repository construction (soil, groundwater, gas, noise) | **Environmental monitoring programme**
- disturbance of supplementary surface investigations
- impact of repository construction (soil, groundwater, gas, noise) | **Environmental monitoring programme**
- impact of rise of groundwater level |
| **Climate**
- temperature, atmospheric pressure, precipitation, evaporation, runoff, sea level changes | **Climate**
- temperature, atmospheric pressure, precipitation, evaporation, runoff, sea level changes | **Climate**
- temperature, atmospheric pressure, precipitation, evaporation, runoff, sea level changes | **Documentation is preserved** |
| **Biosphere**
- flora, fauna, soil layer land use etc | **Biosphere**
- flora, fauna, soil layer land use etc | **Biosphere**
- flora, fauna, soil layer land use etc | **Documentation is preserved** |
| **Boreholes from the ground surface**
- groundwater chemistry and pressure, temperature | **Boreholes from the ground surface**
- groundwater chemistry and pressure, temperature | **Boreholes from the ground surface**
- groundwater chemistry and pressure, temperature | **Documentation is preserved** |
| **Boreholes from underground**
- groundwater chemistry and pressure, temperature
- deformations in the rock | **Boreholes from underground**
- groundwater chemistry and pressure, temperature
- deformations in the rock | **Boreholes from underground**
- groundwater chemistry and pressure, temperature
- deformations in the rock | **Documentation is preserved** |
| **Seismic events**
- time, location and type of local earthquakes | **Seismic events**
- time, location and type of local earthquakes
- micro-seismic events | **Seismic events**
- time, location and type of local earthquakes
- micro-seismic events | **Seismic events**
- time, location and type of local earthquakes
- micro-seismic events |
| **Surveillance of the repository**
- fire, floods, seeping water, pumped-out water (quantity, quality)
- ventilation (temperature, quantity, quality)
- noise
- monitoring of conditions for preventive maintenance
- stability of underground openings | **Surveillance of the repository**
- fire, floods, seeping water, pumped-out water (quantity, quality)
- ventilation (temperature, quantity, quality)
- noise
- monitoring of conditions for preventive maintenance
- stability of underground openings
- radiation monitoring
- safeguards | **Surveillance of the repository**
- fire, floods, seeping water, pumped-out water (quantity, quality)
- ventilation (temperature, quantity, quality)
- noise
- monitoring of conditions for preventive maintenance
- stability of underground openings
- radiation monitoring
- safeguards | **Documentation is preserved** |

2-55
<table>
<thead>
<tr>
<th>大分類</th>
<th>小分類</th>
<th>大分類</th>
<th>小分類</th>
<th>大分類</th>
<th>小分類</th>
<th>大分類</th>
<th>小分類</th>
</tr>
</thead>
<tbody>
<tr>
<td>熱</td>
<td>溫度</td>
<td>地下水位</td>
<td>室内環境ガス</td>
<td>火山・地殻活動</td>
<td>識別番号 (地震イベント含)</td>
<td>*ガラ溶存度</td>
<td>〜</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(間隔)水圧</td>
<td>気候</td>
<td>地震・断層活動</td>
<td>表面積</td>
<td>〜</td>
<td></td>
</tr>
<tr>
<td>水理</td>
<td></td>
<td>地下水流入量</td>
<td>気象</td>
<td>地盤沈下量</td>
<td>密度</td>
<td>〜</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>水分量</td>
<td>振動</td>
<td>標高</td>
<td>外観</td>
<td>〜</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>透水 (透) 係数</td>
<td>大気質 (EIA項目)</td>
<td>火災・爆発</td>
<td>材料</td>
<td>〜</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ガス圧</td>
<td>水質 (EIA項目)</td>
<td>換気機能停止</td>
<td>密度</td>
<td>〜</td>
<td></td>
</tr>
<tr>
<td>力学</td>
<td>壓力</td>
<td>水理・水文</td>
<td>作業安全</td>
<td>空間放射線</td>
<td>寸法</td>
<td>〜</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>底質 (EIA項目)</td>
<td>広域地下水質 (EIA項目)</td>
<td>体外被覆</td>
<td>密封性</td>
<td>〜</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>変位</td>
<td>地下水質 (EIA項目)</td>
<td>体内被覆</td>
<td>〜</td>
<td></td>
<td></td>
</tr>
<tr>
<td>環境</td>
<td>強度</td>
<td>弾性係数</td>
<td>地形・地質</td>
<td>出入管理記録</td>
<td>含水率</td>
<td>〜</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>割れ目幅</td>
<td>地熱</td>
<td>落盤・落石</td>
<td>乾燥密度</td>
<td>〜</td>
<td></td>
</tr>
<tr>
<td>化学</td>
<td>Eh</td>
<td>土壌 (EIA項目)</td>
<td>受入本数</td>
<td>モンモリロナイト含有率</td>
<td>〜</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td>景観</td>
<td>施設内温度</td>
<td>傾斜</td>
<td>〜</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>化濃度</td>
<td>人口</td>
<td>施設内湿度</td>
<td>孔径</td>
<td>〜</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>コロイド</td>
<td>産業</td>
<td>施設内大気圧</td>
<td>支保の状態</td>
<td>〜</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>有機物</td>
<td>交通</td>
<td>施設内風景</td>
<td>改良体の品質</td>
<td>〜</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>鉱物組成</td>
<td>土地利用</td>
<td>施工数</td>
<td>〜</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>放射能</td>
<td>ガス組成・濃度</td>
<td>水利用</td>
<td>換気風量</td>
<td>〜</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>表面電位</td>
<td>文化財</td>
<td>埋設本数</td>
<td>〜</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>分極抵抗</td>
<td>イメージ</td>
<td>〜</td>
<td>〜</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>微生物</td>
<td>放射線量</td>
<td>植物 (EIA項目)</td>
<td>〜</td>
<td>〜</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>放射性物質量</td>
<td>動物 (EIA項目)</td>
<td>〜</td>
<td>〜</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>微生物 (類及び種類)</td>
<td>〜</td>
<td>〜</td>
<td>〜</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表 2.4.1-6 検討対象としたモニタリングパラメータ
<table>
<thead>
<tr>
<th>法令に記された内容</th>
<th>申請書内容から想定される内容／アクション</th>
<th>想定されるモニタリングの関与</th>
<th>抽出したモニタリングパラメータ（案）</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>①廃棄物理設施及び破道を設置した場所における地形、地質及び地下水の状況を明らかにする書類及び図面</td>
<td>閉鎖措置によって地形や地質及び地下水環境に有意なマイナスの影響を及ぼすことがないことを示すために、サイト及びその周辺の地形図や地質図、地下水位のプロファイル等が記載される。</td>
<td>サイト開発により変動する可能性がある地形、地質及び地下水のデータに関しては建設機械の前実験の実施が必要であるため、サイト及びその周辺の地形図や地質図、地下水位のプロファイル等が記載される。</td>
<td>環境</td>
<td>地形・地質</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>地理</td>
<td>水理・水文</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>地理</td>
<td>地下水位</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>地理</td>
<td>(間隙)水圧</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>地理</td>
<td>地下水流量・流速</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>地理</td>
<td>透水(量)係数</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>力学</td>
<td>圧力</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>力学</td>
<td>強度</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>力学</td>
<td>割れ目幅</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>化学</td>
<td>Eh</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>化学</td>
<td>pH</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>化学</td>
<td>イオン濃度</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>化学</td>
<td>有機物</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>化学</td>
<td>地下水質</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>化学</td>
<td>地下水成分</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>化学</td>
<td>放射性物質量</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>化学</td>
<td>地下水質</td>
</tr>
<tr>
<td>②廃棄物理設施の定期的な評価等の結果に関する説明書（法第五十一条の十六/規則第五十八条）</td>
<td>事業許可申請で実施した安全評価や、定期的な安全レビューにより不確実性の低減やモデルの高度化がなされていく評価システム、又は段階ごとに取得・蓄積されていくデータを利用した安全評価結果が記載される。</td>
<td>安全評価結果や評価に使用したモデルやデータが妥当であるかを示すために連続的あるいは定期的なデータを評価する場合、その計算方法はモニタリングであるといえる。また、安全評価に使用するパラメータのうちの某数か、場合によっては、モニタリングで得られたデータを利用する可能性もある。</td>
<td>熱</td>
<td>溫度</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>水理</td>
<td>水分量</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>水理</td>
<td>ガス圧</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>化学</td>
<td>Eh</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>化学</td>
<td>pH</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>化学</td>
<td>イオン濃度</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>化学</td>
<td>ガス組成</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>化学</td>
<td>表面電位</td>
</tr>
<tr>
<td>評価</td>
<td>申請書内容から想定されるモニタリングの関与</td>
<td>抽出したモニタリングパラメータ（案）</td>
<td>備考</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>b. 評価結果を踏まえた廃棄物埋設施設の保全のための必要な措置</td>
<td>ただし、申請書に記載する内容の一部にモニタリングデータを利用する場合、評価内容又は現象の生起する時期や場所などの観点から、現在の計測技術の限界であり、処分エリアでのパリア及びその周辺での計測結果を利用することは多くの課題を有する。このため、これらのデータはURLや事前の地下調査施設での計測結果を以って確認することが現実的である。</td>
<td>化学</td>
<td>分極抵抗</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>熱</td>
<td>温度</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>水理</td>
<td>水分量</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>水理</td>
<td>(間隙)水圧</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>化学</td>
<td>Eh</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>化学</td>
<td>pH</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>化学</td>
<td>イオン濃度</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>力学</td>
<td>変位</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>力学</td>
<td>壓力</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>水理</td>
<td>(間隙)水圧</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>水理</td>
<td>透水(量)係数</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>熱</td>
<td>温度</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>力学</td>
<td>割れ目幅</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>化学</td>
<td>Eh</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>化学</td>
<td>pH</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>化学</td>
<td>イオン濃度</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>水理</td>
<td>地下水位</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>水理</td>
<td>(間隙)水圧</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>化学</td>
<td>pH</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>オーバーパック腐食</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>緩衝材再冠水</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>緩衝材再冠水</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>緩衝材再冠水</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>緩衝材の変形</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>周辺岩盤の透水係数</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>遷元性の回復</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>遷元性の回復</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>遷元性の回復</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>地下水の回復</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>地下水の回復</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>地下水の回復</td>
<td></td>
</tr>
<tr>
<td>法令に記された閉鎖措置計画申請書（添付書類）の内容</td>
<td>申請書内容から想定される記載内容/アクション</td>
<td>想定されるモニタリングの関与</td>
<td>抽出したモニタリングパラメータ（案）</td>
<td>備考</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>----------------------------</td>
<td>---------------------------------</td>
<td>-----</td>
</tr>
<tr>
<td>化学イオン濃度</td>
<td>地下水の回復</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>熱温度</td>
<td>地温の回復</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>水理地下水位処分場近傍の水理データ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>水理（間隙）水圧処分場近傍の水理データ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>水理地下水流入量処分場近傍の水理データ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>熱温度</td>
<td>THMC連成解析データ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>水理水分量</td>
<td>THMC連成解析データ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>力学圧力</td>
<td>THMC連成解析データ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>化学Eh</td>
<td>THMC連成解析データ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>化学pH</td>
<td>THMC連成解析データ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>化学イオン濃度</td>
<td>THMC連成解析データ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>放射能放射性物質量</td>
<td>核種移行解析データ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>天然現象標高</td>
<td>地形構造</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>環境地形・地質</td>
<td>地質構造の特性</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>天然現象地震・断層活動</td>
<td>地質構造の特性</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>水理透水（量）係数</td>
<td>地質構造の特性</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>力学割れ目幅</td>
<td>地質構造の特性</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>環境水理・水文</td>
<td>境界位置</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>環境地形・地質</td>
<td>境界位置</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>天然現象標高</td>
<td>境界位置</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>天然現象座標</td>
<td>境界位置</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>天然現象海水準変動</td>
<td>境界位置</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>天然現象火山・火成活動</td>
<td>境界位置</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>環境水理・水文</td>
<td>水収支</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>環境気象</td>
<td>水収支</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>環境地形・地質</td>
<td>水収支</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>法令に記された 閉鎖措置計画申請書 (添付書類) の内容</td>
<td>申請書内容から想定される 記載内容／アクション</td>
<td>想定される モニタリングの関与</td>
<td>抽出したモニタリングパラメータ（案）</td>
<td>備考</td>
</tr>
<tr>
<td>------------------------</td>
<td>------------------------</td>
<td>------------------------</td>
<td>------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>⑮閉鎖措置に伴う放射線被ばくの管理に関する説明書</td>
<td>閉鎖措置の工程による公衆・作業員への被ばく防護のための措置が記載される。</td>
<td>閉鎖措置時の被ばく防護措置を行う際、施設体位置前からのバックグラウンドレベルを計測する行為はモニタリングであるといえる。</td>
<td>環境</td>
<td>災害</td>
</tr>
<tr>
<td>⑮閉鎖措置中の過失、 機械又は装置の故障、浸水、地震、火災等があった場合に発生すると想定される廃棄物処理施設の事故の種類、程度、影響等に関する説明書</td>
<td>閉鎖措置中に想定される事故事象とその影響、事故の対処方策が記載される。</td>
<td>想定される事故のうち、異常を検知するためバックグラウンドレベルが必要な項目（浸水、ガス、坑道の変位など）について、連続的にデータを取得する行為はモニタリングであるといえる。</td>
<td>力学</td>
<td>作業安全</td>
</tr>
<tr>
<td>⑮閉鎖措置期間中に機</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 法令に記された
閉鎖措置計画申請書
(添付書類) 内容 | 申請書内容から想定される
記載内容／アクション | 想定される
モニタリングの関与 | 抽出したモニタリングパラメータ（案） |
|-----------------|-----------------|-----------------|-----------------|
| 能を維持すべき廃棄物
物理施設及びその
性能並びにその性能
を維持すべき期間に
関する説明書 | 持すべき処分場構成要素と
しては、例えば坑道（健全性）
やバリア材（劣化）などが想
定される。これらが閉鎖措置
期間中、維持することが可能
である根拠は、サイト開発以
降に取得したデータによる
評価や考査される工学的
対策等により説明されると
考えられる。さらに閉鎖措置
工程から維持すべき期間に
ついても記載される。 | これが可能かどうかについては、
評価や工学的な対策で示されると
考えられる。モニタリングは、こ
れらの評価や工学的な対策が妥当
であるかを確認する場合に利用さ
れる可能性がある。 | 熱
力学
化学
放射能
熟
力学
水理
化学
化学
化学
微生物
熟
力学
力学
力学
力学
品質
アセスメント管理
アセスメント管理 | 压力
表面電位
分極抵抗
放射線量
温度
圧力
水分量
Eh
pH
塩濃度
微生物（個数及び種類）
温度
圧力
割れ目幅
弾性係数
強度
支保の状態
処分場の状態
処分場の状態 |
| 備考 | オープパック | オープパック | オープパック | オープパック | 継続材 | 継続材 | 継続材 | 継続材 | ニアフィールド岩盤 | ニアフィールド岩盤 | ニアフィールド岩盤 | ニアフィールド岩盤 | 坑道 | 処分場の状態 | 処分場の状態 |
| 2-61 |
2.4.2 閉鎖措置計画における安全評価に係るパラメータ抽出試行検討

表 2.4.1-2 のうち、「法令に記された閉鎖措置計画申請書（添付書類）の内容」に示したサイトの地質環境状態（①）、被ばく防護措置（③）及び異常時の対策（④）については、それぞれ具体的な計算事項が記載されている場合や事業計画等からの推導により抽出が比較的容易である。また、工学的対策（⑤）については、品質管理で性能を担保するものであり、本検討では対象としない。

しかしながら、廃棄物処理施設の定期的な評価等の結果に関する説明書（以下、安全評価とする）（②）については処分場システム全体に亘る内容であり、モニタリング項目も多岐にわたることから、ここでは別途、抽出試行検討を行うこととした。

なお、検討の方針としては、これまで原発センターで検討を進めてきているモニタリング技術メニューの項目に関して、第 2 次取りまとめを中心に検討対象である安全評価及び工学的対策との関連付けを行った（表 2.4.2-1）。

(1) 検討の前提

IAEA-TECDOC-1208[2]等のモニタリングの目的検討などから想定されるモニタリングの関与は、下記の内容が挙げられる。

① 安全評価結果や評価に使用した仮定、モデルやデータが妥当であるかを示すため
② 安全評価に使用するパラメータのうちの幾つかは、場合によっては、モニタリングで得られたデータを利用する可能性もある。

このうち、②については、別の目的でモニタリングを行った結果、そのデータを利用する可能性はあるものの、安全評価データを取得するためのモニタリングを行うことはないとして、本検討からは除外した。よって、①の特に評価を行う際の仮定が妥当であるかを判断するためにモニタリングが必要となる場合に関して検討を行う。これは、安全評価の結果が妥当なものとして受け入れられるためには、シナリオは過不足なく定義されているか、評価の目的に照らして個々のモデルやコード、データは十分に妥当性が検討されているか、これらを組み合わせたシステム全体の解析の手順や数値計算は正しく実行されているか、といった点が総合的に検討されていることを示す必要がある。
表 2.4.2-1 本検討対象としたパラメータ

<table>
<thead>
<tr>
<th></th>
<th>天然パリア</th>
<th>地下施設</th>
<th>人工パリア</th>
</tr>
</thead>
<tbody>
<tr>
<td>熱</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>水理</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>地下水位</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>（間隙）水圧</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>地下水流量・流速</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>地下水流入量</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>水分量</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>透水（量）係数</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>ガス圧</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>力学</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>広力</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>ひずみ</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>異位</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>強度</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>弾性係数</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>割れ目幅</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>化学</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eh</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>pH</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>イオン濃度</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>硫化物</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>有機物</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>腐物細菌</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>ガス組成・濃度</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>表面電位</td>
<td>-</td>
<td>-</td>
<td>●</td>
</tr>
<tr>
<td>分極抵抗</td>
<td>-</td>
<td>-</td>
<td>●</td>
</tr>
<tr>
<td>放射能</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>放射線量</td>
<td>-</td>
<td>-</td>
<td>●</td>
</tr>
<tr>
<td>放射性物質量</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>微生物</td>
<td>微生物（個数及び種類）</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>

※: 表記欄に○が示されるパラメータを指す

2.63
原子力安全委員会が2000年に示した「第1次報告」[7]によれば、地層処分の安全確保原則は、地層処分にとって適切なサイト選定がなされ、適切な工学的対策がなされた上で、安全評価対策の妥当性を確認する方法の一つが安全評価であるとされている。これは本検討を行うにあたっても同様であり、まずは適切なサイト選定と工学的対策がなされていることを前提とする。よって、ここではこれらの前提（仮定）条件については対処しないこととして、下記に示す期待されるシステムの安全機能を評価の仮定として検討を開始する。

- 処分場が建設されるような地下深部は、長期にわたって地質構造的に安定で、地下水は還元性であり流束は小さい。
- ガラス固化体、オーバーパック、緩衝材からなる人工バリアは、このような地質環境の中に構築されるので、長期間健全性が維持され、期待される機能を発揮することが可能である。
- 周囲の岩盤と接触する緩衝材は低透水性であるため、人工バリア中では地下水の動きは極めて遅く、したがって物質の動きも小さなものとなる。
- また、地下水が還元性であることから、オーバーパックの腐食速度は遅く、少なくともガラス固化体の放射能及び崩壊熱が高い初期の期間において、ガラス固化体を地下水との接触から防ぎ、放射性核種を物理的に閉じ込めることが期待できる。
- 地下水がガラス固化体に接触したとしても、放射性核種は安定なガラス構造の中に取り込まれているため、地下水への溶出は非常にゆっくりしたものになる。さらに還元性環境であることから、大部分の放射性元素の溶解度は低く抑えられ、地下水中の放射性核種の濃度は制限される。また、地下水が緩衝材やオーバーパックの腐食生成物と化学反応を起こすことにより、還元性の条件はより確実に維持される。
- 緩衝材中では地下水の動きが極めて遅いため、ガラス固化体から溶出した放射性核種は拡散によってのみ移動し、さらに緩衝材に含まれる鉱物に吸着されるため、その移動が抑制される。また、緩衝材はフィルター効果をもち、放射性核種がコロイドとなった場合でも、その移動を阻止する。人工バリアの外側の岩盤中では、地下水の動きが緩慢であるうえ、岩石に含まれる鉱物によって放射性核種が吸着されるため、放射性核種の移行は抑制される。さらに、岩盤中を地下水によって運ばれる間に放射性核種は分散し、次第に希釈されるとともに放射能も減衰する。
- このようにシステムとして個々のバリア機能が相互に補完するように働くことによって、仮にガラス固化体から放射性核種が地下水に移行したとしても、人間の生活圏に到達するまでのには非常に長い時間を要し、この間に放射性核種は放射性崩壊によって減衰するとともに希釈される。その結果、人間の生活圏に有意な影響を及ぼすことがないようにすることが可能である
図 2.4.2-1 地層処分システムに期待する安全機能と影響要因[1]

図 2.4.2-2 レファレンスケースで考慮する核種の移行に関係する現象・特性[1]

上記の前提より評価シナリオを作成するに当たり考慮した要因は表 2.4.2-2 のとおりである。これらの要因等を踏まえ概念モデル及びデータ設定が行われる（表 2.4.2-3 ～表 2.4.2-7）。また、地層処分システムへの影響が無視できるほど小さいために排除された事象については表 2.4.2-8 のとおりである。モニタリングはこれらの影響因子に対する仮定を確認するとともに排除した影響因子について実際の状況を把握するために実施される可能性がある。

(2) 検討結果

表 2.4.2-3 ～表 2.4.2-8 を踏まえて、安全評価の前提条件を確認する際のアクション、モニタ
リングが含まれる可能性のある場合の項目、及びその際の判断基準を表2.4.2-9に整理した。表2.4.2-9により関鏡措置要件に資するモニタリングが関与する内容とは大きく下記に分類可能である。

① 安全評価シナリオやモデルあるいはデータが仮定した通りである場の確認
② 安全評価シナリオやモデルあるいはデータが想定範囲を超えた場合

①については、現象の生起する期間が長期であるため、技術的な観点から評価結果をモニタリングで把握することは困難である。ただし、一部の現象に関しては初期の段階で確認を行い、予測した変化や現象の推移を確認することで安全評価の仮定やシナリオ、あるいはモデルやデータを確認することは可能である。

②に関しては、①で想定した事象が何らかの原因（環境条件や設計での前提条件）によって想定外となった場合の検知を行うためのモニタリングである。この場合には、別途原因の究明、再評価等の対策が必要となる可能性がある。

表 2.4.2-2 安全機能及びそれに影響を与える可能性のある要因と FEP の関係[1]

<p>| 人工汎水の設置環境 | H-4.2/H-4.3 | 4.2.1.1 |
|azonjdüsy5å× reloading (還元元など) | | |
| 小さな地下水流束 | H-2.3 | 4.2.1.2 |
| 力学的安定性 | H-2.2 | 4.2.1.3 |
| 適分施設がバスケット性能を損なわない | D-2.2/D-2.3/D-3.2/D-3.3/D-4.2/D-4.3 | 4.2.1.4 |
| 人間環境からの物理的障壁の存在 | H-6.3 | 4.2.2.7 |
| 地層処分システムに期待する安全機能 | |
| オープンバックの核種閉じ込め | OP-3.2/OP-3.3/OP-4.2/OP-4.3/OP-4.4/OP-4.5/OP-4.6/OP-4.7 | 4.2.2.1 |
| ガラス固化体が地下水への放射性核種の溶出を抑制 | G-3.2/G-3.3/G-4.2/G-4.3/G-4.8/G-5.1/G-6.2.1 | 4.2.2.2 |
| 暴露材の低透水性 | B-2.2/B-3.2/B-3.3/B-3.2/B-3.2/B-3.2 | 4.2.2.3 |
| 暴露材の転換性と可塑性 | B-4.2/B-4.3, OP-4.4, D-4.2, H-4.2 | 4.2.2.4 |
| 暴露材の化学的耐性 | G-4.2/G-4.3, B-2.2/B-6.3.4, OP-4.2/OP-5.3.4 | 4.2.2.5 |
| 暴露材間節中での低い解結度（溶解度制限） | G-4.2/G-6.2.2, B-2.2/B-6.3.4, OP-4.2/OP-6.3.4 | 4.2.2.6 |
| 暴露材中での小さな物質移行速度（拡散） | B-2.2/B-6.3.2, OP-4.2/OP-6.3.2, H-6.3.1 | 4.2.2.6 |
| 暴露材中での核種移行速度（収束） | B-2.2/B-6.3.3, OP-4.2/OP-6.3.3 | 4.2.2.6 |
| 暴露材中でのコロイド、微生物および有機物のろ過 | B-6.2/B-4.7, G-4.7, OP-6.9 | 4.2.3.1 |
| 暴露材中での核種の移行抑制 | H-6.2/H-4.2/H-4.2/H-4.2/H-6.2/H-6.2/H-6.3 | 4.2.2.7 |
| 暴露材中での核種の希釈・分散 | H-4.2/H-2.3/H-6.3 | 4.2.2.7 |
| 移行中の崩壊等による核種の減衰 | G-5.1, OP-5.1, B-5.1, H-5.1 | 4.2.2.7 |
| 安全機能に対して影響を与える可能性のある要因 | |
| オープンバックの腐食膨張 | OP-3.4/OP-4.2/B-3.4/B-3.5/B-6.2/B-3.2/B-3.2/B-3.2/H-2.3 | 4.2.2.7 |
| 暴露材の亀裂への流入 | B-3.5/B-6.2, OP-3.4, D-2.2, H-2.3 | 4.2.2.6 |
| 適分施設の変質 | D-4.2/H-4.3/D-4.2/H-2.3 | 4.2.1.4 |
| 暴露材の有機物 | H-4.6/H-6.3 | 4.2.3.1 |
| コロイドの生成と暴露材中のコロイド移行 | H-6.3/H-4.7, B-4.7, D-4.7 | 4.2.2.2 |
| 暴露材の変形 | H-3.3/H-2.3/H-6.2 | 4.2.1.3 |</p>
<table>
<thead>
<tr>
<th>意味</th>
<th>レファレンスケース （概念モデル、データ設定の考え方）</th>
<th>安全評価の解析で考えるデータの不確実性、モデルの不確実性、処分材の多様性、質環境の多様性とその取り扱いにおけるレファレンスケースからの概念モデルやデータの変更</th>
</tr>
</thead>
<tbody>
<tr>
<td>オーガーパック</td>
<td>2.4.2-3</td>
<td></td>
</tr>
<tr>
<td>ガラス腐食モデルがガラス腐食体の発熱や放射能が流し期間中の地下水中ガラス腐食体の接触を阻止する。</td>
<td>- 概念モデル: 地下水中ガラス腐食体の接触を少なくとも1000年間に完全に発生するように設計され、腐食プロセスの線引きによる接触を防止する。 - データ設定の考え方: 処分後1000年時点でのガラス腐食体中の放射能をガラス溶出検査が可能にしたイベント stom (初期イベント stom) とする。</td>
<td>- データの不確実性: 衝突腐食の発生時間が経過するが報告されている。これを考慮するため設計雲蒸も含めることで処分場を完全に封じ込めることを想定することができる。 (解析においては、耐久封じ込め期間に応じた初期イベント stom を設定)</td>
</tr>
<tr>
<td>ガラス腐食体は放射性核種を均一かつ安定に固定化し、地下水中放射性核種の溶出を抑制する。</td>
<td>- 概念モデル: オーガーパック破壊後、ガラスマトリクスがゆっくりと溶解し、それと調和的にガラス腐食体中の核種が溶出する。ガラス表面積の時間が減衰は保守的と考えて無視する。 - データ設定の考え方: 長期的な実験から得られる溶出速度を採用。ガラス表面積は、製造時の冷却やオーガーパック破壊などの応力による割れが生じることを考慮して設定。</td>
<td>- データの不確実性: 長期的なガラス溶出速度の不確実性を考慮。溶出速度の不確実性は、ガラス表面に生成した酸化層の保護効果により溶出速度が削減される可能性、あるいは、放射性オーガーパックの鉛塩腐食生成物との共存や地下水中の反応によるケイ酸塩塩の生成で溶出速度が発散する可能性により発生する。 (解析においては、ガラス溶出速度の値を設定)</td>
</tr>
<tr>
<td>低透水性、膨張性</td>
<td></td>
<td></td>
</tr>
<tr>
<td>コロイド、微生物および有機物のろ過</td>
<td>- 概念モデル: 食べ物希釈に遅延した核種移行は、移流後においても核種希釈を示す。</td>
<td>改変なし</td>
</tr>
<tr>
<td>表 2.4.2-4 安全機能とレファレンスケースの概念モデル及びデータ設定の考え方[1] (2/5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>期待する安全機能とそれに対して影響を与える可能性のある要因</td>
<td></td>
<td></td>
</tr>
<tr>
<td>レファレンスケース
（概念モデル、データ設定の考え方）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>安全評価の解析で考慮するデータの不確実性、モデルの不確実性、処分場の設計の多様性、地質環境の多様性とその取り扱いにおけるレファレンスケースからの概念モデルやデータの変更</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

化学的緩衝性
- 概念モデル
 - 地下水は水と水素イオンが存在する、地下水と緩衝材（オーバーパーク腐食生成物、生成物）との反応により、水素イオンが存在する、地下水と緩衝材（オーバーパーク腐食生成物、生成物）との反応により、水素イオンが存在する。
- データ設定の考え方
 - 上記平衡反応に基づくモデル解析により間隔水組成

間隔水中での低い溶解度（溶解度制限）
- 概念モデル
 - ガラス固化体周辺および緩衝材中の放射性物質の濃度が溶離環境で低い溶解度により制限される、放射性物質の溶解度は、当該物質の同位体分配で分配される。
- データ設定の考え方
 - 階段状地下水に対する間隔水組成に対して、熱力学的な平衛計算および溶解度の実測値に基づき実現的な範囲で保守的な溶解度を設定。

小さな物質移行速度（拡散）
- 概念モデル
 - 標準物質は、泳動体の周辺に分布される溶離度により制限される、拡散速度を考慮した濃度分布の推定を用いて緩衝材の溶離を進行し、拡散速度を考慮する。
- データ設定の考え方
 - 階段状地下水に対する間隔水組成に対して、熱力学的な平衛計算および溶解度の実測値に基づき実現的な範囲で保守的な溶解度を設定。

放射性核種の移行、観測（取扱）
- 概念モデル
 - 拡散により移動の過程で、核種は緩衝材の構成物質への拡散により到達される。収容は、溶解、圧縮、可逆変化を考慮。
 - ガラス固化体の内部空洞や気泡、ガラスの変質生成物、オーバーパーク腐食生成物、放射性核種の移行および拡散速度を考慮して緩衝材の溶離を進行する。
- データ設定の考え方
 - 階段状地下水に対する間隔水組成に対して、熱力学的な平衛計算および溶解度の実測値に基づき実現的な範囲で保守的な溶解度を設定。
<table>
<thead>
<tr>
<th>期待する安全機能とそれに対して影響を与える可能性のある要因</th>
<th>レファレンスケース（概念モデル、データ設定の考え方）</th>
<th>安全評価の解析で考慮するデータの不確実性、モデルの不確実性、処分場の設計の多様性、地質環境の多様性とその取り扱いにおけるレファレンスケースからの概念モデルやデータの変更</th>
</tr>
</thead>
<tbody>
<tr>
<td>真菌生物活動、有機物</td>
<td>地層欠分システムへの影響が小さいと考えられるため、安全評価の解析では考慮しない。</td>
<td>同左</td>
</tr>
<tr>
<td>コロイド生成／移行</td>
<td>地層欠分システムへの影響が小さいと考えられるため、安全評価の解析では考慮しない。</td>
<td>同左</td>
</tr>
<tr>
<td>ガス発生／移行</td>
<td>地層欠分システムへの影響が小さいと考えられるため、安全評価の解析では考慮しない。</td>
<td>同左</td>
</tr>
<tr>
<td>放射線分解</td>
<td>地層欠分システムへの影響が小さいと考えられるため、安全評価の解析では考慮しない。</td>
<td>同左</td>
</tr>
<tr>
<td>放射線損傷</td>
<td>地層欠分システムへの影響が小さいと考えられるため、安全評価の解析では考慮しない。</td>
<td>同左</td>
</tr>
</tbody>
</table>
| オーバーパックの腐食腐蝕 | ●概念モデル・腐食腐蝕は設計において考慮されており、人工バリアに期待される安全機能を損なうことはない。 | 【モデルの不確実性】腐食腐蝕による破壊強度の減少および亀裂への緩衝材の侵入による密度低下の発生を想定。【解析においては、その影響を緩衝材厚さ減少と密度減少として考慮】
【地質環境の多様性】岩種、長しく変化する地層を想定した場合におけるオーバーパック腐食腐蝕に対する効果の状態変化を想定して、適切な影響領域通過流量を変更 |
<p>| オーバーパックの沈下 | 地層欠分システムの安全性への影響が小さいと考えられるため、安全評価の解析では考慮しない。 | 同左 |
| 農業地表の中の亀裂への緩衝材の侵入 | ●概念モデル・亀裂への緩衝材の侵入は設計において考慮されており、人工バリアに期待される安全機能を損なうことはない。 | 【モデルの不確実性】オーバーパックの腐食腐蝕と同じ |
| 緩衝材の変質 | 地層欠分システムへの影響が小さいと考えられるため、安全評価の解析では考慮しない。 | 同左 |
| 処分施設の構成要素の物理的／化学的変質 | ●概念モデル・処分施設の構成要素は適切に設計、施工され、適切な地質環境において長期間にわたって人工バリアや天然バリアの機能を損なわない。 | 【地質環境の多様性】岩種を想定して、適切な影響領域通過流量を変更。 |</p>
<table>
<thead>
<tr>
<th>期待する安全機能とそれに対して影響を与える可能性のある要因</th>
<th>レファレンスケース（概念モデル、データ設定の考え方）</th>
<th>安全評価の解析で考慮するデータの不確定性、モデルの不確定性、処分場の設計の多様性、地質環境の多様性そのと取り扱いにおけるレファレンスケースからの概念モデルやデータの変更</th>
</tr>
</thead>
<tbody>
<tr>
<td>好ましい地下水化学（還元性など）*</td>
<td></td>
<td>【地質環境の多様性】</td>
</tr>
<tr>
<td></td>
<td></td>
<td>【データの不確定性】</td>
</tr>
<tr>
<td></td>
<td></td>
<td>【地質環境の多様性】</td>
</tr>
<tr>
<td>小さな地下水流出</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>深部地質環境の長期的な安定性*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>人間環境からの物理的障壁の存在</td>
<td></td>
<td></td>
</tr>
<tr>
<td>放射性核種の移行抑制（ゆっくりとした地下水の動きによる核種の移流・分散あるいは拡散）</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>放射性核種の移行抑制（亀裂性岩盤における核種の拡散）</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>放射性核種の移行（収着）</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*: 人工バリアの設置環境に係わる項目
<table>
<thead>
<tr>
<th>期待する安全機能とそれに対して影響を与える可能性のある要因</th>
<th>レファレンスケース（概念モデル、データ設定の考え方）</th>
<th>安全評価の解析で考慮するデータの不確実性、モデルの不確実性、処分場の設計の多様性、地質環境の多様性とその取り扱いにおけるレファレンスケースからの概念モデルやデータの変更</th>
</tr>
</thead>
<tbody>
<tr>
<td>微生物活動、有機物</td>
<td>●概念モデル - 地盤中の微生物や有機物が核種移行に有意な影響を与えない。</td>
<td>データの不確実性 - 有機物の影響を分配係数の不確実性として考慮。 モデルの不確実性 - コロイドによる核種移行を考慮。</td>
</tr>
<tr>
<td>コロイド生成/移行</td>
<td>●概念モデル - コロイドは生成しにくく、また存在したとしても核種移行に影響を与えない。</td>
<td></td>
</tr>
<tr>
<td>ガス生成/移行</td>
<td>地盤部分システムへの影響が小さいと考えられるため、安全評価の解析では考慮しない。</td>
<td>同左</td>
</tr>
<tr>
<td>放射線分解</td>
<td>地盤部分システムへの影響が小さいと考えられるため、安全評価の解析では考慮しない。</td>
<td>同左</td>
</tr>
<tr>
<td>放射線損傷</td>
<td>地盤部分システムへの影響が小さいと考えられるため、安全評価の解析では考慮しない。</td>
<td>同左</td>
</tr>
<tr>
<td>岩盤の物理的/化学的変遷</td>
<td>●概念モデル - 岩盤の力学的、水理学的、化学的な特性および物理移行に関する特性の時間変化は考慮しない。</td>
<td>岩盤として放射線を賃借した場合における岩盤の形状を想定して、（人工バイアスについてのケースにおいて）掘削影響を考慮する。 地質環境の多様性 - 人工バイアスについてのケースにおいて）掘削影響を考慮する。</td>
</tr>
<tr>
<td>生物圏での移行</td>
<td>●概念モデル（生物圏） - 評価指標として放射能を基としまして、将来においても現在と同様の生活様式が継続するものと仮定する。 - GBIとして河川を想定し、地表環境での核種の移行・分散と、種々の経路による被ばくを考慮する。 - 地下水での核種の分散や収着は考慮しない。</td>
<td>地質環境の多様性（生物圏） - 人工バイアスについてのケースにおいて）掘削影響を考慮する。</td>
</tr>
</tbody>
</table>

表 2.4.2-7 安全機能とレファレンスケースの概念モデル及びデータ設定の考え方[1] (5/5)
表 2.4.2-8 地層処分システムへの影響が無視できるほど小さいと判断した FEP[1]

<table>
<thead>
<tr>
<th>外する FEP</th>
<th>[表 4.1-1 に対応する FEP 番号]</th>
<th>根拠</th>
</tr>
</thead>
<tbody>
<tr>
<td>人工パリア中での地下水流</td>
<td>B-2.3/B-6.3.1, OP-6.3.1</td>
<td>さらに、深いレベルの、不透明な地下水流の影響は、非透明な物質として採用され、拡散変を避けると期待されることもある。</td>
</tr>
<tr>
<td>塩系堆積物系-6.3.4</td>
<td>2.4.2.4</td>
<td>細粒堆積物系の特性により、塩系堆積物系の影響は、顕著で堆積物系の堆積物の分布面積や相対量、酸化還元状態の影響を考慮すると、有限であると期待される。</td>
</tr>
<tr>
<td>岩岩中の溶解系-6.3.5</td>
<td>2.4.2.5</td>
<td>溶解系の特性により、堆積物系の影響は、顕著で堆積物系の堆積物の分布面積や相対量、酸化還元状態の影響を考慮すると、有限であると期待される。</td>
</tr>
<tr>
<td>熱膨張系</td>
<td>G-1.3, OP-1.3, B-1.3, D-1.3, H-1.3</td>
<td>熱膨張系の特性により、堆積物系の影響は、顕著で堆積物系の堆積物の分布面積や相対量、酸化還元状態の影響を考慮すると、有限であると期待される。</td>
</tr>
<tr>
<td>有機物-微生物系</td>
<td>G-4.5, G-4.5, OP-4.6, B.4.5/B-4.6, D-4.5/D-4.6, H-4.5</td>
<td>有機物-微生物系の特性により、堆積物系の影響は、顕著で堆積物系の堆積物の分布面積や相対量、酸化還元状態の影響を考慮すると、有限であると期待される。</td>
</tr>
<tr>
<td>木ス生成／移行</td>
<td>G-4.4, OP-6.3.6, B.4.4/B-6.3.6, D-4.4/D-6.3.6, H-4.4/H-6.3.6</td>
<td>木ス生成/移行系の特性により、堆積物系の影響は、顕著で堆積物系の堆積物の分布面積や相対量、酸化還元状態の影響を考慮すると、有限であると期待される。</td>
</tr>
<tr>
<td>放射線分解／放射線損傷</td>
<td>C-5.2/C-5.3, OP-5.2/OP-5.3, B.5.2/B.5.3, D-5.2/D-5.3, H-5.2/H-5.3</td>
<td>放射線分解/放射線損傷系の特性により、堆積物系の影響は、顕著で堆積物系の堆積物の分布面積や相対量、酸化還元状態の影響を考慮すると、有限であると期待される。</td>
</tr>
<tr>
<td>オーバーパックの沈下</td>
<td>OP-3.5</td>
<td>オーバーパックの特性により、堆積物系の影響は、顕著で堆積物系の堆積物の分布面積や相対量、酸化還元状態の影響を考慮すると、有限であると期待される。</td>
</tr>
<tr>
<td>木ス化学的変質</td>
<td>B-4.8</td>
<td>木ス化学的変質系の特性により、堆積物系の影響は、顕著で堆積物系の堆積物の分布面積や相対量、酸化還元状態の影響を考慮すると、有限であると期待される。</td>
</tr>
<tr>
<td>処分施設の変形や流動</td>
<td>D-3.4/D-3.5</td>
<td>処分施設の変形や流動系の特性により、堆積物系の影響は、顕著で堆積物系の堆積物の分布面積や相対量、酸化還元状態の影響を考慮すると、有限であると期待される。</td>
</tr>
<tr>
<td>処分施設中の核ホモ系</td>
<td>D-5.1/D-6.1/D-6.2/D-6.3</td>
<td>処分施設中の核ホモ系の特性により、堆積物系の影響は、顕著で堆積物系の堆積物の分布面積や相対量、酸化還元状態の影響を考慮すると、有限であると期待される。</td>
</tr>
<tr>
<td>木ス化学的変質系</td>
<td>H-4.8</td>
<td>木ス化学的変質系の特性により、堆積物系の影響は、顕著で堆積物系の堆積物の分布面積や相対量、酸化還元状態の影響を考慮すると、有限であると期待される。</td>
</tr>
<tr>
<td>安全機能を含む機能システムの変更</td>
<td>概念モデル</td>
<td>概念モデル推移仮想あるいはデータの不確定性</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>オーバーパックが、ガラス固化体の発熱や放射能が高 い期間での地下水とガラス固化体の接触を阻止</td>
<td>地下水とガラス固化 体の接觸を少なくと も 100 年間は安全 に設計するように設計 され、放射物質による強 度の減少により機械的 に破壊する。評 価上、すべての オーバーパックが 処理後 100 年で同 閉に破壊し、ガラス 固化体が地下水と 接触することを保 守的に仮定</td>
<td>ガラス表面の破壊速度が水深 に依存するため、ガラス固化体の 接触を阻止することを考慮する場合、</td>
</tr>
<tr>
<td>ガラス固化体は、放射性核 理を均一かつ 安定に固定化 し、地下水へ の放射性核理 の流出を抑制</td>
<td>オーバーパック破 壊後、ガラスマトリ クスがゆっくりと溶 解し、それと調和的 にガラス固化体内 の核種スペクトル が変化する。ガラス 表面の放射物質の 時間的減少は保守 的に考えず</td>
<td></td>
</tr>
<tr>
<td>低持水性、乾 溼性</td>
<td>核種は完全に乾 溼し、均質な低持水 性のガラスとなり。</td>
<td></td>
</tr>
</tbody>
</table>

表 2.4.2-9 モニタリング項目抽出検討結果（安全評価シナリオ、モデル及びデータの仮定）
<table>
<thead>
<tr>
<th>安全機能を含む部分システムの変更</th>
<th>概念モデル</th>
<th>概念モデル排除理由</th>
<th>安全評価の信頼性向上に資するため想定される確認項目</th>
<th>想定される確認方法</th>
<th>想定されるモニタリング項目</th>
<th>計測場所・部位</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>コロイド、微生物及ぼ有機物の流出</td>
<td>項下:排除した緩衝材は徐々に間隔構造を有し、コロイド、微生物及び高分子有機物の流出</td>
<td>実験により全コロイド（15m）が圧縮ペントナイトにより通過されることが確認されていることから、人工圧圧中で生成するコロイドは、緩衝材で通過されると考えられる。</td>
<td>コロイド・微生物及び高分子有機化合物は膨張・膨潤した緩衝材のフィルタリングにより通過されるか？</td>
<td>◆サイト環境での試験</td>
<td>－</td>
<td>－</td>
<td>－</td>
</tr>
<tr>
<td></td>
<td>有機物</td>
<td>微生物（個数及び機能）</td>
<td>－</td>
<td>－</td>
<td>－</td>
<td>－</td>
<td></td>
</tr>
<tr>
<td></td>
<td>地下環境</td>
<td>計測場所</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>フィールド</td>
<td>フィールド</td>
<td>坑道（アセン）</td>
<td>坑道（炭分）</td>
<td>緩衝材</td>
<td>オーバーバッグ</td>
<td>ガス固化体</td>
</tr>
<tr>
<td>化学的緩衝性</td>
<td>地下水はもともと還元性であるが、地下水と緩衝材及びオーバーバッグ腐食生成物などの反応による還元性の環境をより確かにする。</td>
<td>地下水は還元性か？</td>
<td>地下水と緩衝材及びオーバーバッグ腐食生成物などとの反応は還元性環境を促進するか？</td>
<td>◆サイト環境条件の把握</td>
<td>－</td>
<td>－</td>
<td>－</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>エネルギー</td>
<td>(Eh0)</td>
<td>(Eh0)</td>
<td>(Eh0)</td>
<td>(Eh0)</td>
<td>(Eh0)</td>
<td>(Eh0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>間隙水中での低い溶解度（溶解度制限）</td>
<td>ガラス固化体表面及び緩衝材中の放射性元素の濃度は還元環境で低い溶解度により制限される。放射性元素の溶解度は、当該元素の同位体で分配される、沈殿は、側面で変動する。</td>
<td>緩衝材が地下水と接触する際の環境は還元性か？</td>
<td>◆サイト環境条件の把握</td>
<td>－</td>
<td>－</td>
<td>－</td>
<td></td>
</tr>
<tr>
<td></td>
<td>エネルギー</td>
<td>(Eh0)</td>
<td>(Eh0)</td>
<td>(Eh0)</td>
<td>(Eh0)</td>
<td>(Eh0)</td>
<td>(Eh0)</td>
</tr>
<tr>
<td>安全機能を含む仮想システムの変遷</td>
<td>概念モデル</td>
<td>概念モデル推進理由あるいはデータの不確定性</td>
<td>安全評価の信頼性向上に資するため想定される確認項目</td>
<td>想定される確認方法</td>
<td>想定されるモニタリング項目</td>
<td>計測場所・部位</td>
<td>処分施設</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-----------</td>
<td>--------------------------------------</td>
<td>--------------------------------------</td>
<td>------------------</td>
<td>--------------------------------</td>
<td>----------------</td>
<td>---------</td>
</tr>
<tr>
<td>起源とする団体体の影響は保守的に考えて無視する。</td>
<td>小さな物質移行速度(試算)</td>
<td>-</td>
<td>許容影響領域通過流量の不確定性を考慮。許容影響領域通過流量の不確定性は、沿岸あるいは獲物影響領域の面積性、獲物影響領域の大きさのばらつきにより生ずる。</td>
<td>-</td>
<td>サイト環境での試験</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>- 橋詠。分布形態で</td>
<td>-</td>
<td>小さな物質移行速度(試算)</td>
<td>-</td>
<td>サイト環境での試験</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>- 橋詠。分布形態で</td>
<td>-</td>
<td>小さな物質移行速度(試算)</td>
<td>-</td>
<td>サイト環境での試験</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>- 橋詠。分布形態で</td>
<td>-</td>
<td>小さな物質移行速度(試算)</td>
<td>-</td>
<td>サイト環境条件を把握しモデルを改良する？</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>放射性核種の移行速度(試算)</td>
<td>-</td>
<td>小さな物質移行速度(試算)</td>
<td>-</td>
<td>サイト環境条件を把握しモデルを改良する？</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>- 低濃による移行の</td>
<td>-</td>
<td>小さな物質移行速度(試算)</td>
<td>-</td>
<td>サイト環境条件を把握しモデルを改良する？</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>- 標準は稲作の</td>
<td>-</td>
<td>小さな物質移行速度(試算)</td>
<td>-</td>
<td>サイト環境条件を把握しモデルを改良する？</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>安全基準を含む部分システムの変遷</td>
<td>概念モデル</td>
<td>概念モデル排除理由あるいはデータの不確実性</td>
<td>安全評価の信頼性向上に資するため想定される確認項目</td>
<td>想定される確認方法</td>
<td>想定されるモニタリング項目</td>
<td>計測場所・部位</td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td>------------</td>
<td>--------------------------------</td>
<td>---------------------------------</td>
<td>-----------------</td>
<td>---------------------------------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>流</td>
<td>粒の構成物への変の塩により塩延される。塩延は、線形/硫酸/可逆を塩定する。</td>
<td>環境中での核種収容は、線形/硫酸/可逆で十分か？</td>
<td>◆ サイト環境での試験</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>微生物活動、有機物</td>
<td>地層処分システムへの影響が小さいと考えられるため、安全評価の解析では考慮しない。</td>
<td>微生物の存在は、地下水中の腐化還元反応度に影響を与えるが、平衡を塩定した地下水中の腐化反応モデルの中で、その影響を考慮していると考えることができる。</td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>地下処分システムへの影響が小さいと考えられるため、安全評価の解析では考慮しない。</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ハロイド生成/移行</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>安全機能を含む処分システムの変遷</td>
<td>概念モデル</td>
<td>概念モデル検討理由あるいはデータの不確実性</td>
<td>安全評価の信頼性向上に資するため想定される確認項目</td>
<td>想定される確認方法</td>
<td>想定されるモニタリング項目</td>
<td>計測場所・部位</td>
<td>優先位置化の考慮</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>ガス発生/移行</td>
<td>地層処分システムへの影響が小さいと考えられるため、安全評価の解析では考慮しない。</td>
<td>ガスの発生に伴う、オーバーパック反応による水素ガスの発生が検討されている。</td>
<td>処分環境下においても・ガス発生の自己シール機能によりガス制御が期待できるか</td>
<td>サイド環境での試験</td>
<td>水素ガス濃度</td>
<td>地下環境</td>
<td></td>
</tr>
<tr>
<td></td>
<td>安全評価の前後に影響を及ぼす有機物の放極性ガスは発生しないか</td>
<td></td>
<td></td>
<td>サイド環境での試験</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>安全評価の前後に影響を及ぼす有機物の放極性ガスは発生しないか</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>地層処分システムへの影響が小さいと考えられるため、安全評価の解析では考慮しない。</td>
<td>放射線分解で発生し得る酸化剤（H2O2）などの量に比べて、人工バリア中に十分な量の酸化剤（オーバーパックやその腐食生成物、緩衝材料中の鈷酸鉄、地下水中の酸化物質）が存在する</td>
<td>放射線分解による酸化剤よりも人工バリア中の還元物質の方が卓越し、酸化剤は緩和されるか？</td>
<td>初期状態の確認</td>
<td>En</td>
<td>地下環境</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

備考: すべての項目が「○」で表示されている場合、優先位置化の考慮が必要とされる。
<table>
<thead>
<tr>
<th>安全機能を含む部分システムの変化</th>
<th>概念モデル</th>
<th>概念モデル推奨理由あるいはデータの不確実性</th>
<th>安全評価の信頼性向上に資するため想定される確認項目</th>
<th>想定されるモニタリング項目</th>
<th>偏考</th>
</tr>
</thead>
<tbody>
<tr>
<td>放射線損傷</td>
<td>地層処分システムへの影響が小さいと考えられるため、安全評価の解析では考慮しない。</td>
<td>地層処分システムへの放射線損傷は無視できるほど小さいか？</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>放射線損傷</td>
<td>フラグ/フラクト, 支保工, 地下構造物, 壁面材</td>
<td>THM化・活性化・化学的変化に関する確認</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>オーバーパックの腐食損傷</td>
<td>腐食損傷は設計において考慮されており、設計における腐食損傷の予想を基にした評価が行われる。</td>
<td>サイト環境での試験</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>オーバーパックの沈下</td>
<td>オーバーパックの沈下量は無視できるほど小さいか？</td>
<td>THM化・活性化・化学的変化に関する確認</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>タンク内の亀裂/腐食損傷の侵入</td>
<td>亀裂/腐食損傷の侵入は設計において考慮されており、設計における腐食損傷の予想を基にした評価が行われる。</td>
<td>サイト環境での試験</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>周辺環境中の亀裂/腐食損傷の侵入</td>
<td>亀裂/腐食損傷の侵入は設計において考慮されており、設計における腐食損傷の予想を基にした評価が行われる。</td>
<td>THM化・活性化・化学的変化に関する確認</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>安全機能を含む処分施設の変更</td>
<td>概念モデル</td>
<td>概念モデルから問題があるデータの不確実性</td>
<td>安全評価の信頼性向上に資するため想定される確認項目</td>
<td>想定される確認方法</td>
<td>想定されるモニタリング項目</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------</td>
<td>---------------------------------</td>
<td>------------------</td>
<td>----------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>緩衝材の変更</td>
<td>地層処分システムへの影響が小さいと考えられるため、安全評価の解析では考慮しない。</td>
<td>緩衝材の温度が100℃未満となるよう処分場が設計されるため、緩衝材性能を損なうような耐熱性能の低下やセメント系は避けられない。</td>
<td>いかなる時期においても緩衝材の温度が100℃未満か？</td>
<td>初期の状態を確認</td>
<td>温度</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>導入施設の構成要素の物理的・化学的変更</td>
<td>変形施設の構成要素は適切に設計、施工され、適切な地質環境において長期にわたって人工バイオリサイクルの機能を損なわない。</td>
<td>緩衝材の温度が100℃未満となるよう処分場が設計されるため、緩衝材、ガラス固化体、オペーバック、処分施設及び母岩の機能に影響を与えるような熱拡散が発生する可能性を考慮しない。</td>
<td>いかなる時期においても緩衝材の熱拡散がないか？</td>
<td>初期の状態を確認</td>
<td>温度</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>好ましい地下水化学（還元性）など</td>
<td>多くの地質パターンや第二の岩石において想定可能で実測値によって存在の支持を得られている降水分の地下水を想定する。</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>安全機能を含む推分システムの変更</td>
<td>概念モデル</td>
<td>概念モデル推分理由があるデータの不確定性</td>
<td>安全評価の信頼性向上に資するため想定される確認項目</td>
<td>想定される確認方法</td>
<td>想定されるモニタリング項目</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------</td>
<td>----------------------------------</td>
<td>--------------------------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>小さな地下水準</td>
<td>地下水準、亀裂が</td>
<td>透水係数分布の</td>
<td>完全亀裂について設定した</td>
<td>割れ目幅</td>
<td>サイト環境条件の</td>
</tr>
<tr>
<td>流動</td>
<td>連続した不均質な</td>
<td>不確定性を考慮。</td>
<td>モデルは妥当か？</td>
<td>湿度</td>
<td>照明による</td>
</tr>
<tr>
<td></td>
<td>亀裂構造の中央を流</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>安全機能を含む開分シス テムの変更</td>
<td>概念モデル</td>
<td>概念モデル崩壊理由 あるいはデータの不 確定性</td>
<td>安全評価の信頼性向上に資 するため想定される確認項目</td>
<td>想定されるモニタリング項目</td>
<td>地下環境</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>------------</td>
<td>-----------------------------------</td>
<td>---------------------------------</td>
<td>-----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>放射線核種の 移行遅延（吸 着）</td>
<td>岩石基質部中及び 新鮮水中、核種は岩 石接触物表面に吸着 し移行が遅延される。吸着は線形／ 線形／可逆で整理し する。</td>
<td>■ 分解係数の不確定 性を考慮。</td>
<td>岩石基質部中及び新鮮水中、核種は岩石接触物表面 に吸着し移行が遅延されるか？</td>
<td>○ サイト環境条件の 把握→解析</td>
<td>-</td>
</tr>
<tr>
<td>微生物活動、 有機物</td>
<td>岩盤中の微生物や 有機物が核種移行 に有意な影響は与 えない。</td>
<td>■ 有機物の影響を分 配係数の不確定 性として考慮。</td>
<td>岩盤中の微生物や 有機物が核種移行に 有意な影響を与えているか？</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>コロイド生成 /移行</td>
<td>コロイドは生成し にくく、また存在したと しても核種移行に影 響は与えない。</td>
<td>-</td>
<td>核種移行に有意な影響を 与える岩盤中のコロイドが 存在していないか？</td>
<td>○ サイト環境条件の 把握</td>
<td>-</td>
</tr>
<tr>
<td>ガス発生/移行</td>
<td>地層処分システム への影響が小さい と考えられるため, 安全評価の解析で は考慮しない。</td>
<td>-</td>
<td>有意な影響を与えるガス が存在していないか？</td>
<td>○ サイト環境条件の 把握</td>
<td>-</td>
</tr>
<tr>
<td>放射線分解</td>
<td>地層処分システム への影響が小さい</td>
<td>-</td>
<td>放射線による影響への有 意な影響はいか？</td>
<td>○ サイト環境条件の 把握→解析</td>
<td>-</td>
</tr>
</tbody>
</table>

備考

地下環境：土壌フィルター、泥質フィルター
計測場所・部位：坑道（アセット）、坑道（測分）、断面材、オーバーバック、ガス確認材
| 安全機能を含む部分システムの変遷 | 概念モデル | 概念モデル推定理由あるいはデータの不確実性 | 安全評価の信頼性向上に資するため想定される確認項目 | 想定される確認方法 | 想定されるモニタリング項目 | 計測場所・部位 | 用途 | 仮想機能
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>放射線環境</td>
<td>ある</td>
<td>放射線による岩盤への有意な影響はないか？</td>
<td>○サイト環境条件の把握→解析</td>
<td>放射線量</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>岩盤の物理的・化学的変化</td>
<td>結晶の変質が生じない</td>
<td>有孔の岩盤が存在する</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>累積の最大温度は100℃未満となるように設計されているか？</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>母岩の温度は堆積し後の初期に地温より高い温度が存在しないか？</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>地下水と岩盤岩石の化学的相互作用が生じていないか？</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>岩盤岩石の生成が翼枝を移行する物質の岩盤岩石への拡散が起こりやすくなるか否か</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>支保工による岩盤劣化への影響はないか？</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>生物種の移行</td>
<td>ある</td>
<td>100℃未満となるように設計されているか？</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>母岩の温度は堆積し後の初期に地温より高い温度が存在しないか？</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>岩盤岩石の生成が翼枝を移行する物質の岩盤岩石への拡散が起こりやすくなるか否か</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>支保工による岩盤劣化への影響はないか？</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>東側導水トンネルの必要性</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>生物種の移行</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>本体計画外（生物種）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>安全機能を含む分類システムの変更</td>
<td>概念モデル</td>
<td>概念モデル選択理由あるいはデータの不確定性</td>
<td>安全評価の信頼性向上に資するため想定される確認項目</td>
<td>想定される確認方法</td>
<td>想定されるモニタリング項目</td>
<td>計測場所・部位</td>
<td>備考</td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-----------</td>
<td>-----------------------------------</td>
<td>---------------------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>------------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>核種の移動・分散と、種々の観察による解析を考慮。</td>
<td>常水層での核種の分散や収差は考慮しない。</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

注1 想定される確認方法の例は、「○・設定したモデル通りであることを確認方法、「●・設定外であることを確認方法」と意味している。
注2 想定される確認方法の「解析評価」でパラメータを取得する可能性はあるが、この行為はモニタリングとはしないこととしている。
注3 計測場所・部位の記載について、「()」内は測定を行うと設定した場合、既定の安全評価や汚染の検討に基づき確認すべき基準になる数値を表わしている。
注a 人工障壁の設置箇所に係る項目
2.4.3 モニタリング項目の絞込み及び基準の試検討

(1) 試験検の考え方

本試験検では、2.3 項において示したモニタリング項目（場の確認）の選定方法（図 2.3.6-1）に従い、2.4.1 項及び 2.4.2 項で実施した法規制の観点から閉鎖措置時にモニタリングとなりうる項目に関する検討成果を参考に、後述する 2 種類の方法によるモニタリング項目の絞り込みに関する検討を行った。なお、検討対象とするモニタリング項目は表 2.4.1-6 に示す既往検討[20]では候補計測パラメータとされていたモニタリング項目である。

試験検での絞込みは、先ず、定義した“閉鎖時の意思決定における地層処分モニタリングの制約条件”に関する計測場所に基づく検討と、2.3.6 項における 1 段目の選定基準“要求事項を満足するモニタリング（計測）手法があるのか？”と 2 段目の選定基準“ある一定期間のモニタリング結果が主命題の判断に有効か？”に基づき検討を行った。本検討では、閉鎖時の意思決定におけるモニタリングのあり方を示せたが、引き続き具体的なモニタリング計画を策定するためには、調査計画や施設レイアウト設計手法など、様々な諸条件と整合を図りながら進める必要がある。そのため、ここでは絞込みの基本的な考え方の確認に資することを目指し、実施した。

(2) 絞込み試験検（計測場所に基づく検討）

絞込み試験検（計測場所に基づく検討）は定義した“閉鎖時の意思決定における地層処分モニタリングの制約条件”を下記のように整理して、排除条件を設定し実施した。絞込み試験検（計測場所に基づく検討）の結果を表 2.4.3-1 に示す。

- 処分性能への影響の観点等から、実務発生を定置する処分施設や地下調査施設の人工バリアに関連する項目については、モニタリング対象とはしない。
- 本検討の主旨は“閉鎖時における確認行為としてモニタリングが行われる場合の計画策定（場の確認のためのモニタリングに関連）”であることから、処分場の操業中まで計測が実施される可能性がある模擬放置体を定置する地下調査施設の人工バリアや実業務発生を定置する処分施設に関連する項目については、モニタリング対象とはしない（処分施設等の閉鎖後における地中無線技術の利用については、ここでは含めない）。
- 作業安全を含む品質管理項目及び環境関連項目については、事業の円滑な推進や社会受容性の観点からは重要な項目であるが、本検討内容にはそぐわないことから排除した。
- 天然現象については、事業期間中も継続的に監視していく項目であるが、多くがサイト選定に係る要件に関連しており、サイト選定過程における最終処分施設建設地の選定時満足していることが前提条件(2.3.5 項参照)であることから、本検討からは排除した。

11 ただし 2.3.6 項に示した通り、最終的にはモニタリング計画策定者が安全性を長期にわたって確保するために行う総合的な判断に依存するものであり、ここに示した考え方や絞込み結果がモニタリング計画策定のための唯一の方策ではない。
表 2.4.3-1 結み込み試験（計測場所に基づく検討）の結果

<table>
<thead>
<tr>
<th>モニタリング項目群</th>
<th>大分類</th>
<th>小分類</th>
<th>天然バリア</th>
<th>フィードバック岩盤</th>
<th>ダイフィードバック岩盤</th>
<th>地下施設</th>
</tr>
</thead>
<tbody>
<tr>
<td>熱</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>地下水位</td>
<td>⚫</td>
<td>⚫</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(間隔)水圧</td>
<td>⚫</td>
<td>⚫</td>
<td>⚫</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>地下水流向・流速</td>
<td>⚫</td>
<td>⚫</td>
<td>⚫</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>地下水流入量</td>
<td>⚫</td>
<td>⚫</td>
<td>⚫</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>水分量</td>
<td>⚫</td>
<td>⚫</td>
<td>⚫</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>透水(量)係数</td>
<td>⚫</td>
<td>⚫</td>
<td>⚫</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ガス圧</td>
<td>⚫</td>
<td>⚫</td>
<td>⚫</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>水理</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>圧力</td>
<td>⚫</td>
<td>⚫</td>
<td>⚫</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ひずみ</td>
<td>⚫</td>
<td>⚫</td>
<td>⚫</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>変位</td>
<td>⚫</td>
<td>⚫</td>
<td>⚫</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>強度</td>
<td>⚫</td>
<td>⚫</td>
<td>⚫</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>弾性係数</td>
<td>⚫</td>
<td>⚫</td>
<td>⚫</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>割れ目幅</td>
<td>⚫</td>
<td>⚫</td>
<td>⚫</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>力学</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eh</td>
<td>⚫</td>
<td>⚫</td>
<td>⚫</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>⚫</td>
<td>⚫</td>
<td>⚫</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>化学</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>イオン濃度</td>
<td>⚫</td>
<td>⚫</td>
<td>⚫</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>コロイド</td>
<td>⚫</td>
<td>⚫</td>
<td>⚫</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>有機物</td>
<td>⚫</td>
<td>⚫</td>
<td>⚫</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>鉱物組成</td>
<td>⚫</td>
<td>⚫</td>
<td>⚫</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ガス組成・濃度</td>
<td>⚫</td>
<td>⚫</td>
<td>⚫</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>放射能</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>放射線量</td>
<td>⚫</td>
<td>⚫</td>
<td>⚫</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>放射性物質質量</td>
<td>⚫</td>
<td>⚫</td>
<td>⚫</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>微生物</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>微生物(個数及び種類)</td>
<td>⚫</td>
<td>⚫</td>
<td>⚫</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(3) 結み込み試験（判断基準と手法に基づく検討）

2.3.6 項における 1 段目の選定基準 “要求事項を満足するモニタリング（計測）手法があるのか？” と 2 段目の選定基準 “ある一定期間のモニタリング結果が主命題の判断に有効が？” にについて整理すると、次のようになる。

- “モニタリング結果が主命題の判断”とは、モニタリング結果が判断基準である①数値解析による予測値との比較及び②設計や安全評価の前提条件の確認に足る項目となる必要がある。
- ここで “ある一定期間” とは、計測手法の寿命やモニタリング項目の挙動（例えばピークの時期まで）により決定される期間である。つまり、モニタリング（計測）手法の寿命等が判断基準になるモニタリング項目の挙動の期間よりも長いことが必要となる。

ここでは、主命題の判断に有効かを確認するに当たり、先ず数値基準を提示可能か？、数値解析により予測値を提示可能か？という観点と、必要となる計測期間を踏まえて、現状の技術
で計測可能か？という観点で、2.4.2項で検討した成果等を以下のように再整理した。

1) 熱（温度）

熱（温度）に関して、第2次取りまとめ[1][36]では、次のように記述されている。

- 廃棄体及び緩衝材の温度が制限値を下回る処分坑道間距離と廃棄体ピッチの組み合わせを求めるため、ニアフィールドの温度の経時変化を熱解析により解析している。ニアフィールド岩盤の制限温度の目安としては、岩石の熱的変質を考慮して150〜300℃と設定されている。ただし、緩衝材の制限温度を100℃に設定しているため、処分坑道間距離と廃棄体ピッチは岩盤の温度では定まらない（分冊2 : 4.2.2.4）。

- 熱解析の結果、岩盤の最内側（緩衝材と接する部分）では、人工バリア定置後約20〜40年で最高温度に到達し、その後温度が低下する。人工バリア内部を含めたニアフィールドの温度分布は定置後1,000年程度で一定となり、10,000年後程度で初期地温に戻る（分冊2 : 4.2.2.4）。

- 緩衝材の再冠水挙動の評価等を目的に、解析コードTHAMESにより熱－水－応力連成解析が実施されている。この結果、緩衝材及び埋め戻し材の熱物性として、初期状態時の含水比に対応する値を用いて実施した熱解析の結果に比較し、温度はすべての位置で低くなることが示されている。このことは、ニアフィールド温度帯は緩衝材の再冠水挙動に多少なりとも影響を受けること、また、熱解析においては緩衝材及び埋め戻し材の熱物性として初期含水比状態の値を用いることが保守的であることを意味する（分冊2 : 4.3.1）。

- 緩衝材の温度を最大でも100℃未満となるように処分場のレイアウトが設計され、また、母岩の温度は、埋め戻し後の初期に地温より数十℃高い時期があるにすぎず、地下水と鉱物との化学的相互作用に大きな影響を及ぼすとは考え難いとしている（分冊3 : 4.1.2.2）。

- 熱による対流に関しては、「緩衝材から岩盤内へ核種が放出される以前に廃棄体の発熱が顕著でなくなるため、地下水流動への影響は無視できると考えられている」とされ、熱による対流の影響は考慮しないこととしている。すなわち、埋設後、緩衝材は最大100℃まで、処分坑道間の岩盤は最大で約80℃まで上昇するが、その影響は核種が放出される1,000年後には十分減少しているとされている（分冊3 : 4.2.1.2）。

- 1,000年以前については、「周辺の岩盤」の最高温度は、硬岩系岩盤の処分坑道横置き方式において約80℃である。また、軟岩系岩盤の処分坑道横置き方式においても約80℃である。この場合、「オーバーパックに封入されたガラス固化体は、緩衝材の最高温度が100℃を超えないように、適切な間隔をもって定置される」ことになっている（分冊3 : 4.3.1）。

- 第2次取りまとめにおけるレファレンスケース（結晶質岩）では、処分後1,000年オーバーパックが破壊し、1,000年後以降は、緩衝材は60℃で一定であり、周辺母岩の温度は45℃で一定であるという設定になっている（分冊3 : 5.3）。

2-86
このように温度に関しては、対象とした計測場所について、サイト選定後の地質環境に応じた監視間隔等の施設設計に応じた熱解析による経時的な予測が可能であり、さらに、解析により何らかの数値基準の提示が可能であると判定できる（現在のリファレンスケースでは処分坑道間の岩盤は最大で約 80℃）。よって、熱（温度）については閉鎖時のモニタリング実施のための基準の提示が可能であると判断した。

前述よりリファレンスケースにおいて温度は定置後約20年でピークに達するとされている。技術メニューによれば、市販の熱電対は数10年間の寿命を有しているものがあり、その仕様から判断すれば温度を“ある一定期間”モニタリングすることが可能である。

2）水理

水理に関して、第2次取りまとめ[1][36]は、次のように記述されている。

- 一般に、空洞掘削に伴い空洞周辺の岩盤には緩み域（以下、「掘削影響領域（Excavation Disturbed Zone：EDZ）」）が生じ、緩んだ領域内の透水性は増加すると考えられている（分冊1：3.5.3）。
- 熱-水-応力連成コード THAMES に、不飽和粘土中の水分移動、温度勾配による水分移動及び浸潤に伴う膨潤圧を考慮した連成モデルを使用した結果、飽和到達時間は50年以内になると推定されている（分冊2：4.3.1）。
- 温度勾配による水分移動を考慮しない場合に比較して、考慮する場合には再冠水時間は長くなる。長くなる割合は岩盤の圧力水頭が小さくなる程大きくなる。圧力水頭が1,000mの場合は約2倍であるが、0mの場合は約10倍となる（分冊2：4.3.1）。
- 熱による対流に関しては、「緩衝材から岩盤内部へ核種が放出される以前に廃棄体の発熱が顕著でなくなるため、地下水系への影響は無視できると考えられている」とされ、熱による対流の影響は考慮しないこととしている（分冊3：4.2.1.2）。
- 龟裂ネットワークの発生及水理解析コード FracMan/MAFIC は、与えられた亀裂パラメータに基づいて亀裂を発生し、構築された亀裂ネットワーク中の水理を正し
く解析できるようにコード化されていることが確認されている。またストリパ鉱山の SVC 坑道への涌水量解析や、釜石鉱山の KD-90 坑道への涌水量解析をはじめとして、これまでに数多くの原位置試験で用いられ、亀裂性岩盤における亀裂ネットワーク構造中の水理や物質移流への適用性が確認されている（分冊 3: 付録 C 1.2）。

● 第 2 次取りまとめの性能評価モデルにおいて、EDZ は人工パリアの外側境界条件に相当し、EDZ を通過する地下水流量が天然パリアへの核種放出率を規定するモデルとなっている。ここで、EDZ は均一なミキシングセルとして扱われており、レファレンスケースモデルでは、EDZ の地下水通過流量として、EDZ の透水係数が周辺岩盤より 1 オーダー大きいと仮定して算定された 0.001m³/y が採用されている（分冊 3: 5.3.1）。

● 動水勾配については、地下水位面の実測値から、レファレンスケースでは地下深部の動水勾配として地下水面の勾配の分布で最も頻度の高い 0.01 を用いる。動水勾配の分布は文献調査の結果から得られたものである（分冊 3: 5.3.2.1.3）。

このように水理に関しては、サイト選定後、閉鎖前までに取得したデータを用い水理解析を繰り返し実施し、人工パリアの設置環境（深部地質環境）が長期安全性に寄与することを示せるとともに、閉鎖時においても継続的に取得したデータを用い水理解析を実施することにより、再冠水過程のシミュレーションや地下水環境が長期安全性に寄与することの確認が可能であると考えられる。よって、水理については閉鎖時のモニタリング実施のための基準の提示が可能であると判断した。

水理パラメータについて、計測技術的な観点からは、地表からのポーリング孔により交換可能なセンサで計測が可能な項目（例えば 50 年程度であるとされている地下水位の回復状況）については、計測が可能であるものの、ニアフィールドや地下施設での計測は坑道閉鎖前のみであり、この期間に想定したパラメータ（例えば再冠水過程）の定量的な変化や予測値を確認することは困難であると考えられる。さらに、地下調査施設 1 等を用いても、水理のセンサは熱電対よりも寿命が短く、例えば 50 年程度かかる再冠水過程を埋設したセンサにて計測することは困難である。また、地表からの計測については、地質環境中の不均質性と実際に計測する地点との整合性について十分な検討が必要となると考えられる。
3）力学
力学に関して、第2次取りまとめ[1][36]では、次のように記述されている。

・ 岩盤の力学的安定性の評価においては、岩盤クリーブと緩衝材の膨潤やオーバーパックの腐食膨張による岩盤への応力の影響が考慮される（分冊2：4.3.2.3）。
・ 岩盤のクリーブにより坑道壁面が内側に変位すると、亀裂の発生をともなう掘削影響領域の拡大や、オーバーパックや緩衝材での大きな応力の発生が考えられる（分冊2：4.3.2.3）。
・ 岩盤にはオーバーパック、緩衝材の膨潤やオーバーパックの腐食膨張、岩盤クリーブ変形自体により、緩衝材からの反力を受ける（分冊2：4.3.2.3）。
・ 岩盤のクリーブ変形については、硬岩系岩盤では、坑道掘削時の弾性変形は150mm程度であり、処分後10,000年経過してもクリーブ変形はほとんど見られなかった（分冊2：4.3.2.3）。
・ 堆積岩系岩盤では、坑道掘削時の弾性変形に加え、クリーブ変形が年々増加し、処分後10,000年におけるクリーブによる変位量は、天端で21.8mm程度、側壁で15.9mm程度であった（分冊2：4.3.2.3）。
・ 初期応力に関しては、文献データと東濃地域や釜石鉱山での実測値に基づき、地下深部では鉛直応力と水平面内応力の比が1に近くなることを示した（分冊3：3.2.2）。
・ 掘削影響領域の大きさや透水性に関しては、これまでに少なからず原位置での測定がなされ、機械掘削よりも発破掘削の方が大きくなる傾向が知られている。しかし、掘削影響領域の大きさや透水性は、掘削方法以外にもサイトの応力状態（応力の大きさ、主応力の方向など）、岩盤の力学特性や亀裂特性（亀裂の方向や頻度など）、坑道の大きさや形状などのサイト固有の影響を受けるだけでなく、同じサイトでも測定場所によって大きなくらつきがあることから、定量的な評価は非常に難しいこと
とがわかっている（分冊３：4.2.1.2）。
● 岩盤のクリーブにより坑道壁面が内側に変位すると、亀裂の発生をもとない掘削影響領域の拡大や、オーバーパックや緩衝材での大きな応力の発生が考えられる（分冊３：4.2.1.3）。
● 花崗岩亀裂中への低融点金属注入試験によると、亀裂面全体に対する亀裂開口部の面積比は、<中略>亀裂面への垂直応力によって異なり 3MPa で 85〜92％、33MPa で 58〜85％、85MPa で 58〜70％と報告されている（分冊３：5.3.2.1.3）。

(4) 化学

化学に関して、第２次取りまとめ[1][36]では、例えば次のように記述されている。
● 現時点で緩衝材の仕様として乾燥密度を 1.6 Mg m⁻³ とすると、その間隙水の pH が、炭素鋼の不動態化が起こる 9.5 以上になるためには、地下水の pH は約 11.5 以
上でなければならないことがわかる。よって、通常の地下水環境で緩衝材中において炭素鋼オーバーパックが不動態化する可能性は低いといえる（分冊2: 4.1.1.3.1）。

● 深部地下水の溶存酸素濃度は低く還元性の条件であるが、処分坑道の掘削、操業及び埋め戻しの際に、地上から持ち込まれる酸素により、処分場閉鎖直後は通常の深部地下水の溶存酸素濃度よりも高いレベルにあると考えられる。しかし、オーバーパックの腐食過程及び緩衝材に含まれる不純物の酸化過程による消費ならびに周辺岩盤中への散逸などにより、やがてオーバーパック周辺の溶存酸素濃度は低下していくと考えられる。溶存酸素濃度の低下とともに、オーバーパック周辺の環境は酸化性から地下深部本来の環境である還元性の環境に戻ってゆくと考えられる（分冊2: 4.1.1.3.1）。

● 地球化学的解釈によれば、数十年から数百年程度の時間で処分場は、深部地下本来の還元性条件に戻るとされている。Wersin et al. (1994) は、処分場が、本来の還元性条件に戻るのに要する期間を最大300年と見積もっている（分冊2: 4.1.1.3.1）。

● 埋め戻し後の初期の期間中は、緩衝材中や周辺岩盤中に酸素が付着・残存すると考えられるものの、ペントナイト中の黄鉄鉱、オーバーパックやその腐食生成物の酸化／還元反応により、溶存酸素は消費される。圧縮ペントナイト中に散布の黄鉄鉱による溶存酸素の消費は、Manaka et al. (1999) の実験においても確認されている。また、緩衝材中の酸化還元状態の変遷に関するモデル解析においても、オーバーパック破損時期までに建設後において処分場に持ち込まれた酸素は消費され、間隙水化学への影響は無視できると推測されている（分冊3: 4.3.1）。

![図2.4.3-4 試験溶液のpHと間隙水のpHの関係](image)

このように、化学的にはpHのように判断のための何らかの基準の提示が可能なパラメータもあるものの、有機物やコロイドのように核種移行に有効な影響は与えず、地層処分システムへの影響が小さいと考えられるため、現行の安全評価の解析では考慮されておらず、詳細な検討は、今後の具体的な地質環境条件での研究に依存するものであるとされているも
のもある。また、化学の数値解析については、pH等の解析手法が整備されつつあるが、場の理解の向上に適用しているのが現状であり、予測できるレベルに達していないと判断した。

計測に関し、現状の安全評価書において判断基準（地下水のpHは約11.5以下でなければならない）が提示されているpHについては、対象とした場所で閉鎖時に計測を行い、その値を直接確認することは可能である。しかし、例えば、地下調査施設1等を用いて、例えば50年程度かかる再冠水過程を埋設したセンサにて計測することは困難である。一方、Ehのように現時点ではその回復メカニズムの要因が複雑で完全には定性的に理解されておらず、その回復時期も数百年後であることから、閉鎖時の計測結果より直接確認することは困難である。

5) 放射能

放射能に関しては、サイト環境や設計に基づき、管理区域内の放射線量については既往の解析技術による把握が可能であるとともに、“管理区域における外部放射線に係る一週間の線量当量、空気中の放射性物質の一週間についての平均濃度及び放射性物質によって汚染された物の表面の放射性物質の密度”は第一種埋設規則で記載することが定められており、今後指針類等による基準が設定されると考えられる。また、地下水中の放射性核種濃度についてもオーバーバック破損後の核種移行は解析的に行うものであり、閉鎖時においても取得した地質環境等のデータ等を使用した場の条件を用いた解析を行うことは可能であることから、放射能パラメータについては閉鎖時のモニタリング項目としての適用性を有すると判断した。

<table>
<thead>
<tr>
<th>項目</th>
<th>基準値*1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 外部放射線に係る線量</td>
<td>3ヶ月間につき1.3mSv</td>
</tr>
<tr>
<td>2. 空気中の放射性物質の濃度</td>
<td>3ヶ月間の平均濃度が濃度限度*2の1/10</td>
</tr>
<tr>
<td>3. 放射性物質によって汚染された物の表面の放射性物質の密度</td>
<td>表面密度限度*3の1/10</td>
</tr>
</tbody>
</table>

*1：「試験研究の用に供する原爆等の設置、運転等に関する規則等の規定に基づき、線量限度等を定める告示」第2条第1項より（科学技術庁、1988）

*2：放射性物質の種類ごとの濃度限度値とともに、数放射性物質が存在する場合及び放射性物質の種類が明らかでない場合の濃度限度値が*1に示す告示に定められている。

*3：α線を放出する放射性物質に対しては48μg/cm²、α線を放出しない放射性物質に対しては406μg/cm²とするが、*1に示す告示に定められている。

表 2.4.3-2 放射線管理区域に関する基準*1219]

12 地層処分場における放射線管理区域に関する基準は今後制定される
放射能、特に放射性物質について人工バリア破損後の核種移行評価に係わる確認は、時間スケールから判断して現実的ではなく、むしろ閉鎖時には想定外の異常がないことを検知するためにモニタリングを利用するが必要であると考えられる。

また、放射能に関しては、地下調査施設1等を用いて、例えば50年程度かかる再冠水過程を埋設したセンサにて測定することは困難である。

6) 微生物

微生物の存在は、地下水中の酸化還元反応速度に影響を与えるが、平衡を仮定した地下水水質形成モデルの中で、その影響を考慮していると考えることができ、岩盤中の微生物や有機物は核種移行に有意な影響を与えず、地層処分システムへの影響は小さいと考えられるため、現行の安全評価の解析では考慮されていない。

詳細な検討は、今後の具体的な地質環境条件での研究に依存するものであるとされているが、実際は定量的な影響評価を行う段階にまで研究が進んでいないのが現状である。

おそらく事業を進めていく上で、微生物の個体数や種類は調査段階より定期的に地下水中や坑道の排水内で計測され把握されていると考えられ（場の理解のモニタリング）、そのデータを利用した解析評価が実施される可能性があるものの、現段階での判断基準はなく、さらに処分場の閉鎖時にその影響を確認できるデータが得られれば考えにくいことから、ここでは、微生物については、閉鎖時の場の確認行為としてモニタリングの項目とはならないとした。今後、サイトが決定し、適切な微生物の把握手法が確立するとともに、地下環境条件の変遷（例えば操業中の酸化状態から閉鎖後の還元状態の回復など）に応じた微生物の種類や個体数の予測手法が確立すれば、何らかの判断基準を設けその基準を確認することとなるかもしれないものの、現時点では、閉鎖時のモニタリング項目としての適用は困難であると考えた。

上記の検討成果を踏まえ、主題の判断に有効かを確認するに当たり、先ず数値基準を提示可能か？、数値解析により予測値を提示可能か？という観点で表2.4.3-1に示すモニタリング

13 評価モデル上、微生物の存在は、地下水中の酸化還元反応速度に影響を与えるが、平衡を仮定した地下水水質形成モデルの中で、その影響を考慮していると考えることができる。
項目の大分類で検討（判断基準に基づく検討）を実施した。ここで対象は、地下調査施設 I 緩衝材、地下調査施設 II 埋め戻し材とした。整理結果を表 2.4.3-3 に示す。主命題の判断に寄与できるパラメータは、熱、水理、力学及び放射能であると考えられる。

表 2.4.3-3 結果（判断基準に基づく検討）

<table>
<thead>
<tr>
<th>大分類</th>
<th>検討結果（地下調査施設 I 緩衝材、地下調査施設 II 埋め戻し材）</th>
</tr>
</thead>
<tbody>
<tr>
<td>熱</td>
<td>設計条件の数値（例えば、緩衝材 100℃以下）が示されており、解析技術もある。</td>
</tr>
<tr>
<td>水理</td>
<td>解析技術があり、それにに基づき目標値（例えば、再冠水の時間）を設定できる。</td>
</tr>
<tr>
<td>力学</td>
<td>解析技術があり、設計条件の数値（例えば、クリープ変形量）を示すことができる。</td>
</tr>
<tr>
<td>化学</td>
<td>前提条件（例えば、pH11.5 以下）などを提示可能だが、予測が可能なレベルの解析技術は無い。</td>
</tr>
<tr>
<td>放射能</td>
<td>設計条件の数値（例えば、基準値以下）を示すことが可能であり、解析技術もある。</td>
</tr>
<tr>
<td>微生物</td>
<td>場の理解の過程で、現状を理解するだけのレベルである（予測が可能なレベルの解析技術は無い）。</td>
</tr>
</tbody>
</table>

注）この検討において連成解析は考慮していない。また、実際の解析技術については初期条件（例えば、不均質性）を十分に把握できないので、正確な予測は困難である。

次に、表 2.4.3-3 で数値基準を提示でき、数値解析により予測値を提示可能なパラメータ（熱、水理、力学、放射能）に関し、必要となる計測期間を踏まえて、現状の技術で計測可能か？という観点で、モニタリング項目の大分類で検討（手法に基づく検討）を実施した。ここでの対象は、地下調査施設 I 緩衝材、地下調査施設 II 埋め戻し材である。整理結果を表 2.4.3-4 に示す。

表 2.4.3-4 結果（手法に基づく検討）

<table>
<thead>
<tr>
<th>大分類</th>
<th>検討結果（地下調査施設 I 緩衝材、地下調査施設 II 埋め戻し材）</th>
</tr>
</thead>
<tbody>
<tr>
<td>熱</td>
<td>市販の熟電対は 20 年強の寿命を有しているものもあり、例えば、緩衝材のピーク（リファレンスケースで約 20 年）を計測可能である。</td>
</tr>
<tr>
<td>水理</td>
<td>熱電対よりも寿命が短く、例えば、50 年程度かかる再冠水過程の計測は困難である。</td>
</tr>
<tr>
<td>力学</td>
<td>熱電対よりも寿命が短く、例えば、50 年程度かかる再冠水過程の計測は困難である。</td>
</tr>
<tr>
<td>放射能</td>
<td>例えば、埋め戻し内での計測は困難である。</td>
</tr>
</tbody>
</table>

主命題の判断に寄与でき、かつ、原位置で計測可能なパラメータとして、本検討では試験的な絞り込みを行ったが、具体的なモニタリング計画の検討においては、判断対象とすべき具体的な命題を踏まえ、調査計画や施設レイアウト設計手法などと、様々な諸条件と整合を図りながら進める必要がある。
2.5 まとめ及び今後の課題

2.5.1 本検討のまとめ

本検討では、地層処分事業におけるモニタリングの重要性が再認識されだしていることを考慮し、サイト調査前から最終閉鎖後の各段階を対象に、地層処分におけるモニタリングとして、地層処分事業において最も重要と考えられる閉鎖時の意思決定の観点から検討を行い、地層処分の基本的考え方と現状のモニタリング技術を踏まえ、地層処分モニタリングのあり方として、①閉鎖時の意思決定における地層処分モニタリングの制約条件、②閉鎖時の意思決定のための基本論理構造及びモニタリングの役割、③モニタリング計画検討方法（モニタリング項目の選定方法、及びモニタリング結果の判断基準の考え方）について取りまとめた。モニタリングは一般国民を含めた社会との合意形成の観点からも必要性が示されているが、ここでは技術的観点に絞って取りまとめている。

本検討で取りまとめた“閉鎖時の意思決定における地層処分モニタリングのあり方”を整理すると、下記のようなになる。

①閉鎖時の意思決定における地層処分モニタリングの制約条件

- 制約条件としては、モニタリングの基本的な要件が、「モニタリングの行為がバリアの機能や性能を損なわない。」であるため、「処分場の処分坑道、人工バリアシステムでのモニタリングは実施しない（閉鎖時の判断に活用できない。）」ことが基本となる。
- 地中無線通信技術にはケーブルが不要であるというメリットがあるため、「モニタリングの行為がバリアの機能や性能を損なわない。」ことを持続しつつ、定義した“閉鎖時の意思決定における地層処分モニタリング実施時の制約条件”を更新できる可能性を有している。よって、今後モニタリングのあり方の検討を進めるためには、地中無線通信技術の開発を併せて実施することが望まれる。

②閉鎖時の意思決定のための基本論理構造及びモニタリングの役割

- 処分場の操業後、「現在の状況において閉鎖することが妥当である。」ことを示すためには、“サイト選定”に係る要件と安全評価結果である被ばく線量が基準値以下であることを前提条件としたうえで、「工学的な対策が妥当である。」と「安全評価上妥当である。」の2つの命題が共に真であることが必要となる。実際のプロジェクトにおいて時系列を考えれば、工学的な対策が適切に実施された上で、安全評価による安全性の確認となるが、論理構造としては2つの命題共に真であることが必要となる。この論理構造は、事前に実施されている調査研究や実際に原位置で取得される様々な知識・情報によりサポートされることとなる。
- この論理構造においてモニタリングの結果は、この主命題を支持するエビデンスになる場合もあるが、結果によっては不支持するエビデンスの場合もあり得る。そのため、不支持するエビデンスの場合の取り扱い方法は、十分に注意する必要がある。

③モニタリング計画検討方法

2-95
モニタリング項目の選定においては、定義した“閉鎖時意思決定における地層処分モニタリング実施時の制約条件”を満足することが重要であり、そして技術的観点で実施可能なモニタリング項目であること（要求事項を満足するモニタリング（計測）手法があること）、かつ実施する意義があるものであること（ある程度のモニタリング結果が主命題の判断に有効であること）が必要となる。

各ケースにおけるモニタリングの判断基準は、“場の理解”にモニタリングが適用される場合、“モニタリング結果と場の理解（モデル）との間で、検証が取れていること”であり、“場の確認”のうち、①数値解析による予測値との比較に適用される場合は、“モニタリング結果が、予測範囲に入っていること”であり、②設計や安全評価の前提条件の確認に適用される場合は、“モニタリング結果が、設計や安全評価の前提条件を満たしていること”となる。

処分事業では、安全性を確保できる条件において“埋設すること”が目的であるため、各段階の中で「処分場の閉鎖」に向けた意思決定が最も重要となり、この意思決定に先立ち、必要なモニタリング情報は事前に取得しておくことが求められる。また、閉鎖後のモニタリングが要求された場合、実施すべきモニタリングは、長期安全性の観点から実施される閉鎖時の意志決定で活用されたモニタリング項目のうち、実施可能で、かつ要望されるモニタリングを継続して実施していくことが長期安全性評価を行ううえで重要となる。

この閉鎖時の意思決定における地層処分モニタリングのあり方は、今後サイト調査前から最終閉鎖後の各段階を対象に一貫性を持ったモニタリング計画の検討と、社会との合意形成に向けたモニタリングに関する議論の起点になるものである。

2.5.2 今後の検討の方向性

安全保障原則に基づく閉鎖時の意思決定のための基本論理構造を具体的に展開していくために、対象とする処分サイトの特性を踏まえ、安全性を長期に亘って確保するための“戦略”に基づきトップダウンで展開していくことが重要となる。この地層処分の安全性を示していく戦略として最近はセーフティケース14の概念が広く用いられている。今後、モニタリングの適用という視点で、セーフティケースに関する検討成果を分析し、論理構造をトップダウンで展開していく必要がある。このとき留意すべきことは、できるだけモニタリングに依存しない論理構造とすることである。

プロセスの妥当性をサポートする“場の理解”に用いられるモニタリングは、閉鎖時の意思決定の前段階において実施されることが求められることとなり、結果の妥当性をサポートする“場の確認”に用いられるモニタリングは判断基準に関連しベースライン等の結果を必要とする。また、閉鎖後のモニタリングが要求された場合には、実施可能であることを前提に、閉鎖時の意思決定のためのモニタリングと整合を図ることが必要となる。そのため、サイト調査前から最終閉

14 OECD/NEA による定義：ある特定の（放射性廃棄物）処分場の発開段階において、処分場の長期の安全を裏付ける論拠を収集したもの[42]。
築後の各段階を対象に一貫性を持ったモニタリング計画を検討するためには、今後、この閉鎖時
の意思決定における地層処分モニタリングのあり方に準拠して実施していくべきである。

モニタリングの重要性は世界的に認識されており、2009 年 5 月には欧州におけるモニタリング
の共同研究が、17 の研究機関の参加（欧州の研究機関に加え、米国 Sandia と原環センターが参
加）により、EURATOM の FP7 プログラム MoDeRn として開始されている。この共同研究では、
地層処分事業の各段階（サイト調査から始まり、建設、操業、閉鎖及び閉鎖後の制度的管理）に
おいて、ステークホルダの関与を踏まえモニタリングに関する開発及びモニタリングの実施に向
け参照すべきフレームワークの提供を目指し、モニタリングの目的と方針、最先端技術の調査と
技術開発、各地下研での原位置試験、及びケーススタディに関する検討が行われている。この共
同研究 MoDeRn において、特に注目されている点は、社会科学的側面からモニタリングを重視し
ており、モニタリングの目的と方針の検討の中で、社会科学との対話を配慮している点である。
その理由としては、一般国民を含め地層処分への理解促進を考えると、場の理解の過程を独立し
た指標（モニタリング結果）で確認するという考え方が分かり易いためである。高レベル放射性
廃棄物の地層処分事業は公募に基づき処分場の建設地選定が終了した後でも、建設や閉鎖の段階
ごとに地元や一般国民を含めた社会との合意形成を行う必要がある。閉鎖後安全性はモニタリン
グに依存することなく進める必要があるが、前記した背景を考慮すると、社会との合意形成を行
う一環として、モニタリングの実施が求められる可能性が高い。本検討では技術的視点で長期安
全性の評価のためのモニタリングの検討に資する「閉鎖時意思決定における地層処分モニタリ
ングのあり方」を取りまとめたが、今後は世界的な検討の方向性を示すと考えられる MoDeRn で
の検討成果等を踏まえ、社会科学の観点も考慮し、具体的なモニタリング計画を提案していく必
要がある。

本章で提示した閉鎖時意思決定における地層処分モニタリングのあり方は、現状のモニタリ
ング技術に基づいて取りまとめている。現状の計測技術においては、長期を対象とした地層処分
という観点でみると、安全性とデータの品質の向上（例えばケーブルレス）や、長期耐久性等、
まだ多くの開発要素が残されている。そのため、本調査では、安全性とデータの品質の向上的観
点で地中無線通信技術の調査研究（第 4 章参照）、及び長期耐久性の観点で光ファイバセンサ測定
技術の調査研究（第 5 章参照）を進めている。今後、ニーズとシーズの両面から、地層処分モニ
タリングの基本的な考え方を整備していくことが、重要となる。
参考文献

[4] 特定放射性廃棄物処分に関する法律(平成12年6月7日法律第百十七号／最終改正：平成19年6月13日法律第八四号)

[9] 核燃料物質, 核燃料物質及び原子炉の規制に関する法律(昭和三十二年六月十日法律第百十六号／最終改正：平成二一年七月三日法律第六九号)

[10] 核燃料物質, 核燃料物質及び原子炉の規制に関する法律施行令(昭和三十二年十一月二十一日政令第三百二十四号／最終改正：平成一九年十二月一九日政令第三十八号)

[12] 核燃料物質又は核燃料物質によって汚染された物の第一種廃棄物埋設の事業に関する規則(平成二十年三月二十八日経済産業省令第二十三号／最終改正：平成二一年三月三一日経済産業省令第一八号)

[13] 特定廃棄物埋設施設又は特定廃棄物管理施設の設計及び工事の方法の技術基準に関する規則(平成四年三月二十六日総理府令第四号／最終改正：平成二〇年三月二十八日経済産業省令第二四号)

[14] 加工施設, 再処理施設, 特定廃棄物埋設施設及び特定廃棄物管理施設の溶接の技術基準に関する規則(平成十二年十一月六日総理府令第百三十三号／最終改正：平成二〇年三月二十八日経済産業省令第二四号)

[17] 原子力安全・保安部会：原子力発電機構の技術英字品の性能規定化と保守基準の活用に向けて（平成14年7月22日）(2002)。
[18] 原子力発電環境整備機構（NUMO）：処分場の概要、高レベル放射性廃棄物の最終処分施設の設置可能性を調査するための公募関係資料（2007年10月）
[19] 原子力発電環境整備機構（NUMO）：高レベル放射性廃棄物地層処分の技術と安全性－「処分場の概要」の説明資料－、NUMO-TR-04-01（2004年5月）
[20] （財）原子力環境整備機構・資金管理センター：平成19年度地層処分技術調査等委託費 高レベル放射性廃棄物処分関連処分システム工学要素技術高度化開発報告書（第1分冊）－遠隔操作技術高度化開発－（2008）。
[21] （財）原子力環境整備機構・資金管理センター：平成13年度高レベル放射性廃棄物処分事業推進調査報告書－モニタリング機器技術高度化調査－（その1 地層処分におけるモニタリングの検討）（2002）。
[22] （財）原子力環境整備機構・資金管理センター：平成16年度地層処分技術調査等 モニタリング機器技術高度化調査報告書（その1）地層処分モニタリング技術情報のメニュー化（2005）。
[24] 総合エネルギー調査会：原子力研究会中間報告－高レベル放射性廃棄物処分事業の制度化のあり方－、平成11年3月23日（1999）
[25] 原子力発電環境整備機構（NUMO）：放射性廃棄物の地層処分事業について、分冊1、処分場の概要（2009）
SKB: Monitoring during the stepwise implementation of the Swedish deep repository for spent fuel, SKB R-04-13, Svensk Kärnbränslehantering AB, ISSN 1402-3091, 2004.

(財)原子力環境整備促進・資金管理センター: 放射性廃棄物処分の安全規制に係る海外の動向（放射性廃棄物処分の諸外国の安全規制に係る動向調査），総合資源エネルギー調査会 原子力安全・安保部会 廃棄物安全小委員会（第34回）配付資料, 平成20年7月3日 http://www.meti.go.jp/committee/materials/downloadfiles/g80703c07j.pdf

第３章 モニタリング技術メニューの整備
第3章 モニタリング技術メニューの整備

3.1 目的及び実施概要

地層処分モニタリング技術メニューは、地層処分における各段階での意義・考え方や要件を勘案しつつ、モニタリングに係る体系的な技術的選択肢を提示するとともに、知識情報マネージメントツールとしての機能を有するものであり、今年度も引き続き整備を行った。

技術メニューの整備については、別途検討されているモニタリングの役割と適応可能範囲に関する検討成果及び使用者からの意見を踏まえ、項目の見直しを行うとともに、プログラムの一部改良を行い、計測時期と計測場所に基づき結果を表示できる機能を追加した。

また、技術情報の追加においては、昨年度初回に整備した機器情報を精査し、機器運用の適応性、運用実績の更新・見直しを行うとともに、技術メニューならびに技術情報データベースに追加・更新した。

3.2 モニタリング技術メニューの整備

技術メニュー（技術情報データベースを含む）のシステムについて、使用者の利便性を向上させることを目的として改良を実施した。本年度の機能追加・改良は次のとおりである。

① ツリー表示の改良（項目の見直し） （技術メニュー）
② 技術要件と計測方法候補一覧の表示方法の改良 （技術メニュー）
③ 簡易ツリーオプションの追加 （技術メニュー）
④ 処分施設での人工バリア関連計測データの選択機能の追加 （技術メニュー）
⑤ 計測時期と計測場所に基づく結果の表示機能の追加 （技術メニュー）
⑥ ツリーアイコンの項目名とデータとのデザイン変更 （技術メニュー）
⑦ 検索機能の強化 （技術情報データベース）
⑧ 管理者ユーザによる編集機能の追加 （技術メニュー）
⑨ 一般ユーザからのコメント収集機能の改良 （コメント登録部分）

3.2.1 ツリー表示の改良（項目の見直し）

本改良は、技術メニューの左ペインにあるツリー表示の情報を簡潔化を図ることを目的として見直し・再整理を実施した。

3.2.2 技術要件と計測方法候補一覧の表示方法の改良

右ペインに表示される、「技術要件」と「計測方法候補一覧」を整理し、一つの画面で表示するようにプログラムの改良を行った。本年度の最終成果イメージを図 3.2.2-1 に示す。

図 3.2.2-1 に示すように、右ペインの上部に当該モニタリングの条件（5W）を、中央部に技術
図 3.2.2-1 技術要件と計測方法候補一覧の表示方法の改善結果のイメージ

3.2.3 簡易ツリーオプションの追加

現在の技術メニューのツリー構造は専門的知識を有する利用者の為に残し、これとは別に簡易的なツリー構造を示すオプションを追加した。従来のツリーと新規に追加した簡易ツリーの構造は次のとおりとした。

◆従来のツリー構造

ユーザー→目的→計測時期→計測場所・部位→計測パラメーター→計測方法候補

◆簡易ツリー構造

計測場所・部位→計測パラメーター→計測方法候補

具体的な機能としては、ツリーを切り替えるためのボタンを画面上（左ペイン）に追加し（図3.2.3-1 参照）、そのボタンを押下す毎に、既存のツリーと簡易ツリーが切り替わるようにした。デフォルト画面は簡易ツリーとした。
図 3.2.3-1 簡易ツリー並びにツリー切り替えボタン（赤丸部分）のイメージ

なお、計測場所・部位と計測パラメータが同じでも、計測時期が異なると、使用可能な機器が限定される場合がある。この場合に対応するため、簡易ツリーにおいては、計測方法候補として、まず、図 3.2.3-2 に示すような計測方法候補と適用できる計測時期のマトリクス表を技術要件とともに右ペインに表示させることとした。図 3.2.3-2 のマトリクス表では下記の情報が表示できるようにした。

・ 各測定方式の計測可能時期を「●」で示す（計測場所・部位とパラメータ(2W)が該当する機器のみ）
・ パラメータは該当するが、計測場所・部位が該当しない機器をグレーアウトする
図 3.2.3-2 簡易ツリーにおける計測方法候補の表示画面イメージ（2W）

さらに、ユーザは図 3.2.3-2 のマトリクス表に示されている各計測時期の名称を押下することにより、計測場所・部位とパラメータ（2W）に加えて計測時期も該当する機器の情報を技術要件とともに表示することができるようになっている。イメージを図 3.2.3-3 に示す。図 3.2.3-3 は図 3.2.2-1 と類似しているが、右ページの上部に示される当該モニタリングの条件は 5W ではなく 3W（When, Where, What）のみとなる。
図 3.2.3-3 簡易ツリーにおける計測方法候補の表示画面イメージ（3W）

3.2.4 処分施設での人工バリア関連計測データの送移機能の追加

第 2 章にて詳述したように、処分施設での人工バリア関連の計測は現実的でなく、実際は先行的に行なわれる地下調査施設や URL で代替計測を行い、そのデータで確認を行う可能性が高い。このため、技術メニューにおいてもこの考え方を反映し、下記の技術メニュー操作例を想定し、該当するパラメータに関して新規機能並びにプログラムを追加した。

a. 技術メニューのツリーで「処分施設⇒人工バリア⇒緩衝材⇒pH」を指定（図 3.2.4-1 の左ペイン）

b. 技術要件と計測方法候補一覧（右ペイン）にある、「現在計測可能な機器がないこと」や「当該パラメータを把握するには事前の地下調査施設やURLに関する情報を参照」とするリンクボタンを押下（図 3.2.4-1 の右ペイン）

c. 地下調査施設（あるいは URL）での pH 計測機器の技術要件と計測方法候補一覧がポップアップ表示（図 3.2.4-2）。図 3.2.4-2 の表示は「URL⇒人工バリア⇒緩衝材⇒pH」の場合の例。
図 3.2.4・1 処分施設での人工バリア関連計測データの遷移機能イメージ（その 1）

図 3.2.4・2 処分施設での人工バリア関連計測データの遷移機能イメージ（その 2）

即ち、本新規機能としては、単にツリーに該当パラメータが表示されないのではなく、表示は
されるものの、技術要件に「現在計測可能な機器がないこと」や「当該パラメータを把握するには事前の地下調査施設やＵＲＬに関する情報を参照」として、該当する代替情報にリンクさせることとした。

3.2.5 計測時期と計測場所に基づく結果の表示機能の追加

第2章で詳述したモニタリングの時期と場所に関する整理を反映し、計測時期と場所とパラメータのマトリクス表示をアウトプットとする表示機能を追加した。ツリー表示機能とマトリクス表示機能の入れ替えは、図 3.2.5-1 に示すようなサブメニュー（技術メニューを閲覧中のみ表示される）を用いて実施するものとした。

![図 3.2.5-1 技術メニューのサブメニューのイメージ](image)

具体的なイメージを図 3.2.5-2〜図 3.2.5-4 に示す。図 3.2.5-2 のとおり新規に追加する表示機能では、行を場所、列を時期とし、セルに関連パラメータを列挙した。
図3.2.5-2 計測時期と場所とパラメータのマトリクス表示のイメージ
（計測時期、計測場所・部位、パラメータ大分類選択画面）

図3.2.5-3 計測時期と場所とパラメータのマトリクス表示のイメージ
（パラメータ詳細選択画面）
ユーザは、各パラメータのリンクをクリックすると、関連する機器が技術要件とともに表示される。表示のイメージ（図 3.2.5-4）は図 3.2.3-3 の右ペインと同様であり、右ペインの上部に示される当該モニタリングの条件は 5W ではなく 3W（When, Where, What）のみとなる。

3.2.6 ツリーアイコンの項目名とデータとのデザイン変更

ツリー表示の煩雑さを回避することを目的として、図 3.2.6-1 に示すイメージのように目的や計測部位等のアイコンを変更した。
3.2.7 検索機能の強化（技術情報データベース）

現状の検索機能では、例えば、フリーワードで「pH」と入力した場合には、機器の名称やその他データベース情報に「pH」という用語が含まれている機器のみが検索されるが、pH 計の一覧を見たいといったユーザのニーズに答えるため、pH を測定する機器であれば全てが検索されるように改良した。

当該改良により、技術情報データベースのフリーワード検索において、パラメータ名を入力した場合にそのパラメータを測定する機器が検索できるようになった。

3.2.8 管理者ユーザによる編集機能の追加

技術データベースでの提供情報を更新する際の利便性を向上させるため、下記の文書情報について管理者ユーザによる編集が可能なように機能及プランクプログラムの追加を実施した。

◆ 目的の説明
◆ 技術要件

これらの編集は、文書の表示画面にある「編集」ボタンを押下することで、図 3.2.8-1 に示すような HTML イメージの編集画面を起動し、文書の編集、登録を行うものとした。

![図 3.2.8-1 記述の編集画面のイメージ](image)

なお、複数のユーザがそれぞれに編集を実施すると、元の文章や最新の文章が何かわからなくなってしまうという不具合が発生する可能性が高いため、このため、ここでは、記述の修正履歴を管理する機能も併せて追加した。管理方法としては、記述をバージョン管理することとした。その時点での最新のバージョンの記述に対して修正を加えると、新たなバージョンの記述が修正の実施者ならびに日時とともに登録されるようにした。この際、旧バージョンの記述は削除せず残して
おくこととし、管理者ユーザがその内容を把握できるようにした。

3.2.9 一般ユーザからのコメント収集機能の改良

コメント収集する機能に改良を加え、どの画面を閲覧していた際のコメントかを区分できる機能を追加した。

具体的には、ユーザがコメントを書き込むために「ご意見」ボタンをクリックした際に表示されるコメント登録画面（図 3.2.9-1）において、コメントをする対象を選択できるようにした。なお、図 3.2.9-1 においては、対象として「技術メニュー全体」と「目的の解説」が表示されており、これら選択肢は、ユーザが「ご意見」ボタンをクリックした際に閲覧していた画面の種類に応じて変化するようにした。

さらに、コメントにファイルを添付することを可能とした。ただし、サーバへの負荷を低減するため、添付ファイルの容量に制限を設けることとした。

図 3.2.9-1 コメント登録画面のイメージ

3.2.10 管理者ユーザによるライブラリ及びリンクへのデータ追加機能の追加

情報の拡充を容易とする為、ライブラリ及びリンクついて管理者ユーザによるデータの追加が可能なように機能及びプログラムの追加を行った。管理者ユーザは現状のライブラリ及びリンクの構成に従って、データの追加を実施することができる。なお、ライブラリ及びリンクの構成の変更は実施できないこととした。
3.3 モニタリング機器情報の整理

これまでに機器情報データベースの整備を目的として収集した各種モニタリング機器に関する情報を、運用を踏まえた観点から精査・整理すると共に最新の機器に関する情報を追加した。また、各種の計測機器のモニタリングへの適用性を判断する場合、機器の寿命と交換性が重要な要素の一つとなるため、各種計測機器の交換性についても調査を実施した。これらの検討により、技術メニューのデータベースとしての信頼性を向上させた。

3.3.1 調査方法

技術メニューにて提供する情報の基礎となる下記の表を対象として、情報の精査・整理を実施した。

① 測定機器の詳細に関する表（Excel ファイル）
以下、説明の便宜上「機器情報データベース」と称する。
② 測定パラメータ・場所・機器の関係を示した表（Excel ファイル）
以下、説明の便宜上「モニタリングデータベース」と称する。

上記の表は昨年度までの調査にて搭載されているモニタリングに関する機器情報は約 230 件である。これらの機器情報に関連する大学・研究機関・処分実施主体等の公開文書、文献データベース、ウェブサイト及びカタログ・技術資料等により情報を収集し、測定範囲、測定精度、分解能、適用環境、耐久性等の機器仕様を精査した。これらの結果を機器情報データベースに反映させ、データベースを整備すると共に、各々の機器のモニタリング業務における運用実績を調査し、機器運用の適応性について整理した。

3.3.2 機器情報データベースの整備

既往の機器情報データベースの登録情報を精査し、これを整理するにあたり、機器情報データベースの機器が複数のパラメータに関係する場合があるため、データ更新の効率化を目的として、機器とパラメータとの関係を機器情報データベースに追加した（図 3.3.2-1）。

また、個々の機器と複数のパラメータの関連付けについては、既往のモニタリングデータベース上の関連付けを参考にして、上記①の機器データベースの関連付け欄に以下のコードを記入し、情報の精査内容を反映した。

- センサー 1
- 測定装置、測定システム 2
- 複数のパラメータ取得を目的とした測定装置 3
- ポーリング孔を利用した測定装置、方法 10
- 地表、空中、水中からの物理探査方法、装置 20
- 各種センサ・地盤計測技術を用いた研究開発 30
- 既往 DB に登録されているが、現時点での情報源を確認出来なかったもの 40
- 既往 DB に登録されているが、モニタリング手法とは言えないもの 50

3-12
なお、機器情報データベースの機器ID番号を固定番号とし、別途用意した資料（機器のカタログや技術情報を含む）のインデックス番号を対応させた。

3.3.3 モニタリングデータベース

機器情報データベースを整理拡充する作業に伴い、既往のモニタリングデータベースに、機器IDの列を追加し、機器情報データベースとの関連付けを容易にした（図 3.3.3-1）。この改良により、機器情報データベースに追加したパラメータの中分類と、各機器情報とのマトリックス表を合わせて確認することにより、機器IDの選択を容易とすることにより、今後のデータ拡充の利便性を向上させた。
3.3.4 情報収集と保存

登録情報の精査・整理において、機器情報に関連する大学・研究機関・処分実施主体等の公開文書、文献データベース、ウェブサイト及びカタログ・技術資料等により情報収集を実施した。情報の収集と保存においては、利用者の利便性に留意して実施した。

既往の一覧表に記されている機器情報の参照先として、インターネット上のアドレスが記載されている場合、リンク先での情報の更新または消失の可能性が存在する為、これを確認する作業を実施した。指定されているアドレスで該当する情報に辿り着けない場合、メーカー名、機器名、型名、商品名、計測方式などを基に再調査を実施し、該当すると考えられる類似製品について調査を実施し、確認できた情報を追加した。

Web 上で公開されている技術情報は mht ファイルまたは pdf ファイルとして保存し、機器 ID 名ごとのフォルダに収録し、検索上の利便性に留意した。
3.4 新規モニタリング機器のデータベースへの追加

3.4.1 調査方法

モニタリング技術として適用できる可能性を有する、国内外の計測機器及び探査手法の検討を実施した。各々の機器や手法についての技術資料を精査した後、有用と判断された情報について、データベースへの追加を実施した。機器情報の調査においては、過去 10 年間の情報を中心として情報収集を実施し、下記の機器を主体として検討した。

① 既存のデータベースに未掲載の機器
② 既存データベースに記載された機器に類似した機器を製造しているメーカーの機器
③ 測定パラメータに対応した機器のうち、既存の掲載機器とは異なる測定手法を用いた機器
④ 一般向けに販売されている製品ではないが、パラメータ測定上、重要と判断された開発段階にある機器

3.4.2 機器情報データベースへの追加

上記の検討の結果、新規に 231 件の機器を登録した。これにより、当初の 224 件と合わせてデータベースには 455 件の機器が登録され、大幅な情報の拡充が実施された。

なお、今回の情報の拡充にあたり、大学・研究機関・地層処分関係機関等の公開文書では、使用した機器のメーカー名が記載されていることは少なく、特定の機器欄に適用例を記載することは困難であった。しかし、モニタリング技術として重要な内容を含んでいると考えられる、各種センサ・地盤計測技術を用いた研究開発については、公開文書(主として科学技術論文)に記載されている研究者名を記載し、データベースへの追加を実施した。

3.4.3 情報収集と保存

新規の機器情報の追加に際しては、情報の追跡性に配慮し、下記の公開情報ソースを対象として情報収集を実施した。

① 機器メーカーのウェブサイト及びカタログ
② 大学・研究機関・地層処分関係機関等の公開文書
③ 文献データベース

Web 上で公開されている技術情報は mht ファイルとして保存し、pdf ファイルが入手可能な場合にはこれを保存した。ファイルは機器 ID 名のフォルダに収録し、検索上の利便性に留意した。
3.5 物理探査技術の地層処分モニタリングへの適応性の整理

物理探査技術は、地下の情報を遠隔的に得ることを目的に、資源の探査をはじめとして様々な分野での利用がなされている。今年度、モニタリング技術データベースの登録情報の拡充にあたり、これまで集中的な情報収集が行われていなかった、地上、水上、孔内等で使用される各種の物理探査技術に関して、地層処分場及びその近傍でモニタリング技術として使用できる可能性のある技術に着目して、その種類、背景、適用性及び適用事例等を調査し、モニタリング技術メニューへの導入の観点から整理した。

本調査の実施内容は以下のとおりである。

① 要素技術の抽出

物理探査技術全般を対象として、それらの特徴を十分把握した上で、それらの中から高レベル放射性廃棄物の地層処分場のモニタリング技術として適用性を有する要素技術を抽出・選別し、その技術的背景または科学的な抽出・選別理由をとりまとめた。具体的な項目は以下の通りである。

- 空中物理探査（空中電磁法、航空レーザー測量、衛星リモートセンシング、空中磁気探査、空中重力探査、空中放射能探査、航空機リモートセンシング）
- 地表・海上的物理探査
 - 地震探査（反射法地震探査、屈折法地震探査、表面波探査）
 - 電気探査、電磁法探査（比抵抗法電気探査、強制分極法（IP 法）、CSAMT 法、TEM 法、地中レーダ、微動測定/探査、自然電位法、MT 法、VLF、流電位法）
 - その他の物理探査（重力探査、磁気探査、放射能探査、地温探査）
- ポーリング孔を利用した物理探査
 - 地震探査（VSP、地震走時トモグラフィ、微小地震観測）
 - 電気探査、電磁法探査（比抵抗トモグラフィ、EM トモグラフィ、レーダトモグラフィ）

抽出・選別した要素技術は、計測および解析原理を理解した上で、特性、適用限界や精度等について整理した。さらに既存文献からモニタリングへの適性に即した事例を調査し、事例に記された技術的な裏付け、計測および解析仕様、計測機器、解析手法等を整理した。知見の整理にあたっては情報の追跡性に留意し、出典等を記載した。特に精度や解析の信頼性等を向上することが可能な最新技術については、情報のソースを明示できるような技術資料または文献を沿えた。

② モニタリング技術としての整理

各種要素技術をモニタリング技術として設置・展開する方法についての知見を整理した。特に、弾性波速度と岩盤強度のような相関が認められているものと、比抵抗と透水性または含水比などのように、相関関係に考慮が必要なものに関してはその区別を明確にして整理した。
3.6 まとめ及び今後の課題

3.6.1 まとめ

昨年度に引き続き、地層処分モニタリング技術メニューの整備を行った。主な整備の観点としては、① 表示機能の拡張及びそれに伴うデータベース構造の改良、② モニタリングのあり方に関する検討を踏まえた機能拡張及びそれに伴うデータベース構造の追加、③ 機器情報のレビュー及び新規機器の調査、並びに調査結果を踏まえたデータベースの拡充、④物理探査技術の地層処分モニタリングへの適応性の整理である。

①については、これまでのモニタリングに係わる5W（Who, Why, What, When, Where）を具現化したツリー構造の表示機能に加えて、「簡易ツリー」として“時期”、“場所”及び“パラメーター”のみで構成される新規のツリー構造を開発・追加した。

②については、第2章での“モニタリングのあり方”に関する議論を踏まえ処分場でのモニタリング範囲を考慮し、処分エリアでの計測については、メニューの対象とはせず、代替計測場所（URL及び模擬廃棄体が設置される先行的な地下調査施設）でのモニタリングについて検討するような選移機能を追加した。

③については、昨年度までに搭載されていた主に平成12年度に実施した包括的な機器情報について、既存の情報のレビューニ及び新規情報の追加を行い、機器情報データベースの高度化を図った。

④については、各種の物理探査技術に関して、地層処分場及びその近傍でモニタリング技術として使用できる可能性のある技術に着目し、その種類、背景、適用性及び適用事例等を調査し、モニタリング技術メニューへの導入の観点から整理した。

3.6.2 今後の課題

本年度までのシステム開発によって、地層処分モニタリング技術メニューの目的を達成するための主要な機能は搭載されており、web上においてパスワード管理された閲覧も可能となってい

る。今後は、第2フェーズまでに関係者等への限定的な公開を行うことで、利便性が高いと判断された場合には機能の追加を行うとともに、実運用によって生じた軽微な修正を行っていく必要がある。

一方、搭載データに関して、機器選定に資する技術要件や地層処分環境での計測可能性（測定方式の比較など）について、各分野における専門家の意見も取り入れつつ、さらに情報の高度化を図り、ユーザに有効な情報を提供できるように追加・更新していく必要がある。
第4章 地中無線通信技術の調査研究
第4章 地中無線通信技術の調査研究

4.1 目的及び実施概要

4.1.1 目的

本章では、次の3項目について調査研究を実施した。それぞれの調査目的は以下のとおりである。
【地層処分モニタリングにおけるデータ伝送方法の検討】
天然バリヤ及び人工バリヤを対象としたモニタリングにおけるデータ伝送のあり方について検討し、有線及び無線方式によるデータ伝送技術の適用範囲について検討した。特に、地中無線通信技術については、その能力を踏まえた適用方法提要をした。
【アクティブ通信技術に関する検討】
配線による処分安全性能への影響を低減することが可能な地中無線通信技術の適用性範囲の拡大を目指し、地中無線通信装置の小型化に向けた課題を整理した。これらの課題の検討成果を踏まえプロトタイプの設計・製作を行い、データを取得した上で、再評価を行い適用性について整理した。
【パッシブ無線通信】
最近急激に普及してきた無線ICカード等のパッシブ無線センサを対象に、ベントナイトの特性を踏まえ、通信距離を伸ばすための方法を検討した。また、最近のパッシブ無線センサの開発状況を調査した。

4.1.2 実施概要

本調査研究では、上記の目的を達成するため、まず、天然バリヤ及び人工バリヤを対象としたモニタリングにおけるデータ伝送のあり方について検討し、有線及び無線方式によるデータ伝送技術の適用範囲について検討した。特に、地中無線通信技術については、その能力を踏まえた適用方法を提示した。
次に、地中無線モニタリング[1]について、電源を内蔵するアクティブタイプ、及び電源を内蔵しないパッシブタイプの通信装置に関する検討を行った。
アクティブタイプについては、配線による処分安全性能の影響を低減することが可能な地中無線通信技術の適用性範囲の拡大を目指し、送信装置の小型化に向けた課題を整理した。これらの課題の検討成果を踏まえプロトタイプの設計を行い、プロトタイプを製作した。製作したプロトタイプを用いて、通信試験を用い電磁波伝播特性等に基づく装置の評価を行った。
パッシブタイプについては、最近急激に普及してきた無線ICカード等のパッシブ無線センサを対象に、ベントナイトの特性を踏まえ、通信距離を伸ばすための方法を検討した。また、最近のパッシブ無線センサの開発状況を調査した。

4-1
4.2 地層処分モニタリングにおけるデータ伝送方法の検討

天然バリヤ及び人工バリヤを対象としたモニタリングにおいて、要素技術の観点からモニタリング対象、センサ及び記録装置の設置箇所等を軸にしてモニタリング実施方法を整理し、データ伝送技術の適応範囲等を整理した。

4.2.1 対象とするモニタリング手法

データ伝送はモニタリングの方法によって異なる。そこで、まず、モニタリングの方法を以下に設定した。

モニタリングの方法は対象とする部位ごと、モニタリングの方法ごとに次の 7 つに分けて考えることができる（表 4.2.1-1）。

① モニタリングの対象から離れた地表に機器を配置しファーフィールド岩盤に関するデータを取得する。

② モニタリングの対象から離れた箇所に地表からポーリング孔を削孔し、ポーリング孔内に機器を設置してファーフィールド岩盤に関するデータを取得する。

③ モニタリングの対象とする位置に地表からポーリング孔（試験孔）を削孔し、ポーリング孔内にセンサを設置して直接データを取得する。

④ モニタリングの対象から離れた坑道内に機器を設置してニアフィールド岩盤に関するデータを取得する。

⑤ モニタリングの対象から離れた箇所に坑道内からポーリング孔を削孔し、ポーリング孔内に機器を設置してニアフィールド岩盤に関するデータを取得する。

⑥ ナリアフィールド岩盤をモニタリング対象として、対象とする位置に坑道内からポーリング孔を削孔し、ポーリング孔内に機器を設置して直接データを取得する。

⑦ ナリアフィールド岩盤特に人工バリヤ等をモニタリング対象として、対象とする位置に機器を設置し、直接データを取得する。
表 4.2.1-1 データ伝送に関するモニタリングの種類

<table>
<thead>
<tr>
<th>地表、坑道内に機器設置</th>
<th>ポーリング孔内に機器設置</th>
<th>ポーリング孔内に機器設置</th>
<th>モニタリング対象内に機器設置</th>
</tr>
</thead>
<tbody>
<tr>
<td>ファーフィールド岩盤</td>
<td>ファーフィールド岩盤</td>
<td>ファーフィールド岩盤</td>
<td>ファーフィールド岩盤</td>
</tr>
<tr>
<td>地表</td>
<td>地表</td>
<td>地表</td>
<td>地表</td>
</tr>
<tr>
<td>坑道</td>
<td>坑道</td>
<td>坑道</td>
<td>坑道</td>
</tr>
<tr>
<td>坑道</td>
<td>坑道</td>
<td>坑道</td>
<td>坑道</td>
</tr>
<tr>
<td>機器</td>
<td>機器</td>
<td>機器</td>
<td>機器</td>
</tr>
</tbody>
</table>
①は地表に機器を設置し、弾性波や電磁波を地中に発振し、地下的様子をアクティブに推定するモニタリング手法である。地表から間接的にファーフィールド岩盤をモニタリングすることが可能である。この場合、データは地表に設置された受信機から記録装置まで伝送される。

②は地表から削孔したポーリング孔内に機器を設置し、弾性波や電磁波を地中に発振することで地下的様子をアクティブに推定するモニタリング手法である。ポーリング孔内から間接的にファーフィールド岩盤をモニタリングすることが可能である。この場合、データはポーリング孔内に設置されたセンサから記録装置まで伝送される。

③は地表から削孔したポーリング孔内にセンサを設置し、センサまわりのデータをバックアップに取得するモニタリング手法である。ポーリング孔内のセンサで直接的にファーフィールド岩盤をモニタリングすることが可能である。この場合、データはポーリング孔内に設置されたセンサから記録装置まで伝送される。

④は坑道内に機器を設置し、弾性波や電磁波を地中に発振することで坑道近傍の岩盤中の様子を推定するモニタリング手法である。この場合、データは坑道内に設置された受信機から記録装置まで伝送される。

⑤は坑道内から削孔したポーリング孔内に機器を設置し、弾性波や電磁波を地中に発振することで坑道近傍の岩盤中の様子を推定するモニタリング方法である。この場合、データは坑道内から削孔されたポーリング孔内に設置された受信機から記録装置まで伝送される。

⑥は坑道内から削孔したポーリング孔内にセンサを設置し、センサまわりのデータを取得するモニタリング手法である。この方法は、ポーリング孔内のセンサで直接的に坑道近傍岩盤をモニタリングすることが可能である。この場合、データは坑道から掘削されたポーリング孔内に設置されたセンサから記録装置まで伝送される。

⑦は坑道内設置した人工バリア等にセンサを設置し、センサまわりのデータを取得するモニタリング手法である。この方法は、人工バリア内のセンサで直接的にモニタリングすることが可能である。この場合、データは人工バリア内に設置されたセンサから記録装置まで伝送される。

上記のモニタリング手法は、弾性波や電磁波の応答によるモニタリング対象の間接的な特性把握（①、②、④、⑤）とセンサを直接モニタリング対象に設置したデータを記録装置に伝送する直接的なデータ取得（③、⑥、⑦）に分けられる。一般的に前者は調査時において単発的、定期的に実施され、必要なデータを取得後機器が撤収されるが、後者は継続的にモニタリングが続けられる。データ伝送方法を検討することは、データ伝送を継続する場合に重要となる。そこで、本検討では上記のうち、③、⑥、⑦、すなわちセンサをモニタリング対象に直接設置したデータを記録装置に伝送するモニタリング手法を対象とした。
4.2.2 データ伝送方法

データの伝送方法は大きく有線方式と無線方式に分けられる。以下にその特徴を説明する。

(1) 有線方式

有線方式のデータ通信では、メタルケーブルと光ファイバケーブルが広く使用されている。

1) メタルケーブル

メタルケーブルは芯線に金属材料を用いたケーブルの総称である。電力供給や通信回線など広い用途に用いられている。メタルケーブルの断面構造例を図 4.2.2-1 に示す。銅などの金属でできた導体（芯線）をシースと呼ばれる絶縁体（被覆）で覆った構造になっており、芯線を電気が流れる。メタルケーブルは内部構造によって、同軸ケーブルと平衡対ケーブルに分類される。芯線の材料には主に銅線が用いられるが、他にも銅被鋼線、アルミ線、すみっ込み鋼線などが用いられる。メタルケーブルの特性として、周波数が高くなるほど、伝送距離が長くなるほど信号が減衰するということが挙げられる。また、電磁ノイズにも弱く、自らが流す電流による電磁波や外部からの電磁波の影響を受けやすい。

一般にセンサに直接接続する部分にはメタルケーブルが使用される。センサに直接接続するメタルケーブルの通信距離はセンサの種類にも依存するが、数 m～数 100m である。また、通信速度は数 100kbps 程度である。

図 4.2.2-1 平衡対ケーブルの断面構造例

センサとメタルケーブルの配線事例として、SKB エスポ硬岩研究所のプロトタイププレジトリにおける事例を図 4.2.2-2 に示す。
プロトタイププロポジトリー概要

(b) ケーブルスロット切削

(c) 処分孔内ケーブル配線

(d) 処分孔上部ケーブル配線状況

(e) 計測坑道内スイッチボックス

図 4.2.2-2 エスポセメント研究所のプロトタイププロポジトリー [2]

プロトタイププロポジトリーは、延長 60m 程度の坑道と 6 孔の実物大の処分孔からなる処分実証施設である。処分孔内には数 100 個のセンサが設置されている。通信ケーブルは、ベント
ナイトブロックを切削したケーブルスロットの中に敷設し、上部埋戻し材中及び岩盤中に構築したボーリング孔内を配線して計測坑道に設置されたスイッチボックスに接続されている。スイッチボックスまでのケーブル延長は、概ね数 100m 程度以内である。

センサ 1 個に対し 1 本のケーブルを配線するため、処分孔内に多数のセンサを埋設する場合には人工バリア内に多くのケーブルが配線されることになる。例えば直径 10mm のケーブルに接続するセンサを 1000 個埋設する場合には、断面積相当で直径 1m のケーブルを緩衝材や埋戻し材に埋設することと同じになる。

2) 光ファイバケーブル

光ファイバは、石英ガラスやプラスチックで形成される細い纖維状の物質で、図 4.2.2-3 のように中心部のコアと、その周囲を覆うクラッドの二層構造になっている。コアは、クラッドと比較して屈折率が高く設計されており、光は、全反射という現象によりコア内に閉じこめられた状態で伝搬する。光ファイバを利用したデータ伝送は、通信速度が 1Tbps を超える高速通信が可能である。広帯域、両方向通信が可能であり、大容量通信に利用できる。伝送損失は、約 0.2dB/km（1km で信号強度が 4% 減）であり、数 km 以上を超える長距離通信が可能である。また、電磁気的な干渉を受けず、防爆性がある。化学的に安定しているため、寿命が長い。通信用途では 30 年程度の共用期間を見込むことが多い。

図 4.2.2-3 光ファイバの構造

光ファイバケーブルの活用事例として、フランス ANDRA のヒュール地下研究所の事例を図 4.2.2-4 に示す。地下 490m の坑道群に設置された各種のセンサや設備・装置を 2 本の立坑内に敷設した光ファイバケーブルを介して地上施設から遠隔コントロールしている。センサのデータは全て地上にある記録装置で管理されている。
図 4.2.2-4 ANDRA ビュール地下研究所におけるケーブル配線例

(2) 無線方式

無線方式によるデータ伝送は、ケーブルを使わずに電磁波等を用いてデータを伝送するものである。一般的な空気中の無線通信で用いられる高周波の電磁波は、空気中に比べて地中や水中での減衰が非常に大きく、伝送距離が極端に短くなるため、地中や水中では実用的な通信を行うことができないと。そこで、空気中とベントナイトや岩盤中の通信では使用する電磁波の周波数を変えて用いる。

空気中とはいえ、地下坑道内では坑壁面における電磁波の反射等の影響で、トンネル内での無線通信は地表における無線通信ほど容易ではないが、トンネル工事における情報化施工の普及とともに切羽付近の岩盤挙動データ、あるいは、トンネル工事竣工後における坑道内無線通信の活用が広がっている。例えば、周波数 800MHz～50GHz 帯域の周波数を使い 1km 程度の無線通信が実用に供されている[3][4]。また、掘削中の切羽近傍の各種データを後方の記録装置に無線伝送する事例も増えつつある。

一方、岩盤中、ベントナイト中での無線通信は 1kHz 程度の低周波電磁波を使用することで
実現できる[5]。導電率の高い媒質中に電磁波を伝播させる場合の周波数は、1kHz 程度の低周波電磁波を利用する。通信速度は 100bps であるため、低速度、小容量通信となる。無線通信距離は受信機設置位置の電磁ノイズの大きさに依存するが、概ね 100m 程度以下である。無線送信機をデータロガー・AD 変換機とともにセンサに直接接続し、センサと一体化した装置として使用する場合と、通信経路上の一部に使用する場合と考えられる。アクティブタイプの通信装置は通信及びセンサ稼働用の電源が必要となり、その共用期間は電池の寿命に依存する。

(3) 伝送方法の比較と組み合わせ
メタルケーブル、光ファイバケーブル、地中無線（坑道内空気中・岩盤及びベントナイト中）の特徴を表 4.2.2-1 に比較する。なお、本検討で無線方式については岩盤及びベントナイト中の無線を対象とする。また、本検討では埋設する通信装置に電源を必要とするアクティブタイプと必要としないパッシブタイプを検討するが、パッシブタイプはその実現性の検討を行っている段階であり、本稿での検討はアクティブタイプを対象とする。

<table>
<thead>
<tr>
<th></th>
<th>有線方式</th>
<th>無線方式</th>
</tr>
</thead>
<tbody>
<tr>
<td>メタルケーブル</td>
<td>100kbps</td>
<td>1Tbps 以上</td>
</tr>
<tr>
<td>光ファイバケーブル</td>
<td>1kbps 以上</td>
<td>100bps 程度</td>
</tr>
<tr>
<td>坑道内空気中</td>
<td>1km 程度</td>
<td>100m 程度</td>
</tr>
<tr>
<td>地中無線（岩盤及びベントナイト中）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>通信速度</td>
<td>大</td>
<td>小</td>
</tr>
<tr>
<td>通信容量</td>
<td>小～中</td>
<td>極小</td>
</tr>
<tr>
<td>通信距離</td>
<td>数 m～数 100m</td>
<td>数 km 以上</td>
</tr>
<tr>
<td>寸法</td>
<td>外径 10mm 程度</td>
<td>外径 340mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>高さ 400mm[3]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>外径 150mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>高さ 200mm</td>
</tr>
<tr>
<td>双方向通信</td>
<td>可能</td>
<td>可能</td>
</tr>
<tr>
<td>耐用年数</td>
<td>数 10 年程度の実績豊富</td>
<td>10 年程度 (電池寿命に依存)</td>
</tr>
<tr>
<td>センサとの関係</td>
<td>直接センサに接続</td>
<td>データ中継・変換機に接続</td>
</tr>
<tr>
<td></td>
<td>中継機として使用</td>
<td>直接センサに接続</td>
</tr>
</tbody>
</table>

伝送方法の組み合わせは、センサを設置する地下から、記録装置の置かれる地上施設（あるいは地下坑道内）までは通信距離が非常に長いため、上記の 3 種類の伝送方法を組み合わせて使用することを検討する。

伝送方法の組み合わせには様々なものが考えられるが、それぞれの特徴を考慮すると次の 3 つの組み合わせが妥当である。
センサとデータロガー・記録装置が比較的近い場合には、センサとデータロガー・記録装置をメタルケーブルで直接接続する。センサの種類にもよりが、数 100m 程度の通信は可能であり、センサとデータロガー・記録装置のそれぞれを坑道内に設置する場合に有効である。
データロガーから記録装置までの距離が数100m あるいはそれ以上に長くなる場合には、複数のセンサのデータをまとめて中継機・変換機を介して光ファイバケーブルにより通信する。光ファイバケーブルのわりにメタルケーブルを使用することも可能ではあるが、通信速度の速い光ファイバケーブルのほうが効率的である。

岩盤及びベントナイト中において、ケーブル配線を回避すべき箇所には地中無線を適用する。データの通信は送信装置から受信装置に無線にて行う。送信装置とセンサはメタルケーブルによりある程度の距離を離すことも可能であり、センサとデータロガー、送信装置等を一体化して使用することも可能である。受信装置で受信したデータはメタルケーブルあるいは光ファイバケーブルにより記録装置に伝送する。

他のケースとして、上記のメタルケーブルによる通信、あるいは光ファイバケーブルによる通信の一部に地中無線を利用することも可能であるが、光ファイバに対する高速、大容量通信に対して、地中無線の低速、小容量通信を組み合わせることは必ずしも効率的ではない。以上より、ここでは次の 3 つの組み合わせをもとに検討を進める。

(a) センサと記録装置が比較的近い場合の伝送

(b) 大量のデータを長距離通信したい場合の伝送

(c) ケーブル配線を回避したい場合の伝送

図 4.2.2-5 伝送方法の組み合わせ
4.2.3 モニタリング箇所と時期及びデータ伝送

モニタリングができる期間（モニタリング対象にアクセスできる期間）として下の表 4.2.3-1 の色付けした部分と考えられる。これのモニタリング箇所と計測時期を対象に、データ伝送の組み合わせについて検討した。

なお、本検討では実廃棄体周りの人工バリアはモニタリングしないこと、また、閉鎖後には施設内にケーブルを残さないことを基本とする。この前提及び表 4.2.3-1 のモニタリングの箇所と時期の詳細に関しては、前 2.4.1 項(2)4)を参照されたい。

<table>
<thead>
<tr>
<th>計測箇所</th>
<th>計測時期</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>①</td>
</tr>
<tr>
<td>地下環境</td>
<td>天然バリア</td>
</tr>
<tr>
<td></td>
<td>NF 岩盤</td>
</tr>
<tr>
<td>処分施設</td>
<td>地下施設</td>
</tr>
<tr>
<td></td>
<td>人工バリア</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>地下調査施設Ⅰ模擬廃棄体</td>
<td>地下施設</td>
</tr>
<tr>
<td></td>
<td>人工バリア</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>地下調査施設Ⅱ実廃棄体</td>
<td>地下施設</td>
</tr>
<tr>
<td></td>
<td>人工バリア</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>処分場サイト外 URL</td>
<td>地下施設</td>
</tr>
<tr>
<td></td>
<td>人工バリア</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

※ URL については、計測時期は URL の調査時から共用期間とする。

4-11
(1) 地下環境（天然バリア）
1) 天然バリア ファーフィールド岩盤のモニタリング

ファーフィールド岩盤では、その特性あるいは長期的挙動を確認するためモニタリングが実施される。ファーフィールド岩盤のモニタリングでは、地上から掘削したポーリング孔を用いたモニタリングが実施される。有線方式によるモニタリング機器の配置例を図4.2.3-1(a)に示す。ポーリング孔内にセンサを設置し、データロガー・記録装置は地上に設置する。センサからデータロガー・記録装置までのデータ伝送は、通信ケーブルにより実施される。ケーブルの選定においては、大深度における耐水圧及びデータ伝送距離に留意が必要である。センサから直接データロガー・記録装置に接続されるため、ケーブルが使用される。ケーブルの耐久性については、数十年という実績が豊富にある、長期計測も可能である。ファーフィールド岩盤のモニタリングでは、ケーブル配線を回避すべき箇所も多く、低容量・低速度通信で十分である。ポーリング孔内にケーブルを使用しないほうがよい場合、例えば、深阻水圧計を完全に埋め戻したい時には、地中無線によるデータ伝送も考えられる（図4.2.3-1(b)）。その場合、電池の寿命等によって制限されるモニタリング期間に留意する必要がある。しかしながら、ポーリング孔の埋め戻しに対する強い要望が無ければ敢えて適用する必要はないと考えられる。表4.2.3-2 にポーリング孔内に1つ、あるいは4つのセンサを埋設した時のデータ伝送を地中無線により実施する場合の耐用年数を、送信機の仕様とともに示す。

図4.2.3-1 ファーフィールド岩盤 機器配置

1) ポーリング孔を埋め戻すにしても、将来このポーリング孔をどのように状態にするのか、例えば、計測機器を残置するとか、あるいは、計測機器を撤去してから埋め戻すとかを考慮する必要がある。ここでは、機器を残置して埋め戻すものとする。
特に制限がなく、センサの耐久性等に問題がなければ、ファーフィールド岩盤のモニタリングは、概要調査の段階から施設閉鎖後管理の段階まで継続することが可能であると考える。

表 4.2.3-2 地中無線耐用年数

<table>
<thead>
<tr>
<th>センサ数</th>
<th>1ch</th>
<th>4ch</th>
</tr>
</thead>
<tbody>
<tr>
<td>測定頻度</td>
<td>1回/日</td>
<td>1回/日</td>
</tr>
<tr>
<td>送信頻度</td>
<td>1回/週</td>
<td>1回/週</td>
</tr>
<tr>
<td>送信器形状</td>
<td>φ50×L130mm</td>
<td>φ165×L260〜380mm</td>
</tr>
<tr>
<td>通信距離</td>
<td>10m</td>
<td>50m</td>
</tr>
<tr>
<td>総データ数</td>
<td>3,650データ</td>
<td>14,600データ</td>
</tr>
<tr>
<td>電池耐用年数</td>
<td>10年</td>
<td>10年</td>
</tr>
</tbody>
</table>

2）天然バリア ニアフィールド岩盤のモニタリング

ニアフィールド岩盤では、その特性あるいは長期的効果を確認するためモニタリングが実施される。ニアフィールド岩盤のモニタリングでは、地表から、あるいは坑道内から掘削したボーリング孔を用いたモニタリングが実施される。ニアフィールドモニタリング機器配置例を図 4.2.3-2 に示す。ボーリング孔内にセンサを設置し、地上から掘削したボーリング孔内のデータ伝送方法は地上や主要坑道のデータロガーまでメタルケーブルで行われることが多い。また、坑道内から掘削したボーリング孔内のデータ伝送は、坑道内に設置したデータロガーまでメタルケーブルで実施し、複数のセンサのデータをまとめて、地上の記録装置まで通信速度が速い光ファイバで実施するのが効率的である。光ファイバを用いる時は、データロガーから記録装置の間の光ファイバの両端に中継機もしくは変換機を設ける必要がある。

ニアフィールド岩盤のモニタリングでは、ケーブル配線を回避すべき要件は特になく、地中無線を積極的に適用する箇所は多くないと考えられるが、ボーリング孔内のケーブルの使用を回避したほうがいい場合などではファーフィールド岩盤のモニタリングの事例と同様に地中無線の適用が可能である。その場合の地中無線装置の仕様と耐用年数は表 4.2.3-2 と同様である。耐用年数の関係から地中無線装置を利用するモニタリングは施設の閉鎖段階くらいで適応でき、閉鎖後の管理段階からは適応できないものと判断できる。

特別な制限がなければ、ニアフィールド岩盤のモニタリングは、有線方式のセンサにより精密調査の段階から施設閉鎖の段階まで可能である。
(2) 処分施設

1) 地下施設 坑道のモニタリング

地下坑道では、坑道の力学安定性や操業時の安全性等の観点から、坑道建設時から支保工や坑道内モニタリングが実施される。精密調査段階で建設される坑道はその段階からモニタリングが実施される。アクセス坑道、主要・連絡坑道内のモニタリングの機器配置例を図4.2.3-3と図4.2.3-4に示す。

坑道に設置したセンサからデータロガーへの近距離のデータ伝送は、メタルケーブルを用いる。また、データロガーから地上の記録装置までの長距離通信では通信速度が速い光ファイバにより実施する。光ファイバを用いる時は、データロガーから記録装置の間の光ファイバの両端に中継機もしくは変換機を設けることになる。

図4.2.3-5と図4.2.3-6に、主要・連絡坑道内のモニタリングについて、操業中（処分坑道の埋め戻しまで）と施設の閉鎖後の機器配置例を示す。操業中、主要・連絡坑道が埋め戻される前までは、有線方式のモニタリングがなされる。施設閉鎖後に主要・連絡坑道内をモニタリングする場合、通信ケーブルを撤去することを基本とすると、無線通信によるデータ伝送を行う必要が生じる。その場合、図4.2.3-6のように、主要・連絡坑道内から電磁波が届く範囲内に地上から掘削したポーリング孔内に受信機を設置し、センサからのデータを受信する。受信機で受信したデータは光ファイバを介して地上に伝送する。また、このときのデータ伝送量は表4.2.3-2のとおりであり、その量と期間には制約がある。耐用年数の関係
から地中無線装置を利用するモニタリングは施設の閉鎖段階くらいまで適応でき、閉鎖後の管理段階までは適応できないものと判断される。

ボーリング孔内に受信機を設置する場合には、ボーリング孔のケーシングの材質に留意する必要がある。地中無線は低周波電磁波を通じてデータを伝送するため、ケーシングは電磁波を遮断しない材質とする必要がある。堆積岩等でケーシングに強度をもたせる必要がある場合には、金属ケーシングとし、受信機を設置する箇所に、開口部を設ける、あるいはセラミックス等の材料を使用する等の工夫が必要になる。

図 4.2.3-3 坑道（アクセス坑道、主要・連絡坑道）内モニタリング機器配置
図 4.2.3-4 坑道（主要・連絡坑道）内モニタリング機器配置

図 4.2.3-5 坑道（主要・連絡坑道）モニタリング機器配置（処分坑道埋戸）

図 4.2.3-6 坑道（主要・連絡坑道）モニタリング機器配置（施設の閉鎖後）
2) 地下施設 処分坑道のモニタリング

処分坑道では、その力学安定性や操業時の安全性等の観点から、処分坑道建設時から支保工や坑道内モニタリングが実施される。処分坑道内のモニタリングの機器配置例を図 4.2.3-7 に示す。

処分坑道に設置したセンサからデータロガーへの近距離のデータ伝送は、メタルケーブルを用いて、データロガーから地上の記録装置の長距離では通信速度が遅い光ファイバを使用する。光ファイバを用いる時は、データロガーから記録装置の間の光ファイバの両端に中継機もしくは変換機を設ける必要がある。

処分坑道内のモニタリングでは、埋め戻し前までにケーブルを含む全ての関連機器を撤去するものとし、モニタリングはその時点で終了する。

図 4.2.3-7 処分坑道 モニタリング機器配置

(3) 地下調査施設 I（模擬廃棄体）
1) 処分坑道（地下施設）のモニタリング

模擬廃棄体を配置して各種の実証等が行われるものと仮定する地下調査施設 I では、それらが建設されると仮定する精密調査段階から処分坑道に関連するモニタリングが実施される。図 4.2.3-8 及び図 4.2.3-9 のように、坑道内にセンサを配置し、センサから坑道内に設置されたデータロガーまでメタルケーブルによりデータを伝送し、データロガーから地上までは大容量通信に対応可能な光ファイバでデータを伝送する。また、計測するモニタリングデータの品質を確保するため、土質系材料である埋め戻し材内におけるケーブルの配線を回避する必要性がある場合には、図 4.2.3-10 のように地中無線によるデータ伝送を行う。送信装置
を埋め戻し材中に設置し、受信機を埋め戻し前の連絡坑道等から掘削したポーリング孔内に設置し、データを無線で伝送する。受信機で受信したデータは、メタルケーブルによりデータロガーに伝送する。

施設閉鎖後に、地下調査施設 I の処分坑道内をモニタリングする場合、地下調査施設 I が処分施設と接続していることも想定し、ケーブルは撤去することを基本とする。そのため、施設閉鎖後のモニタリングには、地中無線を用いる必要が生じる。図 4.2.3-11 のように、地上から掘削したポーリング孔内に受信機を設置し、データを坑道内に設置した送信機から無線で伝送する。受信機から地上までのデータ伝送には光ファイバを用いる。

また、このときのデータ伝送量は表 4.2.3-2 のとおりであり、その量と期間には制約がある。耐用年数の関係から地中無線装置を利用するモニタリングは施設の閉鎖段階くらいまで適応でき、閉鎖後の管理段階までは適応できないものと判断される。
2) 人工バリア（緩衝材・オーバーパック・模擬廃棄体）のモニタリング

緩衝材中に模擬廃棄体を定置して各種の実証等が行われるものと仮定する地下調査施設 I では、それらが建設されると仮定する精密調査段階から人工バリアに関連するモニタリングが実施される。図 4.2.3-12 及び図 4.2.3-13 のように、緩衝材内にセンサを配置し、センサから坑道内に設置されたデータロガーまでメタルケーブルによりデータを伝送し、データロガーから地上までは大容量通信に対応可能な光ファイバーでデータを伝送する。また、計測するモニタリングデータの品質を確保するため、土質系材料である緩衝材や埋め戻し材内にお
けるケーブルの配線を回避する必要性がある場合には、図 4.2.3-14 及び図 4.2.3-15 のように無線機器によるデータ伝送を行う。送信装置を波長材や埋め戻し材中に設置し、受信機を埋め戻し前の連絡坑道等から掘削したポーリング孔内に設置し、データを無線で伝送する。受信機で受信したデータは、メタルケーブルによりデータロガーに伝送する。

施設閉鎖後に、地下調査施設 I の処分坑道内をモニタリングする場合、地下調査施設 I が処分施設と接続していることも想定し、ケーブルは撤去することを基本とする。そのため、施設閉鎖後のモニタリングが要望された場合には、無線機器を用いる。図 4.2.3-16 のように、地上から掘削したポーリング孔内に受信機を設置し、データを人工バリア内に設置した送信機から無線で伝送する。受信機から地上までのデータ伝送には光ファイバを用いる。また、このときのデータ伝送量は表 4.2.3-2 のとおりであり、その量と期間には制約がある。耐用年数の関係から地中無線装置を利用するモニタリングは施設の閉鎖段階くらいまで適応でき、閉鎖後の管理段階までは適応できないものと判断できる。

図 4.2.3-12 地下調査施設 I 人工バリアモニタリングの機器配置例（処分坑道埋戻前）

図 4.2.3-13 地下調査施設 I 人工バリアモニタリングの機器配置例（処分坑道埋戻後）
図 4.2.3-14 地下調査際 I 人工バリア内機器配置例（処分坑道埋戻前：地中無線利用）

図 4.2.3-15 地下調査際 I 人工バリア内機器配置例（処分坑道埋戻後：地中無線利用）
図 4.2.3-16 地下調査施設 I 人工バリア内機器配置例（施設閉鎖後：地中無線利用）

(4) 地下調査施設 II（実廃棄体）

1) 地下施設 処分坑道のモニタリング

実廃棄体上部の処分坑道の坑道安定性や埋め戻し材の特性評価の観点からモニタリングが必要とされた場合には、地下調査施設 II（実廃棄体）を設け、処分坑道建設時から支保工や坑道内モニタリングが実施されることも考えられる。処分坑道内のモニタリングの機器配置例を図 4.2.3-17 及び図 4.2.3-18 に示す。

処分坑道に設置したセンサからデータロガーの近距離のデータ伝送は、メタルケーブルを用いて、データロガーから地面上の記録装置の長距離では通信速度が速い光ファイバを使用する。光ファイバを用いる時は、データロガーから記録装置の間の光ファイバの両端に中継機もしくは変換機を設ける必要がある。

処分坑道内のモニタリングでは、地下特性調査施設 II に接続する連絡坑道の埋め戻し前までにケーブルを含む全ての関連機器を撤去するものとし、モニタリングはその時点で終了する。閉鎖後、許認可手続きでの対応が可能であることを前提としたうえで、地下調査施設 II は処分施設の一部とする。
図 4.2.3-17 地下調査施設 II 酔分竃道内モニタリングの搬配混例（処分竃道理第前）

図 4.2.3-18 地下調査施設 II 酔分竃道内モニタリングの搬配混例（処分竃道理第後）
(5) URL処分場サイト

1) 処分坑道（地下施設）のモニタリング

JAEA の幌延深層研究センター[6]を例に、処分場のサイト外に建設される地下研究所（URL）内におけるモニタリング機器の配置例を図 4.2.3-19 に示す。URL 内では模擬廃棄体や緩衝材、あるいは埋め戻しといった実証が行われることが考えられる。その場合、基本的には前述の地下調査施設 1 と類似の機器配置が想定される。施設開鎖後にも有線方式のモニタリングを継続することに対する制限がないことが特徴である。計測機器やモニタリング手法そのものの妥当性の検証等も実施される。

図 4.2.3-19 URLにおけるモニタリング機器配置例[6]
JAEAの幌延深層研究センターでは、水平坑道（図 4.2.3-20）を用いた工学技術に関する原位置試験が計画されている[7]。

図 4.2.3-20 幌延深層研究センター[7]

計画されている工学技術に関する原位置試験項目は以下のとおりである。

・ 熱－水－応力化学連成試験
・ 緩衝材／岩盤クリープ試験
・ ガス移行挙動試験
・ オーバーパック腐食試験
・ セメント影響試験
・ 低アルカリ性コンクリート施工性確認試験
・ 定置精度確認試験
・ 坑道閉鎖試験

これらのうち、熱－水－応力化学連成試験、緩衝材／岩盤クリープ試験、ガス移行挙動試験、及び坑道閉鎖試験は緩衝材中にセンサを埋設し各種の挙動をモニタリングすることが想定される。これらの試験では、氷みちとなりうるケーブルの配線を回避することにより高品質のデータが取得できることが考えられるため、地中無線技術の適用が期待される項目であるといえる。
4.2.4 モニタリング機器設置

4.2.3 ではモニタリング機器の配置例を検討した。ここでは、人工バリア、特に土質系材料である緩衝材と埋め戻し材中のセンサとケーブルの設置方法について検討した。緩衝材の施工方法は原位置締固め方式とブロック施工方式を、埋め戻し材の施工は原位置締固め方式を対象とする。

(1) 緩衝材、埋め戻し材原位置締固め方式における施工手順（有線方式）

緩衝材、埋め戻し材原位置施工における計測機器設置フローと手順図を図 4.2.4-1 と図 4.2.4-2 に示す。

計測機器設置手順は、計測機器設置及びケーブル配線の空間を確保するため、先行して施工した底部緩衝材を掘り込み、計測機器を設置する。このときセンサに接続されているケーブルを処分孔上部まで立ち上げ、計測機器及びケーブル周辺を所定の密度に埋め戻す。ケーブル断線に留意し、緩衝材を転圧して締め固める。計測機器設置以外の緩衝材施工時においても処分孔側面からケーブルが立ち上っているため、ケーブル断線に留意して施工しなければならない。また、止水性確保のためにケーブル周辺の締固めが不足しないように施工しなければならない。

緩衝材の施工と計測機器設置を繰り返し、模擬廃棄体定置へと移行する。模擬廃棄体定置後、上部緩衝材の施工と計測機器設置を繰り返し、処分孔の埋戻し完了する。処分坑道内の施工は、ケーブル養生を実施し、ケーブル断線に留意して埋戻しと締固めを繰り返す。プラグ内のケーブル配線では、止水板を設けてケーブル周辺の水みち形成を防止する。

| ①底部緩衝材施工 |
| ②計測機器設置・ケーブル配線用トレンチ掘削 |
| ③計測機器設置・ケーブル配線 |
| ④計測機器・ケーブル養生周辺埋戻し |
| ⑤側部緩衝材施工 |
| ⑥模擬廃棄体定置 |

図 4.2.4-1 原位置締固め方式における機器設置フロー（有線方式）
図 4.2.4-2 緩衝材、埋め戻し材原位置締固め方式における機器設置手順（有線方式）（一部[2]の図を引用）
図 4.2.4-2 緩衝材、埋め戻し材原位置縛固め方式における機器設置手順（有線方式）（つづき）
(一部[2]の図を引用)

上記は、模擬廃棄体周りの緩衝材内への機器設置手順であるが、実廃棄体周りの緩衝材内に機器を設置する場合には、廃棄体定置後、全ての作業を遠隔により実施する必要がある。また、センサやケーブル等については、高放射線量に対応できるものとする等の技術課題がある。

(2) 緩衝材ブロック施工における施工手順（有線方式）

緩衝材ブロック施工における計測機器設置フローと手順を図 4.2.4-3 と図 4.2.4-5 に示す。

緩衝材ブロックの製作を行い、計測機器を設置する緩衝材ブロックには、計測機器を設置する空間を確保するため、スロット切削を行う。

処分孔内に緩衝材ブロックを設置し、事前に切削した緩衝材ブロックのスロット部に計測機器及びケーブル配線を行う。その後、スロット部の計測機器及びケーブル周辺を隙間なく埋め戻す。

緩衝材ブロックの設置と計測機器設置を繰り返し、模擬廃棄体が定置できる高さまで緩衝材ブロックを設置完了した段階で、模擬廃棄体を設置する。

模擬廃棄体設置後、緩衝材ブロック設置と計測機器設置を繰り返し、処分孔上部まで施工する。上部坑道の埋戻しとプラグ施工は、原位置施工と同様に行う。なお、実廃棄体周りの緩衝
材内への機器設置の問題点は、⑴緩衝材、埋め戻し材原位置締固め方式と同様である。

図 4.2.4-3 緩衝材ブロック施工方式における機器設置フロー（有線方式）
(3) 緩衝材原位置締固め方式における施工手順（地中無線）

緩衝材原位置施工における地中無線装置設置手順を図 4.2.4-5 に示す。

底部緩衝材を締固め、計測機器設置の空間を確保するため、先行で施工した底部緩衝材を掘り込む。地中無線装置を設置し、周辺を丁寧に埋め戻す。

緩衝材の施工と地中無線装置設置を繰り返し、模擬廃棄体定置へと移行する。側部緩衝材の埋戻しが完了後、模擬廃棄体を定置する。

有線方式に比較して、緩衝材内へのケーブル配線にともなう作業とそれに伴う緩衝材の品質の低下が低減される。ただし、機器自体を設置する際の手間は有線方式と同様である。

なお、実廃棄体周りの緩衝材内への機器設置の問題点は、ケーブルが無いため施工が少し容易になるが、基本的な課題は(1)緩衝材、埋め戻し材原位置締固め方式と同様である。
図 4.2.4-5 原位置締固め方式における機器設置フロー（地中無線）

図 4.2.4-6 締固材原位置締固め方式における機器設置手順（地中無線）
(4) 緩衝材ブロック施工における施工手順（地中無線）

緩衝材ブロック施工に対する緩衝材中への地中無線装置設置手順を図 4.2.4-7 に示す。

緩衝材ブロック製作後、原位置施工前に地中無線装置をあらかじめ設置する。ブロック製作時に計測機器が設置され、ケーブル配線もないため、処分孔内の施工は、センサを設置しない通常の緩衝材ブロックと同様となる。

ブロックに地中無線装置を設置する際には、ブロックに装置を設置する空間を切削する必要があり、また装置設置後に埋め戻す必要が生ずる。

緩衝材をブロック施工する場合、緩衝材ブロックの中へのセンサ及び地中無線装置の設置は、ブロックを製作する地上施設内で行うことができる。したがって、実廃棄体周りの緩衝材をモニタリングする場合には、すでに機器を設置しているブロックを実廃棄体周りに定置する作業のみになり、機器設置に関する作業を遠隔で行う必要性はなくなる。結果的に、ブロック施工の場合のモニタリングに供する緩衝材の遠隔設置作業は、緩衝材原位置締め固め方式と比較して容易になる。しかしながら、実廃棄体周りの緩衝材での適用においては、センサ等について高放射線量に対応できるものとする等の課題が残されており、他の方式と同様に技術的に容易ではない。

図 4.2.4-7 緩衝材ブロック施工方式における機器設置フロー（地中無線）
4.2.5 モニタリング機器設置工程

本項では、前述で示した設置手順ごとの、施工日数を検討した。

(1) 緩衝材、埋め戻し材原位置築固め方式における施工手順（有線方式）

1つの処分孔に、有線方式のセンサを50台（センサ5台/断面×10断面）設置する場合の緩衝材原位置築固め方式による施工工程を以下に示す。

底部、側部及び上部緩衝材の2断面、6断面、2断面（図 4.2.5-1）にそれぞれ5台ずつの計測機器を設置するものとする。

![図 4.2.5-1 緩衝材中の機器配置断面例](image)

1断面あたりの緩衝材厚は20cm～30cmとし、その施工に余裕をみて2日かかるものとする。

緩衝施工後、計測機器1台あたりの設置箇所及びそれに接続するケーブルの配線箇所の緩衝材の掘削に1時間、計測機器及びケーブルの配線に30分かかるものとすると、5台の計測機器とケーブル配線にかかる時間は、1.5時間×5台＝7.5時間となる。準備片付けに30分かかるものとし5台の設置に1日を見込む。また、計測機器及びケーブルと緩衝材の隙間を所定の密度になるように埋め戻すのに1箇所当たり1.5時間を見込む。5箇所の埋戻しには1.5時間×5箇所＝7.5時間かかることになる。準備片付けに30分を想定すると、埋戻しにも1日かかることになる。

これを繰り返すことによって、10断面の計測機器の設置及び緩衝材の施工は、43日で完了する。

上部坑道について、坑道径が5m、延長が20mと設定すると、埋め戻し量は約400m³となる。

1日あたり50cm程度（10cm巻きだし、締固め：1.5時間×5回＝7.5時間）ずつ埋め戻すこと
とすると埋戻しは 10 日程度で完了できる。また、プラグは無筋コンクリートとし、コンクリート打設に 1 日 (型枠組み立て、養生、脱型は別途必要であるが、ここでは対象外とする)、プラグ内配線に 6 日を見込む。

以上、施工日数は 59 日となる。施工工程を表 4.2.5-1 に示す。

<table>
<thead>
<tr>
<th>施工場所</th>
<th>工程</th>
<th>1サイクル</th>
<th>延べ日数</th>
<th>完工日数</th>
</tr>
</thead>
<tbody>
<tr>
<td>旋盤</td>
<td>緬系材施工</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>計測機器設置</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ケーブル配線</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>計測機器・ケーブル埋め戻し</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>側面</td>
<td>緬系材施工</td>
<td>2</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>計測機器設置</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ケーブル配線</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>計測機器・ケーブル埋め戻し</td>
<td>1</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>模擬発電機設置</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>上部</td>
<td>緬系材施工</td>
<td>2</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>計測機器設置</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ケーブル配線</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>計測機器・ケーブル埋め戻し</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>埋戻し</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>上部坑道</td>
<td>緬系材施工</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>プラック外周施工</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

(2) 緬系材ブロック施工における施工手順（有線方式）

1つの中分孔に、有線方式のセンサを 50 台（センサ 5 台／断面×10 断面）設置する場合の緬系材ブロック施工の工程を表 4.2.5-2 に示す。

緬系材ブロックは、事前に地上の製作施設内において製作するものとする。計測機器の設置断面は (1) と同様とする。ブロック内への計測機器及びケーブルの設置作業は、ブロックの製作と同様に地上施設内で実施することができる。

ブロック内に計測機器やケーブルを配線するためのスロットを切削する。切断及び設置に要する時間は原位置締固めと同様に 1 日、埋戻しに 1 日を見込む。ただし、原位置締固めと違い地上での作業となること、及びブロックを小分けにする場合には複数のブロックに同時に設置できることから設置時間は原位置締固め方式と比較して余裕がある。次に地下に緬系材ブロックを搬送し設置する。緬系材ブロックの設置に 1 日、及びブロック内から出ているケーブルをブロック外周部に配線することとし、その配線作業及び養生に 1 日を見込む。その後、同様の作業を所定の断面分繰り返し、処分孔の埋戻し完了までに 37 日を要する。

上部坑道の埋戻し及びプラック施工は、(1) と同様に 10 日と 6 日を要すものとし、施工日数は 53 日となる。
表 4.2.5-2 緩衝材ブロック施工における工程（有線ケーブル）

<table>
<thead>
<tr>
<th>施工場所</th>
<th>工種</th>
<th>サイクル日数</th>
<th>延べ日数</th>
</tr>
</thead>
<tbody>
<tr>
<td>傘部</td>
<td>緩衝材ブロック製作</td>
<td>連続</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>計測機器・ケーブル配線用スロット切り結び</td>
<td>連続</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>緩衝材ブロック設置</td>
<td>1 2</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>計測機器設置</td>
<td>1 2</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>計測機器・ケーブル廃棄洗浄</td>
<td>1 2</td>
<td>-</td>
</tr>
<tr>
<td>傘部</td>
<td>緩衝材ブロック設置</td>
<td>1 6</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>計測機器設置</td>
<td>1 6</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>計測機器・ケーブル廃棄洗浄</td>
<td>1 6</td>
<td>-</td>
</tr>
<tr>
<td>上部</td>
<td>模擬産業体設置</td>
<td>1 1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>緩衝材ブロック設置</td>
<td>1 2</td>
<td>-</td>
</tr>
<tr>
<td>上部坑道</td>
<td>計測機器・ケーブル配線</td>
<td>1 2</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>計測機器・ケーブル廃棄洗浄</td>
<td>1 2</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>埋戻し</td>
<td>10 10</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>プラグ施工</td>
<td>1 1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>プラグ内配線</td>
<td>5 5</td>
<td>-</td>
</tr>
</tbody>
</table>

(3) 緩衝材原位置締固め方式における施工工程（地中無線）

1つの処分孔に、地中無線方式のセンサを 50 台（センサ 5 台／断面×10 断面）設置した場合の緩衝材原位置締固め施工工程を表 4.2.5-3 に示す。基本的には、(1)と同様の手順で作業を進めることになる。

有線方式の場合と同様に、緩衝材施工の 2 日おきに計測機器の設置が発生するが、地中無線の場合、ケーブル配線作業が無いため、地中無線装置設置と同時に埋戻しと次層の緩衝材施工まで進むことができる。すなわち、原位置締固め方式における有線方式の計測機器設置作業は 1 断面あたり 2 日であったのに対し、地中無線では 1 日に短縮される。

この緩衝材の施工と地中無線装置設置を繰り返し、その結果、処分孔の埋戻し完了まで 23 日である。

上部坑道の埋戻しとプラグ施工は、(1)と同様に 10 日、1 日とする。以上より、施工日数は 34 日となる。
表 4.2.5-3 原位置における工程（地中無線）

<table>
<thead>
<tr>
<th>施工場所</th>
<th>工種</th>
<th>タイプ</th>
<th>延べ日数</th>
</tr>
</thead>
<tbody>
<tr>
<td>底部</td>
<td>緩衝材施工</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>計測機器設置</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>受信機設置</td>
<td></td>
<td></td>
</tr>
<tr>
<td>側部</td>
<td>緩衝材施工</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>計測機器設置</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>受信機設置</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>模擬関係体設置</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>上部</td>
<td>緩衝材施工</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>計測機器設置</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>受信機設置</td>
<td></td>
<td></td>
</tr>
<tr>
<td>上部坑道</td>
<td>増え付</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>プラグ施設コンクリート打設のみ</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

(4) 緩衝材ブロック施工における施工工程（地中無線）

1つの処分孔に対し、地中無線方式のセンサを 50 台（センサ 5 台／断面×10 断面）設置した場合の緩衝材ブロック施工の工程を表 4.2.5-4 に示す。

緩衝材ブロック施工では、(2)と同様にブロックの製作時に地中無線装置をあらかじめ設置する。地下への緩衝材定置に先立ち事前に緩衝材ブロックを製作する。まず、ブロック内に地中無線装置を設置するためのスロットを切削する。ケーブル配線作業が無いため、設置作業は簡略化できる。したがって、切削、設置、埋戻して 1 日を見込む。原位置締固めと違い地上での作業となること、ブロックをもとにする場合には数のブロックに同時に設置できること、かつケーブル配線作業が無いことからブロック内への地中無線装置の設置作業が工程上クリティカルになることはない。緩衝材ブロックの製作が完了すると、現場で計測機の設置等がないため、通常の緩衝材ブロックの設置と同じとなる。処分孔内へのブロック定置に 8 日を見込む。

上部坑道の増え付とプラグ施工は、(1)と同様に 10 日、1 日とする。以上より、施工日数は 18 日となる。

表 4.2.5-4 緩衝材ブロックにおける工程（地中無線）

<table>
<thead>
<tr>
<th>施工場所</th>
<th>工種</th>
<th>日数</th>
</tr>
</thead>
<tbody>
<tr>
<td>底部</td>
<td>緩衝材ブロック製作</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>計測機器設置</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>通信機設置</td>
<td></td>
</tr>
<tr>
<td>側部</td>
<td>緩衝材ブロック設置</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>計測機器設置</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>通信機設置</td>
<td></td>
</tr>
<tr>
<td></td>
<td>模擬関係体設置</td>
<td>1</td>
</tr>
<tr>
<td>上部</td>
<td>緩衝材ブロック設置</td>
<td>2</td>
</tr>
<tr>
<td>上部坑道</td>
<td>増え付</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>プラグ施設コンクリート打設のみ</td>
<td>1</td>
</tr>
</tbody>
</table>
4.2.6 モニタリング箇所と時期を踏まえたデータ伝送

データ伝送方法の観点から、有線方式及び無線方式によるモニタリングが適用できる箇所と時期を取りまとめると、表 4.2.6-1 のようになる。

<table>
<thead>
<tr>
<th></th>
<th>計測場所</th>
<th>天然</th>
</tr>
</thead>
<tbody>
<tr>
<td>地下環境</td>
<td></td>
<td>FF 畳盤</td>
</tr>
<tr>
<td>地下施設</td>
<td>坑道</td>
<td>処分坑道</td>
</tr>
<tr>
<td>処分施設</td>
<td>人工 バリア</td>
<td>緩衝材</td>
</tr>
<tr>
<td>地下調査施設Ⅰ</td>
<td>処分坑道</td>
<td>オーバーバック</td>
</tr>
<tr>
<td>模擬廃棄体</td>
<td></td>
<td></td>
</tr>
<tr>
<td>地下調査施設Ⅱ</td>
<td>処分坑道</td>
<td>緩衝材</td>
</tr>
<tr>
<td>実廃棄体</td>
<td>人工 バリア</td>
<td></td>
</tr>
<tr>
<td>URL 処分場サイト外</td>
<td>処分坑道</td>
<td>緩衝材</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>計測時期</th>
<th>① 事前調査</th>
<th>② 概要調査</th>
<th>③ 精密調査</th>
<th>④ 処分場の建設</th>
<th>⑤ 処分場の操業</th>
<th>⑥ 施設の閉鎖</th>
<th>⑦ 閉鎖後の管理</th>
</tr>
</thead>
</table>

有線方式もしくは無線方式によるモニタリングを実施
（〇は必要に応じて無線方式の適用を推奨）

無線方式によるモニタリングで一部継続できる箇所
※1 処分坑道埋し直し前まで計測を実施

4-37
表 4.2.6-1 のうち、緑色は有線方式のモニタリングが実施可能な箇所と時期を示している。有線方式の場合は、センサから近距離に設置したデータロガーまでをメタルケーブルでの通信を行う。通信距離が長くなり、かつデータ伝送量が多くなる場合には、光ファイバによるデータ伝送が有利になる。そのため、地下坑道内で取得されたデータは、一旦地下坑道内に設置した集積装置で集積し、光ファイバでまとめて地上的記録装置に送る方式が採用されると考えられる。

表 4.2.6-1 の中の箇所で緩衝材等の人工バリア内や坑道内のモニタリングが要望され、データ等の品質の観点からケーブルによる乱れをさせる必要が生じた場合には、無線技術の適用を考える（表 4.2.6-1 中間部）。その場合、それぞれ通信距離とデータ伝送容量及び共用期間（電池の寿命）の範囲内で適用することができる。

また、黄色の部分、すなわち施設の閉鎖後は、坑道内のモニタリング機器はケーブルを含めて撤去されることを基本とした検討を行ったが、必要であれば地中無線装置によるモニタリングを継続することがある。ただし、通信距離、データ伝送能力、及び共用期間に限りがあるため、現在の技術では、地中無線を適用したとしても、閉鎖後 10 年程度のモニタリングが現実的なところである。

上記の検討で明らかとなった課題を以下にまとめる。

・ 緩衝材内への機器の設置方法：

有線方式の機器を使用する場合には、機器を設置するため、緩衝材を掘削することによる緩みの形成、機器設置後に緩衝材で埋め戻す際には、機器を養生する観点から十分に縛固めができない恐れがある。（ただし、このような懸念に関して、長期にわたり緩衝材の品質に影響があるのではないかをしっかりと検討することが重要である。）

無線方式の機器を設置する場合、ケーブル養生に関する問題点は解決されるが、機器設置に伴う緩衝材の緩みは避けられない。

・ 地上あるいは地下坑道内から掘削したポーリング孔内に受信機を設置してデータを無線伝送する場合：

電磁波を通すため、ポーリング孔のケーシングの材料や受信機設置位置のケーシングに工夫を要する。また、ポーリング孔無線対応の受信装置の開発が必要となる。

・ 実廃棄体周りの緩衝材への機器の設置方法：

本検討では、実廃棄体周りの緩衝材のモニタリングは実施しないことを前提とした検討を行ったが、仮に実廃棄体周りの緩衝材をモニタリングする場合を想定すると、緩衝材中へのモニタリング機器の遠隔設置方法、及び高放射線量下で長期間稼動することが可能なモニタリング機器の開発が必要となる。

上記のうち、「無線方式の緩衝材内への設置」に関して、緩衝材を緩めない方法は別途 4.3.6 項で検討する。
4.3 アクティブ通信技術に関する検討

4.3.1 アクティブ通信技術の概要

アクティブ通信技術の概要を図 4.3.1-1 [7]に示す。送信装置は、一つあるいは複数のセンサに接続され、電磁波を発生するコイルアンテナ、及び 1 次電池、データロガー、メモリ等が内蔵されている。受信側には送信装置からの電磁波を受信する受信装置、送信装置に指令を送るための指令送信機及びそれらをコントロールする送受信制御機からなる。なお、本事例は地下空洞内に構築された厚さ 1m の緩衝材中に埋設されたものであり、通信距離は数 10m である[1]。

図 4.3.1-1 アクティブ送信装置の例
センサのデータは、電磁波に載せて受信機に伝送するが、ベントナイト等の媒質中では高周波電磁波は減衰大きく、無線伝送手段として用いることは困難である。そこで、周波数が 1kHz程度の低周波電磁波を利用している。

低周波電磁波の媒質中の伝播理論式を以下に示す。

本研究では通信距離が数10m程度の無線通信を対象としている。これに対し、電磁コイルアンテナの直径は30cm程度であり通信距離に対して十分に小さい。したがって、電磁コイルアンテナの近傍における電磁界は、図 4.3.2に示す従小ループ電流が作る電磁界として表現することができる。

図 4.3.1-2 ループアンテナ近傍の電磁界

誘電率が ε F/m、透磁率が μ H/m、導電率が σ S/m の均質な媒質中におかれた面積 S m²の微小ループに角速度 ω Hz、波長 λ m の電流 IA が流れるとき、微小ループから r m 離れた地点、すなわち、座標表示の点(r, θ, φ)における電界成分 Er、Eθ、Eφ及び磁界成分 Hr、Hθ、Hφの一般解は、Maxwell の波動方程式にもとづき次のようになる[9]。ここで、j は虚数単位である。

\[
E_r = -j \frac{\mu_0 I S I}{4\pi r^2} \sin \phi e^{-j\omega t} \\
H_r = \frac{I S I}{2\pi r} \cos \phi e^{-j\omega t} \\
H_\theta = \frac{I S I}{4\pi r} \sin \phi e^{-j\omega t}
\]

他の成分は0

ただし、 \(\gamma = \sqrt{j\omega\mu\sigma}\)

4-40
実際の通信では、受信装置もループアンテナであり磁界成分を受信する。したがって、上式のうち、磁界成分 H_1, H_2 に注目すればよいことになる。第 2 式及び第 3 式より、磁界成分は距離の 3 乗に反比例して減衰することが分かる。

実際の通信では、図 4.3.1-3 に示すように通信距離が長くなるにしたがって、送信装置から送られてくる信号を載せた磁界強度が小さくなるが、受信する磁界強度が受信装置が置かれた周辺に存在する電磁ノイズよりも大きい場合にのみ成立する。

図 4.3.1-3 通信距離と磁界強度の関係

通信距離と磁界強度の関係を把握することにより製作した送信装置の性能が設計どおりであることの確認、及び媒質による電磁波の減衰の程度を評価することができる。本調査では、小型送信装置の評価はこの関係を測定することにより行う。

なお、既往試験[7]により、周波数が kHz オーダーの場合には、ベントナイトによる電磁波の減衰はほとんどないことが分かっている。
4.3.2 送信装置の小型化に関する課題の整理

既往検討[1]において、アクティブ無線通信技術の地層処分関連モニタリングへの適用性に関する検討は、図 4.3.2-1 に示す 3 つの項目に区分することができる。

![受信機](image)

図 4.3.2-1 アクティブ無線通信に関する検討

各項目のこれまでの主な調査研究成果は、以下のとおりである。

- **低周波電磁波伝播特性に関する検討**

スウェーデン、エスボ島硬岩研究所で実施した原位置通信試験、あるいはフランス、ピュール地下研究所で実施された原位置通信試験を通じて結晶質岩及び堆積粘土質岩中の低周波電磁波伝播特性を把握した。また、地下坑道内の鋼材等の導電体が電磁波の伝播に与える影響を把握した。これらの試験結果に対して、数値解析による低周波電磁波伝播に関する実現象を再現する検討を行った。その結果、本検討で対象としている数 100m 以下の通信距離の範囲では、母岩が伝播特性（受信強度）に与える影響はほとんど無いという結論が得られている。また、吹付コンクリート内のワイヤーメッシュ、インパクトコンクリート内のメッシュが伝播特性に与える影響もほとんど無いといえる。

一方、鋼製支保工や鋼管等の鋼材に対して電磁波の伝播は敏感に反応することが明らかとなった。例えば、1 本の坑道内に送信機と受信機を配置する場合、伝信方向が坑道軸方向であると、鋼製支保工及び鋼管とも磁界強度に影響しないが、伝信方向が鉛直方向になると、鋼管は影響しないが、鋼製支保工の影響により受信強度は低下する。また、2 本の坑道間で通信を行う場合、伝信方向が水平のとき、鋼製支保工は影響しないが、鋼管の影響により受信強度は大きくなる。一方、伝信方向が鉛直方向の場合は、鋼管は影響しないが、鋼製支保工の影響により受信強度は
低下することが分かった。

更に、これらの事象を解析的に再現することで、解析の再現性に関する信頼性が高められてきた。

送信に関する検討

送信装置の送信効率の向上に関する調査の結果、送信効率はアンテナの直径が大きくなるほど向上するということが確認されている。1kHz 程度の低周波電磁波を用いる場合には、アンテナの直径が 1,500mm 程度よりも小さい場合には磁性体をコア材とするコア入りアンテナが、また直径が 1,500mm 程度よりも大きい場合には、コア材を用いない空芯アンテナの送信効率が優勢であるという結果が得られている。それぞれのアンテナを用いて送信機を設計する際の留意点は、以下のとおりである。

・ コア入りアンテナコイルは、コア内部に電子機器や電池を内蔵することができる。したがって、アンテナ内に必要な装置を全て収納した一体型の送信装置を製作できる。

・ コア入りコイルは、コアの飽和磁束密度特性とコア断面積により放射できる磁界強度が制限されるため空芯アンテナと比較してアンテナの直径を大きくしても送信効率の伸びが変化しない。

・ 空芯コイルは、小型にすると導体体積を大きくできないため送信効率は低下する。

以上のことから、小型・一体型・細径の送信装置にはコア入りコイルアンテナが適しており、大型・大出力の送信装置には空芯コイルが適することが分かった。

受信に関する検討

受信装置の受信効率の向上に関する調査の結果、S/N 比（受信地点の電磁ノイズに対する送信装置からの磁界強度の比）はアンテナの形状が細長いほど大きくなる傾向があることが明らかとなった。一方、受信効率はアンテナの形状が同じであると、S/N 比はアンテナの大きさによらず一定になることが確認できた。

以上を踏まえ、受信効率は、受信装置の大きさを変えたり、感度を高めたりするよりも、むしろ電磁ノイズ強度が小さくなる形状の受信アンテナを、電磁ノイズ強度が小さくなる向きに設置し、その向きに信号強度が最も大きく入射するように受信アンテナを設置することが効果的であることが分かった。

これらの調査・検討成果により、無線通信に対するニーズ、例えば必要な通信距離、設置する送信装置の大きさ、設置する環境等が提示されたときに、その環境をモデル化した数値解析により電磁波の伝播挙動を評価し、その結果に基づき適切な送信装置と受信装置を設計、試作することが可能となっている。

表 4.3.2-1 には、既往検討を踏まえた無線通信技術の地層処分関連モニタリングへの適用概念を示す。
表 4.3.2-1 アクティブ無線通信技術の地層処分関連モニタリングへの適用概念

<table>
<thead>
<tr>
<th>ケース</th>
<th>項目</th>
<th>適用概念</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>径</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>長さ</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>径</td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td>長さ</td>
<td>0.31</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>径</td>
<td>0.30</td>
</tr>
<tr>
<td></td>
<td>長さ</td>
<td>0.40</td>
</tr>
<tr>
<td>4</td>
<td>径</td>
<td>5.00</td>
</tr>
<tr>
<td></td>
<td>長さ</td>
<td>0.05</td>
</tr>
<tr>
<td>5</td>
<td>径</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>長さ</td>
<td>0.20</td>
</tr>
</tbody>
</table>

*送信装置
受信装置*
実際のモニタリングへの無線通信装置の適用を目指し、昨年度、適用性向上向けた課題を表4.3.2-2のように整理した。この整理においては、本技術に想定される段階ごとのニーズを踏まえ開発課題を抽出している。今年度は表4.3.2-2の中から、最もニーズの高い“装置の小型化”に着目し、検討を開始した。

表4.3.2-2 段階ごとに想定されるニーズ

- ○：当該段階前までに解決すべき課題
- △：当該段階までに解決されていることが望ましい課題

<table>
<thead>
<tr>
<th>開発課題</th>
<th>地下研究所（実証研究等）</th>
<th>概要調査（ポーリング孔によるベースライン調査）</th>
<th>本施設</th>
</tr>
</thead>
<tbody>
<tr>
<td>【ハード】</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>小型化</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>ポーリング孔対応</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>耐熱性の向上</td>
<td>△</td>
<td></td>
<td>○</td>
</tr>
<tr>
<td>耐圧性の向上</td>
<td>△</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>対放射線性の向上</td>
<td></td>
<td></td>
<td>○</td>
</tr>
<tr>
<td>耐久性の向上</td>
<td></td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>通信距離の長距離化</td>
<td></td>
<td>△</td>
<td>△</td>
</tr>
<tr>
<td>中継ネットワークの構築</td>
<td></td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>通信方式による通信効率の向上</td>
<td></td>
<td>△</td>
<td>△</td>
</tr>
<tr>
<td>【解析手法】</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>複雑な地下施設でのモデル化</td>
<td></td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>
図 4.3.2-2 に小型送信装置のイメージを示す。送信装置の大きさに関して、一般的に使われる温度計や間隔水圧計の大きさを念頭に、外径 50mm 程度、長さ 100～130mm 程度を開発目標とした。また、通信はセンサから受信機への単方向通信とし、計測、通信はあらかじめ設定した間隔で行うプリセット方式とした。
図 4.3.2-3 の小型送信装置を実現する際の課題を整理した。取り組むべき課題としては以下の項目があげられる。これらの課題のうち、URLや地下調査施設 I での適用を考えたときに不可欠な下線部の項目に着目して、調査研究を実施した。

図 4.3.2-3 小型送信装置の要素

【課題】

1. 耐圧容器（非損失媒体）
 ・ 耐圧性及び止水性の確保
 ・ 高温で必要な耐力が得られる材料の特定
 ・ 放射線で劣化しにくい材料の特定

2. アンテナ
 ・ 通信特性の把握及び通信効率の最適化
 ・ 軸芯部材挿入時の出力の把握

3. 通信・測定・時管理回路
 ・ 消費電力の最小化
 ・ 回路動作の信頼性・冗長性確保
 ・ モニタリング内容に適した通信スケジュールの評価
 ・ 高温で動作可能な回路と電子部品の検討
 ・ 放射線からの電子回路の保護方法の検討

4. 電池
 ・ 高温で動作する電池の調査
 ・ 電子回路の保護方法の検討
4.3.3 小型送信装置の設計

（1）検討項目

前項の課題を解決するにあたり、下記の検討を行い、プロトタイプの設計を行った。

① 耐圧容器（筐体）の検討：小型化に必要とされる筐体強度、高耐圧構造、止水構造（透湿性）の対策に関する検討

小型送信装置の基本的な特性調査及び通信試験のために、基本仕様である1MPaの耐圧容器構造の設計に加え、人工ハリアの膨潤圧を考慮した高耐圧構造を検討する。膨潤圧を考慮した高耐圧構造の場合、止水性が要求されるアンテナ外装を低周波電磁波を通す樹脂材料で構成すると必要な耐圧が得られないため、アンテナ内側を金属材料を含めた耐圧材料で耐圧容器を構成し、アンテナ外装は止水性だけをจะเป็น持たせる構成とするなどの構造を検討する。

② アンテナの検討：小型化に必要とされるアンテナ特性の把握（磁性材料含む）

送信効率の低下する小直径・短全長アンテナの効率向上を目指し、複数のアンテナコイルを検討し、要素試験を通じ比較検証を行う。

③ 回路の検討：小型アンテナを使用した際の低消費電力を加味した通信距離の調査研究

小型のアンテナにおいて最適な通信速度を計算、通信上の符号化を含めた、S/Nの向上に関する検討を行う。また、小型化に必要とされる必要最小限の機能を選択する。それらを踏まえ小型化に影響する回路実装の最適機能設計を行う。

④ 電池に関する検討

小型小容積で高容量・低自重消費電池を調査し、その電池特性に合った寿命設計を行う。

また、今後のために高温で動作する電池を調査する。
(2) 耐圧容器（筒体）の検討

耐圧容器はアンテナコイルより発信される低周波電磁波を通すものでなくてはならない。金属等の導電性の高いものは減衰が著しく使用できない。低周波電磁波を通す容器の候補材料として以下があげられる。

1. PVC（硬質塩化ビニル樹脂）
2. GFRP（Grass Fiber Reinforced Plastics）
3. 強化ガラス（球形）

耐圧容器の材料として求められる特性には、強度、透水（透湿）性、加工性、入手性、コストなどがあげられる。それぞれの定性的な特性は表 4.3.3-1 のとおりであり、ここでは、加工性に優れ透湿性の少ない PVC を採用した。

表 4.3.3-1 容器材料の特性

<table>
<thead>
<tr>
<th></th>
<th>強度</th>
<th>非透湿性</th>
<th>加工性</th>
<th>入手性</th>
<th>コスト</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVC</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>GFRP</td>
<td>○</td>
<td>△</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>強化ガラス</td>
<td>○</td>
<td>○</td>
<td>×</td>
<td>△</td>
<td>△</td>
</tr>
</tbody>
</table>

硬質塩化ビニル樹脂の耐力は 49N/mm² である。目標仕様の 1MPa 以上の耐圧をもたせるためには、筒体外径を目標の 50mm とすると、計算上肉厚は 2mm 程度必要（安全率 4）となるが、実際の加工上では、ねじ加工等肉厚が薄くなるところがあるため、厚み 3.5mm 程度とする。

実際に設計・加工した耐圧容器の耐圧性能を確認するために、耐圧試験を行った。耐圧仕様は 1MPa であるが、耐圧性の向上を考慮した場合 3MPa まで加圧して 60 分間保った後、耐圧容器の止水性や外観を確認した。試験手順は JIS B8266-2003 付属書 17 に準拠した。試験条件及び試験手順を以下に示す。また、試験装置を図 4.3.3-1 に示す。

加圧流体は水であり、試験圧力は 3MPa とした。手順は以下のとおりである。

a）昇圧
1) 加圧流体（水）と加圧タンク、耐圧容器の温度がほぼ等しくなってから昇圧する。
2) 空気を排除しながら試験用加圧タンクを水で満たし、残存空気のないことを確認する。
3) 最大試験圧力（3MPa）の 50％（1.5MPa）まで徐々に昇圧し、加圧タンクに異常がないことを確認する。その後、10％（0.3MPa）ずつ徐々に昇圧し、その都度、安全な場所から異常の有無を監視しながら最大試験圧力まで昇圧する。
b) 圧力の保持
最大試験圧力まで昇圧した後、圧力が安定してから60分間保持する。

c) 降圧・排水
耐圧試験終了後、圧力を徐々に降圧し、圧力の放出及び排水を行う。

d) 降圧後
耐圧試験終了後、目視によって異状の有無を検査する。

図 4.3.3-1 耐圧試験装置
試験後の圧力容器を図 4.3.3-3 に示す。試験の結果、3MPa の外圧を加えても破壊せず、局部的な変形、その他異常や漏れはなく、1MPa の耐圧性能を満足できることが確認できた。

図 4.3.3-3 試験後の耐圧容器

(3) アンテナの検討

小型送信機の目標サイズは φ50mm 程度、長さ 100〜130mm 程度である。先の耐圧容器の内厚を考慮すると、内蔵可能なアンテナの直径は 40mm 程度、長さは 100mm 程度以下となる。そこで、φ40×100mm のサイズを目標として、アンテナの検討を行った。

通信に用いる電磁波の周波数は次のように設定した。周波数は、通信対象である媒質の電気的性質に応じて通信可能な距離と相関がある。媒質の導電率が高いと電磁波の減衰が大きくなり通信距離が短くなる。その場合、周波数を下げることにより減衰の程度を抑えることができる。一方、小型のアンテナを目指すには、入手電流に対する電磁波の出力、すなわちエネルギー効率を高める必要があり、そのためには周波数を上げることが有効である。昨年度までの検討では、通信距離を数 10m 以上とし、1kHz 程度の周波数の電磁波を使用していた。ここでは、
目標通信距離が 10m 程度と短いこと、及び機器の小型化を目指していることから周波数を若干高めの 8kHz に設定した。

磁性材料として使用可能な材料にはケイ素鋼板、アモルファス、フェライト等の種類がある。ここでは、R=20mm 程度の曲率で曲げ加工可能で、1kHz〜10kHz で高い比透磁率を持つこと、高飽和磁束密度をもつこと等の利点を有するアモルファス系シート状磁性材料（比透磁率 10,000 以上、飽和磁束密度 1.0T 以上）を採用した。

上記磁性材料を用いて、直径 40mm のアンテナの長さを変えて 3 種類作成して通信試験を行った。

\[\phi 50\text{mm}, \text{長さ } 100\text{mm}\] 程度のアンテナで、内部に磁性体、軸部材が搭載された状態での最適な仕様（形状・磁性体）を見出すことを目的として以下の検討を行った。

1) 試験用アンテナ作成

試験に供するため以下の 3 種類のアンテナを作成した。作成したアンテナの写真を図 4.3.3-4 に示す。

(A) \(\phi 40 \times 50\text{mm}\)

(B) \(\phi 40 \times 100\text{mm}\)

(C) \(\phi 40 \times 150\text{mm}\)

![図 4.3.3-4 試作したアンテナ 3 種（左より(A), (B), (C)）](image)

(B)には絶縁テープが巻いてある

2) アンテナの基本特性の確認

送信アンテナ 3 種類について、送信アンテナ-受信アンテナ間距離を、5m、7.5m、10m、12.5m、及び 15m と変更して通信試験を行った。試験方法を図 4.3.3-5 に、送信アンテナと受信側の機材を図 4.3.3-6 及び図 4.3.3-7 に示す。また、試験状況を図 4.3.3-8 に示す。

4-52
図 4.3.3-5 試験方法

図 4.3.3-6 送信アンテナ

図 4.3.3-7 受信側の機材
アンテナを対向（送信機アンテナ軸と受信機アンテナ軸を直線上に位置させる）させて試験した結果を図 4.3.3-9 に示す。

試験結果より、長さ 50mm のアンテナ以外を使用した場合は 10m 以上の通信が可能であった。ノイズレベルが 10mV 以下と仮定した場合も同様である。
次に L=100mm のアンテナを平行に配置し試験し、対向させた場合と比較した結果を図 4.3.3-10 に示す。その結果、対向通信に対し、平行にした場合は概ね受信信号が半分になっており、これは理論どおりの結果である。

この結果をもとに、10m 以上の通信が可能で、仕様を満足するサイズのアンテナとして L=100mm のものを採用した。

3) アンテナコイルの共振点調整及び飽和磁界強度の確認
アンテナの性能の一つである飽和磁界強度を求めるにあたり、まず、共振点の調整を行った。共振点の調整には、アンテナを駆動する発信機及びアンプ、LCR メーターを用いた。調整機器を図 4.3.3-11 に示す。
飽和磁界強度を求めるために、発信器及びアンプによりアンテナから低周波電磁波を発信させ、電流プローブ及びオシロスコープによりアンテナに流れる電流を測定した。確認に用いた機器を図 4.3.3-12 に示す。オシロスコープの波形から磁界が飽和するまでの電流を求めた結果、アンテナの能力に余裕があるため、入力電流値を大きくし出力を最適値まで向上させることとした。

図 4.3.3-12 飽和磁界強度確認に用いる機器

通信効率の調整後のアンテナ及び後述する送信回路を用いて通信試験を行った結果を図 4.3.3-13 に示す。アンテナは対向させた。試験の結果、出力は改善され、10mVrms 程度のノイズ環境下では、概ね 15m 程度の通信が可能となった。

図 4.3.3-13 共振点調整後通信試験結果

4-56
(4) 回路の検討
前後アンテナ試験より、長さ 100mm のアンテナを格納するためには、送信装置耐圧容器
の長さは 110mm 程度必要となる。この場合、電池の長さが単一サイズで 62mm あるため、耐
圧容器のふた厚を除くと 30mm 弱となる。このサイズを目標に回路設計を行った。

回路設計に際する主な要素の機能と特徴は以下の通りである。

- CPU（MPU）: MSP430（小型マルチプロセスユニット）
 低消費電力で A/D 機能を内蔵
- タイマーIC：スケジュール管理
 カレンダー機能を搭載し、曜日判定も可能
- 測定回路：
 測定項目として挙げられるのは、温度、圧力、ひずみなどである。各種測定用センサの変
換方式としては、差動トランス式やひずみゲージ式、ポテンショメータ式など各種ある。こ
れらを直接測定するセンサ方式に加え、センサの出力を電圧や電流として出力するセンサも
普及している。
 小型送信機の内部容積は限られているため、センサの駆動及びセンサ出力をデジタルに変
換する方式は簡素な方式である必要がある。対応するセンサ出力方式としては普及しており、
かつ小型化可能な測定出力方式に対応する。
 内部に標準的に接続される温度センサは、低消費電力かつ小型であることから半導体式温
度計を採用する。
- A/D: センサの電圧出力をデジタルに変換する機能
 MPU に内蔵されている。12Bit 以上の分解能とする。
- 起動回路:
 タイマーのスケジュールに合わせ、必要な回路を起動する。
- RAM：測定値等の保存
 基板 1 枚当たりの面積が限られているため、複数の基盤をスタックする構成とする。

設計した回路の起動、測定、AD 変換、送信、待機等の各動作に関する機能確認を行った。

1) 電源・電圧試験
動作可能な最高・最低電圧の確認を確認し、電源の選定を行った。
可変電圧電源により回路を駆動し、回路が最低動作電圧及び想定される最高電池電圧で動
作できることを確認した。動作確認では、回路が動作するまで 1V から 0.1V 間隔で電圧を上
昇させ、動作してからは 0.5V 単位で上昇させた。本回路に使用している部品の耐電圧等から
最高電圧は 5V までとした。図 4.3.3-14 に試験装置を示す。
図 4.3.3-14 電源電圧試験

試験結果を表 4.3.3-2 に示す。電源・電圧試験により、本回路の最低動作電圧は 1.4V、最高動作電圧は 5V であることが確認できた。

表 4.3.3-2 電源・電圧試験結果

<table>
<thead>
<tr>
<th>電源電圧 [V]</th>
<th>動作</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>不可</td>
</tr>
<tr>
<td>1.1</td>
<td>不可</td>
</tr>
<tr>
<td>1.2</td>
<td>不可</td>
</tr>
<tr>
<td>1.3</td>
<td>不可</td>
</tr>
<tr>
<td>1.4</td>
<td>正常</td>
</tr>
<tr>
<td>1.5</td>
<td>正常</td>
</tr>
<tr>
<td>2.0</td>
<td>正常</td>
</tr>
<tr>
<td>2.5</td>
<td>正常</td>
</tr>
<tr>
<td>3.0</td>
<td>正常</td>
</tr>
<tr>
<td>3.5</td>
<td>正常</td>
</tr>
<tr>
<td>4.0</td>
<td>正常</td>
</tr>
<tr>
<td>4.5</td>
<td>正常</td>
</tr>
<tr>
<td>5.0</td>
<td>正常</td>
</tr>
</tbody>
</table>

2) 消費電流確認試験

回路の消費電流を最小化するため消費電流確認試験を行った。本回路に可変電圧電源により電流を供給し、各動作電圧において回路のスリーブ時と測定時における消費電流を測定した。なお、本回路単体での試験のため、送信時（通信時）の消費電流は小型送信機組み立て後の試験において測定した。測定は図 4.3.3-2 と同様の機材を用いて行った。消費電流の測定結果を踏まえ、回路の配置等の修正を行い消費電流を最小化した。
消費電流確認試験結果を表 4.3.3-3 に示す。試験の結果より、概ねスリープ時の消費電流は1.5μA程度以下であることが分かる。また、ここで確認した消費電流は、送信装置の耐用年数を評価する際の基礎データとした。

表 4.3.3-3 消費電流確認試験結果

<table>
<thead>
<tr>
<th>電源電圧 [V]</th>
<th>スリープ [μA]</th>
<th>測定 [mA]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>1.0</td>
<td>103.65</td>
</tr>
<tr>
<td>2.0</td>
<td>1.3</td>
<td>77.52</td>
</tr>
<tr>
<td>2.5</td>
<td>1.4</td>
<td>55.57</td>
</tr>
<tr>
<td>3.0</td>
<td>1.4</td>
<td>54.74</td>
</tr>
<tr>
<td>3.5</td>
<td>1.5</td>
<td>50.31</td>
</tr>
<tr>
<td>3.6</td>
<td>1.5</td>
<td>49.44</td>
</tr>
<tr>
<td>3.8</td>
<td>1.5</td>
<td>44.93</td>
</tr>
<tr>
<td>4.0</td>
<td>1.5</td>
<td>36.13</td>
</tr>
<tr>
<td>4.5</td>
<td>1.5</td>
<td>33.89</td>
</tr>
<tr>
<td>5.0</td>
<td>1.6</td>
<td>22.88</td>
</tr>
</tbody>
</table>
3) 温度試験

回路が動作可能な最低・最高温度を把握するため回路に温度負荷を与え、機能を保証できる温度を確認した。

恒温槽内に送信装置を入れ、雰囲気温度を-10℃から60℃まで変更し、その間の動作を確認した。動作の確認には、本回路上に搭載した温度測定機能を使用し、温度が正常に測定できている場合に動作可能と判断した。

変温パターンを表 4.3.3-4 に示す。-10℃に下げる際は稼働状況を確認するため、一旦0℃で3時間程度、温度を保持し正常に稼働していることを確認してから-10℃まで低下させた。

表 4.3.3-4 変温パターン

<table>
<thead>
<tr>
<th>No.</th>
<th>設定温度</th>
<th>保持・遷移時間</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25℃</td>
<td>3h</td>
</tr>
<tr>
<td>2</td>
<td>25→0℃</td>
<td>1h</td>
</tr>
<tr>
<td>3</td>
<td>0℃</td>
<td>3h</td>
</tr>
<tr>
<td>4</td>
<td>0→-10℃</td>
<td>1h</td>
</tr>
<tr>
<td>5</td>
<td>-10℃</td>
<td>3h</td>
</tr>
<tr>
<td>6</td>
<td>-10→60℃</td>
<td>2h</td>
</tr>
<tr>
<td>7</td>
<td>60℃</td>
<td>3h</td>
</tr>
<tr>
<td>8</td>
<td>60→25℃</td>
<td>1h</td>
</tr>
<tr>
<td>9</td>
<td>25℃</td>
<td>3h</td>
</tr>
</tbody>
</table>

図4.3.3-16 温度試験で用いた恒温槽
温度試験の結果を図 4.3.3-17 に示す。図 4.3.3-17 より、全期間において、周辺雰囲気温度（環境温度）と測定温度が一致していることが分かる。よって、-10℃から 60℃まで問題なく動作しているといえる。また、電圧出力センサ接続部に 1V の電圧をかけておいた結果、測定電圧がほぼ 1V で安定していることから、測定の機能も損なわれていないことが確認できる。

図 4.3.3-17 温度試験結果

4) 測定値確認試験

本回路にセンサを接続し、センサの測定値の信頼性（AD 変換の精度及びばらつき）を確認した。

本回路には、電圧出力センサ接続用の電圧測定機能と温度測定機能を搭載している。電圧測定機能の測定値確認試験においては、仕様の入力範囲 0-1V の 50%増しである 0-1.5V の電圧を入力し、入力に対する測定結果を比較した。また、温度測定に関しては 0-50℃の範囲で温度を変化させて環境温度と測定温度を比較した。なお、温度を変化させた際は最低 30 分間に同じ温度に保った後に測定した。

電圧測定機能の確認結果を表 4.3.3-5 及び図 4.3.3-18 に示す。試験結果より、入力に対し概ね比例して測定結果が得られている。入力と測定結果より求めた補正係数を考慮した偏差では、最大で 0.003V 差が見られた。
表 4.3.3-5 電圧測定確認結果

<table>
<thead>
<tr>
<th>入力電圧 [V]</th>
<th>測定結果 [V]</th>
<th>偏差 [V]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.006</td>
<td>0.003</td>
</tr>
<tr>
<td>0.1</td>
<td>0.100</td>
<td>-0.002</td>
</tr>
<tr>
<td>0.5</td>
<td>0.501</td>
<td>-0.001</td>
</tr>
<tr>
<td>1.0</td>
<td>1.001</td>
<td>0.000</td>
</tr>
<tr>
<td>1.5</td>
<td>1.501</td>
<td>0.001</td>
</tr>
<tr>
<td>補正係数</td>
<td>0.99845</td>
<td></td>
</tr>
</tbody>
</table>

図 4.3.3-18 電圧測定結果

次に、温度測定確認試験結果を表 4.3.3-6 及び図 4.3.3-19 に示す。温度は概ね 0℃、25℃、50℃の 3 点校正とした。試験結果より、環境温度に比例して測定できていることが確認できた。温度差は最大で 0.12℃であった。

表 4.3.3-6 温度測定試験結果

<table>
<thead>
<tr>
<th>環境温度実測結果 [℃]</th>
<th>測定値 [℃]</th>
<th>温度差 [℃]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.5</td>
<td>1.55</td>
</tr>
<tr>
<td>25</td>
<td>26.67</td>
<td>26.59</td>
</tr>
<tr>
<td>50</td>
<td>51.13</td>
<td>51.25</td>
</tr>
</tbody>
</table>
5) 振動試験

回路に振動を負荷し、機能に異常が生じないことを確認するため振動試験を行った。

試験では、回路を耐圧容器に固定し、振動台に固定した。これは、振動・試験中の落下等による故障を避けるためである。振動台は変芯モーターを利用しており、概ね 8Hz 以上、最大 10G 程度の加速度で振動した。振動試験を 5 分間行い、停止後に動作確認を行った。

図 4.3.3-19 溫度測定試験結果

図 4.3.3-20 振動試験状況

振動前及び振動後に電源を接続し、動作を確認した結果、振動後も問題なく動作することを確認した。
(5) 電池の検討

一般的に2次電池（充電式）よりも1次電池の方が、容積（サイズ）当りの電池容量は大きい。電池を選択する上で重要なのでは、容積あたりの容量、低い自己消費、長期の安定性である。

塩化チオニルリチウム電池が密閉容器内で使用できる電池としては最も適しているが、数年を経過すると内部抵抗の増加により出力電圧が下がる傾向にある。その対策としてスーパーキャパシタ等の組み合わせが有効であることから、スーパーキャパシタ付塩化チオニルリチウム電池を使用することとした。採用した電池の諸元を表4.3.3-7に示す。

表 4.3.3-7 採用電池の諸元

<table>
<thead>
<tr>
<th>種類</th>
<th>塩化チオニルリチウム電池（一次電池）</th>
</tr>
</thead>
<tbody>
<tr>
<td>容量</td>
<td>19 Ah</td>
</tr>
<tr>
<td>電圧</td>
<td>3.6 V</td>
</tr>
<tr>
<td>大きさ</td>
<td>φ35.2×80.2mm</td>
</tr>
<tr>
<td>質量</td>
<td>120g</td>
</tr>
<tr>
<td>自己消費</td>
<td>5%/年以下</td>
</tr>
</tbody>
</table>

図 4.3.3-21 採用電池概観

前述した電池を用いた場合の運用可能年数は以下のとおり評価できる。運用可能年数の基本的な算出の仕方は以下の式で表される。
測定に要する年間消費電流量 + 通信に要する年間消費電流量 + スリーブ時に要する年間消費電流量 + 電池の自己消費量

算出条件は以下のとおりである。

主な条件
・電池の容量：19Ah
・電池の自己消費：5%/年
・スリーブ時の消費電流：1.5μA
・測定時の消費電流：50.0mA
・送信時の消費電流：70.0mA
・安全率：1.25倍

算出結果を表 4.3.3-8 に示す。測定が1回/日、通信が1回/週で、温度・電圧のみを対象とした場合（Case1）には10年程度計測が可能であり、測定回数を4倍の4回/日とした場合（Case5）には8年程度計測が可能となる。

表 4.3.3-8 各測定・通信条件下における運用可能期間の算出結果

<table>
<thead>
<tr>
<th>Case</th>
<th>測定</th>
<th>通信</th>
<th>センサ</th>
<th>期間</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1回/日</td>
<td>1回/週</td>
<td>温度・電圧</td>
<td>10年</td>
</tr>
<tr>
<td>2</td>
<td>1回/週</td>
<td>1回/月</td>
<td>温度・電圧</td>
<td>11年</td>
</tr>
<tr>
<td>3</td>
<td>1回/月</td>
<td>1回/月</td>
<td>温度・電圧</td>
<td>11年</td>
</tr>
<tr>
<td>4</td>
<td>1回/時</td>
<td>1回/日</td>
<td>温度・電圧</td>
<td>4年</td>
</tr>
<tr>
<td>5</td>
<td>4回/日</td>
<td>1回/週</td>
<td>温度・電圧</td>
<td>8年</td>
</tr>
</tbody>
</table>

(6) 小型送信装置プロトタイプの設計図面
これまでの検討に基づき記載した、小型送信装置プロトタイプの設計図面を図 4.3.3-22 と図 4.3.3-23 に示す。
図 4.3.3-22 小型送信装置プロトタイプ設計図（その1）
4.3.4 小型送信装置プロトタイプの製作

4.3.3 項における各機能検討及び設計・試作・試験結果より小型送信装置プロトタイプを製作した。製作した小型送信装置プロトタイプ外観を図 4.3.4-1 に、内部機構を図 4.3.4-2 に示す。直径 48mm、長さ 130mm である。内部に塩化チオニルリチウム電池 19Ah を 1 本備え、1日に 1 回測定、1 週間に 1 回通信する条件で、設計上は 10 年の運用が可能である。センサには温度測定 1ch と電圧入力 1ch の計 2ch を持つ。主な仕様を下記に示す。

図 4.3.4-1 プロトタイプ小型送信装置の概観

「プロトタイプ小型送信装置」
サイズ：φ 48×110mm
耐圧：1MPa
（加圧試験では 3MPa まで問題なかった。安全率 3 を見込み使用上は 1MPa を上限とする。）
通信距離：ノイズ環境 10mV で 15m
電池：塩化チオニルリチウム 1 次電池 19Ah
運用可能期間：1 日に 1 回測定、1 週間に 1 回通信で 10 年
測定機能：温度 1ch、電圧 1ch
耐圧容器
・耐圧性・耐水性：1MPa
・材料：硬質塩化ビニル樹脂
（通信に影響なく加工性・入手性に優れる）
・接続部：ねじ込み＋接着・Oリング

電池
・塩化チオニルリチウム電池（自己消費少なく大容量）
・自己消費率5%/年以下（10年で自己消費量半分以下）
・容量19Ah

アンテナコイル
・磁性体コア:
ナノ結晶軟磁性材料
非透磁率10000以上
飽和磁束密度1T以上（1kHz）
（発生磁界が飽和しないようにする）

制御回路・測定回路基板
・スリーブ時消費電流：1.5μA
（10年間で0.2Ah以下）
・異常検知機能搭載
・測定頻度：1回/日～1回/月
・通信頻度：1回/日～1回/月
通信回路基板
・搬送周波数：8kHz
・データ伝送速度：75bps
（帯域幅と伝送時間の兼合）
・位相変調方式
・誤り検出機能搭載

図 4.3.4-2 小型送信装置プロトタイプ内部機構
4.3.5 データ取得

小型送信装置プロトタイプを用いて通信試験を行い、得られた通信距離と受信電圧に関するデータに基づき、設計の妥当性を評価した。

(1) 通信試験

作成した小型送信装置プロトタイプを用いて通信試験を行い、設計の妥当性を確認した。試験方法を図 4.3.5-1 に示す。小型送信装置プロトタイプと受信アンテナを対向及び平行に配置し、距離を変えて通信を行い、データ通信が成功した際の受信電圧を測定した。

図 4.3.5-1 試験方法
試験機材及び試験状況を図 4.3.5-2 に示す。試験に用いた機材は、小型送信装置プロトタイプ、受信機、レベルメータである。

図 4.3.5-2 小型送信装置プロトタイプ通信試験

試験結果を図 4.3.5-3 に示す。環境ノイズが 10mVrms 存在すると仮定しても、15m 以上の通信距離が得られることがわかった。当初目標の 10m の通信距離を十分に満足するものである。

図 4.3.5-3 通信試験結果

4-71
また、小型送信装置プロトタイプを砂中に埋設して通信試験を行った。埋設状況を図4.3.5-4に示す。砂は縦30cm、横50cm、高さ30cmの容量を用意し、深さ10cm程度の位置に埋設した。通信距離は、5、7.5、10、12.5mと変化させた。アンテナの向きは送信装置及び受信装置が対向するように配置した。各通信距離における受信強度を取得し、通常の通信試験結果と比較した。

図 4.3.5-4 送信機埋設状況

通信試験結果を図4.3.5-5に示す。試験結果より、受信電圧は空気中の通信で得られた値と一致しており、送信機周りに砂がある場合でも通信が可能であることが確認できた。
次に、アンテナ試験時の結果と比較し、アンテナ内側にバッテリや回路等の部材が挿入された影響の確認を行った。比較データを図 4.3.5-6 に示す。図 4.3.5-6 より、内部に回路や電池を挿入したことにより 4 割程度の通信性能の低下が確認された。また、試験時には温度データを送信しており、正常にデータが送信できることを確認した。温度データを表 4.3.5-1 に示す。

図 4.3.5-6 アンテナ内側に挿入された影響の確認

表 4.3.5-1 通信試験中の温度データ

<table>
<thead>
<tr>
<th>回数</th>
<th>温度(℃)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14.37</td>
</tr>
<tr>
<td>2</td>
<td>14.31</td>
</tr>
<tr>
<td>3</td>
<td>14.18</td>
</tr>
<tr>
<td>4</td>
<td>14.12</td>
</tr>
<tr>
<td>5</td>
<td>14.12</td>
</tr>
<tr>
<td>6</td>
<td>14.00</td>
</tr>
<tr>
<td>7</td>
<td>13.93</td>
</tr>
<tr>
<td>8</td>
<td>13.87</td>
</tr>
<tr>
<td>9</td>
<td>13.81</td>
</tr>
<tr>
<td>10</td>
<td>13.68</td>
</tr>
<tr>
<td>11</td>
<td>13.68</td>
</tr>
<tr>
<td>12</td>
<td>13.87</td>
</tr>
<tr>
<td>13</td>
<td>16.06</td>
</tr>
<tr>
<td>14</td>
<td>17.56</td>
</tr>
<tr>
<td>15</td>
<td>19.00</td>
</tr>
<tr>
<td>16</td>
<td>19.87</td>
</tr>
<tr>
<td>17</td>
<td>20.43</td>
</tr>
<tr>
<td>18</td>
<td>20.68</td>
</tr>
<tr>
<td>19</td>
<td>21.12</td>
</tr>
<tr>
<td>20</td>
<td>21.50</td>
</tr>
</tbody>
</table>
(2) 全体動作確認

本動作確認では小型送信装置ブロトタイプを組み上げた時点で全体的な機能の動作を確認した。

試験内容及びその動作試験結果を表 4.3.5-2 に示す。

試験の結果、日時管理（タイマー管理）、測定機能、保存機能、通信機能、異常検知機能、設定機能すべてにおいて動作することを確認した。

表 4.3.5-2 試験内容（各機能）と試験結果

<table>
<thead>
<tr>
<th>機能</th>
<th>結果</th>
<th>判定</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイマー機能</td>
<td>設定した日時に起動する。年越し、間年、曜日設定で正常動作する。</td>
<td>○</td>
</tr>
<tr>
<td>準定機能</td>
<td>設定した日時に温度・電圧入力とも測定する。指定 ch のみ測定する。</td>
<td>○</td>
</tr>
<tr>
<td>保存機能</td>
<td>開部メモリに測定結果を保存する。残メモリ無い場合、サイクリクし新しいデータを保存する。</td>
<td>○</td>
</tr>
<tr>
<td>通信機能</td>
<td>設定した日時に設定した数のデータを伝送できる。保存された測定結果を伝送できる。</td>
<td>○</td>
</tr>
<tr>
<td>異常検知機能</td>
<td>連続的に 30 分以上動作した場合リセットされる。</td>
<td>○</td>
</tr>
<tr>
<td>設定機能</td>
<td>測定・通信日時の設定を書き込む。エラー履歴を保存する。</td>
<td>○</td>
</tr>
</tbody>
</table>

(3) 温度試験

小型送信装置ブロトタイプを、温度環境を変えた中で動作させ、低温、高温での動作確認を行った。

まず、熟負荷を与えるために、0・50℃を 1 日程度繰り返す。その後、一旦・10℃まで下げた後、5℃ずつ段階的に 70℃まで温度を上げ、最終的に室温に戻す。ブロトタイプの温度の測定結果と環境温度を比較し、測定上問題となるような差が無ければ問題なく動作したものとする。
図 4.3.5・7 恒温槽内での試験

試験結果を図 4.3.5・8 に示す。試験の結果、-10℃から 70℃までの温度範囲で小型送信装置プロトタイプが正常に動作することを確認した。また、環境温度と測定温度の関係を図 4.3.5・9 に示す。測定時刻の同期を完全に一致させることが難しいため、多少のずれは生じているが、概ね一致しており、温度によるヒステリシスが無いことが分かる。次に、プロトタイプの電圧測定機能に 1V の定電圧を入力し、温度変化により測定値が変化しないことを確認した結果を図 4.3.5・8 に示す。この結果より、安定した測定ができていることが分かる。よって、温度変化範囲が -10〜70℃の範囲では動作し、温度及び電圧の測定が行えることが確認できた。しかしながら、特に高温では電子部品及び電池の寿命や消費が激しいため、長期的な安定性に関しては今後十分に確認する必要がある。

図 4.3.5・8 温度試験結果（小型送信装置プロトタイプ）
図 4.3.5-9 環境温度と温度測定結果の関係（小型送信装置プロトタイプ）

図 4.3.5-10 環境温度と電圧測定結果の関係（小型送信装置プロトタイプ）
(4) 測定値確認試験

小型送信装置プロトタイプの電圧測定部に 0〜1.5V の範囲で 0.1V ずつ入力し、測定結果を入力電圧と比較し、電圧測定結果が正しいことを確認した。試験結果を図 4.3.5-11 に示す。試験結果より最大誤差は 0.004V であった。

図 4.3.5-11 測定値試験結果（小型送信装置プロトタイプ）

(5) 耐水試験

小型送信装置プロトタイプの耐水性能を確認するため、耐水試験を行った。
小型送信装置プロトタイプを加圧容器内に入れ、加圧しながら湿度測定させ、加圧中も問題なく動作することを確認した。ただし、加圧容器は銅鉄製密閉容器であり、外部と無線通信は難しいため、加圧終了後の通信で測定データを回収し、問題ないことを確認した。加圧圧力は目標仕様の 1MPa とした。その他の試験条件は 4.3.3(2)の試験方法に準拠した。
耐水試験の結果、小型送信装置プロトタイプの概観に問題は無く、加圧試験中を通して問題なく測定できた。
(6) 評価

小型送信装置プロトタイプを製作し、各種の試験を実施し、試験結果と設計値・目標仕様を比較し以下の評価を得た。

1) 通信能力について

本開発では10m以上の通信距離を得られるように小型送信装置プロトタイプの目標を設定し、設計、試作、及びデータ通信試験を行った。その結果、これまでの地下研究所における過去の通信試験結果[7]から、環境ノイズを10mVと仮定し、その環境下で15m程度の通信距離が得られることを確認できた。

2) 耐圧性能について

本開発では1MPa以上の耐圧性能を持つように目標を設定し、開発を行った。耐圧試験の結果、容器のみで3MPa、送信装置の動作として1MPaまでの圧力で動作することを確認した。

3) 動作温度について

本開発では0〜40℃の温度範囲で動作するように目標を設定し、開発を行った。温度試験の結果、-10〜70℃で動作することを確認した。しかしながら、長期的な確認がなされていないため、高温環境下での長期的なモニタリングの適用性については別途試験により確認する必要がある。

4) 測定能力について

本開発で製作した小型送信装置プロトタイプは温度測定1chと電圧測定1chを持つ。それぞれの測定精度は0.5%F.S.以下であり、十分な精度であることを確認した。

5) 耐振動能力について

主に輸送や設置時にかかる振動等により本小型送信装置が故障するのを防ぐため、ある程度の耐振動性が必要である。振動試験では、10G程度の加速度が加わっても故障することなく動作できることを確認できたことから、所定の運搬・梱包及び設置手順を守ることで運用可能であると判断できる。
4.3.6 小型送信装置設置方法に関する検討

4.2.6 項で検討したとおり、緩衝材中にセンサやケーブルを設置する際には、少からず緩衝材を損乱させることになる。無線技術を採用すれば、緩衝材を貫通するケーブルやその配線による緩衝材の損乱を低減させることができる。

しかししながら、無線方式を採用したとしても、4.2 節で説明したように原位置で施工済みの緩衝材や製作済みのブロック内に機器を設置する際には、機器設置用の空間を確保するための緩衝材の掘削、機器設置後の隙間の不十分な埋め戻しに伴う緩衝材の緩みを避けることができない。

本項では、これらの緩みを低減することを目標とし、緩衝材を吹付け工法により製作しながら無線センサも設置する方法の有効性を検討した。無線センサについては、本節で試作した温度計内蔵型の小型無線送信装置を利用した。設置方法の有効性は、無線装置周りの緩衝材の密実性により判断した。

(1) 実施方法

本検討では、緩衝材製作、無線センサ設置、通信性能確認及び緩衝材の品質確認に関する実験を行った。

実験手順は以下のとおりである。

- 緩衝材含水比調整
- 型枠設置
- 材料投入
- 吹付け工法による緩衝材ブロック製作（400mm まで）
- 無線センサ設置
- 吹付け工法による緩衝材ブロック製作（500mm まで）
- ブロック上部成型

実験システムを図 4.3.6-1 に示す。緩衝材ブロックは実物規模の 1/4 リングとした。外径 2.2m、内径 0.84m、高さ 0.5m である。無線センサは高さ 0.4m の箇所に設置した。無線センサは温度計を小型無線送信機に内蔵したものである。また、無線センサ周りの緩衝材の密度測定や緩衝材の充填状況を確認するため、併せて無線センサの容器のみのものを 2 体設置した。また、無線センサの測定結果の比較のため有線温度計も設置した。さらに、温度測定結果の評価に活用するため、外気温の測定も行った。
(2) 含水比調整

本実験では緩衝材材料として、クニゲル工業㈱製のクニゲル V1（ベントナイト原鉱石 粒径 75μm 以下）、3 号珪砂および 5 号珪砂を混合して使用した。含水比は 21%とした。材料の配合（質量比）を表 4.3.6-1 に示す。

表 4.3.6-1 使用材料の質量比

<table>
<thead>
<tr>
<th></th>
<th>クニゲル V1</th>
<th>3 号珪砂</th>
<th>5 号珪砂</th>
</tr>
</thead>
<tbody>
<tr>
<td>質量比</td>
<td>0.70</td>
<td>0.15</td>
<td>0.15</td>
</tr>
</tbody>
</table>

含水比調整は以下の手順で実施した。
① 緩衝材の材料はクニゲル V1 と珪砂の混合材量とし、混合比率はクニゲル V1 が 70%、珪砂（3 号と 5 号を均等配合）が 30%とした。
② 緩衝材の含水比調整は、均質性を高めるため凍結混合方式を採用した（添加水をあらかじ
め凍結し碎水化させて冷凍室内において強制 2 軸ミキサーを用いて原材料と混合する方式)。

③ 再結合方式によるベントナイト材料の含水比調整は、現有設備である凍結混合プラントを用いて湿潤質量で 1.5t の材料を準備した。凍結混合方式による含水比調整方法は、図 4.3.6-2 に示した冷凍コンテナで -10℃程度で一日程度、十分に冷却したクニゲル V1 と珪砂の混合材料と粉体状にした氷を冷凍コンテナ内で強制 2 軸ミキサーによって粉体混合させた後に、フレコンに収納してコンテナ外の常温で自然解凍させることによって含水比調整を行なうものである。図 4.3.6-3 に凍結混合方式による含水比調整方法のフロー図を示す。この凍結混合方式による含水比調整方法では、自然解凍の際の結露の影響で、含水比が設定値よりも高めにシフトする可能性があるため、フレコンにビニール袋で防水機能を付与したフレコンを使用した。調整後のベントナイト材料の含水比を計測し、設定した含水比になっていることを炉乾燥法で確認した。

図 4.3.6-2 凍結混合方式による含水比調整のための冷凍コンテナ、及び強制 2 軸ミキサー

図 4.3.6-3 凍結混合方式による含水比調製手順および設備

4-81
(3) 緩衝材吹付施工方法

本実験では、緩衝材を均質かつ隙間なく施工可能である吹付け工法を採用した。本試験で作製した緩衝材ブロックの寸法を図 4.3.6-4 に示す。

図 4.3.6-4 緩衝材ブロック

実験手順を以下に示す。

① ベース型枠設置（図 4.3.6-5）

緩衝材ブロック製作のためのベース型枠を設置し、ベース型枠の水平を調整する。

図 4.3.6-5 ベース型枠設置
② 外型枠設置（図 4.3.6-6）
ベース型枠の上に、緩衝材ブロックの側部のうち外周部の型枠となる外型枠を設置する。

図 4.3.6-6 外型枠設置

③ 内型枠設置（図 4.3.6-7）
ベース型枠の上に、緩衝材ブロックの側部のうち内周部の型枠となる内型枠を設置する。

図 4.3.6-7 内型枠設置の様子

④ 側部型枠設置（図 4.3.6-8）
ベース型枠の上に、緩衝材ブロックの側部型枠を設置する。

図 4.3.6-8 仕切り板設置の様子
⑤ 緩衝材ブロック吹付施工（図 4.3.6-9）
吹付け工法により、緩衝材ブロックを 400mm の高さまで施工する。

図 4.3.6-9 吹付けによる施工

⑥ センサ設置（図 4.3.6-10）。
緩衝材の上に、センサ類を設置する。センサとして無線センサ 1 台、無線センサの容器のみを 2 台、有線温度計を 1 台設置する。容器のみのものは緩衝材施工後にその周囲に緩衝材が密実に施工されていることを確認するため、周囲の緩衝材をサンプリングするためのものである。有線温度計は温度計を内蔵した無線センサのデータの比較検証用として用いる。

図 4.3.6-10 センサ設置

⑦ 上部緩衝材施工（図 4.3.6-11）
上部の緩衝材を所定高さ（500mm）まで施工する。

図 4.3.6-11 上部緩衝材施工
施工面整形
所定の高さまで施工完了後、緩衝材ブロックの上面を整形する。

密度測定
無線センサ容器のみの周囲の緩衝材をサンプリングし、シリコンオイル比重法と電子レンジ法により乾燥密度を算出することにより充填状況を評価する。また、無線センサと緩衝材との密実性を目視により確認する。

緩衝材の品質管理方法
吹付け施工は一度機械設定を行えば、均質かつ一定の速度で施工することが可能であるという特徴を持つため、本実験では、吹付け施工前に吹付け箱に凸型に吹付け、凸部を切取りシリコンオイル比重法により品質の確認を行なった（図 4.3.6-12）。これらの結果により吹付け機械の設定値を決定した。なお、シリコンオイル比重法とは、ベントナイト系人工バリアのような締固め土がシリコンオイルのような無極性分子の中になっても崩壊しないという性質を利用してきたものであり、切り取って質量を計測した凸部をシリコンオイルに付けて浮力を測り、その浮力をシリコンオイルの比重で割って体積を算出して、迅速に凸部のかさ密度を計測するという方法である。この方法の利点は、供試体が100g程度の少量で、さらに不定形で計測できるため、コア抜きのようなベントナイト系人工バリアを貫通させることにより損傷を与えない、局所的に切り取るだけでかさ密度を計測できる点である。また、電子レンジ法については、本試験で使用する材料と同じ材料を用いて、炉乾燥法と同じ含水比となる設定値を予め確認し、本試験で採用した。品質確認用に実施した吹付け結果を表 4.3.6-2に示す。

図 4.3.6-12 凸型吹付けシリコンオイル法による施工品質管理のフロー図
表 4.3.6-2 品質確認用吹付け結果

<table>
<thead>
<tr>
<th>サンプルNo.</th>
<th>含水比 w(%)</th>
<th>湿潤密度 ρ t(Mg/m³)</th>
<th>乾燥密度 ρ d(Mg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>①</td>
<td>20.79</td>
<td>1.868</td>
<td>1.546</td>
</tr>
<tr>
<td>②</td>
<td>22.06</td>
<td>2.030</td>
<td>1.663</td>
</tr>
</tbody>
</table>

表 4.3.6-2 を見ると、サンプル②の乾燥密度は 1.663 Mg/m³と管理目標値である 1.6 Mg/m³よりも高い値を示している。よってサンプル②における吹付けユニットの機械設定値で本実験の施工を実施した。

なお、吹付け施工中の施工管理として、吹付け管に使用するホース内の圧力と空気流量による管理を行った。

圧力については、マテリアルホース内の吹付け機側とノズル側の 2 点で圧力計測を行った。本実験で使用した圧力計を図 4.3.6-13 に示す。

![圧力計](image1)

図 4.3.6-13 圧力計

また、エアホース内の空気流量計測の測定に用いた空気流量計を図 4.3.6-14 に示す。

![空気流量計](image2)

図 4.3.6-14 空気流量計
(5) 無線センサ

無線センサは本開発で試作したものであり、温度計を内蔵している。

本実験では、無線センサにより、緩衝材ブロックの施工前から、施工中及び施工後1週間の間にわたり緩衝材内の温度（緩衝材ブロック施工前は外気温）を計測した。

計測は30分に一度、通信は1時間に一度実施した。なお、無線センサを緩衝材吹き詰め工法により緩衝材内に設置するのは、本検討がはじめてであり、吹付圧による衝撃によりセンサが機能喪失することを防止するため、本検討では無線センサに衝撃吸収ゴムシートを施した。

また、本実験ではセンサ周りに緩衝材が密に施工できることを確認することが目的と一つであることから、併せて無線センサの容器のみのダミー2台も緩衝材内に埋設し、緩衝材のサンプリングはその周囲で行うこととした。

なお、無線センサによる温度計測自体の妥当性を確認するため、有線温度計1台も緩衝材内に埋設した。さらに、外気温を測定するため有線温度計1台を型枠の外に設置した。

図4.3.6-15に無線センサ（容器のみ）と有線温度計を、図4.3.6-16に受信装置を示す。受信装置は受信アンテナ、記録装置（パソコン）からなり、型枠から10mはなれた計測小屋の中に設置した。

(a) 無線センサ（容器のみ）
(b) 有線温度計

図4.3.6-15 無線センサ（容器のみ）と有線温度計

図4.3.6-16 受信装置
実験状況

実験状況を図 4.3.6-17 に示す。型枠を設置後、材料混合ミキサによりベントナイト材料を混合し、下部緩衝材を吹付施工した。その後、無線センサを設置するため無線センサの下部形状に合わせて緩衝材を切削し、無線センサ、無線センサ（容器のみ）及び有線温度計を設置した。そして、上部緩衝材を吹付施工し、所定の寸法に整形した。
(7) 実験結果及び考察

本実験においては、無線センサ設置位置の妥当性を、①センサ周りの緩衝材充填状況の目視観察、及び②センサ周りの緩衝材の乾燥密度等により確認した。無線通信性能の確認については、緩衝材施工前、施工中、施工後の受信強度により確認した。また、測定データの妥当性については、温度測定間隔30分、通信間隔1時間で測定した無線センサの測定データと、有線温度計による測定データとの比較により確認した。

1）無線センサの設置の妥当性

センサ周りの緩衝材充填状況を図 4.3.6·18 に、またセンサ周りの緩衝材のサンプリング位置および乾燥密度を図 4.3.6·19、表 4.3.6·3 に示す。
表 4.3.6-3 センサ周りの緩衝材の乾燥密度

<table>
<thead>
<tr>
<th>半径方向位置</th>
<th>サンプルNo.</th>
<th>含水比 w(%)</th>
<th>湿潤密度 ρ t(Mg/m³)</th>
<th>乾燥密度 ρ d(Mg/m³)</th>
<th>平均乾燥密度 ρ d(Mg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>内側</td>
<td>①</td>
<td>21.64</td>
<td>1.955</td>
<td>1.607</td>
<td></td>
</tr>
<tr>
<td></td>
<td>②</td>
<td>21.09</td>
<td>1.961</td>
<td>1.620</td>
<td></td>
</tr>
<tr>
<td></td>
<td>③</td>
<td>21.20</td>
<td>1.944</td>
<td>1.604</td>
<td></td>
</tr>
<tr>
<td></td>
<td>④</td>
<td>20.96</td>
<td>1.957</td>
<td>1.618</td>
<td></td>
</tr>
<tr>
<td></td>
<td>⑤</td>
<td>20.83</td>
<td>1.967</td>
<td>1.628</td>
<td>1.621</td>
</tr>
<tr>
<td></td>
<td>⑥</td>
<td>20.52</td>
<td>1.958</td>
<td>1.625</td>
<td></td>
</tr>
<tr>
<td></td>
<td>⑦</td>
<td>20.63</td>
<td>1.975</td>
<td>1.637</td>
<td></td>
</tr>
<tr>
<td></td>
<td>⑧</td>
<td>20.62</td>
<td>1.964</td>
<td>1.628</td>
<td></td>
</tr>
<tr>
<td></td>
<td>⑨</td>
<td>20.75</td>
<td>1.963</td>
<td>1.626</td>
<td></td>
</tr>
<tr>
<td>中央(②)</td>
<td>①</td>
<td>20.48</td>
<td>1.937</td>
<td>1.608</td>
<td></td>
</tr>
<tr>
<td></td>
<td>②</td>
<td>20.72</td>
<td>1.957</td>
<td>1.621</td>
<td></td>
</tr>
<tr>
<td></td>
<td>③</td>
<td>20.78</td>
<td>1.958</td>
<td>1.621</td>
<td></td>
</tr>
<tr>
<td></td>
<td>④</td>
<td>21.15</td>
<td>1.926</td>
<td>1.590</td>
<td>1.612</td>
</tr>
<tr>
<td></td>
<td>⑤</td>
<td>21.22</td>
<td>1.922</td>
<td>1.586</td>
<td></td>
</tr>
<tr>
<td></td>
<td>⑥</td>
<td>20.58</td>
<td>1.968</td>
<td>1.632</td>
<td></td>
</tr>
<tr>
<td></td>
<td>⑦</td>
<td>20.65</td>
<td>1.968</td>
<td>1.631</td>
<td></td>
</tr>
<tr>
<td></td>
<td>⑧</td>
<td>20.88</td>
<td>1.951</td>
<td>1.614</td>
<td></td>
</tr>
<tr>
<td></td>
<td>⑨</td>
<td>20.88</td>
<td>1.951</td>
<td>1.614</td>
<td></td>
</tr>
<tr>
<td>外側</td>
<td>①</td>
<td>20.55</td>
<td>1.970</td>
<td>1.634</td>
<td></td>
</tr>
<tr>
<td></td>
<td>②</td>
<td>20.86</td>
<td>1.986</td>
<td>1.643</td>
<td></td>
</tr>
<tr>
<td></td>
<td>③</td>
<td>20.98</td>
<td>1.954</td>
<td>1.615</td>
<td></td>
</tr>
<tr>
<td></td>
<td>④</td>
<td>21.53</td>
<td>1.944</td>
<td>1.600</td>
<td></td>
</tr>
<tr>
<td></td>
<td>⑤</td>
<td>21.49</td>
<td>1.936</td>
<td>1.594</td>
<td></td>
</tr>
<tr>
<td></td>
<td>⑥</td>
<td>21.20</td>
<td>1.939</td>
<td>1.600</td>
<td></td>
</tr>
<tr>
<td></td>
<td>⑦</td>
<td>20.81</td>
<td>1.978</td>
<td>1.638</td>
<td></td>
</tr>
<tr>
<td></td>
<td>⑧</td>
<td>20.71</td>
<td>1.980</td>
<td>1.640</td>
<td></td>
</tr>
<tr>
<td></td>
<td>⑨</td>
<td>20.52</td>
<td>1.969</td>
<td>1.634</td>
<td></td>
</tr>
</tbody>
</table>

注）中央はセンサがあるため、中心の⑤のサンプルは無い。

図 4.3.6-18 を見ると、センサの周りの緩衝材は隙間なく充填出来ていることが分かる。また、表 4.3.6-3 を見ると、センサの存在する中央の乾燥密度はやや低くなっているが、概ね一定の値を示しており、乾燥密度の管理目標価である 1.6Mg/m³ を達成している。つまり、吹付け工法により、センサ周りの緩衝材は隙間なく、かつ密実に施工することが可能であることがわかった。
以上のことがから、吹付け工法を用いることで、緩衝材を擾乱させることなくモニタリングが可能であると考えられる。

2) 無線通信性能の確認

無線通信性能の確認については、緩衝材施工前、施工中、施工後の受信強度により確認した。通信距離は10mであり、受信強度は以下のようにであった。

* 緩衝材施工前: 30mV

緩衝材施工前に所定の設置位置に無線センサを位置させ通信を行った結果、受信強度は30mVであった。

* 緩衝材施工中: 30mV

無線センサ設置位置まで緩衝材を施工し、無線センサを設置した状態、すなわち無線センサの上部にはまだ緩衝材がない状態で通信試験を行った結果、受信強度は緩衝材施工前と同じく30mVであった。

* 緩衝材施工後: 30mV

所定の高さまでの緩衝材施工が完了した後に、通信試験を行った結果、受信強度は緩衝材施工前、施工中と同様に30mVであった。

以上の結果より、緩衝材施工後で、受信強度に差がなく、今回のブロック程度の大きさの緩衝材では、電磁波の減衰がほとんどないことが確認できた。

また、緩衝材施工前から施工中、施工後一週間にわたる測定データを図4.3.6-20に示す。無線センサによる温度測定は測定間隔30分、通信間隔1時間で実施した。外気温の変動にともなって、緩衝材内の温度も変化していることが分かる。また、緩衝材内に設置した有線温度計と無線温度計を比較すると、若干の違いは見られるものの、ほぼ測定データは一致しており、測定の信頼性も問題ないものと考えられる。

なお、無線と有線で温度の差が見られるが、これは、有線温度計のケーブル養生のためのエフレックス管の影響であると考えられる。また、緩衝材の部分が浅いこともあり、エフレックス管の中の空気を通じて有線温度計のほうが外気に対して敏感であった結果であると考えられる。

試験では、無線センサ中の電池の電圧も測定した。電圧を図4.3.6-20に示す。1週間の計測期間中、電圧の低下は見られず正常に稼動していることが確認できた。
図 4.3.6-20 緩衝材ブロック内外温度計測結果

4.3.7 課題の抽出

本年度は小型送信機の設計、試作、及びデータ通信試験を行い、今後、フィールド試験に幅広く適用していくための知見を得た。今後、深部岩盤中の実環境下における通信特性については、フィールド試験を通じて、ベントナイト中、岩盤中、あるいは支保工等が使用されている複雑な環境下における通信特性を確認する必要がある。

又、URL や地下調査施設 I での適用の観点から優先度を下げた以下の課題についても、今後取り組む必要がある。

・耐圧容器（非損失媒体）

高温環境下に耐える材料、放射線で劣化しにくい材料を特定し採用する必要がある。

・通信・測定・時間管理回路について

高温で動作可能な回路と電子部品、及び放射線からの電子回路の保護方法を特定し採用する必要がある。

・電池について

高温で動作する電池、電子回路の保護方法について調査し、採用する必要がある。

・設置方法について

工学規模あるいは原位置における緩衝材施工及びその中への小型送信装置の設置方法について実証的に確認していく必要がある。
4.3.8 深部岩盤中の実環境下における通信特性確認試験方法

本年度の開発成果である小型送信機を国内の地下研究所及び地下特性調査施設Iに適用していくため、前述の課題のうち深部岩盤中の実環境下における通信特性を確認していく必要がある。ここでは、すでに各種の調査・試験・モニタリング等が実施されているフランスANDRAのムー・オートマルヌ地下研究所（MHM URL）を想定とした通信特性確認試験の方法を示す。小型送信機を、MHM URLの坑道（深度約500m）から掘削されたポーリング孔内に設置し、受信機を坑道に設置する（図4.3.8-1）。小型送信機から発振される低周波電磁波の強度を測定し、施設内の支保工や設備等の低周波電磁波の伝播挙動への影響を評価する。また、実測データを伝送し、データ伝送の信頼性を確認する。

MHM URLでの通信試験イメージ

図4.3.8-1 MHM URLでの通信試験イメージ

小型送信機を種々の環境下のモニタリングに適用していくためには、それぞれの環境と通信に対するニーズ、例えば通信距離や機器の大きさ等によって、最適なものを設計していくことが必要となる。そのためには、昨年度の検討等で整備した電磁波伝播挙動の解析手法を、実測データをもとに高度化していくことが必要である。そのため、70m程度の比較的長い通信距離を確保できる坑道間で通信試験を行い（図4.3.8-2）、電磁波伝播解析的には複雑な環境下（支保工や各種の設備等が設置）における低周波電磁波伝播挙動を把握する。解析と実測データを比較検証する過程で解析のモデル化手法等の知見を深める。

図4.3.8-2 坑道間通信による低周波電磁波挙動の確認

4-93
また、4.2節での検討や表 4.3.2-2 で示したように、ボーリング孔内に受信機を設置し 10m〜数 10m の無線データ伝送に対する開発の優先度が高いことが明らかになった。そこで、図 4.3.8-3 に示すような φ60〜100mm のボーリング孔に適用できる受信機の検討を提案する。坑道内から掘削したボーリング孔内に細長の受信機を設置し、坑道内に設置した送信機からの低周波電磁波の受信状況及び実測データの伝送が可能であることを確認する。

図 4.3.8-3 ボーリング孔対応受信機

以上の検討を 2 年間程度で実施し、それらで得られた知見を基に国内の地下研究所で実施される実際の調査研究におけるモニタリング計画に適用していくことが今後重要となる。
4.4 パッシブ通信技術に関する検討

RFID（Radio Frequency IDentification）技術はIDカードや電子マネー等の個の管理のための無線デバイスとして物流業界や小売業界で近年普及が目覚しい。本調査ではRFIDとセンシングICタグを組み合わせたパッシブ通信技術を処分場へ適用する技術的可能性的調査として、昨年度までに、UHF帯のRFID実験キットを使用して、ベンタナイト中での通信試験を実施した。その結果、飽和状態のベンタナイト試験体は、電波が透過し難く、減衰が大きいことを確認した。

そこで、本調査では、以下に示すパッシブタイプの無線通信装置の長所を活かすため、複数の小型パッシブセンサを緩衝材内に設置し、各種の挙動を「分布」として捉えるモニタリング概念の実現性を検討した。その際、通信距離を、緩衝材の最薄部の厚さである70cm以上に伸ばすためにの方法を検討した上で、その確認のための研究計画についても検討した。

・ モニタリングセンサにケーブルを配線する必要がない。
・ 装置が小型で安価である。

4.4.1 予備的試験

パッシブタイプのセンサによる緩衝材中のモニタリングを検討する際、緩衝材の電気定数を把握する必要がある。そのため、緩衝材ブロック及びベンタナイト材料を用いてそれらの電気定数を同定するための予備的試験を行った。

ベンタナイト供試体は図4.4.1-1に示す内径0.8m、外径2.2m、高さ0.3cmの実規模の緩衝材1リングを8分割したブロック、及びベンタナイトクニグルV1の粉体である。緩衝材は重量比で、クニグルV1（ベンタナイト原鉱石 粒径75μm以下）70%、3号珪砂15%及び5号珪砂15%を締め固めた混合材であり、乾燥密度は約1.6Mg/m3である。製作時の含水比は20%である。

まず、ベンタナイトブロックの含水率を測定した。測定はTDR（Time Domain Reflectometry）法により行った。TDR法は水と土及び空気との比誘電率の違いを利用して土中の体積含水率を推定する方法で、金属プローブを土に挿入する、あるいは表面に測定部を接触させることにより測
定できる。測定状況を図 4.4.1-2 に示す。

表 4.4.1-1 に含水率測定結果を示す。また、同表には参考値として TDR 法により推定される比誘電率も示した。本ペントナイトブロックは製作時の含水率が 20% であり、測定値は妥当な値といえる。

![図 4.4.1-2 含水率測定状況](image)

<table>
<thead>
<tr>
<th>No.</th>
<th>含水率</th>
<th>比誘電率（参考値）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21.4%</td>
<td>10.95</td>
</tr>
<tr>
<td>2</td>
<td>22.5%</td>
<td>11.64</td>
</tr>
<tr>
<td>3</td>
<td>21.4%</td>
<td>10.95</td>
</tr>
<tr>
<td>4</td>
<td>20.9%</td>
<td>10.65</td>
</tr>
<tr>
<td>5</td>
<td>21.2%</td>
<td>10.83</td>
</tr>
<tr>
<td>平均</td>
<td>21.5%</td>
<td>11.01</td>
</tr>
</tbody>
</table>

次に、ペントナイトブロック及び粉体の比誘電率と電磁波減衰率を測定した。
比誘電率は、次式により誘電体中、ここではペントナイトブロック及び粉体の電磁波の速度を測定することで算定することができる。

\[\varepsilon_r = \left(\frac{c}{\nu} \right)^2 \]

ここで、\(\varepsilon_r \) : 比誘電率
\(c \) : 光の速度
\(\nu \) : 誘電体中の電磁波の速度

4-96
ベントナイトブロック内の電磁波の伝播速度は、図 4.4.1-3 及び図 4.4.1-4 に示すように送信アンテナと受信アンテナをブロックの両側に固定し、両アンテナ間の距離が異なるようにして、それぞれの場合における電磁波の到達時間を測定することにより取得した。両アンテナ間の距離のバリエーションを多く持たせるため、水平方向については、図 4.4.1-3 のような 2 種類の設置箇所とした。粉体については、図 4.4.1-5 に示すように両アンテナを挿入し、位置を変更した。

(a) 測定1

(b) 測定2

Tx : 送信アンテナの位置、Rx : 受信アンテナの位置

図 4.4.1-3 水平方向アンテナ位置

(a) ブロック1段

(b) ブロック2段

図 4.4.1-4 鉛直方向アンテナ間距離

図 4.4.1-5 粉体中への送信・受信アンテナ挿入状況
測定はベクトルネットワークアナライザを使用した。測定状況を図 4.4.1-6 に示す。

図 4.4.1-7 に測定結果例を示す。図 4.4.1-7(a)に示すとおり、送信・受信アンテナ間の距離が長くなるとともに電磁波伝播時間が遅くなり、受信強度が小さくなることが分かる。また、これをもとにベントナイト中の伝播速度と減衰が算定される（図 4.4.1-7(b)(c))。

図 4.4.1-7 電磁波伝播速度測定結果

(a) 送信・受信アンテナ間の距離と電磁波伝播時間と受信強度

(b) 電磁波伝播速度

(b) 電磁波減衰率
前述の予備的試験結果より、ベントナイトブロックと粉体の比誘電率及び電磁波減衰率は、ベントナイトの形状や含水率等によって変わるものの、概ね、

・ 比誘電率：10 程度
・ 電磁波減衰率：10～150dB/m

程度であると考えられる。

4.4.2 研究計画方法に関する検討

前項での予備的試験で取得した比誘電率と電磁波減衰率を踏まえ、複数の小型パッシブセンサを緩衝材内に設置し、各種の挙動を「分布」として捉えるモニタリング概念の実現性に関する研究計画方法を検討した。その方法を以下に示す。

① 計測した比誘電率及び電磁波減衰率を踏まえたアンテナの設計

4.4.3 項に示すようにコンクリート等の比較的電磁波減衰率の小さい材料の中へのパッシブセンサの導入は事例がある。しかしながら、4.4.1 項で示した比誘電率及び電磁波減衰率で特徴付けられる材料中では、それらに対応するアンテナを設計する必要がある。まず、計測した電気定数のもと、周波数に応じたアンテナの仕様、形状、材料、大きさ等を共振点の評価にもとづき複数設計する。

② アンテナを緩衝材中に埋設し通信距離を確認

設計したパッシブアンテナを 1m 立法程度のベントナイト供試体の中に埋設し、通信性能を確認する。リーダをベントナイト供試体の表面に設置し電磁波を発振し、パッシブアンテナからの応答を受信する。パッシブアンテナの埋設深さは複数設定する。

図 4.4.2-1 パッシブアンテナの通信性能の確認

③ ネットワーク化の検討

複数のアンテナを緩衝材中に埋設し、種々の挙動を分布としてモニタリングする手法の検討を行うにあたり、アンテナを複数配置し、それぞれをデータの通信経路とする、すなわちネットワーク
4.4.2-1 ネットワーク化に関する検討

① 工学規模の緩衝材中に複数のアンテナを埋設した通信ネットワークの構築
②、③の検討を踏まえ、工学規模の緩衝材中に複数のアンテナを埋設し通信ネットワークを構築し、それぞれのアンテナに付随するセンサのデータを測定するとともに、データ通信の実現可能性を検討する。4.4.1 項で示した比誘電率及び電磁波減衰率を考慮すると、パッシブセンサ単体で 70cm の通信距離を確保することは技術的に容易ではない。そこで、70cm の通信距離は、図 4.4.2-3 に示すネットワークにより実現することを指向する。

⑤ フィールド試験への適用
前述の検討で、実現性が示された場合、図 4.4.2-4 に示すようなフィールド試験に適用し、有効性を確認する。
図 4.4.2-4 フィールド試験での実証

本研究計画では、前述のとおり複数のセンサを緩衝材中に埋設し、緩衝材の挙動を分布として捉えると同時に、70cm 程度あるいはそれ以上の通信距離を短距離通信のアンテナをネットワークとして構築することにより実現しようとするものである。しかしながら、4.4.1 項で示した比誘電率及び電磁波減衰率を考慮すると、一つのパッシブアンテナの通信距離は高々数 10cm 程度であることが想定され、かつ緩衝材内の電磁波の電磁波減衰率が大きいためネットワークを構築した際、データ通信を中継することになる 2 番目、3 番目以降のパッシブアンテナまでアンテナを起動させるほどの電磁波の強度を確保できる見通しが現状の技術では低い。

一方、後述する 4.4.3(3)で示すように、同様のパッシブアンテナにボタン電池等の小容量の電源を搭載したアクティブタイプのアンテナの開発は漸的に進んでいる。したがって、複数のセンサを緩衝材中に埋設し、短距離通信のネットワークを構築し、それぞれをデータ通信経路として使いつつ、全体の挙動を分布として捉えるモニタリング概念も、アクティブタイプのアンテナで実現することを指向する方が現実的であると考えられる。このアクティブタイプの小型ネットワークセンシングの開発スピードは速いため、本検討の枠組みの中で開発を進めるのではなく、他分野の開発動向を調査しつつ、適切な時期に必要に応じてそれらの技術の当分野への反映を図っていくことが効率的であると考えられる。

4-101
4.4.3 パッシブ無線センサの開発事例

(1) 13.56MHz パッシブ型センサ付 RFID[10]

コンクリート構造物の施工管理・維持管理を目的として、13.56MHz のパッシブ型センサ付 RFID を活用した「電源と外部配線がないひずみ計測システム」が開発されている[10]。

電池を搭載しないパッシブ型ひずみセンサ付 RFID タグをコンクリート中に設置し、コンクリート構造物に作用する様々な荷重等によって生じるコンクリートの変位や変形を、外部より電波を当てて非接触で測定する。

有線式のひずみ計測方法では、計測と電源供給のための外部配線が必要である。そのため、部材運搬中の配線の破断や、長期計測中における配線の劣化の可能性が高く、その場合には施工性が著しく悪化するため、ひずみ計測は一部の部材に限定されている。本パッシブ無線センサでは、コンクリート内部に計測装置を完全に埋め込むため、通常の部材と同様の運搬・施工性を発揮できるだけでなく、完成後も特殊な配線が不要で、構造物の健全性の確認が可能となる。

測定実験により、ひずみ計測部を設けた鉄筋に RFID タグを接続・調整し、10×10⁻⁶ 程度の分解能でひずみが測定できることが確認された。パッシブ無線センサのシステム構成と鉄筋に適用される RFID タグを図 4.4.3-1 と図 4.4.3-2 に示す。また、図 4.4.3-3 に計測状況を示す。
本パッชプ無線センサの特徴を以下にまとめる。

- 電池を必要としないパッチャプ型ひずみセンサ付 RFID タグは、リードライタからの電波エネルギーを利用することから、電池寿命を気にせず計測が可能となる。
- 鉄筋に取付けられているひずみセンサと RFID タグをパッケージ化しているので、コンクリート内への設置が容易である。
- RFID タグは書き換え可能な中容量のメモリを搭載し、また個別 ID を持つことから、維持管理における調査点検結果の記録や、建設時の使用材料の記録など、情報管理にも利用可能である。
- 周波数は水分による干渉の影響が小さい 13.56MHz 帯を使用し、コンクリート構造物に埋設して使用でき、構造物の耐久性を低下させる懸念がほとんどない。
- RFID タグにはサーミスタを具備し、ひずみ計測とともに温度測定も可能で、温度によって生じる構造物の変形を考慮することができる。

(2) 無線タグ温度センサ[11]

UHF 帯（860-950MHz）及びマイクロ波帯（2.4-2.5GHz）で動作し、それぞれ 30m まで応答可能な温度センサ付きパッチャプ無線タグの試作・評価が行われている。長距離応答可能な主なパッチャプ無線タグの動作周波数には 915MHz 又は 2.45GHz が多く使用されており、ダイポールアンテナが用いられている。それぞれの応答可能な距離は、例えば 915MHz 帯で動作する従来型のコッククロフト・ウォルトン回路を用いた無線IDタグ[12]では9.25m、2.45GHz帯で動作するSAW温度センサ無線タグ[13]では3.3mであった。

図 4.4.3-4 及び図4.4.3-5にそれぞれ開発試作された2.45GHzマイクロ波帯、及び860-950MHzのUHF帯で利用できる温度センサ付きパッチャプ無線タグの写真を示す。
図 4.4.3-4 2.45GHz 帯パッシブ無線タグの試作品事例

図 4.4.3-5 860-950MHz 帯パッシブ無線タグの試作品事例

図 4.4.3-6 は図 4.4.3-5 に示す UHF 帯温度センサ付きパッシブ無線タグの温度情報返送動作時における受電 DC 出力電圧のキャリア周波数特性である。ただし、タグリーダの出力は 0.25W EIRP、タグリーダとタグ間の距離は z=3m である。マイクロストリップアンテナ及び昇圧動作のためのλ/4 ショートステップを用いた共振回路とともに狭帯域動作であるにもかかわらず、両者を併せたレクタクタ動作は互いに補完しあう形で動作帯域帯域幅 10%以上が実現されている。

室内実験の様子を図 4.4.3-7 に示す。タグリーダ側の送受信アンテナにはそれぞれ 7.5dBi のダブルリッジガイドアンテナが用いられており、タグからの応答信号はスペクトラムアナライザで観測された。タグリーダの送信出力電力は 0.1W であり、EIRP は 0.56W である。2 つのタグとタグリーダアンテナ間の距離はそれぞれ 3m と 3.5m とされた。試作したタグはそれぞれ ID ごとに温度を異なるサブキャリア周波数に変換して返送する仕組みになっており、
2つのタグの温度を連続して同時に計測することができる。図 4.4.3-8 は、スペクトラムアナライザによって観測された2つのタグからの応答信号の周波数スペクトルである。2つのタグの温度をそれぞれ、(27°C, 27°C)、(44°C, 27°C) 及び (44°C, 53°C) に変えたときに観測されたスペクトルが重ねてプロットされたものであり、約 1Hz/°Cの周波数変化として各タグの温度が測定されていることが分かる。

図 4.4.3-6 試作された UHF 帯パッシブ無線タグの受電 電源 DC 電圧のキャリア周波数特性

図 4.4.3-7 室内実験状況
図 4.4.3-8 2.45GHz 帯無線タグによる温度測定の実験結果

以上のように、マイクロ波帯及び UHF 帯でそれぞれ 30m 応答可能な温度センサ付きパッシブ無線タグが開発され、試作と実験が行われている。UHF 帯は名刺サイズであり、マイクロ波帯は名刺の 1/4 の面積である。試作したタグの温度測定使用範囲は、電池を持たないために-40℃〜+85℃と広く、かつ温度測定精度は 0.3℃が実現されている。

(3) LF 帯 RFID アンテナ無線通信技術[14]

米国電気電子学会 (IEEE) は 2009 年 2 月に、LF (長波) 帯にあたる 131.0 kHz の周波数を利用する新たな無線通信規格として IEEE1902.1 を認可した。同規格はアメリカ Visible Assets 社が開発した RFID システム RuBee をベースとしたものである。これはアクティブタグを利用したもので、通信距離は 5m、通信期間はボタン電池で 7 年間、水や金属で隔てても通信が可能である。図 4.3.3-9 は代表的なタグである。

図 4.4.3-9 Visible Assets 社製タグ
図 4.4.3-10 に示すようにプリント・パターンによるアンテナやエナメル線によるアンテナが製作されている。

(4.4.3-10)

これらは、リーグライナに接続したルーブアンテナから発生する近傍界の磁界を使用するもので電磁誘導によりデータのやり取りを行う。そのため、水や金属影響を受けにくいという特徴がある。

センサネットワークにおけるアクティブ型である ZigBee が開発されているが、本システムはセンサネットワークの終端部での活用が最も期待されている。センサを設置する箇所あるいはその周辺に水が立つ、金属等が存在し、電力の供給源がないような場合、センサの機関ネットワークを ZigBee で構成し、それらの障害物を通り抜ける終端部に本システムを活用することでこれまでに実現できなかった電磁波が届きにくい場所のデータネットワークが実現することが期待される。

4.5 まとめ及び今後の課題

4.5.1 まとめ

(1) 地層処分モニタリングにおけるデータ伝送方法の検討

地層処分モニタリングに関して、モニタリングが実施可能な箇所と時期について、モニタリング機器の配置を検討し、メタルケーブル、光ファイバによる有線方式のデータ伝送、及び地中無線装置による無線方式のデータ伝送の適用範囲を取りまとめた。

有線方式の場合、センサから近距離に設置したデータロガーまではメタルケーブルでの通信を行う。通信距離が長くなり、かつデータ伝送量が多くなる場合には、光ファイバによるデータ伝送が有利になるため、地下坑道内で取得されたデータは、一旦地下坑道内に設置した集積装置で集積し、光ファイバでまとめて地上の記録装置に送る方式が採用されると考えられる。また、緩衝材等の人工バリア内をモニタリングする場合、緩衝材中のケーブルによる擾乱をさけるため地中無線方式の適用が望ましい場合には、それぞれ通信距離とデータ伝送容量及び共用期間（電池の寿命）の範囲内で適用することができる。

また、施設の閉鎖後は、坑道内のモニタリング機器はケーブルを含めて撤去されることを基
本とした検討を行ったが、必要であれば地中無線装置によるモニタリングを継続することができる。ただし、通信距離、データ伝送能力、及び共用期間に限りがあるため、現在の技術では、地中無線を適用したとしても、閉鎖後10年程度のモニタリングが現実的なところである。

(2) アクティブ通信技術に関する検討

小型送信装置の設計、試作、及びデータ通信試験結果を以下にまとめる。

・通信能力について

本開発では10m以上の通信距離を得られるように小型送信装置プロトタイプの目標を設定し、設計、試作、及びデータ通信試験を行った。その結果、これまでの地下研究所における過去の通信試験結果から、環境ノイズを10mVと仮定し、その環境下で15m程度の通信距離が得られることを確認できた。

・耐圧性能について

本開発では1MPa以上の耐圧性能を持つように目標を設定し、開発を行った。耐圧試験の結果、容器のみで3MPa、送信装置の動作として1MPaまでの圧力で動作することを確認した。

・動作温度について

本開発では0〜40℃の温度範囲で動作するように目標を設定し、開発を行った。温度試験の結果、・10〜70℃で動作することを確認した。しかしながら、長期的な確認がなされていないため、高温環境下での長期的なモニタリングの適用性に関しては別途検証により確認する必要があります。

・測定能力について

本開発で試作した小型送信装置プロトタイプは温度測定1chと電圧測定1chを持つ。それぞれの測定精度は0.5%F.S.以下であり、十分な精度であることを確認した。

・耐振動性能について

主に輸送や設置時にかかる振動等により本小型送信装置が故障するのを防ぐため、ある程度の耐振動性が必要である。振動試験では、10G程度の加速度が加わっても故障することなく動作できることを確認できたことから、所定の搬送・梱包及び設置手順を守ることで運用可能であると判断できる。

・緩衝材内への設置について

緩衝材への小型送信装置の設置方法に関して、施工状況の緩衝材を削除する等、緩衝材の品質を低下させない方法として、緩衝材を吹付工法で施工し、同時に小型送信装置を設置する手順の有効性を確認した。送信機周りに緩衝材が密に充填できており、本設置方法が緩衝材の品質保証上、極めて有効であることが明らかとなった。

(3) パッシブ通信技術に関する検討

ペンタナイトブロック及び粉体による供試体を用いて、ペンタナイトの電気定数を取得する予備的試験を行い、比誘電率と電磁波減衰率を明らかにした。その上で、パッシブタイプのセンサの利点を有効に機能させることができる、複数の小型パッシブセンサを緩衝材内に設置し、各種の挙動を「分布」として捉えるモニタリング概念の実現性に関する試験計画を立案した。
複数のセンサを緩衝材中に埋設し、緩衝材の挙動を分布として捉えると同時に、70cm 程度あるいはそれ以上の通信距離を短距離通信のアンテナをネットワークとして構築することにより実現しようとするものである。
一方、パッシブアンテナにポタン電池等の小容量の電源を搭載し長期間の稼動に供するアクティブタイプのアンテナの開発が激的に進んでおり、上記のモニタリング概念をパッシブタイプで実現するよりもアクティブタイプで実現する方向性の方が現実的であると考えられる。本検討の枠組みの中で開発を進めるのではなく、他分野の開発動向を調査しつつ、適切な時期に必要に応じてそれらの技術の当分野への反映を図っていくことが効率的であると考える。

4.5.2 今後の課題

各検討における課題を取りまとめると、下記のようになる。

(1) 地層処分モニタリングにおけるデータ伝送方法の検討
 ・緩衝材内への機器の設置方法：
 有線方式の機器を使用する場合には、機器を設置するため、緩衝材を掘削することによる緩みの形成、機器設置後に緩衝材で埋め戻す際に機器を養生する観点から十分に縦固めができさせる恐れがある。
 無線方式の機器を設置する場合、ケーブル養生に関する問題点は解決されるが、機器設置に伴う緩衝材の緩みは避けがたい。なお、本課題については、アクティブ通信技術に関する検討の中で解決策を検討した（4.5.1(2)参照）。
 ・地上あるいは地下坑道内から掘削したボーリング孔内に受信機を設置してデータを無線伝送する場合：
 電磁波を通すため、ボーリング孔のケーシングの材料や受信機設置位置のケーシングに工夫を要する。また、ボーリング孔無線対応の受信装置の開発が必要となる。
 ・実廃棄体周りの緩衝材への機器の設置方法：
 本検討では、実廃棄体周りの緩衝材のモニタリングは実施しないことを前提とした検討を行ったが、仮に実廃棄体周りの緩衝材をモニタリングする場合を想定すると、緩衝材中へのモニタリング機器の遠隔設置方法、及び高放射線量下で長期間稼動することが可能なモニタリング機器の開発が必要となる。

(2) アクティブ通信技術に関する検討

本年度は小型送信機の設計、試作、及びデータ通信試験を行い、今後、フィールド試験に幅広く適用していくための知見を得た。今後、深部岩盤中の実環境下における通信特性については、フィールド試験等を通じて、ベントナイト中、岩盤中、あるいは支保工等が使用されている複雑な環境下における通信特性を確認する必要がある。

また、URL や地下調査施設 I での適用の観点から優先度を下げた以下の課題についても、今後取り組む必要がある。
・耐圧容器（非損失媒体）
高温環境下に耐える材料、放射線で劣化しにくい材料を特定し採用する必要がある。
・通信・測定・時間管理回路について
高温で動作可能な回路と電子部品、及び放射線からの電子回路の保護方法を特定し採用する必要がある。
・電池について
高温で動作する電池、電子回路の保護方法について調査し、採用する必要がある。
・設置方法について
工学規模あるいは原位置における緩衝材施工及びその中への小型送信装置の設置方法について実証的に確認していく必要がある。

(3) パッシブ通信技術に関する検討
本検討で取得したベントナイトの比誘電率及び電磁波減衰率を考慮すると、一つのパッシブアンテナの通信距離は高々数 10cm 程度であることが想定され、かつ緩衝材内の電磁波の減衰率が大きいためネットワークを構築した際、データ通信を中継することになる 2 番目、3 番目以降のパッシブアンテナまでアンテナを起動させるほどの電磁波の強度を確保できる見通しが低い。通信距離の確保は短距離通信の複数のアンテナでネットワークを構成することにより達成する方法が望ましいと考えられ、さらに現在の他分野の技術開発状況に鑑みて、アンテナもパッシブではなく、アクティブタイプを活用する方向性が現実的であると言える。
参考文献

[1] 原子力環境整備促進・資金管理センター：「地層処分技術調査等委託費 高レベル放射性廃棄物処分関連 処分システム工学要素技術高度化開発」のうち「モニタリング技術の開発（モノ
タリング機器技術高度化調査）」- 中核的な技術オプションの調査研究（その1）、2008
[3] 東北電力HP：PHSを利用したトンネル無線システムの開発及び実用化に向けた実証試験の
開始について
[5] 大内 仁：地層処分にかかわるモニタリングの研究-位置付け及び技術的可能性-、原子
力環境整備促進・資金管理センター、RWMC-TRJ-04003、2004
[6] 独立行政法人日本原子力研究開発機構：幌延深地層研究センターHP
[7] 日本原子力研究開発機構：幌延深地層研究計画第2段階（平成17～21年度）を対象とした工
学技術の適用性検討に関する計画案、JAEA－Review 2006-014、2006
[8] 原子力環境整備促進・資金管理センター：「平成20年度 地下空洞型処分施設性能確認試験」、
2009
[9] 高村 尚 他：地下深部岩盤中における無線データ通信特性に関する検討、日本原子力学会パ
ックエンド会原子力バックエンド研究V12 No.1-2
[10]戸田建設株式会社、太平洋セメント株式会社、沖電気工業株式会社：13。56MHz パッシブ型
センサ付 RFID による「電源と外部配線がいらないひずみ計測システム」の実用化試験に成功、
戸田建設ニュースレター、2008年5月
[11]北野 均、澤谷 郎男：無電源10m超応答可能な無線タグ温度センサ、社団法人電子情報通
信学会、信学技報、TECHNICAL REPORT OF IEICE WBS2004-152、A。P2004-333
“SAW-Based Radio Sensor Systems,” IEEE Microwave Magazine, vol. 4, no. 4, pp. 68-76,
[14]泉田 正道：LF 帯アクティブ RFID の新規格 IEEE1902.1 のプロフィール、RF ワールド
No.7、2009
第5章 光ファイバセンサ測定技術の調査研究
第5章 光ファイバセンサ測定技術の調査研究

5.1 目的及び実施概要

モニタリングに係る中核的な技術オプションである光ファイバセンサ技術について、昨年度開始した単体室内試験でのベンチマーク圧力測定を行ない、圧力温度センサとしての耐久性を評価する。また、同時多点計測の適用性を確認することを目的に開発した二連式センサを用いたベンチマーク圧力計測を実施する。

地層処分環境下での物理化学的なパラメータの計測において、一般に使用されている電気式センサでデータを把握する場合には、多数の配線による処分性能への影響やセンサの耐久性、多くの課題を有している。一方、近年、土木分野等で利用されている光ファイバに複数の計測部を加工し、ファイバ自身で計測とデータ伝送を行い、多点同時計測が可能な光ファイバセンサ技術は、これらの課題を克服することが期待される。Fiber Bragg Grating (FBG)式センサもその一つである。本調査では、配線による処分安全性能への影響を低減することが可能なFBG式センサを実装し、多点計測が可能な圧力センサにより小規模な室内試験を実施し、当該機器の問題点（長期耐久性等）の克服と同時多点計測の適用可能性を検討する。また、実規模試験への適用性を検討することを目的に日本原子力研究開発機構（JAEA）により実施されている工学実験の試験設備である熱・水-応力連成試験設備（COPPEL）への適用を行う。

また、光ファイバセンサをモニタリングに適用し、適切な計測データを取得する為に必要とされる、工学実験試験装置や、地下研究施設での実規模試験における計測機器の敷設方法に関する検討を行う。

さらに、昨年度に引き続き、技術情報データベースへの追加・更新を目的に光ファイバを利用した化学・水分センサ技術について国内外の研究機関等での計測技術の開発状況に関する調査を実施するとともに、これまでの動向を踏まえた技術評価を実施する。

最後に、既往のセンサ技術調査では、温度や耐圧影響については個別に検討を実施してきたものの、放射線影響を中心とした調査は実施していなかった。このため、本年度は原子炉内の計測機器についての概要及びファイバを利用した温度計測について整理する。

5.2 光ファイバセンサの概要

5.2.1 光ファイバの特徴

光信号を伝送する方法として、光ファイバは実用化された。屈折率の差により、入射した光は全反射しながら、髪の毛ほどの細径の光ファイバ中を進んでいき、通信技術の進歩とともに、大量にかつ、高速のデータの伝送ができる媒体として発達してきた。近年は、国道や主要な河川沿いに光ケーブルが敷設されており、情報化社会を支えるインフラの基盤として光ファイバ網が確立されつつある。

さらに、光ファイバは通信用としてだけでなく、様々なセンシング要素として利用する方法が
開発されている。長距離でも伝送の損失が少なくノイズの影響を受けないため、遠隔モニタリングシステムなどへ構築が期待されている。

光ファイバセンサには、以下の特徴がある。
- 耐電磁誘導、耐雷性である
- 高強度、軽量である
- 遠隔計測が可能である
- センサ部には無絶電である
- 分布計測が可能である
- 耐久性がある

5.2.2 光ファイバの構造

光ファイバは図 5.2.2-1 に示すように二重構造になっている。一般的な、石英ガラスを使用したシングルモードでは、その直径は 125μm、中心部に 5～10μm のコアがあり、その外側がクラッドである。コア部はクラッドに比べ屈折率が高い。従って光信号は、屈折率の高いコア部分を伝播していく。通常、保護のために被覆があり、樹脂に被覆されたものは外径が 250μm になり、心線と呼ばれる。

5.2.3 光ファイバの種類

表 5.2.3-1 に光ファイバの種類を示す。光ファイバは、素材により、石英ガラス製とプラスチック製に、光の伝播する経路（モードという）により、シングルモードとマルチモードに分けられる。素材は、透過率の高いものが使用されており、石英ファイバの場合は石英が原料である。信号が 1km 先でも数％程度の損失しか生じないので、長距離の伝送にも適している。プラスチックファイバは主に合成樹脂でできている。ガラス製に比べ、伝送損失があるため長距離には向かないが、軽量で取り扱いが容易であり、照明や電飾などにも使用されている。

<table>
<thead>
<tr>
<th>ファイバ種類</th>
<th>伝送距離</th>
<th>主な用途</th>
</tr>
</thead>
<tbody>
<tr>
<td>石英ファイバ</td>
<td>シングルモード</td>
<td>長距離（〜数 10km）</td>
</tr>
<tr>
<td></td>
<td>マルチモード</td>
<td>中距離（〜数 km）</td>
</tr>
<tr>
<td>プラスチックファイバ</td>
<td>短距離（〜数 10m）</td>
<td>光リンク、照明</td>
</tr>
</tbody>
</table>

5.2
5.2.4 光ファイバセンシング

光ファイバでのセンシングは、さまざまな方式が開発・研究されている。既存のシステムでは解決が困難であった分野への適用が期待されている。主にひずみを計測する方式としては表5.2.4-1に示す方式がある。同表には電気抵抗式ひずみと合わせ、各方式の長所短所を示す。また、表5.2.4-2には各方式の適用事例を示す。

FBG（Fiber Bragg Grating）は、光ファイバのコア部の長手方向に、周期的に屈折率を変化させた回折格子を形成したデバイスで、ある特定の波長の光信号のみを、反射する特性を持つ。光学フィルタとして、光通信で使用されているが、ひずみや温度が比較的精度よく計測できるので、各種物理量を計測する変換器にできる。1 本の光ファイバに、複数のセンシング点を設けられるので、分布的な計測が可能になる。

トンネルの工事中及びその後の状態をモニタしたり[1]、橋梁などで、たわみや変位を測定し、健全性を評価するヘルスモニタリングに使用されている[2]。航空機の胴体や尾翼に FBG を埋め込み、損傷モニタする研究も行われている[3]、また、フェンスに光ファイバを張り巡らせ、振動により、侵入者を見知らせるセンサも開発されている[4]。

BOTDR（Brillouin Optical Time Domain Reflectometry）は、光パルスを入射したときに、発生するプリルオ散乱光の周波数シフト量から、ひずみ量を計測する。光ファイバそのものをセンサとし、光ファイバの長手方向に沿って、分布計測ができる。

地すべり監視モニタリングのためのフィールド試験が行われたり[5]、橋梁の主塔や主桁に埋め込み、ひずみや変位を計測する事例がある[6]。

OTDR（Optical Time Domain Reflectometry）は、光パルスを入射したときに発生する、レーリー散乱光を計測する。光ファイバの長手方向に沿って、曲げや接続による損失が生じた位置がわかる。曲げを生じる箇所を、1 ライン中に複数カ所設けることにより、多点型検知が出来ると。岩盤崩落の監視システムでは、岩盤の表面にセンサ部を設置し、崩壊や亀裂などの検知を行う[7]。

干渉方式は、光ファイバの端部に反射膜（片側はハーフミラー）をつけ、空隙を挟んで固定されたものである。入射した光はミラー間で干渉し、空隙が変化すると干渉波も変化する。小型のセンサが可能であり応答性がよいので、リアルタイム計測が可能である。

OSMOS（Optical Strand Monitoring System）は、3 本の光ファイバを寄り合わせた光学ストランドの両端を被測定物に固定して、固定間の挙動を計測する。その光ファイバの曲げにより光損失が生じるマイクロレベルを検出する。橋梁の延命を図るため、センサを主桁や床板に設置し、モニタリング技術を検証する研究が行われている[8]。
表 5.2.4-1 ひずみの計測方式の比較

<table>
<thead>
<tr>
<th>測定法</th>
<th>原理</th>
<th>長所</th>
<th>短所</th>
</tr>
</thead>
<tbody>
<tr>
<td>FBG</td>
<td>回折格子で特徴の波長を反射し、波長の変化でひずみを検出</td>
<td>・精度が比較的よい
・1ライオンで多点計測が可能</td>
<td>・システムが高価</td>
</tr>
<tr>
<td>BOTDR</td>
<td>ブリルアン散乱光で周波数シフト量を検出し、ある区間のひずみを検出</td>
<td>・光ファイバに沿って分布計測になる
・遠距離まで計測可</td>
<td>・測定器が高価
・動的計測に不向き</td>
</tr>
<tr>
<td>OTDR</td>
<td>レーザー散乱光の強度から、曲げなどの変化の位置を検出</td>
<td>・測定器が安価
・遠距離まで測定可</td>
<td>・レベル検出が難しい
(ON/OFFの検出)</td>
</tr>
<tr>
<td>干渉方式 (ファブリレロー)</td>
<td>入射した光が2つのミラーで反射干渉し、干渉稿の変化でひずみを検出</td>
<td>・動的計測が可能
・小型のセンサになる
・比較的安価</td>
<td>・1ライオンで多点計測は不可能</td>
</tr>
<tr>
<td>OSMOS</td>
<td>光ファイバの曲げによる光損失の変化によりひずみを検出</td>
<td>・計測長が長い
・動的/静的計測が可能</td>
<td>・1ライオンで多点計測は不可能</td>
</tr>
<tr>
<td>電気抵抗式ひずみゲージ</td>
<td>電気抵抗の変化でひずみを検出</td>
<td>・動的計測が可能
・取扱いが容易
・安価</td>
<td>・1ライオンで多点計測は不可能</td>
</tr>
</tbody>
</table>

表 5.2.4-2 光ファイバによる計測の適用事例

<table>
<thead>
<tr>
<th>方式</th>
<th>事例</th>
<th>メーカー例 ([]内は製品)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FBG</td>
<td>・センサ(変位計、水位計、ひずみゲージなど)
・構造ヘルスモニタリング(トンネル、橋梁、飛行機)
・セキュリティ(侵入者検知)</td>
<td>NTT-AT[温度計、変位計]
飛鳥建設[ポイントセンサ]
三菱電線</td>
</tr>
<tr>
<td>BOTDR</td>
<td>・道路斜面監視システム
・橋梁モニタリングシステム</td>
<td>横河電機[AQ8603]
アドバンテスト[N8511]</td>
</tr>
<tr>
<td>OTDR</td>
<td>・岩盤崩落監視システム</td>
<td>アンリツ[MT9082]
NTT インフラ</td>
</tr>
<tr>
<td>干渉方式</td>
<td>・センサ(変位計、圧力計、温度計など)</td>
<td>Fiso Tech.[変位センサ、圧力センサ]</td>
</tr>
<tr>
<td>OSMOS</td>
<td>・構造物ヘルスモニタリング</td>
<td>日揮、間組</td>
</tr>
</tbody>
</table>
5.3 ベントナイト膨潤圧計測による光ファイバセンサの耐久性評価

5.3.1 光ファイバセンサの長期試験による耐久性評価

一昨年度の調査で製作した単一センサヘッドの FBG センサを、昨年度に引き続き、今年度も継続してベントナイト膨潤圧の長期測定に供し、センサの耐久性を評価した試験について記す。長期耐久性試験に用いたスペースクリエイション社製光ファイバ式圧力計及び共和電業社製光ファイバ式圧力計の寸法図を図 5.3.1-1 及び図 5.3.1-2 に示す。またそれぞれの外形写真を図 5.3.1-3 及び図 5.3.1-4 に示す。

![図 5.3.1-1 スペースクリエイション社製光ファイバ式圧力計](image1)

![図 5.3.1-2 共和電業社製光ファイバ式圧力計](image2)
図 5.3.1-3 スペースクリエイション社製光ファイバ式圧力計

図 5.3.1-4 共和電業社製光ファイバ式圧力計

昨年度の長期耐久性評価試験に用いた図 5.3.1-5 に示す容器を継続して使用する。また試験システムも図 5.3.1-6 に示す昨年の調査で利用したものを活用する。光源としては C バンド ASE 光源、プラグ波長の読み取りには波長計を用いた。波長計が評価するプラグ波長はパソコン（FBG データ収録器）一定時間間隔で収録された。
センサの耐久性を評価するため昨年度に引き続きベントナイトを充填した容器に FBG センサを取り付け、室温雑音気（温度約 22℃）において吸水によりベントナイトを浸潤させ、11,000時間程度の長期間におけるブリッジ波長計測を行った。図 5.3.1-7 にベントナイト膨潤圧長期試験に用いた試験容器の写真を、図 5.3.1-8 に圧力及び温度の測定結果を示す。なお、二連式 FBG センサの較正試験実施のため長期耐久性試験は二度ほど一旦中断した期間がある。最初に中断した際に、スペースクリエイション社製センサに関しては、ヒステリシスの有無の確認のため、容器内から一旦センサを取り出し、その後、再び容器内に入れて計測を継続した。そのため、一旦、圧力が解放されゼロとなっているが、試験再開後は、試験中止時の圧力に回復している。それ以外の中断時に関しては、計測は中断しているが、ベントナイトへの水の浸潤は継続して実施した。なお、参照温度として熱電対を用いた温度計測を行った。
スペースクリエイション社製センサにより計測された圧力に関しては膨満圧試験開始後、圧力が急激に増加し約 0.35MPa 程度で一旦、安定する傾向を示した。試験時間 200 時間経過後、再び圧力が増加し、徐々に時間の経過とともに圧力は増し、試験を二連式 FBG センサの較正試験のため中断した試験時間約 2,900 時間経過後の時点では 0.56MPa に達した。その後、試験を中断し容器内からセンサを取り出したため圧力は一旦解放されゼロとなっているが、試験再開後、圧力は再度上昇し、試験中断時の圧力に回復している。その後、試験時間約 5,600 時間経過後、圧力は再度上昇している。試験時間約 6,000 時間経過後に再度試験を中断し、約 8,000 時間後に再開したが、その後、圧力は安定した値を示している。共和電業社製センサにより計測された圧力に関しては試験開始直後の急激な増加後、試験時間 200 時間まで一旦減圧する傾向を示し、その後に増加、試験時間 300〜1,760 時間までは約 0.62MPa の一定圧力、その後、時間とともに増し、計測を中断した試験開始後約 3,000 時間の時点では 0.79MPa に達した。試験再開後は、圧力は 4,000 時間後から 11,000 時間後まで約 0.8MPa の安定した値を示している。両社のセンサともに、試験の前半では安定した圧力値を示しており、今回の試験範囲での耐久性には問題がないといえる。両社のセンサの、圧力が安定した状態での測定値の違いは、後述の温度補正用 FBG センサの影響であると考えられ、スペースクリエイション社製センサの温度測定値を用いて、共和電業社製センサの圧力値を求めた場合には、両社のセンサの圧力値は近接するものと考えられる。

スペースクリエイション社製センサにより計測された温度は約 11,000 時間に渡る全試験期間中、熱電対測定温度と非常に良く一致を示した。一方、共和電業社製センサにより計測された温度に関しては計測される圧力の上昇に伴い計測される温度は低下し、試験時間 8,000 時間を超えると熱電対により計測された温度と 7℃の差があった。温度計測用 FBG センサに圧縮ひずみが加わったため、温度を低く評価したことが原因と考えられる。
5.3.2 光ファイバセンサの同時多点計測への適用性の検討

光ファイバセンサの同時多点計測への適用性を検討するために、図 5.3.2.1 に示すような二連式の光ファイバ圧力計を試作した。圧力計の構成を図 5.3.2.2 に示す。センサ部 1、及びセンサ部 2 のそれぞれに温度計測用及び圧力計測用の FBG を設けている。圧力計測用 FBG である FBG1 及び FBG4 はセンサ部のダイヤフラムに接続している。まずは、本圧力計に対し以下の条件で空気圧を利用した校正試験を実施した。

- 温度：0～100℃
- 壓力：0～1MPa

図 5.3.2.3 には、大気圧下において温度を変化させたときのプラグ波長の変化を示す。塗り潰しが昇温時、白抜きが降温時の計測データである。温度が変化する場合は全ての FBG のプラグ波長が温度と線形に増加するべきで、その通りの挙動が現れている。また、温度の昇降に際するヒステリシスは見受けられなかった。図 5.3.2.4 は、圧力 1MPa において温度を変化させたときのプラグ波長の変化である。実際には大気圧にさらに 1MPa 壓荷しているので、センサは 1.1MPa の圧力を受けるときの温度変動時のプラグ波長変化である。図 5.3.2.3 よりも荷重をかけていることから、厳しい条件での試験であるが、全ての FBG でヒステリシスのない線形なプラグ波長変化が観察されている。図 5.3.2.5 には、温度 0℃において圧力を変化させたときのプラグ波長の変化を示す。この場合は圧力計測用の FBG1、FBG4 のみが圧力に応じてプラグ波
長が変化し、温度計測用の FBG2、FBG3 のブリッジ波長は圧力に影響されてはいけない。しかしながら、FBG2 は圧力増加に伴いブリッジ波長が低下し、0～1MPa の変化に対して 90pm の変化があった。1℃当たり 14pm のブリッジ波長が変化するので、この圧力変化により FBG2 からは約 6.5℃の温度変化が生じたと評価されることになる。一方、FBG3 のブリッジ波長変化は 15pm 以下の変動に留まり、圧力の影響を受けないことが確認された。図 5.3.2-6 には、温度 100℃において圧力を変化させたときにブリッジ波長の変化を示す。温度を上げてさらに条件が厳しい場合、FBG2 は 1MPa までの圧力変化に対して 520pm（温度換算 37℃相当）のブリッジ波長変化があった。一方、FBG3 は 15pm 以下のブリッジ波長変化に留まり、高温環境下においても FBG3 は温度計測用センサとして機能することが確認された。図 5.3.2-7 には、室温において圧力を変化させたときにブリッジ波長の変化を示す。後述の膨満圧試験は室温環境で実施するため室温環境において FBG2 がどの程度、圧力の影響を受けるの確認したところ、最大圧力 1MPa で 130pm、約 9℃の温度誤差が生じる結果となった。一方、FBG3 は温度依存せず 15pm 以下のブリッジ波長変動に収まった。FBG2 はグリーティング部近傍の両端が固定されているため、圧力変化によりダイヤフラムと接着している FBG1 が変位を受けて、FBG2 に圧縮ひずみが加わると考えられる。このため圧力に応じて FBG2 のブリッジ波長が変化したと推察される。このような温度計測用 FBG のブリッジ波長の圧力影響を回避するためには、光ファイバラインを圧力用と温度用で分ける、または圧力変化によるひずみを緩和するような機構を温度計測用 FBG に設ける等の対策が必要であると考えられる。

図 5.3.2-1 スペースクリエイション社製二連式光ファイバ式圧力計
図 5.3.2-2 二連式光ファイバ式圧力計の構成

図 5.3.2-3 大気圧一定において温度を昇降させたときのプラッグ波長変化
（塗り潰し：昇温時、白抜き：降温時）
図 5.3.2-4 壓力 1MPa 一定において温度を昇降させたときのプラッグ波長変化
（塗り潰し：昇温時、白抜き：降温時）

図 5.3.2-5 温度 0℃一定における負荷除荷時のプラッグ波長変化
（塗り潰し：昇温時、白抜き：降温時）
図 5.3.2-6 溫度 100℃一定における負荷除荷時のプラッグ波長変化
（塗り潰し：昇温時、白抜き：降温時）

図 5.3.2-7 室温環境（25℃）における負荷除荷時のプラッグ波長変化
（塗り潰し：昇温時、白抜き：降温時）
続いて、二連式光ファイバ圧力計の性能を確認することを目的にベントナイト膨潤圧試験を行った。膨潤圧試験用の容器は図 5.3.2-8 に示すものである。使用するベントナイトの大きさは直径 290mm、高さ 100mm であり、後述する JAEA の COUPLE での試験時のベントナイトブロックの大きさと同じとしている。ベントナイトブロックの仕様は表 5.3.2-1 に示す。圧力計をベントナイトブロックの側面に設置できるような試験容器の構造としている。図 5.3.2-9 には試験容器側面に二連式光ファイバ圧力計を設置した時の状況を示す。各センサ部間のケーブルに関しては、図 5.3.2-10 に示すようにシールした。なお、二連式光ファイバ圧力計との比較を行うために、図 5.3.2-11 に示すような電気式圧力計を製作し設置した。電気式圧力計のセンサ部の寸法は直径 60mm、厚さ 30mm である。図 5.3.2-12 には二連式光ファイバ圧力計と電気式圧力計を試験容器に設置した時の状況を示す。図 5.3.2-13 は試験容器にベントナイトブロックを設置した時の状況である。ベントナイトブロックの直径は 290mm、試験容器の内径は 300mm であるが、ベントナイトブロックと試験容器との間には約 5mm の隙間が存在している。この隙間にはベントナイトブロックを製作する前の粉末状のベントナイトを充填した。図 5.3.2-14 には充填後の状況を示す。図 5.3.2-15 及び図 5.3.2-16 には、試験容器をセットした時の状況を示す。図 5.3.2-15 は、二連式光ファイバ圧力計を設置した側の側面、図 5.3.2-16 は電気式圧力計を設置した側の側面である。図 5.3.2-17 には試験実施時の状況を示す。写真右側のタンクの水が試験容器下部からベントナイトへ浸潤し、浸潤に伴う膨潤現象が発生することになる。

図 5.3.2-18 に計測結果を示す。温度に関しては、二連式光ファイバ圧力計では FBG3 の計測値のみを示している。また、今回製作した電気式圧力計も測温機能を有しているため計測結果を示している。また、これらと比較するために浸潤前のタンク内の水温を熱電対で計測した。温度に関しては、電気式圧力計の温度が他と比べて 1℃程度高い結果となっている。二連式光ファイバ圧力計の FBG1 による計測は、浸潤開始初期に高い圧力が発生し、その後、圧力は低下し一定値となっている。一方、FBG4 による計測では、浸潤開始とともに徐々に圧力は上昇し、一定値に落ち着いている。最終的な値は 0.3MPa 程度となっており、両者の値はほぼ同じになっている。電気式圧力計に関しては、浸潤を開始してから約 500 時間後のように圧力が上昇し始めており、その後は緩やかに上昇を続けている。このような試験初期の圧力測定値の違いは、ベントナイトブロックとセンサ間に粉体のベントナイトを使用したため、両者間を均質に施工できず、膨潤圧の立ち上がりに違いが生じていることが原因と考えられる。今後、実規模試験等においては吹き付け工法の使用等による均質な施工が必要になるものと考えられる。

<table>
<thead>
<tr>
<th>配合（乾燥質量比：％）</th>
<th>ベントナイト</th>
<th>クニーグル V1</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>砂</td>
<td></td>
<td>3号珪砂</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>バールサンド5号</td>
<td>15</td>
</tr>
<tr>
<td>寸法</td>
<td>直径（mm）</td>
<td>290</td>
<td></td>
</tr>
<tr>
<td></td>
<td>高さ（mm）</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>仕様</td>
<td>乾燥密度（Mg/m³）</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>含水比（％）</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

5・14
図 5.3.2-8 ベントナイト膨潤圧試験容器の寸法図

図 5.3.2-9 二連式光ファイバ圧力計を取り付けたベントナイト膨潤圧試験容器
図 5.3.2-10 二連式光ファイバ圧力計のケーブル部分のシール

図 5.3.2-11 電気式圧力計

図 5.3.2-12 二連式光ファイバ圧力計と電気式圧力計を試験容器にセットした状況
図 5.3.2-13 ベントナイトブロックを設置した状況

図 5.3.2-14 試験容器との隙間にベントナイトを充填した状況

図 5.3.2-15 試験容器をセットした状況（二連式光ファイバ圧力計側）
図 5.3.2-16 試験容器をセットした状況（電気式圧力計側）

図 5.3.2-17 試験状況

図 5.3.2-18 三連式光ファイバ圧力計による計測結果
5.4 工学的規模の熱・水・応力連成試験設備（COUPLE）における適用

5.4.1 熱・水・応力連成試験設備（COUPLE）の概要

光ファイバを用いた計測技術は、光ファイバ自身がセンサになるという特性を有する。特に FBG 方式は、同時多点計測が原理的に可能であることから、従来方式の計測で問題であった、配線によるみずみちの形成の影響を低減することが可能であると考えられる。そこで、JAEA 所有の工学規模試験装置（COUPLE）を用いた熱・水・応力化学連成現象の計測において、工学規模の試験装置における光ファイバセンサの適用性についての検討を行った。COUPLE の概要は、図 5.4.1-1 及び図 5.4.1-2 に示す通りである[9]。連成試験は、周辺岩盤を模擬した試験岩体に試験孔を削孔し、ここに緩衝材及び廃棄体を模擬したヒーターを設置して実施される。周辺岩盤を模擬した試験岩体は、反力柱内に設置され、片面 4 台の油圧ジャッキによって側面三方向から加圧、あるいは、油圧ジャッキのシリンダーを固定することにより、試験岩体の変位を拘束することができる構造になっている。試験岩体側面の 4 枚の載荷板には、それぞれ 6 本の電気ヒーターが組み込まれており、載荷板自体の温度を制御することによって、試験岩体の四側面の境界温度を固定する仕組みとなっている。試験岩体下部の高さ 500mm の空間には断熱材が充填されている。一方、試験岩体上部は、所定の温度の水で温度を固定する仕組みとなっている。この上部水により、試験岩体上部の境界温度を固定するとともに、試験岩体を飽和させる役割を持つ。そして、緩衝材中には試験岩体と反応した溶液が浸潤し、水分分布を形成することになる。緩衝材試験体の中心には、廃棄体を模擬したヒーターが設置されている。ヒーターは、ステンレス容器内に収められ、オイルを伝熱媒体として、ステンレス容器を加熱する構造となっている。緩衝材試験体中心の廃棄体を模擬したヒーターと載荷板及び試験岩体上部の循環水の温度を制御することによ り、緩衝材試験体中に温度勾配を形成させた試験が可能である。緩衝材の概略図を図 5.4.1-3 に示す。緩衝材の寸法は、直径 290mm、高さ 1000mm である。緩衝材は、ベントナイトブロック 10 体を積重ねて作製されている。

図 5.4.1-1 熱・水・応力連成試験設備（COUPLE）の概要図（平面図）
図 5.4.1-2 熱・水-応力連成試験設備（COUPLE）の概要図（断面図）

図 5.4.1-3 緩衝材試験体の概要図
5.4.2 光ファイバセンサによる計測結果

COUPLEへ導入する光ファイバセンサは、FBG温度センサ、FBG圧力センサの2種類とした。ファイバは、光源及び波長計等から構成される光ファイバ計測システムに接続される。図5.4.2-1にFBG温度センサ、図5.4.2-2にFBG圧力センサを示す。FBG温度センサは緩衝材の半径方向の温度分布を、FBG圧力センサは緩衝材の外側面において模擬岩体に対して発生する圧力を測定することを目的とした。そのため、FBG温度センサは事前にセンサ部と伝送部を90℃曲げた構造とした。FBG温度センサによる計測は3点とし、センサ部先端より、それぞれ10、40、70mmの位置である。なお、FBG温度センサのセンサ部の直径は3mmである。また、FBG圧力センサに関しては、センサ部の直径は50mm、厚さは13mmである。図5.4.2-3及び図5.4.2-4には、それぞれFBG温度センサ及びFBG圧力センサの写真を示す。

図5.4.2-5にはセンサの設置要領を示す。FBG温度センサは緩衝材のブロック側面を斜めに挿入した。FBG温度センサ1本で3点の計測が可能となるため、このような配置で緩衝材内の半径方向の温度分布を1本のセンサで計測することが可能となる。図5.4.2-6には、緩衝材側面へFBG温度センサを挿入する前の状況を、図5.4.2-7には挿入設置時の状況を示す。また、FBG圧力センサは試験孔壁面に設置した。今回の実験では模擬岩体をモルタルで製作しているので、試験孔壁面はせん断センサ固定用のゲージを埋設してモルタルで打設し模擬岩体を作製した。そして、FBG圧力センサを固定基面に設置し、治具とセンサとの間隙は止水用粘土を充填した。図5.4.2-8には固定治具にFBG圧力センサを設置した時の状況を、図5.4.2-9には間隙を止水用粘土で充填した時の状況を示す。

図5.4.2-10には、COUPLE試験でのFBGセンサでの計測結果を示す。試験としては、緩衝材を試験孔へ設置後、載荷版の温度を70℃に設定した。その後、中心ヒーターを90℃に設定し、模擬岩体表面に水を張った。その3日後には中心ヒーターの温度を105℃に変更した。図5.4.2-10に示す計測結果において、TFI-1はFBG温度センサの一端先端部に近い位置（図5.4.2-1のFBG3）の温度、TF1-2は先端から40mmの位置（図5.4.2-1のFBG2）の温度、TF1-3は先端から70mmの位置（図5.4.2-1のFBG1）の温度である。また、PF1(P)はFBG圧力センサにより計測された圧力、PF1(T)はFBG圧力センサにより計測された温度である。計測される温度は、中心ヒーターの温度を上昇させるに従い上昇しており、また、FBG温度センサで異なる温度が計測されている。図5.4.2-11には、緩衝材内に設置された熱電対による温度の計測結果との比較を示す。試験の進展に伴って緩衝材内の温度は上昇しており、また、緩衝材内に温度勾配が発生している。この現象については、熱電対でもFBG温度センサでも計測できている。ただし、常温時の温度は熱電対とFBG温度計ではほぼ同じ温度を示しているものの、高温になると温度差がついた時点での温度に関しては、若干、FBG温度センサの方が緩衝材の外側になるにつれて高い温度を示している。この要因として、FBG温度センサにより内部の温度がセンサ本体を伝って外部に伝導されることである。今後、詳細に検討する必要がある。圧力に関しては、温度の上昇時に急激に上昇しているが、その後は低下している。

圧力の挙動については、日本原子力研究開発機構によりほぼ同位置での計測が電気式圧力計で実施されている（図5.4.2-12）。FBG圧力センサによる温度計測値は電気式圧力センサに比べ高い値を示している。また、圧力の値も電気式圧力センサに比べ大きな変動を示している。これは、
高温に伴い生じるグレーティングのひずみの影響を大きく受けたためと推察される。しかしながら、電気式圧力センサの温度計測値を用いて FBG 壓力センサの圧力値を評価した場合には、FBG 壓力センサの圧力値が電気式圧力センサの圧力値と同程度の値を示すことがわかる（図 5.4.2-13）。このことから、FBG 壓力センサのうち圧力計測用 FBG は正常に動作しており、温度計測用 FBG が圧力の影響を受けていていると推定される。また、FBG 壓力センサの圧力値に見られた振動は、電気式圧力センサの温度計測値を用いて評価した場合には、低減していることがある。このことから、温度計測用 FBG の影響により振動が発生していたことが推定される。

なお、電気式圧力センサは FBG 壓力センサと同じ高さの異なる 3 方向に設置されている（図 5.4.2-14）が、各々が異なった圧力変化を示している。このことは、緩衝材の膨潤が必ずしも水平方向に均質に進行しないこと、もしくは、膨潤の初期においては圧力センサの設置状況のわずかな違いに、測定値が影響を受けやすいことを示しているものと考えられる。

今回明らかとなった課題に対処するためには、温度計測用 FBG が圧力の影響を受けないような構造を検討する必要があり、さらには、温度計測用 FBG の測定値の振動を低減させるようなグレーティング長及び構造を検討する必要がある。さらには、測定初期より正確な緩衝材の膨潤圧を測定する為のセンサ設置上の工夫が必要である。

図 5.4.2-1 COUPLE へ導入した FBG 温度センサ

図 5.4.2-2 COUPLE へ導入した FBG 壓力センサ
図 5.4.2-3 COUPLE へ導入した FBG 温度センサ

図 5.4.2-4 COUPLE へ導入した FBG 圧力センサ
図 5.4.2-5 COUPLE への FBG センサの設置概要

図 5.4.2-6 緩衝材への FBG 温度センサの設置時の状況
図 5.4.2-7 緩衝材への FBG 温度センサの設置状況

図 5.4.2-8 模擬岩体に埋設した固定治具への FBG 壓力センサの設置状況

図 5.4.2-9 固定治具と FBG 壓力センサとの隙間を粘土で充填した状況
図 5.4.2-10 FBG センサによる計測結果

図 5.4.2-11 FBG 温度センサと熱電対の計測結果の比較

図 5.4.2-12 FBG 压力センサと電気式圧力センサの計測値の比較
図 5.4.2-13 電気式圧力センサの温度計測値を用いて FBG 压力センサの圧力値を評価した場合

図 5.4.2-14 FBG 压力センサと電気式圧力センサの設置位置
5.5 実用化に向けた研究計画の立案

5.5.1 敷設方法を考慮した研究計画の立案

光ファイバセンサをモニタリングに適用し、適切な計測データを取得する為には、工学規模試験装置や、地下研究施設での実規模試験における計測機器の敷設方法に関する検討を行う必要がある。そのためには、適用箇所、測定項目の検討を行う必要があるとともに、処分サイト全体にどのように設置するのか、また、人工バリア周辺にはどのように設置するのかを検討していく必要がある。処分場全体図のイメージは図 5.5.1-1 の通りであり、計測をどこで行うデータ収集をどこで行うのかを踏まえて伝送に関しての必要要件を整理する必要がある。データ収集を地上施設で行うのであれば、アクセス坑道の形態を踏まえた伝送計画を行う必要がある。また、伝送に関しては、地中無線との併用も視野に入れておく必要がある。計測に関しては、図 5.5.1-2 に示すような形で処分場全体での計測を行う場合と、図 5.5.1-3 に示すように人工バリア周辺において計測を行う場合が考えられる。

室内試験における温度測定において、圧力ひずみの影響により自由端以外で適切な測定ができていないことや、各センサと緩衝材の圧着状態により、試験初期のデータの立ち上がりが異なること、また、土木分野での光ファイバセンサの敷設において、断線等の問題が存在することなどを考慮すると、処分環境に光ファイバセンサを適用する為には、①センサ内部の構造と②配線、敷設方法から問題を解決する必要がある。

①センサ内部の構造については、温度測定と圧力測定を別のファイバにて行うことや、センサ内部にループ等を作り、温度測定用 FBG への圧力影響を回避する等の解決策を考えられる。しかし、配線の増加やセンサの大型化が起きる為、これを緩和する技術開発が必要とされる。

②配線、敷設方法については、センサのズレや不十分な圧着を防ぐため、緩衝材の吹き付け工法を適用することや、伝達部分のファイバにループ等を設け、裕度を確保すること等の解決策が考えられる。吹き付け工法の適用については、別途検討中である。また、裕度の確保については、みずみちの発生抑制の観点での技術開発が必要とされる。

図 5.5.1-2 は、坑道への光ファイバセンサ敷設により処分場全体における温度の分布の計測を行うような場合を想定したものであるが、この場合は、光ファイバに沿った温度分布を遠距離まで計測可能な BOTDR 等（表 5.2.4-1）を用いることになる。計測方法としては、ある程度の実績のある方法であるが、処分場全体に渡り、処分場の埋め戻し作業と並行してどのように光ファイバの敷設作業を行っていくかは課題である。

また、図 5.5.1-3 は地下研究施設での実規模試験等での人工バリア周辺にて、あるポイント毎の温度及び圧力の計測を行う場合を想定したものである。この場合は、現在開発中の FBG による計測を行う光ファイバセンサを想定している。したがって、伝送に関しては図 5.5.1-1 や図 5.5.1-2 での課題と同様のものがあり、さらにセンシング部分をどのように配置するのかという、さらなる課題がある。

図 5.5.1-4〜図 5.5.1-6 にセンシング部の設置方法の例を示す。図 5.5.1-4 は、圧力センサに関しては、緩衝材の設置前に坑道の壁面に設置しておく方法であるが、センサは壁面表面に設置するものである。設置用の治具を坑道壁面に事前に設置しておく、そこに圧力センサを設置し、
センサのずれ等を防ぐ方法である。したがって、設置方法として簡易であるが、緩衝材をブロックとした場合、緩衝材と空洞との間に隙間が生じるものである。また、現場締固めにより緩衝材を施工する場合は、センシング部及びケーブルを養生しつつ施工を行う必要がある。一方、温度センサに関しては、緩衝材ブロックと緩衝材ブロックとの間に設置している。したがって、設置部に損等を設けるとブロック間にも隙間が生じてしまうことになり、現場締固めでは適用出来ない方法である。

図 5.5.1-5 は、圧力センサに関しては、図 5.5.1-4 と同様に坑道の壁面に設置するものであるが、事前に坑道壁面に埋め込み、センサ設置後、緩衝材を施工するものである。この方法の場合、緩衝材をブロックで定置する場合でも、現場締固めで施工する場合でも適用可能である。ただし、センサ設置時の作業が図 5.5.1-4 に比べて多くなる。温度センサに関しては、ブロックの側面に挿入して設置するものである。この方法は緩衝材をブロックで定置する場合にのみ適用可能であり、緩衝材ブロック定置時に十分注意が必要な方法である。

図 5.5.1-6 は緩衝材を現場締固めて施工する場合を想定した設置方法である。温度センサに関しては、図 5.5.1-4 と同じ設置方法であり、所定の高さまで緩衝材の施工が済んだ後に温度センサを緩衝材施工面の表面に設置し、その上部の緩衝材を続けて締め施工していくものである。圧力センサに関しても同様な手順で順次設置していく。この場合も図 5.5.1-4 と同様に事前に坑道壁面に設置用の治具を設置しておく方法もあるが、同図は直接坑道壁面に圧力センサを設置する場合の図としている。直接設置する場合は、施工に伴いセンサがずれないか、確実にセンサ裏側で反力を取ることができるかどうか、等を確認する必要がある。

上述の方法は設置方法の一例であるが、これらの方法に関して、その適用性（作業性）や設置後の計測性能等について比較検討を行い、どのような方法が適切な設置方法であるのは今後検討していく必要がある。
図 5.5.1-1 処分場全体図イメージ

図 5.5.1-2 処分場全体での計測イメージ

図 5.5.1-3 人工バリア周辺での計測イメージ
図 5.5.1-4 人工パリア周辺への設置方法案（その１）
図 5.5.1-5 人工バリア周辺への設置方法案（その 2）
図 5.5.1-6 人工バリア周辺への設置方法案（その3）
5.5.2 pH計及び水分計の技術評価

昨年度に引き続き、技術情報データベースへの追加・更新を目的に光ファイバを利用した化学・水分センサ技術について国内外の研究機関等での計測技術の開発状況に関する調査を実施するとともに、これまでの知見を踏まえた技術評価を行った。なお、ここでの光ファイバを利用したセンサ技術（以下、“光ファイバセンサ”）とは、光ファイバをデータ送信技術としてのみ利用するもの（すなわちセンサ部は一般的の電気式センサのメカニズム）ではなく、ファイバ自身がセンサ（光ファイバの特性を利用したセンサメカニズムを有する）であり、同時に多点計測が可能であるとともにデータ通信を兼ねた技術を中心に取扱うものとする。

(1) pH計
1）経緯
本調査初期の段階で地下水の化学特性の計測、とりわけ酸化還元電位（Eh）及び水素イオン濃度（pH）は、放射性核種の物質移行特性に大きく関与することから、重要なパラメータであること、その測定技術はモニタリングを検討する上でもますます着目しておくべきものであると認識されてきた。しかしながら、国内外のURLにおいては、サンプリング取水した地下水の水質を対象に計測しているが、連続的な計測の事例は無く、pHに関しては、一般的なpH測定手法が電気的測定法または比色測定法であり、それぞれの計測機器の処分環境における適用性を、温度、圧力・衝撃、酸化還元状態、センサと水の接触の程度、放射線及び長期特性などの観点から整理し、既存の計測機器はセンサの化学反応による検出を原理としており、そのままでは長期の連続的計測に適用が難しく、機器の適切な使用環境にあわせた校正、使用条件の変化、劣化などを考慮した計測が前提であることが明らかとなっている。既存のpHセンサはいずれも液体に対しては計測可能であるが、不飽和土壌に対する適用性に関しては十分な検討がなされていない。また、ガラス電極式、金属酸化膜式、ISFET式に関しては、原理的に電極の内部液の交換が必要となり、長期継続計測は困難である。
また、予備的な調査の結果、技術的向して、光ファイバと複合させたセンサが、化学、温度、ひずみなどの計測のため活用されつつある。このような最新の技術について、測定原理、センサの性能を調査するとともに技術開発を実施し、地層処分モニタリングへの適用性を検討することが必要であるとされた。
表 5.5.2-1 計測対象とセンサ技術動向調査のまとめ[10]

<table>
<thead>
<tr>
<th>計測対象分類</th>
<th>計測項目</th>
<th>計測方法</th>
<th>地層処分モニタリング技術の観点での課題</th>
</tr>
</thead>
<tbody>
<tr>
<td>熱</td>
<td>湿度</td>
<td>熱電対計測</td>
<td>導電性金属使用のため、環境での変化、劣化をきたす</td>
</tr>
<tr>
<td>地下水</td>
<td>水位、間隙水圧含水率</td>
<td>水位、水圧、水分計</td>
<td>化学法、電気法(導電計測)ともに長期の信頼性が課題</td>
</tr>
<tr>
<td>応力</td>
<td>岩盤圧、亀裂変位、ひずみ</td>
<td>音響(AE)、ひずみ/変位計</td>
<td>音響発信・受信計測のエネルギー供給</td>
</tr>
<tr>
<td>化学</td>
<td>水質化学</td>
<td>Eh/pH計測腐食電位</td>
<td>原理的に化学反応センサのため変化、劣化への対処</td>
</tr>
<tr>
<td>その他複合計測</td>
<td>光学ファイバ複合センサ(反射型、透過型等)</td>
<td></td>
<td>センサとファイバ材料の、化学的構造的耐久性が未知である</td>
</tr>
<tr>
<td></td>
<td>応力－光透過特性変化</td>
<td></td>
<td>光通信ケーブル等の知見の反映</td>
</tr>
<tr>
<td></td>
<td>化学－光波長</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>感熱－光波長、屈折率変化</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2) 本年度までの調査結果

表 5.5.2-1 および表 5.5.2-2 の予備的な調査の結果、調査対象とされた光ファイバと複合させたセンサ（光ファイバセンサ）について継続的に調査を行ってきている。この結果、熱及び力学センサに関しては、海外での処分環境を想定した適用事例もあること、及び他分野における適用事例も多くみられることから、多点計測方式に改良したセンサの試作及び実用に向けた研究が行われている。

一方、pH センサに関しては、当初の調査の結果では、多くの分野で適用実績はなく、ドイツ廃棄物処分施設建設・運転会社技術部門（DBE-TEC）が開発した 2 本のファイバとサンプリング部を有する検体透過型ファイバを旧ウラン鉱山（Koenigstain）の排水溝内で試験的に 90 日間使用した事例以外は研究室あるいは提案レベルであった。

図 5.5.2-1 DBE-TEC による pH センサの概要及び利用

5-35
表 5.5.2-2 pH センサの現状技術の測定可能性（緩衝材内での計測を想定した場合）

<table>
<thead>
<tr>
<th>測定方式</th>
<th>温度影響</th>
<th>圧力影響</th>
<th>酸化還元性</th>
<th>放射線</th>
<th>飽和度影響</th>
<th>長期計測</th>
<th>伝 送</th>
<th>小型化</th>
</tr>
</thead>
<tbody>
<tr>
<td>ガラス電極式</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>電気式センサ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>金属酸化膜式</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISEFT式</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>光ファイバ式 a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

注記
1. グレー部分は原理的に計測が困難である。黄色部分は実績が不明であり調査・確認等が必要と思われる内容である。
2. 予備的な調査結果及びその後の調査結果を踏まえている。
3. a) 光ファイバ式についてはさらに複数の計測方法がある（表 5.5.2-3 参照）
このため、地層処分、特に緩衝材での光ファイバの特性を生かした多点同時計測を目標とした調査を継続し、下記の課題についての克服を目指した研究を進めてきた。

① 長期耐久性：現状のファイバによる pH センサについては、すべて pH 感応体が設置され、その変化をファイバが検知するタイプである。ファイバ自身は通信等での実績を有しており、耐久性にそれほど大きな問題点はないと判断したが、感応体自身の劣化が課題である。

② 検知構造：DBE-TEC が開発した検体透過型ファイバは、先端に液体が浸入する隙間（サンプリング部）を有しており、基本的には液相中での計測を念頭に設計されている。一方、緩衝材内の水分は少なく、検体透過型の場合には目詰まり等の懸念がある。また、当該タイプは先端のみの 1 点計測であり、多点計測は原理的に不可能である。

上記の課題に対し、実施した調査・研究は次の通りである。

a. 先端反射型センサを利用した長期耐久室内試験

市販されている Ocean Optics 社製が発売した先端反射型のファイバ pH センサ（図 5.5.2-2）を利用して、膨潤させたペントナイトを含むセル内での長期耐久性試験を実施した（図 5.5.2-3）。この結果、約 40 日間程度の試験期間中ではデータの変動はみられなかった。

![pH 指示薬フィルム (クレゾールレッド)](image1)

図 5.5.2-2 先端反射型ファイバセンサ

![試験装置](image2)

図 5.5.2-3 試験装置

5.37
b. ファイバセンサの現状調査

表 5.5.2-3 に本年度を含む調査した光ファイバ pH センサの方式、適用実績及び課題を整理した。

多点計測可能なファイバには複数の検知メカニズムが提案されてきており、その幾つかは実用化に向けた動きがあるものの、そのすべては指示薬劣化の影響による長期性が課題である。しかしながら、本年度調査したコンクリート劣化センシングにエバネッセント型のファイバ pH センサにおいては、長期計測を可能とするために補充用チューブを搭載させ指示薬補充を行うことが可能なセンサ開発している事例[11]があり、この技術が応用可能であれば、計測場所において少なくとも配線で計測機器とのアクセスが可能である期間中での計測に係わる根本的な問題が解決可能となる可能性がある。

図 5.5.2-4 計測結果

図 5.5.2-5 エバネッセント型ファイバを利用したコンクリート内の pH 計測[11]
<table>
<thead>
<tr>
<th>センサタイプ</th>
<th>センサ概要</th>
<th>適用実績</th>
<th>特徴及び課題</th>
</tr>
</thead>
</table>
| 椅体透過型 | 先端部内側の pH 指示薬含浸クラッドの色の変化を反射光により検知する。 | DBE-TEC により開発され、90 日間、旧ウラン鉱山の排水路内での計測を実施。 | ・セプとフィブとの接合部分の耐久性
・ウランリサイクルの効果を確認するため
・現在 DBE-TEC は本技術以外の可能性を検討中である。
・指示薬耐久性
・1点計測 |
| 先端反射型 | 先端の pH 指示薬含浸クラッドの色の変化を反射光により検知する。 | | ・指示薬耐久性
・1点計測 |
| FBG 膨張検出型 | 椅知部に FBG 加工を施し、周囲に pH 膨張性指示薬を含浸させ、FBG の変化を検知する。 | | ・DBE-TEC において検体透過型に代わる方式として提案されている。
・FBG 式センサ自体は様々な分野で利用されている。 |
| ヘテロコア型 | FBG 途中にコーティングされた小さなファイバ片を挿入し、ソルゲル法などにより指示薬を固定し、波長変化を検知する。 | | ・ヘテロコア型は環境分野などで利用されている（特許出願中）。 |
| エバネセント型 | クラッド部分に pH 指示薬を加工し、透過光の変化を検知する。 | | ・これまで研究者レベルであったが、コンサートを連携させて技術として指示薬液補充チューブを備えたセプ（特許 2009-122003）が開発されている。 |

表 5.5.2-3 光ファイバ式 pH センサの現状調査結果
（2）水分計

1）既往の調査内容の整理

水分の測定に関して、通常の不飽和土壌では、テンシオメータによりサクションの計測が行われ、水分特性曲線から水分量を求めることができた。しかしながら、緩衝材等のペントナイト混合土の場合はサクション値が高く、テンシオメータでのサクション計測は不可能である。そこで、これまでは、ペントナイト混合土に対する水分量計測には、サイクロメトリック式や露出式によるサイクロメータや湿度計が用いられてきた。近年は比誘電率を計測し、その値から水分量を算定する方式のペントナイト混合土への適用が試みられている。この方式としては、TDR 法、FDR 法、FDR-V 法等があるが、ペントナイト混合土への適用性は FDR-V 法が最も高く、それを用いた計測法に対する研究が近年実施されている[13]。水分計測の現状を表 5.5.2-4 に示す。

光ファイバを用いた水分計については、平成 17 年度より調査を開始している。下記にこれまでの主な調査結果を示す。

① 地層処分での計測に参考となり得る関連分野（地下研、発電所、構造物、土木分野など）について光ファイバ技術の利用・研究状況について調査を行った[14]。その結果、グリムゼルの GTS のガス透気試験及びモスレーベンにおいて FBG 方式のファイバセンサを利用した水分に関するドイツ DBE-TEC による報告があった。水分測定における主な FBG 方式の機構は、水分に反応する材料を FBG にコーティングし、水分により材料が体積膨張しグレーティング部にひずみが導入され、ブレッグ波長が変化することにより相対湿度を測定するものである。また、温度補償用の FBG センサも内蔵している。

GTS では、ペントナイト・砂混合物中センサが設置され、水の浸入に関しては検知しているものの、間隙水圧の影響を受け、湿度は測定できなかった。モスレーベンでは、坑壁での浸入水量を約 5 カ月程度の間、測定を行ったことが記されている[14][15]。

![図 5.5.2-6 FBG 方式の光ファイバセンサの原理][16]

[14]
[15]
[16]
<table>
<thead>
<tr>
<th>測定方式</th>
<th>温度</th>
<th>壓力</th>
<th>酸化還元</th>
<th>放射線</th>
<th>飽和度</th>
<th>長期性</th>
<th>伝送</th>
<th>小型化</th>
<th>適用</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDR 式</td>
<td>計測可能（補正可能）</td>
<td>計測可能</td>
<td>耐腐食性材料仕様により計測可能</td>
<td>実績はない</td>
<td>耐腐食性材料仕様により計測可能</td>
<td>測定対象部においてはセンサ及び配線が挿入されることがなるため、無線化が望ましいが、無線技術のような配線の影響を考慮した計測は難しい。</td>
<td>現状で十分小型であり、接続・挿入が可能である。</td>
<td>△</td>
<td></td>
</tr>
<tr>
<td>FDR 式</td>
<td>計測可能</td>
<td>实証が必要であるが計測可能であると考えられる。</td>
<td>耐腐食性材料仕様により計測可能</td>
<td>実績はない</td>
<td>耐腐食性材料仕様により計測可能</td>
<td>適用出来ない。</td>
<td>現状で十分小型化には限界がある。</td>
<td>△</td>
<td></td>
</tr>
<tr>
<td>FDR-V 式</td>
<td>計測可能（補正可能）</td>
<td>耐腐食性材料仕様により計測可能</td>
<td>乾燥状態の緩衝材に対しては、計測可能範囲を超えると機能不全となる。</td>
<td>実績はない</td>
<td>通常環境で1年程度放置しても機能に異常はみられない。</td>
<td>ファイバ自身がセンサとして機能し、多点同時計測が可能である。</td>
<td>現状で十分小型で、接続・挿入が可能である。</td>
<td>△</td>
<td></td>
</tr>
<tr>
<td>サイクロメトリック式</td>
<td>溫度勾配下で観測されるが計測可能であると考えられる。</td>
<td>酸化・還元状態及び常温状態でのみ計測可能である。</td>
<td>実用的に不飽和状態でのみ計測可能である。</td>
<td>実績はない</td>
<td>実用的不飽和状態でのみ計測可能である。</td>
<td>実用的不飽和状態でのみ計測可能である。</td>
<td>実用的不飽和状態でのみ計測可能である。</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>露点式 (静電容量型)</td>
<td>計測可能（補正可能）</td>
<td>耐腐食性材料仕様により計測可能</td>
<td>定期的な校正が必要であり、長期計測は困難である。</td>
<td>実績はない</td>
<td>実用的不飽和状態でのみ計測可能である。</td>
<td>実用的不飽和状態でのみ計測可能である。</td>
<td>実用的不飽和状態でのみ計測可能である。</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>テンソメータ式</td>
<td>計測可能（補正可能）</td>
<td>耐腐食性材料仕様により計測可能</td>
<td>定期的な校正と水の補充が必要であり、長期計測は困難である。</td>
<td>実績はない</td>
<td>実用的不飽和状態でのみ計測可能である。</td>
<td>実用的不飽和状態でのみ計測可能である。</td>
<td>実用的不飽和状態でのみ計測可能である。</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>光ファイバ式 (パロック式)</td>
<td>計測可能（温度帯に備用で補正可能）</td>
<td>耐腐食性材料仕様により計測可能</td>
<td>実績はない</td>
<td>実用的不飽和状態でのみ計測可能である。</td>
<td>実用的不飽和状態でのみ計測可能である。</td>
<td>実用的不飽和状態でのみ計測可能である。</td>
<td>実用的不飽和状態でのみ計測可能である。</td>
<td>△ (確定必要)</td>
<td></td>
</tr>
</tbody>
</table>

注記1 グレー窓がけ部分は原理的に計測が困難である。黄色部分は実績が不明であり調査・確認等が必要と思われる内容である。
グリムゼルGTSでの光ファイバセンサを利用した試験

<table>
<thead>
<tr>
<th>センサ</th>
<th>領域</th>
<th>ラインとレイヤー</th>
</tr>
</thead>
<tbody>
<tr>
<td>W-POS-1</td>
<td>0-50℃</td>
<td>Line 1 - Layer 15</td>
</tr>
<tr>
<td>W-POS-2</td>
<td>0-50℃</td>
<td>Line 1 - Layer 15</td>
</tr>
</tbody>
</table>

図 5.5.2-7 グリムゼル GTS 試験における光ファイバの利用[15]

・緩衝材締固め時の振動によるセンサ/ファイバ(Optical Line)の破断(Line2)

図 5.5.2-8 グリムゼル GTS 試験における光ファイバ試験の例[15]

図 5.5.2-9 モスレーベンにおける坑壁での浸入水量計測[15]
② 光ファイバによる水分（あるいは湿度）センサについて、上記以外の例については、
例えば、ファイバ自身を加工し、コア径を変化させ検知部としたヘテロコア型ファイ
バセンサやコパルトボリアニリンをクラッドに用いたエバネセックス型センサが報告
されているものの、いずれも研究室レベルであり、前述のように処分環境を対象とし
たものもないため、耐圧や長期性などの不明な点も多く、想定される地下環境での使
用可能性については多くの課題があると思われる。

表 5.5.2-5 水分(湿度)センサに関する調査結果のまとめ[17]

<table>
<thead>
<tr>
<th>測定方式</th>
<th>測定範囲</th>
<th>測定精度</th>
<th>応答速度</th>
<th>耐久性</th>
</tr>
</thead>
<tbody>
<tr>
<td>ヘテロコア型</td>
<td>40〜95%RH</td>
<td>記述なし</td>
<td>500 ミリ秒以下</td>
<td>記述なし</td>
</tr>
<tr>
<td>エバネセックス型</td>
<td>20〜95%RH</td>
<td>記述なし</td>
<td>8 秒</td>
<td>記述なし</td>
</tr>
</tbody>
</table>

注 a) ヒアリング結果によれば実験室系で1年程度は健全であった。

③ FBG センサによる熱伝導率を利用した含水率センサについての予備的な試験調査を
実施している。FBG 式熱伝導率センサとは、直径1ミリ程度の細管中に FBG 方式の
光ファイバとマイクロケーブルヒータを内蔵したセンサであり、このマイクロケーブ
ルヒータを加熱することにより、センサ周囲の熱伝導率の違いによって異なる温度勾
配の変化をセンサ内部の FBG 式の温度センサにより計測し、センサ長手方向の多点
の熱伝導率分布を計測することによって含水率分布の推定を行うものである。
緩衝材内に設置した実験では、低含水率（低熱伝導率）の領域については、精度
良く熱伝導率を算出できたものの、高含水率（高熱伝導率）の領域では、精度が低く求
めることができず、また、本センサはマイクロケーブルヒータを内蔵しており、計測
対象に影響を及ぼす課題が残った。

図 5.5.2-10 FBG 式熱伝導率センサの外観[14]
2) 本年度調査結果

本年度実施したセンサ関連の学会や市場調査においては、ヘテロコア型ファイバセンサの一般環境への利用が進んでいる以外には、新規の技術開発や適用実績はみられなかった。ヘテロコア型ファイバ水分センサについては、pH の場合と異なり、検知部分指示薬を塗布するのではなく金属皮膜を施工するのみであるため、指示薬の劣化についての課題はなく、比較的長期間の計測が可能であると考えられる。

また、ドイツ DBE においても、水分計測用の FBG 方式の光ファイバセンサの利用検討を中止したわけではないが、その他の研究室レベルの技術も含めて今後も定期的に調査を実施していく必要がある。

図 5.5.2-11 ヘテロコア型センサの検知メカニズム

図 5.5.2-12 ITC2009 における DBE のファイパに関する資料
5.5.3 pH及び水分に対する光ファイバセンサ技術の技術評価

前項での調査結果に基づき、事業段階を対象に地層処分環境下における現状技術の計測可能性について評価した。

(1) 想定される計測環境

第2次取扱いまとめに記された地下の処分場環境を表5.5.3-1に示す。また第2章に示した本調査における事業段階ごとの計測場所と各場所でのモニタリングの考え方を図5.5.3-1に示す。本評価はこれらの前提条件に基づき実施した。
（2）技術評価結果

前項の計測環境のうち坑道及び人工構造物のみを抽出し、技術調査結果を踏まえた光ファイバセンサの利用可能性を表 5.5.3-2 に示した。評価に当たっては、計測場所へのアクセス性、交換可能性、計測期間を考慮して行い、前提条件に示した地下環境に関する技術的な判断としては下記を念頭にした。

① 温度：廃棄体近傍で 100℃程度であるが、多くのセンサの耐熱性は高く、pH 指示部についても含浸方法により対応可能であると考えられることから、問題とはならないと考えられる。ただし、センサの多くは温度補正が必要であることから、温度センサとの併用が必要である。

② 圧力：実績はないものの複雑な検知メカニズムではないことから、通常のセンサが設置可能な場所であれば問題はないと考えられる。

③ 地下水質：ファイバ自身は海底ケーブルにも使用されており、耐腐食性の被覆材を使用することで問題はないと考えられる。

④ 放射能：本件の前提条件では、高放射線場での計測は考慮しない。

評価結果をまとめると、以下のようになる。

pH センサについては、調査結果の通り、指示薬の耐久性が最大の課題であり、排水溝などの開放系での計測以外のアクセス困難場所（緩衝材内）や時期（閉鎖後）においての計測は限定的であると考えられる。しかし、この問題を克服するため、例えば指示薬の補充システムが追加されたセンサも開発されており、今後の動向の把握を適宜行っていく必要がある。

また、水分センサについても基本的には pH センサ同様であるが、現在研究がすすめられているヘテロア型のセンサのように、長期計測について若干期待できる技術もある。しかしながら、ファイバセンサに比して、他の電気式センサの有効性が高いことから、例えば、ファイバセンサの利点である多点同時計測の必要性などのニーズに応じて室内試験レベルの利用などが考えられる。今後の動向については、pH センサ同様に把握を行っていく必要がある。

5-46
表 5.5.3-2 光ファイバ pH 及び水分センサの適用性評価結果

<table>
<thead>
<tr>
<th>検討対象とした場所</th>
<th>検討対象とした時期（段階）</th>
<th>文献調査等</th>
<th>概要調査</th>
<th>精密調査</th>
<th>建設</th>
<th>操業</th>
<th>閉鎖</th>
</tr>
</thead>
<tbody>
<tr>
<td>処分施設</td>
<td>地下施設</td>
<td>坑道（上記+連絡）</td>
<td>——</td>
<td>——</td>
<td>□</td>
<td>○</td>
<td>△</td>
</tr>
<tr>
<td></td>
<td></td>
<td>具分坑道</td>
<td>——</td>
<td>——</td>
<td>□</td>
<td>□</td>
<td>△</td>
</tr>
<tr>
<td>人工パック</td>
<td>[緩衝材]</td>
<td>——</td>
<td>——</td>
<td>——</td>
<td>——</td>
<td>——</td>
<td>——</td>
</tr>
<tr>
<td></td>
<td>[オーバーパック]</td>
<td>——</td>
<td>——</td>
<td>——</td>
<td>——</td>
<td>——</td>
<td>——</td>
</tr>
<tr>
<td></td>
<td>[プラス固化体]</td>
<td>——</td>
<td>——</td>
<td>——</td>
<td>——</td>
<td>——</td>
<td></td>
</tr>
</tbody>
</table>

处分施設	地下施設	具分坑道	——	——	□	□	△	<URL>で有効性がある場合、<URL>で有効性が確認された場合
地下調査施設Ⅰ (模擬廃棄体)	緩衝材	——	——	——	□	□	△	<URL>で有効性がある場合、<URL>で有効性が確認された場合
	オーバーパック	——	——	——	□	□	△	<URL>で有効性がある場合、<URL>で有効性が確認された場合
	模擬廃棄体	——	——	×	×	×	——	

处分施設	地下施設	具分坑道	——	——	□	□	△	<URL>で有効性がある場合、<URL>で有効性が確認された場合
地下調査施設Ⅱ (実廃棄体)	緩衝材	——	——	——	——	——	——	
	オーバーパック	——	——	——	——	——	——	
	[プラス固化体]	——	——	——	——			

URL (処分場寄り)	地下施設	具分坑道	——	——	□	□	△	<URL>で有効性がある場合、<URL>で有効性が確認された場合
	緩衝材	——	——	——	——	——	——	
	オーバーパック	——	——	——	——	——		
	模擬廃棄体	×	——	——	——	——		

注記1 網掛け部分が計測を実施する部分
注記2 □ ファイバ pH 及び水分センサの利用が可能である、△ 条件によって利用できない、▲ 技術レベルに不明な点が多く現時点では判断できない、× 計測対象外
5.5.4 センサの耐放射線性に関する調査

既往のセンサ技術調査では、温度や耐圧影響については個別に検討を実施してきたものの、放射線影響を中心とした調査は実施していなかった。このため、本年度は原子炉内での計測機器についての概要及びファイバを利用した温度計測について整理した。

(1) 発電所施設における状況

1）通常センサ利用

原子炉内の計測は大きく2種類に大別できる。一つは、動力炉の運転・制御のために原子炉出入口の冷却材の温度差と流量との関係から算出される熱出力を求めるために温度、圧力、流量、水位などが計測対象となっている。この計測には、一般の工業プラントで使用されているプロセス計器が使用されており、原子力プラントではこれらを“プロセス計装”と呼んでいる。一方、中性子束を把握するための計測も必要であり、この計測システムを“核計装”と呼んでいる。

例えばプロセス計装における温度計測には、通常、熱電対や測温抵抗体が多く使用されている。これらの機器は耐放射線材質のK型やN型が多く使われている。使用温度範囲はK型が約1,000℃、N型が1,200℃である。実装する場合は、熱電対は金属製の保護管に収納され（図5.5.4-1）、機器や配管に取り付けられる。

図4 熱電対、測温抵抗体の金属製保護管
[出典]石森富太郎(編): 原子炉工学講座6=計測制御、悟風館(1972)

2）ファイバセンサの利用可能性

温度に関して、発電所施設における利用を想定した光ファイバ技術の耐放射線性に関する文献を整理した。結果は表5.5.4-1に示すとおりである。FBG方式、偏光子を用いた方式、ラマン方式等、多数の報告がなされている。FBG方式を用いた報告では、耐放射線に関する報告が多くなされている。この結果、光ファイバの耐放射線性は、FBGの製作条件や組成が関係するものの、適切な選定がなされれば十分高放射線場での計測が可能であることが示されている。
<table>
<thead>
<tr>
<th>概要</th>
<th>測定原理</th>
<th>適用範囲</th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>アーク放電（arc-discharge）技術により製作された FBG ファイバ適当なゲンマ線照射に対する耐放射線性を評価した。この結果、約 0.5MGy の吸収線量を照射した後でも温度測定の感度は変わらない。</td>
<td>FBG</td>
<td>吸収線量：0.5MGy</td>
<td>[18]</td>
</tr>
<tr>
<td>Ge-F がドープされた FBG 光ファイバセンサを製作し、1,400MGy のゲンマ線、3×10³n/cm² フルエンスの中性子線を照射して耐放射線性を評価した。この結果、ゲンマ線 500MGy と中性子フルエンス 10¹³n/cm² まで維持された。</td>
<td>FBG</td>
<td>ゲンマ線単位線量 : 500MGy 中性子フルエンス積算線量 : 10¹³n/cm²</td>
<td>[19]</td>
</tr>
<tr>
<td>Ge ドープされた FBG 光ファイバケーブルを製作し、1 MGy 程度のゲンマ線を照射して温度計測の有効性を評価する。この結果 0.1 MGy までは温度依存による波長変化を確認した。</td>
<td>FBG</td>
<td>ゲンマ線積算線量: 0.1MGy</td>
<td>[20]</td>
</tr>
<tr>
<td>100m長のマルチモードおよびシングルモードの光ファイバは 1 MGy よりも 11dB 以下の放射線に対し損失を示した。FBG の放射線感受性を最小限にするには、FBG の製造方法、ファイバ種の最適な選択が必要である。 ①純 SiO₂ の方が Ge ドープファイバに比べ伝送損失量が少ない。 ②H（水素）を含むファイバは高温を使うのに使われることが、同時にゲンマ線に対する感度も増加させる。 ③N（窒素）ドープファイバは 100kGy まではゲンマ線に対する感受性が小さいが、MGy レベルでは H なしの Ge ドープファイバよりも数倍高いブリッジピックシフトを示している。</td>
<td>FBG</td>
<td>ゲンマ線積算線量 : 3MGy</td>
<td>[21]</td>
</tr>
<tr>
<td>原子力発電所において温度やひずみを FBG にて測定できるかどうかを判断するため、FBG にゲンマ線を照射し、その特性の放射線による影響を評価した。その結果、FBG 特性（ブリッジ波長、反射ピク）に関しては放射線による影響が見られないことを確認した。 ①温度・ひずみの放射線による影響は誤差範囲であることを確認した。 ②放射線の積算線量が増すごとに伝送損失量が増加するが、FBG による温度計測は±5％の誤差範囲であることを確認した。</td>
<td>FBG</td>
<td>ゲンマ線吸収線量（線量率）：11.4kGy(113.8Gy/h)</td>
<td>[22]</td>
</tr>
<tr>
<td>FBG 温度センサの原子力分野における適用性について評価した。FBG センサの耐放射線性として優位な点は放射線による光ファイバの伝送損失が広範囲の波長に関係するのに対し、FBG はブリッジ波長幅の帯域のみに関していることである。つまり、S/N 比は放射線の影響を受けない。光ファイバケーブルの化学組成及び FBG の製造方法が FBG センサの放射線度に大きく依存する。FBG 温度センサはゲンマ線にも中性子線にも大きな耐放射線性を示す。 ①1.5MGy 程度までは F B G センサへの影響は見られない。</td>
<td>FBG</td>
<td>(1) ゲンマ線照射積算線量 : 1.5MGy (2) 中性子照射積算線量 : ゲンマ線 140MGy 中性子 8 × 10¹³n/cm²</td>
<td>[23]</td>
</tr>
<tr>
<td>概要</td>
<td>測定原理</td>
<td>適用範囲</td>
<td>文献</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>----------</td>
<td>------</td>
</tr>
<tr>
<td>②放射線感受性は光ファイバの化学組成と光感度により決まる。 ③光ファイバは H2 ドープよりも Ge ドープの方が耐放射線性が良い。 (2)ガンマ線、中性子線に対する耐放射線性 ガンマ線のみよりもガンマ線・中性子線混合の方が放射線感受性は大きい。 (3)中性子線照射に対する耐放射線性 ①積算線量：ガンマ線 140MGy、中性子 8 × 10^8 neutron/cm^2 ②全てのプラグ波長は飽和せずに長波長の方にシフトする。</td>
<td>FBG</td>
<td>ガンマ線積算線量：1.7 × 10^10 [R] 高速中性子積算線量：8 × 10^10 [n/cm^2]</td>
<td>[24]</td>
</tr>
<tr>
<td>原子力計測への適用性評価のため、FBG センサの測定精度、時刻変化、放射線環境下での寿命評価などの基礎的特性評価を行なった。この結果原子炉内の管材領域では十分利用可能であることを確認した。</td>
<td>ラマン</td>
<td>積算線量：3x10^5 R 線量率：7x10^3 R/h</td>
<td>[25]</td>
</tr>
<tr>
<td>ラマン分光特性温度センサ（RDTES）を JAEA（旧 JNO）常陽一次系に設置し、積算線量 3x10^5 R で 2 種類の光ファイバと 2 種類の放射線照射劣化補正方法を評価した。その結果、光ファイバは OH ドープよりも F ドープの方が耐放射線性に優れ、2 種類の温度補正方法も効果があることが分かった。これららの方法によれば商用発電所では 35 年以上で使用可能である。</td>
<td>BOTDR</td>
<td>積算線量：約 100kGy 線量率：27kGy/h</td>
<td>[26]</td>
</tr>
<tr>
<td>商用 Ge ドープシングルモード光ファイバケーブルによるブリルアン散乱に対するガンマ線照射効果を BRIGITTE（SCK.CEN ベルギー）において試験した。 S/N 比が保持されていれば、積算線量が約 100kGy までは耐放射線性があることを確認した。</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5.6 まとめ及び今後の課題

5.6.1 まとめ

(1) 光ファイバセンサの耐久性評価
光ファイバセンサの長期試験による耐久性評価を実施した。その結果、スペースクリエイション社製センサから評価された温度は熱電対測定結果と良い一致を示し、圧力も妥当な値であった。共和電業社製センサについては、温度に関しては経時に従い、最大3℃の誤差が現れた。圧力に関しては妥当な値であった。単一センサヘッドを有する FBG センサを耐久性評価試験のため、長期間の試験を実施した。その結果、圧力値は熱電対により計測された温度と良い一致を示し、また圧力値を従来報告されているベンチマーク圧値と比較して妥当な値であった。以上から長期間の試験において FBG センサは耐久性を有し、圧力を評価できることを確認した。

光ファイバセンサによる同時多点計測については、温度、圧力計測用 FBG を有するセンサ部を 2 つ有する多連式 FBG センサを製作し、水を充填した圧力容器を用いて常温試験を行った。光コネクタに近い側のセンサの温度計測用 FBG の値が圧力の影響を受ける結果となった。光コネクタから離れた側のセンサの温度計測用 FBG はファイバ先端部に位置するため圧力の影響は受けていない。すなわち、今回製作した二連式 FBG センサでは、両端が固定されている温度計測用 FBG が圧力の影響を受けて値が変化してしまうため、温度の値を適切に評価できなかった。載荷試験終了後、二連式 FBG センサを用いて室温環境下でベンチマークの膨張圧計測を行った。この試験では比較のため、電気式の圧力センサでの膨張圧の計測も行っている。試験は200 日程度継続したが、センサ自体の耐久性には問題は見られなかった。圧力の計測値に関しては、設置の位置の差により圧力の発現状況に差が見られたが、時間の経過とともに、電気式の圧力センサの計測値と同程度の値に収束する傾向を示した。

JAEA における工学規模の熱－水－応力応力試験 COUPLE への、光ファイバ式の圧力及び温度センサの適用試験においては、3 連温度センサの測定値が一定時間経過後に、期待される温度勾配よりも小さな勾配を示していた。これはセンサ内、特にセンサを防護する SUS 管の熱伝導が卓越した為であると考えられた。また、圧力センサが期待されるよりも小さな圧力値を示しており、これは温度補正用の FBG に問題が生じているためと推定された。

(2) 敷設方法を考慮した研究計画の立案
光ファイバセンサの敷設方法に関して数種の案を示した。その一つに関して、JAEA にて実施された COUPLE 試験で適用性の検討を行った。COUPLE 試験では電気式のセンサ等による計測も行われているので、今後は、これらとの比較を行い、FBG センサの性能確認を合わせて敷設方法が適切であったか否かについても確認をしていく必要がある。また、原位置試験での敷設方法についても人工バリアの施工法を合わせてどのような方法が適切であるか検討していく必要がある。
（3）pH計及び水分計の技術評価

昨年度に引き続き、技術情報データベースへの追加・更新を目的に光ファイバを利用した化学（pH）・水分センサ技術について国内外の研究機関等での計測技術の開発状況に関する調査を実施するとともに、これまでの知見を踏まえた技術評価を行った。

調査の結果、光ファイバ式のpHセンサについては、調査開始以来、例えばヘテロコア式ファイバセンサなど多点計測が可能なセンサの開発研究を進めているものの、依然pH指示部の耐久性の問題については解決されていなかったが、本年度の調査において、指示薬の補充が可能なエバネッセント式ファイバが開発されており、この技術が応用可能であれば、計測場所において少なくとも配線で計測機器とのアクセスが可能である期間中での計測に係わる根本的な問題が解決可能となる可能性がある。しかしながら、この技術においても現段階で実際の環境中で使用された実績が報告されたわけではないので、pHセンサに比べれば検知部の原理的な課題は少なく、多点同時計測のニーズによっては例えばヘテロコア式センサの利用などを利用することは可能であると判断した。

（4）センサの耐放射線性に関する調査

既往のセンサ技術調査では、温度や耐圧影響については個別に検討を実施してきたものの、放射線影響を中心としての調査は実施してきていなかった。このため、本年度は原子炉内での計測機器についての概要及びファイバを利用した温度計測について整理した。

この結果、原子力発電所においては、冷却材の温度や流量計測に一般のセンサとして、熱電対（温度）やゲージ式圧力計、差圧式水位計などが使用されており、適切な耐放射線材料や保護管に収納することによって使用されている。さらに放射線影響を受けやすいと考えられている有機系高分子材料や半導体素子などの耐放射線材料については、発電所及び想定される処分場内よりも高放射線場である加速器（例えばスイスにあるCERN）や宇宙分野での開発が進めており、これらの技術を適切に応用することで問題はないと判断できる。なお、平成15年度の本調査結果（宇宙空間でのセンサ技術調査）によれば、ジコンバウド材質の半導体回路であれば10Kgy程度までは対応可能であることが分かっている。

一方、原子力分野においても光ファイバ式センサ利用に期待がされており、放射線によりガラス変質及びそれによるデータ精度の影響が懸念されるため、耐放射線性の影響についての研究が進められている。これらの調査結果から判断すれば非常に長い（数千年以上）のオーダーで緩衝材内の計測を行う場合には問題となるものの、地層処分場（緩衝材近傍）の場合（表5.5.3-1）にはほとんど問題とはならないと考えられる。

5-52
5.6.2 今後の課題

(1) 光ファイバセンサの耐久性評価
今後の課題を整理すると以下の通りとなる。

① 計測値の振動の低減
・ スペースクリエイション社製の二連式圧力計及び COUPLE 用の単式圧力計では計測値に振動が見られた。この理由としては、それぞれのセンサが 1mm 及び 2mm の短いグレーティング長の FBG を用いているため、反射スペクトルが拡がり反射ピーク波長測定に誤差が生じたものと考えられる。したがって、センサ構造（大きさ）と合わせ、適切なグレーティング長について検討する必要がある。ここで、ダイヤフラム式による圧力計測の場合、逆にグレーティング長が長すぎる（スペースクリエイション社製の長期耐久性試験用の単式圧力計のグレーティング長は 10mm）と、グレーティング内の不均一なひずみの影響を受けて反射スペクトルにピークが二つ現れるスプリッティングが生じることもあるので注意が必要となる。なお、共和電業社製の単式圧力計のグレーティング長は 3mm と短いが、ダイヤフラム式ではなくグレーティング長の影響を受けにくい構造としているため計測値に振動は見られない。しかしながら、その分、圧力計の厚さがダイヤフラム式に比べて厚くなっている。

② 高温環境下での長期耐久性に関する検討
・ COUPLE 試験では、高温環境下で温度変化が無くなった後に、圧力の評価値が徐々に低下し続けている。これは高温環境下に長期に晒されていた温度計測用 FBG の影響によるものと考えられた。そこで、高温環境下において長期試験を実施し、長期耐久性に関する検討を行い、高温環境下の長期耐久性を確保できるような仕様について検討する必要がある。

③ 多連式圧力計の構造検討
・ グレーティング部近傍の両端が固定された温度計測用 FBG では適切な温度計測出来なかった。これを解消するために、以下のような構造について検討をする必要がある。
 ➢ 温度計測用の FBG が圧力変化によりひずみが発生しないような余裕のある構造とする。ただし、この場合、センサの大きさが大きくなってしまう懸念がある。
 ➢ 温度、圧力計測用光ファイバラインを別々にする。
 ➢ 終端部以外の温度計測用 FBG には圧力変化によるひずみ緩和のための機構を設ける。

(2) 施設方法を考慮した研究計画の立案
実規模試験あるいは原位置試験等を通じて、各種施設方法による作業性、計測性能等の比較を行い、適切な施設方法に関する検討を行う必要がある。

(3) pH 計及び水分計の技術評価
技術評価結果より、耐久性の観点から緩衝材内での多点計測を目指した光ファイバ pH セン
サ及び水分センサの利用に関して現状技術を適用するには克服すべき課題が多いと判断した。しかしながら、処分場において交換可能な坑道内の計測や側溝での水質計測への利用に関して期待できる点もあり、さらに指示薬補充機能を有したセンサの開発も進められていることから、技術開発を進めるには時期尚早であるものの、今後も適宜技術調査を行い、技術進展を注視していく必要があると考えられる。

(4) センサの耐放射線性に関する調査
発電所又は宇宙開発分野で耐放射線性素材の使用例は多くあり、処分場でもこれらの技術を利用することによって放射線に対する影響は少なく、基本的には今後の追加調査の必要もないが、ファイバ技術については研究が進められている段階であり、熱や応力センサとしての利用を進めていく場合には、今後も適宜技術調査を行い、技術進展を注視していく必要があると考えられる。
参考文献

[1] 熊谷幸樹ら：TDM 方式 FBG 光ファイバセンシングによるトンネル覆工のひずみ計測、第 41 回光波センシング技術研究会講演論文集、2008,11, LST41-22
[4] 尾崎総志ら：三菱電機における FBG センサーの製品応用、第 37 回光波センシング技術研究会講演論文集、2006,6、LST37-16
[5] 加藤俊二ら：光ファイバセンサを活用した道路斜面モニタリングに関する共同研究報告書、2007,3 月
[7] 栗井正人ら：光ファイバを用いた岩盤崩落監視システム、フジクラ技報、第 99 号、2000,10
[8] 蓮井昭則ら：光学ストランドによる既設構梁の動的モニタリング、土木学会第 60 回年次学術講演会、2005,9
[12] (財)原子力環境整備促進・資金管理センター: 平成 18 年度 地層処分技術調査等 モニタリング機器技術高度化調査報告書（その 1）地層処分モニタリングシステムの調査 平成 19 年 3 月、(2007).
[13] 小松満志: FDR 法によるペントナイト系材料の温度変化を考慮した水分散定方法に関する研究、第 44 回地盤工学会研究発表会、地盤工学会、pp.907-908、2009,8
[14] (財)原子力環境整備促進・資金管理センター: 平成 17 年度 地層処分技術調査等 モニタリング機器技術高度化調査報告書（その 1）地層処分モニタリングシステムの調査 平成 18 年 3 月、(2006).
第6章 記録保存技術の調査研究
第6章 記録保存技術の調査研究

6.1 目的及び実施概要

海外を主体に推進されている制度的保存システムに関する最新動向の文献調査を行った。海外動向の文献調査においては英国及びフランスを対象とした調査を実施した。具体的には、昨年度実施した英国調査を継続するとともに、2010年に第2回の記録保存が実施予定のフランス放射性廃棄物管理機関（ANDRA）によるLa Mancheセンター（短寿命低レベル廃棄物貯蔵センター）の状況についての調査を行うとともに、昨年度整理した記録保存計画を策定する際の考え方の更新を行った。

6.2 国内外の動向調査

6.2.1 英国

昨年度実施した英国における記録保存についての調査を継続して行った。本年度の調査対象とした内容は下記の通りである。

● Cumbria 州 Drigg 近傍の低レベル放射性廃棄物処分場（LLWR、Low-level waste repository）に関する 2002 年閉鎖後セーフティケースの一環としての長期記録管理のための戦略策定に関する情報

英国で唯一操業中の放射性廃棄物施設は、以前は英国原子燃料公社（BNFL）によって運営されていた LLWR である。LLWR の母体機関（PBO：Parent Body Organisation）は現在、UK Nuclear Waste Management Limited であり、LLWR は LLW Repository Limited, the Site License Company（SLC）によって操業されている。LLWR は、原子力産業、一般産業、大学及び病院など幅広い排出源からの廃棄物を受け入れている。サイトは 1959 年に操業を開始し、この長期の操業期間にわたって、廃棄物処分行為は、規制要件並びに科学的及び工学的な知識及び技術の変化に対応して進化してきた。操業の最初の 30 年間は、処分は廃棄物を掘削トンネルに投棄することによって行われた。1988 年以降は、大型標準鋼製コンテナにセメント詰めされた廃棄物が人工コンクリート製ポールトに処分されてきた[1]。

LLWR への廃棄物処分に関する記録には、廃棄物ストリーム特性化様式（form）、廃棄物法令遵守（コンプライアンス）様式及び廃棄物委託様式など、一連の記録様式が含まれている。SLC は関連様式のペーパーコピーを維持し、情報は中央電子データベースに登録されている。LLWR で受け入れられた全ての委託廃棄物の詳細情報は、UK Radioactive Waste Inventory に保管されている記録の一部を形成している。

6-1
(1) 長期安全性のための記録保存

英国環境省（UKEA）が交付する操業認可の更新申請の一環として、2002年に、LLWRに関する新たなセーフティケースが必要とされた。その認可更新の一環として、BNFLは、その記録手順が1997年の英国の規制要件R10に従っていることを実証しなければならなかった[2]。このためDrigg-LLWRの閉鎖後セーフティケース（PCSC: Post-Closure Safety Case）における記録保存に関する情報が、BNFLのPCSC文書の調査によって特定された。同文書は4つのレベルの詳細度（L1、L2、L3及びL4）で記述されており、L1が最高レベルである。

L1概要報告書[3]によれば、2150年に操業者による管理が解除された後、LLWRは制度的管理フェーズに入り、“記録は適切な当局に移管される”。但し、2150年まで記録を保存するための媒体に関する詳細は示されていない。

QAに関するBNFLのL2報告書[4]によれば、次の通りである：

記録管理
文書化のスケジュールと関連して、記録管理はQAシステムの重要部分として認識されており、この問題は規制要件R10で強調されている。3.3節で述べたように、WM&D Capability Manualは、様々なタイプの文書についての記録保持のための処置に関する一般的ガイドラインを提示している。このことはDTP Project Manualでさらに明確にされ、そこでは、DTPの実施で作成された記録はプロジェクトによって7年間保持され、次いでBNFLの保管所でさらに30年間保持される、と述べられている。Driggサイトは規制要件の順守を確保する形で展開していくので、こうした時間スケールは見直され続けるであろう。タスクマネージャは、保持のための適切な記録を特定する責任を有する。これらは、公式報告書の基盤となる詳細情報源（ログブックなど）が含まれることになる。複製要件に適合するため、情報は、DTP Central Directory又はその他の共有コンピュータに電子的に、かつ、プロジェクトファイルに紙の形で保持される。QA監査の一環として何度も、記録管理の評価が行われた（付録C）。

上記の“DTP”とは、Drigg技術プログラム（Drigg Technical Programme）のことである。ここでは37年間の記録保持に焦点が合わせられているが、この期間における、また、操業者による管理段階が終了する予定の2150年以降についての、紙記録及び電子記録の保存に関する考察はなされていない。また、QAに関するBNFLのL3報告書のリストからは、さらなる関連情報を含んでいる文書は明確には見受けられない。L1、L2又はL3報告書で長期の記録保存活動への言及がなされていないことから、QAに関するBNFLのL4報告書が記録をどのようにして長期間保存・貯蔵するかに関する情報を含んでいるとは考えられない。

しかしながら、LLWRにとって長期記録管理は重要な規制課題であり続けると考えられる。

環境庁は、BNGSLに対して、サイトでの低レベル廃棄物埋設に関連する記録の長期保存及び能動的管理のための戦略を策定し実行するよう要求するであろう。

現在のSLCが必要としているこうした戦略の策定状況に関する追加情報は、LLW Repository Limitedのウェブサイトから得ることができる。ここで、SLCは国家低レベル廃棄物戦略グループ（National Low Level Waste Strategy Group）の中で原子力廃止措置公社（NDA）と協力して作業を進めている、と述べている。

国家低レベル廃棄物戦略グループは、NDA、LLW Repository Limited（SLCを含む）、規制機関、各利害関係者（Stakeholders）及びLLW委託者の間で、効果的な廃棄物処分方策を立案することによって技術革新、金額に見合った価値の取得（value for money）、及び廃棄物の階層化（implementation of the waste hierarchy）を促進するための作業協力体制を構築するために、設立された。このイニシャチブは、現在進められている原子力（発電所）の運転、原子力サイトの廃止措置及び修復プログラム、並びに非NDA商業機関のLLW管理ニーズを支援するものとなる。国家低レベル廃棄物戦略グループは、LLW関連の技術革新、課題及び戦略設定に関する統合及び協議のための主要な接点としての役割を果たさなければならない。

国家低レベル廃棄物戦略グループは発足の初期段階にあり、その付託事項（terms of reference）はまだ協議中ではあるが、長期記録管理のための具体的戦略の策定には取り組んでいないようである。また、LLWR記録の保管は、現在Sellafieldサイトとの協定を通じて実施されており、記録はIron Mountainと称する会社が運営しているWarringtonの保管施設に送られている。LLWに関する紙記録を含む業務記録は、LLWRで3年間保存された後、ボックスに入れてWarringtonの保管所に送られている。

(2) 英国の国立原子力公文書館

英国原子力産業界のための情報及び記録の保管所として、国立原子力公文書館（NNA）が提案されてきた。NNAは、BS5454に準拠した、及び、国立公文書館が設定する基準に準拠したものとなる予定である。NNAは、記録の維持及び保存に関するNDAの法的義務を満足することを目指しており、科学的、技術的及び歴史的な価値のあるデータを効果的に管理・保存して、可能な限り幅広い人々が利用できるようにする。

NNAは恐らく、展示場、閲覧室、及びその他の施設、例えば広範な写真コレクション用の保管所のある専用施設となるであろう。保管及び運営の柔軟性を高めるために、モジュラー設計

1. www.llwsite.com/page/llw-strategy-group
となる見込みである。堅牢なポーツが備えられ、適切なセキュリティ対策が適用される。関連する場所にはサテライト（地域）オフィスが設けられるかもしれない。NDA は、2008 年 2 月 8 日のウェブサイトで次のように述べている：

NDA は本日、スコットランドの Caithness に英国の国立原子力公文書館（NNA）を設立する計画に 800 万ポンド出資することを表明した。NNA は、主として 1940 年代以降の英国民間原子力産業の歴史、開発及び廃止措置に関する 2000 - 3000 万のデジタル、紙及び写真による記録を保存することになる。資金は 3 年間にわたって出資され、2000 万ポンドのプロジェクトの実現を支援する。また、NNA は、公の記録を管理し、それらを安全に保管し、かつそれらに対する公開及び原子力界のアクセス性を高めるという NDA の法定義務に対応していくようにすることが提案されつつある。プロジェクトによっておよそ 20 の専門家ジョブが創生され、建屋は Wick を拠点とする North Highland 公文書館（Wick-based North Highland Archive）の新しい拠点ともなって、さらに多くの追加保管スペースが必要となるであろう。

NDA の最高経営責任者（Chief Executive）の Dr. Ian Roxburgh は、次のように述べた：‘我々は、英国国立原子力公文書館へのこの出資を栄光に思っている。このような量の・研究者、学会及び事業者にとって有用な・価値ある情報が一つ屋根の下にまとめられるのは、初めてのことである。我々は、記録保管そして最終的には知識管理のための、ワールドクラスの国際的に名高い施設の創設を望んでいる。’

Dr. Roxburgh は、記録保管は地域社会のために、と追加した。‘我々は、地域の学校及び大学が NNA を利用できるようにすることを、また教育プロジェクトのスポンサーになるようにすることさえも望んでいる。’彼は、‘NNA が地域へのより多くの訪問者を魅了し、地域経済を後押しできるようになることを望んでいる’と述べた。

NDA は、プロジェクトに関して、Highland 議会及び Highlands and Islands Enterprise の両方と密接に協力してきた。Wick を拠点とする Highland 議員 Bill Fernie（教育文化・スポーツ委員会議長）は、次のように述べた：‘この声明は Caithness にとって良いニュースであり、我々はプロジェクトに対する NDA の現金のコミットメントを歓迎する。’

HIE Caithness and Sutherland 地域ディレクターの Carroll Buxton は、次のように補足した：‘この素晴らしいニュースは、Caithness にとって、経済面及び社会面での継続的利益をもたらすであろう。’

‘この記録保管の確保は、昨年末に Caithness and North Sutherland Regeneration Partnership が公表した 50 ポイント行動計画で設定された目標の 1 つである。この声明は、計画が素晴らしいスタートを切ったことを表しており、私は作業の進展による更なるプロジェクトの展開を期待している。’

公文書館の建設には約 4 年が、また、その分野での標榜となるにはさらに多くの年数が必要である。候補サイトとして、地方自治体が現在所有している空港近傍の土地が割り当てられている。’

NDA によれば、NNA プロジェクトがまだ初期段階にあり、原子力産業への NNA の潜在影
響を考慮すると投資対効果に係る検討書（business case）は現時点ではロバストである必要があることに留意している。NDA は現在、所有権に関するオプションを含めて、投資対効果に係る検討書の最終化を行っている。こうした理由から、NNA に関して公開されている報告書は今のところは存在していない。

また NDA は、NNA の主要目的はノンアクティブ（non-active）な記録の保管を規則に適合するように集中化及び標準化することである、としている。NDA は Berkeley, Harwell, Risley 及び Dounreay の保管所など数つかの保管所の管理責任を有しているが、これらの保管所は戦略的情報管理システムに対する様々な適合状態で管理されている。NNA の場所として提案されているのは、スコットランドの Caithness の Wick 空港の近傍のサイトである。このサイトは、社会経済的な見地から提案されている。

図 6.2.1-1 スコットランドの Caithness 及び NAA のイメージ

(3) Nirex の法令順守レター記録の管理

管理環境内での長期保管のためのハードコピー記録の準備に関する Nirex のケーススタディは、SAFEGROUNDS ガイダンス文書の付録 A6[6]に示されている。このケーススタディは、法令順守レター（Letter of Compliance (LoC)）記録の移行と保管に基づいており、適切なアーカイブ（記録保管）施設での長期管理のためのハードコピー記録の準備の実用性に関する詳細を研究している。このケーススタディは、昨年度調査した WAGR ケーススタディ（英）UKAEA による Windscale の原子力発電所から発生した中レベル放射性廃棄物の 423 の文書が 11718 枚の永久紙に 3 セット準備され、国立図書館、地方図書館、NIREX 社（現 NDA）に保管された。）と極めて類似している。

様々なハードコピー媒体に関わるリスクの評価から、高品質のアーカイブグレード紙（archive-grade paper）を使用すればリスクは低減するとの結論が導かれている。このリスク評価の根拠は Nirex ケーススタディ[6]からは明らかではないが、紙ベースの放射性廃棄物記録管理システムの採用はフランスで ANDRA が使用しているものと一致している。

永久紙記録を保持するために、また、紙を菌類や大気汚染物質から防護するために、“腐食防止バック（corrosion intercept bags）”が使用された。専用の修復したデジタル複写機に、アーカイブグレード紙への長期付着を保証するために、染料（dye）ではなく“カーボンブラック”
ベースの製品からなるトナーが搭載された。約 130,000 枚の A4 サイズのアーカイブグレード紙が使用された。バッグとその中に段の永久記録は、火災及び水に対する限定的防護を提供する。紙と同じ材料で作製された特殊設計のボックスに入れられた[6]。

NDA によれば、Nirex が使用したアーカイブグレード紙、腐食防止バッグ及び保管ボックスの供給会社は Conservation by Design Limited である。イングランドの Bedford を本拠とする Conservation by Design Limited は、博物館や公文書館向けの仕事にかんなりの経験を有しており、人工物（artifacts）や紙の最適保存方法に関して他機関にアドバイスすることに慣れている。但し、LoC 記録のコピー及び索引作成を行うのに必要なリソースはなかった。Conservation by Design Limited からは、①アーカイブグレード無酸性紙（ATX SA4 Archive Text A4 85gsm）、②目的に合うように設計されたアーカイブボックス（Ecophant Boxes A4 size Non-stitched）、③銅含浸腐食防止バッグ（C10×12Z 10×12 inches）及び、アーカイブボックスラベルが提供された。

Nirex は、ボックスを保管するために考えられる多くのアーカイブ施設を調査し、セキュリティ及びその他の保管要件の全てに適合した適切な施設を選定した。この施設はイングランドの Birmingham にあり、Iron Mountain によって管理されている。この会社は、前節で述べたように、Warrington の記録保管施設の管理も行っている。Birmingham 施設へのボックスの輸送は、厳格な品質管理手順の下で実施された。移行作業の全費用は 2005 年価格で約 17,500 ボンド、保管費用は年間およそ 1,200 ボンドである。Nirex スタッフが、LoCs の理解の下に、コピー、参照付け、梱包及び移送作業を行った。

NDA の記録保存に係わる関係者によれば、Nirex あるいはその後継の NDA は、上記以外のケーススタディを行っていないこと、またカラーユニヒットは退色することが知られており、長期の紙記録では避けるべきである、としている。

6.2.2 フランス

ANDRA の La Manche センター（1969 年に操作を開始し、25 年間の操作段階の間に 527,214 m³ の廃棄物を定置後、1994 年に閉鎖され、2003 年 1 月より監視段階へ移行したラ・アーグ近郊の短寿命低レベル廃棄物処分場（正式には貯蔵センター））及び L'Aube センター（1992 年より操業中の低・中レベル放射性廃棄物貯蔵センター）の記録保存については、2004 年に開始され、2005 年に第 1 回の保存が完了しており、2010 年に第 2 回の保存が行われる予定である。

最近の ANDRA の web サイトでは、2007 年に作成された概要記録である“Mémoire de synthèse pour les générations futures（将来世代のための記憶 第一版）” [19]が公開されている。ここでは、放射線に関する歴史的背景に始まり、燃料サイクルの概要、La Manche センターの自然及び生活環境、放射性廃棄物に関する説明、センターの処分区画ごとの放射能や化学毒性分布、安全性について、監視活動について、環境影響、詳細記録、本書の普及に関する内容が、図と文章で記されており、付録にはインベントリ量、用語集、検査の読み方や半減期などの基本的な情報、
第一回保存内容のリストが含まれている。

図 6.2.2-1 La Manche センターの処分区画における化学毒性量[19]

図 6.2.2-2 保存された詳細記録（左）と 20 世紀の記憶媒体[19]
6.2.3 OECD/NEA

OECD/NEA の放射性廃棄物管理委員会（OECD/NEA-RWM）では 2009 年 5 月に "Preserving Information and Memory Across Generations: Proposal for A Dedicated Initiative and A Specific Project" と題されたプロジェクト提案を行っている[20]。これは、2007～2008 年に実施された "知識の統合及び伝達（KCT：Knowledge Consolidation and Transfer）" と題されたいわゆる KM（知識管理）に関するプロジェクトを受けたもので、長期記録保存システム構築に資する主に次の課題に関する検討が実施される予定である。

- 保存すべき情報は何か？（例えば、廃棄体、処分場の位置に関する情報など）
- なぜ保存するのか？（安全、環境防護、許認可、科学あるいは社会的関心など）
- 誰のために？
- シナリオ及び保存期間
- 保存方法（形式、言語及び媒体など）
- 保存場所（アーカイブの設置、処分場との連携、地表下のマーカ、集合的記憶（例えば教育や伝承など）など）

6.2.4 我が国の公文書管理法の制定

(1) 経緯

我が国においては、2009 年 6 月に「公文書等の管理に関する法律（平成二十一年七月一日法律第六十六号【最終改正：平成二十二年七月一日法律第七号】）」（公文書管理法）が制定された。この法律の制定の経緯としては、2007 年に起こった年金記録問題など、すさもの公文書管理の実態が明らかになったことによるものである。法律制定までに、内閣府公文書管理検討会の主催により、新たな文書管理法制の在り方を含む、国の機関における文書の作成から国立公文書館への移管、廃棄までを視野に入れた文書管理の今後の在り方及び国立公文書館制度の拡充等について検討を行うための公文書管理の在り方等に関する有識者会議が開催され、平成 20 年 11 月 4 日
図 6.2.4-1 公文書管理法の背景[17]

(2) 法律の概要
この法律で講じる公文書とは「健全な民主主義の根幹を支える国民共有の知的資源」とし、その公文書を「主権者である国民が主体的に利用し得るものであること」を担保するものである。またこの法律では公文書の作成と保存に関して各省庁共通の規則も定められており、この法律に従い大臣は毎年度内閣総理大臣に管理の状況を報告し、その内容は公表される。さらに歴史的に重要とされる公文書は国立公文書館に永久保存することとしている。

公文書管理法は下記の構成となっている。

第一章 総則（第一条～第三条）
第二章 行政文書の管理（第四条～第十条）
第三章 法人文書の管理（第十一条～第十三条）
第四章 歴史公文書等の保存、利用等（第十四条～第二十七条）
第五章 公文書管理委員会（第二十八条～第三十条）
第六章 雑則（第三十一条～第三十二条）
附則
第一章は総論部分であり、目的、定義、公文書管理は特別な場合を除きこの法律に基づくことが示されている。ここで注目すべきは、第1条に規定されている公文書管理の目的である。ここでは、現在の国民への説明のみならず、“将来の国民への説明責任”を果たすために公文書を管理することとされている。

（目的）
第一条 この法律は、国及び独立行政法人等の諸活動や歴史的事実の記録である公文書等が、健全な民主主義の根幹を支える国民共有の知的資源として、主権者である国民が主体的に利用し得るものであることにかんがみ、国民主権の理念のとどおり、公文書等の管理に関する基本的要項を定めること等により、行政文書等の適正な管理、歴史公文書等の適切な保存及び利用等を図り、もって行政が適正かつ効率的に運営されるようにするとともに、国及び独立行政法人等の有するその諸活動を現在及び将来の国民に説明する責務が全うされるようにすることを目的とする。

第二章、第三章においては行政機関及び独立行政法人における公文書管理についてそれぞれ規定している。主な内容は次の通りである。

● 文書作成の義務
● 文書の分類、整理及び管理の義務（保存期間の設定、国立公文書館等への移管あるいは廃棄の措置の決定）
● 保存義務（適切な保存媒体、識別を容易とするための措置を講じる）
● ファイル管理簿の記載義務（分類、名称、保存期間等の帳簿の作成）
● 移管廃棄の義務
● 管理状況の報告義務（毎年内閣総理大臣へ報告）
● 管理規則の作成義務

第四章は、歴史的公文書等の保存、利用について記されている。主な内容は次の通りである。ここでは、特に国の機関と内閣総理大臣との協議により必要であると判断されれば、行政機関以外の国の機関が保有する歴史公文書等の保存及び管理が可能となること（第十四条）が重要であると考えられる。

● 行政機関以外の国の機関が保有する歴史公文書等の保存及び管理に関する措置（内閣総理大臣が必要であると認める場合、国の機関との合意により移管が可能）
● 国立公文書館等による公文書等の永久保存（適切な媒体、識別容易性の確保、個人情報漏えい防止措置、目録の作成）
● 情報公開や不開示に関する規定
● 文書の利用の方法
● 移管元行政機関等による利用の特例（業務遂行目的のために必要な場合）
● 資料の廃棄（特定歴史公文書等として保存されている文書が歴史資料として重要でなくなったと認める場合）

6・10
(3) 論題

法律制定後、アーカイブ関係者からは次のような課題があげられている[16]。

- 刑事確定裁判記録や軍法会議記録（五・一五事件」や「二・二六事件」など）は、公文書管理法の適用除外とされている。
- 地方公共団体の文書管理については、第３４条で、地方公共団体は、文書の適正な管理に関して必要な施策を策定し、これを実施するよう努めなければならないとされているだけで、地方公共団体に対して法律上の文書管理の義務が課されているわけではない点が、不十分である。
- 公文書管理法では、公文書管理庁と「特別の法人」としての国立公文書館の構想が大きく後退した。国立公文書館への適正・円滑な移管を果たすためには、公文書管理担当機関として、一元的に公文書管理を担う「公文書管理庁」を設立すべきである。
- 内閣府または国立公文書館が、各行政機関の非現用文書をすべて受け入れることが
できる中間書庫を設置し、中間書庫に配置されたアーキビストによる廃棄及び移管の判断がなされるようにすべきであり、速やかに中間書庫を設置するとの方針を一層明確にすべきである。

(4) 調査の結果
2009年に制定された公文書管理法は、行政機関及び独立行政法人における公文書管理（保存を含む）について規定した法律である。法律では、対象とされている機関を次のように規定しており、直接実施主体が法律の対象機関ではないものの、特廃法（第18条）で定められているように、事業廃止後の記録の保存は国が行うことから、実際は地層処分の記録も保存されることとなる。また、上述のように国が必要であると判断された場合（第十四条）に文書の保存が行われる可能性や、第二条第七項の“法人その他の団体（国及び独立行政法人等を除く。以下「法人等」という。）又は個人から国立公文書館等に寄贈され又は寄託されたもの”、あるいは“組織の見直し（廃止、統合、民営化）に伴う行政文書等の適正な管理のための措置（第三条）”も規定されており、本法律では、民間機関であっても保存が行われる可能性があることが示唆されている。これは、本法律の“将来の国民への説明責任を果たすために必要な文書は適切に保存すべき”という基本理念に基づくものであると考えられる。
処分場の記録が保存される場合、法律にある通り、適切な保存方法へ識別を容易とするための措置を講じ、ファイル管理簿を作成し、廃棄・保存すべき文書を適切に選定（法律第二章又は第三章）することなど、が必要となる可能性があると考えられる。

(定義)
第二条 この法律において「行政機関」とは、次に掲げる機関をいう。
一 法律の規定に基づき内閣に置かれる機関（内閣府を除く。）及び内閣の所轄の下に置かれる機関
二 内閣府、宮内庁並びに内閣府設置法（平成十一年法律第八十九号）第四十九条第一項及び第二項に規定する機関（これらの機関のうち第四号の政令で定める機関が置かれる機関にあっては、当該政令で定める機関を除く。）
三 国家行政組織法（昭和二十三年法律第百二十号）第三条第二項に規定する機関（第五号の政令で定める機関が置かれる機関にあっては、当該政令で定める機関を除く。）
四 内閣府設置法第三十九条及び第五十五条並びに宮内庁法（昭和二十二年法律第七十号）第十六条第二項の機関並びに内閣府設置法第四十条及び第五十六条（宮内庁法第十八条第一項において準用する場合を含む。）の特別の機関で、政令で定めるものの
五 国家行政組織法第八条の二の施設等機関及び同法第八条の三の特別の機関で、政令で定めるものの
六 会計検査院
２ この法律において「独立行政法人等」とは、独立行政法人通則法（平成十一年法律第百三号）第二条第一項に規定する独立行政法人及び別表第一に掲げる法人をいう。

别表第一 （第二条関係）

<table>
<thead>
<tr>
<th>名称</th>
<th>根拠法</th>
</tr>
</thead>
<tbody>
<tr>
<td>沖縄科学技術大学校大学院</td>
<td>沖縄科学技術大学校大学院学園法（平成二十一年法律第七十六号）</td>
</tr>
<tr>
<td>沖縄振興開発金融公庫</td>
<td>沖縄振興開発金融公庫法（昭和四十七年法律第二十一号）</td>
</tr>
<tr>
<td>株式会社日本政策金融公庫</td>
<td>株式会社日本政策金融公庫法（平成十九年法律第五十七号）</td>
</tr>
<tr>
<td>関西国際空港株式会社</td>
<td>関西国際空港株式会社法（昭和五十九年法律第五十三号）</td>
</tr>
<tr>
<td>国立大学法人</td>
<td>国立大学法人法（平成十五年法律百二十二号）</td>
</tr>
<tr>
<td>大学共同利用機関法人</td>
<td>国立大学法人法</td>
</tr>
</tbody>
</table>

6-12
6.3 記録保存計画を策定する際の判断材料となる考え方の検討

ここでは、今後実施が予想される記録保存計画を策定する際の判断材料（記録保存の概念、システム及び技術）の考え方について、これまで実施してきた内容の更新を図ることを目的に、既往の調査・経過状況並びに国際機関文書等を踏まえ、将来世代に残すべき基本的な情報に関する検討を行った。

6.3.1 国際機関文書
(1) IAEA による基準文書

IAEA が 2006 年に公表した安全要件 “放射性廃棄物の地層処分” [7] では、記録の保存について下記のように記載されている。

§ 3.14. (略) 操業者は、地層処分施設のセーフティケース及び裏づけのための安全評価に関連するあらゆる情報、並びに規制要件及び操作者の習慣に合致していることを実証する検証記録を持つ。そのような情報及び記録は、少なくとも当該情報が更新される期待が示されるか、閉鎖時などにより処分施設の責任が別の組織に移されるまで操業者が保持する。操業者は、規制機関と協力し、規制機関が許可可能なために要求する全ての情報を提供する。記録を長期保存することの必要性は、記録に使用する書式及び機関の選択にあたって考慮される。

§ 3.78. 地層処分施設は、操業開始後数十年間は閉鎖される可能性はない。したがって、可能な管理とその適用期間を特定して立案された計画は、本質的に柔軟で概念的なものである。地域の土地利用の管理、サイトの統制あるいは監視（サーベイランス）及びモニタリング、地域、家畜、さらには国際的な記録、永続性のある地表上もしくは地表下あるいはその両方におけるマーカーに考慮が払われる。地層処分施設に関する情報が将来世代に伝達され、それにより、地層処分施設及びその安全性に関して、彼らが何かの意思決定できるように調整される。

§ 3.86. 地層処分施設の管理システムとそれを支援する品質保証プログラムは、(中略) 施設の開設及び操業における全ての段階において記録された全ての情報が照合され、将来にわたる施設の安全性及びその再評価にとって重要なものとなり得る情報が保存されることを保証する。

さらに現在発行に向け検討が進められているドラフト安全指針 DS334 “放射性廃棄物の地層処分” [13] では、“廃棄物に干渉しよう、あるいは、地層処分施設の安全性を低下させる可能性

日本銀行	日本銀行法（平成九年法律第八十九号）
日本司法支援センター	総合法律支援法（平成十六年法律第七十四号）
日本私立学校振興・共済事業団	日本私立学校振興・共済事業団法（平成九年法律第四十八号）
日本中央競馬会	日本中央競馬会法（昭和二十九年法律第二百五号）
日本年金機構	日本年金機構法（平成十九年法律第一九号）
農水産業協同有限責任組合会計監査機構	農水産業協同有限責任組合会計監査機構法（昭和四十八年法律第五十三号）
放送大学学園	放送大学学園法（平成十四年法律第五十六号）
ある偶発的な人間活動の可能性を防ぐ、又は低減するため、受動的な制度管理が規定されるべきである。制度管理には、長期間のマーカーの設置、将来世代の人々が利用できる国内のアーカイブや国際的アーカイブへの施設記録の登録、施設の責任の後継組織への移転などを含めることができる。世世代代への責任を伝えるため、適切な仕組みが、開発されなければならないであろう。とされ、将来世代への情報伝達手段としてアーカイブについての言及がなされている。

（2）IAEA-TECDOC-1079
IAEA-TECDOC-1079 "放射性廃棄物処分のための記録維持" [8]は1999年に公表された技術文書である。この文書作成の理由は次のとおりであった。

① 記録管理システム（RMS）作成に資する技術指針の検討及び検討成果の提供
② 処分場閉鎖後、将来世代が確実に利用可能となる重要な保存記録についての示唆
③ 情報を伝えるのに必要な記録の作成と長期的な管理のための方法の示唆

IAEA-TECDOC-1079において将来世代に伝える必要がある保存すべき情報として下記が提案されている。

- 処分場の場所及びサイト特有のデータ
- 処分場に関する設計上の特徴、物理の形状及びバリア、運転及び閉鎖手順の説明
- 放射性廃棄物の量、化学・物理的特性、廃棄物容器に関するデータを含む廃棄物の記録
- 処分場システムの機能及び性能に関する情報、モニタリングデータをはじめとする安全及び環境影響の評価結果及び評価方法及び評価に関するデータ
- 処分場の密閉及び閉鎖に関するデータ
- 処分場閉鎖後の初期の期間における記録管理担当者

さらに、付随的な情報として将来世代が現世代の生活環境、思想、政治など社会情勢の理解を助けるための社会、法律、技術に関する一般的な情報も含める必要がある。

また、本書の重要な目的の一つである記録管理システム（RMS）については下記の情報を含めるべきであるとするとともに、図6.3.1-1のように処分事業とRMS自身の保存についてのライフサイクルについても提示している。

- 処分場設計情報、モニタリングシステム、測定データ等、将来世代にとって最も重要であると思われる情報
- 記録メディアの物理的形状とその保管場所、索引、システム内の保存規模
- さまざまな種類情報が関心をもたれる推定期間
- 記録の収集及び維持管理を確実に行うためにとられる手段
- 情報を確実に入手し、理解できるようにするためにとられる手段
- 記録が劣化した場合にとられる処置

④ 前述のANDRAによるLa Mancheセンターの概要記録はIAEA-TECDOC-1079の保存すべき情報のほとんどが記されている。
さらに長期保存について下記のような方法の示唆が行われた。

- 処分概念を計画立案する初期に開発することが重要である。（計画立案時期）
- 閉鎖後の段階で必要な記録を確実に保存するために、残すべき処分場関連のすべての情報を適時にかつ系統だった方法で記録し、体系づけなければならない（情報のコンテクスト）。
- 処分場に関する情報の保存は、法律による伝承、あるいは教育による伝承によっても支持される可能性がある（社会における情報伝達）。
- 史料編纂による伝達や口頭等の手段もある。（社会における情報伝達）。
- 標識は一般区域と注意すべき区域の境界を示すものとして効果が期待できるが、その効果は限られている。（標識の限界）。
- 1ヶ所の公文書保管所に情報を保管した場合、その長期的な健全性に対する不安は大きい。このような不安を解消するための最適な方法としては、さまざまな場所に情報を保管することが考えられる。長寿命核種を含む放射性廃棄物、高レベル廃棄物、使用済み燃料に関する情報の国際的な保管は、記録閲覧の便宜と保障措置のために大切なオプションである。（情報の分散化、国際アーカイブ）。
- 情報の信頼性は重要な課題であり、情報を伝達する上で常に考慮に入れておかなければならない。（情報の信頼性）

上記の“情報のコンテクスト”に関連し、保存される情報のレベル及びその関連性について図 6.3.1-2 に示す階層構造が提案された。また、“国際アーカイブ”に保存されるような、将来世代のために長期保存すべき重要情報（HLI）について表 6.3.1-2 及び表 6.3.1-3 に示す具体的な例が挙げられた。

図 6.3.1-1 処分施設のライフサイクルと RMS のライフサイクルの関係

5 規制当局は、次の事項についてオプション及び方法論を決定する必要がある。

- 制度的管理期間中の RMS の維持管理
- 制度的管理期間後の RMS 情報の処分
図 6.3.1-2 IAEA-TECDOC-1079 における情報の階層化[8]

表 6.3.1-1 IAEA-TECDOC-1079 における階層化された情報の内容[8]

<table>
<thead>
<tr>
<th>情報レベル</th>
<th>その内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLI</td>
<td>高次レベル情報（High Level Information）
ILI よりさらに要約された情報で構成
HLI は処分場システムに関する基本的考え方を規定するための十分な情報を提供するもので、将来世代が現世代の処分場に関する情報を知ろうとしたとき、すべての要項を満たすものでなくてはならない。</td>
</tr>
<tr>
<td>ILI</td>
<td>中間レベル情報（Intermediate level Information）
処分場システムを確実に理解するために要約した重要文書で構成
処分場の供用期間中の法的要件及び許認可要件を満たすために必要な記録が含まれる
ILI には PLI 内の特定の記録及び PLI の索引的要項も含まれる。
ILI には PLI から直接引き出した重要資料、または PLI 内の資料の要約、あるいはその両方が含まれることがある。</td>
</tr>
<tr>
<td>PLI</td>
<td>階層構造の基礎部分及び全国の記録管理システムの基礎部分（Primary level Information）
処分場の供用期間中は継続的に情報を収集
PLI 内の情報の種類及び量は、処分場システム、法律等の規制、公衆の参加の必要性といった事項により内容が多様となる。
立地、設計、建設、閉鎖の各段階の処分場に関連するすべての情報を入れなければならない。</td>
</tr>
</tbody>
</table>
Table 6.3.1-2

RECORDS RELATED TO PERFORMING SAFETY ASSESSMENTS OR REMEDIAL ACTIONS

<table>
<thead>
<tr>
<th>RECORD TOPIC</th>
<th>EXAMPLES</th>
</tr>
</thead>
</table>
| Disposal Facility Location and Site Data | – Boundaries of area to be controlled during the post closure institutional control, and the disposal area (including marker locations)
– Reference to national/international geographical references
– Regional demography
– Site data (geological, hydrological, meteorological, geochemical, seismic data)
– Closure modelling data
– Surface water controls |
| Disposal Unit Design and Engineered Barriers | – Specifications/procedures for construction, including materials and methods
– As-built drawings showing the construction and location of each disposal unit (trench, cell, etc.)
– Construction non-conformance/deviations including corrective actions
– Detailed drawings and specifications for active and passive Monitoring systems
– Specifications and records for the maintenance and repair of engineered barriers |
| Disposal Unit Inventory | – Disposal records (location of final disposal, date of disposal, traceability to waste shipment record/waste data sheet)
– Facility acceptance criteria (acceptable waste forms, packaging, radiation fields and global inventory) |
| Record Management System | – Description of the Record Management System, updated to include any changes implemented during closure, which includes its content and structure and all written instructions, procedures, and plans for its use |
| Operational Records | – Monitoring data (operational monitoring plans/specifications (including revisions); monitoring results including dose and specific radioactivity in air, surface water, flora and fauna, sediment and groundwater)
– Operational compliance records (non-conformance, corrective actions and compliance reports) |
| Background Information | – Information that would help future generations understand the function and performance of the repository system |

RECORDS RELATED TO HISTORICAL, LEGAL OR OTHER USES

<table>
<thead>
<tr>
<th>RECORD TOPIC</th>
<th>EXAMPLES</th>
</tr>
</thead>
</table>
| Licensing Records | – Operating licenses, permits and requirements records
– Performance objectives, including exposure limits
– Monitoring requirements
– Performance assessment reports |
| Laws | – Description of the applicable legal environment at time of operation and closure |
| General Information | – Information about the society that disposed the waste, such as overviews of waste management practices and technologies |
表 6.3.1-3 能動的な閉鎖後制度的管理期間中に発生する可能性のある記録の例[8]

<table>
<thead>
<tr>
<th>RECORD TOPIC</th>
<th>EXAMPLES</th>
</tr>
</thead>
</table>
| Monitoring Data | - Specifications, plans and procedures to control monitoring activities
 - Monitoring equipment calibration and maintenance records
 - Monitoring results |
| Facility Maintenance | - Specifications/plans/procedures
 - Repair/remediation records
 - Records of non-conformance including disposition. |
| Lawa | Description of the applicable legal environment at time of active post-closure control phase |
| General Information | - Information about the society that controlled the repository during the active post-closure control phase |

(3) IAEA-TECDOC-1222 及び IAEA-TECDOC-1398

図 6.3.1-3 処分場開発で発生する情報の階層化[9]

また、IAEA-TECDOC-1398 では、将来世代のために価値のあると考えられる記録を選択するための必要条件が記された。まず、膨大な情報を階層化し、長期保存すべき情報を取捨選択する必要性について表 6.3.1-4 に示すように幾つかのケースを想定して示されている。
表 6.3.1-4 廃棄物の記録管理において階層化アプローチを採用しない場合に想定される結果

<table>
<thead>
<tr>
<th>想定ケース</th>
<th>問題点</th>
<th>想定される結果</th>
<th>具体例</th>
</tr>
</thead>
<tbody>
<tr>
<td>養い分けを行わない</td>
<td>廃棄物管理に関連する機関が、後に不必要的情報を保持している可能性。</td>
<td>非常に膨大な情報が保存されていることで、将来の社会（さらには後の廃棄物管理においても）による記録の管理及び選択プロセスが複雑になる。</td>
<td>Rocky Flats サイト（米国 Colorado から WIPP 処分施設（米国 New Mexico）への TRU 廃棄物容器の定置には、各容器のために 400 ページ以上の情報を必要とするが、この廃棄物容器は、およそ 6 万個におよぶ。これは、施設自体に要求されているかつまた利用可能な全情報の一部に過ぎない。現代の情報技術を利用したとしても、この情報の管理は困難な作業となることが予想される。</td>
</tr>
<tr>
<td>養い分けの失敗</td>
<td>機関によっては、保存しておく必要がないと考え、情報を破棄する可能性があるが、この情報が、後の廃棄物管理に必要となる可能性がある。</td>
<td>値のある記録の喪失及びそれにより、非常に多額の費用を必要とし、さらに再生することが困難な情報を失う。</td>
<td>研究用原子炉の管理者は、燃料の処分施設に輸送後、すでにその責任がないと判断して、燃料燃焼度の記録を廃棄した。この結果、処分施設の管理者のもとには、処分場へ燃料輸送には不十分な記録のみが残された。</td>
</tr>
</tbody>
</table>

次に、想定される事業段階で発生する様々な PLI となる情報例が示され、そのうち、ILI 及び HLI としてさらなる利用が期待される情報が提案されている（表 6.3.1-5～表 6.3.1-7）。さらに、PLI 情報の管理について、下記の要件項目及び考慮すべき事項が挙げられた。

- 情報目録とインデックス付け
- 分類、保持、破棄（の考え方）
- 保存媒体
 a) 必要な情報を適切に表現でき、さらに保存可能でなければならない。
 b) 長期の間、物理的かつ化学的な安定であり読みやすいことが必要である。
 c) 情報が損失することなく、他の媒体への複写や伝承が容易に可能でなければならな
 d) 非常に長期間、回収が可能でなければならな。
 e) 長期の保存期間にわたり判読ならびに理解可能でなければならな。
 f) 例えば、権限のない個人による変更に耐えうるものでなければならな。
- 定期的な更新あるいは記録フォーマットの伝承
- 各国及び国際的アーカイブ要件

6-19
表 6.3.1-5 操業前に一般的に作成される記録例とその利用、長期保存すべき情報[10]

<table>
<thead>
<tr>
<th>段階</th>
<th>作成される記録例</th>
<th>特記事項</th>
</tr>
</thead>
<tbody>
<tr>
<td>操業前</td>
<td>①設計文書及び方針</td>
<td>◆処分場の計画策定は、一般に、将来の廃棄物処分要件（容量、アシティピティ等）のもとで放射性廃棄物の数量及び特性が含まれる。</td>
</tr>
<tr>
<td></td>
<td>②オプション検討及び比較</td>
<td>◆計画策定の情報は、処分場の開設まで保存する価値がある可能性があるが、履歴あるいは非技術的な目的を除いて、将来世代への伝承の価値はないかもしれない。</td>
</tr>
<tr>
<td></td>
<td>③立地基準の策定</td>
<td></td>
</tr>
<tr>
<td></td>
<td>④調査研究及び開発(R&D)</td>
<td></td>
</tr>
<tr>
<td>立地段階</td>
<td>①サイト特性レポート</td>
<td>◆サイト選定プロセスにおいては、候補サイトに関するデータが収集され、最終的に具体的なサイトが決定するまで保存すべきである。</td>
</tr>
<tr>
<td></td>
<td>②サイト選定レポート、レビュー、承認</td>
<td>◆複数のサイトが候補となった場合、非選定サイトのデータも将来のサイト選定に利用される可能性もあるため保存しておく。</td>
</tr>
<tr>
<td></td>
<td>③生物圏、地質、水理（地下水）、地下化学、岩盤力学及び地震特性</td>
<td></td>
</tr>
<tr>
<td></td>
<td>④地質の離歴及び予測</td>
<td></td>
</tr>
<tr>
<td></td>
<td>⑤公衆ヒアリング文書</td>
<td></td>
</tr>
<tr>
<td></td>
<td>⑥法律関連文書（証書、許認可を含む制限条約、立退文書）</td>
<td></td>
</tr>
<tr>
<td>設計段階</td>
<td>①性能評価レポート</td>
<td>◆履歴目的のため、不採用のさまざまな設計オプションについても保存する。</td>
</tr>
<tr>
<td></td>
<td>②工学的な計算</td>
<td></td>
</tr>
<tr>
<td></td>
<td>③建設仕様書</td>
<td></td>
</tr>
<tr>
<td></td>
<td>④廃棄体容器及び人工バリアのR&Dレポート</td>
<td></td>
</tr>
<tr>
<td></td>
<td>⑤シーリング及び閉鎖設計レポート</td>
<td></td>
</tr>
<tr>
<td></td>
<td>⑥外部組織による（科学技術的な）レビュー</td>
<td></td>
</tr>
<tr>
<td>建設申請段階</td>
<td>①予備の安全評価、レビュー、適切な専門家による認定</td>
<td>◆事業者は、建設許認可のために左欄のすべてあるいは一部の提出が必要となる。</td>
</tr>
<tr>
<td></td>
<td>②レイアウト及び図面</td>
<td>◆これらの許可認可記録は、長期間の保存が要求される可能性がある。</td>
</tr>
<tr>
<td></td>
<td>③建設文書</td>
<td></td>
</tr>
<tr>
<td></td>
<td>④建設及び完了の日程</td>
<td></td>
</tr>
<tr>
<td></td>
<td>⑤プロジェクト管理レポート</td>
<td></td>
</tr>
<tr>
<td></td>
<td>⑥契約、調達及び受取り文書</td>
<td></td>
</tr>
<tr>
<td></td>
<td>⑦適正確認記録</td>
<td></td>
</tr>
<tr>
<td></td>
<td>⑧QA文書</td>
<td></td>
</tr>
<tr>
<td></td>
<td>⑨公衆ヒアリング文書</td>
<td></td>
</tr>
<tr>
<td>操業申請段階</td>
<td>①最終の安全評価、レビュー、適切な専門家による認定</td>
<td>◆性能、安全及び環境影響評価は、処分場操業の許認可取得のサポートとして機能する。</td>
</tr>
<tr>
<td></td>
<td>②環境影響評価、レビュー、適切な専門家による認定、許認可申請書、提出及び認定記録（環境、排水、毒性／危険性廃棄物、大気放出）</td>
<td>◆これらの活動で作成される情報の多くは、ILI及びHLIの一部となりうる。</td>
</tr>
<tr>
<td></td>
<td>③許認可及び認定書</td>
<td></td>
</tr>
<tr>
<td></td>
<td>④社会調査記録</td>
<td></td>
</tr>
<tr>
<td></td>
<td>⑤許認可文書(correspondence)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>⑥外部組織による（科学技術的な）レビュー</td>
<td></td>
</tr>
</tbody>
</table>

注記 赤字はIAEAの提案している長期保存すべき情報
表 6.3.1-6 操作中に一般に作成される記録例とその利用、長期保存すべき情報[10]

<table>
<thead>
<tr>
<th>段階</th>
<th>作成される記録例</th>
<th>特記事項</th>
</tr>
</thead>
</table>
| 操業中 | 廃棄物特性データ | ① WIRKS により管理される廃棄物インベントリの記録
② 廃棄物受入基準
③ 廃棄物容器製作及び品質管理
④ 廃棄物発生者の技術レポート
⑤ 廃棄物発生者によるプロフィール
⑥ 処分事業者及び（または）規制機関による廃棄物プロフィールの認定書
⑦ 廃棄物特性調査手順及び認定書
⑧ 船積荷目録
⑨ 廃棄物発生者の契約書及び文書 |
| 適施及びサイト固有データ | ① 開始記録
② 認可された設計の変更及び変更実施のための認可
③ 緩衝材/埋め戻し材の定置
④ 規制当局へのレポート
⑤ 地質あるいは水理（例えば、地震、腐食、人間活動）の変化
⑥ 操作期間中の地震活動
⑦ 環境モニタリング及び監視プログラム（地下水位、核種サンプリング、大気サンプル、気象データ、農作物サンプル、生物（動物及び植物））
⑧ 改善措置（実施された場合）
⑨ 環境への核種あるいはその他の汚染物質の放出
⑩ 試験を含む操業の状況
⑪ 事故時あるいは想定外事象
⑫ 定期的な手順のレビュー
⑬ 更新された安全評価、レビュー及び適切な専門家による認定
⑭ QA プログラム計画、監査計画及び監査レポート
⑮ 想定外及び見正活動レポート |
| 通常操業に関する記録 | ① 事故時の計画策定文書：ハザード評価及び事故（非放射性義務（non-radiological obligation）は閉鎖後まで残る）
② 操業事象レポート（発生レポート）
③ 定期レポート（月期、年間等）
④ 操業手順（開発、改定、レビュー、認定）
⑤ 保障措置及びセキュリティレポート
⑥ 操業日誌及び記録 |

注記 赤字は IAEA の提案している長期保存すべき情報

6-21
表 6.3.1-7 閉鎖期間中に一般的に作成される記録例とその利用、長期保存すべき情報[10]

<table>
<thead>
<tr>
<th>段階</th>
<th>作成される記録例</th>
<th>特記事項</th>
</tr>
</thead>
<tbody>
<tr>
<td>閉鎖期間</td>
<td>样品書、説明書、設計図面、サンプル及び試験結果（日付、事件等）、管理及び保守手順、修復手順等</td>
<td>◆作成された情報の多くあるいはすべては、ILI の一部及び HLI への入力データとなる。</td>
</tr>
<tr>
<td>段階</td>
<td>計画、設置機器、手順（観察、サンプリング、分析等）</td>
<td></td>
</tr>
<tr>
<td>段階</td>
<td>予測モデル（核種の移行）、概念モデル、幾何学、データ、コードの説明</td>
<td></td>
</tr>
<tr>
<td>段階</td>
<td>閉鎖前後の結果</td>
<td></td>
</tr>
</tbody>
</table>

注記 赤字は IAEA の提案している長期保存すべき情報

6.3.2 永久保存すべき記録についての考え方

前項までの IAEA を中心とした調査から、処分事業で発生する情報は膨大であるため、適切な管理と情報コンテクストの階層化が必要であることが示唆されている。ここでは、前項の結果を勘案しつつ、膨大な情報から永久的に保存すべき情報の抽出について将来世代の意思決定のシナリオを考慮しつつ、試行検討を行った。

既往の検討において記録の保存の目的は次のように定められている。

① 将来世代の処分場への接近・侵入行為の抑制

② 将来世代の意思決定に資する情報提供

前述の IAEA による様々な文書では、長期に保存すべき情報（HIL）は、“処分場システムに関する基本的考えを規定するための十分な情報を提供するもので、将来世代が現世代の処分場に関する情報を知ろうとしたとき、すべての要求を満たすものでなくてはならない。”ものであり、その内容としては下記が挙げられている。

- 処分場の場所及びサイト特有のデータ
- 処分場に関する設計上の特徴、物理的形状及びバリア、運転及び閉鎖手順の説明
- 放射性廃棄物の量、化学・物理的特性、廃棄物容器に関するデータを含む廃棄物の記録
- 処分場シス템の機能及び性能に関する情報、モニタリングデータをはじめとする安全及び環境影響の評価結果及び評価方法及び評価に関するデータ
- 処分場の密閉及び閉鎖に関するデータ
- 処分場閉鎖後の初期の期間における記録管理担当者

上記の目的及び IAEA の考え方に基づくと、目的①「将来世代の処分場への接近・侵入行為の
抑制」のために最も基本的かつ重要な情報とは、処分場の存在、地理的位置、深度等に関する情報である、と考えられる。この情報に接し、将来世代が接近を行うか、行わないかに応じて、その次に必要な情報選択があると考えられる。接近を行う場合、何らかの目的があって行うことが最も予測される行動であり、そのためには、高レベル放射性廃棄物とは何か？に関する情報が重要な情報となる。このような方法で検討を進めていくと、目的①に関しては、上述の IAEA の HLI に関してもさらに情報の階層化が可能であると考えられる。

一方、目的②については、既往検証において、幾つかのシナリオが示されており（表 6.3.2-1）、
「遭遇する情報」の観点から図 6.3.2-1 のように図示することも可能である。目的②の場合、将来世代は何らかの意図を以って行動をすることから、情報の量は将来世代にとって十分である必要があり、IAEA の示した HLI の多くが必要となると考えられる。特に何らかの意図を以って処分場に接近する場合、施設及びサイトに関する情報（表 6.3.2-3）と廃棄体に関する情報（表 6.3.2-2）は最も重要となると考えられる。

| 表 6.3.2-1 将来世代による意思決定のシナリオ（例） |
|------------------------|---|
| 意思決定の内容 | 意思決定の要因（シナリオの一部） |
| ① 廃棄物の回収 | a.廃棄物に関する情報に接し、廃棄物に何らかの有用価値を見出す |
| | b.廃棄物に関する情報に遭遇した結果、あるいは処分システムの安全性、モニタリングに関する情報等に接し、処分システムの安全性を調査・評価した結果、廃棄物を取り扱う必要があると判断する* |
| ② 処分システムの安全性に関する調査・評価 | 廃棄物、処分システムの安全性、あるいはモニタリングに関する情報に接し、処分システムの安全性を調査・評価する必要があると判断する |
| ③ 処分場の修復 | 廃棄物、処分システムの安全性、あるいはモニタリングに関する情報に接し、処分システムの安全性を調査・評価した結果、処分場の修復を行う必要があると判断する |
| ④ 土地利用制限の解除 | 廃棄物、処分システムの安全性、あるいはモニタリングに関する情報に接し、処分システムの安全性を調査・評価した結果、土地利用制限を解除してもよいと判断する |

注 a 将来世代が遭遇する「処分システムの安全性に関する情報」は、必ずしも完全な安全評価書であるとは限らない。例えば、グラフや図表等の要約された評価結果に遭遇することが、彼ら自身の手で調査・評価を行うことの要因となることが考えられる。
図 6.3.2-1 遭遇する情報と意思決定の例

表 6.3.2-2 廃棄体に関する情報の例

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>核種</td>
<td>インベントリ</td>
</tr>
<tr>
<td></td>
<td>放射能の経時変化（図表、グラフ等）</td>
</tr>
<tr>
<td></td>
<td>元素溶解度（mol l⁻¹）</td>
</tr>
<tr>
<td>固化体</td>
<td>固化体材料（ガラスの種類等）</td>
</tr>
<tr>
<td></td>
<td>外形寸法（径、高さ等）</td>
</tr>
<tr>
<td></td>
<td>重量（固化体重量、ガラス重量等）</td>
</tr>
<tr>
<td></td>
<td>容量（ガラス容量等）</td>
</tr>
<tr>
<td></td>
<td>ガラス溶解速度（gm⁻²d⁻¹）</td>
</tr>
<tr>
<td></td>
<td>再処理から固化までの冷却期間</td>
</tr>
<tr>
<td></td>
<td>発熱率の経時変化（図表、グラフ等）</td>
</tr>
<tr>
<td>燃焼条件</td>
<td>濃縮度（wt%）</td>
</tr>
<tr>
<td></td>
<td>燃焼度（MWD MTU⁻¹）</td>
</tr>
<tr>
<td></td>
<td>比出力（MW MTU⁻¹）</td>
</tr>
<tr>
<td></td>
<td>運転日数（日連続）</td>
</tr>
<tr>
<td>再処理条件</td>
<td>炉取り出し後、再処理までの冷却期間（年）</td>
</tr>
<tr>
<td></td>
<td>ガラス固化体発生量（本／MTU）</td>
</tr>
<tr>
<td></td>
<td>ウラン等価量（MTU／本）</td>
</tr>
<tr>
<td>放射線防護</td>
<td>放射線影響の基礎情報</td>
</tr>
<tr>
<td></td>
<td>放射線防護基準、放射線防護手段等</td>
</tr>
<tr>
<td>その他</td>
<td>処分時期</td>
</tr>
</tbody>
</table>

6.24
6.3.3 これまでの検討概要と判断材料の更新

これまでの検討で、既往の検討成果を踏まえた記録保存計画を策定する際の判断材料となる考え方を整理している（図 6.3.3-1）[15]。
本年度の調査結果から、図 6.3.3-1 に記した内容からの更新としては、下記が挙げられる。

- 英国原子力アーカイブ(NAA)に関する追加情報
- 英国の記録保存技術（紙媒体への印刷：インク）
- ANDRA が作成した La Manche センターの概要記録の構成及び主な内容
- OECD/NEA で開始予定の記録保存に関する検討
- 公文書管理法の考え方

ここで、OECD/NEA の検討予定の内容は原環センターにおける検討結果（図 6.3.3-1 の内容）と同様であり、NEA の研究内容を把握することは、既往検討の妥当性を評価するために有効であると考えられる。

6.4 まとめ及び今後の課題

6.4.1 まとめ

昨年度に引き続き、海外を主体に推進されている制度的保存システムに関する最新動向の文献調査を行った。海外動向の文献調査においては英国及びフランス等を対象とした調査を実施した。具体的には、昨年度実施した英国調査を継続するとともに、2010 年第 2 回の記録保存が実施予定のフランス ANDRA による La Manche センターの状況についての調査を行った。

英国については、スコットランドの Caithness に原子力アーカイブ (NAA) の建設に向けた動きが進んでいる。また今後永久保存される文書を含む文書管理についても検討が進められている。

フランス ANDRA については 2010 年の保存に関する情報入手はできなかったものの、様々な機関に保存される概要記録が公開されたことから、この概要について紹介した。概要記録は既往の本調査においても記していたが、一般の公衆を対象として作成された保存文書であり、その構成や内容については、今後調査すべきであると考えられる。

また、本調査の実施内で OECD/NEA-RWM の記録保存に関する検討提案『Preserving Information and Memory Across Generations: Proposal for A Dedicated Initiative and A Specific Project (将来世代に亘る情報と記憶の保存)』が 2009 年 5 月にされた。提案内容から判断するとドラフト作成されたものの公開には至っていない IAEA 安全リポートの内容に類似しており、今後この動きを注視していくことは非常に意義があると考えられる。

一方、既往の調査結果を踏まえ、昨年度、整理した記録保存計画を策定する際の考え方の更新について、将来の世代に長期保存すべき基本的な情報についての検討を行った。

6.4.2 今後の課題

調査については、前述に示した OECD/NEA において実施される予定の検討内容の把握はその内容から判断して、非常に有効な情報であると考えられる。また、2010 年に第 2 回の保存が行われる La Manche センターの記録の更新情報も入手し、その内容の分析が必要であると思われる。

6.26
さらにフランスに関しては Dossier 2009 の発行が予定されており、Dossier 2005 からの地層処分における記録及びマーカー等についての進展についても注視していく必要がある。

我が国の記録保存方策、特に制度的管理としての記録保存に関して、総合資源エネルギー調査会 原子力安全・保安部会廃棄物安全小委員会の “放射性廃棄物処理・処分に関する規制支援研究（平成 22 年度～平成 26 年度）” において “廃棄物埋設地は、生活環境から隔離され、長期的な制度的管理に依存しなくても安全性が維持されるよう閉鎖されることが必要である一方で、閉鎖後の制度的管理は、廃棄物への不注意な干渉など、人間活動の発生可能性を低減し、安全性や地層処分の社会的受容性を高めるものと考えられる。具体的な制度的管理として、処分に関する記録の保存、処分施設及び敷地の管理、土地利用制限、閉鎖後のモニタリング、マーカーの利用が考えられており、これらについての意義や位置づけ等について検討する。” として “種々の管理やモニタリングのあり方に関する基本的考え方を整理” することとなっており、本事業において検討してきた既往の研究成果を規制機関のニーズに適応していくことが重要となる。

断材料の調査，土木学会第 64 回年次学術講演会予稿集（平成 21 年 9 月）

[16] 国立公文書館（2009）：アーカイブズ 第 37 号 特集：公文書等の管理に関する法律

[17] 大臣官房管理室（2009）：公文書等の管理に関する法律（平成 21 年 3 月 3 日）、概要

[18] 公文書管理の在り方等に関する有識者会議（2008）：最終報告「時を貫く記録としての公文書管理の在り方」～今、国家事業として取り組む～（平成 20 年 11 月 4 日）

[19] ANDRA（2007）：Mémoire de synthèse pour les générations futures

第7章 まとめ
第7章 まとめ

7.1 まとめ

本調査では、高レベル放射性廃棄物の地層処分に係る工学技術（処分システム工学要素技術高度化開発）の一環で、工学技術の信頼性や成立性等の向上に寄与する技術基盤の確立に向け、処分システムの状況等のモニタリングに係る「（3）モニタリング技術」の高度化開発に係わる調査を実施した。

本年度の研究では、モニタリングの意義や目的についてサイト調査前（URL等における研究段階）から最終閉鎖後の各段階での計測・モニタリングを対象に、国内外の新たな動向を踏まえ整理を行い、地層処分におけるモニタリングのあり方について検討した。モニタリングの中核技術については、地中無線伝送技術、光ファイバセンサ技術等を対象に、国内外のURLへの反映を考慮し調査研究を継続して実施した。モニタリング技術メニューについては、段階的な整備の一環としてプログラムの一部改良を行い、上記の検討成果を反映すると共に、モニタリング情報を拡充した。また、記録保存については、記録保存システム案の整備に資するために、関連する最新動向の調査、整理を継続して実施した。

本年度の具体的な成果を取りまとめると下記のようになる。

7.1.1 地層処分モニタリングの目的等の整理

本検討では、サイト調査前から最終閉鎖後の各段階を対象に、地層処分におけるモニタリングとして、地層処分事業において最も重要と考えられる閉鎖時の意思決定の観点から検討を行い、地層処分基本的な考え方と現状のモニタリング技術を踏まえ、地層処分モニタリングのあり方として、①閉鎖時の意思決定における地層処分モニタリングの制約条件、②閉鎖時の意思決定のための基本論理構造及びモニタリングの役割、③モニタリング計画検討方法（モニタリング項目的選定方法、及びモニタリング結果の判断基準の考え方）について取りまとめた。

地層処分モニタリングのあり方として、閉鎖時の意思決定における地層処分モニタリングの制約条件については、モニタリングの基本的な要件である「モニタリングの行為がパリアの機能や性能を損なってはいけない。」ことを踏まえ、「処分場の処分坑道、人工パリアシステムでのモニタリングは実施しない（閉鎖時の判断に活用できない。）」ことを基本とした。地中無線通信技術はケーブルが不要であるというメリットがあるため、上記のモニタリングの基本的な要件を維持しつつ、地層処分モニタリング実施時の制約条件を更新できる可能性を有しているため、今後のモニタリングのあり方の検討においては、地中無線通信技術の開発を併せて実施することが望まれる。モニタリングの役割は、処分場の操作後、「現在の状況において閉鎖することが妥当である。」ことを示す論理構造を支持するエビデンスになるものである。しかし、結果によっては不支持するエビデンスの場合もあり得るため、この場合の取り扱い方法は、十分に注意する必要がある。モニタリング計画検討方法におけるモニタリング項目の選定においては、閉鎖時の意思決定における地層処分モニタリング実施時の制約条件を満足することが重要であり、そして技術的観点で
実施可能なモニタリング項目であること（要求事項を満足するモニタリング（計測）手法があること）、かつ実施する意義があるものであること（ある一定期間のモニタリング結果が主命題の判断に有効であること）が必要となる。

処分事業では、安全性を確保できる条件において“埋設すること”が主目的であるため、各段階の中で「処分場の閉鎖」に向けた意思決定が最も重要となり、この意思決定に先立ち、必要なモニタリング情報は事前に取得しておくことが求められる。また、閉鎖後のモニタリングが要求された場合、実施すべきモニタリングは、長期安全性の観点から閉鎖時の意思決定で活用されたモニタリング項目のうち、実施可能で、かつ要望されるモニタリングを継続して実施していくことが長期安全性評価を行ううえで重要となる。そのため、この閉鎖時の意思決定における地層処分モニタリングのあり方は、今後サイト調査前に最終閉鎖後の各段階を対象に一貫性を持ったモニタリング計画の検討と、社会との合意形成に向けたモニタリングに関する議論の起点になるものである。

7.1.2 モニタリング技術メニューの整備

昨年度に引き続き、地層処分モニタリング技術メニューの整備を行った。整備を実施した主要な点は以下の通りである。

表示機能については、これまでのツリー構造の表示機能に加えて、「簡易ツリー」として“時期”、“場所”及び“パラメータ”のみで構成される新規のツリー構造、および時期と場所によるマトリックス表示機能を開発・追加した。また、モニタリングのあり方での議論を踏まえ処分場でのモニタリング範囲を考慮し、処分エリアでの計測については、メニューの対象とはせず、代替計測場所（URL及び模擬廃棄物が設置される先行的な地下調査施設）でのモニタリングについて検討するよう選移機能を追加した。

搭載情報に関連しては、昨年度までに搭載されていた包括的な機器情報について、既存の情報レビュー及び新規情報の追加を行い、機器情報データベースの拡充を図った。また、各種の物理探査技術に関して、地層処分場及びその近傍でモニタリング技術として使用できる可能性のある技術に着目して、その種類、背景、適用性及び適用事例等を調査し、モニタリング技術メニューへの導入の観点から整理した。

7.1.3 地中無線通信技術の調査研究

地層処分モニタリングにおけるデータ送信方法の検討においては、地層処分モニタリングに関して、モニタリングが実施可能な箇所と時期について、モニタリング機器の配置を検討し、メタルケーブル、光ファイバによる有線方式のデータ送信、及び地中無線装置による無線方式のデータ伝送の適用範囲を取りまとめた。そして、緩衝材の人工パリア内をモニタリングする場合、緩衝材中のケーブルによる遅延をさせるため地中無線方式の適応が好ましい場合には、それぞれ通信距離とデータ伝送容量及び共用期間（電池の寿命）の範囲内で適用することができること、また、施設の閉鎖後は、坑道内の中のモニタリング装置はケーブルを含めて撤去されることを基本とした検討を行ったが、必要であれば地中無線装置によるモニタリングを継続することができること
と等を整理した。ただし、地中無線方式に関し、通信距離、データ伝送能力、及び共用期間に限
りがあるため、現在の技術では、地中無線を適用したとしても、開鎖後10年程度のモニタリング
が現実的なところである。

アクティブ通信技術に関する検討においては、小型送信装置の設計、試作、及びデータ通信試
験を実施した。開発課題であった通信能力については、10m以上の通信距離を得られるように小
型送信装置プロトタイプの目標を設定し、設計、試作、及びデータ通信試験を行い、環境ノイズ
を10mVと仮定した場合、その環境下で15m程度の通信距離が得られることを確認できた。耐
圧性能については、1MPa以上の耐圧性能を持つように目標を設定し、容器のみで3MPa、送信
器の動作として1MPaまでの圧力で動作することを確認した。また、動作温度については、0〜
40℃の温度範囲で動作するように目標を設定し、-10〜70℃で動作することを確認した。しかしな
がら、長期的な確認がなされていなかったため、高温環境下での長期的なモニタリングの適用性につ
いては別途試験により確認する必要がある。緩衝材への小型送信装置の設置方法に関しては、施
工済みの緩衝材を切断する等、緩衝材の品質を低下させない方法として、緩衝材を吹付け工法で
施工し、同時に小型送信装置を設置する方法に着目し、適用性試験を行った。その結果、送信機
周りに緩衝材を密に充填することができ、本設置方法が緩衝材の品質保証上、極めて有効であ
ることが分かった。

パッシブ通信技術に関する検討においては、ベントナイトブロック及び粉末による供試体を用
いて、ベントナイトの電気定数を取得する予備的試験を行い、誘電率と減衰率を明らかにした。そ
の上で、パッシブタイプのセンサの利点を有効に機能させる方法として、複数の小型パッシブ
センサを緩衝材内に設置し、各種の挙動を「分布」として捉えるモニタリング概念の実現性に関
する検討を行った。そして、このモニタリング概念はパッシブタイプで実現するよりもアクティ
ブタイプで実現する方が現実的であるため、他分野の開発動向を調査した上で、適切な時期に必
要に応じてそれらの技術を当分野へ反映していくこととした。

7.1.4 光ファイバセンサ測定技術の調査研究

光ファイバセンサの長期試験による耐久性評価を実施し、単一センサヘッドを有するFBG圧力
センサに関しては計460日程度の試験を実施したが、センサ自体の耐久性に問題は見られなかっ
た。また FBG センサから評価された温度は熱電対により計測された温度と良い一致を示し、また
評価された圧力も従来報告されているベントナイト膨潤圧と比較して妥当な値であった。以上
から長期計測において FBG センサは再検作業を行うことなく、ブランク波長の絶対値から温度、
及び圧力を評価できることを確認した。

光ファイバセンサによる同時多点計測として、二連式 FBG センサを用いて室温環境下でベント
ナイトの膨潤圧計測を行った。この試験では比較のため、電気式の圧力センサでの膨満圧の計測
も実施した。試験は200日程度継続したが、センサの耐久性には問題は見られなかった。圧力の
計測値に関しては、変節状態の差により圧力の発現状況に差が見られたが、時間の経過とともに、
電気式の圧力センサの計測値と同程度の値に収束する傾向を示した。

JAEAにおける工学規模の熱－水－応力連成試験（COUPLE）への、光ファイバ式の圧力及び
温度センサの適用試験においては、3連結温度センサの測定値が一定時間経過後に、期待される温

7-3
度勾配よりも小さな勾配を示していた。これはセンサ内、特にセンサを防護するSUS管の熱伝導が卓越したのであると考えられた。また、圧力センサが期待されるよりも小さな圧力値を示しており、これは温度補正用のFBGに問題が生じているためと推定された。

光ファイバ式のpHセンサの調査において、pHセンサはpH指示器の耐久性が課題であるが、指示薬の補充が可能なエンピレメント式ファイバが開発されており、この技術が応用可能であるならば、計測機器とのアクセスが可能である期間においては地層処分環境での利用の可能性があることが分かった。しかしながら、この技術も実際の環境中での実績報告はなく、処分環境への技術転用には課題が多いと評価した。

7.1.5 記録保存技術の調査研究

昨年度に引き続き、海外を主体に推進されている制度的保存システムに関する最新動向の文献調査を行った。海外動向の文献調査においては、英国及びフランス等を対象とした。英国については、昨年度実施した英国調査を継続し、スコットランドのCaithnessに原子力アーカイブ（NAA）の建設に向けた動きが進んでいること、今後永久保存される文書を含む文書管理についても検討が進められていることを整理した。フランスについては、ANDRAによるLa Mancheセンターや記録の保存状況について調査し、様々な機関に保存される簡易記録の内容を整理した。そして、これらの調査結果を踏まえ、昨年度、整理した記録保存計画を策定する際の考え方の更新を行った。

7.2 今後の課題

前節で示したまとめを受け、各調査項目における課題を整理すると7.2.1~7.2.5のようになる。来年度以降の検討においては、地中無線通信技術等の検討成果を、具体的に地層処分モニタリングのあり方を取り込み、その結果に基づいた技術メニューに整備していく等、より各調査項目間の連携を強めていく必要がある。更に、「処分システムの状況等のモニタリングに係る（3）モニタリング技術の高度化開発」を行うためには、モニタリング環境を提示することになる「処分場操業の際のオーバーパックの溶接・検査及び廃棄体等の搬送・定置に係る（1）遠隔操作技術」との連携や、モニタリング対象となる「遠隔操作で製作されたオーバーパックや緩衝材等の健全性等評価に係る（2）人工バリア品質評価技術」との連携も重要となる。

7.2.1 地層処分モニタリングの目的等の整理

安全確保原則に基づく閉鎖時の意思決定のための基本論理構造を、具体的に展開していくためには、対象とする処分サイトの特性を踏まえ、安全性を長期に亘って確保するための“戦略”に基づきトップダウンで展開していくことが重要となる。このとき留意すべきことは、できるだけモニタリングに依存しない論理構造することである。

高レベル放射性廃棄物の地層処分事業は公募に基づき処分場の建設地選定が終了した後でも、
建設や閉鎖の段階ごとに地元や一般市民を含めた社会との合意形成を行う必要がある。閉鎖後安全性はモニタリングに依存することなく進める必要があるが、社会との合意形成を行う一環として、モニタリングの実施が求められる可能性が高い。本検討では技術的視点で長期安全性の評価のためのモニタリングの検討に資する「閉鎖時の意思決定における地層処分モニタリングのあり方」を取りまとめたが、今後は世界的な検討の方向性を示すと考えられる MoDeRn での検討成果等を踏まえ、社会科学の観点も考慮し、具体的なモニタリング計画を提案していく必要がある。

7.2.2 モニタリング技術メニューの整備

本年度までのシステム開発によって、地層処分モニタリング技術メニューの目的を達成するための主要な機能は搭載された。今後は、第 2 フェーズまでに関係者等への限定的な公開を行うことで、必要に応じ利便性に関する機能の追加と、実運用によって生じた軽微な修正が必要である。搭載データに関しては、機器選定に資する技術要件や地層処分環境での計測可能性について、各分野における専門家の意見を取り入れることにより、ユーザに有効な情報を提供できるように追加・更新する必要がある。

7.2.3 地中無線通信技術の研究

地層処分モニタリングにおけるデータ伝送方法の検討においては、閉鎖後のモニタリングを考えた場合、地上あるいは地下坑道内から掘削したポーリング孔内に受信機を設置してデータを無線伝送することが必要であると考えている。よって、ポーリング孔内でデータを受信するためには、電磁波を通すケーシング材料の検討や受信機設置位置のケーシングの工夫等を行うと共に、ポーリング孔での無線対応受信装置の開発が必要となる。

アクティブ通信技術に関する検討については、本年度開発した小型送信機の深部岩盤中実環境下における通信特性を把握するために、フィールド試験等を通じて、ベントナイト中、岩盤中、あるいは支保工等が使用されている複雑な環境下における通信特性を確認する必要がある。また、URL や地下調査施設Ⅰでの適用の観点から優先度を下げた課題（高温環境下に耐えうる材料や回路等、放射線で劣化しにくい材料や回路等）についても、今後取り組む必要がある。

7.2.4 光ファイバセンサ測定技術の調査研究

スペースクリエイション社製の二連式圧力計及び COUPLE 用の単式圧力計では計測値に振動が見られた。この理由としては、センサのグレーティング長の設定によるものと考えられるため、センサ構造（大きさ）と合わせ、適切なグレーティング長について検討する必要がある。

COUPLE では、高温環境下で温度変化が無くなった後に、圧力の評価値が徐々に低下し続けている。これは高温環境下に長期に曝されていた温度計測用 FBG の影響によるものと考えられるため、高温環境下において長期試験を実施し、高温環境下の長期耐久性を確保できるような仕様について検討する必要がある。

光ファイバセンサ測定においては、グレーティング部近傍の両端が固定された温度計測用 FBG では適切
な温度計測出来なかった。これを解消するためには、温度計測用の FBG が圧力変化によりひずみが発生しないような余裕のある構造とする、または温度、圧力計測用光ファイバラインを別々にする等の対策が必要と考えられる。

7.2.5 記録保存技術の調査研究

来年度から開始される OECD/NEA の記録保存に関するプロジェクトは、検討内容から判断して、非常に有効な情報が得られると考えられるため、調査を開始すべきである。また、フランスに関しては Dossier 2009 の発行が予定されており、Dossier2005 からの地層処分における記録及びマーカー等についての進展についても注視していく必要がある。