付録 6 5.2 埋め戻し材の特性を踏まえた施工オプションの整備

目 次

1.	埋め戻し材の材料特性データの整備	付 6-1
2.	代替施工技術オプションの選定	ተ 6-14

1. 埋め戻し材の材料特性データの整備

付表 6.1-1 模擬掘削土にケイ砂を用いた埋め戻し材の締固め試験データ (ケイ砂 6号)

模擬掘	出出十	ベン	トナイト	LIC / 1 19									
			混合率	締固めエ	最適含					固め試験			
分類	粒径	種類	(%)	ネルギー	最大乾	燥密度			(ω:	%, ρd	: Mg/m ³)	
			1/4/		() opt	20.8	ω	15.9	18	19.7	21.6	23.3	24.7
				Ec	ρ dmax	1.598	ρd	1.582	1.585	1.594	1.595	1.563	1.53
					() opt	19.7	ω	14.9	16.9	18.8	20.3	21.6	23.1
			5	2Ec	ρ dmax	1.648	ρd	1.628	1.633	1.644	1.645	1.616	1.574
					ω opt	17.1	ω	11.6	13.9	16	17.8	19.7	21.6
				4.5Ec	ρ dmax	1.631	ρd	1.667	1.672	1.682	1.69	1.671	1.629
					() opt	18.5	ω	12.8	15	17.1	18.6	20	22.3
				Ec	ρ dmax	1.691	ρd	1.625	1.642	1.677	1.691	1.668	1.614
					ω opt	17.2	ω	12.8	15.1	16.8	18.3	20	22.3
			15	2Ec	ρ dmax	1.746	ρd	1.696	1.717	1.745	1.735	1.688	1.630
					() opt	14.8	ω	10.1	12.7	14.9	16.3	17.6	19.9
				4.5Ec	ρ dmax	1.811	ρd	1.789	1.797	1.811	1.797	1.764	1.696
		Na			ω opt	16.9	ω	12.6	15.3	17.7	20	22.4	24.7
				Ec	ρ dmax	1.741	ρd	1.704	1.730	1.737	1.682	1.616	1.561
					(i) opt	15.4	ω	10.2	12.7	15.2	17.6	19.9	22.4
			30	2Ec	ρ dmax	1.795	ρd	1.737	1.757	1.795	1.762	1.695	1.626
					() opt	12.7	ω	7.6	10	12.6	15	17.5	19.9
				4.5Ec	ρ dmax	1.909	ρd	1.841	1.868	1.909	1.867	1.783	1.706
					ω opt	19.8	ω	15.3	17.8	19.9	22	24	25.7
				Ec	ρ dmax	1.603	ρd	1.595	1.598	1.603	1.587	1.55	1.515
					() opt	17.5	ω	13.4	15.9	18.1	19.9	21.9	23.3
			50	2Ec	ρ dmax	1.705	ρd	1.694	1.699	1.703	1.675	1.625	1.589
					ω opt	14.1	ω	11	13	14.7	16.3	17.6	19.4
				4.5Ec	ρ dmax	1.860	ρd	1.849	1.855	1.857	1.822	1.784	1.735
三河	ο Π				ω opt	17.1	ω	4.9	9.7	14.5	19.4	23	25.4
ケイ	6号		5	4.5Ec	ρ dmax	1.623	ρd	1.600	1.601	1.615	1.611	1.540	1.486
砂			9		() opt	18.4	ω	12.7	15.4	17.6	19	20.1	22.1
				Ec	ρ dmax	1.700	ρd	1.597	1.645	1.694	1.697	1.675	1.638
				0.77	ω opt	17.3	ω	12.6	15	16.3	17.5	18.7	20.9
			15	2Ec	ρ dmax	1.748	ρd	1.655	1.704	1.737	1.747	1.721	1.672
				4 5 17	ω opt	16.2	ω	10	12.5	15	16.3	17.5	20
				4.5Ec	ρ dmax	1.788	ρd	1.708	1.733	1.776	1.788	1.772	1.703
				T.	() opt	23.8	ω	18.2	20.7	22.6	24.1	25.2	27.5
				Ec	ρ dmax	1.547	ρ d			1.540			1.494
			90	or.	() opt	21.6	ω	17.3	19.8	21.3	22.6	24.5	26.5
			30	2Ec	ρ dmax	1.607	ρd	1.583	1.595	1.606	1.600	1.557	1.514
				450	() opt	18.5	ω	12.5	15.1	17.4	18.9	20.2	22.6
		Ca	<u> </u>	4.5Ec	ρ dmax	1.731	ρd	1.686	1.696	1.721	1.729	1.698	1.629
				D -	() opt	26.5	ω	21.2	23.2	25	26.9	28.9	30.8
				Ec	ρ dmax	1.466	ρd	1.436	1.445	1.459	1.465	1.445	1.417
			40	OE-	() opt	23.6	ω	19	21.3	23.4	25.2	27.1	29
			40	2Ec	ρ dmax	1.549	ρd	1.519	1.533	1.549	1.537	1.495	1.456
				4 5 E a	() opt	20.2	ω	16.7	18.4	20	21.5	23	24.5
				4.5Ec	ρ dmax	1.653	ρ d	1.634	1.643	1.653	1.643	1.612	1.582
				Ec	() opt	32.1	ω	28.5	30.4	32.4	34.3	36.2	38.3
				EC	ρ dmax	1.353	ρd	1.338	1.345	1.352	1.33	1.301	1.269
			50	2Ec	() opt	28.8	ω	22.9	25.4	27.5	29.5	31.5	33.9
			30	ZEC	ρ dmax	1.423	ρd	1.405	1.408	1.418	1.421	1.391	1.35
				4.5Ec	ω opt	23.6	ω	20	22.5	24.4	26	28	30.3
				4.0120	ρ dmax	1.571	ρ d	1.564	1.568	1.568	1.539	1.495	1.448

付表 6.1-2 模擬掘削土にケイ砂を用いた埋め戻し材の締固め試験データ (ケイ砂3号)

模擬振	削土	ベン	トナイト	締固めエ	最適含	> 1k Hz			经	固め試験	6 丝里		
分類	粒径	種類	混合率 (%)	ネルギー	最大乾					%、ρ d :)	
				Ec	ω opt	17.0	ω	11.3	13.5	15.1	17.6	19.3	21.8
				EC	ρ dmax	1.705	ρ d	1.657	1.673	1.691	1.703	1.677	1.627
		Na	15	2Ec	ω opt	16.0	ω	10.2	12.5	14.9	17.4	18.8	20.6
		Iva	10	ZEC	ρ dmax	1.761	ρ d	1.730	1.741	1.757	1.750	1.716	1.664
三河				4.5Ec	ω opt	12.1	8	7	10	12.2	13.7	14.9	17.5
ケイ	3号			4.5Ec	ρ dmax	1.874	ρ d	1.845	1.863	1.874	1.860	1.827	1.763
砂	0 7			Ec	ω opt	17.6	ω	12.5	15	16.4	17.6	18.7	21.2
112				EC	ρ dmax	1.743	ρ d	1.633	1.679	1.719	1.743	1.725	1.669
		Ca	15	2Ec	() opt	16.8	8	11.3	13.3	15.2	17.3	18.7	20
		Ca	19	∠£C	ρ dmax	1.779	ρ d	1.679	1.712	1.755	1.776	1.737	1.704
				4.5Ec	ω opt	13.3	ω	7.9	10.1	12.4	13.8	14.9	17
				4.0EC	ρ dmax	1.856	ρ d	1.765	1.802	1.849	1.853	1.830	1.782

付表 6.1-3 模擬掘削土にケイ砂を用いた埋め戻し材の透水係数、膨潤圧

模擬掘削	土	ベン	トナイト	締固め	透水試馴	倹 (m/s)	膨潤圧(kPa)
分類	粒径	種類	混合率 (%)	エネルギー	乾燥密度 (Mg/m³)	透水係数 (蒸留水)	イオン交換水
				Ec	1.700	1.93×10 ⁻¹¹	61.6
		Na	15	2Ec	1.765	6.05×10^{-12}	64.7
	3号			4.5Ec	1.875	1.05×10^{-11}	108.3
	375			Ec	1.739	8.41×10 ⁻⁶	0
		Ca	15	2Ec	1.774	1.70×10 ⁻⁷	0
				4.5Ec	1.853	1.33×10 ⁻⁸	0
				Ec	1.602	7.49×10^{-11}	0
			5	2Ec	_	_	_
				4.5Ec	1.688	1.71×10^{-10}	0
				Ec	1.688	7.49×10^{-12}	48.8
			15	2Ec	1.742	1.03×10^{-11}	58.5
		Na		4.5Ec 1.809 4.18×10 ⁻¹² Ec 1.738 2.23×10 ⁻¹²	92.6		
		Iva		Ec	1.738	2.23×10^{-12}	219.1
			30	2Ec	1.793	245.9	
				4.5Ec	1.911	5.89×10^{-12}	269.1
三河ケイ砂				Ec	1.604	5.12×10^{-13}	240.6
			50	2Ec	_	_	_
				4.5Ec	1.855	8.11×10^{-13}	233.8
	6 号		5	4.5Ec	1.579	1.33×10 ⁻⁷	_
				Ec	1.691	1.02×10^{-8}	1.4
			15	2Ec	1.733	5.64×10^{-9}	1.3
				4.5Ec	1.780	3.67×10^{-9}	0
				Ec	1.543	1.33×10 ⁻⁹	8.6
			30	2Ec	1.606	3.06×10^{-10}	25.8
		Ca		4.5Ec	1.727	1.89×10^{-10}	53.3
				Ec	1.463	3.00×10 ⁻⁹	1
			40	2Ec			
				4.5Ec	1.650	2.66×10^{-11}	29.4
				Ec	1.352	1.38×10^{-11}	3.1
			50	2Ec	_		_
				4.5Ec	1.572	1.41×10^{-11}	5.9

付表 6.1-4 模擬掘削土にケイ砂を用いた埋め戻し材の透水係数、膨潤圧(人工海水)

模擬		ベン	トナイト	締固め		透水 (m	試験 /s)		膨潤 (kP	
分類	粒 径	種類	混合率 (%)	7-	乾燥密度 (Mg/m³)	透水係数 (蒸留水)	乾燥密度 (Mg/m³)	透水係数 (人工海水)	イオン 交換水	人工 海水
→ √ - 1		NI.	15	4.5Ec	1.809	4.18×10^{-12}	1.808	1.94×10^{-10}	92.6	0.2
三河 ケイ	6号	Na	30	4.5Ec	1.911	5.89×10^{-12}	1.908	3.87×10^{-8}	269.1	12.9
砂	0 5	Ca	15	4.5Ec	1.780	3.67×10^{-9}	1.777	$5.94\! imes\!10^{-9}$	0	2.9
112		Ca	30	4.5Ec	1.727	1.89×10^{-10}	1.729	1.61×10^{-8}	53.3	7.5

付表 6.1-5 模擬掘削土にケイ砂を用いた埋め戻し材の膨潤圧、鉛直ひずみ、三軸 UU データ

模擬振	311十	ベン	トナイト		膨潤圧		特性	三軸	UU
1天1大小	71111T	',		締固め	(kPa)	(鉛直で) ずみ)		
分類	粒径	種類	混合率	エネルギー	イオン交	100kPa	200kPa	Cuu	Φuu
刀類	松生	俚炽	(%)		換水	(5m 想定)	(10m 想定)	Cuu	Ψαα
				Ec	61.6	0	0.003	71.7	29.24
		Na	15	$2\mathrm{Ec}$	64.7	0.001	0.009	79.8	34.09
	3 号			4.5Ec	108.3	0	0.003	91.2	39.8
	0 7			Ec	0	0.013	0.018	39.9	34.49
		Ca	15	2Ec	0	0.012	0.016	57.5	34.96
				4.5Ec	0	0.009	0.012	68.4	38.59
				Ec	0	0.024	0.032	37.5	38.94
			5	$2\mathrm{Ec}$		_			_
				4.5Ec	0	0.052	0.060	51.3	41.62
				Ec	48.8	0.003	0.011	72.1	37.38
			15	$2\mathrm{Ec}$	58.5	0.002	0.008	104	38.93
		Na		4.5Ec	92.6	0	0.005	118	41.63
		INA	30	Ec	219.1	0	0.001	128	20.53
				$2\mathrm{Ec}$	245.9	0	0	141	24.81
三河ケ				4.5Ec	269.1	0	0	235	30.41
一1777 イ砂				Ec	240.6	0.001	0.003	96.8	13.95
1 112			50	$2\mathrm{Ec}$	_				
				4.5Ec	233.8	0.001	0.003	335	26.09
	6 号		5	4.5Ec		_	_	_	_
				Ec	1.4	0.010	0.013	53.9	37.21
			15	2Ec	1.3	0.009	0.001	58.5	41.25
				4.5Ec	0	0.010	0.014	72.6	40.63
				Ec	8.6	0.012	0.016	77.2	21.32
			30	$2\mathrm{Ec}$	25.8	0.008	0.013	95.2	26.52
		Ca		4.5Ec	53.3	0.002	0.005	166	30.12
				Ec	1	0.029	0.046	98.7	16.27
			40	2Ec	_	_	_		_
				4.5Ec	29.4	0.010	0.026	315	21.89
				Ec	3.1	0.034	0.077	130	6.5
			50	2Ec	_		_		
				4.5Ec	5.9	0.029	0.097	558	0

付表 6.1-6 模擬掘削土に火成岩類、堆積岩類(砕石・砕砂)を用いた 埋め戻し材の締固め試験データ(岩種、締固めエネルギーEc、混合率 15%)

			ベント	トナイト	最適含	水比			締固	め試験	結果		
	模擬掘	削土	種類	混合率 (%)	最大乾燥			(, ρ d :)	
		砕砂			ω opt	13.0	ω	6.8	9.6	12.3	13.3	16.1	18.8
	花崗岩	11-119			ρ dmax	1.790	ρ d	1.749	1.770	1.787	1.789	1.764	1.690
	16 140 / 120	砕石・砕砂			ω opt	9.6	ω	4.3	7.3	9.4	11.0	14.3	16.8
		VILLA HILA			ρ dmax	1.990	ρ d	1.918	1.952	1.990	1.971	1.879	1.811
		砕砂			ω opt	13.4	ω	8.4	10.8	13.4	16.3	17.2	20.9
	流紋岩	H H/			ρ dmax	1.803	ρ d	1.761	1.776	1.803	1.766	1.746	1.647
火	ушухд	砕石・砕砂			ω opt	10.8	ω	4.7	7.7	10.6	12.4	14.0	18.6
成		F1 F1 F1 F7			ρ dmax	1.924	ρ d	1.854	1.870	1.923	1.895	1.861	1.734
岩		砕砂			(i) opt	12.7	ω	8.3	11.3	13.9	16.6	18.8	20.9
類	安山岩	.,,,,			ρ dmax	1.902	ρ d	1.810	1.890	1.896	1.836		1.711
	750	砕石・砕砂			ω opt	9.6	ω	4.6	7.6	9.6	11.9	14.4	17.1
		.,			ρ dmax	2.026	ρ d	1.948	1.973	2.026	1.974		1.830
	玄武岩	砕砂 砕石・砕砂			ω opt	13.4	ω	5.9	8.8	11.7	13.7	15.4	17.7
			Na	15	ρ dmax	1.919	ρd	1.811	1.849	1.901	1.919		1.808
					ω opt	13.7	ω	6.6	10.7	12.4	14.3	15.5	17.4
		.,, .,			ρ dmax	1.910	ρ d	1.892	1.899	1.906	1.907		1.816
		砕砂			ω opt	12.2	ω	4.6	9.1	12.3	15.4	17.9	19.4
	砂岩	.,,,,			ρ dmax	1.897	ρ d	1.876	1.865	1.896	1.838		1.734
		砕石・砕砂			ω opt	9.5	ω	4.7	6.8	9.0	10.6	13.4	14.5
		.,, .,			ρ dmax	1.975	ρ d	1.933	1.940	1.973	1.966		1.892
堆		砕砂			ω opt	11.0	ω	6.0	9.2	11.1	13.8	16.5	18.1
積	凝灰岩				ρ dmax	1.999	ρd	1.861	1.946	1.999	1.951	1.880	1.826
岩	.,	砕石・砕砂			ω opt	13.6	ω	7.6	10.8	13.6	16.5	19.7	21.8
類					ρ dmax	1.955	ρ d	1.873	1.918	1.955	1.906	1.829	1.771
	珪藻土	砕砂 (2)			ω opt	46.2	ω	34.0	37.9	42.2	46.0	49.2	55.2
		(8mm以下)			ρ dmax	1.059	ρ d	0.997	0.983	1.029	1.058	1.037	0.993
	泥岩	砕石・砕砂			ω opt	38.6	ω	30.5	33.5	36.4	38.6	41.8	_
	Parp	(掘削ズリ)			ρ dmax	1.203	ho d	1.121	1.140	1.184	1.203	1.188	_

付表 6.1-7 模擬掘削土に火成岩類、堆積岩類(砕石・砕砂)を用いた 埋め戻し材の締固め試験データ(岩種、締固めエネルギーEc、混合率 30%)

	模擬掘削土				· - · -	, white					F 00 70	•	
			ベント	・ナイト	最適含	水比			締固	め試験	結果		
	模擬掘	削土	種類	混合率	最大乾燥			(Mg/m ³)	
	1			(%)									
		砕砂			(O) opt	13.5	ω	10.0	13.0	16.4	18.9	22.7	
	花崗岩	F1 F2			ρ dmax	1.795	ρ d	1.667	1.792	1.750	1.714	1.629	_
	TEIMONE	砕石・砕砂			ω opt	10.5	ω	7.3	9.2	12.3	14.4	17.7	_
		MLH MLM			ρ dmax	1.841	ρ d	1.816	1.838	1.837	1.813	1.769	
		砕砂			ω opt	15.0	ω	10.8	13.8	17.2	19.6	24.0	26.5
	流紋岩	4+42			ρ dmax	1.727	ρ d	1.684	1.725	1.715	1.662	1.551	1.504
火	机拟石	砕石•砕砂			(i) opt	13.6	ω	7.6	10.4	13.6	14.8	18.0	
成		11-11 11-119			ρ dmax	1.825	ρ d	1.781	1.789	1.825	1.790	1.732	_
岩		砕砂]		(i) opt	15.7	ω	11.0	13.9	17.0	19.8	24.2	_
類	安山地	11-119			ρ dmax	1.756	ρ d	1.720	1.750	1.753	1.716	1.600	_
	安山岩	<i>Th. T Th. Th</i>]		(i) opt	14.0	ω	9.8	11.8	14.7	16.7	17.7	20.5
		砕石・砕砂			ρ dmax	1.844	ρ d	1.841	1.840	1.842	1.812	1.768	1.704
1		砕砂		30	()) opt	15.0	ω	10.5	14.0	16.9	19.6	23.1	_
	玄武岩	11-119		30	ρ dmax	1.764	ρ d	1.743	1.763	1.755	1.715	1.620	
	公氏石	<i>Th. T. Th. Th.</i>			ω opt	12.2	ω	9.1	10.4	12.6	15.6	18.3	21.2
		砕石・砕砂			ρ dmax	1.839	ρ d	1.801	1.830	1.838	1.810	1.759	1.707
		砕砂]		(i) opt	13.7	ω	11.0	13.7	17.1	20.0	23.9	_
	砂岩	11-119			ρ dmax	1.773	ρ d	1.735	1.773	1.730	1.670	1.579	_
	10石	砕石•砕砂]		() opt	11.0	ω	6.9	8.4	10.9	14.3	16.9	18.2
堆		1年4日・1年19			ρ dmax	1.842	ρ d	1.797	1.821	1.841	1.822	1.771	1.763
積		砕砂]		(i) opt	14.0	ω	9.5	10.9	13.9	16.8	19.9	23.5
岩	海雪山	14年41少			ρ dmax	1.862	ρ d	1.763	1.846	1.862	1.840	1.762	1.654
類	凝灰岩	たったない			ω opt	13.8	ω	7.7	11.1	13.8	16.7	18.5	20.0
		砕石・砕砂			ρ dmax	1.951	ρ d	1.880	1.913	1.951	1.903	1.848	1.798
	北	砕砂			ω opt	43.7	ω	29.9	32.9	40.2	45.1	50.4	59.0
	珪藻土	(8mm以下)			ρ dmax	1.082	ρ d	1.064	1.065	1.075	1.079	1.026	0.960

付表 6.1-8 模擬掘削土に火成岩類、堆積岩類(砕石・砕砂)を用いた 埋め戻し材の締固め試験データ(岩種、締固めエネルギー4.5Ec)

		生の大しかり								T.JL	-,		
_	(4k tr - tr -	lot 1	ベント	ナイト	最適含	水比			締固	め試験	結果		
	模擬掘	削土	種類	混合率	最大乾燥			(ρ d :)	
		<u> </u>	,,	(%)							_		
火		砕砂			ω opt	9.2	ω	5.0	6.9	9.0	10.5	13.4	15.4
成	玄武岩	.,,,,			ρ dmax	2.09	ρ d	2.053	2.071	2.089	2.070	1.980	1.913
岩		砕石・砕砂			ω opt	8.0	ω	5.7	8.0	9.6	11.9	14.3	
類		.,, .,		15	ρ dmax	2.175	ρ d	2.136	2.174		2.062	1.951	_
堆	砂岩	砕砂			ω opt	7.5	ω	5.7	7.7	9.6	11.7	13.8	_
積	.,,,,,,				ρ dmax	2.103	ρ d	2.095	2.102	2.075	1.999	1.908	_
岩	珪藻土	砕砂			(O) opt	38.0	ω	24.9	29.9	34.7	39.8	45.0	49.8
類	-11/4-11	(8mm以下)	Na		ρ dmax	1.169	ρd	1.130	1.150	1.164	1.165		1.052
火		砕砂	114		ω opt	9.9	ω	6.4	8.0	11.3	13.4	15.4	17.4
成	玄武岩	F1 15			ρ dmax	2.067	ρ d	2.053	2.063	2.059	1.990	1.917	1.833
岩	2200	砕石・砕砂			(O opt	9.5	ω	5.4	6.5	8.6	10.5	12.2	15.5
類		VH H TH		30	ρ dmax	2.116	ρ d	2.01	2.059	2.111	2.107	2.039	1.909
堆	砂岩	砕砂		50	(i) opt	9.3	ω	5.9	8.8	11.0	13.5	14.8	17.7
積			-		ρ dmax	2.012	ρ d	1.970	2.010	1.993	1.935	1.886	1.780
岩	珪藻土	砕砂 (0 以下)			ω opt	32.0	ω	24.8	30.0	34.8	39.9	45.0	50.5
類	上保工	(8mm以下)			ρ dmax	1.227	ρ d	1.173	1.223	1.221	1.189	1.131	1.063
火		砕砂			ω opt	11.7	ω	7.3	9.4	11.3	13.3	15.3	
成	玄武岩	4+42			ρ dmax	2.01	ρ d	1.963	1.975	2.009	1.994	1.910	
岩	五风石	砕石・砕砂			ω opt	10.3	ω	6.1	8.0	10.8	14.0	16.5	_
類		11年47 11年419		15	ρ dmax	2.076	ρ d	2.009	2.048	2.072	1.975	1.867	
堆	砂岩	砕砂		10	ω opt	11.2	ω	7.1	10.0	12.0	13.9	15.8	18.9
積	117石	11 + 117			ρ dmax	1.977	ρ d	1.945	1.974	1.970	1.911	1.828	1.721
岩	珪藻土	砕砂			ω opt	40.5	ω	25.2	30.0	34.9	39.8	44.6	49.2
類	生 傑工	(8mm以下)	Ca		ρ dmax	1.127	ρ d	1.078	1.092	1.107	1.127	1.116	1.065
火		砕砂	∖ Ca		(i) opt	16.0	ω	11.6	13.8	16.2	18.5	20.3	22.4
成	大計 県	4千4少			ρ dmax	1.826	ρ d	1.801	1.818	1.825	1.803	1.759	1.687
岩	玄武岩	Th. T. Th.Th.			ω opt	13.5	ω	10.7	13.9	17.0	18.5	21.9	_
類		砕石・砕砂		00	ρ dmax	1.867	ρ d	1.862	1.866	1.834	1.801	1.678	_
堆	砂岩	てれてい		30	ω opt	13.0	ω	6.9	9.8	12.0	13.7	16.0	18.8
積	砂石	砕砂			ρ dmax	1.695	ρ d	1.600	1.622	1.687	1.693	1.668	1.634
岩	TH: 表 L	砕砂			ω opt	40.0	ω	30.2	35.3	40.1	45.2	50.1	_
類	珪藻土	(8mm以下)			ρ dmax	1.048	ρ d		1.033		1.025	0.980	_
		•		•				•					

付表 6.1-9 模擬掘削土に火成岩類、堆積岩類(砕石・砕砂)を用いた 埋め戻し材の締固め試験データ(ベントナイト混合率、Na 型、玄武岩、泥岩、Ec)

Lille Die	≠ I □ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ベン	トナイト	締固め	最適電	含水比			締	固め試験	結果		
模 搦	E掘削土	種類	混合率 (%)	エネル ギー		燥密度				%, ρ d :			
			5		() opt	14.8	ω	7.9	11.0	13.3	15.9	19.5	21.7
			Э		ρ dmax	1.890	ρ d	1.843	1.855	1.882	1.881	1.790	1.714
	ast and		15		() opt	13.9	ω	5.9	8.8	11.5	14.2	17.1	19.3
	砕砂		19		ρ dmax	1.847	ρd	1.821	1.808	1.832	1.845	1.808	1.748
	(2.5mm 以下)		30		() opt	12.5	ω	10.2	12.5	15.2	18.3	21.1	24.1
	2017		30		ρ dmax	1.791	ρ d	1.778	1.791	1.777	1.743	1.674	1.600
			50		ω opt	19.4	ω	9.2	12.9	16.7	19.6	23.3	27.4
玄武			90		ρ dmax	1.625	ρ d	1.571	1.611	1.607	1.624	1.581	1.502
出岩			۲		ω opt	10.6	ω	4.8	7.3	9.2	11.3	13.5	15.6
4			5		ρ dmax	2.018	ρ d	1.923	1.992	2.014	2.016	1.988	1.936
	砕石・		15		ω opt	13.7	ω	6.6	10.7	12.4	14.3	15.5	17.4
	砕砂		15		ρ dmax	1.910	ρ d	1.892	1.899	1.906	1.907	1.879	1.816
	(20mm		30		() opt	12.2	ω	9.1	10.4	12.6	15.6	18.3	21.2
	以下)		50		ρ dmax	1.839	ρ d	1.801	1.830	1.838	1.810	1.759	1.707
			50		ω opt	20.1	ω	14.3	16.9	19.7	21.7	24.6	26.7
		NT.	50	TP -	ρ dmax	1.652	ρ d	1.624	1.617	1.651	1.640	1.602	1.568
		Na	-	Ec	() opt	47.5	ω	34.0	38.6	43.1	47.6	52.0	56.4
			5		ρ dmax	1.098	ρ d	0.985	1.024	1.068	1.098	1.062	1.007
	and well		15		() opt	42.0	ω	36.2	39.1	42.1	45.0	48.5	52.7
	砕砂		19		ρ dmax	1.142	ρ d	1.076	1.108	1.142	1.105	1.088	1.038
	(2.5mm 以下)		30		() opt	40.5	ω	30.4	34.4	39.3	43.6	48.1	52.6
	2017		30		ρ dmax	1.180	ρ d	1.066	1.115	1.176	1.162	1.101	1.047
			50		ω opt	38.5	ω	24.8	29.3	33.9	38.7	42.8	47.6
泥			90		ρ dmax	1.235	ρ d	1.140	1.168	1.210	1.235	1.194	1.119
岩			۲		() opt	47.5	ω	33.6	37.4	40.7	46.3	47.5	49.3
			5		ρ dmax	1.107	ρ d	1.018	1.052	1.081	1.105	1.107	1.105
	砕石・		15		ω opt	40	ω	32.0	35.1	38.4	41.9	45.5	48.3
	砕砂		15		ρ dmax	1.184	ρ d	1.080	1.132	1.180	1.180	1.148	1.113
	(20mm		20		() opt	37.7	ω	26.7	31.3	36.7	40.4	45.2	49.0
	以下)		30		ρ dmax	1.195	ρ d	1.114	1.153	1.195	1.171	1.145	1.102
	817				() opt	34.4	ω	24.9	29.4	33.9	38.5	43.1	47.3
			50		ρ dmax	1.252	ρ d	1.208	1.215	1.252	1.229	1.181	1.111

付表 6.1-10 模擬掘削土に火成岩類、堆積岩類(砕石・砕砂)を用いた 埋め戻し材の締固め試験データ(ベントナイト混合率、Na型、玄武岩、泥岩、4.5Ec)

		ベン	トナイト	締固め									
模技	E掘削土		混合率	エネル		含水比				固め試験			
1545	C1/11111111111111111111111111111111111	種類	(%)	ギー	最大乾	燥密度			(ω:	%、ρ α :	Mg/m^3		
				,	(i) opt	9.7	ω	2.6	5.0	7.3	9.7	12.1	14.3
			5		ρ dmax	2.089	ρd	1.992	2.059	2.071	2.089	2.061	1.961
					ω opt	7.5	ω	3.3	6.0	8.7	11.4	14.1	17.2
	砕砂		15		ρ dmax	2.130	ρd	1.999	2.115	2.123	2.061	1.954	1.839
	(2.5mm				ω opt	8.5	ω	5.0	7.5	10.2	12.4	15.5	17.9
	以下)		30		ρ dmax	2.090	ρd	1.964	2.081	2.073	2.015	1.910	1.812
					ω opt	13.1	ω	8.7	12.4	15.9	19.4	23.1	27.1
玄			50		ρ dmax	1.918	ρd	1.821	1.914	1.879	1.758	1.644	1.529
武		1			(i) opt	7.2	ω	3.7	5.1	7.3	9.3	10.8	13.0
岩			5		ρ dmax	2.235	ρd	2.182	2.208	2.234	2.194	2.133	2.038
	砕石・				ω opt	8.0	ω	5.7	8.0	9.6	11.9	14.3	_
	40 ⁴ 47		15		ρ dmax	2.175	ρd	2.136	2.174	2.135	2.062	1.951	_
	(20mm				ω opt	9.5	ω	5.4	6.5	8.6	10.5	12.2	15.5
	以下)		30		ρ dmax	2.116	ρd	2.01	2.059	2.111	2.107	2.039	1.909
					ω opt	10.6	ω	8.1	10.3	12.5	15.1	17.2	20.4
			50		ρ dmax	1.986	ρd	1.903	1.984	1.957	1.905	1.849	1.729
		1			(i) opt	41.5	ω	28.5	31.8	35.9	38.5	42.1	45.3
			5		ρ dmax	1.182	ρd	1.107	1.125	1.152	1.170	1.180	1.138
					(i) opt	36.3	ω	31.0	33.1	35.4	37.1	39.6	41.9
	砕砂		15		ρ dmax	1.239	ρd	1.212	1.216	1.237	1.238	1.224	1.186
	(2.5mm				ω opt	33.7	ω	28.2	31.5	34.8	38.2	43.5	47.3
	以下)		30		ρ dmax	1.287	ρd	1.252	1.280	1.284	1.254	1.166	1.109
					(i) opt	23.0	ω	20.3	22.9	26.4	29.9	33.3	36.6
			50		ρ dmax	1.404	ρd	1.365	1.404	1.369	1.360	1.342	1.297
1		Na		4.5Ec	ω opt	39.0	ω	27.6	31.1	34.5	37.7	41.1	44.2
			5		ρ dmax	1.205	ρd	1.134	1.158	1.177	1.204	1.196	1.157
	砕石・				ω opt	37.3	ω	32.2	34.7	37.1	39.8	42.4	44.8
	砕砂		15		ρ dmax	1.239	ρd	1.209	1.228	1.238	1.226	1.181	1.146
	(5mm				(i) opt	30	ω	26.3	29.7	32.6	35.1	38.4	41.6
	以下)		30		ρ dmax	1.316	ρd	1.301	1.316	1.306	1.297	1.255	1.199
					() opt	24	ω	18.6	22.0	25.4	28.6	32.2	41.9
泥			50		ρ dmax	1.407	ρd	1.377	1.403	1.406	1.396	1.352	1.207
岩		1			ω opt	39	ω	27.8	31.2	34.7	38.0	40.8	44.1
			5		ρ dmax	1.217	ρd		1.163			1.208	
	砕石・				ω opt	36.0	ω	29.1	32.5	35.2	37.5	38.8	42.6
	砕砂		15		ρ dmax	1.253	ρd	1.220	1.234	1.252	1.251	1.241	1.181
	(10mm		00		ω opt	30.5	ω	26.6	30.0	33.3	36.7	40.0	43.1
	以下)		30		ρ dmax	1.312	ρd	1.301	1.313	1.302	1.280	1.229	1.185
					ω opt	23.5	ω	17.3	20.0	23.6	26.8	30.0	36.4
			50		ρ dmax	1.403	ρd	1.379	1.403	1.427	1.418	1.390	1.301
		1			ω opt	37.7	ω	27.5	30.6	35.4	37.6	40.0	42.8
			5		ρ dmax	1.227	ρd	1.160	1.170	1.214	1.226	1.214	1.192
	砕石・				(i) opt	35.9	ω	28.9	31.2	32.8	34.9	37.2	40.3
	种		15		ρ dmax	1.27	ρd	1.229	1.245	1.262	1.269	1.263	1.212
	(20mm		0.0		ω opt	31.7	ω	26.3	29.3	31.7	33.9	36.7	39.2
	以下)		30		ρ dmax	1.325	ρd	1.296	1.312	1.325	1.310	1.270	1.233
			~-		ω opt	23.7	ω	21.0	23.6	27.9	30.6	33.3	35.6
			50		ρ dmax	1.395	ρd	1.373	1.394	1.381	1.370	1.341	1.308
					р шил	2.500	10 m	2.3.0	2.501	2.501	2.3.0	2.511	2.500

付表 6.1-11 模擬掘削土に火成岩類、堆積岩類(砕石・砕砂)を用いた 埋め戻し材の締固め試験データ(ベントナイト混合率、Ca型、玄武岩、泥岩)

		ベン	トナイト	締固め	見済。	シャル			松本	田み計略	※ 田		
模技	E掘削土	種類	混合率	エネル		含水比 燥密度				固め試験 %、 o a :	R桁米 Mg/m³)		
		1±AR	(%)	ギー	707 (10								
			30		ω opt	20.4	ω	14.4	16.9	19.2	21.0	24.8	26.0
玄	砕石・		- 00		ρ dmax	1.620	ρd	1.522	1.559	1.610	1.618	1.584	1.565
武	砕砂		40		ω opt	25.9	ω	18.5	20.9	23.3	25.5	27.2	29.5
岩	(20mm		40		ρ dmax	1.502	ρ d	1.420	1.403	1.451	1.500	1.488	1.463
4	以下)		50		ω opt	29.5	ω	20.9	22.2	25.6	28.9	31.5	33.4
		Ca	30	Ec	ρ dmax	1.400	ρd	1.319	1.314	1.307	1.396	1.379	1.347
		Ca	30	EC	ω opt	43.4	ω	34.1	37.0	39.8	43.4	46.1	49.9
	砕石・		30		ρ dmax	1.090	ρ d	1.038	1.063	1.071	1.090	1.079	1.077
泥	砕砂		40		() opt	49.5	ω	41.9	44.6	47.5	50.8	53.3	56.0
岩	(20mm 以下)		40		ρ dmax	1.057	ρ d	1.044	1.042	1.055	1.055	1.030	1.008
			50		() opt	46.5	ω	39.6	43.1	45.7	48.9	52.3	55.8
					ρ dmax	1.040	ρ d	1.002	0.994	1.037	1.037	1.029	1.012
			30		() opt	13.5	ω	10.7	13.9	17.0	18.5	21.9	_
+ -	砕石・		30		ρ dmax	1.867	ρ d	1.862	1.866	1.834	1.801	1.678	_
玄武	砕砂		40		ω opt	18.1	ω	11.8	14.1	16.3	18.7	21.3	23.6
岩岩	(20mm		40		ρ dmax	1.775	ρ d	1.741	1.742	1.764	1.771	1.701	1.642
石	以下				ω opt	21.5	ω	15.9	19.3	21.5	23.9	25.8	27.9
			50	4.50	ρ dmax	1.635	ρ d	1.633	1.605	1.634	1.612	1.582	1.544
		Ca	20	4.5Ec	ω opt	36.6	ω	29.5	31.4	34.3	36.7	39.4	41.4
	砕石・		30		ρ dmax	1.207	ρd	1.203	1.203	1.201	1.206	1.197	1.185
泥	砕砂		40		ω opt	35.2	ω	27.5	30.4	33.3	35.8	38.8	41.0
岩	(20mm		40		ρ dmax	1.234	ρd	1.207	1.226	1.229	1.232	1.199	1.192
	以下)				ω opt	37.3	ω	27.1	29.8	32.0	35.6	37.6	39.7
			50		ρ dmax	1.226	ρ d	1.199	1.204	1.208	1.218	1.225	1.203

付表 6.1-12 模擬掘削土に火成岩類、堆積岩類(砕石・砕砂)を用いた 埋め戻し材の締固め試験データ(最大粒径、締固めエネルギー4.5Ec、玄武岩、砂岩)

		ベント	・ナイト	最適含水比 最大乾燥密度		締固め試験結果 (ω:%、ρα:Mg/m³)						
模	模擬掘削土		混合率 (%)									
	2.5mm以下			ω opt	10.2	ω	5.8	8	9.6	10.8	12.4	13.3
				ρ dmax	2.072	ρ d	2.019	2.041	2.069	2.068	2.022	1.99
	5mm以下			ω opt	9.4	ω	5.8	7.6	8.6	9.7	10.9	12.1
玄武岩				$\rho_{\rm dmax}$ 2.109 $\rho_{\rm d}$ 2.06	2.064	2.081	2.1	2.108	2.079	2.04		
200	10mm 以下			ω opt	9.7	ω	ω 6.8 8.6	9.9	11.3	12.7	14.1	
	Tomm &	Na	15	ρ dmax	2.117	ρ d	2.089	2.089 2.105	2.117	2.08	2.02	1.973
	20mm 以下	iva -	13	(i) opt	8.6	ω	6.2	7.5	8.8	10.3	11.8	13.7
	ZOIIIII Ø			ρ dmax	2.164	ρ d	2.141	2.152	2.163	2.116	2.059	1.994
	2.5mm以下			(i) opt	8.8	ω	5.9	7.4	8.8	10.4	11.8	12.7
砂岩				ρ dmax	2.069	ρ d	2.044	2.055	2.069	2.04	1.988	1.954
112/12	20mm 以下			ω opt	7.5	ω	4.8	6.4	7.9	9.5	10.8	12.8
				ρ dmax	2.156	ρ d	2.138	2.148	2.153	2.096	2.038	1.955
	2.5mm以下			ω opt	15.3	ω	12.4	14.6	16	17.3	18.5	19.9
				ρ dmax	1.837	ρ d	1.829	1.835	1.834	1.809	1.779	1.746
	5mm以下			ω opt	14.4	ω	10.9	13.1	14.8	16.4	17.7	19.7
玄武岩				ρ dmax	1.853	ρ d	1.845	1.849	1.852	1.833	1.802	1.752
公氏石	10mm 以下			ω opt	15.2	ω	11.7	13.6	15.5	17.8	19.7	21.6
	10IIIII M	Ca	30	ρ dmax	1.862	ρ d	1.847	1.854	1.861	1.82	1.759	1.709
	20mm 以下	Ca	30	ω opt	15	ω	11.5	13.5	15.4	17.4	19.5	21.2
	ZOMM M. F			ρ dmax	1.883	ρ d	1.864	1.874	1.881	1.836	1.77	1.724
	2.5mm以下			ω opt	15.5	ω	13.1	14.6	15.9	17.4	19	21
砂岩				ρ dmax	1.803	ρ d	1.797	1.8	1.802	1.773	1.727	1.673
	20mm 以下			ω opt	14.4	ω	10.5	12.2	13.7	15.6	17.4	19.7
				ρ dmax	1.858	ρd	1.834	1.84	1.855	1.848	1.802	1.73

付表 6.1-13 模擬掘削土に火成岩類、堆積岩類(砕石・砕砂)を用いた埋め戻し材の透水係数 (岩種)

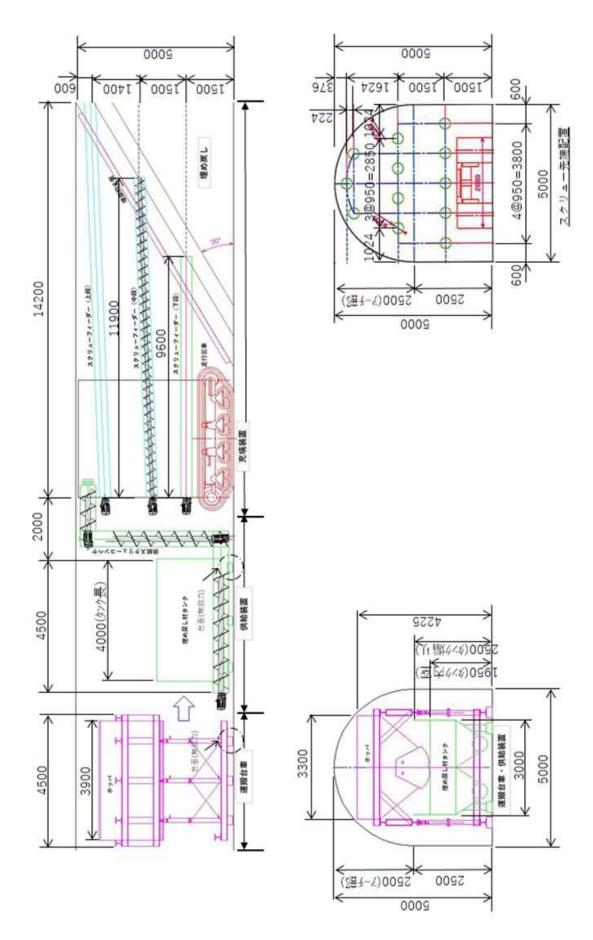
	模擬掘削土		ベント	・ナイト	締固め			
分類	種類	最大 粒径	種類	混合率 (%)	エネルギー	乾燥密度 (Mg/m³)	透水係数 (蒸留水)	
花崗岩	砕砂	5mm				1.701	1.70×10^{-11}	
流紋岩	砕砂	5mm				1.713	3.57×10^{-11}	
安山岩	砕砂	2.5mm			Ec	1.807	1.52×10 ⁻¹⁰	
ナ:45 H	砕砂	5mm		15		1.823	8.35×10 ⁻¹¹	
玄武岩	砕石・砕砂	20mm	Na			1.815	2.13×10 ⁻¹¹	
砂岩	砕砂	2.5mm				1.802	4.72×10^{-11}	
凝灰岩	砕砂	5mm				1.899	1.74×10 ⁻¹¹	
珪藻土	砕砂	8mm				1.006	6.93×10 ⁻¹⁰	
泥岩	砕石・砕砂	20mm				1.143	1.03×10 ⁻⁵	

付表 6.1-14 模擬掘削土に火成岩類、堆積岩類(砕石・砕砂)を用いた埋め戻し材の透水係数 (玄武岩、砂岩、泥岩)

	模擬掘削土			・ナイト	締固め	透水試験(m/s)			
分類	種類	最大	種類	混合率	エネルギー	乾燥密度	透水係数		
万類	性規	粒径	性類	(%)		(Mg/m^3)	(蒸留水)		
玄武岩	砕砂	2.5mm		15	Ec	1.756	1.48×10^{-11}		
五氏石	砕石・砕砂	20mm		15		1.812	1.27×10^{-11}		
泥岩	砕砂	2.5mm		15		1.084	1.30×10^{-6}		
化石	砕石・砕砂	20mm		15		1.125	4.72×10^{-6}		
	砕砂	2.5mm		5		1.985	3.77×10^{-9}		
	砕砂	2.5mm		15		2.024	1.68×10^{-11}		
	砕砂	2.5mm		15		2.073	2.47×10^{-12}		
	砕砂	2.5mm		30		1.986	2.99×10^{-12}		
玄武岩	砕砂	2.5mm	İ	50		1.822	2.30×10^{-12}		
	砕砂	5mm		15		2.105	6.22×10^{-12}		
	砕石・砕砂	10mm	Na	15	4.5Ec	2.117	3.15×10^{-12}		
	砕石・砕砂	20mm	INA	15		2.166	1.85×10^{-11}		
	砕石・砕砂	20mm		15		2.067	5.64×10^{-12}		
砂岩	砕砂	2.5mm		15		2.067	2.71×10^{-12}		
117/10	砕石・砕砂	20mm		15		2.154	2.82×10^{-11}		
	砕砂	2.5mm		15		1.177	3.92×10^{-8}		
ļ	砕砂	5mm		15		1.177	1.61×10^{-8}		
	砕石・砕砂	10mm		15		1.188	9.46×10^{-8}		
泥岩	砕石・砕砂	20mm		5		1.165	3.56×10^{-6}		
	砕石・砕砂	20mm		15		1.209	2.94×10^{-7}		
	砕石・砕砂	20mm		30		1.260	5.99×10^{-10}		
	砕石・砕砂	20mm		50		1.324	6.51×10^{-11}		
玄武岩	砕石・砕砂	20mm		30	Ec	1.537	4.40×10^{-7}		
泥岩	砕石・砕砂	20mm		30	EU	1.035	1.97×10^{-7}		
	砕砂	2.5mm		30		1.755	1.35×10^{-9}		
	砕砂	2.5mm		30		1.833	1.70×10^{-12}		
玄武岩	砕砂	5mm		30		1.853	2.93×10^{-10}		
71111	砕石・砕砂	10mm		30		1.860	5.29×10^{-11}		
	砕石・砕砂	20mm	Ca	30		1.773	3.40×10^{-10}		
	砕石・砕砂	20mm		30	4.5Ec	1.884	2.23×10^{-11}		
砂岩	砕砂	2.5mm		30		1.804	1.57×10^{-11}		
11/10	砕石・砕砂	20mm		30		1.860	5.54×10^{-11}		
	砕石・砕砂	20mm		30		1.155	2.39×10^{-9}		
泥岩	砕石・砕砂	20mm		40		1.169	4.02×10^{-10}		
	砕石・砕砂	20mm		50		1.164	7.68×10^{-11}		

付表 6.1-15 模擬掘削土に火成岩類、堆積岩類(砕石・砕砂)を用いた 埋め戻し材の膨潤圧、鉛直ひずみ、三軸 UU データ(玄武岩、砂岩)

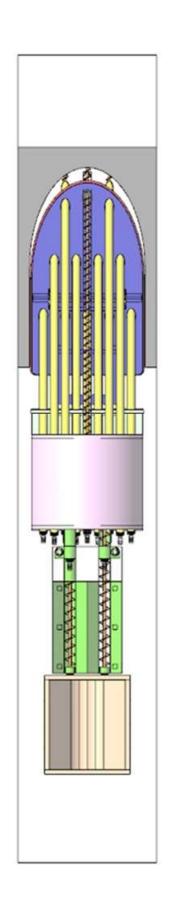
模擬掘削土			ベントナイト		締固め	膨潤圧	圧密	圧密特性		∄ UU
					エネル	(kPa)	(鉛直ひずみ)			
分類	種類	最大	種類	混合率	ギー	イオン交	100kPa	200kPa	Cuu	Φuu
		粒径	//	(%)		換水	(5m 想定)	(10m 想定)		
	砕砂	2.5mm	Na		- 4.5Ec	40.2	0.011	0.035	191	34.07
玄武岩	砕砂	5mm				56.9	0.003	0.020	172	32.31
公风石	砕石・砕砂	10mm		15		79.6	0.001	0.006	138	31.15
	砕石・砕砂	20mm		19		45	0.001	0.006	159	29.67
砂岩	砕砂	2.5mm				137.6	0.001	0.003	177	36.23
19石	砕石・砕砂	20mm				115.4	0	0.001	160	31.38
	砕砂	2.5mm	Са	30		29.4	0.005	0.017	339	31.34
玄武岩	砕砂	5mm				67.3	0.001	0.004	441	19.82
公氏石	砕石・砕砂	10mm				102.7	0.001	0.009	367	26.36
	砕石・砕砂	20mm				202.1	0	0	277	24.56
砂岩	砕砂	2.5mm				16	0.001	0.003	385	19.83
	砕石・砕砂	20mm				257.1	0	0	357	19.83

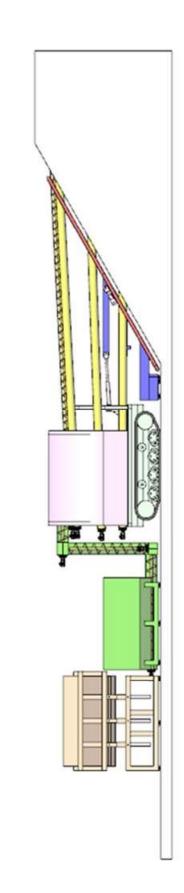

2. 代替施工技術オプションの選定

付表 6.2-1 埋め戻しに関する施工技術の調査対象文献一覧

	し工法
(1) ① Engineered Barrier Emplacement Experiment in Opalinus Clay for the Disposal of Radioactive Waste in Underground ②EB experiment in Opalinus Clay: Granular material backfill ダー(有真 QA report with emplacement description	軸)
(2) Deliverable 6 Module 1, Work Package 6, Mod1 Final Report, スクリュESDRED (NAGRA 実施分) ダー(有呼	鮋)
(3) Density measurement of granulated bentonite mixture in a 3D スクリュ 1_1 scale mockup test using dielectric tools ダー(有呼	鮋)
(4) Backfilling machine design parameter evaluation (pre-test A) スクリュin Emplacement Report LUCOEX – WP2 ダー(有	ーフィー
(5) FE experiment: Density measurement of granulated bentonite スクリュ mixture in a 2D pre-test using a dielectric moisture profile probe ダー(有呼	
(6) Implementation of the full-scale emplacement (FE) experiment スクリュ at the Mont Terri rock laboratory ダー(有呼	
(7) PEBS: Report of the construction of the HE-E experiment スクリュダー(有種	ーフィー
(8) DOPAS Work Package 3 - Deliverable 3.1 WP3 FSS Construction スクリュ Summary Report ダー(有呼	ーフィー
(9) Buffer Construction Technique Using Granular Bentonite スクリューダー(有	ーフィー
(10) 可逆性・回収可能性調査・技術高度化開発報告書(第2分冊) スクリュ 地下環境での搬送定置・回収技術の高度化開発 ダー(有	ーフィー
Engineered Barrier Emplacement Experiment in Opalinus Clay (EB), Granular Material Backfill Emplacement Methods Evaluation, Project Deliverable D4.	ーフィー 由落下)
(12) Gas-Permeable Seal Test at GTS, As-Built Report	
Engineered Barrier Emplacement Experiment in Opalinus Clay (EB), Granular Material Backfill Emplacement Methods Evaluation, Project Deliverable D4.	
(14) Borehole Sealing, Grimsel Test Site Investigation Phase IV, エアブロ Technical Report 07-01 リング孔	充填)
(15) Aspö Hard Rock Laboratory, Report on the installation of the 樹出し転 Backfill and Plug Test, International Progress Report IPR-01-17 圧)+エン	
(16) (17) Backfilling of KBS-3V deposition tunnels – possibilities and ブロック (18) limitations, SKB R-08-59 (20)	
(19) Backfilling of KBS-3V deposition tunnels – possibilities and ブロック limitations, SKB R-08-59 一充填	
(21) Assessment of Backfill Design for KBS-3V Repository, POSIVA ブロック Working Report 2009-115 +エアブ	
Deliverable 6 Module 1, Work Package 6, Mod1 Final Report, ESDRED (ONDRAF/NIRAS 実施分) 流動体充地	 真
FEBEX Project: Full-scale engineered barriers experiment for a deep geological repository for high level radioactive waste in crystalline host rock, Final Report	人力施工
(24) Aspö Hard Rock Laboratory, Report on the installation of the Backfill and Plug Test, International Progress Report IPR-01-17	
(25) Backfilling and closure of the deep repository, Assessment of 横転圧(backfill concepts	
(26) 空洞充填工法による亜炭鉱跡の巨大地震対策 流動体充地	<u>————</u>
(27) わが国における高レベル放射性廃棄物地層処分の技術的信頼 - 地 施工法の」層処分研究開発第2次取りまとめ	
亚比 17 年度地區加入比埃爾木英法厄姆佐比埃肯度心理木起生土	 北較
(28) 平成 17 年度地層処分技術調査等退隔操作技術高度化調査報告書 施工法の]	

付表 6.2-2 施工技術オプションの比較評価


技術	評価指標	埋め戻し材料および製造	施工時の物理的制約	施工時の環境	施工品質および品質管理	施工速度	組み合わせによる 有効性	コストアップ・ダウン 要因
参	吹付け工法	小粒径砕石、混合土に対応、粘 性を有する材料の混合が必要。 一般的なプラントで製造可能。	全断面の施工が可能。 検討対象断面への大型機械の 導入は困難。 坑道の空間的裕度は比較的小 さい。	粉塵の発生による施 工環境への影響があ る。	実設備を使った試験施工による確認 が必要。 設備及び施工者のスキルによる影響 が大きい。 リバウンド・分離等による不均質性。	一般に遅い。 単独技術で全断面の施 工が可能。	主要部分を施工速度の速い他のオプションで施工した場合の補助的な利用となる。	UP:施工速度が遅い -:標準的材料コスト。 DOWN:単独技術で施工 可能。
考比 較技	撒出し・転圧 工法	ブロック、流動性の大きい流動 体以外全ての材料に対応。 一般的なプラントで製造可能。	坑道上半天端付近は別の埋め 戻し技術の導入が必要。 坑道の空間的裕度は比較的大 きい。	施工面積が大きい場 合は滴水への配慮が 必要。	実設備を使った試験施工による確認 が必要。 別充填する天端部分との不均質性は 不可避。 量によるバルクでの品質管理が可能。	一般に速い。 坑道上半天端付近は別 の埋め戻し技術の導入 が必要。	エアブロー等の転圧工 事に支障しないような 小型設備による補助工 法が有効。	UP:他の技術との併用が必要。 一:標準的材料コスト。 DOWN:施工速度が速い。
術	撒出し・横転 圧工法	ブロック、流動性の大きい流動 体以外全ての材料に対応。 一般的なプラントで製造可能。	全断面の施工が可能。 検討対象断面への大型機械の 導入は困難。 坑道の空間的裕度は比較的小 さい。	施工面積が大きい場 合は滴水への配慮が 必要。	狭い空間に適応した小型車両では十 分な締固めが得られない。 量によるバルクでの品質管理が可能。	一般に遅い。 単独技術で全断面の施 工が可能。	施工が困難な場合は、 天端を補助工法で補う ケースも考えられる。	UP:施工速度が遅い。 ー:標準的材料コスト。 DOWN:単独技術で施工 可能。
ブロ	ック積み工法	ブロックのみに対応。 特別なブロック製造プラント が必要。	全断面の施工が可能だが坑道 天端付近および側壁近傍は別 の埋め戻し技術の導入が必要。 坑道の空間的裕度は比較的大 きい。	大きな課題は無い。	ブロック製造時の正確な品質管理が 可能。 別充填する天端・側壁近傍部分との不 均質性は不可避。	一般に速い。 坑道上半天端および側 壁近傍は別の埋め戻し 技術の導入が必要。	吹付け、エアブロー工 法等による補助工法が 必須。	UP:他の技術との併用が 必要。材料コストが高い ー: DOWN:施工速度が速 い。
ı	リューフィー 工法	ブロック以外全ての材料に対 応。 一般的なプラントで製造可能。	全断面の施工が可能。 坑道の空間的裕度は小さい。	大きな課題は無い。	高密度の達成は困難。 量によるバルクでの品質管理が可能。	一般に速い。 単独技術で全断面の施 工が可能。	組み合わせは想定しない。	UP: なし一:標準的材料コスト。DOWN:単独技術で施工可能。施工速度が速い。
流動	体充填工法	ブロック以外流動化調整をされた全ての材料に対応。 一般的なプラントで製造可能。	全断面の施工が可能。 坑道の空間的裕度は比較的小 さい。	大きな課題は無い。	輸送・打設時の材料分離への配慮が必要。 量によるバルクでの品質管理が可能。	一般に速い。 単独技術で全断面の施 工が可能。 型枠が必要な場合は、そ の段取り替えが影響。	主要部分を施工速度の 速い他のオプションで 施工した場合の補助的 な利用となる。	UP:型枠が必要な場合の 段取り替え ー:標準的材料コスト。 DOWN:単独技術で施工 可能。施工速度が速い。
	落下+振動締 工法	ブロック、流動性の大きい流動 体以外全ての材料に対応。 一般的なプラントで製造可能。	全断面の施工が可能。 坑道の空間的裕度は比較的大きい。	大きな課題は無い。	落下時の材料分離への配慮が必要。 量によるバルクでの品質管理が可能。	一般に速い。 単独技術で全断面の施 工が可能。	施工が困難な場合は、 天端を補助工法で補う ケースも考えられる。	UP:なし ー:標準的材料コスト。 DOWN:単独技術で施工 可能。施工速度が速い。
エア	ブロー工法	ブロック、流動体以外で重量が 軽い材料全ての材料に対応。 一般的なプラントで製造可能。	全断面の施工が可能。 坑道の空間的裕度は大きい。	大きな課題は無い。	高密度の達成は困難。 量によるバルクでの品質管理が可能。	一般に遅い。 単独技術で全断面の施 工が可能。	主要部分を施工速度の 速い他のオプションで 施工した場合の補助的 な利用となる。	UP:施工速度が遅い。 -:標準的材料コスト。 DOWN:単独技術で施工 可能。
ベルトショットエ 法		小粒径砕石、混合土に対応、粘性を有する材料の混合が必要。 一般的なプラントで製造可能。	全断面の施工が可能。 検討対象断面への大型機械の 導入は困難。 坑道の空間的裕度は比較的小 さい。	粉塵の発生による施工環境への影響は小さい。	実設備を使った試験施工による確認 が必要。 設備及び施工者のスキルによる影響 が大きい。 リバウンド・分離等による不均質性。	一般に遅い。 単独技術で全断面の施 工が可能。	主要部分を施工速度の 速い他のオプションで 施工した場合の補助的 な利用となる。	UP:施工速度が遅い ー:標準的材料コスト。 DOWN:単独技術で施工 可能。
対的	で標に対して相 に優位な技術 プション	スクリューフィーダー 自由落下+振動締固め	ブロック積みを除く全技術オ プション	全技術オプション	ブロック積み スクリューフィーダー 自由落下+振動締固め エアブロー	スクリューフィーダー 自由落下+振動締固め	(組合せのため該当無 し)	スクリューフィーダー 自由落下+振動締固め



6.2-1 スクリューフィーダー方式の施工装置全体概念図

小図

付 6-17

付図 6.2-2 スクリューフィーダー方式の施工装置のイメージ図