# 平成31年度高レベル放射性廃棄物等の地層処分に関する技術開発事業 地質環境長期安定性評価技術高度化開発

# 【付録集】

# 令和2年3月

# 国立研究開発法人日本原子力研究開発機構 一般財団法人電力中央研究所

# 【付録1】

第四紀地殻変動の評価手法の高度化に関する共同研究 国立大学法人弘前大学

pp.付 1-1~pp.付 1-26

pp.付 2-1~pp.付 2-54

- 【 付録 2 】 地質環境の長期安定性評価に係る地形・地質・断層調査技術の高度化に関する共同研究 国立大学法人京都大学
- 【付録3】

岩石・年代学的手法を用いた自然現象の影響評価手法の高度化に関する共同研究 国立大学法人山形大学・国立大学法人東京大学地震研究所

pp.付 3-1~pp.付 3-53

【 付録 4 】

断層内物質の年代測定による断層活動性評価手法に関する共同研究 石川県公立大学法人石川県立大学

pp.付 4-1~pp.付 4-13

【 付録 5 】 機械学習に基づいた断層の活動性評価手法の開発に関する共同研究 国立大学法人富山大学

pp.付 5-1~pp.付 5-67

【 付録 6 】 断層破砕帯の内部構造解析に関する共同研究 学校法人日本大学

【付録7】

隆起・沈降量の評価手法の高度化に関する共同研究 国立大学法人東京大学

pp.付 7-1~pp.付 7-34

pp.付 6-1~pp.付 6-16

【付録8】

地質環境長期安定性評価技術高度化開発委員会の開催実績 国立研究開発法人日本原子力研究開発機構・一般財団法人電力中央研究所

pp.付 8-1~pp.付 8-13

【付録9】

サンゴ骨格試料を用いた JAEA-AMS-TONO によるヨウ素同位体比測定の妥当性評価 国立研究開発法人日本原子力研究開発機構

【 付録 10 】

最新知見を踏まえた隆起・侵食データマップの整備 侵食速度データ一覧 国立研究開発法人日本原子力研究開発機構

pp.付 10-1~pp.付 10-12

pp.付 9-1~pp.付 9-11

- 【 付録 11 】 離水地形のマルチ年代測定に基づく隆起・侵食速度推定技術の高度化に係る分析データ と採取試料データ 国立研究開発法人日本原子力研究開発機構
  - pp.付 11-1~pp.付 11-44

【 付録 12 】 岩石風化模擬実験に係るデータ集 一般財団法人電力中央研究所

pp.付 12-1~pp.付 12-218

【 付録 13 】 段丘の対比・編年の高精度化に関わる文献調査収集文献一覧 一般財団法人電力中央研究所

pp.付 13-1~pp.付 13-24

本付録は、経済産業省資源エネルギー庁からの委託事業として、国立研 究開発法人日本原子力研究開発機構及び一般財団法人電力中央研究所が 実施した「平成31年度高レベル放射性廃棄物等の地層処分に関する技術 開発事業(地質環境長期安定性評価技術高度化開発)」に関する共同研究 の成果及び実施された委員会の議事録などを取りまとめたものである。

# 第四紀地殻変動の評価手法の

# 高度化に関する共同研究

平成 31 年度共同研究報告書

# 令和2年1月

国立大学法人弘前大学

国立研究開発法人日本原子力研究開発機構 核燃料・バックエンド研究開発部門 東濃地科学センター 地層科学研究部 ネオテクトニクス研究グループ

| 目 次 |  |
|-----|--|
|-----|--|

| 1. 概要                             | 3  |
|-----------------------------------|----|
| 1.1 共同研究件名                        | 3  |
| 1.2 研究目的                          | 3  |
| 1.3 実施期間                          | 3  |
| 2. 文献レビュー                         | 4  |
| 2.1 隆起・沈降のメカニズム                   |    |
| 2.1.1 プレートの沈み込みに係る隆起・沈降           |    |
| 2.1.2 ローカルな隆起・沈降のメカニズム            | 6  |
| <b>2.2</b> 過去数十万年間における隆起・沈降の傾向・速度 | 10 |
| 2.2.1 方法                          | 10 |
| 2.2.2 結果                          | 10 |
| 3. 地形・地質・地球物理学的データの重ねあわせ          | 17 |
| 4. まとめ                            | 18 |
| 5. 引用文献                           | 19 |

# 図目次

| 図 2.1.1 | ローカルな隆起・沈降のメカニズムに関する概念図            | 9  |
|---------|------------------------------------|----|
| 図 2.2.1 | 10万~数十万年間の隆起・沈降の傾向・速度に係る研究が行われた地域  | 11 |
| 図 2.2.2 | 過去数十万年間に隆起・沈降の傾向・速度が変化した可能性がある地域   | 12 |
| 図 2.2.3 | 中期更新世以降の隆起・沈降速度の変化                 | 16 |
| 図 2.2.1 | 地形・地質・地球物理学的データの重ね合わせ(渥美半島・浜松沖の事例) | 18 |
|         |                                    |    |
| 表 2.2.1 | データー覧                              | 17 |

# 1.1 共同研究件名

第四紀地殻変動の評価手法の高度化に関する共同研究

## 1.2 研究目的

日本原子力研究開発機構(以下、原子力機構)では、経済産業省資源エネルギー庁から受託した「平成31年度高レベル放射性廃棄物等の地層処分に関する技術開発事業(地質環境長期安定性評価技術高度化開発)」において、地層処分に適した地質環境の選定に係る自然現象の影響把握及びモデル化に関連する研究課題として示された火山・火成活動、深部流体、地震・断層活動、隆起・侵食に対し、地質学、地形学、地震学、地球年代学などの各学術分野における最新の研究を踏まえた技術の適用による事例研究を通じて、課題の解決に必要な知見の蓄積や調査・評価技術の高度化を総合的に進めている。このうち隆起・侵食に関する技術的課題の一つに、過去百万から数十万年前以降の隆起・侵食を把握するための技術の拡充が挙げられる。この課題において必要となる基礎的知見の一つとして、第四紀地殻変動の一様継続性が挙げられる。

わが国の第四紀地殻変動、特に隆起・沈降速度については、多くの地域で一様継続性が成立し ていると考えられている。その一方でわが国も属するプレートの沈み込み帯では、過去数十万年 間において隆起・沈降の傾向・速度に変化が生じている場が存在するといった事例も報告されて いる。隆起・沈降の傾向・速度の将来予測の精度・確度の向上においては、こうした場に関する 情報を収集・整理・分析し、その原因についての知見を蓄積することが必要である。そこで本共 同研究では、まず、沈み込み帯における隆起・沈降のメカニズムの理解を深めるための文献レビ ューを行った。次にわが国を対象に、文献レビューを通して過去数十万年間において隆起・沈降 の傾向・速度に変化が生じている場とその内容について把握した。また、上記作業からわが国に おいて過去数十万年間に隆起・沈降の傾向・速度に変化が生じていると解釈されている場の幾つ かを事例として、今後、隆起・沈降の傾向・速度の変化をもたらす原因について検討できるよう、 既存の地球物理学的データや地形・地質データの照合・解析を行い、現状の課題について整理し た。

### 1.3 実施期間

令和元年8月1日~令和2年1月31日

# 2. 文献レビュー

### 2.1 隆起・沈降のメカニズム

本節では、まず、沈み込み帯に位置する島弧・海溝系においてプレート運動に起因して 100~ 1,000 km スケールの隆起・沈降をもたらすメカニズムについて説明する。次に、プレート運動の 枠組みの中で海底地形・地殻構造の不均質に起因して生じる 10~100 km スケール程度の空間ス ケールでの隆起・沈降のメカニズムについて説明する。

# 2.1.1 プレートの沈み込みに係る隆起・沈降

#### (1) 沈み込みに係る隆起・沈降

地球は、表層に粘性緩和の時間スケールが 1,000 万年程度のリソスフェアが、粘性緩和の時間 スケールが数年から数十年程度の流動しやすいアセノスフェアの上に横たわっている。このよう に粘性緩和の時間スケールが互いに異なる媒質の変形を検討する際、弾性体と粘性体の特徴を合 わせ持った粘弾性体に関する力学的挙動を検討する必要がある。このような、粘弾性体の力学的 模型の一つに、Maxwell 粘弾性体と呼ばれるバネとダッシュポットを直列につないだモデル(バ ネが弾性体、ダッシュポットが粘性体の力学的挙動を模擬する)が地震発生後のアセノスフェア の粘性緩和の説明によく用いられている(例えば、Yamagiwa et al., 2015)。以下に、Maxwell 粘 弾性体を解析に組み込んだいくつかの先行研究について紹介する。

海洋プレートが大陸プレートの下に沈み込む際、それらのプレート境界では相対運動を妨げる 摩擦力が働き、地震を発生の原因となるひずみを蓄積するということはよく知られている。もし、 摩擦力が働かなかったら、海洋プレートと大陸プレートは互いに変形することなく相対運動を続 けるのだろうか。このように、プレート境界面に摩擦が働かず、スルスルとすべりが進行する現 象は「定常的な沈み込み」と呼ばれており、海洋プレートは地下深部に向かって、大陸プレート は地表に向かって相対運動することとなる。海溝型地震サイクルといった数百年程度の短い時間 スケールでは、定常的な沈み込みによる変形は非常に小さいと考えられてきたが、地質学的時間 スケールで進行し、かつ、上記のような粘弾性体においては、無視できない変動(プレート境界 面形状によって隆起量は変化するが、例えば、Fukahata and Matsu'ura(2006)では、1mの プレート境界の食い違いに対し、粘性緩和完了時には、陸域で最大約 30 mm の隆起、海溝で約 50 mm の沈降が生じている)であることが示されている(例えば、深畑, 2009)。このような粘 弾性体の変形の計算を行う場合、プレート境界面に食い違いの相対変位(もしくは相対変位速度) を与えて変形の時間発展を計算することとなり、粘性緩和が完了した際の解が定常的な沈み込み による変形量と読み替えることができる。例えば、Hashimoto et al. (2004) は、地球表層につ いて、リソスフェアを厚さ 40 km 弾性体、アセノスフェアを Maxwell 粘弾性体の二層構造で近 似し、詳細かつなめらかな三次元プレート境界面形状や各プレート境界面での相対運動速度を考 慮し、日本列島全域における定常的な沈み込みによる変形および上下変動速度を計算し、フリー エア重力異常(負の重力異常は地形の凹み、正の重力異常は地形の高まりを示す)と比較を行っ た。この結果、千島海溝・日本海溝・南海トラフ・伊豆-小笠原海溝・琉球海溝といった海溝域で の沈降と負の重力異常の再現に成功している。また、海溝から一定距離おいた陸域の隆起と正の 重力異常の再現に成功している。空間スケールで考えると、陸域の数百 km オーダーの隆起から 海溝のような数千 km オーダーの沈降がよく再現できたことになる。さらに、このような地形の 凹凸を生じさせるポイントは、法線方向の応力であり、プレート境界面の屈曲の変化と相関が高 いことが示されている。 冒頭で詳細について述べなかったが、 通常 Maxwell 粘弾性体の変形を考 える際、粘弾性体の応力とひずみの関係式(構成則)に対して、ラプラス変換を作用させ、ラプ ラス変換された領域での粘弾性問題の解を得た後、その解に対してラプラス逆変換を行い、時間 領域での解を得る。このとき、粘弾性体の構成則に含まれる二つのラメ定数も当然のことながら 時間と異なる変数に変換される。しかし、幸いなことに、粘性緩和完了時(t→∞)の解について は、ラプラス最終値定理より、せん断変形に寄与するラメ定数はゼロとなり、残り一つのラメ定 数が体積弾性率で近似できることになる。したがって、粘性緩和完了時には、粘弾性体中のせん 断変形にともなうせん断応力がゼロとなり、粘弾性体から弾性体に力が及ぼされなくなるととも に、粘弾性体中の体積の収縮・膨張にともなう変形のみが残ることとなる(深畑,2009)。Maxwell 粘弾性体は、粘性緩和完了後では流体的な挙動を示し、その流体中の準静的なせん断変形がそれ と接する弾性体の変形に全く影響を与えないということになる。

上記のような、弾性・粘弾性の成層構造を考慮した媒質中で地震時すべりを与えることで、海 成段丘の形成に関する数値シミュレーションも行われている(佐藤・松浦, 1998)。彼らは、収束 型プレート境界での地震のサイクルにともなう地殻変動について計算した。ここでは、半無限三 層構造モデルを採用し、表層は弾性体でリソスフェアを、中間層は Maxwell 粘弾性体でアセノス フェアを、基盤層はメソスフェアを弾性体で表現している。そして、地震発生領域以外のプレー ト境界は定常的にプレート相対速度ですべっている(定常的な沈み込みが生じている)ものとし て、地震と地震後に続く地殻変動が複数回に渡って生じる地震サイクルモデルを適用し、地表の 上下変動を計算した。なお、地震の繰り返し間隔は200年とし、地震間で沈降、地震時に隆起す る(リソスフェア内のプレート境界全体が地震時にすべる)モデル、地震間で隆起、地震時に沈 降する(リソスフェア内のプレート境界の上半分が地震時にすべる)モデルの二通りのシミュレ ーションを行っている。両モデルとも、地震時に隆起した領域は地震後に沈降、沈降した領域は 隆起していることが示され、これらの隆起・沈降は、アセノスフェアの粘性緩和に起因している ことが述べられている。複数の地震サイクルを通じて注目すべき点は、1 サイクルの間に生じた 地殻変動がゼロに戻るのではなく、複数のサイクルを経ることで累積する点である。そして、そ れらの変動は長期間の時間スケールで見ると隆起となり、海成段丘の形成に関連している可能性 を示唆する。佐藤・松浦(1998)は、上記の計算結果から、プレートの定常的な運動(定常的な 沈み込み)に起因する変形は決して小さくなく、無視できないとしている。

# (2) 造構性侵食

世界のプレート沈み込み帯の比較より、付加体の発達する沈み込み帯と造構性侵食が起きてい る沈み込み帯の二種類が存在することが知られている(Scholl et al., 1980)。付加体は、沈み込 む側の海洋プレートに積もった堆積物が海溝付近ではぎとられて、沈み込まれる側の大陸プレー トに押し付けられることで形成される。このような付加作用の卓越する沈み込み帯の一つとして、 南海トラフが挙げられる。一方、造構性侵食は、沈み込む側の海洋プレートが沈み込まれる側の 大陸プレートを侵食し、それらの砕屑物が海洋プレートとともに地下深部へと持ち去られるとい う現象である(例えば、Huene and Scholl, 1991)など)。このような造構性侵食作用の卓越する 沈み込み帯の一つとして、日本海溝が挙げられる。世界のプレート沈み込み帯について付加作用 が卓越するか造構性侵食作用が卓越するかの分類については、Clift and Vannucchi (2004)では 約 56%、Scholl and Huene (2007)では約 75%の沈み込み帯で造構性侵食作用が卓越すること が示されており、造構性侵食作用は、世界のプレート沈み込み帯の半分以上で起こっている普遍 的な現象といえる(山本, 2010)。

造構性侵食作用のメカニズムについて言及すると、海洋プレートは海溝から沈み込む際、曲げ られることでアウターライズ近傍では伸張応力が働く。その際、海洋プレート上面に比高は数百 m規模のホルスト・グラーベン構造と呼ばれる地形の凹凸が形成される。そして、大陸プレート の土砂が凹凸に取り込まれて海洋プレートとともに地下深部へと運び込まれる。この結果、大陸 プレートの厚さは次第に薄くなり、海溝の前進(海溝がより陸側へ移動)や陸域の沈降が生じる と考えられている。上記の作用は大陸プレートの前面が削られることから、frontal erosion と呼 ばれている。また、大陸プレートの底面が削られる basal erosion と呼ばれる現象も考えられて おり、造構性侵食作用の英訳は、その両方を合わせて tectonic erosion もしくは subduction erosion と呼ばれる。造構性侵食作用が広く認知されるまでの背景には、1980年代以降の深海掘 削計画 (Deep Sea Drilling Project; DSDP)による深海掘削の功績が大きい。その一例として、 Huene and Lallemend (1990)は、日本海溝とペルー海溝の前弧斜面堆積物の解析を行い、前弧 斜面が時代とともに沈降していることを明らかにした。この結果、沈み込むプレートによって陸 域のプレートが強制的に削られ、前弧域が広域的に沈降するという現象の実証がなされた。

内陸においても造構性侵食作用の痕跡として、地質学的な特徴が報告されている。例えば、チ リ中央部西岸域では、古生代の変成帯や花崗岩類、ジュラ紀の島弧岩帯が沿岸域で狭小化、もし くは消滅が見られ、中新世から完新世の火山フロントの位置が内陸側へ移動していることから、 海溝が時間とともに前進したことが示唆され、その原因として、造構性侵食が起こったと考えら れている。

測地学的データを用いた造構性侵食に関する一つの研究として、Heki(2004)は、1996年か ら 2000 年に GEONET 観測点で得られた GNSS データを基に、西南日本(四国地方から中国地 方を横切る南海トラフの走向に対して直交方向の測線)および東北日本(東北地方を横切る日本 海溝の走向に対して直交方向の測線、)の水平・上下成分の変動速度プロファイルを作成した。西 南日本の南海トラフにおいては、付加体が発達する領域として冒頭で述べたが、変位速度のプロ ファイルは水平・上下成分ともに、南海トラフの沈み込みにともなって生じる弾性変形、すなわ ちバックスリップモデルによって、プレート境界面の固着でよく再現できることを示した。一方 で、東北日本の日本海溝においては、造構性侵食作用が卓越する領域として冒頭で紹介した。東 北日本における GNSS 変位速度のプロファイルについても、Heki (2004) は西南日本と同様の 手法で再現を試みたが、水平成分については、プレート間固着によってよく再現できることを、 上下成分については、再現性が乏しいことを示した。このような上下成分の速度データの不一致 について、彼は造構性侵食の可能性を考慮し、太平洋プレートと陸域プレート間のどの領域で質 量欠損が生じているか、その上限・下限の深さと侵食速度を矩形断層モデル(Okada, 1992)よ り推定した。火山噴火の際、地下深部よりダイクが貫入し地面が開口する。このときの地殻変動 は、tensile crack モデルで説明できるが、Heki (2004) は造構性侵食による質量欠損について、 tensile crack が閉口することで質量欠損が生じると読み替えて計算を行っている。この結果、深 さ 5 km から 90 km の範囲で造構性侵食による質量欠損が生じていること、また、その速度は年 間15mm程度に及ぶことを示した。

# 2.1.2 ローカルな隆起・沈降のメカニズム

# (1) 海山(列)の沈み込みに伴う隆起・沈降

# 1) 海洋プレート地形の凹凸

一般に、海山は海底のローカルな凸地形として海洋プレート上に多く認められ、それらは日本 列島や中・南米といった沈み込み帯において陸側プレート下に沈み込んでいる。プレート運動に 伴って凸地形である海山が海溝から沈み込む際、沈み込む海山の前方(陸側)における上盤側プ レートでは鉛直上向き(押し上げ)の力が作用し、隆起を引き起こす。これとは逆に、沈み込む 海山の後方(海溝側)では鉛直下向きの力が作用することとなり、元の地形に回復するように沈 降となる(図 2.1.1 a)。また、特に海山が沈み込み始める海溝近傍では上盤側プレートの表層に 湾型の地形を形成する(例えば、Huene, 2008)。

このような凸地形を有する海洋プレートの沈み込みに起因する地殻変動の特徴は、アナログ実 験や数値解析によるシミュレーションによって再現されており、近年ではプレート境界で生じる 地震活動との関連性についても議論されている(例えば、Dominguez et al., 1998; Ruh et al., 2016)。さらに、西南日本(例えば、Park et al., 1999)、中米(例えば、Ruh et al., 2016)、南米 (例えば、Geersen et al., 2015)など国内外の沈み込み帯では実際の観測事例が多数報告されて いる。多くの場合、前弧側海域における反射法地震探査によって沈み込んだ海山の存在が明らか にされ、これに対応する上盤側プレートのローカルな隆起(海底の凸地形)が確認されている。 しかしながら、これらの事例の多くは海溝付近の前縁付加体の変形について報告されているもの であり、これまでのところ少なくとも国内においては、同様のメカニズムが大陸棚や海岸部とい った沿岸域にまで及ぶといった観測事例は示されていない。その一方で、Uchida et al. (2010) は、地震学的証拠に基づいて、東北地方三陸沿岸では、海山が沈み込む太平洋プレートからはが れ、上盤プレートに底づけされる底付け作用が生じている可能性があること、さらにはそうした 底付け作用が沿岸部の海成段丘の発達をもたらした地形学的な時間スケールでの隆起の要因であ る可能性を指摘している。

# 2) 低密度岩体に伴う浮力

海洋プレート上に存在する海嶺や海台は、周囲に比べて地殻が厚く低い重力異常を呈する場合 がある(例えば、Nishizawa et al., 2016)。一般に、低い重力異常は低密度物質の存在を示すが、 そのような海嶺や海台が沈み込む領域ではローカルに浮力が生じ、結果として上盤プレートの隆 起を生じさせるというモデル(図 2.1.1 b)が提案されている(例えば、Nakada et al., 2002)。 このモデルに基づく国内での研究事例として、2つの事例が挙げられる。

Nakada et al. (2002)は、ローカルな低重力異常が観測される宮崎平野を事例とした数値シミ ュレーションにより、宮崎平野で生じている隆起(例えば、長岡ほか, 2010)の定量的な説明を 試みた。その結果、下部地殻あるいはマントル最上部に低密度岩体が存在し、その浮力により宮 崎平野の隆起が説明できると指摘した。ただし、この低密度岩体が何に起因するかは特定できず

(低密度の九州-パラオ海嶺そのものを示すとは考えにくく)、九州-パラオ海嶺の沈み込みに関 連した何らかの低密度岩体であるとの見解に留められている。

Arai et al. (2017) は、琉球弧北部における反射法地震探査の結果から、深さ 6-8 km に低密度 の奄美海台が沈み込んでいることを明らかにした。さらに、この近傍で 1995 年に海台前方の海 洋地殻内で発生した M7.1 及び M6.8 の地震が正断層型の発震機構を示すことなどから、地表の 隆起との関連性については明確に言及されていないが、沈み込んだ奄美海台に強い浮力が生じた 結果生じた地震であると指摘している。

# (2) マントル・ウェッジに形成された蛇紋岩体に伴う隆起・沈降

#### 1) 低密度岩体に伴う浮力

沈み込み帯ではスラブの沈み込みに伴う温度・圧力の上昇に伴い、海洋地殻を構成する鉱物の 脱水反応が生じ、水がマントル・ウェッジに供給される。さらに、マントルの主要構成鉱物であ るかんらん石(かんらん岩)に水が供給されることで、マントル・ウェッジのコーナー部には蛇 紋石(蛇紋岩)が形成されると考えられており、その領域は serpentinized mantle wedge と呼ば れている。比較的低温の太平洋スラブが沈み込む東北日本では前弧域下での脱水が活発でないこ となどから顕著な serpentinized mantle wedge は形成されていないと考えられている。一方、比 較的高温のフィリピン海スラブが沈み込む西南日本においては、数十 km の深さで活発な脱水反

応が生じ、蛇紋岩(体)がマントル・ウェッジのコーナー部に存在すると考えられている(例えば、片山, 2016)。

一般に、蛇紋岩の密度はマントルを構成するかんらん岩に比べて顕著に小さいことが知られて おり、そのために生じる浮力によって地殻が押し上げられ、結果として地表が隆起するといった モデル(図 2.1.1b)が提案されている(例えば、Tahara et al., 2008)。このモデルに関する研究 事例は僅かであるが、地震波トモグラフィの結果をもとに、宮崎平野の隆起が蛇紋岩体の浮力に 起因すると解釈された事例がある(Tahara et al., 2008; Saiga et al., 2010)。

# 2) 蛇紋岩化に伴う体積膨張

マントル・ウェッジのかんらん岩に水が付加することで生じる蛇紋岩化には 25-53%もの体積 膨張を伴うことが知られている(Coleman, 1971; O'Hanley, 1992)。このマントル・ウェッジの 体積増加に起因して、その上位の地殻が押し上げられ、隆起するといったモデル(図 2.1.1 c)も 提案されている。Germanovich et al. (2012)は、前項でも述べた宮崎平野の隆起メカニズムを 説明するため、蛇紋岩化に伴う体積増加を考慮した数値シミュレーションによって、その可能性 を指摘している。

# 3) 地殻内のレオロジー不均質(部分溶融域、深部流体の存在)に伴う隆起・沈降

沈み込み帯に位置する日本列島の地殻には、火山下の部分溶融域のような高温領域や地殻流体 (深部流体)といった流体が分布することから、そのレオロジーも不均質であると考えられてい る。このように不均質な地殻に対して外力(プレートの沈み込みに伴うおよそ水平な圧縮応力) が作用することで局所的な非弾性変形が生じ、ローカルな隆起・沈降が生じるといったモデル(図 2.1.1 d)が提案されている(例えば、Hasegawa et al., 2005)。

特に東北日本の火山フロントでは、上部マントルから連続する部分溶融域が地殻深部に存在す ることが明らかにされており、東北脊梁山地の隆起や歪集中のほか近傍の逆断層運動がこの概念 モデルにより説明されている(例えば、Hasegawa et al., 2005)。最近では、地殻内のレオロジー 不均質を考慮した数値シミュレーションによって、このモデルの妥当性が検証されている (Shibazaki et al., 2008)。

一方、前弧域に位置するいわき群発地震活動域下の地殻深部において、M7クラスの地震を含む群発地震の発生に関与したと考えられる深部流体の存在が見出されている(Zhao, 2015; Umeda et al., 2015)。海成段丘の分布からこの領域は顕著な隆起場にあるとされ、流体分布域への側方圧縮に伴う非弾性変形(図 2.1.1 d)によって生じた可能性が指摘されている(Umeda, 2015)。

# 4) マントルダイアピルの上昇

マントルから上昇した高温物質(マントル・ダイアピル)が地殻へ付加(底付け)されること で、その浮力により地殻が押し上げられ、結果として山脈などが形成されるといったモデル(図 2.1.1 e)である。沈み込み帯にかかわらず、地震波トモグラフィなどの地球物理学的手法によっ てマントル深部までの構造を推定した研究において、このような解釈がなされた事例がある。一 例として Graw et al. (2016)では、地震波トモグラフィによって南極の Transantarctic 山脈下 の上部マントルにマントルダイアピルが見出され、その浮力による上昇が山脈の形成に寄与した と解釈している。



# 2.2 過去数十万年間における隆起・沈降の傾向・速度

# 2.2.1 方法

わが国において過去数十万年間を目安に隆起・沈降の傾向・速度に変化が生じている場とその 逆に 10 万~数十万年間の隆起・沈降速度が一定である場について把握するために文献レビュー を行った。そして、その結果をとりまとめたデータベース(文献リスト)を作成した。文献レビ ューは、以下のように行った。

- 対象とする内容:日本列島において過去数十万年間を目安に隆起・沈降の傾向・速度に変化が生 じている場(あるいは、その可能性がある場)とその逆に十〜数十万年間の隆起・沈降速度が 一定である場であることを絶対年代手法ないしは層序学的手法を用いて示したもの。
- 対象文献:第四紀の隆起・沈降について取り扱われている国内外の雑誌、大学紀要、研究機関の 報告書である。具体的には、国内誌 10 誌(地学雑誌、地質学雑誌、第四紀研究、地理学評論、 地形、応用地質、地理科学、季刊地理学、原子力バックエンド研究、活断層研究)、国外誌 14 誌 (Quaternary Science Reviews, Quaternary Research, Quaternary International, Quaternary Geochronology, Journal of Quaternary Science, Geomorphology, Marine Geology, Sedimentary Geology, Earth Science Reviews, Journal of Geophysical Research, The Island Arc, GEOCHRONOMETR, Geochemistry Geophysics Geosystems, Geophysical Research Letters),大学紀要 8 誌 (Geographical Reports of Tokyo Metropolitan University, 駒沢地 理、熊本大学教育学部研究紀要、駿台史学、明治大学人文科学研究所紀要、鳥取大学地域学部 紀要、日本大学文理学部自然科学研究所紀要)、研究機関の報告書 2 誌(JAEA-Research, 電 力中央研究所報告)を対象とした。
- 対象期間:原則的に2001年以降現在までに出版された文献を対象とした。2001年以降とした理由は、2019年の時点において日本列島の約10万年間の隆起速度に関するデータが最も網羅的に集められたデータ集が小池・町田編(2001)による海成段丘アトラスであるためである。しかし、2001年以前の出版においても過去数十万年間に隆起・沈降の傾向・速度が変化した可能性について言及しており、重要と考えられる文献については参照した。
- 手順:文献の参照漏れを防ぐために原則的に対象文献の 2001 年以降のバックナンバー全てに目 を通し、対象とする内容に該当するものを収集した。

# 2.2.2 結果

収集した文献のリストを巻末に示す。また、収集した文献の対象範囲を地図上にプロットした ものを図 2.2.1 に示す。日本列島において過去数十万年間に隆起・沈降の傾向・速度に変化が生 じている場の見取り図を図 2.2.2 に示す。

【付録1】







図 2.2.2 過去数十万年間に隆起・沈降の傾向・速度が変化した可能性がある地域 主として 2001 年以降に出版された文献データに基づく。図表の ID は、巻末の文献リストの ID に対応。プレート境界は、Lovers and Meade(2010)を基に作成。

### (1) 過去数十万年間に隆起・沈降の傾向・速度に変化が生じている場

過去数十万年間に隆起・沈降の傾向・速度に変化が生じている場については、1)運動様式に変化が生じた場、2)運動様式の変化が移動する場、3)運動速度が変化した場の3タイプがある。 以下に、各タイプに該当した場について記述する。

### 1) 運動様式に変化が生じた場

### 男鹿半島の安田海岸

Shirai and Tada (2002) が、浅海性堆積物の堆積相解析に基づいて、安田向斜の発達に係り 450 ka に始まった向斜西翼部の傾動に伴うゆっくりとした沈降が 130 ka 以降に隆起に転じたこ とを示している。その隆起・沈降速度は 2 地点で示されている。地点 1 では、450~180 ka まで は 0.1 mm/yr, 180~130 ka までは 0.4 mm/yr の沈降速度であり、130 ka 以降は 1 mm/yr の隆 起速度である。地点 2 では、450~180 ka までは 0.2 mm/yr, 180~130 ka までは 0.7 mm/yr の 沈降速度であり、130 ka 以降は 0.8 mm/yr の隆起速度である。沈降から隆起に転じた要因につ いて、白井(1998) は 13 万年前頃にこの地域の地殻の短縮が塑性変形によって解消可能な範囲 を超え、地殻の脆性変形が開始したことで、褶曲から逆断層による変位に変化した可能性を指摘 している。

# 2 大磯丘陵

山崎(1993)により 40 万年前以降に沈降域から隆起に転じていることが示されている。その 原因については、大磯丘陵の西縁を限る国府津-松田断層(逆断層)が活動を開始したためと考え られている。断層の変位速度及び大磯丘陵の隆起速度ともに徐々に増加している。

### ③ 富士山南西麓地域

山崎(1984)により 80 万年前以降、断層の活動場の西から東への移動に伴って隆起・沈降域 が移動することが示されている。その原因として、Yamazaki(1992)は、この地域が、プレート 収束境界である駿河トラフの北方延長という特異な場に位置するため、フィリピン海プレートの 本州下への沈み込みに伴うプレート収束境界の陸側斜面での付加体の形成において生じる覆瓦ス ラストの形成過程が、断層の活動場の移動としてあらわれている可能性を指摘した(Yamazaki, 1992)。

#### ④ 渥美半島

白井・阿部(2001)は、浅海性堆積物の堆積相解析に基づいて渥美半島東部は、30万年前以降、 それまでの約0.2 mm/yrの沈降から約0.3 mm/yrの隆起に転じたことを指摘している。しかし、 その原因については不明である。

#### ⑤ 浜松沖

荒井ほか(2006)は海域の地層区分に基づいて、浜松沖の前弧斜面上部では、85万年以降に現 在まで続く南南島に傾く傾動運動が生じたことを示している。そして、その原因に、古銭洲海嶺 の沈み込みを想定している。

# ⑥ 四国山地南西部

山下ほか(2006)は、内子盆地では、堆積物による盆地の埋積から段丘の形成に変化したタイ ミングをもって、50万年前頃に比較的安定した堆積場から隆起場に転じたと指摘している。また、

## 付 1-13

熊原(2002)は、僧都川及び松田川流域の河成段丘発達史に基づいて、四国山地南西部は60万年前頃に沈降あるいは安定していた堆積場から河成段丘の形成をうながす隆起場(北東-南西走向に隆起の軸をもつ曲隆運動)に転じたと推定している。このような地殻変動の傾向の変化は、宮崎平野、豊後水道、日向海盆にかけた領域の地殻変動の傾向・速度の変化の原因と同様に500~350 kaにフィリピン海プレートの沈み込み方向がNNW方向からWNW方向に変化したことに起因して西南日本弧西縁が東西圧縮変形を受けたことに起因している可能性がある。

# ⑦ 宮崎平野

長岡ほか(2010)により2Ma以降の地形発達史・地殻変動史がまとめられている。それによれば、1)2Ma以降に、前弧海盆の埋積物がゆっくり隆起し宮崎平野の原型が形成され、2)1Ma ~350 ka に鰐塚山地ブロックの東または南東への移動により平野南部で0.4 mm/yrの速度で沈降が生じ、3)500~350 ka にフィリピン海プレートの沈み込み方向がNNW方向からWNW方向に変化した結果、宮崎平野周辺が東西圧縮変形を受けることで、宮崎平野は曲隆にともなう隆起がはじまり、4)350 ka 以降は、九州パラオ海嶺の沈み込みや蛇紋岩ダイアピアの上昇により、平野南部において0.1 mm/yr から1 mm/yr に加速したと考えられている。

# 2) 運動様式の変化が移動する場

#### ① 関東平野

関東平野の過去 40 万年間の地殻変動様式については須貝ほか(2013)が中里・佐藤(2001)、 大井・横山(2011)などの研究成果を取り込んで総括している。須貝ほか(2013)によれば、関 東平野では 3~0.5 Ma に北方向から北西方向に沈み込みの方向を変えたフィリピン海プレート の沈み込みの進行と関連づけられる傾動帯の前進にともなって、沈降中心の北への移動と沈降場 の隆起場への変換が生じている。

#### 3) 運動速度が変化した場

## 下北半島の田名部平野

MIS 5e 以前に形成された 3 段の海成段丘(高位のものから蒲野沢面、東栄面、樺山面)が分 布する。しかし、東栄~樺山面形成期にかかわる田名部 A~C テフラの放射年代がはっきりしな いため、3 段の海成段丘の形成期と海洋酸素同位体比ステージとの対比が定まっていない。仮に 桑原・山崎(2000, 2001)に基づき MIS 5e 以前の 3 段の海成段丘をそれぞれ MIS 7, 9, 11 に対 比すると、MIS 5e から隆起速度が加速したことになる。その一方で、桑原(2005)が示したよ うに隆起速度が一定であると仮定し、海成段丘の高度と MIS 5e 段丘に基づく隆起速度から MIS 5e 以前の 3 段の海成段丘の形成期時期を推定すると、桑原(2006)による田名部 A~C テフラ の FT 年代と調和的な結果になる。しかし、その場合、樺山面の形成年代が、MIS6 の低海水準 期に相当するという問題が生じる。

# 2 能登半島

太田・平川(1979)は、能登半島の海成段丘をT, H, M 及びLの4群に区分し、さらにT面を7面、H面を4面、M面を3面に細分した。そしてそれらの分布パターンに基づき、(i) MIS 5eに対比される M1面と、それより高位の段丘面(H3面)の比高については、M1面の高度にかかわらずほぼ一定であるが、傾動の量が両地形面でほとんど変わりないことから、傾動運動が顕著になったのは MIS5e 以降であること、(ii) T面高度群が、M1面の隆起速度を外挿した時に期待される値より低いため、比較的新しい時代に隆起速度の変化が生じたこと、2点を指摘して

いる。

# ③ 大阪平野

内山ほか(2001)により、大阪堆積盆地では、沈降速度が40数万年前を境にそれ以前の0.7~0.5 mm/yrから0.5~0.2 mm/yr に低下したことが明らかにされている。ただし、そのテクトニクス的な要因については言及されていない。

# ④ 琵琶湖

里口(2010)により、琵琶湖堆積盆の北湖地域は 60~45 万年前以降に沈降が活発化しかした ことが明らかにされている。ただし、そのテクトニクス的な要因については言及されていない。

# ⑤ 日向海盆と豊後水道

岡村ほか(1998)は、海底堆積物の堆積パターンから 2 Ma 頃にはじまった 1 mm/yr の沈降 が、MIS 22 (約 100 万年前) 以降に 2 mm/yr と加速し、MIS 12 (約 68 万年前) 以降に 1.5 mm/yr へと減速したことを示している。

# ⑥ 屋久島

喜界カルデラ起源の 58 万年前頃の火砕流である小瀬田火砕流堆積物が海浜礫層中に挟まれ、 その産出高度は MIS 5e の海成段丘面の分布高度よりも数十 m は低い。そのため屋久島では、58 万年以降に隆起が加速した可能性が指摘されている(町田ほか, 2001)。しかし、その原因につい ては不明である。

# (2) 隆起・沈降速度の変化

隆起・沈降速度が算出されている場における隆起・沈降速度(年平均)の変化を図 2.2.3 に示 す。図 2.2.3 に示されるように隆起・沈降速度の変動幅が±2.5 mm 以上と突出して大きいのは、 プレート境界の活断層が隆起・沈降に関与している大磯丘陵のみである。それ以外の地域の隆起・ 沈降速度の変動幅については±1.0 mm を超えることはない。

沈降から隆起に転じた地域の隆起速度の大きさについてみると、上述の大磯丘陵が最も大きく 3 mm/yr、次いで安田海岸(男鹿半島)、能登半島北部、宮崎平野が約1 mm/yr であり、それ以 外の地域は0.5 mm/yr 未満である。安田海岸は、新たに形成された逆断層により隆起している可 能性がある地域、宮崎平野は、九州パラオ海嶺の沈み込みや蛇紋岩ダイアピアの上昇にともなう 地殻の不均質に起因して隆起している可能性がある地域である。

以上、限られた事例に基づくが次の2点を指摘することができよう。

・わが国において沈降場が10万年間で300mの隆起をうながす隆起速度(3mm/yr)に転じた場は、プレート境界断層の陸上延長部となる活断層の運動に伴って隆起する場である。

・それ以外の隆起メカニズムにより隆起に転じた場の隆起速度は、最大で1 mm/yr 程度である。

【付録1】





安田海岸は Shirai and Tada (2002)、能登半島は太田・平川(1979)、関東平野は須貝ほか (2013)、大磯丘陵は山崎(1993)、渥美半島は白井・阿部(2001)、大阪平野は内山ほか (2001)、豊後水道・日向海盆は岡村ほか(1998)、宮崎平野は長岡ほか(2010)に基づく。

# 3. 地形・地質・地球物理学的データの重ねあわせ

過去数十万年間に隆起・沈降の傾向・速度に変化が生じていると考えられる場のうち、陸域の 十万~数十万年間の地殻変動様式と陸域から深海までの地下構造に係る情報が利用できる渥美半 島及び浜松沖を事例として、地理情報システム(GIS)を用いて既往データの重ね合わせを行っ た(図 2.2.1)。重ね合わせにおいて使用したデータの一覧を、表 2.2.1 に示す。

地殻変動の特徴についてみると、浜松~渥美半島の大陸棚~前弧斜面上部にかけてのエリアでは、85万年以降、南南東方向への傾動運動が続いている(荒井ほか,2006)。このテクトニクスの 枠組みの中で、渥美半島西部は、活断層の形成を伴わずに約30万年前に沈降から隆起に転じて、 以降、現在まで隆起傾向にある。そして渥美半島全体でみると少なくとも最近12万年間は数十 km スケールでの曲隆が生じている(図2.2.1)。

一方、浜松~渥美半島沖の海底地形と地殻の構造をみると、南海トラフよりも陸側には沈み込 んだ古錢洲海嶺の北部リッジと南部リッジ(Kodaira et al., 2004)が、南海トラフよりも海側に は銭洲海嶺が分布する。沈み込んだ古銭洲海嶺のうち南部リッジは、銭洲海嶺と同様に南海トラ フに沿って帯状に配列する(図 2.2.1)。その一方で、陸域により近い北部リッジについては反射 法地震探査データが少ないため、その西方向への連続性については不明である。しかし、海底地 形をみると、北部リッジの西方向には海丘が分布し、地形の起伏も大きいため南部リッジと同様 に沈み込んだ海山が西方向に続いていることも考えられる。

北部リッジよりも陸側の領域、すなわち曲隆が生じていると考えられる大陸棚から沿岸部にかけての領域における沈み込んだ海山の有無については、反射法地震探査データが無いため不明である。大陸棚の地形も起伏の乏しい一様な極緩傾斜(1度未満)の斜面であるため、海底地形から海山の伏在を推測することはできない。しかし、沈み込んだ海山が、スラブ上限深度までは上盤プレートの地殻変動に影響を及ぼすものと仮定すると、駿河湾〜足摺岬にかけての領域はその影響範囲が内陸部まで達している(図 2.2.1)。そのため、渥美半島沖の大陸棚の地下に沈み込んだ海山が存在する可能性が無いわけではない。沈み込む海山の規模が、沿岸域の数+kmスケールの隆起・沈降の傾向・速度の変化と一致する空間スケールであることは留意すべきことがらである。そのため、両者の関係の検討に必要となる大陸棚の地殻の構造が反射法地震探査に基づいて明らかにされることが望まれる。

| データ名             |               | 出典                      |  |
|------------------|---------------|-------------------------|--|
| 隆起·沈降量           |               | 野上道男ほか(1994)            |  |
| <br>隆起沈降に関する調査地点 |               | 白井正明,阿部信太郎 (2001)       |  |
| DEM 陸域           |               | ASTER GDEM              |  |
|                  | 海域            | (財)日本水路協会 M7000シリーズ     |  |
| 正断層帯             |               | 荒井晃作ほか(2006)            |  |
|                  |               | Lovers and Meade (2010) |  |
|                  | スラブ上限 (30km深) | 地質調査総合センター研究資料集、no. 647 |  |
| 海嶺               | 銭洲海嶺          | 日本第四紀地図 東京大学出版会         |  |
|                  | 古海嶺、古海山       | Park et al., (2003)     |  |

表 2.2.1 データー覧



図 2.2.1 地形・地質・地球物理学的データの重ね合わせ(渥美半島・浜松沖の事例) 沿岸域の等値線(m)は最近 12 万年間の隆起量を示す。等深線は 200 m 間隔。使用したデータ については表 3-1 を参照。

### 4. まとめ

本共同研究では、沈み込み帯における隆起・沈降のメカニズムに係る既存情報を整理するとと もに、わが国において過去数十万年間に隆起・沈降の傾向・速度に変化が生じている場の情報を 収集した。その結果、限られた事例に基づくが次の2点を指摘することができた。

・わが国において沈降場が10万年間で300mの隆起をうながす隆起速度(3mm/yr)に転じた場は、プレート境界断層の陸上延長部となる活断層の運動に伴って隆起する場である。

・上記以外の隆起メカニズムにより隆起に転じた場の隆起速度は、最大で1 mm/yr 程度である。 数十万年間の隆起・沈降の傾向・速度の変化の評価に係る課題としては、沈み込んだ海嶺・海 山が上盤側プレートの 10<sup>4</sup>~10<sup>5</sup> 年スケールでの地殻変動に与える影響とその範囲についての調 査・研究が挙げられる。その理由としては、(1) 海山の規模は数十 km 程度であるため、沿岸部 の数十 km 程度の隆起・沈降現象と空間スケールの点で調和的であること、(2) わが国の海域に は海嶺・海山や沈み込んだ海山が多数確認されており、それらが将来、大陸棚から沿岸域に達す る可能性が否定できないこと、の2点が挙げられる。

# 5. 引用文献

# 2.1.1 プレートの沈み込みに係る隆起・沈降

- Clift, P. and Vannucchi, P., Controls on tectonic accretion versus erosion in subduction zones: Implications for the origin and recycling of the continental crust, Reviews of Geophysics, vol.42, RG2001, doi:10.1029/2003RG000127, 2004.
- Fukahata, Y. and Matsu'ura, M., Quasi-static internal deformation due to a dislocation source in a multilayered elastic/viscoelastic half-space and an equivalence theorem, Geophysical Journal International, vol.166, pp.418-434, doi: 10.1111/j.1365-246X.2006.02921.x, 2006. 深畑幸俊,線形粘弾性問題の時間無限大の解,応用数理, vol.19, pp.84-96, 2009.
- Hashimoto, C., Fukui, K. and Matsu'ura, M., 3-D Modelling of plate interfaces and numerical simulation of long-term crustal deformation in and around Japan, Pure and Applied Geophysics, vol.161, pp.2053-2068, doi: 10.1007/s00024-004-2548-8, 2004.
- Heki, K., Space geodetic observation of deep basal subduction erosion in northeastern Japan, Earth and Planetary Science Letters, vol.219, pp.13-20, doi:10.1016/S0012-821X(03)00693-9, 2004.
- Huene, R.V. and Lallemand, S., Tectonic erosion along the Japan and Peru convergent margins, Geological Society of America Bulletin, vol.102, pp.704-720, 1990.
- Huene, R.V., and Scholl, D.W., Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust, Reviews of Geophysics, vol.29, pp.279-316, doi:10.1029/91RG00969, 1991.
- Okada, Y., Internal deformation due to shear and tensile faults in a half-space, Bulletin of the Seismological Society of America, vol.82, No.2, pp.1018-1040, 1992.
- 佐藤利典, 松浦充宏, プレート境界における応力の蓄積過程と大地震の繰り返しに伴う地殻変動 サイクルのモデル化について, 地震 第2輯, vol.50(別冊), pp.283-292, 1998.
- Scholl, D.W., Huene, R.V., Vallier, T.L. and Howell, D.G., Sedimentary masses and concepts about tectonic processes at underthrust ocean margins, Geology, vol.8, pp.564-568, 1980.
- Scholl, D.W. and Huene, R.V., Crustal recycling at modern subduction zones applied to the past-issues of growth and preservation of continental basement crust, mantle geochemistry, and supercontinent reconstruction, Memoir of the Geological Society of America, vol.200, pp.9-32, dio:10.1130/2007.1200(02), 2007.
- Yamagiwa, S., Miyazaki, S., Hirahara, K. and Fukahata, Y., Afterslip and viscoelastic relaxation following the 2011 Tohoku-oki earthquake (Mw 9.0) inferred from inland GPS and seafloor GPS/Acoustic data, Geophysical Research Letters, vol.42, pp.66-73, doi:10.1002/2014GL061735, 2015.
- 山本伸次,構造浸食作用 —太平洋型造山運動論と大陸成長モデルへの新視点—,地学雑誌, vol.119, pp.963-998, 2010.

2.1.2 ローカルな隆起・沈降のメカニズム

- Arai, R., Kodaira, S., Yamada, T., Takahashi, T., Miura, S., Kaneda, Y., Nishizawa, A. and Oikawa, M., Subduction of thick oceanic plateau and high-angle normal-fault earthquakes intersecting the slab, Journal of Geophysical Research, vol.44, pp.6109-6115, doi:10.1002/2017GL073789, 2017.
- Coleman, R.G., Petrologic and geophysical nature of serpentinites, Geological Society of America Bulletin, vol.82, pp.897-918, doi:10.1130/0016-7606(1971)82[897:PAGNOS]2.0.CO;2, 1971.
- Dominguez, S., Lallemand, S.E., Malavieille, J. and Huene, R.V., Upper plate deformation associated with seamount subduction, Tectonophysics, vol.293, pp.207-224, 1998.
- Geersen, J., Ranero, C.R., Barckhausen, U. and Reichert, C.J., Subducting seamounts control interplate coupling and seismic rupture in the 2014 Iquique earthquake area, Nature Communications, 6:8267, doi: 10.1038/ncomms9267, 2015.
- Germanovich, L.N., Genc, G., Lowell, R.P. and Rona, P.A., Deformation and surface uplift associated with serpentinization at mid-ocean ridges and subduction zones, Journal of Geophysical Research, vol.117, B07103, doi:10.1029/2012JB009372, 2012.
- Graw, J.H., Adams, A.N., Hansen, S.E., Wiens, D.A., Hackworth, L. and Park, Y., Upper mantle shear wave velocity structure beneath northern Victoria Land, Antarctica: Volcanism and uplift in the northern Transantarctic Mountains, Earth and Planetary Science Letters, vol.449, pp.48-60, dio: 10.1016/j.epsl.2016.05.026, 2016.
- Hasegawa, A., Nakajima, J., Umino, N. and Miura, S., Deep structure of the northeastern Japan arc and its implications for crustal deformation and shallow seismic activity, Tectonophysics, vol.403, pp.59-75, dio: 10.1016/j.tecto.2005.03.018, 2005.
- Huene, R.V., When seamounts subduct, Science, vol.321, pp.1165-1166, dio:10.1126/science.1162868 2008.
- 片山郁夫, 沈み込み帯での水の循環様式, 火山, vol.61, pp.69-77, 2016.
- 長岡信治, 西山賢一, 井上 弦, 過去 200 万年間における宮崎平野の地層形成と陸化プロセス 海面変化とテクトニクスに関連して–, 地学雑誌, vol.119, pp.632-667, 2010.
- Nakada, M., Tahara, M., Shimizu, H., Nagaoka, S., Uehira, K. and Suzuki, S., Late Pleistocene crustal uplift and gravity anomaly in the eastern part of Kyushu, Japan, and its geophysical implications, Tectonophysics, vol.351, pp.263-283, 2002.
- Nishizawa, A., Kaneda, K. and Oikawa, M., Crust and uppermost mantle structure of the Kyushu-Palau Ridge, remnant arc on the Philippine Sea plate, Earth Planets and Space, 68:30, doi:10.1186/s40623-016-0407-3, 2016.
- O'Hanley, D.S., Solution to the volume problem in serpentinization, Geology, vol.20, pp.705–708, doi:10.1130/0091-7613(1992)020<0705:STTVPI>2.3.CO;2, 1992.
- Park, J.O., Tsuru, T., Kaneda, Y. and Kono, Y., A subducting seamount beneath the Nankai accretionary prism off Shikoku, southwestern Japan, Geophysical Research Letters, vol.26, pp.931-934, doi:10.1029/1999GL900134, 1999.
- Ruh, J.B., Sallares, V., Ranero, C.R. and Gerya, T., Crustal deformation dynamics and stress evolution during seamount subduction: High-resolution 3-D numerical modeling, Journal of Geophysical Research, vol.121, pp.6880-6902, doi:10.1002/2016JB013250, 2016.

- Saiga, A., Matsumoto, S., Uehira, K., Matsushima, T. and Shimizu, H., Velocity structure in the crust beneath the Kyushu area, Earth Planets and Space, vol.62, pp.449-462, doi: 10.5047/eps.2010.02.003, 2010.
- Shibazaki, B., Garatani, K., Iwasaki, T., Tanaka, A. and Ito, Y., Faulting processes controlled by the nonuniform thermal structure of the crust and uppermost mantle beneath the northeastern Japanese island arc, Journal of Geophysical Research, vol.113, B08415, doi:10.1029/2007JB005361, 2008.
- Tahara, M., Uehira, K., Shimizu, H., Nakada, M., Yamada, T., Mochizuki, K., Shinohara, M., Nishino, M., Hino, R., Yakiwara, H., Miyamachi, H., Umakoshi, K., Goda, M., Matsuwo, N. and Kanazawa, T., Seismic velocity structure around the Hyuganada region, Southwest Japan, derived from seismic tomography using land and OBS data and its implications for interplate coupling and vertical crustal uplift, Physics of the Earth and Planetary Interiors, vol.167, pp.19-33, 2008.
- Uchida, N., Kirby, S.H., Okada, T., Hino, R. and Hasegawa, A., Supraslab earthquake clusters above the subduction plate boundary offshore Sanriku, northeastern Japan: Seismogenesis in a graveyard of detached seamounts? Journal of Geophysical Research, vol.115, B09308, doi:10.1029/2009JB006797, 2010.
- Umeda, K., Localized extensional tectonics in an overall reverse-faulting regime, Northeast Japan, Geoscience Letters, 2:12, doi:10.1186/s40562-015-0030-3, 2015.
- Umeda, K., Asamori, K., Makuuchi, A., Kobori, K. and Hama, Y., Triggering of earthquake swarms following the 2011 Tohoku megathrust earthquake, Journal of Geophysical Research, vol.120, pp.2279-2291. doi:10.1002/2014JB011598, 2015.
- Zhao, D., The 2011 Tohoku earthquake (Mw 9.0) sequence and subduction dynamics in Western Pacific and East Asia, Journal of Asian Earth Sciences, vol.98, pp.26-49, doi: 10.1016/j.jseaes.2014.10.022, 2015.

# 2.2 過去数十万年間における隆起・沈降の傾向・速度

荒井晃作, 岡村行信, 池原 研, 芦 寿一郎, 徐 垣, 木下正高, 浜松沖前弧斜面上部に発達する活 断層とテクトニクス, 地質学雑誌, vol.112, pp.749-759, 2006.

小池一之,町田 洋編,日本の海成段丘アトラス,東京大学出版会,122p,2001.

- 熊原康博,四国南西部,僧都川および松田川流域における中期更新世以降の地形発達と地殻変動, 地理学評論,vol.75, pp.553-570, 2002.
- 桑原 拓一郎, 下北半島田名部平野における海成段丘構成物の形成と相対的海面変化, 第四紀研 究, vol.44, pp.131-144, 2005.
- 桑原 拓一郎,下北半島北部に分布する正津川軽石流堆積物のジルコン・フィッション・トラック年代,地質学雑誌,vol.112, pp.294-297, 2006.
- 桑原 拓一郎, 山崎晴雄, 下北半島・田名部低地帯における海成段丘の形成と田名部累層の堆積 過程および地殻変動, 月刊地球, vol.22, pp.711-716, 2000.
- 桑原 拓一郎, 山崎晴雄, テフラから見た最近 45 万年間の恐山火山の噴火活動史, 火山, vol.46, pp.37-52, 2001.
- Loverless, J.P. and Meade, B., Geodetic imaging of plate motions, slip rates, and partitioning of deformation in Japan, Journal of Geophysical Research, vol.115, B02410,

doi:10.1029/2008JB006248, 2010.

- 町田 洋, 太田陽子, 河名俊男, 森脇 広, 長岡信治, 日本の地形 7 九州・南西諸島, 東京大学出版 会, 380p, 2001.
- 長岡信治,西山賢一,井上弦,過去200万年間における宮崎平野の地層形成と陸化プロセス 海面変化とテクトニクスに関連して-,地学雑誌,vol.119, pp.632-667, 2010.
- 中里裕臣, 佐藤弘幸, 下総層群の年代と"鹿島"隆起帯の運動, 第四紀研究, vol.40, pp.251-257, 2001.
- 岡村行信,上嶋正人,村上文敏,岸本清行,駒沢正夫,広島俊男,玉木賢策,奥田義久,中村光一, 渡辺和明,有田正史,木下泰正,西村清和,池原研,石橋嘉一,豊後水道南方海底地質図およ び説明書,1:200,000,海洋地質図, no.49,地質調査所, 1998.
- 大井信三, 横山芳春, 常陸台地の第四系下総層群の層序と堆積システムの時空変化, 地質学雑誌, vol.117 pp.103<sup>-</sup>120, 2011.
- 太田陽子, 平川一臣, 能登半島の海成段丘とその変形, 地理学評論, vol.52, pp.169-189, 1979.
- 里口保文, 琵琶湖堆積物の長時間スケール層序と構造運動の復元, 第四紀研究, vol.49, pp.85-99, 2010.
- 白井正明, Reconstruction of vertical crustal movement during the quaternary based on distribution of sedimentary facies and its application to crustal deformation analysis : an example of middle to Upper Pleistocene sequence at the Anded Coast, Oga Peninsula, NE Japan, 東京大学(博士論文), 1998..
- 白井正明, 阿部信太郎, 浅海成堆積サイクルの詳細な解析による地殻変動復元手法の検討, 電力 中央研究所報告研究報告, U01016, 20p, 2001.
- Shirai, M and Tada, R., High-resolution reconstruction of Quaternary crustal movement based on sedimentary facies analysis: an example from the Oga Peninsula, northern Japan, Journal of sedimentary research, vol.72, pp.386-392, dio:10.1306/102501720386, 2002.
- 須貝俊彦, 松島(大上)紘子, 水野清秀, 過去 40 万年間の関東平野の地形発達-地殻変動と氷河 性海水準変動の関わりを中心に-, 地学雑誌, vol.122, pp.921-948, 2013.
- 内山美恵子,三田村宗樹,吉川周作,大阪平野中央部,上町断層の変位速度と基盤ブロックの運動,地質学雑誌,vol.107, pp.228-236, 2001.
- 山下大輔,吉川周作,塚越 実,長岡信治,熊原康博,愛媛県大洲・内子盆地に分布する下部-中 部更新統の層序と編年,第四紀研究,vol.45, pp.463-477, 2006.
- 山崎晴雄,活断層からみた南部フォッサマグナ地域のネオテクトニクス,第四紀研究, vol.23, pp.129-136, 1984.
- Yamazaki, H., Tectonics of a plate collision along the northern margin of Izu Peninsula, Central Japan, Bulletin of the Geological Survey of Japan, vol. 43, pp.603-657, 1992.
- 山崎晴雄, 南関東の地震テクトニクスと国府津・松田断層の活動, 地学雑誌, vol.102, pp.365-373, 1993.

# 3. 地形・地質・地球物理学的データの重ねあわせ

荒井晃作, 岡村行信, 池原 研, 芦 寿一郎, 徐 垣, 木下正高, 浜松沖前弧斜面上部に発達する活 断層とテクトニクス, 地質学雑誌, vol.112, pp.749-759, 2006.

Kodaira, S., Iidaka, T., Kato, A., Park, J., Iwasaki, T. and Kaneda, Y., High pore fluid pressure may cause silent slip in the Nankai Trough, Science, vol.304, pp.1295-1298, 2004.

日本第四紀学会編,日本第四紀地図,東京大学出版会,110p,1987.

- 野上道夫, 守屋 以智雄, 平川一臣, 小泉武栄, 海津正倫, 加藤 内臓進, 日本の自然 4 中部, 岩 波書店, 182p. 1994.
- Loverless, J.P. and Meade, B., Geodetic imaging of plate motions, slip rates, and partitioning of deformation in Japan, Journal of Geophysical Research, vol.115, B02410, doi:10.1029/2008JB006248, 2010.
- 斎藤英二,日本列島下の海洋プレートの GIS データ作成,地質調査総合センター研究資料集, no. 647,産総研地質調査総合センター, 2017.
- 白井正明,阿部信太郎,浅海成堆積サイクルの詳細な解析による地殻変動復元手法の検討,電力 中央研究所報告研究報告, U01016, 20p, 2001.
- Park, J.O., Moore, G.F., Tsuru, T., Kodaira, S. and Kaneda, Y., A subducted oceanic ridge influencing the Nankai megathrust earthquake rupture, Earth and Planetary Science Letters, vol.217, pp.77-84, doi:10.1016/S0012-821X(03)00553-3, 2013.

付録 過去数十万年間における隆起・沈降に関する文献データベース

各文献の番号は、図 2.2.1 中の番号に対応。

- 荒井晃作,岡村行信,池原研,芦寿一郎,徐垣,木下正高,浜松沖前弧斜面上部に発達する 活断層とテクトニクス,地質学雑誌,vol.112, pp.749-759, 2006.
- 2)後藤憲央, 佐々木 俊法, 河成段丘面の比高分布から推定される伏在断層の活動性, 第四紀研 究, vol.58, pp.315-331, 2019.
- 3) 幡谷竜太,河成段丘を用いた第四紀後期の隆起量評価手法の検討(3) 一過去10万年間の隆起 量分布により明らかにされる内陸部の地殻運動一,財団法人電力中央研究所報告書,N05017, 20p,2006.
- 4) 幡谷竜太,柳田誠,佐藤賢,佐々木 俊法,宮城県川崎盆地における海洋酸素同位体ステージ 6河成段丘の認定とその意義,第四紀研究,vol.44, pp.155-167, 2005.
- 5) 幡谷竜太, 柳田 誠, 山本真哉, 佐藤 賢, 古澤 明, 新潟県魚沼丘陵北部の河成段丘の層序, 応 用地質, vol.47, pp.140-151, 2006.
- 6) 廣内大助,福井平野東縁地域の活構造と地形発達,地理学評論,vol.76, pp.119-141, 2003.
- 7) 石村大輔, 関ヶ原周辺における段丘編年と活断層の活動性, 第四紀研究, vol.49, pp.255-270, 2010.
- Ishimura, D. and Kakiuchi, Y., Chronology and processes of fluvial terrace formation in northeastern Kinki district, southwest Japan, based on cryptotephra analysis, Quaternary International, vol.246, pp.190-202, 2011.
- 9) 石村大輔, 第四紀後期の伊勢湾西岸地域の段丘形成過程と地殻変動, 地学雑誌, vol.122, pp.448-471, 2013.
- 10) Inagaki, M. and Omura, A., Uranium-series age of the highest marine terrace of the upper Pleistocene on Kikai Island, Central Ryukyus, Japan, 第四紀研究, vol.45, pp.41-48, 2006.
- 11) Ito, K., Tamura, T. and Tsukamoto, S., Post-IR IRSL dating of K-feldspar from last interglacial marine terrace deposits on the Kamikita coastal plain, northeastern Japan, Geochronometria, vol.44, pp.352-365, doi:10.1515/geochr-2015-0077, 2017.
- 12) 垣内佑哉,堤 浩之,竹村恵二,鈴木毅彦,村田昌則,琵琶湖西岸断層帯北部上寺断層の活動 による河成段丘の隆起,第四紀研究, vol.49, pp.219-231, 2010.
- 13) 金 幸隆, 六日町盆地北西縁の活断層, 第四紀研究, vol.40, pp.161-168, 2001.
- 14) 熊原康博,四国南西部,僧都川および松田川流域における中期更新世以降の地形発達と地殻 変動,地理学評論,vol.75, pp.553-570, 2002.
- 15) 桑原 拓一郎, 下北半島田名部平野における海成段丘構成物の形成と相対的海面変化, 第四紀 研究, vol.44, pp.131-144, 2005.
- 16) 桑原 拓一郎, 青森県上北平野に分布する白ベタテフラ (WP) のジルコン・フィッション・ トラック年代, 第四紀研究, vol.46, pp.433-436, 2007.
- 17) 町田 洋, 太田陽子, 河名俊男, 森脇 広, 長岡信治, 日本の地形 7 九州・南西諸島, 東京大学 出版会, 380p, 2001.
- 18) 牧野内 猛, 塚本将康, 檀原 徹, 山下 透, 内園 立男, 濃尾地盤研究委員会断面 WG, 濃尾平 野東部の地下地質, 地質学雑誌, vol.119, pp.335-349, 2013.
- 19) 松浦旅人, 新庄盆地の第四紀後期地殻変動と地形発達-地域的隆起と逆断層運動の重合-, 地理学評論, vol.79, pp.39-52, 2006.
- 20) 松浦旅人, 吉岡敏和, 古澤 明, 河成段丘面を指標にした富山県東部魚津断層帯の第四紀後期 活動性評価, 第四紀研究, vol.46, pp.19-36, 2007.

- Matsu'ura, T., Furusawa, A. and Saomoto, H., Late Quaternary uplift rate of the northeastern Japan arc inferred from fluvial terraces, Geomorphology vol.95, pp.384-397, doi: 10.1016/j.geomorph.2007.06.011, 2008.
- 22) Matsu'ura, T. and Kimura, H., Late Quaternary crustal shortening rate across the Shinjo basin, northeast Japan, Journal of Geophysical Research: Solid Earth, vol.115, B11409, doi: 10.1029/2009JB006963, 2010.
- 23) Matsu'ura, T., Ueno, T. and Furusawa, A., Characterization and correlation of cryptotephras using major-element analyses of melt inclusions preserved in quartz in last interglacial marine sediments, southeastern Shikoku, Japan, Quaternary International, vol.246, pp.48-56, doi:10.1016/j.quaint.2011.03.017, 2011.
- 24) Matsu'ura, T., Kimura, H., Komatsubara, J., Goto, N., Yanagida, M., Ichikawa, K. and Furusawa, A., Late Quaternary uplift rate inferred from marine terraces, Shimokita Peninsula, northeastern Japan: A preliminary investigation of the buried shoreline angle, Geomorphology, vol.209, pp.1-17, doi:10.1016/j.geomorph.2013.11.013, 2014.
- 25) Matsu'ura, T., Late Quaternary uplift rate inferred from marine terraces, Muroto Peninsula, southwest Japan: Forearc deformation in an oblique subduction zone, Geomorphology, vol.234, pp.133-150, 2015.
- 26) Matsu'ura, T., Komatsubara, J. and Wu, C., Accurate determination of the Pleistocene uplift rate of the NE Japan forearc from the buried MIS 5e marine terrace shoreline angle, Quaternary Science Reviews, vol.212, pp.45-68, doi:10.1016/j.quascirev.2019.03.007, 2019.
- 27) 宮崎 真由美, 石村大輔, テフロクロノロジーに基づく三陸海岸北部における最終間氷期海成 段丘の形成年代と最終間氷期以降の地殻変動の再検討, 地学雑誌, vol.127, pp.735-757, 2018.
- 28) Murata, A., Takemura, K., Miyata, T. and Lin, A., Quaternary vertical offset and average slip rate of the Nojima Fault on Awaji Island, Japan, The Island Arc, vol.10, pp.360-367, doi: 10.1111/j.1440-1738.2001.00334.x, 2001.
- 29) 長岡信治, 西山賢一, 井上 弦, 過去 200 万年間における宮崎平野の地層形成と陸化プロセス –海面変化とテクトニクスに関連して–, 地学雑誌, vol.119, pp.632-667, 2010.
- 30) 中里裕臣, 佐藤弘幸, 下総層群の年代と"鹿島"隆起帯の運動, 第四紀研究, vol.40, pp.251-257, 2001.
- 31) 中村洋介, 富山県砺波平野, 高清水断層および法林寺断層の第四紀後期における活動性, 第 四紀研究, vol.41, pp.389-402, 2002.
- 32) 中村洋介, 岡田篤正, 竹村恵二, 富山平野西縁の河成段丘とその変形, 地学雑誌, vol.112, pp.544-562, 2003.
- 33) 中村洋介, 金幸 隆, ローム層のボーリング掘削に基づく富山県魚津断層南部の第四紀後期に おける上下変位速度の算出, 地理学評論, vol.77, pp.40-52, 2004.
- 34) 中村洋介, 富山平野東縁,魚津断層の第四紀後期における平均上下変位速度, 第四紀研究, vol.44, pp.353-370, 2005.
- 35) 納谷友規, 本郷 美佐緒, 植木岳雪, 八戸昭一, 水野清秀, 関東平野中央部の地下に分布する 鮮新-更新統の層序と構造運動, 地質学雑誌, vol.123, pp.637-652, 2017.
- 36) 根本直樹, 津軽半島における新第三紀以降のテクトニクス, 第四紀研究, vol.53, pp.205-212, 2014.
- 37) 大井信三,横山芳春,常陸台地の第四系下総層群の層序と堆積システムの時空変化,地質学 雑誌,vol.117 pp.103-120, 2011.

- 38) 岡村行信, 上嶋正人, 村上文敏, 岸本清行, 駒沢正夫, 広島俊男, 玉木賢策, 奥田義久, 中村 光一, 渡辺和明, 有田正史, 木下泰正, 西村清和, 池原 研, 石橋嘉一, 豊後水道南方海底地質 図および説明書, 1:200,000, 海洋地質図, no.49, 地質調査所, 1998.
- 39) 太田陽子, 平川一臣, 能登半島の海成段丘とその変形, 地理学評論, vol.52, pp.169-189, 1979.
- 40) Sato, H., Ban, F., Katoh, S. and Hyodo, M., Sea-level variations during Marine Isotope Stage 7 and coastal tectonics in the eastern Seto Inland Sea area, western Japan, Quaternary International, vol.456, pp.102-116, doi: 10.1016/j.quaint.2017.03.042, 2017.
- 41) 里口保文, 琵琶湖堆積物の長時間スケール層序と構造運動の復元, 第四紀研究, vol.49, pp.85-99, 2010.
- 42) 白井正明, 阿部 信太郎, 浅海成堆積サイクルの詳細な解析による地殻変動復元手法の検討, 電力中央研究所報告, U01016, 20p, 2001.
- 43) Shirai, M and Tada, R., High-resolution reconstruction of Quaternary crustal movement based on sedimentary facies analysis: an example from the Oga Peninsula, northern Japan, Journal of sedimentary research, vol.72, pp.386-392, dio:10.1306/102501720386, 2002.
- 44) 副田宜男, 宮内崇裕, 変動地形と断層モデルからみた出羽丘陵の第四紀後期隆起過程と上部 地殻の短縮変形, 第四紀研究, vol.46, pp.83-102, 2007.
- 45) 須貝俊彦, 松島(大上) 紘子, 水野清秀, 過去 40 万年間の関東平野の地形発達-地殻変動と 氷河性海水準変動の関わりを中心に-, 地学雑誌, vol.122, pp.921-948, 2013.
- 46) Sugai, T., Sato, T., Mizuno, K. and Sugiyama, Y., Magnitudes of sea-level falls at lowstands of the past 900,000 years inferred from gravels underlying the Nobi Plain, central Japan, Quaternary International, vol.397, pp. 422-435, doi:10.1016/j.quaint.2015.11.145, 2016.
- 47) 田力正好, 安江健一, 柳田 誠, 古澤 明, 田中義文, 守田益宗, 須貝俊彦, 土岐川 (庄内川) 流 域の河成段丘と更新世中期以降の地形発達, 地理学評論, vol.84, pp.118-130, 2011.
- 48) 田力正好,池田安隆,段丘面の高度分布からみた東北日本弧中部の地殻変動と山地・盆地の 形成,第四紀研究, vol.44, pp.229-245, 2005.
- 49)角田史雄,南部フォッサマグナ地域の足柄堆積盆地における前期更新世の撓曲とその形成過程,地質学雑誌,vol.108, pp.483-498, 2002.
- 50) 内山美恵子, 三田村宗樹, 吉川周作, 大阪平野中央部, 上町断層の変位速度と基盤ブロック の運動, 地質学雑誌, vol.107, pp.228-236, 2001.
- 51) 植木岳雪, 徳島県西部, 那賀川上流部における河成段丘の編年, 地理学評論, vol.81, pp.25-40, 2008.
- 52) Yamamoto, T., The rate of fluvial incision during tha late Quaternary period in the Abukuma Mountains, northeast Japan, deduced from tephrochronology, The Island Arc, vol.14, pp.199-212, doi:10.1111/j.1440-1738.2005.00464.x, 2005.
- 53) 山下大輔, 吉川周作, 塚越 実, 長岡信治, 熊原康博, 愛媛県大洲・内子盆地に分布する下部-中部更新統の層序と編年, 第四紀研究, vol.45, pp.463-477, 2006.
- 54) 山崎晴雄, 活断層からみた南部フォッサマグナ地域のネオテクトニクス, 第四紀研究, vol.23, pp.129-136, 1984.
- 55) 山崎晴雄, 南関東の地震テクトニクスと国府津・松田断層の活動, 地学雑誌, vol.102, pp.365-373, 1993.
- 56) 吉田英嗣, 函館平野東部の段丘地形 その変位の地形学的解釈-, 明治大学人文科学研究所 紀要, vol.80, pp.109-142, 2017.

【 付録 2 】

# 地質環境の長期安定性評価に係る

地形・地質・断層調査技術の高度化に関する共同研究

平成 31 年度共同研究報告書

# 令和2年1月

国立大学法人京都大学

国立研究開発法人日本原子力研究開発機構 核燃料・バックエンド研究開発部門 東濃地科学センター 地層科学研究部 ネオテクトニクス研究グループ

# 目 次

| 1. | 概要                                                                         | 5                |
|----|----------------------------------------------------------------------------|------------------|
|    | 1.1 共同研究件名                                                                 | 5                |
|    | 1.2 共同研究先                                                                  | 5                |
|    | 1.3 研究目的                                                                   | 5                |
|    | 1.4 研究内容                                                                   | 6                |
|    | 1.5 研究期間                                                                   | 6                |
| 2. | 地質温度計と熱年代による深部流体の温度・滞留時間の検討                                                | 7                |
|    | 2.1 分析試料                                                                   | 7                |
|    | 2.2 研究手法                                                                   | 8                |
|    | 2.2.1 流体包有物解析                                                              | 8                |
|    | 2.2.2 熱年代解析                                                                | 8                |
|    | 2.3 分析結果                                                                   | 9                |
|    | 2.3.1 流体包有物解析の結果                                                           | 9                |
|    | 2.3.2 熱年代解析の結果                                                             | 9                |
|    | 2.4 熱史の解釈                                                                  | 11               |
|    | 2.5 まとめと今後の展望                                                              | 13               |
| 3. | 粘土鉱物の K-Ar 年代測定に基づいた断層活動性の検討                                               | 14               |
|    | 3.1 Objective                                                              | 14               |
|    | 3.2 Two main studies carried out within financial year 2019                | 14               |
|    | 3.2.1 Mechanical comminution and its influence of isotope signature of cla | lУ               |
|    | minerals                                                                   | 14               |
|    | 3.3 K-Ar dating of Nobeoka drilling core samples (NOBELL)                  | 14               |
| 4. | 室内実験に基づいた、熱年代による断層活動性評価手法の高度化                                              | 16               |
|    | 4.1 ジルコン FT 法のアニーリングカイネティクス                                                |                  |
|    | 4.2 分析試料                                                                   |                  |
|    | 4.3 研究手法                                                                   |                  |
| _  | 4.4 まとめと今後の展望                                                              | 17               |
| э. | 地質温度圧力計と U-Pb 年代測定法を用いた侵食史の推定                                              | 18               |
|    | 0.1 研先于法                                                                   |                  |
|    | 5.2 研先码科                                                                   |                  |
|    | 9.3 万竹万伝                                                                   | 20               |
|    | 9.4 石口記載<br>『『 地质泪座 . 圧力社の海田                                               | 20               |
|    | 3.3 地員価度・圧力計の適用                                                            | 22<br>96         |
| C  | 3.0 よこのとう後の展呈<br>執年化学 字字線化式技種法 地形留近による山地の際短・得食温积の検討                        |                  |
| 6. | 熱中代子、于田稼生成核種伝、地形脾例による田地の陸起・侵良迥柱の使討<br>61 執年代学による山地の際起・得食過程の検討              | 21               |
|    | 0.1 ボヤハナによるロ地の陸起一区及週程の便可                                                   | 41<br>97         |
|    | 6.1.9 分析試料                                                                 | 41<br>97         |
|    | 613 分析手順                                                                   | 41<br>98         |
|    | 614 分析結果と考察                                                                | <u>2</u> 0<br>29 |
|    | 6.1.5 まとめと今後の展望                                                            | 29               |
|    |                                                                            |                  |

# 【 付録 2 】

| 6.2 宇宙線生成核種を用いた山地の隆起・侵食過程の検討        | 31 |
|-------------------------------------|----|
| 6.2.1 研究手法                          |    |
| 6.2.2 分析結果及びデータ解析                   | 32 |
| 6.2.3 まとめと今後の展望                     | 36 |
| 6.3 地形解析による山地の隆起・侵食過程の検討            |    |
| 6.3.1 Stream Power Model            | 38 |
| 6.3.2 Sediment Flux Dependent Model | 41 |
| 6.3.3 岩石強度を反映した岩盤河川侵食モデル            | 43 |
| 6.3.4 モデルの提案                        |    |
| 6.3.5 まとめと今後の展望                     | 45 |
| 7. まとめ                              |    |
| 8. 引用文献                             |    |

# 図目次

| 义 | 2.3-1   | 熱年代データ vs 熱水脈からの水平距離                       | .11 |
|---|---------|--------------------------------------------|-----|
| 义 | 2.4-1   | アパタイト FT 法のアニーリング特性                        | 12  |
| 义 | 5.2 - 1 | Ito et al. (2013)の試料採取地点                   | 19  |
| 义 | 5.4-1   | KRG04 に含まれる角閃石及びその周辺の X 線マップと BSE 像        | 21  |
| 义 | 5.4-2   | KRG07 に含まれる角閃石とその周辺の X 線マップ                | 22  |
| 义 | 5.5 - 1 | KRG07に含まれる角閃石の化学組成プロット。                    | 24  |
| 义 | 5.5 - 2 | KRG04 及び KRG07 の固結深度見積もり。                  | 25  |
| 义 | 6.1-1   | 北上山地における東経 vs.年代値プロット                      | 30  |
| 义 | 6.1 - 2 | 阿武隈山地における東経 vs.年代値プロット                     | 31  |
| 义 | 6.2 - 1 | 削剥速度の多様性と地形の定常・非定常の概念図                     | 32  |
| 义 | 6.2-2   | 海成段丘岩盤中の <sup>10</sup> Be 深度プロファイル         | 34  |
| 义 | 6.2-3   | <sup>10</sup> Beの蓄積量を最も良く再現する最尤パラメータの決定    | 35  |
| 义 | 6.2-4   | <sup>10</sup> Be 濃度の深度分布に対するモデルカーブのフィッティング | 35  |

# 表 目 次

| 表 2.1-1 | 採取試料リスト                                   | 7 |
|---------|-------------------------------------------|---|
| 表 2.3-1 | 流体包有物測定結果                                 |   |
| 表 2.3-2 | 熱年代解析結果                                   |   |
| 表 4.3-1 | 実験条件一覧                                    |   |
| 表 5.2-1 | 鉱物分離の結果                                   |   |
| 表 5.5-1 | 固結温度・圧力推定に用いたデータ                          |   |
| 表 6.1-1 | 鉱物分離結果                                    |   |
| 表 6.1-2 | 平成 30 年度及び令和元年度の年代測定結果一覧                  |   |
| 表 6.2-1 | 阿武隈山地・北上山地における <sup>10</sup> Beの分析結果と削剥速度 |   |

## 1. 概要

#### 1.1 共同研究件名

地質環境の長期安定性評価に係る地形・地質・断層調査技術の高度化に関する共同研究

## 1.2 共同研究先

国立大学法人京都大学大学院理学研究科地球惑星科学専攻

# 1.3 研究目的

国立研究開発法人日本原子力研究開発機構(以下、「原子力機構」という。)では、経済産業省 資源エネルギー庁から受託した「平成31年度高レベル放射性廃棄物等の地層処分に関する技術 開発事業(地質環境長期安定性評価技術高度化開発)」において、地層処分に適した地質環境の選 定に係る自然現象の影響把握及びモデル化に関連する研究課題として示された火山・火成活動、 深部流体、地震・断層活動、隆起・侵食に対し、地質学、地形学、地震学、地球年代学などの各 学術分野における最新の研究を踏まえた技術の適用による事例研究を通じて、課題の解決に必要 な知見の蓄積や調査・評価技術の高度化を総合的に進めている。

このうち深部流体に関しては、深部流体及び非火山性熱水の形成・移動メカニズムなどの把握 のために、これらの熱水活動に伴う熱影響の定量的な検討事例の蓄積が課題として挙げられてい る。地震・断層活動については、上載法の適用が困難な断層の活動性の評価方法の整備が、隆起・ 侵食については、隆起量・侵食量の評価に反映するための、地形学的手法や堆積物の年代測定に 基づく評価方法の整備が、それぞれ技術開発課題として挙げられている。

平成 30 年度における国立大学法人京都大学(以下、「京都大学」という。)との共同研究「地質 環境の長期安定性評価に係る地形・地質・断層調査技術の高度化に関する共同研究」では、地形 学、地質学及び地球年代学などの手法を総合的に用いることで、これらの課題に係る検討を実施 した。非火山性熱水の熱影響については、熱水の温度、滞留時間、活動時期及び加熱範囲などの 推定を行うことを目的として、地質温度計(岩石が経験した温度条件を推定する手法)と熱年代 学の手法(岩石が経験した温度・時間条件を推定する手法)を組み合わせることにより、深部流体 起源の熱水脈露頭試料の鉱物分離を行った。上載法の適用が困難な断層の活動性については、断 層破砕帯物質の年代測定による活動性評価手法の高度化を目的とした K-Ar 年代測定法の適用性 確認のために、粘土鉱物試料の電子顕微鏡観察を行い、K に富んだ粘土鉱物が含まれることを確 認した。隆起量・侵食量の評価手法の整備については、近年発達した年代測定法の導入や、既存 の地形・地質学的手法の組み合わせ、あるいは数値標高モデルを用いた地形解析によって、これ までは隆起量・侵食量の評価が困難だった地域・条件下にも適用可能な手法の整備を図った。

以上を踏まえ、本年度の共同研究では、以下の検討を実施する。非火山性熱水の熱影響につい ては、昨年度鉱物分離した試料に地質温度計や熱年代学の手法を適用し、熱水の温度や滞留時間 などを検討する。上載法の適用が困難な断層の活動性については、昨年度の電子顕微鏡観察結果 を踏まえ、K-Ar年代測定に基づく活動性の評価を行う。さらに、断層の活動性評価における熱年 代学的手法の適用性を検証するため、断層近傍における熱的現象を室内実験(水熱実験など)に より再現し、熱年代のリセット条件を検討する。隆起量・侵食量の評価手法の整備については、 昨年度行った検討結果を統合的に用いて、これまでは隆起量・侵食量の評価が困難だった地域・ 条件下における隆起量・侵食量の推定手法の高度化を図る。

京都大学は、地形学、地質学及び地球年代学などの諸分野における国内最高峰の専門家がそろっており、多くの研究実績を有している。また、原子力機構は、これらの分野における各種分析

に必要な最新の装置を数多く有しており、国内でも有数の分析環境を備えている。そのため、本 共同研究を行うことにより、上記のような多様な課題に対して総合的かつ効果的に検討を進める ことができる。本共同研究を通じて、京都大学は原子力機構が有する様々な分析装置を利用し、 各種の年代測定や化学分析を行うことにより、地形学、地質学及び地球年代学などの研究をより 効果的に進めることができ、原子力機構は地形学、地質学及び地球年代学などに関する最新の技 術を活用して、地層処分に適した地質環境の選定に係る自然現象の影響把握及びモデル化の整備 を図ることができる。

なお、本共同研究は、原子力機構が経済産業省資源エネルギー庁から受託した「平成31年度高 レベル放射性廃棄物等の地層処分に関する技術開発事業(地質環境長期安定性評価技術高度化開 発)」の一環として行うものである。

# 1.4 研究内容

本共同研究では、以下に示す作業を行い、成果を取りまとめる。

(1) 地質温度計と熱年代による深部流体の温度・滞留時間の検討

非火山性の深部起源の高温流体による熱影響(温度、滞留時間など)の検討を目的として、地 質温度計や熱年代を用いた解析及びデータの解釈を行う。

(2) 粘土鉱物の K-Ar 年代測定に基づいた断層活動性の検討 断層破砕帯の粘土鉱物の K-Ar 年代測定に基づき、断層の活動性や活動時期について検討する。

(3) 室内実験に基づいた、熱年代による断層活動性評価手法の高度化

断層破砕帯物質の熱年代測定に基づく断層活動性評価手法の高度化を目的として、水熱実験な どの室内実験により断層破砕帯近傍における熱年代のリセット条件について検討する。

(4) 地質温度圧力計と U-Pb 年代測定法を用いた侵食史の推定

熱年代学の手法による侵食史の検討が困難な地熱地域を対象に、地質温度圧力計と U-Pb 年代 測定法を用いた侵食史の推定を行う。また、同手法の適用性について検討する。

(5) 熱年代学、宇宙線生成核種法、地形解析による山地の隆起・侵食過程の検討

熱年代学、宇宙線生成核種法、地形解析を複合的に適用することにより、様々な時空間スケー ルにおける山地の隆起・侵食過程について検討する。

(6) 取りまとめ

上記(1)~(5)における実施・検討内容を取りまとめた報告書を作成する。

# 1.5 研究期間

令和元年5月8日~令和2年1月31日

# 【付録2】

# 2. 地質温度計と熱年代による深部流体の温度・滞留時間の検討

深部流体起源の熱水活動の温度や滞留時間などの検討を目的として、地質温度計と熱年代を用いた検討を行う。対象地域としては、和歌山県田辺市本宮町平治川で確認された熱水脈の露頭を 選択した。平成 30 年度は、4 か所の露頭から流体包有物測定用試料 3 点、熱年代解析用試料 13 点、U-Pb 年代測定用試料 1 点を採取した。また、熱年代解析用試料の鉱物分離を実施したとこ ろ、概ね良質な対象鉱物を得ることができた。令和元年度は、これらの試料を対象として、流体 包有物の均質化温度を用いた地質温度計測定や、フィッション・トラック(FT)法や(U-Th)/He 法などによる熱年代解析を実施した。以下に、概要を述べる。

# 2.1 分析試料

測定試料は、平成 30 年度に和歌山県田辺市本宮町平治川で採取した。対象とした熱水脈の露 頭は三か所で、熱水脈本体から流体包有物の均質化温度の測定用試料を各 1 点(計 3 点)、母岩 部分から熱年代測定用の試料を 4~5 点(計 13 点)、熱水脈からの距離に応じて採取した(表 2.1-1)。母岩は四万十帯白亜系の砂岩優勢砂岩泥岩互層で、その中から砂岩優勢の部分を選んで 採取した。試料の詳細は、平成 30 年度の共研報告書を参照のこと。

| 地点名  | 試料名      | 母岩/熱水脈     | 用途       | 脈からの距離 |
|------|----------|------------|----------|--------|
| HJG1 | HJG1-F   | 熱水脈        | 流体包有物    | -      |
|      | HJG1-0m  | 母岩(四万十帯砂岩) | 熱年代      | 0.0 m  |
|      | HJG1-1m  | 母岩(四万十帯砂岩) | 熱年代      | 1.1 m  |
|      | HJG1-3m  | 母岩(四万十帯砂岩) | 熱年代      | 3.1 m  |
|      | HJG1-10m | 母岩(四万十帯砂岩) | 熱年代      | 9.9 m  |
|      | HJG1-20m | 母岩(四万十帯砂岩) | 熱年代      | 17.1 m |
| HJG2 | HJG2-F   | 熱水脈        | 流体包有物    | -      |
|      | HJG2-0m  | 母岩(四万十帯砂岩) | 熱年代      | 0.0 m  |
|      | HJG2-1m  | 母岩(四万十帯砂岩) | 熱年代      | 0.7 m  |
|      | HJG2-3m  | 母岩(四万十帯砂岩) | 熱年代      | 2.3 m  |
|      | HJG2-10m | 母岩(四万十帯砂岩) | 熱年代      | 10.2 m |
| HJG3 | HJG3-UPb | 母岩(熊野酸性岩類) | U-Pb年代測定 | -      |
| HJG4 | HJG4-F   | 熱水脈        | 流体包有物    | -      |
|      | HJG4-0m  | 母岩(四万十帯砂岩) | 熱年代      | 0.0 m  |
|      | HJG4-1m  | 母岩(四万十帯砂岩) | 熱年代      | 1.2 m  |
|      | HJG4-3m  | 母岩(四万十帯砂岩) | 熱年代      | 4.2 m  |
|      | HJG4-10m | 母岩(四万十帯砂岩) | 熱年代      | 11.7 m |

表 2.1-1 採取試料リスト

# 2.2 研究手法

#### 2.2.1 流体包有物解析

地質温度計の一つに、石英や方解石などに含まれる流体包有物の均質化温度を用いた手法が知られている(例えば、佐脇,2003)。気液二相の流体包有物を含む薄片試料を加熱冷却台で加熱していくと、液相が膨張する一方、気相が収縮し、最終的に液相一相のみとなる。この時、流体包有物の内部圧力と温度は、沸騰曲線(BPC; boiling point curve)に沿って変化する。この液相一相のみになった時の温度を均質化温度(Th)と呼ぶが、液相一相の流体包有物の内部圧力は温度にしたがってアイソコアに沿って変化するため、流体の組成に応じた適当な圧力補正を均質化温度(Tr)を決定できる。

流体包有物の分析は、地熱エンジニアリング株式会社に依頼した。オリンパス株式会社製シス テム顕微鏡 BX-51 に LINKAM 社製加熱冷却装置 10035L を装着し、各試料から作成した薄片を 用いて包有物の観察・測定を行った。均質化温度の測定は、1)気泡が小さくなるまで+50℃/分 で、気相が消滅するまで+3℃/分で加熱し、およその均質化温度を把握、2)気相が出現するまで 再び冷却、3)+1℃/分でゆっくりと再加熱し気相が消失する温度(均質化温度)を正確に測定、 という手順で行った。測定は各包有物につき2回行い、データに再現性の無い包有物は棄却した。 氷点温度の測定は、1)液体窒素で流体包有物を-50℃/分で冷却・凍結、2)-20℃以下では+50℃ /分、-20℃以上では+3℃/分で加熱して、およその氷点温度を推定、3)再び冷却後、+0.1℃/ 分でゆっくり再加熱して正確な氷点温度を測定、という手順で行った。再現性の確認のため、測 定は2回ずつ行った。

### 2.2.2 熱年代解析

熱年代学は、放射年代測定の応用分野の一つで、加熱に伴う娘核種の散逸などによって起こる 年代値の若返りを基に、試料が経験した熱履歴を推定する学問領域である。年代値が若返る温度 は閉鎖温度と呼ばれ(Dodson, 1973)、用いる熱年代計の種類、すなわち核種と鉱物の組み合わ せに固有である。一般に引用される閉鎖温度の値は、10<sup>6</sup>~10<sup>7</sup>年間の加熱に対して、年代が若返 る温度であるが、より短時間の加熱に対しては、さらに高い温度が年代の若返りには必要となる (例えば、Reiners, 2009)。本研究では、対象とする熱水活動の熱影響の大きさを考慮して、フ ィッション・トラック(FT)法と(U-Th)/He 法を適用した。また、母岩の熱史をより詳細に制約 するため、U-Pb 法も併せて用いた。

FT 解析と U-Pb 年代測定は、株式会社京都フィッション・トラックに依頼した。アパタイトは 樹脂に埋め込み研磨し、21℃、5.5M の HNO<sub>3</sub>溶液で 20 秒間エッチングした。FT 長測定用のマ ウントは、エッチングの前に <sup>252</sup>Cf 片による照射処理を行い、測定可能な FT 数を増加させた (Donelick and Miller, 1991)。ジルコンは PFA テフロンシートに埋め込み研磨し、225℃の KOH-NaOH などモル共融液中で 32 時間エッチングした。FT 密度及び FT 長の測定は、高品位モニタ ー上で光学顕微鏡像を観察するモニター測定システム上で行った。ウラン濃度は東京大学平田研 究室のレーザーアブレーション型誘導プラズマ質量分析装置(Laser Ablation Inductively Coupled Plasma Mass Spectrometry:以下、「LA-ICP-MS」という)を用いて実施した。<sup>238</sup>U の シグナルは、<sup>43</sup>Ca と <sup>29</sup>Si を内標準として標準化し、ウラン濃度既知の Durango アパタイトまた は Nancy91500 ジルコンを外標準として濃度に換算した。FT 年代は、年代標準試料(Durango、 Fish Canyon Tuff、Tardree Rhyolite)を用いてゼータ法(Hasebe et al., 2013)により算出し た。ジルコンについては、同時に鉛同位体も測定することで、U-Pb 年代を併せて取得した。

(U-Th)/He 年代測定は、ヘリウムの定量は原子力機構東濃地科学センターで行い、ウラン・トリウムの定量はメルボルン大学に依頼した。ジルコン粒子は、顕微鏡下で Fr 較正(Farley et al.,
# 【 付録 2 】

1996)に用いる幾何学パラメータを測定し、Nb 製パケットに一粒子ずつ封入した。ヘリウム質 量分析装置(ASI 社製 Alphachron)を用いて、レーザー照射による加熱で結晶中の <sup>4</sup>He を脱ガ スし、<sup>3</sup>He スパイクを用いた同位体希釈法により <sup>4</sup>He 含有量を測定した。脱ガスした粒子は酸処 理により溶液化し、ICP-MS を用いてウラン・トリウムの含有量を測定した。ウラン・トリウム 測定の詳細は、Evans et al. (2005)を参照のこと。アパタイトについては、堆積岩中では円磨に より、Fr 較正が可能な自形の結晶が産出しないため、(U-Th)/He 年代は測定しなかった。

### 2.3 分析結果

### 2.3.1 流体包有物解析の結果

測定結果の概要を表 2.3-1 に示す。3 地点の熱水脈露頭のうち、HJG1-F では 140~145℃ (n=3)、 HJG2-F では 110~216℃ (n=10)の均質化温度が推定された。これらのうち、結晶成長に伴っ て捕獲された流体である初生包有物に限ると、HJG1-F は 144~145℃、HJG2-F は 195~211℃ とまとまりの良い値が得られた。HJG2-F の二次包有物の均質化温度は 110~216℃と幅広い値 を示すが、温度の異なる複数回の熱水活動により、その度に流体包有物が結晶中に取り込まれた と考えられる。なおHJG4-F では包有物の存在は確認できたが、熱水脈の透明度が低かったため、 均質化温度などの測定には至らなかった。

|        | 61.17                             | the stat   | 均質化温度 |         | 氷融点温度·塩濃度 |           |             |  |
|--------|-----------------------------------|------------|-------|---------|-----------|-----------|-------------|--|
| 試料名    | <ul><li>鉱物</li><li>(産状)</li></ul> | 包有物<br>の種類 |       | 均質化温度   | n         | 氷融点温度     | 塩濃度         |  |
|        |                                   |            | n     | (°C)    |           | [°C]      | [wt. %NaCl] |  |
| HJG1-F | 石英                                | 初生         | 2     | 144~145 | 0         | n.a.      | n.a.        |  |
|        | (鉱物脈)                             | 二次         | 1     | 140     | 0         | n.a.      | n.a.        |  |
|        | 石英                                | 初生         | 2     | 195~211 | 1         | -5.0      | 7.9         |  |
| HJG2-F | (鉱物脈)                             | 二次         | 8     | 110~216 | 5         | -5.0~-0.4 | 0.7~7.9     |  |
|        | 石英                                | 初生         | 0     | n.a.    | 0         | n.a.      | n.a.        |  |
| пј04-г | (水晶片)                             | 二次         | 0     | n.a.    | 0         | n.a.      | n.a.        |  |

表 2.3-1 流体包有物測定結果

包有物の種類は、Roedder (1984)の基準に従って判定した。塩濃度(NaCl 相当量)は Bodnar (1993) に基づいて算出した。測定精度は均質化温度で±0.1℃、氷融点温度で±0.3℃である。

### 2.3.2 熱年代解析の結果

熱年代解析の結果を表 2.3-2 と図 2.3-1 に示す。アパタイト FT 年代は 12.3~9.0 Ma、ジルコ ン FT 年代は 29.8~18.2 Ma (最若粒子集団の加重平均値)、ジルコン U-Pb 年代は 76.9~66.9 Ma (最若粒子集団の加重平均値)、ジルコン(U-Th)/He 年代は 23.6~8.7 Ma (外れ値を除いた粒 子年代) となった。いずれの手法でも試料間で比較的まとまった年代値を示し、熱水脈からの距 離に対して系統的な変化は見られなかった (図 2.3-1)。FT 長は、アパタイトで 11.6~15.4 µm、 ジルコンで 9.3~10.3 µm の平均値を示した。アパタイトの FT 長は、初期長(約 16 µm)から の短縮が確認できるものの、測定数が 0~13 本と少なく、FT 長の分布パターンは統計学的に有 意とは言えない。したがって、個々の試料の FT 長データは参考情報とみなし、以降の議論には 用いない。ジルコンの FT 長は、同じく初期長(約 11 µm)からの短縮が見られ、概して二峰性 の分布パターンを示す。したがって、再加熱による partial annealing や、partial annealing zone での滞留後の急冷、異なる熱史を有した複数の粒子集団の混合などの、複雑な熱史が予想される。 一方で、年代値と同様に、いずれの地点でも熱水脈からの距離に対する明瞭な FT 長の変化傾向 は認められなかった(図 2.3-1)。

|          | AFT年代         | ZHe年代      | ZFT年代    | ZU-Pb年代       |
|----------|---------------|------------|----------|---------------|
| 試料名      | $\pm 1\sigma$ | (単粒子年代)    | ±1σ      | $\pm 2\sigma$ |
|          | (Ma)          | (Ma)       | (Ma)     | (Ma)          |
| HJG1-0m  | 11.0±1.5      | 19.3, n.a. | 23.8±2.1 | 73.1±1.9      |
| HJG1-1m  | 9.0±1.0       | 8.7, 17.8  | 28.7±1.6 | 73.5±1.1      |
| HJG1-3m  | 9.9±1.1       | 15.5, 16.2 | 29.8±1.8 | 76.9±1.4      |
| HJG1-10m | 11.0±1.3      | 10.3, 17.7 | 26.2±1.3 | 74.3±1.2      |
| HJG1-20m | 9.6±1.0       | 20.2, 53.4 | 27.6±2.8 | 69.4±2.2      |
| HJG2-0m  | 12.0±1.2      | 12.8, 23.6 | 21.0±1.9 | 67.6±1.9      |
| HJG2-1m  | 10.7±1.2      | 17.4, 18.5 | 26.2±1.6 | 77.3±1.5      |
| HJG2-3m  | 12.3±1.5      | 15.9, 20.0 | 21.3±1.7 | 73.6±1.8      |
| HJG2-10m | 9.7±1.2       | 0.9, 18.1  | 28.0±2.4 | 66.9±1.9      |
| HJG3-UPb | n.a.          | n.a.       | n.a.     | 14.9±0.6      |
| HJG4-0m  | 9.4±1.4       | n.a.       | 26.7±2.2 | 72.2±1.8      |
| HJG4-1m  | 11.9±1.7      | n.a.       | 24.4±1.9 | 71.9±2.0      |
| HJG4-3m  | 10.2±1.2      | n.a.       | 24.3±1.7 | 76.3±1.6      |
| HJG4-10m | 11.5±1.3      | n.a.       | 18.2±1.5 | 74.3±1.6      |

表 2.3-2 熱年代解析結果

AFT: アパタイト FT、ZHe: ジルコン(U-Th)/He、ZFT: ジルコン FT、ZU-Pb: ジルコン U-Pb。 ZHe 年代は各試料につき 2 粒子ずつ測定したが、斜体で示した粒子年代は外れ値とみなして棄 却した。HJG3-UPb のジルコン U-Pb 年代のみは、原子力研究開発機構東濃地科学センターの LA-ICP-MS にて別途測定した。



図 2.3-1 熱年代データ vs 熱水脈からの水平距離 誤差範囲は、FT 年代は 1σ、U-Pb 年代は 2σ、FT 長は 1 標準誤差で示した。 (U-Th)/He の単粒子年代については、誤差の評価は行っていない。

### 2.4 熱史の解釈

初生流体包有物の均質化温度は、熱水脈を形成した熱水活動の到達温度を示すと考えられる。 すなわち、HJG1 地点では約 150℃、HJG2 地点では約 200℃の熱水活動で脈が形成されたこと になる。一方、熱年代解析の結果を見ると、熱によるリセットが最も期待できるアパタイト FT 年 代を含め、いずれのデータも熱水脈からの距離に応じた変化は見られない。また、HJG3・UPb の U-Pb 年代から、本地域周辺の熊野酸性岩類の形成時期は 14.9±0.6 Ma と推定されるが、冷却年 代の同時性から判断する限り、熊野酸性岩類を形成した火成活動による熱影響も認められない。

これらのデータの解釈としては、大まかに以下の3つの可能性が考えられる:(1)約10Maの 熱水活動により、露頭全体のアパタイト FT 年代がリセットされた、(2)熱水活動は約10Maよ り古いため、熱水活動に伴う熱年代の異常は、その後の隆起・侵食によって上書きされた、(3)熱 水活動は約10Maより新しいが、到達温度が低いまたは継続時間が短かったため、アパタイト FT 年代には影響を与えなかった。(1)の場合、幅10m以上の範囲にわたってアパタイト FT 年代を 完全にリセットするような熱イベントが生じたのであれば、他の熱年代計でも熱水脈の近傍では 若干のリセットが観察されると期待される。しかし、実際には他の熱年代計は約10Maより古い 年代で一様な空間分布を示している。加えて、13試料が共通の熱履歴を持つと仮定して、これら のアパタイト FT 長データを統合すると、平均長13.6 µm、標準偏差1.6 µm となり、再加熱を受 けずに上昇削剥によって徐冷された基盤岩に典型的な値(平均長12.2~13.9 µm、標準偏差1.0 ~1.6 µm; Gleadow et al., 1986)を示す。この結果は、熱水活動による再加熱と、その後の急冷 とは不調和である。したがって、この解釈は成り立たないと考えられる。(2)と(3)の解釈は、約10 Maのアパタイト FT 年代が広域的な隆起・侵食史を反映しているという点では共通だが、推定 される熱水活動の時期が異なる。両者を判別するためには、熱水脈の形成年代の測定が有効であ るが、熱水脈の主成分である石英はほぼ純粋な SiO<sub>2</sub>の結晶なので、一般にウランやトリウムなどの放射性元素に乏しく年代測定は困難である。したがって、現段階では(2)と(3)のいずれが有力かは判断できない。

地層処分事業への影響という観点から、(2)と(3)の場合の熱水活動の熱的特徴について整理す る。(2)の場合、熱水活動の発生は、母岩の環境温度がアパタイト FT 法の閉鎖温度より高温だっ た時代である。アパタイト FT 法の閉鎖温度を 90~120℃(例えば、Ketcham et al., 1999)、地 温勾配を約 30℃/km、平均地表温度を 10~20℃程度とすると、熱水活動は地下 2~3 km 以深で 起こったと推定できる(約 10 Ma 以降の平均侵食速度は 0.2~0.3 mm/yr 程度)。また、熱水活動 による温度の上昇量は、均質化温度と環境温度の差から、20~130℃以内と計算できる。熱水活 動の時期、継続時間、熱影響の及んだ範囲などについては不明である。一方(3)の場合、熱水活動 の時期と熱影響の及んだ範囲は不明だが、継続時間の上限の制約が可能である。すなわち、約 150℃及び 200℃でアパタイト FT が有意な短縮を受けない時間なので、それぞれ数 10 年と1 ケ 月程度が上限と計算できる(図 2.4-1)。ただし、アパタイト FT 法のアニーリング特性はアパタ イトの Cl 濃度によっても若干変化するため(Carlson et al., 1999)、これらの値は暫定的な計算 結果である。深部流体起源の熱水活動の熱的特徴に係る更なる理解のためには、隆起・侵食速度 が遅く、熱水活動の想定時期より有意に古い冷却年代を産する地域(例えば六甲地域;末岡ほか, 2010)において、本研究と同様の方法論により、検討事例を蓄積していくことが望まれる。





Ketcham et al. (1999)に従って作成。FA は fannning Arrhenius モデル、FC は fanning curvilinear モデルで、それぞれ 2 通りのフィッティングパラメータの場合を示した。T は温度、t は時間、r は FT の短縮率で、r=0.93 は地質時間スケールにわたって地表温度にさらされた試料に典型的な 短縮率に相当する (Ketcham, 2005)。

## 2.5 まとめと今後の展望

深部流体起源の熱水活動の温度や滞留時間などの検討を目的として、紀伊半島の和歌山県田辺 市本宮町平治川の熱水脈露頭から採取した岩石試料を用いて、流体包有物の均質化温度測定と、 熱年代解析を実施した。3 か所の熱水脈露頭のうち 2 か所では、初生包有物の均質化温度が約 150℃と 200℃と推定された。一方、熱年代解析の結果では、いずれの熱水脈露頭でも、周囲の母 岩からは系統的な熱異常は検出できなかった。この原因としては、熱水活動時期が古かったため その後の隆起・侵食で年代が上書きされた、熱水活動時期は最近であるが到達温度が低いか継続 期間が短いため熱年代では検出できなかった、という 2 つの可能性が考えられる。バックグラウ ンドの隆起・侵食速度が遅い地域で、本研究と同様の方法論による検討事例を増やすことにより、 どちらのシナリオがより有力か検証できる可能性がある。

## 3. 粘土鉱物の K-Ar 年代測定に基づいた断層活動性の検討

## 3.1 Objective

K-Ar dating of authigenic and synkinematic illite has often been used to reconstruct fault zone evolution in brittle regimes (e.g., Zwingmann and Mancktelow, 2004; Zwingmann et al., 2010; Yamasaki et al., 2013; Niwa et al., 2016). Understanding thermal, mechanical, and hydrothermal effects on illite neomineralization and Ar retention in illite is important for the evaluation of K-Ar ages from fault rocks. In this collaborative research, we are conducting mechanical comminution experiments and K-Ar dating for illite-rich shales to understand the mechanical effects, and K-Ar dating for samples from a fault zone where the effects of mechanical comminution and hydrothermal alteration were well-studied.

### 3.2 Two main studies carried out within financial year 2019

### 3.2.1 Mechanical comminution and its influence of isotope signature of clay minerals

Within a pilot study the influence of physical deformation via mechanical comminution (grinding) and its influence of isotope signature of clay minerals in a set of well-defined laboratory experiments were investigated. Bern University, CH was selected as its lab facilities comprises state of the art planetary ball mill and McCrone mill and allows to conduct room temperature to elevated temperature milling experiments (to 300°C) which are not available in Japan. Recently completed rotary shearing experimental studies by Zwingmann et al. (2019) were extended to (A) planetary ball mill and (B) McCrone mill experiments at different deformation force, time and temperature conditions. The milling experiments enable to simulate conditions occurring at seismogenic depths and decipher the conditions on isotopic signatures on the first microns to millimetres during earthquake slip.

## (1) Planetary ball milling

Limited experiments are reported for earth science applications but no isotopic age measurement and microstructural investigations have been reported to date in Japan or overseas. In total 11 planetary milling experiments on illite-rich Rochester shale whole rock splits (Folk, 1962) were carried out during the visit to Bern University. Rochester shale has an advantage for K-Ar dating studies because it includes no major K-bearing minerals except illite according to the X-ray diffraction analysis (Den Hartog et al., 2012).

### (2) McCrone milling

The new mill type is used for applications in geology, mineralogy and materials science. 48 cylindrical elements grind the samples gently via friction and due to its unique grinding motion, it is particularly effective. The result is a short grinding time with almost no sample loss and an exceptionally narrow particle size distribution but the influence on the isotopic signatures of clays, i.e., radiogenic Ar loss at ambient and elevated temperatures (to 300°C) has so far not been studied. In total 11 McCrone milling experiments on Rochester shale whole rock splits were carried out during the visit to Bern University.

## 3.3 K-Ar dating of Nobeoka drilling core samples (NOBELL)

Detailed illite crystallinity investigations of Nobeoka drilling core samples (NOBELL)

provide the unique information of thermal, mechanical, and hydrothermal effects within the Nobeoka thrust (Fukuchi et al., 2014). In this study of K-Ar dating, sample disintegration and basic <2 µm clay mineral separation was conducted on 7 core samples of the NOBELL drilling core. The investigated core samples comprise 2 fresh non- weathered fault core, 3 footwall and 2 hanging wall core samples collected over a depths range of 80 to 30 m below ground surface. The obtained  $<2 \mu m$  clay minerals fractions were subsequently dated by conventional K-Ar dating. Detailed accounts of the conventional K-Ar method have been given in textbooks (e.g., Dalrymple and Lanphere, 1969; McDougall and Harrison, 1999). K content was determined by ICP-OES (Agilent) and ~20 mg dry sample aliquots were dissolved with HF and HNO3 (Heinrichs and Herrmann, 1990). The samples, once in solution, were diluted to ~20 ppm K for the ICP-OES analysis. The error of K determinations of all samples and K standard (MA-N) is below 2% (2sigma). Ar isotopic determinations were performed using a procedure similar to that described by Bonhomme et al. (1975). For Ar analysis by noble gas spectrometry, ~20 mg sample splits were loaded into clean Mo foil (Goodfellow molybdenum foil, thickness 0.0125 mm, purity 99.9%), weighed and subsequently heated to 80 °C overnight to remove moisture, and reweighted using a Mettler AT20 balance. The measured dry weight was used in the K-Ar age calculation. Samples were stored in a desiccator prior to loading into the Ar-extraction vacuum line. Once loaded, the samples were heated under vacuum at 80 °C for several hours to reduce the amount of atmospheric Ar adsorbed onto the mineral surfaces during sample handling. Ar was extracted from the test portions by fusing them in a furnace attached to the vacuum line, containing an on-line <sup>38</sup>Ar spike pipette. The isotopic composition of the spiked Ar was measured with an on-line VG3600 mass spectrometer using a high Faraday cup.

The obtained K-Ar ages range from  $41.4 \pm 1.0$  Ma (Paleogene-Eocene-Lutetian) to  $27.8 \pm 0.7$  Ma (Paleogene-Oligocene-Chattian) and cover an age range of 13.6 Ma. Ages are referred to the timescale of Cohen et al. (2013). K concentrations are homogeneous and range from 4.78 to 5.38% indicating white mica/illite mineralogy. Radiogenic <sup>40</sup>Ar ranges from 92.8 to 69.7% and indicated reliable analytical conditions during the course of the study. Blanks for the extraction line and mass spectrometer were systematically determined and the mass discrimination factor was determined periodically by airshots (small amounts of air for <sup>40</sup>Ar/<sup>36</sup>Ar ratio measurement). During the course of the study an international age standard HD-B1 (Hess and Lippolt, 1994) was analysed yielding an age of  $24.34 \pm 0.37$  Ma with an error to reference of +0.54%. The <sup>40</sup>Ar/<sup>36</sup>Ar airshot ratio value is  $295.70 \pm 0.36$ . The K-Ar ages were calculated using <sup>40</sup>K abundance and decay constants recommended by Steiger and Jäger (1977). The age uncertainties take into account the errors during sample weighing, <sup>38</sup>Ar/<sup>36</sup>Ar and <sup>40</sup>Ar/<sup>38</sup>Ar measurements and K analysis.

- The <2  $\mu$ m age data of the two hanging wall samples range from 39.9 to 36.4 (Paleogene-Eocene-Bartonian to Paleogene-Eocene-Priabonian).
- The <2 μm age data of the two main fault zone samples range from 31.7 to 27.8 (Paleogene-Oligocene-Rupelian to Paleogene-Oligocene-Chattian).
- The <2 μm age data of three footwall samples range from 41.4 to 34.2 Ma (Paleogene-Eocene-Lutetian to Paleogene-Eocene-Priabonian) for the deepest core sample collected from 80 mbgs (meter below ground level).</li>

# 【付録2】

### 4. 室内実験に基づいた、熱年代による断層活動性評価手法の高度化

熱年代学の手法に基づいた断層活動性評価手法の高度化を目的として、室内加熱実験を用いた 検討を行う。熱年代学の手法は、断層破砕に伴う摩擦発熱や深部流体の滞留に伴う熱異常の検出 に有効であり、断層の活動性評価への応用が期待されている(Tagami, 2012)。一方、熱年代計の カイネティクスは、フィッション・トラック(FT)法では大気中での加熱実験(例えば、Laslett et al., 1987; Tagami et al., 1998)、(U-Th)/He 法では真空中での拡散実験(例えば、Farley, 2000; Reiners et al., 2004)の結果を基に構築されているが、断層が活動する地下深部では、流体の滞 留や還元的な環境が予想され、これらの条件がカイネティクスに影響を及ぼす可能性が考えられ る。したがって、熱年代学の手法を用いて、より信頼性の高い断層活動性評価を行うためには、 これらの条件がカイネティクスに及ぼす影響について検証する必要がある。令和元年度は、地下 深部の断層帯を模した水熱環境及び還元環境における、ジルコン FT 法のカイネティクスの変化 について検討するため、ジルコンの室内加熱実験を実施した。ジルコンは、物理学的・化学的に 安定で、シュードタキライトなどの断層岩からも産出するため、断層帯の年代測定においては重 要な対象鉱物の一つとなっている(Murakami and Tagami, 2004; Yamada et al., 2012)。

### 4.1 ジルコン FT 法のアニーリングカイネティクス

FT のアニーリングは、非晶質な損傷部分(FT)を構成する原子が熱拡散により移動して結晶 格子を復元する過程であるため基本的には熱拡散により支配されるが、単純な娘核種濃度の一次 の速度論では記述できないことが知られている(Green et al., 1988)。したがって、室内実験及 び天然試料での検証を通じた経験的なアプローチにより、アニーリングカイネティクスを定式化 する必要がある。より具体的な手順としては、温度・時間条件を厳密に制御して加熱した試料に おいて、FT 長の短縮率の測定を系統的に行う。これらの実験データを理論式でフィッティング して地質時間スケールに外挿し、天然環境下で長期間一定温度にさらされたと期待できる試料(例 えばボーリングコア試料)との比較により、外挿の妥当性を吟味する。

熱年代計のカイネティクスでは、基本的には加熱温度と加熱時間が主要な制御要因だと考えら れているが、ジルコン FT 法以外の手法では、他の要因による影響がいくつか知られている。例 えば、アパタイト FT 法ではアパタイトの化学組成(Green et al., 1985; Burtner et al., 1994; Carlson et al., 1999)や圧力(ただしアパタイト FT 法の閉鎖深度より深部に相当する超高圧下; Wendt et al., 2002; Schmidt et al., 2014)、アパタイト(U-Th)/He 法では放射線損傷(Shuster et al., 2006; Flowers et al., 2009)やアパタイトの化学組成(Gautheron et al., 2013)、ジルコン (U-Th)/He 法では放射線損傷(Guenthner et al., 2013)による影響が指摘されている。ジルコン FT 法については、圧力(Fleischer et al., 1965; Brix et al., 2002)、水熱環境(Yamada et al., 2003)、放射線損傷(Tagami and Matsu'ura, 2019)、Hf 濃度(Tagami and Matsu'ura, 2019) について検討例があるが、現状のところ、いずれも有意な影響は報告されていない。本研究では、 地下深部の断層帯における環境を念頭に置き、Yamada et al. (2003)が行った水熱環境における 実験をより多様な温度・時間条件で行うとともに、還元環境における実験を実施した。

### 4.2 分析試料

分析試料は、京都大学から提供された仁左平デイサイトのジルコンを用いた。仁左平デイサイトは、岩手県二戸市に分布する中新世のデイサイトで、黒雲母 K-Ar 年代で 20.99±0.28Ma、ジルコン FT 年代で 22.8±1.0Ma の年代値が報告されている(Tagami et al., 1995)。仁左平デイサイトのジルコンは、10.83±0.10 µm の自発トラック長を有しているが、これは誘導トラック長

(11.05±0.11 µm) とも誤差範囲で一致しており、岩体形成以降、地質学的には有意なアニーリ ングを被っていないと考えられている(Yamada et al., 1995a)。そのため、仁左平デイサイトの ジルコンは、ジルコン FT 法のアニーリングカイネティクスの検討などの基礎実験において、標 準試料として用いられている(例えば、Hasebe et al. 1994; Yamada et al., 1995a,b; Yamada et al., 2003; Murakami et al., 2006; Tagami and Matsu'ura, 2019)。

### 4.3 研究手法

加熱実験は、スイス・ローザンヌ大学の実験装置を用いて行った。今回行った実験は、水熱加熱が5通り、還元環境での加熱が5通りの計10通りである(表 4.3-1)。加熱温度と加熱時間は、 Yamada et al. (1995b)の大気中での加熱実験結果を参考に、FTの短縮が系統的に観察できる可能性が高そうな条件を選定した。

水熱加熱試料の前処理の手順を以下に示す。水熱実験に供するジルコン試料は、バッファー及 び蒸留水と共に金製のカプセルに封入し、密封する必要がある。まず、金製のチューブを切断し て片側を溶接し、カプセルを作成する。これに、ジルコン試料と、マグネタイト・ヘマタイトを 混ぜて作成したバッファーを入れる。さらに蒸留水を加えて、実験時の温度・圧力条件において、 カプセル内が水で満たされるように調整する。なお、各段階での重量を電子天秤で秤量し、内容 物の重量を確実に記録しておく。カプセルの上端を溶接して、完全に密封する。密封されている か確認するため、90℃のオーブンで一時間加熱した後に再度秤量し、重さが変化していないこと を確認する。還元環境での加熱実験については、前処理からローザンヌ大学側に依頼したため、 詳細は割愛する。

| 実験環境                | 加熱時間(hr) | 加熱温度(℃) |
|---------------------|----------|---------|
| 水熱                  | 2        | 500     |
| 水熱                  | 10       | 500     |
| 水熱                  | 100      | 500     |
| 水熱                  | 500      | 500     |
| 水熱                  | 1,000    | 500     |
| H2雰囲気               | 1        | 550     |
| H2雰囲気               | 1        | 600     |
| H2雰囲気               | 1        | 650     |
| H2雰囲気               | 10       | 550     |
| CO <sub>2</sub> 雰囲気 | 1        | 600     |

表 4.3-1 実験条件一覧

### 4.4 まとめと今後の展望

熱年代学の手法に基づいた断層活動性評価手法の高度化を目的として、仁左平デイサイトのジ ルコンを用いて、室内加熱実験を実施した。地下深部の断層帯を模した水熱環境及び還元環境で、 全部で10通りの温度・時間条件で加熱実験を行った。今後の予定としては、これらの加熱試料を 用いて、FT長の測定を行い、水熱環境及び還元環境がジルコンFT法のカイネティクスに及ぼす 影響について検討する。また、より長時間の加熱実験や、アパタイトを用いた実験、(U-Th)/He法 のカイネティクスに関する検証についても検討予定である。

# 【付録2】

### 5. 地質温度圧力計と U-Pb 年代測定法を用いた侵食史の推定

地質温度圧力計を利用して花崗岩体の固結深度を決定すると同時に、岩体固結時の絶対年代を、 ジルコンの U-Pb 年代測定によって決定する。これを研究対象地域(飛騨山脈黒部地域)で複数の 岩体内の異なる地理的位置の試料について行うことで、侵食量の上限を制約する。条件がそろえ ば研究対象地域の侵食史を推定できる。

### 5.1 研究手法

本研究で用いる地質温度圧力計は、角閃石圧力計(Al-in-Hbl 圧力計)と角閃石—斜長石温度計である。まず、Al-in-Hbl 圧力計の原理について、Hoillister et al. (1987)及び Schmidt (1992)に 基づいた、高橋(1993)の解説をもとに簡単に述べる。

花崗岩の全岩化学組成は、SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, TiO<sub>2</sub>, MgO, FeO, Fe<sub>2</sub>O<sub>3</sub>, CaO, Na<sub>2</sub>O, K<sub>2</sub>O 及び H<sub>2</sub>O の 10 成分で近似できる。ウェット・ソリダス上における構成鉱物が、角閃石、黒雲母、斜長石、カ リ長石、石英、(チタン石、磁鉄鉱、チタン鉄鉱)のうち 2 相、メルト、H<sub>2</sub>O であるとすると、 10 成分系で 9 相共存となり、自由度は 3 になる。角閃石を含む花崗岩質メルトのウェット・ソリ ダスは、2 kbar 以上でほぼ一定温度(約 700°C)であること及び、多くの花崗岩体で斜長石リム の化学組成はほぼ一定であることから、自由度が 2 減って 1 になり、圧力だけが変数になる。こ のときの単純化した反応式は

2 石英 +2アノーサイト + 黒雲母 = 角閃石 + カリ長石 を考えればよい。角閃石をチェルマク閃石と考えると

2SiO<sub>2</sub>+2CaAl<sub>2</sub>Si<sub>2</sub>O<sub>8</sub> + KMg<sub>3</sub>AlSi<sub>3</sub>O<sub>10</sub>(OH)<sub>2</sub> = Ca<sub>2</sub>Mg<sub>3</sub>Al<sub>2</sub>Si<sub>6</sub>Al<sub>2</sub>O<sub>22</sub>(OH)<sub>2</sub> + KAlSi<sub>3</sub>O<sub>8</sub> と表記できるが、このとき角閃石は MgSi = AlAl のチェルマック置換が可能で、これが圧力の指 標となる (Hoillister et al., 1987; Schmidt, 1992; 高橋, 1993)。圧力と Al 量の相関には、斜長石 置換(NaSi = CaAl) もかかわっているが影響は小さい(Schmidt, 1992)。実際には、Sin = Al(Na,K) のエデナイト置換(nは空隙) によっても角閃石中の Al 量は変動するため、正確な圧力見積もり にはエデナイト置換の評価が欠かせない (Anderson and Smith, 1995)。Al-in-Hbl 圧力計の改良 は現在も続いており、さまざまなキャリブレーションがある (例えば Mutch et al., 2016)。本研 究では、従来のキャリブレーションよりも、より低圧まで適用可能な Mutch et al. (2016)のキャ リブレーション

 $P (kbar) = 0.5 + 0.331(8) * Al_{tot} + 0.995(4) * Al_{tot}^{2}$ 

を用いた。こうして求まった圧力は、上述の原理と整合的であること、すなわち温度・圧力図上 でウェット・ソリダス上に位置していることが必要である。その検証のため、圧力見積もりに用 いた角閃石とそれに隣接する斜長石の組成に対して、シリカに飽和した岩石中で斜長石と共存す る角閃石の Aliv 量を用いた角閃石—斜長石温度計(Blundy and Holland, 1990)を適用し、求ま った温度圧力条件がウェット・ソリダス上の条件として適当であるか否かも検証した。これらの チェックを通過したデータを用いて、花崗岩の固結深度を見積もった。

#### 5.2 研究試料

本研究では飛騨山脈黒部地域の2地点から採取済みの岩石試料 KRG04 と KRG07 を用いて固 結温度・圧力推定を行った(図 5.2-1)。これに加え、昨年度までに未分析の同地域の岩石試料31 個について、43 枚の薄片を京都大学で作成し、温度圧力推定に必要な角閃石の有無を偏光顕微鏡 観察で調べた。これらのうち角閃石を含む試料については、14 枚のダイアモンド研磨薄片を京都 大学で作成し、うち11 試料について電子線マイクロアナライザーで、岩石組織観察と鉱物化学 組成分析を進めた。また、角閃石を含む 12 試料のジルコン分離作業を株式会社京都フィッション・トラックで行い(表 5.2-1)、U-Pb 年代測定のための試料準備を行った。

| #  | 試料名                | アパタイト粒子数  | ジルコン粒子数   | 備考         |
|----|--------------------|-----------|-----------|------------|
| 1  | KRG19-AB02 MME     | $>10^{4}$ | 3,000     | Thorite微量  |
| 2  | KRG19-00           | 3,000     | 105       |            |
| 3  | KRG19-A01          | 1,000     | 104       |            |
| 4  | KRG19-A02          | 1,000     | 104       |            |
| 5  | KRG19-A03 granite  | 300       | 104       | Py多し       |
| 6  | KRG19-A03 MME      | 300       | 2,000     |            |
| 7  | KRG19-A04 MME      | ~100      | 500       |            |
| 8  | KRG19-A06          | $>10^{4}$ | $>10^{4}$ | Thorite微量  |
| 9  | KRG19-B04          | 5,000     | $>10^{4}$ |            |
| 10 | KRG19-B08b granite | 500       | 2,000     |            |
| 11 | KRG19-B08b mafic   | 500       | 5,000     |            |
| 12 | KRG19-B11          | 3,000     | 104       | Thorite目立つ |

表 5.2-1 鉱物分離の結果



図 5.2-1 Ito et al. (2013)の試料採取地点

lto et al. (2013)の試料採取地点(01-13)と King et al. (2020)及び末岡ほか(未公表)の試料採 取地点(101-115)を示している。既報のジルコン FT 年代とジルコン U-Pb 年代(Yamada, 1996; lto et al., 2013)はそれぞれ黒字と赤字で示している。本研究で固結温度・圧力推定を 行った試料は 04 と 07 から得られた。

## 5.3 分析方法

京都大学設置の波長分散型電子線マイクロアナライザーJEOL JXA-8105 による鉱物化学分析 は、ダイアモンド研磨した試料を C 蒸着後、加速電圧 15.0 kV、電流値 10 nA、ビーム径 3 μm で行った。標準試料には Astimex 社製 MINM25-53 及びその他の天然及び合成鉱物を用い、濃度 計算にあたっては ZAF 補正を適用した。ピークとバックグラウンドの計測時間は、F については それぞれ 60 秒と 30 秒、Cl については 30 秒と 15 秒、他の元素については 10 秒と 5 秒とした。

## 5.4 岩石記載

KRG04 及び KRG07 は、それぞれ 5.4±0.2Ma 及び 5.5±0.1Ma の U-Pb ジルコン年代を示すため(Ito et al., 2013)、黒部別山花崗岩(原山ほか, 2010)に相当する。構成鉱物は角閃石、黒雲母、斜長石、カリ長石、石英、チタン石、磁鉄鉱、燐灰石、褐簾石及びジルコンである。KRG04、KRG07 のマトリクスの黒雲母や長石類は、結晶化後の流体活動の影響により、緑泥石化及び一部セリサイト化している。

KRG04 においては、角閃石の分解も顕著で、2 次的な緑泥石やチタン石に置換される。そのため、固結圧力推定においては緑泥石化の程度が弱い箇所を用いた。角閃石のコアはリムに比べて Mg に富み Al に乏しい。マグネシオホルンブレンド組成の角閃石が大半であるがアクチノライト 組成の部分も存在する。角閃石のリムにはカリ長石など角閃石圧力計の適用に必要な鉱物が包有 されていることが X 線マップから確認でき、角閃石のリムはマトリクスの斜長石リムと接している (図 5.4-1)。

KRG07 においては、マグネシオホルンブレンド組成の角閃石はパッチ状の組成累帯構造を示 し(図 5.4·2)、コアにはチタン鉄鉱や燐灰石が包有される。一方リムには、緑泥石化した黒雲母、 斜長石、チタン石、カリ長石、燐灰石が包有され、これらの組合せに石英、磁鉄鉱、褐簾石を加 えた鉱物組合せを有するマトリクス鉱物と平衡共存していたと考えられる。斜長石のリムは An14-22 程度を示す。

# 【付録2】



図 5.4-1 KRG04 に含まれる角閃石及びその周辺の X 線マップと BSE 像 (a) Fe の X 線マップ (b) Mg の X 線マップ (c) Al の X 線マップ (d) K の X 線マップ (e) BSE 像 (f) BSE 像。(e)の赤四角内の拡大。角閃石と接する斜長石リムの一部は顕微鏡下で汚 濁しており、やや変質している。



図 5.4-2 KRG07 に含まれる角閃石とその周辺の X 線マップ (a) BSE 像、(b) CI の X 線マップ、(c) AI の X 線マップ、(d) Mg の X 線マップ、(e) K の X 線マ ップ

# 5.5 地質温度・圧力計の適用

KRG04 及び KRG07 の角閃石リムのうち、An15 以上の斜長石リムと共存する部分は、共存鉱物の観点から Mutch et al. (2016)の適用条件を満たし、マグマの固結圧力を与えうる。そのような角閃石リム組成に Mutch et al. (2016)の Al-in-Hbl 圧力計を適用して固結圧力を求めた。また、その角閃石組成と隣接する斜長石リムの組成とに、角閃石—斜長石温度計 (Blundy and Holland, 1990)を適用し、温度条件を求めた。

ただし、KRG04 では微細組織観察から、角閃石と直接接する斜長石リム最外縁部の一部に、2 次的な変質部分が認められる (図 5.4-1)。こうした部分はマグマ固結時の鉱物化学組成を保持し ていないと考えられるため、温度・圧力推定には用いないこととした。

KRG07 では、角閃石化学組成の Al vs Cl、Al vs Mg などのプロット上で、化学組成トレンド が屈曲する傾向が認められる(図 5.5-1)。図 5.5-1 で水色の点として示した分析点は、直接接す る角閃石リムと斜長石リムのペアから温度圧力見積もりを行うために用いた点である。温度・圧 力推定に用いた斜長石と直接接する角閃石リムの組成は両者にまたがる。図 5.4-2 の X 線マップ を参照すると、Cl 濃度が低い部分は Mg 濃度が高くなっており、Mg-Cl avoidance rule に従って いることがわかる。

| 圧力推定に用いたデータ |
|-------------|
| 固結温度 ·      |
| 表 5.5-1     |

| 166         168         172         55         55           7.24         7.21         7.07         7.24         7.24           0.16         0.19         0.93         0.16         0.16           0.17         0.19         0.93         0.76         0.16           0.17         0.19         0.93         0.11         0.11           0.93         0.97         1.03         0.91         0.11           0.93         0.97         0.18         0.11         0.11           0.93         0.97         0.93         0.76         0.76           0.33         0.97         1.08         0.81         0.81           0.16         1.14         51         52         52           1.66         1.77         2.01         1.54         1.54           1.16         1.17         2.02         0.29         0.26           0.27         0.28         7.03         0.26         0.26           0.27         0.28         7.03         0.29         0.26           1.10         1.17         2.02         0.29         0.26           1.23         1.31         1.24         1.24 | 166         168         172         55         55         63         1           7.24         7.21         7.07         7.24         7.24         7.01         7.           0.17         0.19         0.13         0.16         0.11         0.11         0.12         0           0.17         0.18         0.15         0.11         0.11         0.11         0.12         0           0.13         0.16         1.08         0.11         0.11         0.11         0.12         0           16         16         1.4         51         52         28         32.7         32.7         32.7         32.7         32.7         32.7         32.7         32.7         32.7         32.7         32.7         32.7         32.7         32.7         32.7         32.7         32.7         32.7         32.7         32.7         32.7         32.7         32.7         32.7         32.7         32.7         32.7         32.7         32.7         32.7         1.1         0.1         1.1         1.1         1.1         1.1         1.2         1.2         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1 | 166         168         172         55         55         63         178         178           7.24         7.21         7.07         7.24         7.01         7.24         7.24           0.16         0.19         0.03         0.76         0.99         0.76         0.76           0.17         0.18         0.16         0.11         0.11         0.12         0.26         0.76           0.17         0.18         0.16         0.11         0.11         0.11         0.16         0.76         0.76           0.13         0.97         1.08         0.11         0.11         0.12         0.26         0.76         0.76           0.93         0.97         1.08         0.11         0.11         0.11         0.26         0.26         0.26           0.13         0.97         1.08         0.87         0.14         52         23         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2 | 166         168         172         55         55         53         178         173         173           0.17         0.19         0.13         0.16         0.17         7.24         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23         7.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 166         168         172         55         55         63         178         179         179         182         183           7.24         7.21         7.07         7.24         7.24         7.23         7.03         7.03         7.03         7.04         7.24         7.24         7.24         7.24         7.24         7.24         7.24         7.24         7.04         7.24         7.24         7.03         0.76         0.76         0.76         0.77         0.77         0.94         0.86           0.17         0.18         0.11         0.11         0.11         0.12         0.20         0.23         0.33         0.23         0.23         0.23         0.24         0.26           0.17         0.17         38.6         37.7         32.7         33.1         29.6         6.96         7.14         7.01         1.14         1.02           0.28         0.33         0.33         0.33         0.33         0.33         0.33         0.34         20.6         0.14         1.14         1.01         1.14         1.01         1.14         1.01         1.14         1.01         1.14         1.16         1.14         1.14         1.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16         18         17         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         7                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 55         55           7,24         7,24           0,76         0,76           0,31         0,11           0,87         0,81           0,81         0,81           1,54         1,54           51         52           53         38.6           38.6         37.7           54         0,37           55         53           55         5,32           59         0,33           0,93         0,03           1,42         0,14           1,42         0,19           0,14         0,19           0,14         0,19           0,142         0,19           1,42         0,19           0,19         0,19           0,19         0,19           0,19         0,19           1,45         1,45           1,46         1,16           650         650                                                                                                                                                                                                                                                                                                                        | 55         55         63         1           7.24         7.24         7.01         7.           0.76         0.76         0.99         0.           0.31         0.11         0.12         0.         0.           0.81         0.11         0.12         0.         0.         0.           0.81         0.11         0.12         0.         0.         0.         0.           1.54         1.53         7.26         6         0.         0.         0.         0.           1.54         0.25         0.23         7.26         6         0.         0.           1.53         0.25         0.25         7.95         6         0.         0.           1.45         1.53         7.95         6         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         <                                                            | 55         55         63         178         178           7.24         7.24         7.01         7.24         7.24           0.76         0.76         0.99         0.76         0.76           0.11         0.11         0.12         0.26         0.76           0.87         1.11         0.96         0.76         0.76           0.87         1.11         0.96         0.76         0.76           0.87         1.11         0.96         0.76         0.76           154         2.12         1.11         2.96         0.76         0.76           154         1.52         2.8         2.0         0.76         0.76         0.76           154         1.54         2.10         1.73         2.17         1.73         2.13           155         0.53         0.53         1.75         1.73         1.73           142         1.54         1.05         1.05         1.05         1.05           142         1.24         1.27         1.05         1.05         1.05         1.05           0.13         0.12         0.13         1.27         1.05         1.05         1.05         1.05                          | 55 55 53 178 178 179 179<br>7.24 7.24 7.01 7.24 7.23 7.23<br>0.16 0.76 0.99 0.76 0.76 0.77 0.77<br>0.11 0.11 0.95 0.96 1.10 1.10<br>0.11 0.11 0.95 0.96 1.10 1.10<br>0.13 0.21 0.20 0.33 0.33<br>0.88 377 32.7 33.1 29.6 33.1 29.6<br>696 693 726 657 668 668 660<br>0.13 0.13 0.13 0.13 0.13<br>0.25 0.32 0.33 0.33 0.33<br>0.33 0.33 0.33 0.33 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PICE Hbl/Amiliesse L ていないないないないないないないないないないないないないないないないないないな                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 55         56         3         178         179         179         182         183         185         185         185         185         185         185         185         185         185         185         185         185         185         185         185         185         185         185         185         185         185         185         185         185         185         185         185         185         185         185         185         185         185         185         185         185         185         185         185         185         185         185         185         185         185         185         185         185         185         185         185         185         185         185         185         185         185         185         185         185         185         185         185         185         183         131         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 63 1<br>7.01 7.<br>0.99 0.<br>1.111 0.<br>28 32.7 33<br>726 6<br>2.10 1.<br>7.95 6.<br>1.27 1.<br>1.27 1.<br>1.27 1.<br>0.1.27 1.<br>0.1.27 1.<br>0.1.27 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PI-<br>63 178 178<br>7.01 7.24 7.24<br>0.99 0.76 0.76<br>0.11 0.96 0.76<br>1.11 0.96 0.96<br>1.11 0.96 0.96<br>2.10 1.13 2.9.6<br>726 675 665<br>726 675 666<br>726 654 6.54<br>1.27 1.05 1.05<br>1.28 0.38<br>0.34 0.28 0.96<br>7.13 1.73<br>0.34 6.54<br>1.27 1.05 1.05<br>約月石のSiやAlit 0-23のとき<br>加い10.業さへの態質には認識                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>FI-E HIDが 施装装 L</li> <li>53</li> <li>7,01</li> <li>7,24</li> <li>7,24</li> <li>7,23</li> <li>7,23</li> <li>0,99</li> <li>0,76</li> <li>0,76</li> <li>0,77</li> <li>0,91</li> <li>1,10</li> <li>1,11</li> <li>0,96</li> <li>0,96</li> <li>1,10</li> <li>1,10</li> <li>1,11</li> <li>0,96</li> <li>0,96</li> <li>1,10</li> <li>1,10</li> <li>1,10</li> <li>1,11</li> <li>0,96</li> <li>0,96</li> <li>1,10</li> <li>1,10</li> <li>1,10</li> <li>1,11</li> <li>1,10</li> <li>1,11</li> <li>1,11</li></ul> | <ul> <li>FILE HIDIが直接接L ていない</li> <li>63 178 178 179 179 182 183</li> <li>7.01 7.24 7.23 7.23 7.06 7.14</li> <li>0.09 0.76 0.76 0.77 0.34 0.86</li> <li>0.11 0.96 0.96 110 11.0 1.14 100</li> <li>1.11 0.96 0.96 110 11.0 1.14 100</li> <li>2.10 1.73 1.73 2.07 2.16 34.1</li> <li>2.10 1.73 1.73 2.07 2.16 1.86</li> <li>0.34 0.38 0.33 0.33 0.33 0.33 0.31 700</li> <li>7.25 657 666 668 668 060 713 700</li> <li>7.35 657 665 73 0.37 2.31 1.16</li> <li>1.20 1.73 1.73 1.73 700</li> <li>7.35 654 6.34 7.83 8.33 8.33 0.35 0.35 0.33</li> <li>0.36 0.24 7.88 7.83 8.31 700</li> <li>7.95 6.54 6.34 7.83 7.33 0.33 0.33 0.33 0.33 0.33</li> <li>1.29 1.05 1.25 1.25 1.31 1.16</li> <li>1.10 1.14 1.10</li> <li>1.12 1.05 1.05 1.25 1.25 1.31 1.16</li> <li>1.11 1.11 1.11</li> <li>1.11 1.11 1.11</li> <li>1.11 1.1</li></ul> | <ul> <li>FILとHolhが遺譲度していない</li> <li>53 178 179 179 182 183 185 186</li> <li>7.00 7.24 7.23 7.23 7.06 7.14 7.26 7.24</li> <li>0.09 0.76 0.76 0.77 0.94 0.86 0.74 0.76</li> <li>0.11 0.96 0.96 1.10 114 102 0.93 0.93</li> <li>1.11 0.96 0.96 1.10 114 102 0.93 0.93</li> <li>2.21 33.1 29.6 33.1 29.6 33.1 33.1 29.6 31.2 33.7 33.1 29.6 33.1 33.1 29.6 31.2 30.3 0.33</li> <li>2.22 6.75 6.66 6.68 6.60 7.13 701 6.73 6.1 57 0.25</li> <li>1.23 1.2 1.2 1.2 1.2 1.2 1.13 1.01 0.95</li> <li>1.29 6.54 6.54 7.33 7.33 8.17 7.04 6.29 5.95</li> <li>1.29 1.29 1.31 1.13 1.01 0.95</li> <li>1.29 1.25 1.25 1.31 1.13 1.01 0.95</li> <li>1.20 2.20 2.25 5.54</li> <li>1.20 2.20 2.25 5.54</li> <li>1.21 1.05 1.05 1.25 1.25 1.31 1.13 1.01 0.95</li> <li>1.21 1.05 1.05 1.25 1.25 1.31 1.13 1.01 0.95</li> <li>1.21 1.05 1.05 1.25 1.25 1.31 1.13 1.01 0.95</li> <li>1.21 1.05 1.05 1.25 1.25 1.31 1.13 1.01 0.95</li> <li>1.21 1.05 1.05 1.25 1.25 1.31 1.13 1.01 0.95</li> <li>1.21 1.05 1.05 2.1.25 1.31 1.13 1.01 0.95</li> <li>1.21 1.05 1.05 2.30 2.4 0.9000.0000.0000.0000.0000.00000.00000.0000</li></ul> |



【付録2】





KRG07



図 5.5-2 KRG04 及び KRG07 の固結深度見積もり。 水色の点は直接接する角閃石と斜長石のリムを用いており、 これらを信頼性が高い見積もりとして採用する。

詳細な微細組織観察を反映して、固結圧力見積もりに用いる分析点を吟味した結果、KRG04 と KRG07 からそれぞれ 1.54±0.25・2.21±0.35 kbar 及び 1.58±0.25・2.38±0.38 kbar の固結圧力が見 積もられた(表 5.5・1)。花崗岩体の上に存在する岩石の平均密度を 2700 kg/m<sup>3</sup>とし、静岩圧を 仮定すると、KRG04 と KRG07 からそれぞれ 5.8±0.9・8.3±1.3 km 及び 6.0±1.0・9.0±1.4 km の 固結深度が見積もられた(図 5.5・2)。求まった固結温度・圧力条件は、誤差の範囲内で優白質花 崗岩の含水ソリダス上にのることが確認できた(図 5.5・2)。この固結深度見積もりは、昨年度求 めた KRG16・101 の見積もりと誤差の範囲で一致する。

## 5.6 まとめと今後の展望

今年度は約 5.5Ma の年代を示す黒部別山花崗岩 2 試料について固結深度を 5.8±0.9 - 8.3±1.3 km 及び 6.0±1.0 - 9.0±1.4 km と見積もることができた。KRG04 について約 5.4Ma 以降の平均 削剥速度を求めると、1.0±0.2 - 1.6±0.3 mm/yr となる。また KRG07 については約 5.5Ma 以降の 平均削剥速度が 1.1±0.2 - 1.7±0.3 mm/yr と見積もられる。

図 5.5-1 に示したような、角閃石の組成変化トレンドにみられる屈曲の成因がわかれば、圧力 計適用条件である相組合せが満たされている段階を一層絞り込むことができ、マグマ固結時の温 度・圧力条件をさらに制約できる可能性がある。よって今後、微細組織観察をさらに綿密に推し 進めることで、角閃石の組成変化トレンドの屈曲の原因を探る。また今年度新たに分析を開始し た黒部川花崗岩の試料の解析と年代測定実施により、さらに新しい年代に固結した花崗岩体の固 結深度を求めることができるかもしれない。

### 6. 熱年代学、宇宙線生成核種法、地形解析による山地の隆起・侵食過程の検討

### 6.1 熱年代学による山地の隆起・侵食過程の検討

東北日本弧前弧域を対象として、地質学的タイムスケール(>10<sup>6-7</sup>年)における熱史及び削剥 史の推定を目的に、熱年代学を適用した。令和元年度は、新たに入手した岩石試料(主に北上山 地に分布する白亜紀花崗岩類及び古生代花崗岩類)を対象に、7 地点で鉱物分離を、5 地点でア パタイトフィッション・トラック(AFT)解析を実施した。また平成30年度に鉱物分離済みの4 試料で追加の鉱物分離を、5 試料で追加のAFT解析を行った。すなわち、合計で11 試料の鉱物 分離と10 試料のAFT解析を実施した。これらのAFTデータを基に削剥速度を推定し、東北日 本弧前弧域における熱史及び削剥史を議論する。

### 6.1.1 研究手法

熱年代学とは、鉱物あるいは岩石が経験した温度時間履歴(=熱史)や熱イベントの時期を推定する学問領域である。放射年代測定は、不安定な放射性親核種が、一定の時間で安定な娘核種へと遷移する放射壊変という現象に基づいており、親核種と娘核種の量比から年代を算出することができる。この時、親核種や娘核種が外界へ流出/流入しない状態(=閉鎖系)を仮定しているが、娘核種は高温では系外へ散逸してしまうため、系の開放/閉鎖は温度に強く依存する。ある温度以下の場合に閉鎖系と近似できるとき、この温度を閉鎖温度と呼ぶ。Dodson (1973)による数学的モデルの開発により、これまでに様々な手法-鉱物組み合わせの閉鎖温度が決定されてきた。熱年代計の閉鎖温度は、手法と鉱物組み合わせにより異なる(Reiners, 2009)。そのため、対象とする熱イベントの温度に応じた熱年代計を選択する必要がある。逆に閉鎖温度の違いを利用して、同一の試料に対して複数の熱年代計を適用すると、各閉鎖温度に対応して時間目盛りを入れられるため、連続的な熱史の復元が可能である。最近では、計算ソフトウェアの開発・発達などにより、高精度な熱史の逆解析が可能となってきている。

地質現象の中には温度変化を伴うものが多いため、石油の熟成度評価や断層の活動性評価など、 熱年代学の応用対象は多岐にわたる。中でも、本研究で対象とするような山地における上昇冷却 史の推定に関する研究は、1970年代のヨーロッパアルプスでの研究以降、ヒマラヤやアンデスな ど世界の主要な造山帯において実施されてきた。これら上昇冷却史に関する研究は、地下の温度 構造を仮定することで、熱史を深度情報に読み替えている。つまり、閉鎖深度(閉鎖温度に達す る深度)から地表までの上昇に要した時間が試料の年代値として得られるため、ある地点におけ る岩石の冷却速度、ひいてはその地域の平均の削剥速度を求めることができる。本研究では、地 殻浅部の熱史/削剥史の推定を目的に、比較的低い閉鎖温度(90~120℃)を持つ AFT 法を適用し た。

### 6.1.2 分析試料

北上山地及び阿武隈山地に分布する白亜紀花崗岩類(京都大学からの提供試料)を分析試料と して用いた。熱年代学では主に花崗岩類を対象とするが、その理由として、測定に適した自形か つ透明度の高い粗粒なアパタイト/ジルコンが豊富に産出(1,000 粒以上)することが挙げられ る。また、試料の年代が削剥による若返りであることを仮定するために、第四紀火山や地熱地帯 などの高温地域や岩脈の貫入や熱水活動などのローカルな熱影響を避ける必要がある。本研究で 対象とする北上山地及び阿武隈山地には、第四紀火山の存在は知られていない。加えて、東北日 本弧では最も広範囲に花崗岩類が露出する地域であり、研究対象として適当であると考えられる。 本研究では、新たに提供された北上山地の7試料の鉱物分離を実施した。また昨年度に用いた 北上山地及び阿武隈山地の 16 試料の内、充分量のアパタイト粒子が得られなかった4 試料について、追加で鉱物分離を実施した。分離作業は株式会社京都フィッション・トラックに依頼した。 岩石試料は粉砕及びふるい掛けの後、重液や磁石を用いて対象鉱物を濃集させた。鉱物分離の結 果を表 6.1-1 に示す。アパタイト、ジルコンともに全 11 試料で測定に充分な量の粒子数を確認 できた。

| 試料名      | 山地·地質         | 粉砕処理量(kg) | アパタイト粒子数(個) | ジルコン粒子数(個) |
|----------|---------------|-----------|-------------|------------|
| FSK19-1  | 北上山地·白亜紀花崗岩類  | 0.2       | 5000        | ~5,000     |
| FSK19-2  | 北上山地•白亜紀花崗岩類  | 0.2       | 3000        | 10000      |
| FSK19-3  | 北上山地•白亜紀花崗岩類  | 0.2       | >10,000     | 10000      |
| FSK19-5  | 北上山地·古生代花崗岩類  | 0.2       | 1000        | 10000      |
| FSK19-7  | 北上山地·古生代片麻岩   | 0.2       | >10,000     | >10,000    |
| FSK19-8  | 北上山地·古生代花崗岩類  | 0.2       | 3000        | >10,000    |
| FSK19-9  | 北上山地·白亜紀花崗岩類  | 0.2       | 10000       | 10000      |
| FST18-6  | 阿武隈山地·白亜紀花崗岩類 | 1         | 2000        | >10,000    |
| FST18-7  | 阿武隈山地·白亜紀花崗岩類 | 2         | 10000       | 100000     |
| FST18-8  | 阿武隈山地·白亜紀花崗岩類 | 1         | 10000       | 100000     |
| FST18-14 | 阿武隈山地·白亜紀花崗岩類 | 2         | 5000        | 100000     |

表 6.1-1 鉱物分離結果

### 6.1.3 分析手順

### (1) AFT 年代測定

FT 年代の算出のためには、親核種である <sup>238</sup>U の濃度と、娘核種に相当する FT の密度を計測 する必要がある。年代値算出までの実験手順の流れとして、粒子の選別、固定 (マウント)、研磨、 化学処理 (エッチング) といった前処理を経て、FT 密度の測定、U 濃度の測定を行う。本研究で は、FT 法の中でも閉鎖温度が比較的低いアパタイトを対象とした年代測定を実施した。前処理 及び FT 密度の測定は、京都大学大学院理学研究科で実施し、U 濃度の測定は金沢大学に設置さ れたレーザーアブレーション型誘導プラズマ質量分析装置 (LA-ICP-MS) を用いて行った。

### (2) 削剥速度の推定

北上・阿武隈山地における AFT 年代値から、それぞれの山地における削剥速度を計算した。一般に、熱年代学的手法により求められた年代値(*tc*)と平均削剥速度の関係は以下の式によって表される。

$$\frac{\Delta D}{\Delta t} = \frac{T_c - T_s}{Gt_c}$$

ここで、 $\Delta D/\Delta t$ は時刻  $t_c$ 以降の平均削剥速度、 $T_c$ は用いた熱年代計の閉鎖温度、 $T_s$ は現在の地表面の温度、Gは地温勾配を表す。本研究では、AFT 法における閉鎖温度  $T_c$ は 90~120℃を採用し、東北地方における現在の地表面の温度  $T_s$ は 10℃とした。また地温勾配 Gは田中ほか(2004)の地温勾配データを参照し、北上山地では 20~40℃/km、阿武隈山地で 30~40℃/km とした。

### 6.1.4 分析結果と考察

昨年度及び今年度に得られた年代値を表 6.1-2 に示す。先行研究としては、北上山地でおよそ 140~80 Ma の AFT 年代(後藤, 2001; Fukuda et al., 未公表)、およそ 90~45 Ma のアパタイ ト(U-Th)/He (AHe) 年代(Fukuda et al., in press)が得られている。また阿武隈山地で、およ そ 100~50 Ma の AFT 年代(後藤, 2001; Ohtani et al., 2004; Fukuda et al., 2019)、およそ 65 ~50 Ma の AHe 年代(Sueoka et al., 2017)が得られている。本研究で得られた年代値は、北 上・阿武隈両山地についてそれぞれの手法において誤差 20 で先行研究に概ね整合的である。た だし、FST18-15 の AFT 年代は、十分な FT 数が測定できず誤差が大きいため参考値として扱い、 以下の議論には用いない。

東北地方の山地は東西圧縮応力によって隆起してきたと考えられている(太田ほか,2010)。そこで、北上山地と阿武隈山地のそれぞれにおいて、東西方向の年代値の傾向を考察する。先行研究のデータを含めた年代プロットを図 6.1-1 及び図 6.1-2 に示す。北上山地では、AFT 年代は東縁から東経 141.6 度付近まで徐々に若返り(140~80 Ma)、それより西側はおよそ 80 Ma で一定の年代値となっている(図 6.1-1)。一方で AHe 年代は東経 141.45 度付近より東側はおおよそ 50~40 Ma を示すが最も西側の地点ではおよそ 90 Ma という古い年代値となっており、AFT 年代と AHe 年代では傾向の違いが見られる。ただし、最も西側の地点(Fukuda et al., in press; Fukuda et al., 未公表)では、AHe 年代が閉鎖温度の高い AFT 年代より古い値を示しており、熱水活動などの局所的な短時間加熱イベントを反映している可能性がある。

阿武隈山地では、AFT 年代は畑川断層帯を境に年代値が変化し、畑川断層帯の東側の年代は西 側の年代より概ね古い年代値が得られた(図 6.1-2)。AHe 年代では AFT 年代と同じく畑川断層 帯以東で年代値はやや古くなる傾向が見られるが、誤差範囲を考慮すると有意とは言えない。ま た最も東側の地点(FST18-16)では、比較的若い AFT 年代が得られているが、AHe 年代との逆 転が起きており、北上山地同様に局所的な短時間加熱イベントを反映している可能性がある。

得られた AFT 年代値から各地点の平均削剥速度を計算した結果を表 6.1-2 に示す。求められた 平均削剥速度は、北上・阿武隈山地の全地点において 0.10 mm/yr 以下であり、両山地は 10<sup>7-8</sup>年 スケールで安定な削剥環境にあったと考えられる。ただし、計算された削剥速度は 10<sup>7-8</sup>年間の平 均値であり、10<sup>7-8</sup>年間にわたってこの削剥速度が継続していたわけではないことには留意したい。 今後の課題としては、削剥史の時間分解能を高めるため、FT 長を用いた熱史逆解析や、AFT 法 と AHe 法より低い閉鎖温度を持つ熱年代学的手法の適用などが望まれる。

### 6.1.5 まとめと今後の展望

東北日本弧の前弧域において、地質学的タイムスケールの熱史及び削剥史の推定を目的に、北上山地及び阿武隈山地の岩石試料の熱年代解析を実施した。新たに鉱物分離した試料からは、分析に十分量の鉱物を得ることができた。熱年代解析の結果、前弧域における AFT 年代の東西方向の変化は見られたものの、山地全体としては 10<sup>7-8</sup> 年スケールで安定な削剥環境にあったと推定された。今後は、年代値の精度/確度の改善のための追加分析や、未測定地点での分析を進める予定である。また、より厳密な削剥史を議論するために、トラック長を用いた熱史逆解析や、より閉鎖温度が低い熱年代手法(例えば、電子スピン共鳴(Electron Spin Resonance; ESR)法やモナザイト FT 法)の導入も検討中である。

表 6.1-2 平成 30 年度及び令和元年度の年代測定結果一覧

| 十ルシャータ側とみや | 平 | 成30 | (年) | 度》 | 則定 | 試 | 料 |
|------------|---|-----|-----|----|----|---|---|
|------------|---|-----|-----|----|----|---|---|

| #    | 試料名      | AFT年代<br>±2σ(Ma)  | AHe年代<br>±2σ(Ma)  | ZrU-Pb年代<br>±2σ(Ma) | 平均削剥速度<br>±1σ(mm/yr)        |
|------|----------|-------------------|-------------------|---------------------|-----------------------------|
| 1    | FST18-12 | 40.5±6.6          | 60.1±6.0          | N/A                 | 0.07±0.02                   |
| 2    | FST18-13 | 61.0±10.8         | 46.1±4.7          | 105.4±1.8(core)     | 0.04±0.01                   |
| 3    | FST18-16 | 47.5±9.5          | 75.9±7.7          | 110.3±2.1           | 0.06±0.01                   |
| 令和元年 | 三度測定試料   |                   |                   |                     |                             |
| #    | 試料名      | AFT年代             | AHe年代             | ZrU-Pb年代            | 平均削剥速度                      |
|      |          | $\pm 2\sigma(Ma)$ | $\pm 2\sigma(Ma)$ | $\pm 2\sigma(Ma)$   | $\pm 1\sigma(\text{mm/yr})$ |
| 4    | FST18-11 | 51.7±7.4          | N/A               | N/A                 | $0.05\pm0.01$               |
| 5    | FST18-15 | 93.7±79.7         | N/A               | N/A                 | 0.03±0.01                   |
| 6    | FST18-18 | 78.6±16.6         | 51.2±5.2          | N/A                 | $0.04 \pm 0.02$             |
| 7    | FST18-20 | $95.1{\pm}11.0$   | 40.8±4.9          | N/A                 | $0.03 \pm 0.01$             |
| 8    | FST18-21 | 89.1±15.9         | 36.1±5.7          | N/A                 | $0.04 \pm 0.01$             |
| 9    | FSK19-2  | 139.4±28.8        | N/A               | N/A                 | 0.02±0.01                   |
| 10   | FSK19-3  | 115.4±17.2        | N/A               | N/A                 | 0.03±0.01                   |
| 11   | FSK19-7  | 86.8±12.0         | N/A               | N/A                 | <b>0.04</b> ±0.01           |
| 12   | FSK19-8  | 94.6±16.4         | N/A               | N/A                 | 0.03±0.01                   |
| 13   | FSK19-9  | 83.2±11.7         | N/A               | N/A                 | $0.04 \pm 0.01$             |

<sup>#1~5</sup> は阿武隈山地、#6~13 は北上山地の試料。

#4~8 は平成 30 年度のデータから追加分析を行った試料。



図 6.1-1 北上山地における東経 vs.年代値プロット

既報値は後藤(2001)、Fukuda et al. (未公表)、Fukuda et al. (in press) による。誤差は 1σ。



図 6.1-2 阿武隈山地における東経 vs.年代値プロット

既報値は後藤(2001)、Ohtani et al. (2004)、Fukuda et al. (2019)、Sueoka et al. (2017) に よる。薄紫色の影を付けた範囲は畑川断層帯のおおよその位置を示す。誤差は 1σ。

## 6.2 宇宙線生成核種を用いた山地の隆起・侵食過程の検討

テクトニクスの活発な地域における地形の発達過程は、基盤岩の隆起及び地表面の削剥によっ て支配される。ここでは、宇宙線生成核種の分析に基づき、尾根・谷を含む山地地形の定常/非定 常の判定を行う方法を検討する。また、陸域地形の発達初期段階である離水段丘を対象とし、そ れらが丘陵化してゆく過程において、どの程度まで離水年代の情報を保持しているかを検討する。 すなわち離水地形の年代と標高に基づく隆起速度の算出が、どの程度の時代まで可能であるかに ついて議論する。

## 6.2.1 研究手法

ー続きの山地領域内において、削剥速度の多様性の大小は、地形の状態を推察するうえで重要 な情報を与える。すなわち、図 6.2-1 A に示すように、空間的に削剥速度が一様であれば、地形 は時間的にその形状を変えない定常的な状態にあると判断される。一方、図 6.2-1 B に示すよう に、例えば稜線部と谷底部の対比において削剥速度に系統的な差異がある場合、地形は非定常な 変遷の途上にあると判定することができる。図 6.2-1 B に示されているパターンの場合は、地形 が河川の下刻に応答して急峻化してゆく途上にあると推測できる。

【付録2】



図 6.2-1 削剥速度の多様性と地形の定常・非定常の概念図

ただし、たとえ削剥速度が一様であっても、岩盤隆起速度がそれと異なっていれば、地形はその標高を変えてゆくことになる。また、削剥速度が一様であり、かつそれが岩盤隆起速度と等しい場合には、地形は動的平衡の状態にあると考えることができる。すなわち、削剥速度の空間分 布を広い範囲で定量化し、それらを地域的な隆起速度と比較することで、地形の状態を把握する ことができ、地形発達過程のモデリングに資する情報を得ることができる。

ここでは、先行研究によって複数の小流域の空間平均削剥速度や丘頂部の削剥速度が得られて いる東北日本弧の前弧域(阿武隈山地と北上山地)を対象とし、地形の平衡・非平衡状態を判定 する試みの例として、隆起によってその標高を上昇させつつあるものの、河川の下刻の影響が未 到達であるために丘陵様の地形を呈する領域に焦点をあてる。河床の岩盤及び斜面の相対的下部 に位置する露岩の表面から花崗岩類を試料として採取し、石英中の宇宙線生成核種<sup>10</sup>Be を加速 器質量分析によって測定した。<sup>10</sup>Be 濃度に基づいて得られる削剥速度を、流域の平均削剥速度や 丘頂部の削剥速度と比較し、地形の状態を議論する。

次に隆起に伴う地形の発達の最初期の段階に位置づけられる離水段丘に焦点を当てる。隆起に よって離水した平坦面は、標高の増大に伴って次第に丘陵化し、やがて原面を失って山地の一部 を構成する。海成段丘の場合、その離水年代を知ることができれば、地域的な隆起の速度を復元 することができる。段丘の離水年代決定に、宇宙線生成核種を用いた露出年代測定を援用しよう とする場合、どの程度古い時代まで遡及が可能であるか、また離水後の段丘面の削剥がどの程度 の不確かさをもたらすかを検討しておく必要がある。ここでは、西南日本に位置する年代が既知 (海洋酸素同位体ステージ5e:約125ka)の段丘及びそれよりも古い時代の高位段丘を対象に、 岩盤ボーリングコアを用いて2m程度の深さまでの石英中の10Be濃度を測定し、露出年代測定 の適用性を検証する。

### 6.2.2 分析結果及びデータ解析

表 6.2-1 に、阿武隈山地及び北上山地における <sup>10</sup>Be 濃度に基づいて計算された削剥速度を示 す。阿武隈山地の斜面下部の露岩 (FST18-12、14) あるいは北上山地の河床岩盤 (FST18-18、 19) のいずれにおいても、削剥速度に大差はなく、8×10<sup>1</sup> ~ 1.8×10<sup>2</sup> mm/kyr の範囲であっ た。この値は、松四ほか (2014) や Nakamura et al. (2014)で得られている阿武隈山地の高標高 域の流域平均削剥速度 (8×10<sup>1</sup> ~ 2×10<sup>2</sup> mm/kyr) とよく一致する。またこれまでに阿武隈山 地の丘頂部について得られている削剥速度は 1×10<sup>1</sup> ~ 8×10<sup>1</sup> mm/kyr の範囲である (Mahara et al., 2010; Matsushi et al., 2010; Shiroya et al., 2010; Nakamura et al., 2014)。ここで得られ た値はそれよりやや大きく、その差異は、<10<sup>1</sup> mm/kyr である。これらのことは、阿武隈山地で は、尾根と谷の比高がゆっくりと増大していく傾向にあるものの、全体として強く非定常的な状 態にあるわけではないことを示唆している。北上山地では <sup>10</sup>Be 濃度による削剥速度は報告され ていないが、ダム堆砂量に基づく数十年オーダーの流域平均削剥速度では 2.5 × 10<sup>2</sup> mm/kyr で ある(藤原ほか, 1999)。対象時間スケールが異なるため比較の精度は劣るが、<sup>10</sup>Be 濃度による 削剥速度とは大差は認められない。河床岩盤よりも流域平均の方が僅かに大きい値を示すことか ら、尾根と谷の比高はゆっくり減少している可能性もあるが、いずれにしても阿武隈山地と同様 に全体として強く非定常的な状態にあるわけではないと考えられる。こうした推察は、阿武隈山 地及び北上山地の高標高域に、広い谷底と低い残丘によって特徴づけられる景観が拡がっている こととも整合的であるといえる。

| Sample ID | Quartz<br>weight<br>(g) | Be carrier<br>weight<br>(µg) | <sup>10/9</sup> Be ratio*<br>(×10 <sup>-13</sup> ) | <sup>10</sup> Be<br>concentration**<br>(×10 <sup>4</sup> atoms g <sup>-1</sup> ) | <sup>10</sup> Be production<br>rate <sup>†</sup><br>(atoms g <sup>-1</sup> yr <sup>-1</sup> ) | Denudation<br>rate<br>(g m <sup>-2</sup> yr <sup>-1</sup> ) | Surface<br>lowering rate <sup>‡</sup><br>(mm kyr <sup>-1</sup> ) |
|-----------|-------------------------|------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------|
| FST18-12  | 40.8131                 | 303.2 ± 1.5                  | 0.943 ± 0.077                                      | 3.15 ± 0.49                                                                      | 5.67 ± 0.54                                                                                   | 377 ± 77                                                    | 145 ± 30                                                         |
| FST18-14  | 36.6990                 | 303.4 ± 1.5                  | 0.881 ± 0.062                                      | 3.17 ± 0.48                                                                      | $5.92 \pm 0.56$                                                                               | 391 ± 79                                                    | 150 ± 31                                                         |
| FST18-18  | 31.6908                 | 303.3 ± 1.5                  | 1.689 ± 0.108                                      | 8.83 ± 0.79                                                                      | 9.11 ± 0.90                                                                                   | 216 ± 35                                                    | 83 ± 14                                                          |
| FST18-19  | 33.2172                 | 303.5 ± 1.5                  | 0.799 ± 0.118                                      | 3.00 ± 0.81                                                                      | $6.53 \pm 0.65$                                                                               | 455 ± 138                                                   | 175 ± 53                                                         |

表 6.2-1 阿武隈山地・北上山地における <sup>10</sup>Be の分析結果と削剥速度

\*Normalized with a standard of KNB5-1: <sup>10/9</sup>Be = (2.709±0.030) × 10<sup>-11</sup> (Nishiizumi et al., 2007).

\*\*Calcurated with background subtraction by a chemical blank with isotopic ratio of  $^{10/9}Be = (3.07\pm0.61) \times 10^{-14}$ .

<sup>†</sup>Scaled based on Stone (2000) with the reference value at sea-level high-latitude as 4.68±0.28 atoms g<sup>-1</sup> yr<sup>-1</sup>.

<sup>‡</sup>Calcurated with rock density as  $2.6\pm0.1$  g cm<sup>-3</sup>.

図 6.2-2 に、海成段丘のボーリングコアに対する <sup>10</sup>Be の分析結果を示す。図には核種濃度の深 度分布をプロットするとともに、離水以前の核種獲得(いわゆるインヘリタンス)及び離水後の 削剥による核種損失を無視した場合のもっとも単純な <sup>10</sup>Be の蓄積曲線を描いた。図 6.2-2 A の MGT サイトは、段丘の高度と面的拡がりからみて海洋酸素同位体ステージ(Marine Isotope Stage:以下、「MIS」という)5e(約 125 ka)に対比される段丘である。図 6.2-2 B の MHN サ イトは MGT よりも高位にあり、相対的に古い時代に離水したと推定される丘陵化の進行しつつ ある面である。

図 6.2-2 A をみると、MGT サイトにおける核種濃度の深度分布は、モデルカーブとおおよそ 整合的な減衰プロファイルをもち、かつ、期待される年代値 125 ka の曲線に近いか、やや超過す る傾向にある。このことは、活発な海食時にも宇宙線生成核種はわずかに蓄積しうる(離水時に 核種濃度がゼロでない)こと、及び地形が平坦で強い削剥作用が働かない(削剥速度が無視でき る程度に小さい)と推定されることを合わせて考えると、この時代の海成段丘に対しては<sup>10</sup>Be を 用いた露出年代測定(地形形成時期の決定)が十分に可能であることを意味している。

一方、MIS 5e よりも古いと推定される MHN サイト(図 6.2-2 B)においては、核種濃度の深 度減衰プロファイルはモデルカーブと明瞭に不整合的である。また、長い時間露出していた地形 に期待されるような高い核種濃度もみられない。このことは、この場所においては何らかの削剥 作用により、段丘面の最上部が失われていることを示唆する。事実、MHN サイトには表土がほ とんどみられず、地表構成物が取り去られている可能性が高い。削剥作用によって失われた物質 の厚みは大まかに言って数m以上に達するものと推定される。



図 6.2-2 海成段丘岩盤中の<sup>10</sup>Be 深度プロファイル

これら二つのサイトに対し、可能な限り確度の高い離水年代及び離水後の削剥速度の決定を試みる。離水前の核種量を 100 mm/kyr の波浪侵食によって定常状態にあるもの(1 m 以深での <sup>10</sup>Be 濃度でおよそ 1.5×10<sup>4</sup> atoms/g)として与え、離水後の削剥速度と、離水年代とをパラメー タとしてモデルカーブをフィッティングさせ、最適値を求めた(図 6.2·3)。サイト MGT では、 離水後の削剥がほぼ無視でき、露出年代の最尤値は 110 ka となった。この値は MIS 5e の段丘に 対して期待される離水年代(125 ka)に十分近いといえる。一方、サイト MHN では削剥速度 15 mm/kyr で削剥平衡状態に近いという結果であった。このとき、露出年代は約 200 ka よりも古い であろうと推測される。図 6.2·4 をみれば、いずれのモデルも、それぞれのサイトで観測された <sup>10</sup>Be 濃度の深度分布を説明しうるものであることがわかる。図 6.2·3 と図 6.2·4 から、大まかに 言って 10 万年から 20 万年程度の時間スケールで、比較的高精度で時間情報を抽出できる状態 (MGT サイト)から、時間情報が失われ逆に地形面の削剥速度の情報が精度よく求まる状態 (MHN サイト)へと遷移しているものと捉えることができる。



図 6.2-3 <sup>10</sup>Beの蓄積量を最も良く再現する最尤パラメータの決定



図 6.2-4 <sup>10</sup>Be 濃度の深度分布に対するモデルカーブのフィッティング

## 6.2.3 まとめと今後の展望

宇宙線生成核種の濃度の空間分布あるいは深度分布を用いて、地形の定常・非定常状態を定量 的に把握する方法を検討した。一連の山地地形において、削剥速度の空間的多様性が大きければ 大きいほど、地形は非定常な状態にあって、その形状を変化させてゆくものと判断できる。その 変化速度は、宇宙線生成核種の濃度に基づいて得られる削剥速度の空間的差異から推定できる。 削剥速度と地形との対応から経験的法則を得ることができれば、地形変化のモデリングを通じ て、山地地形の発達過程をシミュレートできるだろう。より普遍的な法則性の発見とモデル化が 今後の課題であるといえる。

陸域地形の発達初期段階としての海成段丘に対し、岩盤中の<sup>10</sup>Be 濃度の深度分布を求め、核 種の蓄積モデルに照らして検討することで、時間情報抽出の限界について議論した。MIS 5e に 離水したことが明らかな段丘については、期待される年代値と整合的な結果が得られた。一方、 より古い丘陵化しつつある地形面においては、核種濃度が単純な露出の履歴から期待されるより も有意に小さく、また深度に対する核種濃度の減衰傾向もモデルと整合しなかった。このこと は、離水してから数十万年程度以上の時間が経過した古い段丘については、陸化後の削剥の影響 が、年代推定に大きな不確かさをもたらすことを意味している。すなわち試料採取の時点で、原 面の保存性について十分注意深く検討すべきであり、宇宙線の貫入深度(約1~2m)に比して 有意な厚みで地表面の削剥が進行していると判断される場合は、その場所での試料採取を避ける か、より深くまでの岩盤試料を測定対象とすべきである。

今後は、離水前の獲得核種量の推定と、削剥速度の精度良い推定が課題となる。実際に、離水 前獲得核種の量がここで設定されたものに近いこと、及び10万年程度の時間スケールで離水平 坦面上での削剥がほぼ無視しうる程度であることが確認できれば、少なくともMIS 5eよりも新 しい時代の原面残存率の高い離水段丘に対しては、日本のような湿潤温暖気候環境であっても、 宇宙線生成核種の深度プロファイルを用いた年代決定が可能であると結論できる。離水前獲得核 種量は、空間時間置換の考え方を援用して、現成海食面での核種濃度分析によって確認できる。 また、離水後の平坦面上での削剥過程としては、おそらく溶脱作用が卓越するであろうことか ら、それによる物質損失速度は、深部と浅部での基盤岩石の対比的化学組成分析によって類推で きる。同一段丘面の、より多くの地点での分析を行い、再現性を確認することもまた、今後の課 題として位置づけられるであろう。

# 【付録2】

### 6.3 地形解析による山地の隆起・侵食過程の検討

近年になって、河川流域における地殻隆起速度の時間的・空間的な変化を推定するため、河床 縦断形を逆解析する手法が考案された(Roberts and White, 2010)。ここでは、この新しい手法 を日本列島のような変動帯の地形に適用する際に大きな問題となる「基盤岩の岩石強度をモデル 中でどのように扱うか」という点について、新しいモデルを提案し、今後の研究方針を検討する。

そもそも、河川の標高は地殻の隆起速度と河川の削剥速度の差によってつねに変動しており、 さらに河川の削剥速度は河床勾配や河川流量の影響を受ける。隆起速度が長期間にわたり一定で ある河川においては、上流における侵食作用と下流における堆積作用が進むにつれ、河床の縦断 面が次第になめらかな指数関数状の曲線(平衡曲線)に近づくことが知られている。侵食作用と 堆積作用が平衡することから、河川では砕屑物の運搬だけが行われるようになり、このときの河 川を平衡河川という。平衡河川の状態にある河床勾配は流域面積の変化に応じてなだらかに変化 するが、隆起速度が変化すると、新しい平衡状態となるような河床縦断形へと移行するイベント が起こる。このとき、河床には一般に、傾斜変換点(遷急点:knickpoint)とよばれる河床勾配 の不連続点が形成される。河床高は海岸線において海抜0mに固定されているため、遷急点は河 川の下流端付近で形成され、それが上流へと伝播していき、最終的に上流端で消滅することによ って河床縦断形が新しい平衡状態に達する(大上, 2015)。すなわち、河床における傾斜変換点の 位置や上流への移流速度は、その河川の流れる地域の地形の侵食や隆起の速度の歴史を保存して いる情報であるといえる(早川・松倉,2002)。また、傾斜変換点が上流に伝播していく速度は、 その河川に、隆起速度履歴に関するどれほどまでの古い情報が残されるか、ということに関連し ている。すなわち、傾斜変換点が河川の上流端に到達して消失するまでにかかる時間が、河床縦 断形の逆解析によって地殻隆起履歴を復元することが可能な期間ということになる。

実際の河川縦断形は平衡状態ではなく、過去の隆起・沈降履歴を反映した遷移状態にある。そこで、実際に測定された河床の縦断面における河床高の観測値と、数値計算によって求められる予測値とのズレを最小化するように隆起履歴パラメータを最適化するという逆解析手法により、地殻の隆起速度の時間的・空間的な変化を復元するという手法が考案された(Roberts and White, 2010)。河川は陸上の広範囲にわたって普遍的に存在しており、河川の縦断形や流域に関する大量のデータを調査・解析することによって、それぞれの地点ごとの測定ではなく、面的な広がりを持って隆起速度の時空変化を復元することが可能になる。この手法は、Roberts and White (2010)によって開発されたもので、地殻変動に関する面的な情報が得られるというメリットがある。本手法を用いて、先行研究において、マダガスカルや、アフリカ大陸・オーストラリア大陸といった非常に大規模の時間・空間スケールにおける隆起速度履歴の復元が行われ(Roberts et al., 2012; Rudge et al., 2015)、10~100 Ma といったオーダーの地質年代における過去から現在までの隆起速度の面的な分布が推定された。

ただし、先行研究において河床縦断形の逆解析が行われた調査地域はどれも、非活動的大陸縁 に囲まれた安定大陸におけるものであった。安定大陸の隆起速度は一般に小さく、長期にわたり 一定で、大陸全体において地形勾配がなだらかに変化していく場所が多い。安定大陸においては、 本手法のような大幅な単純化を行ったモデルを適用することは妥当であるかもしれない。しかし ながら、日本列島のような、隆起速度が大きく変化し、起伏の大きい山脈に覆われた変動帯を流 れる河川に対して本手法を適用することが可能であるかは未知である。

特に問題となるのは、基盤岩の岩石強度をどのようにしてフォワードモデルで取り扱うかとい う点である。日本列島のような変動帯の地質構造は複雑であり、極端に異なる強度をもつ基盤岩 が隣接していることがある。このような場合、河川の遷急点の移動速度は地域によって大幅に変 化し、それに伴って地殻隆起速度の逆解析結果も大きく影響をうけることになる。 そこで、まず本稿では河川縦断形を計算するフォワードモデルである stream power model や sediment flux dependent model においてこれまで基盤岩の岩石強度がどのように取り扱われて きたかを概観する。そのうえで、本稿では新しいモデリング手法を提案する。

### 6.3.1 Stream Power Model

ここで概説する stream power model とは、河川卓越型岩盤河川における河床高変動を予測するための数値モデルである(Howard and Kerby, 1983)。まず、このモデルの適用できる範囲をはっきりさせるため、河川のタイプの定義について説明する。

岩盤河川は、河川流量が小さい時期であっても沖積(未固結)堆積物によって河床全体を覆わ れていない河川のことを指す。ただし、実際の河川では堆積物による被覆面積は洪水などで常に 変動しており、一時的にはほぼ河床全域が被覆されたり、またある時にはほとんど河床に未固結 堆積物がみられなかったりすることも起こりうる。そこで、岩盤河川についてはしばしば別の形 で定義が行われる。

水流量・勾配に基づいて推定される河川の潜在的な最大掃流砂量(限界掃流量)を  $Q_c$ とする と、岩盤河川の河床は堆積物で覆いつくされていないため、そこで運搬されている実際の掃流砂 量  $Q_s$ は最大掃流砂量  $Q_c$ よりも明らかに少なくなる。すなわち、岩盤河川は  $Q_s < Q_c$  が長期にわ たって成り立っている河川と定義することができる(Gilbert 1877, Howard 1980, Howard et al. 1994, Montgomery et al. 1996)。 $Q_c$ については河川流量や勾配などから何らかの経験的流砂量 式を用いることで推定が可能だが、 $Q_s$ は基本的に上流から供給される土砂の流量によって規定さ れる。すなわち、河川のタイプが岩盤河川となるか否かは、注目している河川区間の上流の状況 によって左右されるということになる。

一方、沖積河川は河床全域が未固結堆積物(沖積)によっておおわれた河川である。さらに、 沖積河川の勾配と河床を構成する土砂の粒径に着目すると、粒径と勾配はどちらも下流へ向かっ て徐々に小さくなることが普通だが、その途中で突然両者が大幅に変化する現象がしばしば観測 されている。すなわち、河床の粒径が礫サイズから突然砂サイズに移り変わり、それと共に河床 勾配も突然緩くなる(<0.1%)のである(例えば、Ferguson et al., 2003)。この勾配の急激な変 化点を境界として、沖積河川は礫床河川と砂床河川に区分される。河床の粒径及び勾配が突然変 化する現象の原因については、土砂の運搬様式が掃流から浮流へ移りかわるためではないかと考 えられているが(Lamb and Venditti., 2016)、そのメカニズムの詳細についてはまだ完全にはわ かっていない。いずれにしても、沖積河川の場合、おおむね河川を流れる掃流砂量 Q<sub>8</sub>は最大掃流 砂量 Q<sub>6</sub>となっているものみなされている。つまり、長期的にみて Q<sub>8</sub>=Q<sub>6</sub>が成り立つ河川が沖積 河川である。前述の通り、河川の最大掃流砂量 Q<sub>6</sub>は実験などによって求められた経験式によって 見積もることができる。このことは、沖積河川での土砂運搬量やその変化によって引き起こされ る堆積・侵食作用が、おおむねその区間での水理条件(流速場や水深)などから推定できること を意味している。

さて、沖積河川と同様に、岩盤河川の地形(河床勾配・川幅・底面形状)は、その河川におけ る堆積物流量、基盤岩の性質、ベースレベル(相対的海水準)などに応じて常に変動し続けてい る(例えば、Wohl and Ikeda 1998, Wohl et al. 1999, Wohl and Merritt 2001)。これは、岩盤河 川においては常に侵食作用が起こっており、その侵食速度は河川を移動する土砂の量などに応じ て大幅に変化するためである(例えば、Sklar and Dietrich, 2004)。後述の通り、岩盤河川の侵 食速度は河床勾配が大きく、また、河川流量が大きいほど大きくなる。また、河床勾配の大きい 地域では、掃流や浮流ではなく土石流による土砂移動が卓越するようになる。土石流の侵食速度 は一般の河川流と大きく異なるため、河川地形の特徴も土石流卓越地域では大きく変化すること が知られている (Sklar and Dietrich, 1998)。

以上をまとめると、河川には岩盤河川と沖積河川の2種類があり、さらにそれぞれは土石流卓 越型岩盤河川・河川卓越型岩盤河川及び礫床河川・砂床河川の2種類に細分されることになる。 Sklar and Dietrich (1998) は既存研究の検討結果を参照し、これら4つのタイプの河川の発達が 流域面積及び河床勾配に支配されていることを示した。すなわち、河床勾配が0.1%よりも緩い河 川はほとんどが砂床河川であるのに対し、礫床河川もしくは岩盤河川はほとんどが0.1%よりも 大きい勾配を示している。礫床河川と岩盤河川の境界はおおむね以下の経験式で表される (Montgomery et al., 1996)。

$$S = 0.07 \, A^{-0.5} \tag{1}$$

ここで、Sは河床勾配、Aは流域面積を表している。すなわち、河床勾配・流域面積が比較的大きい河川は岩盤河川となり、それらが小さい河川は礫床河川となることがわかる。さらに河床が 急勾配になると、河川は土石流卓越型岩盤河川となる。岩盤河川が土石流卓越型となる境界は明 瞭ではないが、斜面勾配にしておおよそ 8% (Wiberg and Smith, 1987)から 20% (Seidle and Dietrich, 1992)程度の間に閾値があるものと考えられている。これらの河川タイプのうち、河川 卓越型岩盤河川の侵食作用を記述するために最もよく用いられている数値モデルが stream power model である。

さて、Stream power model の導出について説明する。河川卓越型の岩盤河川においては、河 川の水流が河床侵食に重要な役割を担っていることが予想される。そこで、河川の水流が単位時 間あたりに消費するエネルギー  $\Omega$  を stream power と定義した時に、単位面積当たりの河床侵食 速度 E がこの $\Omega$ に対して線形に比例すると考えるのが stream power modelの基本概念となる。 Stream power  $\Omega$  は、河川の単位距離当たりの底面せん断力(底面せん断応力  $\tau_b$  と川幅 Bの 積)と流速 Uの積である。いま、 $\rho_f$ を水の密度、gを重力加速度、Sを河床勾配とすると、水流 の底面せん断応力  $\tau_b$ は

$$\tau_b = \frac{\rho_f g A_w S}{B} \tag{2}$$

となる。河川の流量 Qwが河川の断面積 Awと鉛直・水平平均流速 Uを用いて

$$Q_{w} = A_{w}U \tag{3}$$

と表されることから、

$$\Omega = \rho_f g S Q_w \tag{4}$$

となる。このとき、stream power modelの仮定に基づくと、単位面積当たりの侵食速度 E は

$$E = \frac{K_p \Omega}{B} = \frac{K_p \rho_f g S Q_w}{B}$$
(5)

である。ここで、*K*<sub>p</sub>は岩盤の侵食されやすさを表した比例係数である。一般に、流域面積 A が大きくなるほど河川流量 *Q*<sub>w</sub>も増加するため、以下の関係を想定することができる。

$$Q_w = K_a A^r \tag{6}$$

ここで、*K*<sub>a</sub>及び*r*はそれぞれ流量にかかわる経験的な係数及び指数である。また、河川の幅 *B*は河川流量 *Q*<sub>w</sub>が増加するにつれて増していくため、以下の式で二つのパラメータの関係を表すことにする。

付 2-39

$$B = K_B Q_w^b \tag{7}$$

ここで、*K*<sub>B</sub>及び b はそれぞれ河川の幅に関する経験的係数及び指数である。これらの式(6)及び (7)に表される関係を代入して式(5)を書き換えると、以下の関係式が導かれる。

$$E = K_{v} A^{r(1-b)} S \tag{8}$$

ここで、 $K_y = K_p \rho_f g K_a^{1-b} / K_B$ である。式(8)が stream power model の典型的な定式化であり、この式は岩盤河川の侵食速度が斜面勾配に線形に比例し、流量のプロキシである流域面積のべき乗にも比例することを示している。

一方、岩盤侵食は前述の stream power ではなく水流の底面せん断応力に比例するとの考え方 もある(Howard et al., 1994)。この考えに従うと、

$$E = K_t \tau_b \tag{9}$$

ということになる。ここで、 $K_t$ はこの法則を採用した場合の岩石の侵食されやすさを表した比例 係数である (stream power model の  $K_p$ に相当)。この考えに基づき、流れの抵抗則として Chezy 式

 $\tau_b = \rho_f C_f U^2$ を用いることにして ( $C_f$ は無次元 Chezy 摩擦係数)、侵食速度を求めてみる。式(2)、 (6)、(7)を式(9)に代入すると、以下の式となる。

$$E = K_z A^{\frac{2r(1-b)}{3}} S^{\frac{2}{3}}$$
(10)

ここで、係数 Kzは、

$$K_{z} = K_{t} \rho_{f} \left( \frac{C_{f} K_{a}^{2(1-b)}}{K_{B}^{2}} \right)^{\frac{1}{3}}$$
(11)

である。ちなみに、Howard et al. (1994) はシェジー則ではなくマニング則を用いて式(10)とほぼ同様の式を得ているが、その場合は河床勾配 Sの指数は 0.7 となる。

いずれにしても、この種の河川流の水理量に基づいたモデルは、以下の形式をとることになる。

 $E = KA^m S^n \tag{12}$ 

ここで、*K*は岩石の侵食のされやすさ、河川流量と流域面積の関係(降水量・地下水への分配など)、河川幅と流量の関係、底面摩擦係数などさまざまな要素を内包した経験的係数となる。*m*は前述の通り流域面積と流量や川幅との関係を表す指数であり、*n*は狭い意味での stream power model ならば1となる。しかしながら、既存研究には前述のような*n*が1以外の値(例えば、2/3)をとるモデルや、岩盤侵食が開始されるための限界剪断応力を導入したモデルも含めて膨大なバリエーションが存在する(詳しくは Whipple, 2003 などを参照)。それでも、式(12)と類似した形をとるモデルは広い意味で stream power model と総称され、広く用いられている(Whipple, 2003)。

この stream power model を実際に計算する際に鍵となるのは二つの指数 m 及び n と係数 K の値を具体的にどう見積もるかであろう。流域面積と流量などの関係を表す指数 m は、多くの地域でおおむね 0.5 程度の値をとることが報告されている(Sklar and Dietrich, 1998)。一方、nについては、上記の通り stream power model の本来の仮定に基づけば 1 となるべき指数である。しかしながら、式(12)で現れたパラメータを経験的に実際の地形に適合させた研究を参照すると、必ずしもこの値とは 1 とは限らない。ニュージーランド Waipaoa 地域の地形遷急点移動速度を

付 2-40

解析した結果は、この地域で適合するのはn > 1であることが示されている。一方、スコットランド (Jansen et al., 2011) やアルプス (Valla et al., 2010)での遷急点移動速度の解析結果はn > 1というモデルに当てはまらず、他の地域でもおおむねn = 1と考えるのが妥当とする地形が観察されている (例えば、Whittaker and Boulton, 2012)。そのため、多くの数値計算を用いた研究では、単純化のためにn = 1を採用することがほとんどである。

それでは、Stream power model で最も重要なパラメータ Kについては、どのような値が適切 なのだろうか。この Kは地域によって大きく変化することが知られている。実際、係数 Kとおお むね比例するはずの地形遷急点の移動速度は 4 ケタ以上の範囲(i.e. 1~10<sup>4</sup> cm/yr)で変化し得 ることが報告されている(Crosby and Whipple, 1999)。しかし、その値を予測することは極め て難しいのが実情である。ここまでの model 導出過程をみてわかる通り、このパラメータには 様々な要因が複合的に含まれており、それらを分離できない限りは実験などによる検証も難しい。 Whipple (2003) は、これまで提案されてきた様々な stream power model に類似したモデルを包 括できるように、式(12)を以下のように再定義した。

$$E = K_r K_c K_{\tau cr} f(Q_s) A^m S^n \tag{13}$$

ここで、*K*<sub>r</sub>は岩石の侵食されやすさ、*K*<sub>e</sub>は何らかの気候条件、*K*<sub>ter</sub>は岩盤侵食の限界剪断応力に 関連する係数、*f(Qs)*は掃流砂輸送量に関連した関数である。しかしながら、それぞれのパラメー タを明示的に予測する関数を提示した研究は存在せず、また、これらのパラメータが独立である 保証もない。そのため、これまでの研究では、何らかの仮定を置いたうえで、経験的に各地域固 有の係数 *K*を求めることが行われている(例えば、Roberts et al., 2012)。

ここまでをまとめる。Stream Power Model は河川の何らかの水理量によって岩盤侵食速度が 決まると考える河川侵食モデルである。このモデルはシンプルで、必要とされる入力値も流域面 積及び河床勾配という DEM から容易に計測できる値であるため、これまで広く河川地形発達の フォワードモデルとして用いられてきた。地形から地殻隆起速度を求める既存の逆解析モデルも、 この Stream Power Model に強く依存している。しかしながら、モデルに必要とされる係数を明 示的に求める方法がないことが大きな弱点となっている。このことは、岩盤強度の影響を取り込 んだ逆解析モデルを構築するうえで大きな障害となる。また、モデルの前提となる stream power の仮定の妥当性についても、十分な確証はない。実際、Lague et al. (2014) は Stream Power Model のパラメータを様々な地域の地形データから検討し、多くの地域で河川遷急点の移動速度 から求められる経験的係数 ( $n \approx 1.0$ ,  $m \approx 0.5$ )の値が河川侵食速度そのものから求められる値 ( $n \approx 2.0$ ,  $m \approx 1.0$ )と大幅にずれていることを指摘した。このことは、Stream Power Model の理論 に根本的な欠陥がある可能性を指摘している。

### 6.3.2 Sediment Flux Dependent Model

2000 年代以降になって、岩盤河川の侵食に関して Stream Power Model よりも物理素過程に 即したモデルが次々と提案されている。これらのモデルは堆積物の輸送量が岩盤侵食速度を規定 すると考える点で共通しており、総称して Sediment Flux Dependent Model と呼ばれている

(Sklar and Dietrich, 2004; Chatanantavet and Parker, 2009; Johnson and Whipple, 2010)。 このモデルは、岩盤河川の侵食作用が水流そのものではなく、運搬される堆積物粒子による衝突・ 摩耗作用が引き起こすと考える。そして、一つ一つの粒子の衝突による侵食をモデル化し、そこ から巨視的な侵食の速度を導く。このモデルで特徴的なのは、単純に掃流で移動している堆積物 粒子が増えると侵食量が増すとは限らないというところである。掃流による移動量が増すと、基 盤岩が未固結土砂によっておおわれるようになる。土砂によっておおわれている領域では基盤岩 と粒子の衝突が起こらないため、むしろ侵食量が低下するのである(Sklar and Dietrich, 2004)。 すなわち、基盤岩の侵食速度は掃流輸送量が多すぎても少なすぎても小さくなり、中間的な掃流 輸送量が最大の侵食速度をもたらすということになる。

このモデルの定式化の概要を示す。まず、Vを一つの粒子の衝突による岩盤の損傷堆積とし、 Nを単位時間あたりに単位面積の基盤岩へ粒子が衝突する回数とすると、侵食速度 E は、

$$E = NV \tag{14}$$

となる。ここで、 $\rho_s$  は基盤岩の密度である。損傷堆積が粒子の運動エネルギーに比例するとし、 Bitter et al. (1963)の研究などに基づいて、Sklar and Dietrich (2004) は1粒子当たりの基盤岩 損傷堆積 Vが

$$V = \frac{\frac{1}{2}M_p(U_i\sin\alpha)^2 - \cdot_i}{\cdot_v}$$
(15)

と考えた。ここで、 $M_p$ は粒子一つ当たりの質量であり、 $U_i$ は衝突速度、aは衝突角度、 $_i^i$ は損傷 が起こるための限界エネルギー、 $_v^i$ は単位体積の基盤岩を損傷させるために必要なエネルギーで ある。さらに、Sklar and Dietrich (2001)の水槽実験により、 $_v^i$ は岩石の引張強度 $\sigma_T$ の二乗に比 例し、ヤング率 Yに反比例することなどが明らかになった。これらの結果を用い、 $_t^i=0$ と単純 化を行うと、式(15)は以下のようになる。

$$V = \frac{\pi \rho_s D_s^3 w_s^2 Y}{6k_v \sigma_T^2} \tag{16}$$

ここで、 $W_s = U_i \sin \alpha$ は粒子の鉛直方向の移動速度であり、 $k_v$ は経験的係数である。また、 $D_s$ は 粒子の直径を表していて、粒子の形状はおおむね球に近似できるものとしている。次に、粒子の 衝突回数 Nを求めるには、トータルの掃流砂量  $Q_s$ と粒子の一回当たりの跳躍距離  $L_s$ が必要にな る。これらのパラメータを用いて、基盤岩に衝突する粒子の個数を見積もると、

$$N = \frac{6Q_s}{\pi D_s^3 L_s} \left(1 - P_c\right) \tag{17}$$

となる。ここで、*P*。が河床の被覆率である。最初に述べた通り、掃流土砂が増えるほど河床が次 第に未固結堆積物で覆われていくため、逆に粒子の基盤岩への衝突回数は減少していくことをこ の式(17)は表している。被覆率 *P*。が単純に掃流砂量 *Q*。と最大掃流砂量 *Q*。の比に等しくなると考 えると、式(14)、(16)、(17)より以下の式が得られる。

$$E = \frac{Q_s w_s^2 Y}{L_s k_v \sigma_T^2} \left( 1 - \frac{Q_s}{Q_c} \right)$$
(18)

最終的に、 $Q_{c}$ 、 $L_{s}$ 及び粒子の跳躍高さや速度に関する実験式を用いて、Sklar and Dietrich (2004) は以下の式を導いた。

【付録2】

$$E = k_1 \frac{Q_s}{(\tau^* / \tau_c^* - 1)^{1/2}} - k_2 \frac{Q_s^2}{D_s^{3/2} (\tau^* / \tau_c^* - 1)^2}$$
(19)

ここで、 $\tau^* = \tau_b / \rho_s RgD_s$ はシールズ無次元せん断応力、 $\tau_c^*$ は粒子始動の限界シールズ数、  $R = (\rho_s - \rho_t) / \rho_t$ は粒子水中比重である。この式に現れる二つの係数 h 及び k は、  $k_1 = 0.08YRg / k_v \sigma_T$ 及び $k_2 = 0.014Y(Rg)^{0.5} / (\tau_c^*)^{1.5} k_v \sigma_T^2 \rho_s$ と定義される。式(19)の右辺第一項は粒 子の侵食速度、右辺第二項は被覆効果を表す。

この Sediment Flux Dependent Model は、Stream Power Model に対して経験的調整パラメ ータが極端に少ないというアドバンテージを持っている。式(19)における経験的係数はわずかー つ、*k*vのみであり、これは実験によりおおよそ 10<sup>12</sup> 程度の値であることが明らかになっていて、 調査地域に併せて調整する必要はない。他のパラメータも、多くは普遍的に実験で求まる量か、 岩石の引張強度のように測定可能な量である。しかしながら、このモデルの重大な欠点は、堆積 物の粒径 *D*v 及び調査区間へ供給される掃流砂量 *Q*v という測定困難な量を含んでいる点にある。 これらのパラメータは現世の河川であれば一応測定可能だが、過去の河川に対して測定すること は不可能であるため、逆解析のフォワードモデルとして用いる際には重大な障害となりうる。

### 6.3.3 岩石強度を反映した岩盤河川侵食モデル

ここまで二つの岩盤河川侵食モデル(Stream Power Model と Sediment Flux Dependent Model)を紹介したが、本研究の主題である岩石強度を考慮したモデル構築にはどちらのモデル が適しているだろうか。

まず、Stream Power Model は圧倒的に研究例が多く、すでに岩相と河川侵食に関連した研究 は数多く行われている(例えば、Hancock et al., 2011; Han et al., 2014; Small et al., 2016)。ま た、岩相の効果を Stream Power Model に取り込んで計算を行うことのできるフリーソフトェア も公開されている(Barnhart et al., 2018)。にもかかわらず、これまで Stream Power Model に おいて岩石強度の効果を表す係数(式(13)の K)を測定可能な量から明示的に求める関数は提案 されていない。例えば、Small et al. (2016)は実験によって基盤岩の K-を求めることを試みてい るが、このパラメータが同じ河川流路内でさえも局所的な状況で大幅に変化し、予測が困難であ ることを報告している。 Wohl and David (2008)は岩盤河川のスケール則を大規模なデータに基 づく統計解析から検討し、Selby (1980)に基づいて計測した岩石強度がほとんど Stream Power Modelの係数に相関を持たないことを明らかにした。この結果をそのまま受け入れるのであれば、 岩石強度を完全に無視しても Stream Power Model は的確に河川地形の侵食過程を再現できると いうことになる。しかしながら、Wohl and David (2008)が指摘している通り、この解析結果はそ もそもシュミットハンマー試験を使って岩石強度を求める Selby (1980)の方式がこの種の解析に 不適切だったことを表している可能性が高い。いずれにしても、いまだ Stream Power Modelの 係数と岩石強度の計測結果を結びつける手法は確立していないのが実情とみるべきだろう。この 困難は、そもそも Stream Power Model において係数に理論的な裏付けが乏しく、複数の要因が 混入していることが原因であるかもしれない。

一方、sediment flux dependent model には陽に岩石強度の効果が組み込まれている。岩石の 引張強度を測定すれば、このモデルには自然な形で岩石強度が基盤岩侵食速度へ与える効果を取 り込むことができる。ところが、sediment flux dependent model が実際の地形解析に用いられ た例は極端に少なく(Lague, 2014)、ほとんどが理論的な解析の段階にとどまっている(例えば、 Chatanantavet and Parker, 2009)。これは、例えば河川遷急点が移動することで侵食速度や河 床勾配が変化し続ける状況で、計算区間へ供給される掃流砂量  $Q_s$ を動的に推定することが困難 なことが原因であるかもしれない。

### 6.3.4 モデルの提案

前節まで概観した通り、現状では岩石強度を適切に評価しながら現実の岩盤河川の侵食作用を 計算することができるモデルは存在しない。このことは、強度が極端に異なる岩相が隣接する変 動帯において河床縦断形逆解析を行い、地殻隆起速度を面的に求める試みの大きな障害となって いる。

そこで、本研究は新しいモデルを提案する。これは、sediment flux dependent model を基礎 として、その弱点である *Q*。の見積りに関して以下のような仮定を置いて現実的な地形における 計算を実現しようとするものである。

**仮定1**:土石流卓越型岩盤河川の勾配は常に一定である。この仮定により、計算区間の最上位を 土石流卓越型岩盤河川と下線卓越型岩盤河川の境界に置けば、以下の境界条件を設定することが できる。

$$\left. Q_{s} \right|_{x=0} = k_{n} E A \right|_{x=0} \tag{20}$$

ここで、Xは河川流路に沿った空間座標であり、計算区間の上流端(土石流卓越型・下線卓越型境界)を0として、下流方向へ増えるものとする。*kn*は岩石が化学風化によって溶解したり浮流として運搬されるほど細粒になったりする効果の程度を表す経験的係数である。この式(20)は、土石流卓越型岩盤河川が一定の勾配を保つこと、言い換えれば、下線卓越型岩盤河川の上流端での侵食速度にその上流は常に追随することを示している。

**仮定 2**:小規模な河川支流は本流の河床侵食速度と同じ速度で基盤岩を侵食する。この仮定により、任意の地点*X*における掃流砂量 *Q*。に関する以下の式が得られる。

$$\frac{dQ_s}{dx} = k_n E \frac{dA}{dx} \tag{21}$$

流域面積Aの空間微分は、河川が流下するにつれて加わる小規模な支流の流域面積を表している。 大規模な支流の合流は合流地点におけるそれぞれの Qs を足し合わせることで得られるが、小規 模な支流や本流の河床自体の侵食による掃流砂の生成に関してはこの式(21)によって評価できる。 仮定3: 堆積物粒径 Ds の下流方向への変化は以下の関係式に従う。

$$D_{\rm s} = k_{\rm D} x^d \tag{22}$$

ここで、 ka 及び d は経験的な係数及び指数である。

実際に、上記仮定 1-3 にしたがって計算を行う際には、式(20)を積分定数として式(21)を数値 積分し、それによって得られる各地点の Qs を推定する。また、 kb 及び d については研究対象地 域の現地調査から推定する。この結果、得られた Qs 及び Ds を使って、式(19)に基づいた以下の 式を数値的に計算すると河床縦断形の時間発展を計算することができる。

$$\frac{\partial \eta}{\partial t} = U - k_1 \frac{Q_s}{\left(\tau^* / \tau_c^* - 1\right)^{1/2}} - k_2 \frac{Q_s^2}{D_s^{3/2} \left(\tau^* / \tau_c^* - 1\right)^2} + \kappa \frac{\partial^2 \eta}{\partial x^2}$$
(23)

ここでηは河床面の高度、κ はクリープによる地形の拡散係数である。
### 6.3.5 まとめと今後の展望

ここでは、地形解析によって山地の隆起・侵食過程を検討するうえで最も大きな障害となって いる岩石強度の効果について、既存研究をレビューし問題点の抽出を行った。その結果、従来こ の分野で広く用いられてきた stream power model に岩石強度の効果を取り込むのはかなり困難 であり、近年になって研究が進みつつある sediment flux dependent model がむしろ有望である ことを明らかにした。しかしながら、後者のモデルにも大きな欠点があり、現実の地形に適用す るには大きな改善が必要である。本稿では、この問題点を改善し、実際の地形を逆解析できる可 能性のあるフォワードモデルを最後に提案した。

今後は、実際の岩石強度の測定値に基づいて新たに提案したフォワードモデルの計算を行い、 実際の地形における削剥速度や地形遷急点の移動速度との比較を行う必要がある。モデルに大き な問題が無いようであれば、東北地方の実際の地形に適用し、第四紀の島弧隆起速度の面的な復 元を試みる予定である。

#### 7. まとめ

「地質温度計と熱年代による深部流体の温度・滞留時間の検討」では、深部流体起源の熱水活動の温度や滞留時間などの検討を目的として、熱水脈試料を対象とした流体包有物解析と、熱水脈周辺から採取した母岩試料の熱年代解析を実施した。その結果、熱水脈の初生包有物の均質化 温度が約 150℃と 200℃と推定された。一方で、熱年代計では、熱水脈からの距離に応じた年代 の変化はいずれの手法でも検出できなかった。この結果からは、約 10 Ma 以降の隆起・侵食で年 代値が上書きされた可能性と、熱水活動による加熱温度または加熱時間の不足のため熱年代に影 響を与えなかった可能性が考えられる。これらの可能性の検証には、六甲地域のようなより隆起・ 侵食速度が遅い地域における、同様のアプローチの適用が有効であると考えられる。

「粘土鉱物の K-Ar 年代測定に基づいた断層帯の活動性の検討」では、脆性変形の時期の推定 を目的として、昨年度に微細構造観察などの試料記載を実施した延岡衝上断層を貫くボーリング コア試料に対し、K-Ar 年代測定を行った。その結果、水簸で分離した<2 µm のフラクションに ついて、上盤で 39.9~36.4 Ma、中軸部で 31.7~27.8 Ma、下盤で 41.4~34.2 Ma の年代が得ら れた。さらに、破砕帯の詳細な記載に基づく第四紀の活動史が復元されている阿寺断層の露頭か らの断層ガウジ試料に対する K-Ar 年代測定にも着手した。実験的検討については、イライトを 豊富に含む米国ウェストバージニア州のシルル系 Rochester shale を用いて、遊星型ボールミル と McCrone mill による粉砕実験(粉砕が K-Ar 年代に及ぼす影響の検証)に着手した。今後は、 引き続きこれらの実験とデータの解釈を進めていく予定である。

「室内実験に基づいた、熱年代による断層活動性評価手法の高度化」では、地下深部の断層帯 により即した条件におけるジルコン熱年代計のカイネティクスの理解を目的として、水熱環境下 及び還元環境下における標準ジルコンの加熱実験を実施した。令和元年度は全 10 通りの条件で 加熱を行い、加熱時間の分布は 1~1,000 時間であった。今後は、ジルコンの FT 解析を進めると ともに、その結果を踏まえて、より多様な温度・時間条件での実験や、他の熱年代計での同様の 実験を検討する予定である。

「地質温度圧力計と U-Pb 年代測定法を用いた侵食史の推定」では、研究対象地域の侵食史推定を目的として、花崗岩試料に対する地質温度・圧力計の適用と U-Pb ジルコン年代測定の試料準備を実施した。その結果、黒部別山花崗岩について固結深度を推定でき、約5.4-5.5Ma 以降の平均削剥速度が1.0±0.2~1.7±0.3 mm/yr であると推定できた。今後は、研究対象地域の他の花崗岩体にも分析と固結深度推定の範囲を広げ、広域的な平均削剥速度の分布を推定する予定である。

「熱年代学、宇宙線生成核種法、地形解析による山地の隆起・侵食過程の検討」では、以下の 三つの検討を行った。

「熱年代学による山地の隆起・侵食過程の検討」では、東北日本弧の前弧域の北上山地・阿武 隈山地において、地質学的タイムスケールの熱史・削剥史の推定を目的に熱年代解析を実施した。 その結果、アパタイト FT 年代の東西方向の変化は見られたものの、山地全体としては 10<sup>7-8</sup> 年ス ケールで安定な削剥環境にあったと推定された。今後は、年代値の精度・確度向上のための測定 FT 数及び地点数の増加に加え、より厳密な削剥史を議論するために FT 長に基づいた熱史逆解 析やより閉鎖温度が低い熱年代手法の導入も検討中である。

「宇宙線生成核種を用いた地形の隆起・侵食過程の検討」では、地形発達過程の多様な段階に おける地形面の形成年代や削剥速度の決定を目的として、<sup>10</sup>Beの加速器質量分析を実施し、デー タに解釈を与えた。その結果、山地地形の定常・非定常の判定や、離水段丘に対する年代情報・ 地形面の削剥情報の抽出に対する、本手法の適用性が確認された。今後は、多数点・複数核種の 分析データを蓄積し、確度・精度の向上を目指す。 「地形解析による山地の隆起・侵食過程の検討」では、東北地方の第四紀地殻隆起速度を面的 に復元することを目的として、文献のレビューと新たなモデルの開発をおこなった。その結果、 既存研究のモデルを変動帯に適用するうえで大きな障害となってきた岩石強度の効果を取り込み、 しかも現実の地形を解析可能なモデルを提案出来た。今後は地殻表層の実際の河川の引張強度測 定を進め、提案したモデルの検証を経て東北地方の地殻隆起速度復元を試みる。

### 8. 引用文献

- Anderson, J.L. and Smith, D.R., The effects of temperature and  $f_{02}$  on the Al-in-hornblende barometer, American Mineralogist, vol.80, pp.549-559, doi:10.2138/am-1995-5-614, 1995.
- Barnhart, K., Hutton, E., Gasparini, N.M. and Tucker, G.E., Lithology: A Landlab submodule for spatially variable rock properties, Journal of Open Source Software, vol.3, doi:10.21105/joss.00979, 2018.
- Bitter, J.G.A., A study of erosion phenomena part I, Wear, vol.6, pp.5-21, dio:10.1016/0043-1648(63)90003-6, 1963.
- Blundy, J.D. and Holland, T.J.B., Calcic amphibole equilibria and a new amphibole-plagioclase geothermometer, Contributions to Mineralogy and Petrology, vol.104, pp.208-224, doi:10.1007/bf00306444, 1990.
- Bodnar, R.J., Revised equation and table for determining the freezing point depression of H<sub>2</sub>O-NaCl solutions, Geochimica et Cosmochimica Acta, vol.57, pp.683-684, 1993.
- Bonhomme, M.G., Thuizat, R., Pinault, Y., Clauer, N., Wendling, R. and Winkler, R., Méthode de Datation Potassium-argon, Appareillage et Technique, Technical Report, Strasbourg University, 53p, 1975.
- Brix, M.R., Stöckhert, B., Seidel, E., Theye, T., Thomson, S.N. and Küster, M., Thermobarometric data from a fossil zircon partial annealing zone in high pressure–low temperature rocks of eastern and central Crete, Greece, Tectonophysics, vol.349, pp.309-326, dio:10.1016/S0040-1951(02)00059-8 2002.
- Burtner, R.L., Nigrini, A. and Donelick, R.A., Thermochronology of lower cretaceous source rocks in the Idaho–Wyoming thrust belt, American Association of Petroleum Geologists Bulletin, vol.78, pp.1613-1636, dio:10.1306/A25FF233-171B-11D7-8645000102C1865D, 1994.
- Carlson, W.D., Donelick, R.A. and Ketcham, R.A., Variability of apatite fission-track annealing kinetics: I. Experimental results, American Mineralogist, vol.84, pp.1213-1223, dio:10.2138/am-1999-0901, 1999.
- Chatanantavet, P. and Parker, G., Physically based modeling of bedrock incision by abrasion, plucking, and macroabrasion, Journal of Geophysical Research: Earth Surface, vol.114, F04018, doi:10.1029/2008JF001044, 2009.
- Cohen, K.M., Finney, S.C., Gibbard, P.L. and Fan, J.-X., The ICS International Chronostratigraphic Chart (updated), Episodes, vol.36, pp.199-204, dio:10.18814/epiiugs/2013/v36i3/002, 2013.
- Crosby, B.T. and Whipple, K.X., Knickpoint initiation and distribution within fluvial networks: 236 waterfalls in the Waipaoa River, North Island, New Zealand, Geomorphology, vol.82, pp.16-38, 2006.

- Dalrymple, G.B. and Lanphere, M.A., Potassium-Argon Dating, San Francisco (W.H. Freeman and company), 258p, dio:10.1180/minmag.1970.037.291.13, 1969.
- Den Hartog, S.A.M., Niemeijer, A.R. and Spiers, C.J., New constraints on megathrust slip stability under subduction zone P-T conditions, Earth and Planetary Science Letters, vol.353-354, pp.240-252, dio:10.1016/j.epsl.2012.08.022, 2012.
- Dodson, M.T., Closure temperature in cooling geochronological and petrological systems, Contributions to Mineralogy and Petrology, vol.40, pp.259-274, 1973.
- Donelick, R.A and Miller, D.S., Enhanced tint fission track densities in low spontaneous track density apatite using <sup>252</sup>Cf-derived fission fragment tracks: A model and experimental observations, Nuclear Tracks and Radiation Measurements, vol.18, pp.301-307, 1991.
- Evans, N.J., Byrne, J.P., Keegan, J.T. and Dotter, L.E., Determination of uranium and thorium in zircon, apatite, and fluorite: Application to laser (U-Th)/He thermochronology, Journal of Analytical Chemistry, vol.60, pp.1159-1165, dio:10.1007/s10809-005-0260-1, 2005.
- Farley, K.A., Wolf, R.A. and Silver, L.T., The effects of long alpha-stopping distances on (U-Th)/He ages, Geochimica et Cosmochimica Acta, vol.60, pp.4223-4229, dio:10.1016/S0016-7037(96)00193-7, 1996.
- Farley, K.A., Helium diffusion from apatite: general behavior as illustrated by Durango fluorapatite, Journal of Geophysical Research, vol.105, pp.2903-2914, dio:10.1029/1999JB900348, 2000.
- Ferguson, R.I., Emergence of abrupt gravel to sand transitions along rivers through sorting processes, Geology, vol.31, pp.159-162, dio:10.1130/0091-7613(2003)031<0159:EOAGTS>2.0.CO;2, 2003.
- Fleischer, R.L., Price, P.B. and Walker, R.M., Effects of temperature, pressure and ionization of the formation and stability of fission tracks in minerals and glasses, Journal of Geophysical Reseach, vol.70, pp.1497-1502, dio:10.1029/JZ070i006p01497, 1965.
- Flowers, R.M., Ketcham, R.A., Shuster, D.L. and Farley, K.A., Apatite (U–Th)/He thermochronology using a radiation damage accumulation and annealing model, Geochimica et Cosmochimica Acta, vol.73, pp.2347-2365, dio:10.1016/j.gca.2009.01.015, 2009.
- Folk, R.L., Petrography and origin of the Silurian Rochester and McKenzie Shales, Morgan County, West Virginia, Journal of Sedimentary Petrology, vol.32, pp.539-578, dio:10.1306/74D70D17-2B21-11D7-8648000102C1865D, 1962.
- 藤原 治, 三箇智二, 大森博雄, 日本列島における侵食速度の分布, サイクル機構技報, vol.5, pp.85-93, 1999.
- Fukuchi, R., Fujimoto, K., Kameda, J., Hamahashi, M., Yamaguchi, A., Kimura, G., Hamada, Y., Hashimoto, Y., Kitamura, Y. and Saito, S., Changes in illite crystallinity within an ancient tectonic boundary thrust caused by thermal, mechanical, and hydrothermal effects: an example from the Nobeoka Thrust, southwest Japan, Earth, Planets and Space, vol.66, 12p, dio:10.1186/1880-5981-66-116, 2014.
- Fukuda, S., Sueoka, S., Hasebe, N., Tamura, A., Arai, S. and Tagami, T., Thermal history analysis of granitic rocks in an arc-trench system based on apatite fission-track thermochronology: A case study of the Northeast Japan Arc, Journal of Asian Earth Sciences: X, vol.1, 100005, https://doi.org/10.1016/j.jaesx.2019.100005, 2019.

- Fukuda, S., Sueoka, S., Kohn, B.P. and Tagami, T., (U–Th)/He thermochronometric mapping across the northeast Japan Arc: towards understanding mountain building in an island-arc setting, Earth, Planets and Space, in press.
- Gautheron, C., Barbarand, J., Ketcham, R.A., Tassan-Got, L., van der Beek, P., Pagel, M., Pinna-Jamme, R., Couffignal, F. and Fialin, M., Chemical influence on α-recoil damage annealing in apatite: Implications for (U-Th)/He dating, Chemical Geology, vol.351, pp.257-267, dio: 10.1016/j.chemgeo.2013.05.027, 2013.
- Gilbert, G.K., Report on the geology of the Henry Mountains, Government Printing Office, 160p, dio: 10.3133/70039916, 1877.
- Gleadow, A.J.W., Duddy, I.R., Green, P.F. and Lovering, J.F., Confined fission track lengths in apatite: A diagnostic tool for thermal history analysis, Contributions to Mineralogy and Petrology, vol.94, pp.405-415, dio:10.1007/BF00376334, 1986.
- 後藤 篤,日本列島の隆起準平原の平坦化の時期―フィッション・トラック年代学からのアプロー チー,科研費成果報告書,課題番号 10440144,2001.
- Green, P.F., Duddy, I.R., Gleadow, A.J.W., Tingate, P.R. and Laslett, G.M., Fission-track annealing in apatite: Track length measurements and the form of the Arrhenius plot, Nuclear Tracks, vol.10, pp.323-328, dio: 0.1016/0735-245X(85)90121-8, 1985.
- Green, P.F., Duddy, I.R. and Laslett, G.M., Can fission track annealing in apatite be described by first-order kinetics? Earth and Planetary Science Letters, vol.87, pp.216-228, dio:10.1016/0012-821X(88)90076-3, 1988.
- Guenthner, W.R., Reners, P.W., Ketcham, R.A., Nasdala, L. and Giester, G., Helium diffusion in natural zircon: Radiation damage, anisotropy, and the interpretation of zircon (U-Th)/He thermochronology, American Journal of Science, vol.313, pp.145-198, dio:10.2475/03.2013.01, 2013.
- Han, J., Gasparini, N.M., Johnson, J.P.L. and Murphy, B.P., Modeling the influence of rainfall gradients on discharge, bedrock erodibility, and river profile evolution, with application to the Big Island, Hawai'i, Journal of Geophysical Research: Earth Surface, vol.119, pp.1418-1440, dio:10.1002/2013JF002961, 2014.
- Hancock, G.S., Small, E.E. and Wobus, C., Modeling the effects of weathering on bedrock floored channel geometry, Journal of Geophysical Research Earth Surface, vol.116, F03018, doi:10.1029/2010JF001908, 2011.
- 原山 智, 高橋正明, 宿輪隆太, 板谷徹丸, 八木公史, 黒部川沿いの高温泉と第四紀黒部川花崗岩, 地質学雑誌, vol,116, pp.63-81, 2010.
- Hasebe, N., Tagami, T. and Nishimura, S., Towards zircon fission-track thermochronology: Reference framework for confined track length measurements, Chemical Geology (Isotope Geoscience Section), vol.112, pp.169-178, dio:10.1016/0009-2541(94)90112-0, 1994.
- Hasebe, N., Tamura, A. and Arai, S., Zeta equivalent fission-track dating using LA-ICP-MS and examples with simultaneous U-Pb dating, Island Arc, vol.22, pp.280-291, dio:10.1111/iar.12040, 2013
- 早川裕一, 松倉公憲, 房総半島における滝の後退速度について, 日本地形学連合 2002 年度春季研 究発表会, P13, p.465, 2002.
- Heinrichs, H. and Herrmann, A.G., Praktikum der Analytischen Geochemie, Springer-Verlag, Berlin-Heidelberg, 669p, 1990.

- Hess, J.C. and Lippolt, H.J., Compilation of K-Ar measurements on HD-B1 standard biotite, In: Odin G.S., (editor), Phanerozoic time scale, Bulletin de liaison et d'information, IUGS subcommision On Geochronology, vol.12, Paris, pp.19-23, 1994.
- Hollister, L.S., Grissom, G.C., Peters, E.K., Stowell, H. and Sisson, V.B., Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons, American Mineralogist, vol.72, pp.231-239, 1987.
- Howard, A.D., Thresholds in river regimes, Thresholds in Geomorphology, vol.227, pp.227-258, 1980.
- Howard, A.D. and Kerby, G., Channel changes in badlands, Geological Society of America Bulletin, vol.94, pp.739-752, dio:10.1130/0016-7606(1983)94<739:CCIB>2.0.CO;2, 1983.
- Howard, A.D., Dietrich, W.E. and Seidl, M.A., Modeling fluvial erosion on regional to continental scales, Journal of Geophysical Research: Solid Earth, vol.99, pp.13971-13986, doi:10.1029/94JB00744, 1994.
- Ito, H., Yamada, R., Tamura, A., Arai, S., Horie, K. and Hokada, T., Earth's youngest exposed granite and its tectonic implications: the 10–0.8 Ma Kurobegawa Granite, Scientific Reports, vol.3, 1306, pp.1-5, dio:10.1038/srep01306, 2013.
- Jansen, J.D., Fabel, D., Bishop, P., Xu, S., Schnabel, C., and Codilean, A.T., Does decreasing paraglacial sediment supply slow knickpoint retreat?, Geology, vol.39, pp.543-546, dio: 10.1130/G32018.1, 2011.
- Johnson, J.P. and Whipple, K.X., Evaluating the controls of shear stress, sediment supply, alluvial cover, and channel morphology on experimental bedrock incision rate, Journal of Geophysical Research: Earth Surface, vol.115, F02018, doi.org/10.1029/2009JF001335, 2010.
- Ketcham, R.A., Forward and inverse modeling of low-temperature thermochronometry data, Reviews in Mineralogy & Geochemistry, vol.58, pp.275-314, dio:10.2138/rmg.2005.58.11, 2005.
- Ketcham, R.A., Donelick, R.A. and Carlson, W.D., Variability of apatite fission-track annealing kinetics: III. Extrapolation to geological time scales, American Mineralogist, vol.84, pp.1235-1255, dio:10.2138/am-1999-0903, 1999.
- King, G.E., Tsukamoto, S., Herman, F., Biswas, R.H., Sueoka, S. and Tagami, T., Electron spin resonance (ESR) thermochronometry of the Hida range of the Japanese Alps: validation and future potential, Geochronology, vol.2, pp.1-15, 2020.
- Lague, D., The stream power river incision model: evidence, theory and beyond, Earth Surface Processes and Landforms, vol.39, pp.38-61, dio:10.1002/esp.3462, 2014.
- Lamb, M.P. and Venditti, J.V., The grain size gap and abrupt gravel-sand transitions in rivers due to suspension fallout. Geophysical Research Letters, vol.43, doi:10.1002/2016GL068713, 2016.
- Laslett, G.M., Green, P.F., Duddy, I.R. and Gleadow, A.J.W., Thermal annealing of fission tracks in apatite; 2. A quantitative analysis, Chemical Geology (Isotope Geoscience Section), vol.65, pp.1-13, dio:10.1016/0168-9622(87)90057-1, 1987.
- Mahara, Y., Hohjo, K., Kubota, T., Ohta, T., Mizuochi, Y., Tashiro, T., Sekimoto, S., Takamiya, K., Shibata, S. and Tanaka, K., Vertical distribution of <sup>10</sup>Be, <sup>26</sup>Al, and <sup>36</sup>Cl in the surface soil layer of weathered granite at Abukuma, Japan, Nuclear Instruments and Methods in Physics Research B, vol.268, pp.1197-1200, dio:10.1016/j.nimb.2009.10.132, 2010.

- McDougall, I. and Harrison, T.M., Geochronology and Thermochronology by the <sup>40</sup>Ar/<sup>39</sup>Ar Method, 2nd ed., Oxford University Press, Oxford, 269p, 1999.
- Matsushi, Y., Sasa, K., Takahashi, T., Sueki, K., Nagashima, Y. and Matsukura, Y., Denudation rates of carbonate pinnacles in Japanese karst areas: Estimates from cosmogenic <sup>36</sup>Cl in calcite, Nuclear Instruments and Methods in Physics Research B, vol.268, pp.1205-1208, dio:10.1016/j.nimb.2009.10.134, 2010.
- 松四雄騎, 松崎浩之, 牧野久識, 宇宙線生成核種による流域削剥速度の決定と地形方程式の検証, 地形, vol.35, pp.165-185, 2014.
- Montgomery, D.R., Abbe, T.B., Buffington, J.M., Peterson, N.P., Schmidt, K.M. and Stock, J.D., Distribution of bedrock and alluvial channels in forested mountain drainage basins, Nature, vol.381, pp.587-589, dio:10.1038/381587a0, 1996.
- Murakami, M. and Tagami, T., Dating pseudotachylyte of the Nojima fault using the zircon fission-track method, Geophysical Research Letters, vol.31, doi:10.1029/2004GL020211, 2004.
- Murakami, M., Yamada, R. and Tagami, T., Short-term annealing characteristics of spontaneous fission tracks in zircon: a qualitative description, Chemical Geology, vol.227, pp.214-222, dio: 10.1016/j.chemgeo.2005.10.002, 2006.
- Mutch, E.J.F., Blundy, J.D., Tattitch, B.C., Cooper, F.J. and Brooker, R.A., An experimental study of amphibole stability in low-pressure granitic magmas and a revised Al-inhornblende geobarometer, Contributions to Mineralogy and Petrology, vol.171, doi: 10.1007/s00410-016-1298-9, 2016.
- Nakamura A., Yokoyama Y., Shiroya K., Miyairi Y. and Matsuzaki H., Direct comparison of site-specific and basin-scale denudation rate estimation by in situ cosmogenic nuclides: an example from the Abukuma Mountains, Japan, Progress in Earth and Planetary Science, vol.1, doi:10.1186/2197-4284-1-9, 2014.
- Nishiizumi, K., Imamura, M., Caffee, M.W., Southon, J.R., Finkel, R.C. and McAninch, J., Absolute calibration of <sup>10</sup>Be AMS standards, Nuclear Instruments and Methods in Physics Research Section B, vol.258, pp.403-413, dio<sup>:10.1016/j.nimb.2007.01.297, 2007.</sup>
- Niwa, M., Shimada, K., Tamura, H., Shibata, K., Sueoka, S., Yasue, K., Ishimaru, T. and Umeda, K., Thermal constraints on clay growth in fault gouge and their relationship with fault-zone evolution and hydrothermal alteration: Case study of gouges in the Kojaku Granite, Central Japan, Clays and Clay Minerals, vol.64, pp.86-107, dio: 10.1346/CCMN.2016.0640202, 2016.
- Ohtani, T., Shigematsu, N., Fujimoto, K., Tomita, T. and Iwano, H., Geochronological constraint on the brittle-plastic deformation along the Hatagawa Fault Zone, NE Japan, Earth, Planets and Space, vol.56, pp.1201-1207, dio:10.1186/BF03353341, 2004.
- 太田陽子,小池一之,鎮西清高,野上道男,町田 洋,松田時彦編,日本列島の地形学,東京大学出版会,204p,2010.
- 大上隆史, 三陸海岸北部における遷急点を伴う河床縦断形の中期更新世以降の変化, 第四紀研究, vol.54, pp.113-128, 2015.
- Reiners, P.W., Spell, T.L., Nicolescu, S. and Zanetti, A., Zircon (U-Th)/He thermochronometry: He diffusion and comparisons with <sup>40</sup>Ar/<sup>39</sup>Ar dating, Geochimica et Cosmochimica Acta, vol.68, pp.1857-1887, dio:10.1016/j.gca.2003.10.021, 2004.

- Reiners, P.W., Nonmonotonic thermal histories and contrasting kinetics of multiple thermochronometers, Geochimica et Cosmochimica Acta, vol.73, pp.3612-3629, doi: 10.1016/j.gca.2009.03.038, 2009.
- Roberts, G.G. and White, N., Estimating uplift rate histories from river profiles using African examples, Journal of Geophysical Research: Solid Earth, vol.115, B02406, doi: 10.1029/2009JB006692, 2010.
- Roberts, G.G., Paul, J.D., White, N. and Winterbourne, J., Temporal and spatial evolution of dynamic support from river profiles: A framework for Madagascar, Geochemistry, Geophysics, Geosystems, vol.13, doi: 10.1029/2012GC004040, 2012.
- Roedder, E., Fluid Inclusions, Mineralogical Society of America, 644p, 1984.
- Rudge, J.F., Roberts, G.G., White, N.J. and Richardson, C.N., Uplift histories of Africa and Australia from linear inverse modeling of drainage inventories, Journal of Geophysical Research: Earth Surface, vol.120, 894-914, dio:10.1002/2014JF003297, 2015.
- 佐脇貴幸, 流体包有物一その基礎と最近の研究動向一, 岩石鉱物科学, vol.32, pp.23-41, 2003.
- Schmidt, M.W., Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer, Contributions to Mineralogy and Petrology, vol.110, pp.304-310, 1992.
- Schmidt, J.S., Lelarge, M.L.M.V., Conceicao, R.V. and Balzaretti, N.M., Experimental evidence regarding the pressure dependence of fission track annealing in apatite, Earth and Planetary Science Letters, vol.390, pp.1-7, dio:10.1016/j.epsl.2013.12.041, 2014.
- Seidl, M.A. and Dietrich, W.E., The problem of channel erosion into bedrock, Functional Geomorphology, vol.23, pp.101-124, 2013.
- Selby, M.J., A rock mass strength classification for geomorphic purposes: with tests from Antarctica and New Zealand, Zeitschrift für Geomorphologie Stuttgart, vol.24, pp.31-51, 1980.
- Shiroya, K., Yokoyama, Y. and Matsuzaki, H., Quantitative determination of long-term erosion rates of weathered granitic soil surfaces in western Abukuma, Japan using cosmogenic <sup>10</sup>Be and <sup>26</sup>Al depth profile, Geochemical Journal, vol.44, pp.e23-e27, 2010.
- Shuster, D.L., Flowers, R.M. and Farley, K.A., The influence of natural radiation damage on helium diffusion kinetics in apatite, Earth and Planetary Science Letters, vol.249, pp.148-161, dio: 10.1016/j.epsl.2006.07.028, 2006.
- Sklar, L.S. and Dietrich, W.E., River longitudinal profiles and bedrock incision models: Stream power and the influence of sediment supply, Rivers Over Rock: Fluvial Processes in Bedrock Channels, vol.107, pp.237-260, doi:10.1029/GM107p0237, 1998.
- Sklar, L.S. and Dietrich, W.E., Sediment and rock strength controls on river incision into bedrock, Geology, vol.29, pp.1087-1090, 2001.
- Sklar, L.S. and Dietrich, W.E., A mechanistic model for river incision into bedrock by saltating bed load, Water Resources Research, vol.40, W06301, dio:10.1029/2003WR002496, 2004.
- Small, E.E., Blom, T., Hancock, G.S., Hynek, B.M. and Wobus, C.W., Variability of rock erodibility in bedrock-floored stream channels based on abrasion mill experiments, Journal of Geophysical Research: Earth Surface, vol.120, pp.1455-1469, doi: 10.1002/2015JF003506, 2015.
- Steiger, R.H. and Jäger, E., Subcommission on Geochronology: convention on the use of decay

constants in geo-and cosmochronology, Earth and Planetary Science Letters, vol.36, pp.359-362, dio:10.1016/0012-821X(77)90060-7, 1977.

- Stone, J.O., Air pressure and cosmogenic isotope production, Journal of Geophysical Research: Solid Earth, vol.105, pp.23753-23759, dio<sup>:10.1029/2000</sup>JB900181, 2000.
- 末岡茂,田上高広,堤浩之,長谷部徳子,田村明弘,荒井章司,山田隆二,松田達生,小村健太郎, フィッション・トラック熱年代に基づいた六甲地域の冷却・削剥史,地学雑誌,vol.119, pp.84-101, 2010.
- Sueoka, S., Tagami, T. and Kohn, B.P., First report of (U-Th)/He thermochronometric data across Northeast Japan Arc: implications for the long-term inelastic deformation, Earth, Planets and Space, vol.69, doi:10.1186/s40623-017-0661-z, 2017.
- Tagami, T., Uto, K., Matsuda, T., Hasebe, N. and Matsumoto, A., K-Ar biotite and fission-track zircon ages of the Nisatai Dacite, Iwate Prefecture, Japan: A candidate for Tertiary age standard, Geochemical Journal, vol.29, pp.207-211, dio:10.2343/geochemj.29.207, 1995.
- Tagami, T., Galbraith, R.F., Yamada, R. and Laslett, G.M., Revised annealing kinetics of fission tracks in zircon and geological implications, In: Van den Haute, P., De Corte, F. (editors), Advances in Fission-track Geochronology, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp.99-112, 1998.
- Tagami, T., Thermochronological investigation of fault zones, Tectonophysics, vol.538-540, pp.67-85, dio:10.1016/j.tecto.2012.01.032, 2012.
- Tagami, T. and Matsu'ura, S., Thermal annealing characteristics of fission tracks in natural zircons of different ages, Terra Nova, vol.31, pp.257-262, dio:10.1111/ter.12394, 2019.
- 高橋裕平,角閃石中のAl量一花崗岩類に有効な地質圧力計,地質調査所月報,vol.44, pp.597-608, 1993.
- 田中明子,山野 誠,矢野雄策,笹田政克,日本列島及びその周辺域の地温勾配及び地殻熱流量デ ータベース,数値地質図 DGM P-5,産業技術総合研究所 地質調査総合センター,2004.
- Valla, P.G., van der Beek, P.A. and Lague, D., Fluvial incision into bedrock: Insights from morphometric analysis and numerical modeling of gorges incising glacial hanging valleys (Western Alps, France), Journal of Geophysical Research: Earth Surface, vol.115, F02010, doi:10.1029/2008JF001079, 2010.
- Wendt, A.S., Vidal, O. and Chadderton, L.T., Experimental evidence for the pressure dependence of fission track annealing in apatite, Earth and Planetary Science Letters, vol.201, pp.593-607, 2002.
- Whipple, K.X., Bedrock rivers and the geomorphology of active orogens, Annual Review of Earth and Planetary Sciences, vol.32, pp.151-185, 2004.
- Whittaker, A.C. and Boulton, S.J., Tectonic and climatic controls on knickpoint retreat rates and landscape response times, Journal of Geophysical Research: Earth Surface, vol.117, F02024, doi:10.1029/2011JF002157, 2012.
- Wiberg, P.L. and Smith, J.D., A theoretical model for saltating grains in water, Journal of Geophysical Research: Oceans, vol.90, pp.7341-7354, dio:10.1029/JC090iC04p07341, 1985.
- Wohl, E. and David, G.C., Consistency of scaling relations among bedrock and alluvial channels, Journal of Geophysical Research: Earth Surface, vol.113, F04013, doi:10.1029/2008JF000989, 2008.
- Wohl, E.E. and Ikeda, H., Patterns of bedrock channel erosion on the Boso Peninsula, Japan,

The Journal of Geology, vol.106, pp.331-346, dio:10.1086/516026, 1998.

- Wohl, E.E. and Merritt, D.M., Bedrock channel morphology, Geological Society of America Bulletin, vol.113, pp.1205-1212, dio:10.1130/0016-7606(2001)113<1205:BCM>2.0.CO, 2001.
- Wohl, E.E., Thompson, D.M., and Miller, A.J., Canyons with undulating walls, Geological Society of America Bulletin, vol.111, pp.949-959, 1999.
- Yamada, R., Fission track thermochronology: Thermal characteristics of fission tracks in zircon, and cooling history analysis of the granitic bodies around the northern Alps, central Japan, Doctoral Dissertation of Kyoto University, 128p, doi: 10.11501/3123276, 1996.
- Yamada, R., Tagami, T. and Nishimura, S., Confined fission-track length measurement of zircon: Assessment of factors affecting the paleotemperature estimate, Chemical Geology, vol.119, pp.293-306, dio:10.1016/0009-2541(94)00108-K, 1995a.
- Yamada, R., Tagami, T., Nishimura, S. and Ito, H., Annealing kinetics of fission tracks in zircon: an experimental study, Chemical Geology, vol.122, pp.249-258, dio: 10.1016/0009-2541(95)00006-8, 1995b.
- Yamada, K., Tagami, T. and Shimobayashi, N., Experimental study on hydrothermal annealing of fission tracks in zircon, Chemical Geology, vol.201, pp.351-357, dio: 0.1016/j.chemgeo.2003.08.009, 2003.
- Yamada, K., Hanamuro, T., Tagami, T., Shimada, K., Takagi, H., Yamada, R. and Umeda, K., The first (U-Th)/He thermochronology of pseudotachylyte from the Median Tectonic Line, southwest Japan, Journal of Asian Earth Sciences, vol.45, pp.17-23, dio:10.1016/j.jseaes.2011.08.009, 2012.
- Yamasaki, S., Zwingmann, H., Yamada, K., Tagami, T. and Umeda, K., Constraining the timing of brittle deformation and faulting in the Toki granite, central Japan, Chemical Geology, vol.351, pp.168-174, dio:10.1016/j.chemgeo.2013.05.005, 2013.
- Zwingmann, H., Den Hartog, S.A.M. and Todd, A., The effect of sub-seismic fault slip processes on the isotopic signature of clay minerals – Implications for K-Ar dating of fault zones, Chemical Geology, vol.514, pp.112-121, dio:10.1016/j.chemgeo.2019.03.034, 2019.
- Zwingmann, H. and Mancktelow, N., Timing of Alpine fault gouges, Earth and Planetary Science Letters, vol.223, pp.415-425, dio:10.1016/j.epsl.2004.04.041, 2004.
- Zwingmann, H., Yamada, K. and Tagami, T., Timing of brittle deformation within the Nojima fault zone, Japan, Chemical Geology, vol.275, pp.176-185, 2010.

# 岩石・年代学的手法を用いた自然現象の影響評価手法の 高度化に関する共同研究

平成 31 年度共同研究報告書

# 令和2年1月

国立大学法人山形大学

国立大学法人東京大学地震研究所

国立研究開発法人日本原子力研究開発機構 核燃料・バックエンド研究開発部門 東濃地科学センター 地層科学研究部 ネオテクトニクス研究グループ

# 目 次

| 1. | 概要                                   | 5  |
|----|--------------------------------------|----|
|    | 1.1 共同研究件名                           | 5  |
|    | 1.2 研究目的                             | 5  |
|    | 1.3 実施期間                             | 5  |
| 2. | 研究内容                                 | 6  |
|    | 2.1 研究概要                             | 6  |
|    | 2.2 共同研究内容                           | 6  |
| 3. | 研究手法                                 | 7  |
|    | 3.1 U-Pb 年代測定・チタン濃度の同時定量技術の開発        | 7  |
|    | 3.2 ジルコン内での分析地点の選定                   | 7  |
|    | 3.3 試料選定                             | 8  |
|    | 3.4 黒雲母 K-Ar 年代を用いた比較検討              |    |
| 4. | 研究成果                                 |    |
|    | 4.1 U-Pb 年代測定・チタン濃度の同時定量技術の開発        |    |
|    | 4.2 ジルコン内での内部構造に基づく分析地点の選定           | 16 |
|    | 4.2.1 黒部川花崗岩体のジルコン                   |    |
|    | 4.2.2 大崩山花崗岩体のジルコン                   |    |
|    | 4.2.3 土岐花崗岩体のジルコン                    |    |
|    | 4.2.4 遠野複合深成岩体のジルコン                  |    |
|    | 4.3 ジルコンの U-Pb 年代とチタン濃度から結晶化年代・温度の導出 | 23 |
|    | 4.3.1 黒部川花崗岩体のジルコン                   |    |
|    | 4.3.2 大崩山花崗岩体のジルコン                   |    |
|    | 4.3.3 土岐花崗岩体のジルコン                    |    |
|    | 4.3.4 遠野複合深成岩体のジルコン                  |    |
|    | 4.4 得られたジルコン結晶化年代と黒雲母 K-Ar 年代の関連     |    |
|    | 4.5 ジルコンの物理化学条件に基づく隆起史・侵食史の初期条件の制約   | 51 |
| 5. | まとめ                                  |    |

図目次

| 义 | 3.1.1 土岐花崗岩体中のジルコンの CL 像 (Yuguchi et al., 2016 <sup>3)</sup> ) | . 7 |
|---|----------------------------------------------------------------|-----|
| 义 | 3.2.1 内部構造に基づき決定された U-Pb 年代とチタン濃度のペア                           | . 8 |
| 义 | 3.3.1 黒部川花崗岩の優白質岩と優黒質岩の産状を示す写真                                 | . 8 |
| 义 | 3.3.2 対象試料の温度時間履歴(t-T path)                                    | 10  |
| 义 | 4.2.1 黒部川花崗岩体(優白質岩)のジルコンの分析点                                   | 17  |
| 义 | 4.2.2 大崩山花崗岩体(黒雲母花崗岩)のジルコンの分析点                                 | 18  |
| 义 | 4.2.3 大崩山花崗岩体(ホルンブレンド黒雲母花崗岩)のジルコンの分析点                          | 19  |
| 义 | 4.2.4 大崩山花崗岩体(ホルンブレンド黒雲母花崗閃緑岩)のジルコンの分析点                        | 20  |
| 义 | 4.2.5 土岐花崗岩体 (DH6-2、DH9-10、DH13-2) のジルコンの分析点                   | 21  |
| 义 | 4.2.6 遠野複合深成岩体のジルコンの分析点                                        | 22  |
| 义 | 4.3.1 黒部川花崗岩体のジルコンの U-Pb 年代とチタン濃度                              | 25  |
| 义 | 4.3.2 黒部川花崗岩体のジルコン U-Pb 年代と結晶化年代のプロット                          | 26  |
| 义 | 4.3.3 黒部川花崗岩体の①低輝度で均質な領域(A)、②オシラトリーゾーニング領域(B                   | ;)  |
|   | から得られたデータの年代と温度の関係                                             | 27  |
| 义 | 4.3.4 黒部川花崗岩体のジルコン U-Pb 年代と結晶化年代のプロット                          | 28  |
| 义 | 4.3.5 大崩山花崗岩体(黒雲母花崗岩)のジルコンの U-Pb 年代とチタン濃度                      | 29  |
| 义 | 4.3.6 大崩山花崗岩体(ホルンブレンド黒雲母花崗岩)のジルコンの U-Pb 年代とチタ                  | 7   |
|   | ン濃度                                                            | 30  |
| 义 | 4.3.7 大崩山花崗岩体(ホルンブレンド黒雲母花崗閃緑岩)のジルコンの U-Pb 年代と                  | -   |
|   | チタン濃度                                                          | 31  |
| 义 | 4.3.8 大崩山花崗岩体のジルコン U-Pb 年代と結晶化年代のプロット                          | 32  |
| 义 | 4.3.9 大崩山花崗岩体の①低輝度で均質な領域(A)、②オシラトリーゾーニング領域(B                   | ;)  |
|   | から得られたデータの年代と温度の関係                                             | 33  |
| 义 | 4.3.10 大崩山花崗岩体のジルコン U-Pb 年代と結晶化年代のプロット                         | 34  |
| 义 | 4.3.11 土岐花崗岩体 (DH6-2、DH9-10、DH13-2) のジルコンの U-Pb 年代とチタン         | /   |
|   | 濃度                                                             | 35  |
| 义 | 4.3.12 土岐花崗岩体のジルコン U-Pb 年代と結晶化年代のプロット                          | 36  |
| 义 | 4.3.13 土岐花崗岩体 (DH6-2、DH9-10、DH13-2) の①低輝度で均質な領域(A)、②           | オ   |
|   | シラトリーゾーニング領域(B)から得られたデータの年代と温度の関係                              | 37  |
| 义 | 4.3.14 土岐花崗岩体のジルコン U-Pb 年代と結晶化年代のプロット                          | 38  |
| 义 | 4.3.15 遠野複合深成岩体のジルコンの U-Pb 年代とチタン濃度                            | 39  |
| 义 | 4.3.16 遠野複合深成岩体のジルコン U-Pb 年代と結晶化年代のプロット                        | 40  |
| 义 | 4.3.17 遠野複合深成岩体の①低輝度で均質な領域(A)、                                 | 41  |
| 义 | 4.3.18 遠野複合深成岩体のジルコン U-Pb 年代と結晶化年代のプロット                        | 42  |
| 义 | 4.4.1 黒部川花崗岩体(優白質岩)のジルコン U-Pb 年代・結晶化年代と黒雲母 K-Ar                | •   |
|   | 年代・その閉鎖温度のプロット                                                 | 19  |
| 义 | 4.4.2 大崩山花崗岩体の3岩相(黒雲母花崗岩、ホルンブレンド黒雲母花崗岩、ホル、                     | ン   |
|   | ブレンド黒雲母花崗閃緑岩)ごとのジルコン U-Pb 年代・結晶化年代と黒雲母 K-Ar 4                  | F   |
|   | 代・その閉鎖温度のプロット                                                  | 50  |
| 义 | 4.4.3 遠野複合深成岩体(中心部相、主岩相、周辺部相)のジルコン U-Pb 年代・結晶                  | 日   |
|   | 化年代と黒雲母 K-Ar 年代・その閉鎖温度のプロット                                    | 50  |

表 目 次

| 表 | 3.3 <b>-</b> 1 | 本共同研究で対象とする岩石試料                                      | . 9 |
|---|----------------|------------------------------------------------------|-----|
| 表 | 3.3-2          | 本共同研究で対象とする岩石試料(Yuguchi et al., 2019 <sup>2)</sup> ) | 10  |
| 表 | 3.4-1          | 本共同研究で活用する試料の黒雲母 K-Ar 年代リスト                          | 11  |
| 表 | 4.1-1          | 学習院大学での分析条件                                          | 14  |
| 表 | 4.1-2          | 東濃地科学センターでの分析条件                                      | 15  |
| 表 | 4.3 <b>-</b> 1 | 黒部川花崗岩体のジルコン U-Pb 年代データ及びチタン濃度                       | 43  |
| 表 | 4.3-2          | 大崩山花崗岩体のジルコン U-Pb 年代データ及びチタン濃度                       | 44  |
| 表 | 4.3 <b>-</b> 3 | 土岐花崗岩体のジルコン U-Pb 年代データ及びチタン濃度                        | 46  |
| 表 | 4.3-4          | 遠野複合深成岩のジルコン U-Pb 年代データ及びチタン濃度                       | 47  |
| 表 | 4.4-1          | 本共同研究で活用する試料の黒雲母 K-Ar 年代                             | 49  |

#### 1. 概要

#### 1.1 共同研究件名

「岩石・年代学的手法を用いた自然現象の影響評価手法の高度化に関する研究」

#### 1.2 研究目的

わが国においては、従来から、高レベル放射性廃棄物の地層処分の安全評価において重要とな る、放射性核種が地下水を介して生物圏へ移行するという「地下水シナリオ」に係る評価の信頼 性向上に資するための要素技術開発が進められている。平成 30 年 3 月に公開された「地層処分 研究開発に関する全体計画(平成 30 年度~平成 34 年度)」では、地層処分に適した地質環境の 選定及びモデル化において自然現象の影響を把握することの重要性が示されるとともに、火山・ 火成活動、深部流体、地震・断層活動、隆起・侵食に関する調査・評価技術の高度化に関する研 究開発課題が整理されている。

日本原子力研究開発機構(以下、「原子力機構」という)では、経済産業省資源エネルギー庁か ら受託した「平成 31 年度高レベル放射性廃棄物等の地層処分に関する技術開発事業(地質環境 長期安定性評価技術高度化開発)」において、これらの自然現象の影響に関連して示された研究課 題に対して、地質学、地形学、地震学、地球年代学といった各学術分野における最新の研究を踏 まえた技術の適用による事例研究を通じて、課題の解決に必要な知見の蓄積や調査・評価技術の 高度化を総合的に進めている。このうち隆起・侵食については、隆起量・侵食量の評価に反映す るための、熱年代学的手法などを用いた隆起・侵食評価手法の整備が、技術開発課題として提示 されている。

国立大学法人山形大学(以下、「山形大学」という)と東京大学地震研究所(以下、「東大地震 研」という)及び原子力機構が実施する本共同研究では、岩石学、地球年代学などの手法を融合 的に用いることで、隆起量・侵食量の評価方法の整備に関する課題の検討を行う。深成岩体を伴 う地域の隆起量・侵食量の評価には地球年代学の中でも熱年代学的な手法が有用である。また鉱 物の組織的特徴や化学組成は、鉱物生成時の環境や温度条件を把握するための手がかりとなる。 これらの岩石学的手法と熱年代学的な手法の融合は、マグマの貫入・定置に関する情報などの、 熱年代学のみでは得られない、隆起史・侵食史の解明に資する地質情報の取得が期待できる。こ れらの手法を通じて隆起量・侵食量評価に寄与する自然現象の影響評価手法の整備及び高度化を 試みる。

山形大学は、岩石学や熱年代学などの分野で多くの研究実績を有している。東大地震研は、火 山学・岩石学への知見を有し、特に100万年よりも若い時代の火成活動評価について、年代学的 アプローチを実施できる知識と分析装置を有する。また、微量元素分析についても実績を有する。 また、原子力機構は、これらの分野における各種分析に必要な最新の装置を数多く有しており、 国内でも有数の分析環境を備えている。そのため、本共同研究を行うことにより、上記のような 課題に対して総合的かつ効果的に進めることができる。

なお、本共同研究は、原子力機構が経済産業省資源エネルギー庁から受託した「平成31年度高 レベル放射性廃棄物等の地層処分に関する技術開発事業(地質環境長期安定性評価技術高度化開 発)」の一環として行うものである。

#### 1.3 実施期間

令和元年8月1日~令和2年1月31日

#### 2. 研究内容

#### 2.1 研究概要

平成 31 年度高レベル放射性廃棄物等の地層処分に関する研究開発事業(地質環境長期安定性 評価技術高度化開発)においては、研究開発課題の一項目として「隆起・侵食の調査・評価技術 の高度化」が実施されている。これは、地形学的手法や年代測定などを用いた過去百万年~数十 万年前以前からの隆起・侵食を把握するための技術の拡充を目指すものである。この背景の中で、 本共同研究では、岩石学、地球年代学などの手法を融合的に用いることで、隆起量・侵食量の評 価方法の整備に関する課題の検討を実施する。

深成岩体を伴う地域の隆起量・侵食量の評価には地球年代学的(熱年代学的)な手法が有用で ある(例えば、末岡ほか,2015<sup>1</sup>); Yuguchi et al., 2019<sup>2</sup>)。また鉱物の組織的特徴や化学組成は、 鉱物生成時の温度条件や環境を把握するための手がかりとなる(Yuguchi et al., 2019<sup>2</sup>)。これら のことから、岩石学的手法と地球年代学的な手法の融合は、マグマの貫入・定置に関する情報な どの、熱年代学のみでは得られない、隆起史・侵食史の解明に資する地質情報の取得が可能とな る。これらの手法の構築を通じて隆起量・侵食量評価に寄与する自然現象の影響評価手法の高度 化に向けた整備を実施する。

#### 2.2 共同研究内容

令和元年度の本共同研究では、ジルコンの U-Pb 年代に基づく結晶化年代、及びカソードルミ ネッセンス観察に基づく成長様式の解明を通じて、ジルコン成長の物理化学条件の決定手法の構 築を行う。また、ジルコンの結晶化温度を推定するためにチタン温度計を適用する。平成 30 年度 に山形大学と実施した共同研究「岩石・年代学的手法を用いた自然現象の影響評価手法の高度化 に関する研究」では、チタン濃度の定量性に課題が残った。本共同研究では、分析における干渉 元素(同位体)を低減するなど分析法の最適化を図り、LA-ICP 質量分析装置を用いたチタンの 定量分析を試みる。また、より若い年代値(~1 Ma)を示すことが予測される花崗岩帯の試料を はじめ、複数の岩体の対象試料として加える。

(1) 計画立案·情報整理

本年度の研究計画を立案するとともに、既往情報を整理し、本年度分析を行う試料の選定基準や数量を決定する。

(2) 試料選定

(1)で決定した選定基準をもとに分析対象とする鉱物試料を選定する。

(3) 鉱物試料の分析及び結果の解釈

(2)で選定した鉱物に対して前処理を行った後、組織的特徴を観察、化学組成の取得、地球年 代学的データの取得を実施する。これらの結果に基づき、得られた地質情報の解釈を行い、自然 現象の影響評価手法の高度化に向けた検討を行う。

(4) 取りまとめ

上記(1)~(3)における実施・検討内容を取りまとめた報告書を作成する。

### 3. 研究手法

### 3.1 U-Pb 年代測定・チタン濃度の同時定量技術の開発

Yuguchi et al., (2016)<sup>30</sup>では、土岐花崗岩体のジルコンに対して内部構造を考慮しつつ、U-Pb 年代測定による結晶化年代の決定及びチタン濃度分析に基づく結晶化年代の決定を行った。しか しU-Pb年代測定はLA-ICP-MS、チタン濃度の定量はEPMAを用いてデータの収集を行ったた め、それぞれの年代データ、温度データと成長構造を関連づけることは未解明の課題であった(図 3.1.1)。本共同研究では、U-Pb年代測定及びチタン濃度の同時定量分析技術の開発を実施する。 U-Pb年代測定及びチタン濃度の同時定量分析には、レーザーアブレーション ICP 質量分析法 (Laser Ablation Inductively Coupled Plasma Mass Spectrometry: LA-ICP-MS)を用いた。



図 3.1.1 土岐花崗岩体中のジルコンの CL 像 (Yuguchi et al., 2016<sup>3)</sup>) ジルコン中のクレータが LA-ICP-MS による U-Pb 年代測定地点であり、 黒丸が EPMA による Ti 濃度定量分析地点である

#### 3.2 ジルコン内での分析地点の選定

ジルコンの結晶化年代及び結晶化温度を導出する上で、ジルコンの内部構造の把握は重要な課題である。それは内部構造が成長構造を反映するためである。この成長構造の解明のために、電子顕微鏡によるカソードルミネッセンス像観察(SEM-CL)を実施した。カソードルミネッセンス(CL)とは、電子顕微鏡で電子線を鉱物に照射した際に発する光を像としたものである。鉱物中の微量元素や格子欠陥などにより、その発光量は変化する。CL像観察により、ジルコンの内部構造を可視化でき、成長様式を捉えることが出来る。SEM-CL像観察には山形大学理学部に設置されたSEM-CL装置(JEOLIT-100A+Gatan Mini CL)、原子力機構東濃地科学センター所有のEPMA(JEOLJXA-8530F)を使用した。SEM-CL像観察に基づき、本研究での分析点は、図 3.2.1 の分析地点概念図のように、U-Pb年代・チタン濃度同時定量地点を内部構造に基づき決定する。



図 3.2.1 内部構造に基づき決定された U-Pb 年代とチタン濃度のペア (Yuguchi et al., (2016)<sup>3)</sup>を加筆)

### 3.3 試料選定

令和元年度の共同研究においては、4 つの花崗岩体から採取したジルコンを研究対象とする。 試料とした岩体は、生成年代の異なる富山県の黒部川花崗岩体、宮崎県の大崩山花崗岩体、岐阜 県の土岐花崗岩体、及び岩手県の遠野複合深成岩体からなる。生成年代の異なる岩体のジルコン を用いることで、本共同研究にて提案する手法が、一般的に有用な手法であるかを評価可能とな る。以下にそれぞれの岩体の特徴を記す。

黒部川花崗岩体は、富山県(糸魚川-静岡構造線の西方)に位置する深成岩体である。黒部川 花崗岩体は 0.8-10Ma のジルコン U-Pb 年代を有し、世界の露出する花崗岩の中で最も若い年代 を有するとされる(Ito et al., 2013<sup>4</sup>)。そのなかでも、本研究では Ito et al., (2013)<sup>4</sup>において、 最も若い 0.8Ma の年代値を有する領域から試料を採取した。ジルコン U-Pb 年代に伴う誤差は相 対誤差であるため、若い年代に付属するエラーバーは小さくなる。このため、ジルコン内部の変 化を評価する上で、黒部川花崗岩体は最適な試料と言える。また、0.8Ma の年代値を有する地域 である祖母谷温泉周辺では、優白質岩と優黒質岩が狭い領域で混在する(図 3.3.1)。本研究では、 優白質岩を実験試料として採用した(表 3.3-1)。



図 3.3.1 黒部川花崗岩の優白質岩と優黒質岩の産状を示す写真 ハンマーの長さは 39.5 cm

大崩山花崗岩体は,西南日本外帯に位置する14Maの深成岩体である。この14Maという年代 は黒雲母 K-Ar 年代,全岩 K-Ar 年代より決定されている(Shibata and Ishihara, 1979<sup>5</sup>)。大崩 山花崗岩体は大崩山火山-深成複合岩体の一部であり、垂直方向の組成累帯構造を持つ (Takahashi, 1986<sup>6</sup>)。天井部境界から標高が下がるにつれ、珪長質から苦鉄質に変化し、岩相 も黒雲母花崗岩、ホルンブレンド黒雲母花崗岩、ホルンブレンド黒雲母花崗閃緑岩へと推移する (Takahashi, 1986<sup>6</sup>)。大崩山花崗岩は、地殻の浅部に貫入したマグマ溜りが冷却固化した岩体 であり、鉛直方向の冷却様式がサブソリダス組織を通じて観察できる(Yuguchi and Nishiyama, 2007<sup>7</sup>)。このように、岩体の貫入、定置そして冷却を把握する上で、鉛直方向に変化する3岩相 に着目することが有効である。本研究では3岩相(黒雲母花崗岩、ホルンブレンド黒雲母花崗岩、 ホルンブレンド黒雲母花崗閃緑岩)から1試料ずつを選定した(表 3.3-1)。なお、大崩山花崗岩 体は今日までジルコン U-Pb 年代の報告がなく、本研究における年代値の報告は地質学的な貢献 としても重要である。

| 岩体名                | 試料数 | サンプル名                  |
|--------------------|-----|------------------------|
| 黑部川 1<br>花崗岩体 1    |     | 優白質岩:009-2、006-2       |
|                    | 3   | 黒雲母花崗岩:052405          |
| 大崩山<br>花崗岩体        |     | ホルンブレンド黒雲母花崗岩:091417   |
|                    |     | ホルンブレンド黒雲母花崗閃緑岩:091418 |
| 十岵龙岗毕休             | 3   | 温度-時間履歴を有する試料          |
| 上 叹 化 両 石 件        |     | DH6-2、DH9-10、DH13-2    |
|                    | 3 _ | 中心部相                   |
| 速 野 復 合<br>深 成 岩 体 |     | 主岩相                    |
|                    |     | 周辺部相                   |

表 3.3-1 本共同研究で対象とする岩石試料

土岐花崗岩体は、岐阜県東濃地域に位置する深成岩体である。土岐花崗岩体は、美濃帯や濃飛 流紋岩に貫入したマグマ溜りが冷却固化したものであり、Yuguchi et al. (2016)<sup>3)</sup>や Yuguchi et al. (2019)<sup>2)</sup>において、おおよそ 70Ma のジルコン U-Pb 年代が報告されている。この花崗岩体中の 3 試料 (DH6-2、DH9-10、DH13-2)を研究対象とする(表 3.3-2)。これらの試料は Yuguchi et al. (2016)<sup>3)</sup>や Yuguchi et al. (2019)<sup>2)</sup>に用いられた試料であり、温度時間履歴(t-T path) に関する 情報が既に得られている(図 3.3.2)。また、平成 30 年度の共同研究「岩石・年代学的手法を用 いた自然現象の影響評価手法の高度化に関する研究」において用いた岩石試料と同様のものであ る。昨年度の共同研究では、ジルコンの結晶化温度を決定のために、LA-ICP-MS と EPMA を用 いてチタン濃度の定量分析条件の検討を行った。しかしながら、昨年度検討した分析条件では 100 ppm 以下のチタン定量分析は困難であった(平成 30 年度報告書引用<sup>8</sup>)。本年度は、LA-ICP-MS の新たな分析条件の検討を行い、土岐花崗岩体の試料に対して定量分析を行う。

| G 1    | Location and elevation |            |                      |                |  |
|--------|------------------------|------------|----------------------|----------------|--|
| Sample | X(northing)            | Y(easting) | Depth                | Altitude       |  |
| name   |                        |            | (mabh)* <sup>1</sup> | $(masl)^{*^2}$ |  |
| DH6-2  | -66630.9               | 978.7      | 1010.8               | -691.5         |  |
| DH9-10 | -66857.4               | 5511.2     | 500.1                | -224.7         |  |
| DH13-2 | -65324.7               | 8625.8     | 530                  | -252.5         |  |

表 3.3-2 本共同研究で対象とする岩石試料(Yuguchi et al., 2019<sup>2)</sup>)

\*1 Depth from the ground surface: meters along borehole (mabh). \*2 Altitude: meters above sea level (masl).



(左:DH6-2、中央:DH6-2、右:DH13-2)

遠野複合深成岩体は、北上山地の中央部に位置する深成岩体である。遠野複合深成岩体は3つの岩相を有している。その構成は、岩体の中心部の優白質な岩相(中心部相)、その周囲を取り囲む花崗閃緑岩・トーナル岩(主岩相),岩体西縁部に斑レイ岩(周辺部相)からなる累帯深成岩体である(御子柴・蟹沢,2008<sup>9</sup>)。主岩相でカリ長石 K-Ar 年代測定が行われており,109±3Maの年代が報告されている(内海ほか,1990<sup>10</sup>)。また中心部相の全岩 Rb-Sr 年代は 98±20Ma であり,主岩相と周辺部相の全岩 Rb-Sr 年代は114±13Maの報告がなされており(加々美,2005<sup>11</sup>)、それぞれの岩相で貫入・定置様式が異なっていることが示唆される。御子柴・蟹沢(2008)<sup>9</sup>では生成プロセスとアダカイトとの関連も議論されており、それぞれの岩相でのジルコンの結晶化年代と結晶化温度の導出は、形成プロセスの解明にも有用な知見をもたらすことが可能である。本研究では3岩相のそれぞれから試料を選定した(表 3.3-1)。

#### 3.4 黒雲母 K-Ar 年代を用いた比較検討

得られたジルコン U-Pb 年代及び結晶化温度に対して、その妥当性を検証するための比較対象 として、黒雲母 K-Ar 年代を用いる。黒雲母 K-Ar 年代の閉鎖温度は、300±50 °C (Dodson and McClelland-Brown, 1985<sup>12</sup>))であり、ジルコンの結晶化温度と比較して低温である。このた め、得られるジルコン U-Pb 年代は黒雲母 K-Ar 年代と同程度かそれよりも古い年代を有する。 この傾向を活用し、妥当性の検討に用いる。また、この検討はジルコン U-Pb 年代と黒雲母 K-Ar 年代の両方を取得することを意味し、各試料の温度-時間履歴(t-T path)を構築する有用なデ ータとなる。3 岩体(黒部川花崗岩体、大崩山花崗岩体、遠野複合岩体)の選定した試料に対し て実施した黒雲母 K-Ar 年代を活用する(表 3.4-1)。本年度の共同研究において4 試料の黒雲 母 K-Ar の年代測定を蒜山地質年代学研究所において実施した。残りの3 試料の年代値は山形大 学が所有する未公表データを用いる(表 3.4-1)。

| 岩体名          | 試料数              | サンプル名            | 黒雲母K-Ar年代    |
|--------------|------------------|------------------|--------------|
| 黒部川<br>花崗岩体  | 1                | 優白質岩:009-2、006-2 | 本研究で実施       |
|              | 」<br>体  3        | 黒雲母花崗岩:052405    | 山形大学所有未公表データ |
|              |                  | ホルンブレンド黒雲母       | 本研究で実施       |
| 大崩山<br>花崗岩体  |                  | 花崗岩:091417       |              |
|              |                  | ホルンブレンド黒雲母       | 山形大学所有未公表データ |
|              |                  | 花崗閃緑岩:091418     |              |
|              | 復合 3 —<br>岩体 3 — | 中心部相             | 山形大学所有未公表データ |
| 遠野複合<br>深成岩体 |                  | 主岩相              | 本研究で実施       |
|              |                  | 周辺部相             | 本研究で実施       |

表 3.4-1 本共同研究で活用する試料の黒雲母 K-Ar 年代リスト

#### 4. 研究成果

令和元年度に取得した研究成果を本章に記す。4.1 章で「ジルコンの U-Pb 年代測定・チタン濃度の同時定量技術の開発」を、4.2 章で「ジルコン内での内部構造に基づく分析地点の選定」を、4.3 章では「ジルコンの U-Pb 年代とチタン濃度から結晶化年代・温度の導出」に関する検討を、4.4 章において「得られたジルコン結晶化年代と黒雲母 K-Ar 年代の関連」、4.5 章では、「ジルコンの物理化学条件に基づく隆起史・侵食史の初期条件の制約」に関する検討を示す。

#### 4.1 U-Pb 年代測定・チタン濃度の同時定量技術の開発

ジルコンの結晶化年代及びチタン温度計による結晶化温度の推定を行うため、LA-ICP-MS に よる U-Pb 同位体分析及びチタン濃度の定量分析を同時に実施する分析手法の開発を行った。 Yuguchi et al. (2016)<sup>30</sup> 及び平成 30 年度に実施した山形大学との共同研究「岩石・年代学的手法 を用いた自然現象の影響評価手法の高度化に関する研究」では、LA-ICP-MS により U-Pb 年代 測定を、EPMA を用いてチタン濃度の定量分析を実施した。2 つの分析手法では空間分解能が異 なり、EPMA でのチタン濃度の定量は(分析領域<10 µm)はLA-ICP-MS での U-Pb 同位体分 析(分析領域~20-30 µm)に比べ高い空間分解能で分析可能である。そのため、EPMA では累帯 構造の各レイヤーで定量分析を実施したが、実際の分析領域は厳密にはLA-ICP-MS での分析点 と異なるため、U-Pb 同位体分析から得られる結晶化年代とチタン濃度の定量から得られる結晶 化温度を直接関連付けることはできなかった。また、EPMA でのチタン濃度の定量下限は、およ そ 100 ppm 程度であることも判明しており、一般的な花崗岩に含まれるジルコン中のチタン濃 度(数 ppm-数+ ppm)を精確に定量することは困難である。そのため、本共同研究では、チタ ン定量において相対的に高感度である LA-ICP-MS を用いて同一分析領域から U-Pb 同位体比と チタン濃度情報の同時取得を試みた。

本分析手法において課題となるのが、数 ppm オーダーの低濃度チタンの定量である。 チタンに は、<sup>46</sup>Ti (8.25%)、<sup>47</sup>Ti (7.44%)、<sup>48</sup>Ti (73.72%)、<sup>49</sup>Ti (5.41%)、<sup>50</sup>Ti (5.18%) の5種類の安 定同位体があり、ICP 質量分析において 46Ti+、47Ti+、48Ti+、49Ti+は、分析対象とするジルコンに 多量に存在するジルコニウムの二価イオン(<sup>92</sup>Zr<sup>++</sup>、<sup>94</sup>Zr<sup>++</sup>、<sup>96</sup>Zr<sup>++</sup>、<sup>98</sup>Zr<sup>++</sup>)の干渉を受ける。ま た、質量数 48 の同重体には <sup>48</sup>Ca、質量数 50 の同重体には、<sup>50</sup>V、<sup>50</sup>Cr があるため、<sup>48</sup>Ti、<sup>50</sup>Ti は それぞれこれらの同重体干渉を受ける。そのため、質量分析において干渉するイオンを除去でき ない場合は、同重体の存在しない 49Ti+を分析する必要があるが、同位体存在度が 5.41%と低く、 チタンの濃度が数 ppm 程度と想定される場合、感度を十分に確保することが難しい。一方で、近 年 ICP 質量分析装置の改良が進み、効率的に干渉イオンを取り除くシステムが開発され装置へと 導入されている。例えば、四重極型 ICP 質量分析装置にはコリジョン/リアクションセル (CRC) が備えられ、コリジョンモードではヘリウムなど不活性ガスを用いて運動エネルギー弁別の原理 により、干渉する多原子イオンを分離することができる。また、リアクションモードを使えば、 反応性のガス(水素、酸素、アンモニア、メタン、亜酸化窒素など)を用いることで、干渉イオ ンあるいは分析対象元素のイオンとの化学反応性の違いを利用して、特定の干渉を除去できる。 さらに、質量分離のための四重極を複数備えたトリプル四重極型の ICP 質量分析装置の登場によ り、より効率的に干渉イオンの除去ができるようになった。例えば、本研究で分析対象とするチ タンは、48Ti が最も存在度が高く、より精確な定量分析をおこなうためには最も信号強度が高く なる 48Ti を測定することが望ましいが、既述の通り複数のイオン(48Ca や 96Zr++)が干渉するこ とが問題であった。しかし、トリプル四重極型の質量分析計では CRC に酸素ガスを流し故意に チタン酸化物イオンを作り出す通称マスシフトと呼ばれる手法によって(前段の四重極の通過質 量数 Q1 = 48;後段の四重極の通過質量数 Q2 = 64)、 $^{48}$ Ca や  $^{96}$ Zr<sup>++</sup>の干渉が除去可能となり、  $^{48}$ Ti<sup>16</sup>O<sup>+</sup>の多原子イオンの形でチタンを高感度に分析することが可能となる。すなわち、数 ppm オーダーの低濃度のチタンでも高精度・高確度で定量できると期待される。

本共同研究では、学習院大学所有の LA-ICP 質量分析装置(LA: ESI 製 NWR213 (Nd:YAG laser); ICP 質量分析装置(Agilent Technology 製 Agilent8800))及び原子力機構 東濃地科学 センター所有の LA-ICP 質量分析装置(LA: Photon-machines 製 Analyte G2 (ATL Excimer laser); ICP 質量分析装置(Agilent Technology 製 Agilent7700x)を使用した。それぞれの分析 条件を表 4.1-1、表 4.1-2 に示す。なお、学習院大学での分析で用いた ICP 質量分析装置 (Agilent8800)は、トリプル四重極型の質量分析装置で、酸素ガスをリアクションガスに使用し たマスシフトモードで分析を行った。東濃地科学センターでの分析では、リアクションガス(酸 素)の使用ができないため、49Ti をチタン濃度の定量のため測定している。

U-Pb 同位体分析のブラケッティング標準試料として、標準ジルコン 91500 (Wiedenbeck et al., 1995<sup>13)</sup>)を用いた。また、得られる年代値の妥当性を評価するため、学習院大学での分析では Plešovice (337 Ma; Slama et al., 2008<sup>14)</sup>)、東濃地科学センターでの分析では Temora 2 (417 Ma; Black et al., 2004<sup>15)</sup>)、OD-3 (33.0 Ma; Iwano et al., 2013<sup>16)</sup>)をそれぞれ年代標準試料とし て分析した。チタンの定量では、SRM NIST610を標準試料とし、Si を内部標準としてモニター した。

本共同研究では、黒部川花崗岩体のジルコンについても分析対象とするため、<sup>238</sup>U(半減期 4.468×10<sup>9</sup> 年)、<sup>235</sup>U(半減期 7.038×10<sup>8</sup> 年)の半減期に対して比較的若い 100 万年(1 Ma)程 度の年代値を示す試料も対象とすることになる。およそ 200 万年より若い年代値を示す試料(特 に第四紀以降の試料は全て)について、精確な U-Pb 年代を決定するためには、ウラン系列お及 びアクチニウム系列の中間生成核種の中でも比較的長い半減期を持つ<sup>230</sup>Th(ウラン系列の中間 生成核種;半減期 7.538×10<sup>4</sup> 年)と<sup>231</sup>Pa(アクチニウム系列の中間生成核種;半減期 3.276×10<sup>4</sup> 年)に関する初生的な放射平衡値からの分別(メルトから鉱物が生じるときに生じる固相—液相 間の元素分別に由来する)を考慮する必要がある(Sakata et al., 2017<sup>17</sup>; Sakata, 2018<sup>18</sup>))。ま た、分析領域周辺からの鉛汚染やジルコン結晶に初生的に分配される微量の非放射壊変起源鉛も 得られる年代値に大きく影響(特にジルコン中の放射起源<sup>207</sup>Pbの検出に影響)するため、補正 が必須となる(Sakata, 2018<sup>18</sup>)。本共同研究では、放射非平衡による効果と非放射壊変鉛の影響 については、Sakata (2018)<sup>18</sup>に従い統一的な補正を行った。

尚、ブランクの信号強度の標準偏差(o)の10倍(10o)から算出したチタンの定量下限は、学 習院大学での分析で0.1 ppm、東濃地科学センターでの分析で2.6 ppmである。東濃地科学セン ターにおいて黒部川花崗岩体、土岐花崗岩体、遠野深成岩体のジルコンの同時定量分析を実施し、 学習院大学において大崩山花崗岩体のジルコンの分析を行った。

| Laser ablation system    |                                                                     |
|--------------------------|---------------------------------------------------------------------|
| Instrument               | NWR213 Nd:YAG laser (ESI, Portland. U.S.A.)                         |
| Cell type                | Two volume cell                                                     |
| Laser wave length        | 213 nm                                                              |
| Pulse duration           | <5 ns                                                               |
| Fluence                  | 2.3-2.7 J/cm <sup>2</sup>                                           |
| Repetition rate          | 5 Hz                                                                |
| Ablation pit size        | 20 and 25 µm                                                        |
| Sampling mode            | Single hole drilling                                                |
| Pre-cleaning             | 1 shot with 90 μm                                                   |
| Carrier gas              | He gas and Ar make-up gas combined outside ablation cell            |
| He gas flow rate         | 0.40 l/min                                                          |
| Ar make-up gas flow rate | 1.5 l/min                                                           |
| Ablation duration        | 20 and 25 s for 20 and 25 $\mu$ m, respectively                     |
| Signal smoothing device  | Baffle type filled with $\varphi$ 7 mm glass beads (volume: 100 ml) |

# 表 4.1-1 学習院大学での分析条件

# **ICP Mass Spectrometer**

| Instrument<br>RF power                                                                                           | Agilent8800 (Agilent Technology, Santa Clara, California, U.S.A.)<br>1390 W                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Data reduction                                                                                                   | Integration of total ion counts per single ablation. Signals obtained from first few seconds were not used for data reduction, and next signals obtained from 13 or 17 s (for pit size of 20 $\mu$ m and 25 $\mu$ m) were integrated for further calculations. Signal intensity of <sup>235</sup> U was not monitored and <sup>207</sup> Pb/ <sup>235</sup> U is calculated assuming <sup>238</sup> U/ <sup>235</sup> U = 137.88 (Jaffey et al., 1971). |  |  |
| Detection mode                                                                                                   | Pulse counting mode                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Mass scan mode                                                                                                   | MS/MS mode                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| Collision/reaction gas and flow rate                                                                             | O <sub>2</sub> (0.06 ml/min) and He (1.2 ml/min)                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Octa pole bias                                                                                                   | 0.0 V                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| Octa pole RF                                                                                                     | 175 V                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| Energy discrimination                                                                                            | -6.8 V                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Monitored mass peak (amu)<br>and permeable mass value<br>for first quadrupole (Q1)<br>and second quadrupole (Q2) | 28 (Si; Q1 = 28; Q2 = 44), 48 (Ti ; Q1 = 48; Q2 = 64), 206<br>(Pb; Q1 = 206; Q2 = 207), 207 (Pb; Q1 = 207; Q2 = 207), 232<br>(Th; Q1 = 232; Q2 = 248), 238 (U; Q1 = 238; Q2 = 254)                                                                                                                                                                                                                                                                      |  |  |
| Integration time per mass<br>peak<br>Total integration time per<br>reading                                       | 28 (20 ms), 48 (100 ms), 206 (100 ms), 207 (200 ms), 232 (30 ms), 238 (30 ms)<br>0.5057 s                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Integration time per single ablation                                                                             | 13 and 17 s                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Data processing                                                                                                  | Data processing                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |

| Gas blank | Gas blank counts were obtained for 15 s before each ablation pit. |
|-----------|-------------------------------------------------------------------|
|           |                                                                   |

| Laser ablation system                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Instrument                                                                                                       | Analyte G2 ATL Excimer laser (Photon-machines, Calgary. Canada)                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| Cell type                                                                                                        | Two volume cell                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| Laser wave length                                                                                                | 193 nm                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| Pulse duration                                                                                                   | <5 ns                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| Fluence                                                                                                          | 2.0 J/cm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| Repetition rate                                                                                                  | 5 Hz                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| Ablation pit size                                                                                                | 30 μm                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| Sampling mode                                                                                                    | Single hole drilling                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| Pre-cleaning                                                                                                     | 1 shot with 110 μm                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| Carrier gas                                                                                                      | He gas and Ar make-up gas combined outside ablation cell                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| He gas flow rate                                                                                                 | 1.0 l/min                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| Ar make-up gas flow rate                                                                                         | 0.93 l/min                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| Ablation duration                                                                                                | 20 s                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| Signal smoothing device                                                                                          | Homogenize type (volume: 150 ml)                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| ICP Mass Spectrometer                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| Instrument                                                                                                       | Agilent7700 (Agilent Technology, Santa Clara, California, USA)                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| RF power                                                                                                         | 1600 W                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| Data reduction                                                                                                   | Integration of total ion counts per single ablation. Signals obtained from first few seconds were not used for data reduction, and next signals obtained from 15 s (for pit size of 30 $\mu$ m) were integrated for further calculations. Signal intensity of <sup>235</sup> U was not monitored and <sup>207</sup> Pb/ <sup>235</sup> U is calculated assuming <sup>238</sup> U/ <sup>235</sup> U = 137.88 (Jaffey et al., 1971). |  |  |  |
| Detection mode                                                                                                   | Pulse counting mode                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Collision/reaction gas and flow rate                                                                             | Non-gas mode                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| Octa pole bias                                                                                                   | -30.5 V                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| Octa pole RF                                                                                                     | 130 V                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| Energy discrimination                                                                                            | -0.4 V                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| Monitored mass peak (amu)<br>and permeable mass value<br>for first quadrupole (Q1)<br>and second quadrupole (Q2) | 28 (Si), 49 (Ti), 206 (Pb), 207 (Pb), 232 (Th), 238 (U)                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| Integration time per mass<br>peak<br>Total integration time per                                                  | 28 (20 ms), 48 (100 ms), 206 (100 ms), 207 (200 ms), 232 (30 ms), 238 (30 ms)                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| reading                                                                                                          | 0.496 s                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| Integration time per single ablation                                                                             | 15 s                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| Data processing                                                                                                  | Data processing                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| Gas blank                                                                                                        | Gas blank counts were obtained for 15 s before each ablation pit.                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |

# 表 4.1-2 東濃地科学センターでの分析条件

#### 4.2 ジルコン内での内部構造に基づく分析地点の選定

ジルコンの内部構造に基づき、分析点の選定を行った。これはジルコンの内部構造はその生成 温度・年代の違い(生成ステージの違い)を反映するためである(Yuguchi et al., 2016<sup>3)</sup>)。各 岩体のジルコンのカソードルミネッセンス(CL)観察の相違から、3つの領域に区分できる:① 均質な領域、②オシラトリーゾーニング領域、③外来性コア(inherited core)。

多くのジルコン粒子は、①低輝度で均質なコアとそれを囲む②オシラトリーゾーニング領域からなる。この構造は、均質コアがオシラトリーゾーニング領域よりも、早いタイミングかつ高温 条件で形成されたことを示している。それぞれの岩体のジルコン粒子の特徴について 4.2.1-4.2.4 章で記載する。

#### 4.2.1 黒部川花崗岩体のジルコン

黒部川花崗岩体のジルコンに対する SEM-CL 画像を図 4.2.1 に示す。黒部川花崗岩体におい ても CL 観察より①均質な領域(図 4.2.1 A)、②オシラトリーゾーニング領域(図 4.2.1 B)、 ③外来性コアのそれぞれの領域が観察された。①から③のそれぞれの領域から、30 µm 直径の円 領域をデータ収集地点として選定した。

#### 4.2.2 大崩山花崗岩体のジルコン

大崩山花崗岩体の3岩相(黒雲母花崗岩、ホルンブレンド黒雲母花崗岩及びホルンブレンド黒 雲母花崗閃緑岩)に対するジルコンに対する SEM-CL 画像を図 4.2.2~図 4.2.4 に示す。大崩花 崗岩体においても CL 観察より①低輝度で均質な領域(図 4.2.2 C)、②オシラトリーゾーニン グ領域(図 4.2.3 A)、③外来性コア(図 4.2.2B)のそれぞれの領域が観察された。図 4.2.2 か ら図 4.2.4 中に示した 20-25 µm 直径の円領域をデータ収集地点として選定した。

#### 4.2.3 土岐花崗岩体のジルコン

土岐花崗岩体の3試料(DH6-2、DH9-10及びDH13-2)ジルコンに対するSEM-CL画像を図 4.2.5 に示す。土岐花崗岩体においてもCL観察より①低輝度で均質な領域(図 4.2.5 A-C)、② オシラトリーゾーニング領域(図 4.2.5 A, C)、③外来性コアのそれぞれの領域が観察された。 ①から③のそれぞれの領域から、30 µm 直径の円領域をデータ収集地点として選定した。

#### 4.2.4 遠野複合深成岩体のジルコン

遠野複合深成岩体の3岩相(中心部相、主岩相、周辺部相)に対するジルコンに対するSEM-CL 画像を図 4.2.6 に示す。遠野複合深成岩体においても CL 観察より①均質な領域、②オシラ トリーゾーニング領域が観察された。①から②のそれぞれの領域から、30µm 直径の円領域をデ ータ収集地点として選定した。



図 4.2.1 黒部川花崗岩体 (優白質岩) のジルコンの分析点 (左図:BSE 像,右図:CL 像) A:①均質なコアと②オシラトリーゾーニングリムからなるジルコン B:①低輝度で均質なコアと②オシラトリーゾーニングリムからなるジルコン



図 4.2.2 大崩山花崗岩体(黒雲母花崗岩)のジルコンの分析点 (左図:BSE 像,右図:CL 像) A:①均質なコアと②オシラトリーゾーニングリムからなるジルコン B:④外来性コアと②オシラトリーゾーニングリムからなるジルコン C:①低輝度で均質なコアと②オシラトリーゾーニングリムからなるジルコン



 図 4.2.3 大崩山花崗岩体(ホルンブレンド黒雲母花崗岩)のジルコンの分析点 (左図:BSE像,右図:CL像)
A: ②オシラトリーゾーニング領域からなるジルコン
B: ③外来性コアと②オシラトリーゾーニングリムからなるジルコン
C: ②オシラトリーゾーニング領域からなるジルコン



 図 4.2.4 大崩山花崗岩体(ホルンブレンド黒雲母花崗閃緑岩)のジルコンの分析点 (左図:BSE像,右図:CL像)
A: ②オシラトリーゾーニング領域からなるジルコン
B: ②オシラトリーゾーニング領域からなるジルコン
C: ①低輝度で均質なコアと②オシラトリーゾーニングリムからなるジルコン



図 4.2.5 土岐花崗岩体 (DH6-2、DH9-10、DH13-2) のジルコンの分析点 (左図:BSE像,右図:CL像)

- A: (DH6-2) ①低輝度で均質なコアと②オシラトリーゾーニングリムからなるジルコン B: (DH9-10) ①均質なコアと②オシラトリーゾーニングリムからなるジルコン
- C: (DH13-2) ①低輝度で均質なコアと②オシラトリーゾーニングリムからなるジルコン



図 4.2.6 遠野複合深成岩体のジルコンの分析点 (左図:BSE 像,右図:CL 像) A:(中心部相)②オシラトリーゾーニングリムからなるジルコン B:(主岩相)②オシラトリーゾーニングリムからなるジルコン C:(周辺部相)①均質な領域からなるジルコン 4.3 ジルコンの U-Pb 年代とチタン濃度から結晶化年代・温度の導出

#### 4.3.1 黒部川花崗岩体のジルコン

黒部川花崗岩体試料は、東濃地科学センターのLA-ICP 質量分析装置を用いて定量分析を実施 した。ジルコンの各分析点に対する U-Pb 年代(U-Th-Pb の同位体データ)及びチタン濃度を表 4.3-1 に記す。また図 4.3.1 は各岩相の分析点上に U-Pb 年代とチタン濃度を示したものである。 定量下限以下のチタン濃度も散見されるが、本報告書ではそれらが正しい濃度に近しいと仮定し、 得られたチタン濃度から Ti-in-zircon 温度計(Watson et al., 2016<sup>19)</sup>)を用い結晶化温度を導出 した。その際、活動度は 0.3 と仮定した。その結果、岩相及び CL 領域区分を考慮しない場合、 全ての分析点の U-Pb 年代は、約 0.5 Ma から 9 Ma の年代幅及び 636±102℃から 729±27℃の温 度幅を有する(図 4.3.2)。

図 4.3.3 は全データに対して、対象岩体の生成年代を示す①均質な領域、②オシラトリーゾー ニング領域から得られたデータの年代と温度の関係をプロットしたものである。①均質な領域か ら得られた年代値と②オシラトリーゾーニング領域から得られた年代値は整合的である。①均質 な領域から得られた温度条件は 640℃から 754℃の幅を有し、②オシラトリーゾーニング領域か ら得られた温度条件は 636℃から 779℃の幅を有しており、温度条件にも相違はない。また図 4.3.3 は外来性ジルコンを除き、CL 領域区分を考慮せず、年代と温度の関係をプロットしたもの である。その結果、優白質岩は 0.46±0.35 Ma から 1.85±0.54 Ma の年代幅及び 636±102℃から 779±27℃の温度幅を有する (図 4.3.4)。

#### 4.3.2 大崩山花崗岩体のジルコン

大崩山花崗岩体試料は、学習院大学理学部のLA-ICP 質量分析装置を用いて定量分析を実施した。ジルコンの各分析点に対する U-Pb 年代(U-Th-Pb の同位体データ)及びチタン濃度を表4.3-2 に記す。また図 4.3.5~図 4.3.7 は各岩相の分析点上に U-Pb 年代とチタン濃度を示したものである。得られたチタン濃度から結晶化温度の導出は Ti-in-zircon 温度計(Watson et al., 2016<sup>19)</sup>)を用いた。その際、活動度は1と仮定した。岩相及び CL 領域区分を考慮しない場合、全ての分析点の U-Pb 年代は、約 11 Ma から 480 Ma の年代幅及び 556±14℃から 946±22℃の温度幅を有する。外来性ジルコンは、対象岩体の生成年代を示さないため、それらを除くと 11.1±0.9 Ma から 16.1±0.7 Ma の年代幅及び 556±14℃から 946±22℃の温度幅を有する(図 4.3.8)。

図 4.3.9 は全データに対して、対象岩体の生成年代を示す①均質な領域、②オシラトリーゾー ニング領域から得られたデータの年代と温度の関係をプロットしたものである。①均質な領域か ら得られた年代値と②オシラトリーゾーニング領域から得られた年代値は整合的である。それに 対して、①均質な領域から得られた温度条件は 670℃から 760℃の幅で狭いのに対して、②オシ ラトリーゾーニング領域から得られた温度条件は 560℃から 950℃の広い幅を有する。また図 4.3.10 は 3 岩相の年代と温度の関係をプロットしたものである。その結果、黒雲母花崗岩は 11.3±0.8 Ma から 14.2±1.1 Ma の年代幅及び 556±14℃から 875±25℃の温度幅を有する(図 4.3.10)。ホルンブレンド黒雲母花崗岩は 11.9±1.0 Ma から 14.7±0.7 Ma の年代幅及び 633±14℃ から 858±20℃の温度幅を有する(図 4.3.10)。ホルンブレンド黒雲母花崗閃緑岩は 11.1±0.9 Ma から 16.1±0.7 Ma の年代幅及び 611±16℃から 946±22℃の温度幅を有する(図 4.3.10)。各岩相 の間で年代と温度に大きな相違がないことを示す。

#### 4.3.3 土岐花崗岩体のジルコン

土岐花崗岩体試料は、東濃地科学センターのLA-ICP 質量分析装置を用いて定量分析を実施した。ジルコンの各分析点に対する U-Pb 年代(U-Th-Pb の同位体データ)及びチタン濃度を表4.3-3 に記す。また図 4.3.11 には各岩相の分析点上に U-Pb 年代とチタン濃度を示す。得られたチタン濃度から結晶化温度の導出は Ti-in-zircon 温度計(Watson et al., 2016<sup>19)</sup>)を用いた。その際、活動度は1と仮定した。岩相及び CL 領域区分を考慮しない場合、69.4±7.3 Ma から 79.9±4.4 Ma の年代幅及び 575±51℃から 734±22℃の温度幅を有する(図 4.3.12)。

図 4.3.13 は全データに対して、対象岩体の生成年代を示す①均質な領域、②オシラトリーゾー ニング領域から得られたデータの年代と温度の関係をプロットしたものである。①均質な領域か ら得られた年代値と②オシラトリーゾーニング領域から得られた年代値は整合的である。それに 対して、①均質な領域から得られた温度条件は 629℃から 719℃の幅で狭いのに対して、②オシ ラトリーゾーニング領域から得られた温度条件は 757℃から 734℃の広い幅を有する。また図 4.3.14 は 3 試料(DH6-2、DH9-10、DH13-2)の年代と温度の関係をプロットしたものである。 その結果、DH6-2 は 72.9±4.8 Ma から 77.2±3.2 Ma の年代幅及び  $629\pm28$ ℃から  $734\pm22$ ℃の温 度幅を有する(図 4.3.14)。DH9-10 は 74.0±2.9 Ma から 78.3±5.0 Ma の年代幅及び  $575\pm51$ ℃ から 716±21℃の温度幅を有する(図 4.3.14)。DH13-2 は  $69.4\pm7.3$  Ma から  $79.9\pm4.4$  Ma の年 代幅及び  $666\pm24$ ℃から  $717\pm22$ ℃の温度幅を有する(図 4.3.14)。各岩相の間で年代と温度に大 きな相違がないことを示す。

#### 4.3.4 遠野複合深成岩体のジルコン

遠野複合深成岩体試料は、東濃地科学センターのLA-ICP 質量分析装置を用いて定量分析を実施した。ジルコンの各分析点に対する U-Pb 年代(U-Th-Pb の同位体データ)及びチタン濃度を表4.3・4 に記す。また図 4.3.15 は各岩相の分析点上に U-Pb 年代とチタン濃度を示したものである。チタン濃度から結晶化温度の導出は Ti-in-zircon 温度計(Watson et al., 2016<sup>19)</sup>)を用いた。その際、活動度は1と仮定した。岩相及び CL 領域区分を考慮しない場合、全ての分析点のU-Pb 年代は、約 110 Ma から 127 Ma の年代幅及び 613±41℃から 901±23℃の温度幅を有する。 外来性ジルコンは、対象岩体の生成年代を示さないため、それらを除くと 110.2±6.5 Ma から 127.4±7.4 Ma の年代幅及び 613±41℃から 901±23℃の温度幅を有する(図 4.3.16)。

図 4.3.17 は全データに対して、対象岩体の生成年代を示す①均質な領域、②オシラトリーゾー ニング領域から得られたデータの年代と温度の関係をプロットしたものである。①均質な領域か ら得られた年代値と②オシラトリーゾーニング領域から得られた年代値は整合的である。①均質 な領域から得られた温度条件は 613℃から 901℃の幅を有し、②オシラトリーゾーニング領域か ら得られた温度条件は 620℃から 756℃の幅を有しており、大きな差異は認められない。また図 4.3.18 は 3 岩相 (中心部相, 主岩相, 周辺部相)の年代と温度の関係をプロットしたものである。 その結果、中心部相は 110.2±6.5 Ma から 121.2±6.0 Ma の年代幅及び 612±41℃から 901±23℃ の温度幅を有する (図 4.3.18)。主岩相は 115.4±7.2 Ma から 127.4±7.4 Ma の年代幅及び 719±22℃から 767±23℃の温度幅を有する (図 4.3.18)。周辺部相は 119.9±4.1 Ma、122.9±4.3 Ma の年代及び 672±26℃、698±26℃の温度を有する (図 4.3.18)。誤差範囲を考慮すると中心部 相、主岩相と周辺部相の間で年代に大きな相違がないことを示す。結晶化温度は中心部相で 700℃ より低いプロットが多く観察される傾向が認められる。



図 4.3.1 黒部川花崗岩体のジルコンの U-Pb 年代とチタン濃度 (左図:BSE像,右図:CL像)



図 4.3.2 黒部川花崗岩体のジルコン U-Pb 年代と結晶化年代のプロット 外来性ジルコンを含む全データ(N=23)のプロット


図 4.3.3 黒部川花崗岩体の①低輝度で均質な領域(A)、②オシラトリーゾーニング領域(B)から 得られたデータの年代と温度の関係



図 4.3.4 黒部川花崗岩体のジルコン U-Pb 年代と結晶化年代のプロット 外来性ジルコンを除くデータ(N=21)のプロット



図 4.3.5 大崩山花崗岩体(黒雲母花崗岩)のジルコンの U-Pb 年代とチタン濃度 (左図:BSE 像,右図:CL 像)



図 4.3.6 大崩山花崗岩体(ホルンブレンド黒雲母花崗岩)のジルコンの U-Pb 年代とチタン濃度 (左図:BSE 像,右図:CL 像)



図 4.3.7 大崩山花崗岩体(ホルンブレンド黒雲母花崗閃緑岩)のジルコンの U-Pb 年代とチタン濃度 (左図:BSE像,右図:CL像)



外来性ジルコンを含む全データ(N=103)のプロット

【付録3】



図 4.3.9 大崩山花崗岩体の①低輝度で均質な領域(A)、②オシラトリーゾーニング領域(B)から 得られたデータの年代と温度の関係



図 4.3.10 大崩山花崗岩体のジルコン U-Pb 年代と結晶化年代のプロット 外来性ジルコンを除くデータ(N=95)のプロット 黒雲母花崗岩(N=25)、ホルンブレンド黒雲母花崗岩(N=18)、 ホルンブレンド黒雲母花崗閃緑岩(N=52)



図 4.3.11 土岐花崗岩体 (DH6-2、DH9-10、DH13-2) のジルコンの U-Pb 年代とチタン濃度 (左図:BSE像,右図:CL像)



図 4.3.12 土岐花崗岩体のジルコン U-Pb 年代と結晶化年代のプロット 外来性ジルコンを含む全データ(N=26)のプロット



図 4.3.13 土岐花崗岩体 (DH6-2、DH9-10、DH13-2) の①低輝度で均質な領域(A)、②オシラ トリーゾーニング領域(B)から得られたデータの年代と温度の関係



図 4.3.14 土岐花崗岩体のジルコン U-Pb 年代と結晶化年代のプロット 外来性ジルコンを除く DH6-2 (N=13)、DH9-10 (N=7)、DH13-2 (N=4) のプロット



図 4.3.15 遠野複合深成岩体のジルコンの U-Pb 年代とチタン濃度 (左図:BSE像,右図:CL像)



図 4.3.16 遠野複合深成岩体のジルコン U-Pb 年代と結晶化年代のプロット 外来性ジルコンを含む全データ(N=24)のプロット

【付録3】







図 4.3.18 遠野複合深成岩体のジルコン U-Pb 年代と結晶化年代のプロット 外来性ジルコンを除くデータ(N=24)のプロット 中心部相(N=10)、主岩相(N=12)、周辺部相(N=2)

| 濃度        |
|-----------|
| ン         |
| Ŕ         |
| Ť         |
| S         |
| Ř         |
| 5         |
| <br>ĩL    |
| 4         |
| Ť         |
| Å<br>Å    |
| <u>q</u>  |
| $\supset$ |
| ン         |
| П         |
| 1         |
| シ         |
| Б.        |
| ¥         |
| 腃         |
| 쁹         |
| 挹         |
| ß         |
| 臣         |
| ШE.       |
|           |
| <u>_</u>  |
|           |

表

|             | Comment   |                                     |                   | I                     | sotope ratio | s                     |                                    |      |                                     |                  | Age (M                            | a)                |                       |         |           |         | )    | Concentration | (g/gh) |       |         |       |
|-------------|-----------|-------------------------------------|-------------------|-----------------------|--------------|-----------------------|------------------------------------|------|-------------------------------------|------------------|-----------------------------------|-------------------|-----------------------|---------|-----------|---------|------|---------------|--------|-------|---------|-------|
| sample name |           | <sup>207</sup> Pb/ <sup>235</sup> U | 2σ <sup>20k</sup> | 'Pb/ <sup>238</sup> U | 2σ e:        | error correlation 207 | <sup>7</sup> Pb/ <sup>206</sup> Pb | 2σ   | <sup>235</sup> U- <sup>207</sup> Pb | 2σ <sup>23</sup> | <sup>3</sup> U- <sup>206</sup> Pb | 2σ <sup>205</sup> | Pb- <sup>206</sup> Pb | 2σ      | Si        | 2σ      | ц    | 2σ T          | ų      | 2σ U  |         | 2σ    |
| 9-2g-2-1    | Inherited | 0.13                                | 0.03              | 0.00                  | 0.00         | 0.63                  | 0.78                               | 0.13 | 121.76                              | 24.88            | 7.74                              | 1.04              | 4881.48               | 241.45  | 152804.00 | 5469.06 | 2.40 | 0.76          | 273.26 | 5.89  | 313.58  | 6.54  |
| 9-2g-3-1    |           | 0.01                                | 0.01              | 0.00                  | 0.00         | 0.45                  | 0.33                               | 0.28 | 9.33                                | 8.68             | 0.93                              | 0.52              | 3624.88               | 1275.56 | 152804.00 | 5468.48 | 2.95 | 0.71          | 235.51 | 5.07  | 216.59  | 4.57  |
| 9-2g-5-1    |           | 0.01                                | 0.01              | 0.00                  | 0.00         | 0.57                  | 0.52                               | 0.26 | 13.25                               | 7.90             | 0.56                              | 0.42              | 4309.92               | 721.97  | 152804.00 | 5468.60 | 1.14 | 0.64          | 214.50 | 4.66  | 391.03  | 8.03  |
| 9-2g-5-2    |           | 0.01                                | 0.01              | 0.00                  | 0.00         | 0.43                  | 0.29                               | 0.20 | 7.48                                | 5.90             | 0.94                              | 0.38              | 3392.92               | 1115.92 | 152804.00 | 5469.07 | 0.85 | 0.65          | 114.68 | 2.70  | 360.95  | 7.48  |
| 9-2g-6-1    |           | 0.00                                | 0.00              | 0.00                  | 0.00         | 0.00                  | 0.00                               | 0.00 | 0.00                                | 0.00             | 1.07                              | 0.48              |                       |         | 152804.00 | 5468.93 | 3.27 | 0.78          | 197.73 | 4.36  | 259.10  | 5.45  |
| 9-2g-9-1    |           | 0.00                                | 0.00              | 0.00                  | 0.00         | 0.31                  | 0.13                               | 0.09 | 2.80                                | 2.07             | 0.96                              | 0.20              | 2138.44               | 1230.94 | 152804.00 | 5468.68 | 0.84 | 0.60          | 696.35 | 14.32 | 841.75  | 16.95 |
| 9-2g-10-1   |           | 0.00                                | 0.00              | 0.00                  | 0.00         | 0.15                  | 0.06                               | 0.11 | 1.21                                | 2.05             | 0.96                              | 0.21              | 700.83                | 3576.29 | 152804.00 | 5468.42 | 2.38 | 0.66          | 327.22 | 6.90  | 691.54  | 13.95 |
| 9-2g-11-1   |           | 0.00                                | 0.00              | 0.00                  | 0.00         | 0.27                  | 0.13                               | 0.11 | 2.75                                | 2.57             | 0.99                              | 0.23              | 2058.34               | 1589.47 | 152804.00 | 5468.16 | 1.52 | 0.52          | 228.14 | 4.88  | 553.11  | 11.19 |
| 9-2g-12-1   |           | 0.00                                | 0.00              | 0.00                  | 0.00         | 0.41                  | 0.24                               | 0.20 | 5.00                                | 4.60             | 0.81                              | 0.32              | 3134.31               | 1336.10 | 152804.00 | 5468.80 | 0.87 | 0.64          | 155.57 | 3.49  | 412.15  | 8.47  |
| 9-2g-12-2   |           | 0.09                                | 0.02              | 0.00                  | 0.00         | 0.61                  | 0.68                               | 0.11 | 83.66                               | 16.71            | 1.30                              | 0.85              | 4680.37               | 236.75  | 152804.00 | 5469.19 | 2.44 | 0.79          | 201.96 | 4.47  | 475.12  | 9.75  |
| 9-2g-19-1   |           | 0.00                                | 0.01              | 0.00                  | 0.00         | 0.34                  | 0.20                               | 0.21 | 4.46                                | 5.16             | 0.95                              | 0.37              | 2789.86               | 1787.72 | 152804.00 | 5468.56 | 1.15 | 0.55          | 129.04 | 2.94  | 334.44  | 6.91  |
| 9-2g-20-1   |           | 0.00                                | 0.01              | 0.00                  | 0.00         | 0.12                  | 0.06                               | 0.25 | 1.31                                | 5.25             | 1.06                              | 0.44              | 667.70                | 8492.05 | 152804.00 | 5468.36 | 2.85 | 0.63          | 110.57 | 2.54  | 250.14  | 5.22  |
| 9-2g-21-1   |           | 0.00                                | 0.01              | 0.00                  | 0.00         | 0.52                  | 0.41                               | 0.57 | 3.29                                | 5.38             | 0.46                              | 0.35              | 3932.56               | 2090.03 | 152804.00 | 5468.91 | 1.84 | 0.69          | 276.21 | 5.93  | 405.91  | 8.36  |
| 9-2g-27-1   |           | 0.01                                | 0.01              | 0.00                  | 0.00         | 0.41                  | 0.26                               | 0.19 | 6.44                                | 5.07             | 0.92                              | 0.34              | 3260.31               | 1131.33 | 152804.00 | 5469.09 | 1.66 | 0.67          | 172.31 | 3.86  | 391.69  | 8.09  |
| 9-2g-30-1   |           | 0.01                                | 0.01              | 0.00                  | 0.00         | 0.52                  | 0.43                               | 0.29 | 12.53                               | 9.70             | 0.79                              | 0.53              | 4016.18               | 994.88  | 152804.00 | 5468.60 | 1.59 | 0.64          | 115.71 | 2.67  | 237.51  | 4.99  |
| 9-2g-32-1   |           | 0.00                                | 0.01              | 0.00                  | 0.00         | 0.26                  | 0.12                               | 0.14 | 4.84                                | 6.01             | 1.85                              | 0.54              | 1902.13               | 2163.80 | 152804.00 | 5468.79 | 1.69 | 0.66          | 101.19 | 2.39  | 248.70  | 5.23  |
| 9-2g-35-1   |           | 0.00                                | 0.00              | 0.00                  | 0.00         | 0.28                  | 0.14                               | 0.18 | 2.58                                | 3.64             | 0.88                              | 0.30              | 2169.32               | 2363.14 | 152804.00 | 5469.04 | 1.33 | 0.63          | 223.48 | 4.88  | 421.46  | 89.68 |
| 9-2g-37-1   |           | 0.00                                | 0.00              | 0.00                  | 0.00         | 0.16                  | 0.06                               | 0.07 | 1.02                                | 1.36             | 0.94                              | 0.18              | 420.09                | 2945.39 | 152804.00 | 5468.79 | 0.80 | 0.62          | 808.37 | 16.59 | 1095.41 | 22.00 |
| 6-2g-1-1    | Inherited | 0.15                                | 0.03              | 0.00                  | 0.00         | 0.61                  | 0.78                               | 0.14 | 139.84                              | 29.03            | 8.88                              | 1.20              | 4893.96               | 249.95  | 152804.00 | 5468.01 | 2.79 | 0.60          | 81.00  | 1.90  | 176.11  | 3.72  |
| 6-2g-1-2    |           | 0.00                                | 0.00              | 0.00                  | 0.00         | 0.21                  | 0.07                               | 0.06 | 1.07                                | 1.00             | 0.78                              | 0.13              | 919.19                | 1885.46 | 152804.00 | 5467.95 | 2.35 | 0.56          | 559.74 | 11.50 | 1173.80 | 23.46 |
| 6-2g-2-1    |           | 0.01                                | 0.01              | 0.00                  | 0.00         | 0.52                  | 0.41                               | 0.24 | 11.38                               | 7.92             | 0.80                              | 0.44              | 3938.34               | 894.52  | 152804.00 | 5468.03 | 3.46 | 0.62          | 148.53 | 3.27  | 243.84  | 5.07  |
| 6-2g-4-1    |           | 0.01                                | 0.01              | 0.00                  | 0.00         | 0.54                  | 0.47                               | 0.44 | 7.73                                | 8.50             | 0.84                              | 0.45              | 4154.88               | 1378.72 | 152804.00 | 5467.99 | 4.57 | 0.68          | 113.44 | 2.55  | 217.52  | 4.54  |
| 6-2g-24-1   |           | 0.00                                | 0.00              | 0.00                  | 0.00         | 0.34                  | 0.16                               | 0.15 | 2.33                                | 2.31             | 0.66                              | 0.19              | 2494.10               | 1573.10 | 152804.00 | 5468.31 | 2.44 | 0.63          | 354.58 | 7.44  | 582.55  | 11.80 |

【 付録 3 】

表 4.3-5 大崩山花崗岩体のジルコン U-bb 年代データ及びチタン濃度

| 207Pb/235U<br>0.02120 (                                                                                                                          | 2d 206Pb/238U<br>9.00430 0.00220                      | 2d en<br>0.00020              | s<br>ror correlation<br>0.44965          | 207Pb/206Pb 26<br>0.069795099 0.0126486                                                          | 235U-207Pt 2<br>21.3 4                   | 2a 238U-206                                | Pt 20                    | 207Pb-206Pb<br>922.3               | 20 Dis<br>372.5                 | equilibrium & common Pb correct<br>13.9 | ted 20 S.                | (internal 20 Ti<br>152804 5502.509 4                                            | 1 20 Th<br>1,000678 0.228121 37                                                            | 7.24627 1.323419 163.                                                                             | tho<br>2 Th/U<br>1512 4.861246 0.23                                                                                                    | J 2σ<br>28293 0.010586                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------|--------------------------|------------------------------------|---------------------------------|-----------------------------------------|--------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| 0.00247      0.00220      0.00        0.00820      0.00260      0.00        0.01724      0.02212      0.00        0.00299      0.00223      0.00 | 0.00                                                  | 017<br>021<br>156<br>018      | 0.59498<br>0.71931<br>0.93639<br>0.48621 | 0.062577866 0.0065476<br>0.201078434 0.0158783<br>0.075083354 0.001984<br>0.058061996 0.0084981  | 19.1 2<br>70.8 7<br>209.4 14<br>17.9 3   | 25 142<br>7.8 16.8<br>4.2 141.0<br>8.0 143 | 1.1<br>1.4<br>9.8<br>1.2 | 693.9<br>2835.0<br>1070.7<br>532.1 | 223.0<br>128.8<br>53.1<br>320.5 | 14.0<br>13.6<br>141.1<br>14.2           | 1.0<br>1.1<br>9.8<br>1.1 | 152804 5501.84<br>152804 5501.523 7<br>152804 5502.992 2<br>152804 5502.992 2   | 4.52143 0.252767 21<br>(555139 0.398854 56<br>(4.31514 1.208562 33<br>5.378295 0.341778 10 | 17.9391 5.355867 460.<br>6.17285 1.755919 249.6<br>32.5358 7.894218 652<br>02.9042 2.805569 293.8 | 5021      11.93377      0.47        5076      6.904094      0.22        5819      16.54237      0.4        5811      7.941678      0.3 | 73264 0.016902<br>25045 0.009393<br>50957 0.017697<br>50204 0.013444 |
| 0.00122 0.00190 0.00014<br>0.00110 0.00189 0.00013<br>0.00147 0.00209 0.00015<br>0.00132 0.00215 0.00015                                         | 0.00014<br>0.00013<br>0.00015<br>0.00015              |                               | 0.80321<br>0.79685<br>0.82623<br>0.89179 | 0.052546685 0.0027763<br>0.047201853 0.0025456<br>0.059064232 0.0028646<br>0.056416596 0.0028011 | 13.9 1<br>12.4 1<br>17.2 1<br>16.9 1     | 12 122<br>11 122<br>13 139                 | 0.9<br>0.9<br>1.0        | 309.3<br>59.5<br>468.8             | 120.3<br>128.5<br>105.5<br>78.9 | 12.2<br>12.3<br>13.4<br>13.8            | 8.0<br>8.0<br>6.0        | 152804 6533.401 1<br>152804 6413.519 4<br>152804 5504.18 2<br>152804 5501.314 0 | 7883682 103893 1<br>4472101 0.781694 1<br>2.183706 0.143329 8<br>0.764592 0.068268 35      | 179283 32051.11 4995<br>270773 33750.01 5002<br>885.007 19.95943 2521<br>54.2669 8.315429 4255    | 2.73 1452.957 23.6<br>1.41 1424.698 25.4<br>795 60.79059 0.3<br>0.26 101.5455 0.08                                                     | 60798 0.939794<br>40458 0.989336<br>50943 0.011585<br>83258 0.002787 |
| 0.00307 0.00219 0.00015<br>0.00192 0.00211 0.00016<br>0.01619 0.01693 0.00082                                                                    | 0.00015<br>0.00016<br>0.00082                         |                               | 0.95131<br>0.64042<br>0.37665            | 0.137989011 0.0031327<br>0.056458605 0.0050678<br>0.053790526 0.006425                           | 41.4 3<br>16.5 1<br>120.1 14<br>120.1 14 | 8.0 14.1<br>1.9 13.6<br>4.6 108.2          | 10<br>22<br>22<br>22     | 2202.1<br>470.4<br>362.3           | 39.4<br>198.7<br>269.4          | 12.6<br>13.5<br>108.3                   | 0.8<br>0.9<br>5.2        | 152804 5502.176<br>152804 5501.252 5<br>152804 5502.919 8                       | 7.94717 1.382875 18<br>6.701119 0.309739 34<br>6.698245 0.45783 76                         | 854.136 40.95935 5459<br>46.2194 8.133279 703<br>6.15607 2.232369 60.8                            | 383 130.051 0.3<br>303 17.63118 0.45<br>7514 2.304368 1.25                                                                             | 39624 0.011034<br>92276 0.016913<br>51021 0.059895                   |
| 0.00250 0.00194 0.00010<br>0.00255 0.00015 0.00010<br>0.00255 0.000215 0.00009<br>0.00255 0.00052 0.00011                                        | 0.00000                                               |                               | 0.28442<br>0.31454<br>0.31665            | 0.050955032 0.0089501<br>0.052867451 0.0065791                                                   | 13.8 2<br>15.8 2<br>16.1 2               | 25 125<br>21 138<br>21 153                 | 0.7                      | 238.8<br>323.1<br>404 5            | 282.6<br>282.6                  | 12.5<br>13.8<br>16.1                    | 0.6                      | 152804 5503.394<br>152804 5503.082 6<br>152804 5503.082 6                       | 6.4655 0.351452 12<br>6.4675 0.351452 12<br>6.677778 0.361069 28                           | 23.8898 3.312025 291.<br>23.8898 3.312025 291.<br>80.9476 6.746959 448                            | 2985 7.942622 0.41<br>667 11.66323 0.62                                                                                                | 25302 0.01624<br>26183 0.022161                                      |
| 0.00103 0.00200 0.00000                                                                                                                          | 0.00008                                               |                               | 0.38100<br>0.34600                       | 0.054033522 0.0031474<br>0.065135802 0.0071565                                                   | 15.1<br>15.3<br>18.8<br>18.8<br>2        | 142<br>134<br>134                          | 0.5                      | 196.6                              | 231.0                           | 14.2<br>13.2                            | 0.5                      | 152804 5502.806 5<br>152804 5502.806 5<br>152804 5502.073 7                     | 2291916 0.293664 90<br>877161 0.41742 39                                                   | 07.3083 9.250525 4663                                                                             | 2009 8.300001 0.54<br>021 40.34901 0.54<br>8489 12.04982 0.85                                                                          | 45232 0.018003<br>51043 0.029583                                     |
| 0.00756 0.00280 0.00012 0<br>0.00285 0.00216 0.00009 0<br>0.00476 0.00236 0.00011 0                                                              | 0.00012 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0             | 000                           | 54318<br>38010<br>46753                  | 0.243631267 0.0164225<br>0.086049218 0.0088618<br>0.152557889 0.0129034                          | 91.4 7<br>25.6 2<br>49.3 4               | 7.0 18.1<br>2.8 13.9<br>4.6 15.2           | 0.8<br>0.6<br>0.7        | 3143.8<br>1339.3<br>2374.8         | 107.1<br>199.0<br>144.2         | 13.6<br>13.3<br>13.3                    | 0.7<br>0.6<br>0.6        | 152804 5503.558 1<br>152804 5501.531<br>152804 5501.472 6                       | 26.16023 1.300676 18<br>7.30545 0.389318 26<br>59.79149 3.397705 18                        | 80.3287 4.557934 319.<br>63.0351 6.312716 399.<br>86.3154 4.635683 323.                           | 5646 8.625573 0.56<br>2875 10.42864 0.65<br>987 8.621071 0.57                                                                          | 54295 0.020867<br>58761 0.023366<br>76652 0.021038                   |
| 0.00208 0.00215 0.00008 0.000246 0.00550 0.00015 0.00015                                                                                         | 0.00008 0.0000                                        | 000                           | 38226<br>38380                           | 0.073162332 0.0064657<br>0.046651122 0.002943                                                    | 21.8 2 35.3 2 2000                       | 21 13.9<br>24 35.4                         | 0.9<br>0.9               | 31.4                               | 179.0                           | 13.5<br>35.5<br>200                     | 0.5                      | 152804 5501.672 4<br>152804 5501.931 5                                          | L139089 0.236314 23<br>5.133054 0.284513 76                                                | 31.8054 5.635557 586.<br>60.6837 17.13727 668.                                                    | 2308 14.85851 0.39<br>0076 16.82281 1.13                                                                                               | 95417 0.013887<br>37203 0.038397                                     |
| 0.00270 0.00248 0.00013 0.3<br>0.00259 0.00202 0.00010 0.4<br>0.0171 0.00719 0.00009 0.4                                                         | 0.00013 0.3 0.4 0.4 0.00010 0.4 0.4                   | 0.4                           | 7688<br>1727<br>4674                     | 0.05865658 0.0073186<br>0.077356472 0.008453<br>0.060270503 0.0050707                            | 20.2 2<br>21.6 2<br>18.3 1               | 2.7 16.0<br>2.6 13.0<br>1.7 14.1           | 0.8<br>0.7<br>0.6        | 554.4<br>1130.4<br>613.3           | 272.2<br>217.6<br>181.7         | 15.8<br>12.6<br>13.9                    | 0.6<br>0.6               | 152804 5500.812 6<br>152804 5501.9 4<br>152804 5501.9 4                         | 5.266757 0.3381 20<br>1.543004 0.25734 20<br>1.102295 0.234498 29                          | 02.7159 4.961155 3355<br>01.3795 4.960728 444<br>90.8765 6.885899 804                             | 2663 8.883519 0.66<br>607 11.49904 0.45<br>1289 19.92542 0.36                                                                          | 03453 0.021743<br>52938 0.016178<br>61779 0.017396                   |
| 0.00339 0.00205 0.00012 0.30<br>0.00274 0.00204 0.00011 0.3                                                                                      | 0.00012 0.30                                          | 0.30                          | 9966                                     | 0.061110762 0.0091265                                                                            | 20.7 3 2 17.3 2                          | 84 132<br>27 131                           | 0.8                      | 1013.9                             | 321.0                           | 12.8                                    | 0.7                      | 152804 5502.57 4<br>152804 5501.532 4                                           | 1742616 0.267106 12<br>1.974649 0.277112 15                                                | 28.6602 3.386442 257<br>54.8319 3.93474 314                                                       | 5335 7.103589 0.45<br>.973 8.420783 0.45                                                                                               | 99586 0.019047<br>91572 0.018132                                     |
| 0.00116 0.00189 0.00008 0.41<br>0.00286 0.00219 0.00011 0.45<br>0.0525 0.00250 0.00012 0.58                                                      | 0.00008 0.45                                          | 0.45                          | 461<br>608                               | 0.045859031 0.0040596<br>0.088651375 0.0084054<br>0.186771489 0.0124096                          | 12.1 1<br>26.9 2<br>63.3 5               | 12 122<br>28 141<br>50 161                 | 0.7                      | -9.8<br>1396.6<br>7713.0           | 213.8<br>181.8<br>100.6         | 12.3<br>13.5<br>13.5                    | 0.5<br>0.6               | 152804 5500.304<br>152804 5500.929 5<br>152804 5500.929 5                       | 6.74124 0.359986 1<br>5.571618 0.304076 20<br>0.000107 0.37538 20                          | 1060.19 23.47482 1080<br>04.7371 5.001897 4523<br>03.2866 4.037714 476                            | (889 26.37072 0.5<br>3557 11.64033 0.4<br>2021 10.0041 0.4                                                                             | 98085 0.032316<br>52102 0.016033<br>47465 0.016840                   |
| 0.00215 0.00190 0.00010 0.3461<br>0.00275 0.00195 0.00011 0.3676                                                                                 | 0.00011 0.3676                                        | 0.3461                        | 8 9                                      | 0.065762201 0.009514                                                                             | 14.1 2 17.8 2                            | 122 122                                    | 0.6                      | 348.2<br>798.8                     | 325.5                           | 122                                     | 0.6                      | 152804 5499.175 5<br>152804 5499.175 5                                          | 5969069 0.321599 14<br>5.346856 0.290262 11                                                | 47.1709 3.714881 36624<br>17.9736 3.060367 280.5                                                  | 9706 7.499359 0.41                                                                                                                     | 01104 0.015628<br>19879 0.015628                                     |
| 0.00145 0.00200 0.00008 0.450<br>0.00275 0.00185 0.00017 0.475<br>0.0011 0.00185 0.00017 0.475                                                   | 0.00008 0.450 0.475 0.475                             | 0.450                         | 880                                      | 0.057907739 0.0046997<br>0.056770631 0.0094533                                                   | 16.1 1.14.6 2.14.6                       | 129<br>119<br>119                          | 11                       | 526.3<br>482.6                     | 367.8                           | 12.8                                    | 0.5                      | 152804 5500.583 2<br>152804 5496.346 1<br>152804 5496.300 5                     | 2.763641 0.167582 3<br>1.67628 0.595297 72                                                 | 305.435 7.173225 991.<br>2.38297 2.079061 196.                                                    | 5031 24.28117 0.30<br>7792 5.546767 0.30<br>677 7.025002 0.31                                                                          | 08052 0.010452<br>67839 0.014803                                     |
| 0.00210 0.00212 0.00018 0.52714<br>0.00220 0.00214 0.00018 0.53714<br>0.00116 0.00205 0.00016 0.88840                                            | 0.00018 0.53714<br>0.00016 0.53714<br>0.00016 0.88840 | 0.53714                       |                                          | 0.0420202020 0.0062904<br>0.047815967 0.0062904<br>0.048078968 0.0018816                         | 14.2 2<br>14.2 2<br>13.7 1               | 12 138<br>138<br>132                       | 112                      | 90.2<br>103.2                      | 311.8<br>92.5                   | 13.9<br>13.9<br>13.3                    | 11                       | 152804 5496.455 5<br>152804 5496.455 5<br>152804 5495.354                       | 2.54063 0.152753 0.152753                                                                  | 81.6217 4.49422 311.<br>133.973 25.11373                                                          | 2319 8.28927 0.58<br>2319 8.28927 0.58<br>3219 76.87603 0.33                                                                           | 23/04 0.010285<br>83557 0.021215<br>52275 0.011474                   |
| 0.00306 0.00219 0.00018 0.64096<br>0.09432 0.07731 0.00583 0.98225                                                                               | 0.00018 0.64096 0.064096 0.00583 0.98225              | 0.64096                       |                                          | 0.078092377 0.0077662<br>0.115338921 0.0016594                                                   | 23.7 3<br>814.1 43                       | 3.0 14.1<br>3.0 480.1                      | 34.9                     | 1149.2<br>1885.2                   | 197.5                           | 13.6<br>480.2                           | 1.0<br>35.0              | 152804 5495.993 6<br>152804 5499.201 1                                          | 5.128686 0.327602 19<br>7.79411 0.895785 1                                                 | 90.9252 4.684012 328.<br>126.277 3.356297 910.                                                    | 1578 8.680504 0.58<br>5239 22.63452 0.13                                                                                               | 81278 0.020961<br>38686 0.005047                                     |
| 0.00326 0.00209 0.00019 0.52841<br>0.00657 0.01020 0.00079 0.83512<br>0.00292 0.00199 0.00017 0.59114                                            | 0.00019 0.52841<br>0.00079 0.83512<br>0.00017 0.59114 | 0.59114                       |                                          | 0.05065752 0.0025727<br>0.05066752 0.0025727<br>0.073725392 0.0085905                            | 19.5 5<br>69.9 6<br>20.3 2               | 52 13.5<br>52 65.4<br>12.8                 | 5.0                      | 823.7<br>225.7<br>1034.0           | 301.1<br>117.4<br>235.4         | 13.2<br>65.2<br>12.5                    | 4.7                      | 152804 5499.126 7<br>152804 5499.126 7<br>152804 5498.029 5                     | 0.26858 0.26839 10<br>0.092065 0.37943 27<br>0.396968 0.296143 16                          | 00.9163 2.80162/ 2222<br>70.6937 6.506217 4493<br>64.9101 4.167775 321                            | 808 6.345/92 0.42<br>8926 11.72299 0.60<br>8156 8.625017 0.51                                                                          | 01685 0.018922<br>01685 0.02133<br>13234 0.018922                    |
| 0.00388 0.00226 0.00014 0.57796<br>0.00247 0.00210 0.00013 0.40167                                                                               | 0.00014 0.57796<br>0.00013 0.40167<br>0.00013 0.40167 | 0.57796<br>0.40167            |                                          | 0.119693883 0.0101723<br>0.053801275 0.007831                                                    | 37.1 3<br>15.7 2<br>16.4 2               | 8.8 14.5<br>2.5 13.5<br>2.6 13.5           | 60<br>60                 | 362.7                              | 151.8<br>328.3                  | 13.3<br>13.5<br>13.5                    | 0.8                      | 152804 5499.155 5<br>152804 5499.295 7                                          | 2465034 0.300944 16<br>7.246329 0.387304 17                                                | 66.9473 4.232968 366.0<br>73.2049 4.373286 297.0                                                  | 0.483 9.761693 0.4<br>0015 8.116417 0.58                                                                                               | 45608 0.016783<br>83179 0.021698                                     |
| 0.00526 0.00257 0.00014 0.70876<br>0.00333 0.00256 0.00013 0.74207                                                                               | 0.00013 0.74207                                       | 0.70876<br>0.74207            |                                          | 0.136116166 0.0063249                                                                            | 66.4 5<br>47.6 3                         | 5.0 16.5<br>8.2 16.5                       | 0.0                      | 2750.8<br>2178.4                   | 90.1                            | 13.6                                    | 0.7                      | 152804 5499.456 3<br>152804 5499.456 3                                          | 9.03933 1.43579 15<br>13.01281 1.629076 27                                                 | 90.7063 4.735582 5423<br>76.0124 6.626242 1087                                                    | 3761 13.9384 0.3<br>228 26.91648 0.2                                                                                                   | 51289 0.012548<br>53868 0.008755                                     |
| 0.00340      0.00200      0.00014      0.42806        0.00199      0.00196      0.00012      0.4534        0.00127      0.00011      0.5550      | 0.00014 0.42806<br>0.00012 0.44534<br>0.00011 0.62530 | 0.42806<br>0.44534<br>0.62520 |                                          | 0.075128957 0.0110998<br>0.054722684 0.0065866<br>0.054050162 0.0024008                          | 20.9 3<br>14.9 2<br>16.0 1               | 8.4 12.9<br>2.0 12.6                       | 0.0<br>8.0               | 1072.0<br>400.9                    | 296.8<br>269.6                  | 12.6<br>12.6                            | 0.7                      | 152804 5499.701 4<br>152804 5499.016 5<br>152804 5499.016 5                     | L701726 0.265624 10<br>5.777999 0.316771 28                                                | 07.5781 2.939744 224.0<br>86.9888 6.851983 427.0<br>00 2700 11 64756 1319                         | 0739 6.389215 0.48<br>5547 11.22254 0.67<br>811 2735506 0                                                                              | 80101 0.018961<br>71076 0.023808                                     |
| 0.0015 0.00202 0.00010 0.65230<br>0.00115 0.00202 0.00010 0.65230<br>0.00111 0.00207 0.00013 0.63415                                             | 0.00010 0.65230 0.65230                               | 0.65230                       |                                          | 0.053312209 0.0031173                                                                            | 15.0 1                                   | 13 13 0                                    | 0.7                      | 342.1                              | 132.4                           | 13.0<br>13.0                            | 0.6                      | 152804 5499.319 1<br>152804 5499.319 1<br>152804 5500 007 7                     | 11.09667 0.573604 18<br>12.09667 0.573604 18<br>22.17110 000000                            | 863.819 41.06964 1827<br>04.0065 11.60964 2012                                                    | 396 44.45666 1.01                                                                                                                      | 19932 0.033478                                                       |
| 0.00101 0.00203 0.00013 0.8652<br>0.00131 0.00211 0.00014 0.7197                                                                                 | 0.00013 0.8652                                        | 0.7197                        |                                          | 0.048890421 0.0031373                                                                            | 13.6 L<br>13.6 L<br>14.3 L               | 10 131<br>136<br>136                       | 80                       | 110.4                              | 88.4<br>150.6                   | 13.2<br>13.6                            | 0.8<br>0.8               | 152804 5500.024<br>152804 5498.183 3                                            | 2.07491 0.138584 55<br>6.27789 0.210461 35                                                 | 57.8107 12.77218 5712<br>54.7126 8.293559 1446                                                    | .427 136.7832 0.05<br>.976 35.38544 0.24                                                                                               | 97649 0.003235<br>45141 0.008294                                     |
| 0.00137 0.00211 0.00014 0.8005<br>0.00131 0.00212 0.00014 0.8733                                                                                 | 0.00014 0.8005<br>0.00014 0.8733                      | 0.8005                        | 4                                        | 0.057693308 0.0028332<br>0.060451886 0.0021816                                                   | 16.9 1                                   | 1.4 13.6<br>1.3 13.6                       | 60                       | 518.1<br>619.8                     | 107.8                           | 13.5<br>13.5                            | 0.8                      | 152804 5499.399 2<br>152804 5499.403 5                                          | 0.147723 0.169768 60<br>0.168918 0.287484 25                                               | 09.6089 13.87714 2353<br>586.408 56.81292 4774                                                    | .039 56.97522 0.2 <sup>2</sup><br>.782 114.4728 0.5 <sup>4</sup>                                                                       | 59073 0.00861<br>41681 0.017613                                      |
| 0.01768 0.01733 0.00112 0.930-<br>0.00105 0.00204 0.00013 0.871:                                                                                 | 0.00013 0.8713                                        | 0.930                         | 51                                       | 0.106552616 0.0027115<br>0.050241115 0.0018267                                                   | 230.3 14<br>14.2 1                       | 4.3 110.8                                  | 0.8                      | 206.2                              | 46.6<br>84.3                    | 110.8                                   | 0.8                      | 152804 5499.991<br>152804 5498.322 2                                            | 9.47582 0.496212 18                                                                        | 87.5917 4.699358 1116<br>1506.92 33.32697 5442                                                    | .837 27.64904 0.16                                                                                                                     | 57967 0.005916<br>76904 0.009023                                     |
| 00010 010000 00000 00000 00000 00000 00000 00000                                                                                                 | 0.00015 0.4945 0.8472 0.8472                          | 0.4945                        | 20.4                                     | 0.092051167 0.0118152<br>0.092051167 0.0118152<br>0.066612737 0.0022929                          | 25.8 3<br>25.8 3<br>18.4 1               | 12.8<br>13.1<br>12.8<br>12.8               | 1.0                      | 240.7<br>1468.4<br>825.7           | 243.7<br>71.8                   | 12.8<br>12.4<br>12.6                    | 0.9<br>0.6               | 152804 5545.953 6<br>152804 5545.953 6<br>152804 5546.03 5                      | 26 100122 0 000000 0 000000 0 0 0 0 0 0 0                                                  | 259.361 7.232472 431.<br>259.361 7.232472 431.<br>527.404 61.90921 8182                           | 7798 13.71729 0.66<br>.657 229.6577 0.30                                                                                               | 00679 0.012110<br>00679 0.025392<br>08873 0.011506                   |
| 0.00579 0.01035 0.00059 0.727<br>0.00138 0.00196 0.00012 0.5658                                                                                  | 0.00059 0.7273                                        | 0.727                         | 3 5                                      | 0.051669659 0.0027839<br>0.04871355 0.0042285                                                    | 72.2 5<br>13.3 1                         | 5.5 66.4<br>1.4 12.6                       | 3.8                      | 270.8<br>134.1                     | 123.5<br>204.0                  | 66.1<br>12.7                            | 3.6<br>0.7               | 152804 5550.695 5<br>152804 5546.312 4                                          | 0.160188 0.327285 22<br>1.535076 0.291118 48                                               | 27.9368 6.559053 82<br>85.4807 12.72166 1686                                                      | 9.59 25.03107 0.27<br>.688 48.78091 0.28                                                                                               | 74758 0.011456<br>87831 0.011233                                     |
| 0.00191 0.00200 0.00012 0.5466<br>0.00410 0.00177 0.00016 0.3739                                                                                 | 0.00012 0.5466 0.3739                                 | 0.5466                        | 1 2                                      | 0.06100642 0.0058024<br>0.070644211 0.0155764                                                    | 16.9 1                                   | 129 129                                    | 0.8                      | 639.5<br>947.1                     | 204.6<br>451.4                  | 12.7                                    | 0.7                      | 152804 5547.537 5<br>152804 5548.893 5                                          | 659891 0.348703 28<br>6.160339 0.325847                                                    | 84.9231 7.892145 1169<br>112.84 3.682549 268.4                                                    | .946 34.43246 0.24<br>1192 9.225648 0.45                                                                                               | 43535 0.009843<br>20387 0.019925                                     |
| 0.00312 0.00200 0.00015 0.4019<br>0.00429 0.00204 0.00016 0.4395<br>0.00066 0.00018 0.4860                                                       | 0.00015 0.4019<br>0.00016 0.4395<br>0.00014 0.4960    | 0.4019                        | 000                                      | 0.059209458 0.0103432<br>0.085350823 0.0136721<br>0.074365701 0.0065107                          | 16.5 3<br>24.1 4<br>27.6 7               | 11 129<br>13 132<br>141                    | 1.0                      | 574.8<br>1323.5<br>1051.4          | 379.8<br>310.3<br>730.6         | 12.8<br>12.6<br>13.7                    | 0.9                      | 152804 5546.715 1<br>152804 5548.127 9<br>152804 5548.127 9                     | 0.593079 0.345393 21<br>0.312514 0.52888 18<br>0.010072 16                                 | 18.4235 6.256029 380.<br>81.5075 5.393193 335.<br>66 6695 4 0329001 509                           | 2475 12.32415 0.57<br>4696 11.16522 0.54<br>2605 19.11662 0.36                                                                         | 74424 0.024846<br>41055 0.02414<br>82612 0.012106                    |
| 0.00143 0.00208 0.00012 0.563<br>0.00286 0.00204 0.00015 0.399                                                                                   | 0.00012 0.563 0.399                                   | 0.563                         | 2 2 2                                    | 0.049252501 0.0041336<br>0.056579185 0.0093284                                                   | 14.2 1                                   | 13.4                                       | 0.9                      | 159.9                              | 196.3<br>364.6                  | 13.4<br>13.1                            | 0.7                      | 152804 5542 993 2<br>152804 5542 993 2                                          | 007908 0.159111 47                                                                         | 79.0794 12.53491 1614<br>292.298 8.037991 433                                                     | 555 46.90129 0.25<br>966 13.84047 0.6                                                                                                  | 96725 0.011601<br>67355 0.028364                                     |
| 0.00131 0.00202 0.00011 0.62<br>0.00378 0.00229 0.00018 0.37                                                                                     | 0.00011 0.62                                          | 0.62                          | 387                                      | 0.052741141 0.0036787 0.059082629 0.0110773                                                      | 14.8 1                                   | 13 13.0<br>3.8 14.7                        | 0.7                      | 317.7<br>570.1                     | 158.6<br>408.0                  | 13.0<br>14.6                            | 0.7                      | 152804 5541.331<br>152804 5543.685 4                                            | 3.38315 0.22716 47<br>1.075869 0.264622 15                                                 | 76.4921 12.43961 2197<br>52.6551 4.610756 299.0                                                   | .125 63.14311 0.21<br>0161 10.00375 0.51                                                                                               | 16871 0.00842<br>10525 0.023011                                      |
| 0.00541 0.00228 0.00018 0.47<br>0.00775 0.00247 0.00020 0.53<br>0.00705 0.00024 0.0016 0.53                                                      | 0.00018 0.47<br>0.00020 0.53                          | 0.47                          | 271                                      | 0.104708697 0.0151274<br>0.149980137 0.019274                                                    | 32.9 5<br>50.6 7<br>14.1 3               | 14.7<br>15<br>15.9<br>15.9                 | 123                      | 1709.2<br>2345.7                   | 265.8<br>219.8                  | 13.7<br>13.9                            | 1.0                      | 152804 5545.971 7<br>152804 5542.701 5                                          | 0.59341 2.522145 8<br>0.59341 2.522145 8                                                   | 54.7921 4.705239 299.<br>89.4815 3.013754 232.                                                    | 2764 10.08581 0.51<br>1151 8.065607 0.38                                                                                               | 85505 0.018655<br>0.018655                                           |
| 0.00301 0.00222 0.0001 0.00300<br>0.00301 0.00222 0.0001 0.0030<br>0.00540 0.0000 0.0000 0.0000                                                  | 0.00017 0.295                                         | 0.295                         | 0.00                                     | 0.037071907 0.009383                                                                             | 11.5 3                                   | 8.0 14.3<br>8.4 13.1                       | 3 = 5                    | -551.3                             | 681.1<br>573.5                  | 12.1                                    | 011                      | 152804 5543.322 6<br>157804 5543.322 6                                          | 961201 0.407028 12<br>961201 0.407028 12<br>960566 0.507597 11                             | 24.0516 3.899916 288.<br>24.0516 3.899916 288.                                                    | 2596 9.714062 0.42<br>8596 9.714062 0.42<br>8800 9.768896 0.42                                                                         | 29453 0.01977<br>29453 0.01977                                       |
| 0.00511 0.00203 0.00020 0.43088<br>0.00278 0.00214 0.00017 0.50700                                                                               | 0.00020 0.43088<br>0.00017 0.50700                    | 0.43088                       |                                          | 0.08101922 0.016456<br>0.061498731 0.0081172                                                     | 22.8 5<br>18.2 2                         | 5.1 13.1<br>2.8 13.8                       | 13<br>11                 | 1221.9<br>656.7                    | 399.1<br>283.1                  | 12.6<br>13.6                            | 11                       | 152804 5543.626 5<br>152804 5544.831 4                                          | 0.53858 0.347422 91<br>0.050413 0.27014 25                                                 | 58.5211 7.302142 633.0                                                                            | 2905 8.163192 0.35<br>0426 19.53662 0.40                                                                                               | 97198 0.019543<br>08379 0.017085                                     |

| Mather number      207/bi-3218      Oscilitationa      Observationa      Annotationa        HOZZX3-76      00133      00037      00030      000017      011141      2        HOZZX3-76      00177      00133      00037      00030      000017      01114      2        HOZZX3-76      00177      00133      00035      000017      04131      00137      2        HOZZX3-75      00177      00130      00033      00031      010313      00131      2        HOZZX3-75      00177      00131      00015      00033      00033      2        HOZZX4-50      00177      00132      00031      00015      06133      006430      2        HOZZX4-51      00131      00132      00031      00014      07513      0004466      2        HOZZK4-52      00131      00015      00031      00015      06639      06641      2        HOZZK4-58      01314      00131      00021      00015      06639      16      2        HOZZK4-58      01314      00131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Comment     |            |         |            | Isotope ra | ttios             |                       |            |       | Age (    | (Ma)  |              |          |                                   |      |                |             | Elemental  | concentratio | nn (g/gµ) nu | d ratio    |             |                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------|---------|------------|------------|-------------------|-----------------------|------------|-------|----------|-------|--------------|----------|-----------------------------------|------|----------------|-------------|------------|--------------|--------------|------------|-------------|--------------------|
| Display      Display <t< th=""><th>Sample name</th><th>207Pb/235L</th><th>20</th><th>206Pb/238U</th><th>J 20</th><th>error correlation</th><th>207Pb/206Pb 20</th><th>235U-207Pt</th><th>20 23</th><th>8U-206Pt</th><th>20 20</th><th>7Pb-206Pb 2c</th><th>o Disequ</th><th>ilibrium &amp; common Pb corrected 20</th><th>Si (</th><th>(internal 20</th><th>Ti</th><th>20 T</th><th>Ч</th><th>20 U</th><th></th><th>2d Th/</th><th>1 20</th></t<> | Sample name | 207Pb/235L | 20      | 206Pb/238U | J 20       | error correlation | 207Pb/206Pb 20        | 235U-207Pt | 20 23 | 8U-206Pt | 20 20 | 7Pb-206Pb 2c | o Disequ | ilibrium & common Pb corrected 20 | Si ( | (internal 20   | Ti          | 20 T       | Ч            | 20 U         |            | 2d Th/      | 1 20               |
| DCXII-56      001770      00038      00017      04030      006309      100117      17        DOXIL-57      00177      00038      000015      06013      066595145      001177      17        DOXIL-57      001285      00038      000015      06013      066751549      0004456      18        DOXIL-57      001385      00038      00013      00013      066751549      00137      18        DOXIL-58      001326      00031      00013      00013      00013      0004456      18        DOXIL-58      001311      000121      00013      00013      000133      0013335      001436      13        DOXIL-58      001311      000121      00013      00013      00013      00013      00013      00013      00013      00013      0013      0013      0013      0013      0013      0013      0013      0013      0013      0013      0013      0013      0013      0013      0013      0013      0013      0013      0013      0013      0013      0013      0013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 40ZR5-67    | 0.02331    | 0.00375 | 0.00209    | 0.00017    | 0.51148           | 0.080994164 0.0111872 | 23.4       | 3.7   | 13.4     | 1.1   | 1221.3 271   | 5        | 13.0 1.0                          |      | 152804 5541.84 | 15 4.910914 | 0.308617   | 260.5576 7   | 291828       | 441.097 14 | 4.04945 0.5 | 90704 0.025        |
| HOZRI-77      00171      00170      00170      00170      00170      00170      00170      00170      00170      00170      00170      00170      00170      00170      00170      00170      00170      00170      00170      00170      00170      00170      00170      00170      00170      00171      001711      00171      00171      00171      00171      00171      00171      00171      00171      00171      00171      00171      00171      00171      00171      00171      00171      00171      00171      00171      00171      00171      00171      00171      00171      00171      00171      00171      00171      00171      00171      00171      00171      00171      00171      00171      00171      00171      00171      00171      00171      00171      00171      00171      00171      00171      00171      00171      00171      00171      00171      00171      00171      00171      00171      00171      00171      00171      00171      001711      00171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10ZR2-76    | 0.01709    | 0.00339 | 0.00198    | 0.00017    | 0.43051           | 0.062509174 0.0111773 | 17.2       | 3.4   | 12.8     | 1.1   | 691.6 381    | 13       | 12.6 1.0                          |      | 152804 5544.8  | 16 7.250936 | 0.429512 2 | 237.7282 6   | 801705 4     | 13.8587 13 | 3.39812 0.5 | 74419 0.024        |
| DOZR45-39      DOZS39      DODR59      DODR450      DD0450      Z8        IDOZR4540      001320      000320      000310      001320      000310      001313      D04120      D041305      D141      D151      D00140      D151      D00140      D151      D00140      D151      D00140      D151      D00141      D151      D01414                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 40ZR2-77    | 0.01771    | 0.00199 | 0.00208    | 0.00015    | 0.63013           | 0.061782339 0.0053907 | 17.8       | 2.0   | 13.4     | 0.9   | 666.6 186    | 5.8      | 13.2 0.9                          |      | 152804 5543.89 | 7 3.48359   | 0.241564   | 520.1983 1   | 3.63197      | 1416.58 41 | 1.37968 0.3 | 57221 0.014        |
| DOZR4+51      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135      00135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HOZR15-78   | 0.02858    | 0.00288 | 0.00231    | 0.00016    | 0.69929           | 0.089650429 0.006465  | 28.6       | 2.8   | 14.9     | 1.0   | 1418.1 137   | 6.1      | 14.2 0.9                          |      | 152804 5548.5  | 14 3.974829 | 0.273594 4 | 457.8312 1   | 2.23749 14   | 477.533 43 | 3.28969 0.3 | 9862 0.012         |
| HOZRL3-50      00153      00171      00072      00073      00073      00073      00073      00073      00073      00073      00074      127        HOZRL3-54      00131      00131      00131      00131      00014      07593      0005454      123        HOZRL3-54      00131      00015      00125      00014      07593      0005454      123        HOZRL3-54      00131      00015      00125      00016      055939      0005454      123        HOZRA-45      001341      000215      00016      05783      0001454      1000456      173        HOZRA-45      001461      00024      00015      05731      0000145      153        HOZRA-45      001461      00146      00146      00140      075347      113      100        HOZRA-45      001761      00015      00015      00124      00015      113      100      113      100      113      100      113      113      100      113      113      113      113      113      113      113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HOZR45-81   | 0.01826    | 0.00355 | 0.00208    | 0.00018    | 0.44022           | 0.063755356 0.0111165 | 18.4       | 3.5   | 13.4     | 1.1   | 733.5 369    | 0.3      | 13.2 1.0                          |      | 152804 5540.1  | 32 6.020969 | 0.362847   | 206.7323 5   | 968832 30    | 58.4237 11 | 1.98347 0.5 | 51127 0.024        |
| HOZRL3-27      00111      00012      000016      0.567958      0.6079569      32        HOZRL3-55      00113      000215      000016      0.57678      0.60795697      0.006995      34        HOZRL3-55      00113      000215      000016      0.57678      0.60519597      0.006993      345        HOZRA-55      00113      000215      000017      0.5811      0.006993      345        HOZRA-58      001136      000215      000217      000016      0.5458      0.009933      0.01569      345        HOZRA-48      001136      000214      000017      0.58211      0.005939      346        HOZRA-40      01136      00136      00131      00011      03113      0017439      001759      90176      9016        HOZRA-40      01137      00136      00131      00013      03131      001769      9017      9016        HOZRA-41      01137      00131      00013      03131      001769      9016      9017      9017      9017      9017      9017        HOZRA-42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IOZR45-80   | 0.01562    | 0.00174 | 0.00221    | 0.00015    | 0.62790           | 0.051328945 0.0044396 | 15.7       | 1.7   | 14.2     | 1.0   | 255.6 198    | 8.8      | 14.2 0.9                          |      | 152804 5537.70 | 58 2.939534 | 0.206625 4 | 146.6844 1   | 1.71782 14   | 137.828 41 | 1.70565 0.3 | 10666 0.01         |
| All      ODD216-54      ODD215      ODD216      ODD216      ODD215      ODD215      ODD215      ODD215      ODD216      ODD215      ODD216      ODD215      ODD215      ODD216      ODD215      ODD216      ODD215      ODD215      ODD215      ODD216      ODD215      ODD216      ODD216<                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HOZR12-82   | 0.01511    | 0.00127 | 0.00216    | 0.00014    | 0.78913           | 0.050793083 0.0026246 | 15.2       | 1.3   | 13.9     | 0.9   | 231.5 119    | 33       | 13.9 0.9                          |      | 152804 5537.8. | 57 2.559295 | 0.188408   | 1536.802 3   | 7.93957 4:   | 214.349 11 | 18.9346 0.3 | 54659 0.013        |
| HOZR4-55      00141      00021      00017      00154      00043      00154      00043      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154      00154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HOZR19-83   | 0.02451    | 0.00325 | 0.00215    | 0.00016    | 0.57678           | 0.082639707 0.0089495 | 24.6       | 3.2   | 13.9     | 1.1   | 1260.7 211   | 9.1      | 13.3 1.0                          |      | 152804 5541.7. | 27 6.707858 | 0.399573   | 441.891      | 11.7015 6    | 85.5355 20 | 0.91656 0.6 | 14592 0.026        |
| DCRACK-38      001756      00025      00017      0.550133      0000456      173        HOZRS-39      001765      00026      00010      07778      0.65301338      0001456      173        HOZRS-30      001765      00124      000146      00114      000116      07778      0.6530538      001145      00114        HOZRS-30      011461      000146      00014      000116      07778      0.6530538      00114      00114      00114      00114      00114      00114      00114      00114      00114      00114      00114      00114      00114      00114      00114      00114      00114      00114      00114      00114      00114      00114      00114      00114      00114      00114      00114      00114      00114      00114      00114      00114      00114      00111      00111      00111      00111      00111      00111      00111      00111      00111      00111      00111      00111      00111      00111      00111      00111      001111      00111      001111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HOZR6-85    | 0.01841    | 0.00251 | 0.00217    | 0.00016    | 0.54885           | 0.061450644 0.0069928 | 18.5       | 2.5   | 14.0     | 1.0   | 655.0 244    | 11       | 13.8 1.0                          |      | 152804 5539.4. | 35 4.650026 | 0.29374    | 500.7946 1   | 3.07067      | 770.522 23 | 3.20023 0.6 | 19942 0.025        |
| DOZRAS-90      OD145      OD014      OD14      OD014      OD14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | IOZR43-88   | 0.01736    | 0.00258 | 0.00202    | 0.00017    | 0.56821           | 0.062501328 0.0076456 | 17.5       | 2.6   | 13.0     | 1.1   | 691.3 260    | 6.0      | 12.8 1.0                          |      | 152804 5543.2  | 57 6.020432 | 0.375617   | 710.2642 1   | 8.71923 74   | 44.2118    | 23.5749 0.9 | 54385 0.039.       |
| DCRX+40      00157      00164      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00024      00124      00124      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10ZR8-89    | 0.01464    | 0.00145 | 0.00211    | 0.00016    | 0.77178           | 0.050362358 0.0031629 | 14.8       | 1.4   | 13.6     | 1.0   | 211.8 145    | 5.5      | 13.6 1.0                          |      | 152804 5540.84 | 11 1.835188 | 0.162093   | 766.3401 2   | 0.03568 3(   | 004.053 88 | 8.61531 0.2 | 55102 0.010        |
| DICR46-91      001576      000230      000030      000130      00131      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      001335      00133                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HOZR24-90   | 0.04729    | 0.01064 | 0.00246    | 0.00029    | 0.52021           | 0.139472008 0.0267979 | 46.9       | 10.3  | 15.8     | 1.9   | 2220.7 333   | 3.0      | 14.1 1.6                          |      | 152804 5543.9  | 16 15.58348 | 0.844761 8 | 34.56406 3   | .133866 1    | 31.6761    | 5.62172 0.6 | 12213 0.036        |
| DOLRU:7-02      00155      000216      000021      05300Hu      03300Hu      03300Hu <th< th=""><th>HOZR46-91</th><td>0.01891</td><td>0.00350</td><td>0.00203</td><td>0.00019</td><td>0.50124</td><td>0.067696089 0.0108335</td><td>19.0</td><td>3.5</td><td>13.0</td><td>1.2</td><td>859.3 332</td><td>22</td><td>12.8 1.1</td><td></td><td>152804 5540.9.</td><td>3 8.395597</td><td>0.488469 2</td><td>203.0377 6</td><td>.110375 3</td><td>79.4766 12</td><td>2.88756 0.5</td><td>35047 0.024</td></th<>       | HOZR46-91   | 0.01891    | 0.00350 | 0.00203    | 0.00019    | 0.50124           | 0.067696089 0.0108335 | 19.0       | 3.5   | 13.0     | 1.2   | 859.3 332    | 22       | 12.8 1.1                          |      | 152804 5540.9. | 3 8.395597  | 0.488469 2 | 203.0377 6   | .110375 3    | 79.4766 12 | 2.88756 0.5 | 35047 0.024        |
| DOZR41.93      0.4911      0.0432      0.0032      0.0032      0.0032      0.0032      0.0032      0.0037      0.021887      0.021887      0.021887      0.021887      0.021887      0.021887      0.021887      0.031887      0.031887      0.03197      13.3      DZR41.45      0.011212      0.01032      0.00015      0.6100      0.00377      13.3      DZR41.45      0.031874      0.03177      13.3      DZR41.45      0.03167      0.01357      0.011      0.0012      0.0012      0.0012      0.01277      0.012      0.0121      0.0022      0.0002      0.0002      0.0002      0.0002      0.0002      0.0002      0.0002      0.0002      0.0002      0.0002      0.0002      0.0002      0.0002      0.0002      0.0002      0.0002      0.0002      0.0002      0.0002      0.0002      0.0002      0.0002      0.0002      0.0002      0.0002      0.0002      0.0002      0.0002      0.0002      0.0002      0.0002      0.0002      0.0002      0.0002      0.0002      0.0002      0.0002      0.0002      0.002      0.002      0.002      0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                  | HOZR27-92   | 0.01576    | 0.00223 | 0.00216    | 0.00018    | 0.58173           | 0.053020441 0.0060959 | 15.9       | 2.2   | 13.9     | 1.1   | 329.7 260    | 0.8      | 13.9 1.1                          |      | 152804 5543.7. | 26 5.027188 | 0.327386   | 558.3697 1   | 7.45866 89   | 95.2679    | 27.9591 0.7 | 35388 0.030        |
| BZRAI-45      00125      000135      000135      000135      000135      000135      000135      000135      000135      000135      000135      000135      000135      000135      000135      000135      000135      000135      000135      000135      151      151      151      151      151      151      151      151      151      151      151      151      151      151      151      151      151      151      151      151      151      151      151      151      151      151      151      151      151      151      151      151      151      151      151      151      151      151      151      151      151      151      151      151      151      151      151      151      151      151      151      151      151      151      151      151      151      151      151      151      151      151      151      151      151      151      151      151      151      151      151      151      151 <th>HOZR41-93</th> <td>0.49112</td> <td>0.04351</td> <td>0.00622</td> <td>0.00050</td> <td>0.90217</td> <td>0.572264762 0.0218687</td> <td>405.7</td> <td>29.6</td> <td>40.0</td> <td>3.2</td> <td>4439.1 55.</td> <td>Ľ</td> <td>13.5 1.5</td> <td></td> <td>152804 5542.9</td> <td>15 18.86571</td> <td>1.002207 3</td> <td>309.6794 8</td> <td>815812</td> <td>507.816 10</td> <td>5.69725 0.6</td> <td><b>09826 0.026</b></td>                                                                                                                                          | HOZR41-93   | 0.49112    | 0.04351 | 0.00622    | 0.00050    | 0.90217           | 0.572264762 0.0218687 | 405.7      | 29.6  | 40.0     | 3.2   | 4439.1 55.   | Ľ        | 13.5 1.5                          |      | 152804 5542.9  | 15 18.86571 | 1.002207 3 | 309.6794 8   | 815812       | 507.816 10 | 5.69725 0.6 | <b>09826 0.026</b> |
| BZRH-46      010601      000851      000125      000125      000125      000125      000125      000125      01112      01112      01112      01112      01112      01112      01112      01112      01112      01112      01112      01112      01112      01112      01112      01112      01112      01112      01112      01112      01112      01112      01112      01112      01112      01112      01112      01112      01112      01112      01112      01112      01112      01112      01112      01112      01112      01112      01112      01112      01112      01112      01112      01112      01112      01112      01112      01112      01112      01112      01112      01112      01112      01112      01112      01112      01112      01112      01112      01112      01112      01112      01112      01112      01112      01112      01112      01112      01112      01112      01112      01112      01112      01112      01112      01112      011112      011112      011112 <th>3ZR43-45</th> <th>0.01522</th> <th>0.00195</th> <th>0.00193</th> <th>0.00016</th> <th>0.63008</th> <th>0.057181874 0.0056797</th> <th>15.3</th> <th>1.9</th> <th>12.4</th> <th>1.0</th> <th>498.6 218</th> <th>8.8</th> <th>12.4 0.9</th> <th></th> <th>152804 5545.80</th> <th>8 4.916969</th> <th>0.322956</th> <th>520.9435 1</th> <th>4.09455 1</th> <th>245.481 38</th> <th>8.11451 0.4</th> <th>18267 0.0170</th>                                                                          | 3ZR43-45    | 0.01522    | 0.00195 | 0.00193    | 0.00016    | 0.63008           | 0.057181874 0.0056797 | 15.3       | 1.9   | 12.4     | 1.0   | 498.6 218    | 8.8      | 12.4 0.9                          |      | 152804 5545.80 | 8 4.916969  | 0.322956   | 520.9435 1   | 4.09455 1    | 245.481 38 | 8.11451 0.4 | 18267 0.0170       |
| BZR31-9 001546 0.00192 0.00202 0.00016 0.64315 0.05428592 0.0052728 15.6 BZR31-50 0.01297 0.00134 0.00195 0.00015 0.74172 0.04842 0.003341 13.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3ZR44-46    | 0.01601    | 0.00607 | 0.00185    | 0.00023    | 0.33331           | 0.062839092 0.0224425 | 16.1       | 6.1   | 11.9     | 1.5   | 702.8 760    | 0.2      | 11.8 1.3                          |      | 152804 5547.9. | 23 5.599879 | 0.36034    | 37.18066 1   | 833585 1     | 35.3614 5. | 789988 0.2  | 74677 0.017        |
| BZR31-50 0.01297 0.00134 0.00195 0.00015 0.74172 0.048204842 0.003341 13.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3ZR31-49    | 0.01546    | 0.00192 | 0.00202    | 0.00016    | 0.64315           | 0.055428592 0.0052728 | 15.6       | 1.9   | 13.0     | 1.0   | 429.6 212    | 0.0      | 13.0 1.0                          |      | 152804 5546.5  | 3.718995    | 0.266116   | 217.5395 6   | 596238 1     | 357.471 41 | 1.40316 0.1 | 50253 0.006        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3ZR31-50    | 0.01297    | 0.00134 | 0.00195    | 0.00015    | 0.74172           | 0.048204842 0.003341  | 13.1       | 1.3   | 12.6     | 1.0   | 109.3 163    | 5.7      | 12.6 0.9                          |      | 152804 5544.1. | 18 4.229006 | 0.287991   | 342.2338 9   | 656188 21    | 854.093 8  | 84.4426 0   | 1991 0.004         |
| BZR28-52 0.01396 0.00132 0.00197 0.00014 0.76940 0.051472181 0.00311 14.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3ZR28-52    | 0.01396    | 0.00132 | 0.00197    | 0.00014    | 0.76940           | 0.051472181 0.00311   | 14.1       | 1.3   | 12.7     | 6.0   | 262.0 138    | 8.7      | 12.7 0.9                          |      | 152804 5548.34 | 4.665807    | 0.31513    | 575.142      | 15.4938 3    | 741.819 11 | 10.7914 0.1 | 53707 0.006        |
| BZR40-53 0.01447 0.00216 0.00192 0.00015 0.53939 0.054732392 0.0068711 14.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3ZR40-53    | 0.01447    | 0.00216 | 0.00192    | 0.00015    | 0.53939           | 0.054732392 0.0068711 | 14.6       | 2.2   | 12.4     | 1.0   | 401.3 281    | 1.2      | 12.3 0.9                          |      | 152804 5546.4  | 11 7.223902 | 0.438481 4 | 422.3422 1   | 1.67061 81   | 80.7948 27 | 7.75908 0.4 | 79501 0.020        |
| BZR24-54 0.02421 0.00273 0.00185 0.00014 0.69102 0.094912577 0.0077242 24.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3ZR24-54    | 0.02421    | 0.00273 | 0.00185    | 0.00014    | 0.69102           | 0.094912577 0.0077242 | 24.3       | 2.7   | 11.9     | 0.9   | 1526.3 153   | 3.3      | 11.3 0.8                          |      | 152804 8002.81 | 37 38.61526 | 3.667747   | 1466977 5    | 3254.48 20   | 5789.19 10 | 091.877 54  | 76004 2.988        |

| (続き)   |
|--------|
| く濃度    |
| なびチタ   |
| データル   |
| Pb 年代  |
| ライコン   |
| 1体のジ   |
| 山花崗岩   |
| -2 大崩  |
| 表 4.3- |

表 4.3-3 土岐花崗岩体のジルコン U-bb 年代データ及びチタン濃度

| Col             | mment  |                                  |      |                                     | Isoto | pe ratios  |                          |                      |      |                                     |                  | Age (Ma                           |                     |                       |        |           |                   | Col  | ncentrtion () | (g/g)  |      |        |       |
|-----------------|--------|----------------------------------|------|-------------------------------------|-------|------------|--------------------------|----------------------|------|-------------------------------------|------------------|-----------------------------------|---------------------|-----------------------|--------|-----------|-------------------|------|---------------|--------|------|--------|-------|
| Sample name     |        | $^{207}\text{Pb}/^{235}\text{U}$ | 2σ   | <sup>206</sup> Pb/ <sup>238</sup> U | J 2σ  | error corr | elation <sup>207</sup> F | b/ <sup>206</sup> Pb | 2σ   | <sup>235</sup> U- <sup>207</sup> Pb | 2σ <sup>23</sup> | <sup>3</sup> U- <sup>206</sup> Pb | 2σ <sup>207</sup> ] | ob- <sup>206</sup> Pb | 2σ     | Si        | 2 <sub>0</sub> Ti |      | 2σ Th         | _      | 2σ U |        | 2σ    |
| DH13-11-17-1    |        | 0.08                             | 0.01 | 0.0                                 | 10    | 00.0       | 0.30                     | 0.05                 | 0.01 | 82.24                               | 12.70            | 72.64                             | 3.49                | 370.94                | 345.47 | 152804.00 | 5468.21           | 7.57 | 0.95          | 217.15 | 4.75 | 233.33 | 4.90  |
| DH13-11-17-2    |        | 0.07                             | 0.01 | 0.0                                 | 10    | 00.0       | 0.24                     | 0.04                 | 0.01 | 64.32                               | 13.16            | 78.54                             | 3.95                | -437.24               | 538.49 | 152804.00 | 5467.79           | 7.07 | 0.88          | 97.92  | 2.29 | 165.86 | 3.53  |
| DH13-11-25      |        | 0.07                             | 0.02 | 0.0                                 | 10    | 00.0       | 0.25                     | 0.04                 | 0.01 | 72.54                               | 15.12            | 79.85                             | 4.35                | -162.39               | 519.58 | 152804.00 | 5467.71           | 3.98 | 0.67          | 63.51  | 1.58 | 131.89 | 2.85  |
| DH13-11-C       |        | 0.08                             | 0.04 | 0.0                                 | 10    | 00.0       | 0.23                     | 0.06                 | 0.02 | 81.14                               | 35.50            | 69.41                             | 7.29                | 441.97                | 984.94 | 152804.00 | 5467.66           | 7.14 | 0.84          | 14.81  | 0.53 | 39.38  | 1.00  |
| DH6-2-22        |        | 0.10                             | 0.01 | 0.0                                 | 10    | 00.0       | 0.32                     | 0.06                 | 0.01 | 92.29                               | 11.05            | 75.84                             | 3.05                | 541.45                | 259.12 | 152804.00 | 5467.61           | 4.48 | 0.70          | 276.90 | 5.86 | 266.28 | 5.49  |
| DH6-2-3-1       |        | 0.10                             | 0.01 | 0.0                                 | 10    | 00.0       | 0.32                     | 0.06                 | 0.01 | 96.15                               | 13.40            | 76.26                             | 3.51                | 622.73                | 298.80 | 152804.00 | 5467.57           | 3.75 | 0.64          | 164.47 | 3.60 | 188.01 | 3.94  |
| DH6-2-3-2       |        | 0.11                             | 0.02 | 0.0                                 | 10    | 00.0       | 0.32                     | 0.06                 | 0.01 | 102.41                              | 16.20            | 76.98                             | 4.02                | 743.76                | 333.61 | 152804.00 | 5467.50           | 3.26 | 0.59          | 113.00 | 2.55 | 135.92 | 2.90  |
| DH6-2-7-1       |        | 0.08                             | 0.01 | 0.0                                 | 10    | 00.0       | 0.30                     | 0.05                 | 0.01 | 80.96                               | 10.53            | 76.63                             | 3.07                | 210.64                | 299.49 | 152804.00 | 5467.71           | 4.63 | 0.71          | 266.94 | 5.68 | 279.46 | 5.76  |
| DH6-2-7-2       |        | 0.10                             | 0.01 | 0.0                                 | 10    | 00.0       | 0.33                     | 0.06                 | 0.01 | 95.33                               | 11.47            | 75.30                             | 3.09                | 630.83                | 256.42 | 152804.00 | 5467.72           | 5.38 | 0.73          | 269.22 | 5.73 | 270.17 | 5.58  |
| DH6-2-6         |        | 0.08                             | 0.01 | 0.0                                 | 10    | 00.0       | 0.32                     | 0.05                 | 0.01 | 81.49                               | 90.6             | 74.20                             | 2.74                | 300.74                | 249.95 | 152804.00 | 5467.57           | 3.80 | 0.68          | 330.27 | 6.93 | 337.02 | 689   |
| DH6-2-10        |        | 0.10                             | 0.01 | 0.0                                 | 10    | 00.0       | 0.34                     | 0.06                 | 0.01 | 95.60                               | 9.83             | 76.83                             | 2.78                | 593.60                | 219.65 | 152804.00 | 5467.59           | 5.64 | 0.75          | 402.05 | 8.38 | 343.60 | 7.02  |
| DH6-2-13        |        | 0.07                             | 0.02 | 0.0                                 | 10    | 00.0       | 0.24                     | 0.05                 | 0.01 | 71.36                               | 19.05            | 72.92                             | 4.81                | 19.38                 | 644.58 | 152804.00 | 5467.63           | 6.67 | 0.84          | 62.29  | 1.55 | 92.56  | 2.06  |
| DH6-2-16        |        | 0.07                             | 0.01 | 0.0                                 | 10    | 00.0       | 0.27                     | 0.04                 | 0.01 | 72.83                               | 12.40            | 76.94                             | 3.66                | -60.07                | 413.98 | 152804.00 | 5467.59           | 5.43 | 0.75          | 156.49 | 3.45 | 176.68 | 3.72  |
| DH6-2-1         |        | 0.09                             | 0.01 | 0.0                                 | 10    | 00.0       | 0.31                     | 0.05                 | 0.01 | 86.19                               | 10.79            | 75.79                             | 3.03                | 384.73                | 279.07 | 152804.00 | 5467.55           | 3.55 | 0.62          | 219.47 | 4.71 | 262.48 | 5.41  |
| DH6-2-5-1 Inhe  | arited | 0.09                             | 0.02 | 0.0                                 | 10    | 00.0       | 0.29                     | 0.05                 | 0.01 | 90.61                               | 19.25            | 80.72                             | 5.11                | 359.65                | 479.93 | 152804.00 | 5468.14           | 9.59 | 1.01          | 97.70  | 2.27 | 111.22 | 2.45  |
| DH6-2-5-2       |        | 0.07                             | 0.01 | 0.0                                 | 10    | 00.00      | 0.28                     | 0.04                 | 0.01 | 72.46                               | 13.38            | 76.58                             | 4.14                | -61.33                | 447.52 | 152804.00 | 5468.07           | 9.23 | 1.01          | 166.95 | 3.66 | 172.12 | 3.65  |
| DH6-2-2-1       |        | 60.0                             | 0.01 | 0.0                                 | 10    | 00.0       | 0.34                     | 0.05                 | 0.01 | 85.91                               | 11.59            | 76.10                             | 3.62                | 367.99                | 298.20 | 152804.00 | 5467.98           | 2.40 | 0.55          | 98.00  | 2.26 | 239.34 | 4.97  |
| DH6-2-2-2       |        | 0.08                             | 0.01 | 0.0                                 | 10    | 00.0       | 0.36                     | 0.05                 | 0.01 | 82.41                               | 9.16             | 77.18                             | 3.21                | 236.74                | 248.91 | 152804.00 | 5468.00           | 2.41 | 0.60          | 159.10 | 3.49 | 368.66 | 7.53  |
| DH9-10-11       |        | 0.07                             | 0.02 | 0.0                                 | 10    | 00.0       | 0.27                     | 0.04                 | 0.01 | 72.89                               | 16.94            | 78.32                             | 5.04                | -101.69               | 570.22 | 152804.00 | 5467.98           | 7.52 | 0.86          | 99.31  | 2.28 | 103.93 | 2.29  |
| DH9-10-10-1     |        | 0.08                             | 0.01 | 0.0                                 | 10    | 00.0       | 0.37                     | 0.05                 | 0.01 | 77.35                               | 8.23             | 74.72                             | 3.01                | 159.33                | 240.39 | 152804.00 | 5468.12           | 1.08 | 0.52          | 195.71 | 4.24 | 445.64 | 9.06  |
| DH9-10-10-2     |        | 0.07                             | 0.01 | 0.0                                 | 10    | 00.0       | 0.30                     | 0.04                 | 0.01 | 64.66                               | 9.30             | 73.98                             | 3.32                | -268.19               | 359.37 | 152804.00 | 5468.15           | 1.05 | 0.54          | 106.26 | 2.44 | 314.12 | 6.47  |
| DH9-10C         |        | 0.08                             | 0.01 | 0.0                                 | 10    | 00.0       | 0.34                     | 0.05                 | 0.01 | 75.50                               | 9.61             | 76.75                             | 3.39                | 36.06                 | 297.82 | 152804.00 | 5468.06           | 2.03 | 0.59          | 218.66 | 4.69 | 304.58 | 6.27  |
| DH9-10-4-1      |        | 0.08                             | 0.01 | 0.0                                 | 10    | 00.0       | 0.36                     | 0.05                 | 0.01 | 75.42                               | 8.47             | 77.62                             | 3.20                | 6.25                  | 262.16 | 152804.00 | 5467.97           | 1.30 | 0.53          | 151.10 | 3.32 | 367.56 | 7.50  |
| DH9-10-4-2      |        | 0.08                             | 0.01 | 0.0                                 | 10    | 00.0       | 0.38                     | 0.05                 | 0.00 | 76.52                               | 7.57             | 73.97                             | 2.89                | 157.02                | 221.94 | 152804.00 | 5468.01           | 1.61 | 0.53          | 201.15 | 4.33 | 484.58 | 9.82  |
| DH9-10-1-1      |        | 0.09                             | 0.01 | 0.0                                 | 10    | 00.0       | 0.31                     | 0.05                 | 0.01 | 83.11                               | 13.97            | 74.50                             | 4.08                | 337.90                | 376.58 | 152804.00 | 5468.21           | 1.27 | 0.55          | 80.93  | 1.93 | 178.99 | 3.80  |
| DH9-10-1-2 Inhe | arited | 0.09                             | 0.01 | 0.0                                 | 10    | 0.00       | 0.41                     | 0.05                 | 0.00 | 84.35                               | 7.33             | 80.27                             | 2.94                | 201.26                | 66.161 | 152804.00 | 5468.62           | 2.07 | 0.62          | 297.08 | 6.32 | 713.13 | 14.39 |

【付録3】

付 3-46

| 憲度              |
|-----------------|
| ン               |
| $\mathcal{U}$   |
| チ               |
| ŭ               |
| 改               |
| K               |
| <br>            |
| Ľ               |
| Щ               |
| ٩               |
| Ц<br>Ц          |
|                 |
| ン               |
| П               |
| 1               |
| ジ               |
|                 |
| 6               |
| 击<br>6          |
| 或岩の             |
| 采成岩の            |
| ら深成岩の           |
| 复合深成岩の          |
| 手複合深成岩の         |
| <b>퇂野複合深成岩の</b> |
| 遠野複合深成岩の        |
| 3-4 遠野複合深成岩の    |

表

| County mono    | Comment |                                     |                  | L                                  | sotope ratios |                   |                       |      |                                     |                   | Age (Ma)             |                      |                      |        |           |         | Cor   | ncentrtion (µ | (g/g)   |       |         |        |
|----------------|---------|-------------------------------------|------------------|------------------------------------|---------------|-------------------|-----------------------|------|-------------------------------------|-------------------|----------------------|----------------------|----------------------|--------|-----------|---------|-------|---------------|---------|-------|---------|--------|
| Sample name    |         | <sup>207</sup> Pb/ <sup>235</sup> U | 2σ <sup>21</sup> | <sup>06</sup> Pb/ <sup>238</sup> U | 2σ erro       | r correlation 207 | Pb/ <sup>206</sup> Pb | 2σ   | <sup>235</sup> U_ <sup>207</sup> Pb | 2σ <sup>238</sup> | J- <sup>206</sup> Pb | $2\sigma$ $^{207}$ F | b- <sup>206</sup> Pb | 2σ Si  |           | 2σ Ti   |       | 2σ Th         |         | 2σ U  |         | 2σ     |
| 003-01-Zr05    |         | 0.12                                | 0.02             | 0.02                               | 0.00          | 0.34              | 0.05                  | 0.01 | 112.89                              | 16.16             | 117.76               | 6.01                 | 11.32                | 342.01 | 152804.00 | 5470.04 | 1.89  | 0.73          | 52.67   | 1.45  | 251.19  | 5.32   |
| 003-01-Zr10    |         | 0.12                                | 0.01             | 0.02                               | 0.00          | 0.39              | 0.05                  | 0.01 | 117.03                              | 13.49             | 118.48               | 5.54                 | 87.64                | 266.78 | 152804.00 | 5469.15 | 4.76  | 0.84          | 191.85  | 4.18  | 286.95  | 5.96   |
| 003-01-Zr14    |         | 0.13                                | 0.02             | 0.02                               | 0.00          | 0.34              | 0.05                  | 0.01 | 125.29                              | 19.51             | 117.80               | 6.51                 | 269.88               | 357.45 | 152804.00 | 5468.93 | 2.09  | 09.0          | 56.49   | 1.44  | 146.95  | 3.18   |
| 003-01-Zr15    |         | 0.12                                | 0.01             | 0.02                               | 0.00          | 0.43              | 0.05                  | 0.00 | 115.05                              | 11.35             | 113.72               | 5.00                 | 142.59               | 221.60 | 152804.00 | 5469.18 | 7.58  | 1.01          | 293.40  | 6.21  | 406.96  | 8.33   |
| 003-01-Zr16-01 |         | 0.13                                | 0.02             | 0.02                               | 0.00          | 0.36              | 0.05                  | 0.01 | 123.65                              | 16.05             | 121.19               | 6.01                 | 171.37               | 299.91 | 152804.00 | 5469.23 | 5.52  | 0.85          | 111.22  | 2.58  | 225.72  | 4.76   |
| 003-01-Zr16-02 |         | 0.12                                | 0.01             | 0.02                               | 0.00          | 0.38              | 0.05                  | 0.01 | 112.65                              | 13.19             | 120.71               | 5.57                 | -54.42               | 279.01 | 152804.00 | 5469.05 | 4.17  | 0.77          | 185.85  | 4.06  | 292.11  | 6.06   |
| 003-01-Zr19    |         | 0.12                                | 0.02             | 0.02                               | 0.00          | 0.37              | 0.05                  | 0.01 | 111.34                              | 13.99             | 115.03               | 5.54                 | 33.01                | 295.80 | 152804.00 | 5469.19 | 4.59  | 0.77          | 149.64  | 3.34  | 257.61  | 5.38   |
| 003-01-Zr21    |         | 0.11                                | 0.02             | 0.02                               | 0.00          | 0.31              | 0.04                  | 0.01 | 107.68                              | 18.42             | 118.60               | 6.51                 | -127.73              | 423.77 | 152804.00 | 5469.14 | 4.43  | 0.79          | 67.94   | 1.69  | 159.10  | 3.44   |
| 003-01-Zr22    |         | 0.12                                | 0.02             | 0.02                               | 0.00          | 0.31              | 0.05                  | 0.01 | 111.79                              | 20.39             | 110.23               | 6.46                 | 145.27               | 429.97 | 152804.00 | 5468.98 | 4.25  | 0.74          | 40.60   | 1.12  | 132.28  | 2.89   |
| + 003-01-Zr23  |         | 0.13                                | 0.01             | 0.02                               | 0.00          | 0.83              | 0.05                  | 0.00 | 123.30                              | 4.99              | 117.26               | 4.14                 | 241.41               | 55.48  | 152804.00 | 5469.15 | 48.42 | 3.16          | 2269.10 | 45.50 | 5522.58 | 109.05 |
| 004-01-Zr08    |         | 0.15                                | 0.03             | 0.02                               | 0.00          | 0.33              | 0.06                  | 0.01 | 142.20                              | 27.51             | 121.03               | 8.27                 | 511.86               | 429.71 | 152804.00 | 5469.28 | 8.81  | 1.12          | 54.58   | 1.45  | 92.73   | 2.12   |
| 604-01-Zr06    |         | 0.12                                | 0.03             | 0.02                               | 0.00          | 0.29              | 0.05                  | 0.01 | 117.47                              | 26.82             | 123.68               | 8.64                 | -6.45                | 558.06 | 152804.00 | 5470.24 | 9.45  | 1.30          | 57.69   | 1.59  | 106.19  | 2.46   |
| 004-01-Zr10    |         | 0.13                                | 0.03             | 0.02                               | 0.00          | 0.32              | 0.05                  | 0.01 | 128.58                              | 25.23             | 122.54               | 8.20                 | 241.70               | 455.68 | 152804.00 | 5469.38 | 8.95  | 1.15          | 63.52   | 1.64  | 99.70   | 2.27   |
| 004-01-Zr11    |         | 0.11                                | 0.02             | 0.02                               | 0.00          | 0.31              | 0.04                  | 0.01 | 104.76                              | 20.77             | 113.56               | 7.27                 | -01.07               | 486.74 | 152804.00 | 5469.91 | 10.22 | 1.28          | 93.49   | 2.30  | 141.15  | 3.13   |
| 004-01-Zr12    |         | 7.04                                | 0.65             | 0.02                               | 0.00          | 0.75              | 2.68                  | 0.16 | 2116.77                             | 82.07             | 121.55               | 8.35                 | 6591.50              | 81.89  | 152804.00 | 5469.97 | 13.41 | 1.49          | 70.57   | 1.84  | 106.62  | 2.45   |
| 004-01-Zr03    |         | 0.14                                | 0.03             | 0.02                               | 0.00          | 0.34              | 0.05                  | 0.01 | 131.82                              | 22.59             | 124.76               | 7.73                 | 260.96               | 394.19 | 152804.00 | 5468.94 | 8.69  | 1.08          | 66.66   | 1.68  | 113.11  | 2.51   |
| 004-02-Zr01    |         | 0.12                                | 0.02             | 0.02                               | 0.00          | 0.33              | 0.04                  | 0.01 | 110.91                              | 18.81             | 122.25               | 7.24                 | -126.15              | 416.76 | 152804.00 | 5468.55 | 8.77  | 1.03          | 73.18   | 1.77  | 120.19  | 2.62   |
| 004-02-Zr02    |         | 0.12                                | 0.02             | 0.02                               | 0.00          | 0.33              | 0.04                  | 0.01 | 111.78                              | 18.92             | 127.41               | 7.39                 | -209.52              | 423.95 | 152804.00 | 5468.54 | 9.41  | 1.02          | 71.12   | 1.73  | 122.56  | 2.66   |
| 004-02-Zr07-1  |         | 0.13                                | 0.02             | 0.02                               | 0.00          | 0.35              | 0.05                  | 0.01 | 122.72                              | 19.73             | 119.63               | 7.07                 | 183.00               | 372.52 | 152804.00 | 5468.51 | 10.10 | 1.06          | 70.69   | 1.72  | 121.84  | 2.64   |
| 004-02-Zr07-2  |         | 0.12                                | 0.02             | 0.02                               | 0.00          | 0.33              | 0.04                  | 0.01 | 116.70                              | 20.33             | 125.88               | 7.60                 | -66.63               | 424.96 | 152804.00 | 5468.43 | 7.77  | 0.93          | 60.50   | 1.51  | 105.27  | 2.31   |
| 004-02-Zr08-1  |         | 0.13                                | 0.03             | 0.02                               | 0.00          | 0.29              | 0.05                  | 0.01 | 120.12                              | 27.70             | 122.60               | 8.61                 | 71.19                | 556.60 | 152804.00 | 5468.42 | 9.83  | 1.03          | 30.79   | 0.89  | 67.41   | 1.56   |
| 004-02-Zr08-2  |         | 0.09                                | 0.02             | 0.02                               | 0.00          | 0.28              | 0.04                  | 0.01 | 89.87                               | 19.16             | 115.37               | 7.17                 | -544.20              | 574.38 | 152804.00 | 5468.39 | 11.73 | 1.15          | 74.55   | 1.79  | 102.99  | 2.26   |
| 017-Zr01-1     |         | 0.13                                | 0.01             | 0.02                               | 0.00          | 0.58              | 0.05                  | 0.00 | 123.96                              | 6.94              | 119.86               | 4.07                 | 203.36               | 112.90 | 152804.00 | 5468.82 | 4.36  | 0.82          | 1213.90 | 24.69 | 1521.02 | 30.39  |
| 017-Zr01-2     |         | 0.13                                | 0.01             | 0.02                               | 0.00          | 0.53              | 0.05                  | 0.00 | 124.37                              | 7.87              | 122.44               | 4.29                 | 161.39               | 133.82 | 152804.00 | 5468.90 | 4.68  | 0.84          | 541.85  | 11.25 | 1091.99 | 21.91  |
|                |         |                                     |                  |                                    |               |                   |                       |      |                                     |                   |                      |                      |                      |        |           |         |       |               |         |       |         |        |

#### 4.4 得られたジルコン結晶化年代と黒雲母 K-Ar 年代の関連

3 岩体(黒部川花崗岩体、大崩山花崗岩体及び遠野複合深成岩体)の7 試料に対する年代測定 は蒜山地質年代学研究所において実施された。カリウムの定量は、(1)分離試料の調整、(2)酸 による試料の分解、(3)試料溶液の蒸発乾固と乾固物の塩酸酸性溶液の作成、(4)試料溶液のろ 過と分取希釈、(5)炎光分光法(日立180-30型原子吸光・炎光分析装置)による定量分析という 手順で長尾ほか(1984)<sup>20)</sup>に従って行われた。

アルゴン同位体比の測定は、130°扇型磁場・斜入出射・単収束・イオン軌道半径 15 cmのアル ゴン専用の質量分析計(HIRU, Itaya et al., 1991<sup>21)</sup>)を用い,ほぼ 100%に近い純度を持つ質量 数 38 のアルゴンをトレーサー(スパイク)として、試料から抽出されるアルゴンと混合される同 位体希釈法で定量した(長尾ほか, 1984<sup>20)</sup>;長尾・板谷, 1988<sup>22)</sup>; Itaya et al., 1991<sup>21)</sup>)。得られ た黒雲母 K-Ar 年代を表 4.4-1 に示す。

黒部川花崗岩体の優白質岩において、ジルコン U-Pb 年代と結晶化温度と黒雲母 K-Ar 年代と その閉鎖温度をプロットした図が、図 4.4.1 である。その結果、ジルコン U-Pb 年代と黒雲母 K-Ar 年代は誤差範囲内で一致する。このことは、本研究で実施したジルコン U-Pb 年代・チタン濃 度の同時定量技術の妥当性を示すものである。またジルコンの結晶化温度と黒雲母 K-Ar 系の閉 鎖温度が異なるにも関わらず年代値に相違がないことは、約 900℃から約 300℃まで岩体が急冷 したことを示す。

大崩山花崗岩体の各岩相(黒雲母花崗岩、ホルンブレンド黒雲母花崗岩、ホルンブレンド黒雲 母花崗閃緑岩)において、ジルコン U-Pb 年代と結晶化温度と黒雲母 K-Ar 年代とその閉鎖温度 のプロットを、図 4.4.2 に示す。その結果、ジルコン U-Pb 年代と黒雲母 K-Ar 年代は誤差範囲 内で一致する。このことは、大崩山花崗岩体に対しても、本研究で実施したジルコン U-Pb 年代・ チタン濃度の同時定量技術の妥当性を示すものである。またジルコンの結晶化温度と黒雲母 K-Ar 系の閉鎖温度が異なるにも関わらず年代値に相違がないことは、約 900℃から約 300℃まで岩 体が急冷したことを示す。

遠野複合深成岩体の各岩相(中心部相、主岩相、周辺部相)において、ジルコン U-Pb 年代と 結晶化温度と黒雲母 K-Ar 年代とその閉鎖温度のプロットを、図 4.4.3 に示す。その結果、それ ぞれの岩相のジルコン U-Pb 年代と黒雲母 K-Ar 年代は誤差範囲内で一致する。このことは、先 の岩体と同様に、本研究で実施したジルコン U-Pb 年代・チタン濃度の同時定量技術の妥当性を 示すものである。またジルコンの結晶化温度と黒雲母 K-Ar 系の閉鎖温度が異なるにも関わらず 年代値に相違がないことは、遠野複合深成岩体においても、貫入後、約 800℃から約 300℃まで 岩体が急冷したことを示す。

| 岩体名               | 試料数                                                                                                      | サンプル名                  | 黒雲母K-Ar年代    |
|-------------------|----------------------------------------------------------------------------------------------------------|------------------------|--------------|
| 黒部川<br>花崗岩体       | 1                                                                                                        | 優白質岩:009-2、006-2       | 0.91±0.04 Ma |
|                   |                                                                                                          | 黒雲母花崗岩:052405          | 12.2±0.3 Ma  |
| 大崩山<br>花崗岩体       | 大崩山<br>花崗岩体3黒雲母花崗岩:05240512.2±0.3ホルンブレンド黒雲母花崗岩:09141715.9±0.4ホルンブレンド黒雲母花崗閃緑岩:09141813.3±0.3中心部相114.1±2.5 | 15.9±0.4 Ma            |              |
|                   |                                                                                                          | ホルンブレンド黒雲母花崗閃緑岩:091418 | 13.3±0.3 Ma  |
|                   |                                                                                                          | 114.1±2.5 Ma           |              |
| 遠野 復 合<br>深 成 岩 体 | 3                                                                                                        | 主岩相                    | 122.6±2.7 Ma |
|                   |                                                                                                          | 周辺部相                   | 117.1±2.5 Ma |

表 4.4-1 本共同研究で活用する試料の黒雲母 K-Ar 年代



図 4.4.1 黒部川花崗岩体(優白質岩)のジルコン U-Pb 年代・結晶化年代と黒雲母 K-Ar 年 代・その閉鎖温度のプロット



図 4.4.2 大崩山花崗岩体の3岩相(黒雲母花崗岩、ホルンブレンド黒雲母花崗岩、ホルンブレンド黒雲母花崗閃緑岩)ごとのジルコン U-Pb 年代・結晶化年代と黒雲母 K-Ar 年代・その閉 鎖温度のプロット



図 4.4.3 遠野複合深成岩体(中心部相、主岩相、周辺部相)のジルコン U-Pb 年代・結晶化年 代と黒雲母 K-Ar 年代・その閉鎖温度のプロット

#### 4.5 ジルコンの物理化学条件に基づく隆起史・侵食史の初期条件の制約

本共同研究では、「ジルコンの U-Pb 年代測定・チタン濃度の同時定量技術の開発」を通じて、 「ジルコンの U-Pb 年代とチタン濃度から結晶化年代・温度の導出」を行った。これらの年代や 温度はマグマの貫入・定置・結晶化の物理化学条件に相当する。つまり、この物理化学条件は隆 起史・侵食史の初期条件と見なすことが出来る。令和元年度の共同研究では、黒部川花崗岩、大 崩山花崗岩、土岐花崗岩、遠野複合深成岩体を対象とし、結晶化年代・温度の導出を実施した。 それぞれの岩石試料の年代は、黒雲母 K-Ar 年代と整合的な値を持つ。複数岩体において黒雲母 K-Ar 年代と整合的な結晶化年代を導出できたことは、同時定量手法の妥当性を示している。つま り、本手法は隆起史・侵食史の初期条件を制約するために有効なものとなる。この初期条件以降 の冷却史(温度時間履歴)を捉えることが、隆起史・侵食史の解明へ繋がる。

本共同研究でのもう一つの課題であった「CL 像で取得される組織に応じた結晶化年代や温度の相違」を定量的に議論するためには、更なるデータの拡充が必要となる。また、U-Pb 年代やチ タン濃度の誤差をさらに小さくすることや、定量下限を低下させることが、手法の高度化の課題 として上げられる。

#### 5. まとめ

深成岩体を伴う地域の隆起量・侵食量の評価には地球年代学的(熱年代学的)な手法が有用で ある。この地球年代学的手法と岩石学的手法の融合は、マグマの貫入・定置に関する情報などの、 熱年代学のみでは得られない、隆起史・侵食史の解明に資する地質情報の取得が可能とする。こ れらの手法の構築を通じて隆起量・侵食量評価に寄与する自然現象の影響評価手法の高度化に向 けた整備を実施した。

令和元年度の共同研究では、「ジルコンの U-Pb 年代測定・チタン濃度の同時定量技術の開発」 を実施した。この手法を用い黒部川花崗岩、大崩山花崗岩、土岐花崗岩、遠野複合深成岩体を対 象とし、「ジルコンの U-Pb 年代とチタン濃度から結晶化年代・温度の導出」を行った。これらの 年代や温度はマグマの貫入・定置・結晶化の物理化学条件に相当する。つまり、この物理化学条 件は隆起史・侵食史の初期条件と見なすことが出来る。3 岩体(黒部川花崗岩体、大崩山花崗岩 体、遠野複合深成岩体)の7 試料に対する年代測定を実施した。その結果、それぞれの岩石試料 に対するジルコン U-Pb 年代と黒雲母 K-Ar 年代は誤差範囲内で一致する。複数岩体において黒 雲母 K-Ar 年代と整合的な結晶化年代を導出できたことは、本研究で実施したジルコン U-Pb 年 代とチタン濃度の同時定量技術の妥当性を示すものである。つまり、本手法は隆起史・侵食史の 初期条件を制約するために有効なものとなる。この初期条件以降の冷却史(温度時間履歴)を捉 えることが、隆起史・侵食史の解明へ繋がる。またジルコンの結晶化温度と黒雲母 K-Ar 系の閉 鎖温度が異なるにも関わらず年代値に相違がないことは、約 900℃から約 300℃まで岩体が急冷 したことを示す。

本共同研究での課題とした「CL 像で取得される組織に応じた結晶化年代や温度の相違」を定 量的に議論するためには、更なるデータの拡充が必要となる。また、U-Pb 年代やチタン濃度の 誤差をさらに小さくすることや、定量下限を下げることが、手法の高度化の課題として上げられ る。 引用文献

- 1) 末岡 茂,堤 浩之,田上高広,低温領域の熱年代学の発展と日本の山地の隆起・削剥史研究 への応用,地球科学,vol.69, pp.47-70, 2015.
- 2) Yuguchi, T., Sueoka, S., Iwano, H., Izumino, Y., Ishibashi, M., Danhara, T., Sasao, E., Hirata, T. and Nishiyama, T., Position-by-position cooling paths within the Toki granite, central Japan: Constraints and the relation with fracture population in a pluton, Journal of Asian Earth Sciences, vol. 169, pp47-66, 2019.
- 3) Yuguchi, T., Iwano, H., Kato, T., Sakata, S., Hattori, K., Hirata, T., Sueoka, S., Danhara, T., Ishibashi, M., Sasao, E. and Nishiyama, T., Zircon growth in a granitic pluton with specific mechanisms, crystallization temperatures and U-Pb ages: Implication to the 'spatiotemporal' formation process of the Toki granite, central Japan, Journal of Mineralogical and Petrological Sciences, vol.111, pp.9-34, 2016.
- 4) Ito, H. Yamada, R., Tamura, A., Arai, S., Horie, K. and Hokada, T., Earth's youngest exposed granite and its tectonic implications: The 10-0.8 Ma Kurobegawa Granite, Scientific Reports, vol. 3, doi: 10.1038/srep01306, 2013.
- 5) Shibata, K. and Ishihara, S., Rb-Sr whole-rock ages and K-Ar mineral ages of granitic rocks in Japan, Geochemical Journal, vol.13, pp.113-119, 1979.
- 6) Takahashi, M., Anatomy of a middle Miocene Valles-type caldera cluster: geology of the Okueyama volcano-plutonic complex, southwest Japan, Journal of Volcanology and Geothermal Research, vol.29, pp.33-70, doi:10.1016/0377-0273(86)90039-9, 1986.
- Yuguchi, T. and Nishiyama, T., Cooling process of a granitic body deduced from the extents of exsolution and deuteric sub-solidus reactions: Case study of the Okueyama granitic body, Kyushu, Japan. Lithos. vol.97, pp.395-421, 2007.
- 8) 日本原子力研究開発機構,電力中央研究所,平成 30 年度 高レベル放射性廃棄物等の地層処 分に関する技術開発事業 地質環境長期安定性評価技術高度化開発 報告書, 200p, 2019.
- 9) 御子柴 (氏家) 真澄, 蟹澤聰史, 北上山地, 遠野複合深成岩体の岩石化学的特徴, 地球科学, vol.62, pp.183-201, 2008.
- 10) 内海 茂, 宇都浩三, 柴田 賢, K-Ar 年代測定結果-3-地質調査所未公表資料-, 地質調査所月 報, vol.41, pp.567-575, 1990.
- 加々美寛雄,本州弧に分布する白亜紀~古第三紀花崗岩の活動と起源物質,地質学雑誌,vol.
  111, pp.441-457, 2005.
- 12) Dodson, M.H. and McClelland-Brown, E., Isotopic and paleomagnetic evidence for rates of cooling, uplift and erosion, In: Snelling J (ed) Geological Society of London Memories, vol.10, pp 315-325, doi:10.1144/GSL.MEM.1985.010.01.26, 1985.
- 13) Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W.L., Meier, M., Oberli, F., von Quadt, A., Roddick, J.C. and Spiegel, W., Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses, Geostandards Newsletter, vol.19, pp.1-23, 1995.
- 14) Sláma, J., Košler, J., Condon, D.J., Crowley, J.L., Gerdes, A., Hanchar, J.M., Horstwood, M.S.A., Morris, G.A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, N., Tubrett, M.N. and Whitehouse, M.J., Plešovice zircon - a new natural reference material for U-Pb and Hf isotopic microanalysis, Chemical Geology, vol.249, pp.1-35, 2008.

- 15) Black, L.P., Kamo, S.L., Allen, C.M., Davis, D.W., Aleinikoff, J.N., Valley, J.W., Mundil, R., Campbell, I.H., Korsch, R.J., Williams, I.S. and Foudoulis, C., Improved <sup>206</sup>Pb/<sup>238</sup>U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards, Chemical Geology, vol.205, pp.115–140, 2004.
- 16) Iwano, H., Orihashi, Y., Hitata, T., Ogasawara, M., Danhara, T., Horie, K., Hasebe, N., Sueoka, S., Tamura, A., Hayasaka, Y., Katsube, A., Ito,H., Tani, K., Kimura, J., Chang, Q., Kouchi, Y., Haruta, Y. and Yamamoto, K., An inter-laboratory evaluation of OD-3 zircon for use as a secondary U–Pb dating standard, Island Arc, vol.22, pp.382-394, 2013.
- 17) Sakata, S., Hirakawa, S., Iwano, H., Danhara, T., Guillong, M. and Hirata, T., A new approach for constraining the magnitude of initial disequilibrium in Quaternary zircons by coupled uranium and thorium decay series dating, Quaternary Geochronology, vol.38, pp.1-12, 2017.
- 18) Sakata, S., A practical method for calculating the U-Pb age of Quaternary zircon: Correction for common Pb and initial disequilibria, Geochemical Journal, vol.52, pp.281-286, doi:10.2343/geochemj.2.0508, 2018.
- 19) Watson, E.B, Wark, D.A., Thomas, J.B., Crystallization thermometers for zircon and rutile, Contributions to Mineralogy and Petrology, vol.151, pp.413–433, 2006.
- 20) 長尾敬介, 西戸裕嗣, 板谷徹丸, 緒方維一, K-Ar 法による年代測定, 岡山理科大学蒜山研究 所研究報告, vol. 9, pp.19-38, 1984.
- 21) 長尾敬介,板谷徹丸, K-Ar法による年代測定,地質学論集,vol. 29, pp.5-21, 1988.
- 22) Itaya, T., Nagao, K., Inoue, K., Honjou, Y., Okada, T. and Ogata, A., Argon isotope analysis by a newly developed mass spectrometric system for K-Ar dating, Mineralogical Journal, vol.15, pp.203-221, 1991.

# 断層内物質の年代測定による断層活動性評価手法 に関する共同研究

平成 31 年度共同研究報告書

# 令和2年1月

石川県公立大学法人石川県立大学

国立研究開発法人日本原子力研究開発機構 核燃料・バックエンド研究開発部門 東濃地科学センター 地層科学研究部 ネオテクトニクス研究グループ

| 目 | 次 |
|---|---|
|---|---|

| 1. | 概要                            | 3        |
|----|-------------------------------|----------|
|    | 1.1 共同研究件名                    | 3        |
|    | 1.2 研究目的                      | 3        |
|    | 1.3 実施期間                      | 3        |
| 2. | 研究内容                          | 4        |
|    | 2.1 はじめに                      | 4        |
|    | 2.2 測定試料と IRSL 測定のための試料及び試料調製 | 4        |
|    | 2.3 X 線線量率の再調整                | <b>5</b> |
|    | 2.4 アルカリ長石の IRSL 測定           | <b>5</b> |
|    | 2.5 成長曲線の標準化                  | 6        |
|    | 2.6 IRSL 測定による基本データ           | 7        |
|    | 2.7 IRSL フェーディング評価 1          | 10       |
|    | 2.8 測定試料の飽和度の評価1              | 10       |
|    | 2.9 IRSL 年代について 1             | 10       |
|    | 2.10 ESR 年代測定1                | 11       |
| 3. | まとめ1                          | 12       |

# 図目次

| 义 | 2.2 - 1 | (A) 阿寺断層の分布(点線)と試料採取位置(星印)及び(B) 試料採取露頭の写真             | 4   |
|---|---------|-------------------------------------------------------|-----|
| 义 | 2.3-1   | Toya 標準石英試料(200 Gyy 線照射)のテスト照射による補正 RTL 強度と SAR に     | よ   |
| る | X 線再生   | 生照射成長線の比較例                                            | . 5 |
| 义 | 2.4-1   | IRSL 測定に用いた SAR 測定                                    | . 6 |
| 义 | 2.5 - 1 | SAR 測定による IRSL 強度の測定点と(1)式に基づく成長線のフィッティングの模           | 式   |
| 义 |         |                                                       | . 7 |
| 义 | 2.6-1   | MET(50, 75, 100, 125, 225)で得られた線量応答曲線の一例(試料番号 TS3_18) | . 9 |
| 义 | 2.8-1   | 測定時加熱温度の異なる条件で得られた飽和比( <i>NI</i> IImax)               | 10  |
| 义 | 2.10-1  | 砂礫層から抽出した石英試料の Al 及び Ti-Li 中心の線量応答線                   | 11  |

| 表 目 | 次 |
|-----|---|
|-----|---|

| 表 | 2.6-1  | IR(50, 225)実験の測定結果                | 8  |
|---|--------|-----------------------------------|----|
| 表 | 2.6-2  | IR(50, 125, 225)実験の測定結果           | 8  |
| 表 | 2.6-3  | MET(50, 75, 100, 125, 225)実験の測定結果 | 9  |
| 表 | 2.10-1 | TS6B、TS-CS2S1 及び TS-BS2L が示した年代1  | 12 |

#### 1. 概要

#### 1.1 共同研究件名

断層内物質の年代測定による断層活動性評価手法に関する共同研究

#### 1.2 研究目的

日本原子力研究開発機構(以下、原子力機構)では、地層処分に適した地質環境の選定に係る 自然現象(火山・火成活動、深部流体、地震・断層活動、隆起・侵食等)の影響把握及びモデル 化に必要な知見の蓄積や調査・評価技術の高度化のため、地質学、地形学、地震学、地球年代学 等の各学術分野における最新の研究を踏まえた技術の適用による事例研究を通じて、課題の解決 を総合的に進めている。

このうち地震・断層活動に関しては、断層変位の有無の判定に係る年代既知の被覆層(上載地層)がない場合の断層の活動性評価が課題の一つとして挙げられている。この課題への対応として、断層内物質に着目した評価手法を確立することが有効であると考えられるが、これまでは主に定性的な特徴(鉱物粒子の形状等)に基づく検討が主体であった。断層内物質を対象とした化学組成分析や年代測定(カリウム・アルゴン(K-Ar)法、電子スピン共鳴(ESR)法、熱ルミネッセンス(TL)法、光ルミネッセンス(OSL)法等)に基づく定量的な検討も進められてきているが、これらの年代測定に基づく断層の活動性評価の信頼性を確保するためには、各手法の適用範囲の拡充や精度の向上が大きな課題となっている。そこで本共同研究では、断層活動性評価手法の高度化を目的として、断層内物質を対象とした年代測定に係る検討を行う。

共同研究先である石川県公立大学法人石川県立大学(以下、石川県立大学)は、TL 法や OSL 法等の年代測定についての高度な技術を有し、これらの手法の断層内物質への適用性検討に先駆 的に取り組んできている。原子力機構は、地震・断層活動の活動性及び影響の調査・評価技術に 関する多くの研究実績を有し、K-Ar 法等による断層内物質の年代測定手法の開発に取り組んで いる。そのため、本共同研究を行うことにより、石川県立大学は、地震・断層活動に関し原子力 機構が有する知見を取り入れることで TL 法や OSL 法等の年代測定における適用範囲の拡充を 効果的に進めることができるとともに、原子力機構においては、地層処分に適した地質環境の選 定に係る調査・評価において課題となっている上載地層がない場合の断層の活動性評価に関する 調査技術の高度化を効果的に進めることができる。

平成 30 年度の共同研究では、主に石英を対象とした ESR 法と OSL 法、及び長石類を対象と した赤外光刺激のルミネッセンスを用いた IRSL 法に着目し、断層内物質の年代測定のための手 法の検討を進めた。これらの手法の断層内物質への適用範囲の拡充や精度の向上のためには、得 られる分析値と断層の性状・構造との関係について把握することが不可欠である。そこで平成 31 年度の共同研究では、性状・構造や発達史が詳しく調べられた断層において採取された試料につ いて各年代測定手法を適用し、測定結果を比較することにより、手法ごとの適用範囲や精度、技 術的改善点について取りまとめる。

なお、本共同研究は、原子力機構が経済産業省資源エネルギー庁から受託した「平成 31 年度高 レベル放射性廃棄物等の地層処分に関する技術開発事業(地質環境長期安定性評価技術高度化開 発)」の一環として行うものである。

#### 1.3 実施期間

平成 31 年 4 月 23 日~令和 2 年 1 月 31 日

#### 2. 研究内容

#### 2.1 はじめに

断層内物質を対象とした年代測定手法の高度化として、本共同研究では、特に IRSL 法に着目 した検討を進めている。昨年度の共同研究では、測定対象となる長石の分離手法の構築、IRSL 測定装置の調整、測定手順の整備や感度変化の検討等を行った。それらの成果を踏まえたうえ で、今年度の共同研究では、特に断層摩擦等によって生じる熱が IRSL 信号に及ぼす影響を明ら かにする目的で、複数の温度設定での測定を実施し、得られたデータを検証した。また、熱的安 定性についての IRSL 信号との比較として、ESR 年代測定も併せて実施した。

#### 2.2 測定試料と IRSL 測定のための試料及び試料調製

実験のために準備した試料は、2016年5月に岐阜県中津川市田瀬に位置する阿寺断層露頭から 北海道教育大学によって採取されたものである。採取地点と露頭写真を図 2.2・1に示す。本露頭 では、阿寺断層が北西走向・北傾斜で分布し、白亜紀後期の苗木-上松花崗岩が第四紀後期の砂 礫層に衝上している(遠田ほか,1994)。花崗岩と砂礫層の境界をなす断層沿いには、幅15~30 cm程度の断層ガウジが挟まれる。断層ガウジと接する花崗岩はカタクレーサイト化している。断 層ガウジからは3試料採取しており、TS1は花崗岩カタクレーサイトと接する白色の粘土、TS3は 断層ガウジのほぼ中央に位置する花崗岩岩片を含む乳白色の粘土、TS6Bは断層ガウジ内で最も 南西側(砂礫層側)の端に位置する厚さ約5 cmの粘土である。TSBは花崗岩カタクレーサイト、 TS-CS2S1は砂礫層試料であり、それぞれ断層ガウジの近傍で採取された。TS-BS2Lは、TS-CS2S1よりもさらに約5 m南の砂礫層から採取された。TS6BとTS-BS2Lは、昨年度の共同研究に おいて報告したものと同じ試料である。TS6B、TS-CS2S1及びTS-BS2Lについては、今年度の共 同研究ではESR測定の試料とした。一方、IRSL測定に関しては、より詳細な測定方法を検討しデ ータの確実度を保証するため、今年度の共同研究ではTS3に集中して各種の測定を進めた。IRSL 測定のための長石の分離は昨年度の報告書で述べた手順に従った。また、測定に用いた粒径も、 昨年度と同様の125~250 µmである。



図 2.2-1 (A) 阿寺断層の分布(点線)と試料採取位置(星印)及び(B) 試料採取露頭の写真 地形図は国土地理院電子地図国土 Web を利用。

#### 2.3 X線線量率の再調整

IRSL測定には、昨年度の共同研究と同じく、石川県立大学に設置された3号機装置を用いた。 本装置には、SAR測定を行うため、再生照射用のVarian社製の小型X線装置(VF-50)が設置さ れている。昨年度の測定ではX線強度を13.7 Gy/分としたが、設置場所が変更されたことに伴い、 線量計算の中心的な項目であることから、本年度X線線量率の再測定を行った。その際、標準試 料として洞爺カルデラ(Toya:町田ほか,1987)起源の石英を用い、フェーディングの配慮が不 必要なRTL(赤色熱ルミネッセンス)法で測定した。実験は石英粒子を450℃で加熱して天然シ グナルを消去したのち、国立研究開発法人量子科学技術研究開発機構高崎量子応用研究所に設置 されたCo-60によるy線照射(100 Gy/h及び200 Gy/h)を行い、SAR法(X線再生照射;240秒、 479秒、719秒、959秒:テスト照射;479秒)により成長線の作成を行った。作成された成長線に y線照射(100 Gy及び200 Gy)のRTL発光強度をフィッティングすることで、単位時間(分)あ たりのX線線量率を見積もった(図 2.3・1)。7試料の標準試料測定を行った結果、X線線量率とし てそれぞれ、11.0 Gy/分、11.2 Gy/分、11.1 Gy/分、10.9 Gy/分、10.3 Gy/分、10.1 Gy/分、10.0 Gy/分が得られ、平均値は10.65 Gyであった。このX線線量率は昨年度の値(13.5 Gy/分)と比べ 約80%の強度である.本報告では新たな線量率(10.65 Gy/分)に基づいて測定試料の蓄積線量決 定を行った。



図 2.3-1 Toya 標準石英試料(200 Gyγ 線照射)のテスト照射による補正 RTL 強度と SAR に よる X 線再生照射成長線の比較例

γ線 200 Gy の RTL 強度は X 線照射 1070 秒の RTL 強度に相当する。この試料の場合、 X 線線 量率は 11.2 Gy/分である。

#### 2.4 アルカリ長石の IRSL 測定

TS3のIRSL 測定には 3 つの手法を用いた。A. IR50 と IR225 をセットとした一般的な測定法 (IR(50, 225)と表記)、B. IR125 をその間に加えた方法(IR(50, 125, 225)と表記)、そして、C. いわゆる MET 法で、測定時のアシスト温度を 50℃、75℃、100℃、125℃、225℃と連続的に上 昇させ、それぞれの測定温度ごとの IRSL 測定を行う方法(MET(50, 75, 100, 125, 225)と表記) である。一般的な A.測定法では 50℃加熱(IR50) と 225℃加熱(IR225)で信号を得て、両者の 蓄積線量比較から精度を保証する。特に IR50 は anomalous fading(以下、フェーディング)に よるシグナル減衰の影響が大きいので、この手法が有効である。また、IR50 は IR225 より熱に 敏感であるので、試料が断層等の熱を被った場合も同様の減衰が生じると予想される。B.測定法 はA.測定法の中間的な測定温度(R125)を挟み込むことで、外部熱に対する識別向上を目的にし た。C.測定法は、B.よりさらに詳細に温度識別を行うことを目的にした。実験手順は、再生照射 を 100~400 Gy、ドーズリカバリテストとして 100 Gy、テストドーズとして 5 Gy を設定した。 プレヒートは 250℃、60 秒である。A、B、C 実験の測定手順(SAR 法)を図 2.4-1 に示した。 IRSL 測定の場合、時間とともに信号が減衰するフェーディングが起こるが、比較的安定とさ れる IR225 でも 2~10%/decade のフェーディング率(g 値)が報告されている(Huntley and Lamothe, 2001)。そのため、Buylaert et al. (2009)に基づいてフェーディング補正を行った。 フェーディング実験は IR(50, 225)、IR(50, 125, 225)、MET(50, 75, 100, 125, 225)で蓄積線量 (De)測定を終了した試料を再利用し、それぞれ 10 皿、5 皿、3 皿についてg 値を決定した。実 験は X 線照射(30 Gy)後、各測定温度の感度補正 IRSL 強度を測定した。放置時間は 0、1、 3.5、10、35、100、350 h である。



図 2.4-1 IRSL 測定に用いた SAR 測定

A) IR(50, 225)、B) IR(50, 125, 225)、C) MET(50, 75, 100, 125, 225)

#### 2.5 成長曲線の標準化

IRSL 測定における蓄積線量決定は、人工放射線照射による IRSL 強度の測定から導かれる成 長線を描き、これに天然 IRSL 強度をフィッティングすることで得られる。後述するように本報 告で用いた試料は飽和あるいはそれに近い IRSL 強度を持つものが多かった。この場合、試料に 照射する放射線(X線)強度も飽和レベルまで上昇させることが必要である。その際、Robert and Duller(2004)によって示された以下の成長線の関数が有用である。

Standardized IRSL 
$$(I) = I_0 + I_{Max} (1 - e^{-D/D_0})$$
 (1)

ここで、IRSL (*I*)は IRSL 強度、 $I_0$ は任意に与えるゼロ点からの IRSL 強度のずれ(本報告では 0 を適用)、 $I_{Max}$ は IRSL 強度の上限、D は照射線量、 $D_0$ はトラップ数の上限に対する許容線

量である。本報告のルミネッセンス成長線作成にあたっても(1)式に基づき蓄積線量(De)の解析を進めた。実際には、SAR 法に基づいて得られた成長プロットに(1)式をフィッティングし、また任意の  $I_{Max}$ 値と  $D_0$ 値を(1)式に与え、SAR 成長プロットに最もフィットするよう最小二乗 法から  $I_{Max}$ 値と  $D_0$ 値を決定した(図 2.5-1)。

本報告で扱った相当数の試料が高蓄積線量を示すので、ここで、(1)式に関わる飽和の定義に ついて述べておく。(1)式の飽和に関する項は  $I_{Max}$ であり、成長線の IRSL 強度の飽和上限値に あたる。一方、実際の測定では、測定可能な上限蓄積線量は  $D_0$ 値の 2 倍程度である。(1)式に基 づけば、この 2 $D_0$ 値から上限 IRSL 強度である I(2 $D_0$ )を与えることができ、I(2 $D_0$ )/ $I_{Max}$ の飽和 値は常に 0.865 となる(図 2.5-1)。また一般の試料の場合、 $I_{Max}$ に対する天然 IRSL 強度 (NI) は(2)式で表すことができる。本報告ではこの値を飽和度(Saturated rate) と呼ぶこと とする。

Saturated rate = 
$$(NI/I_{Max})$$
 (2)

したがって、測定試料の飽和度が 0.865 を超えれば飽和に達しており、それ未満であれば不飽 和と定義される。



図 2.5-1 SAR 測定による IRSL 強度の測定点と(1)式に基づく成長線のフィッティングの模式 図

#### 2.6 IRSL 測定による基本データ

今年度の共同研究で行った IRSL 測定の3種類の実験手順(図 2.4-1)のうち、まず、10 皿 を用いて行った A. IR(50, 225)の測定基本データを表 2.6-1 に示した。その結果、IR225 の天然 IRSL 強度(*NI*)は7 試料で飽和(飽和度 0.865 以上)に達しているのに対し、IR50 は多くの 試料で未飽和であった。本論では飽和に達した場合、De 値を 2*D*/値で示した(表 2.6-1)。次

の実験では、IR50 と IR225 の間にある IR125 に注目し、B. IR(50, 125, 225)の実験を 5 皿で行った。その結果を表 2.6・2 に示した。IR50 はここでも 5 皿すべてで *NI*は未飽和であるが、IR125 の *NI*は IR225 とともに全試料で飽和であると評価された。さらに詳細に評価するため、測定に IR75 と IR100 を加え、C. MET(50, 75, 100, 125, 225)の実験を 5 皿で進めた. この実験で得られた線量応答曲線の例を図 2.6・1 に示した。その結果、IR50 の *NI*は上記 2 実験と同様に未飽和であったが、MET75 以上では 3 皿の例外を除いて、飽和であることが示された(表 2.6・3)。

| IR50             | 1     | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   |
|------------------|-------|------|------|------|------|------|------|------|------|------|
| De(Gy)           | 242   | 196  | 221  | 199  | 184  | 204  | 196  | 221  | 184  | 171  |
| NI               | 20.0  | 19.2 | 19.7 | 21.3 | 18.8 | 21.4 | 19.4 | 21.4 | 20.5 | 19.7 |
| Imax             | 22.9  | 28.8 | 23.8 | 33   | 26   | 31.1 | 28.4 | 29.2 | 30.2 | 30.2 |
| 2D0(Gy)          | 242   | 356  | 252  | 386  | 288  | 352  | 342  | 336  | 324  | 326  |
| De/2D0           | 1.03  | 0.55 | 0.88 | 0.52 | 0.64 | 0.58 | 0.57 | 0.66 | 0.57 | 0.52 |
| Saturation ratio | 0.87  | 0.67 | 0.83 | 0.64 | 0.72 | 0.69 | 0.68 | 0.73 | 0.68 | 0.65 |
| g-value          | 1.35  | 2.55 | 0    | 1.92 | 2.33 | 1.35 | 3.19 | 4.06 | 2.93 | 4.42 |
| age(ka)          | 40    | 32   | 42   | 33   | 30   | 34   | 32   | 36   | 30   | 28   |
| True age (ka)    |       | 34   | 42   | 34   | 32   | 35   | 35   | 41   | 33   | 32   |
|                  |       |      |      |      |      |      |      |      |      |      |
| IR225            | 1     | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   |
| De(Gy)           | 198   | 340  | 212  | 396  | 254  | 282  | 370  | 282  | 299  | 255  |
| NI               | 19.4  | 21.9 | 19.2 | 26.2 | 18.2 | 19.9 | 27.4 | 21.9 | 22.3 | 20.7 |
| Imax             | 18.1  | 22.1 | 19.6 | 32   | 20.9 | 23   | 29.5 | 23.8 | 32.3 | 27.2 |
| 2D0(Gy)          | 198   | 340  | 212  | 396  | 254  | 282  | 370  | 282  | 512  | 358  |
| De/2D0           | 20.07 | 2.24 | 1.92 | 0.85 | 1.02 | 1.00 | 1.33 | 1.26 | 0.58 | 0.71 |
| Saturation ratio | 1.07  | 0.99 | 0.98 | 0.82 | 0.87 | 0.87 | 0.93 | 0.92 | 0.69 | 0.76 |
| g-value          | 1.28  | 2.42 | 3.11 | 2.58 | 6.9  | 1.28 | 0    | 1.24 | 2.4  | 7.59 |
| age(ka)          | 33    | 56   | 35   | 56   | 42   | 47   | 61   | 47   | 49   | 42   |
| True age (ka)    | -     | -    | -    | -    | -    | -    | -    | -    | 53   | 52   |

表 2.6-1 IR(50, 225)実験の測定結果

赤字 De は飽和蓄積線量、灰色塗色の Saturation ratio は飽和度 0.865 未満で未飽和試料。

| IR50            | 11   | 12   | 13   | 14   | 15   |
|-----------------|------|------|------|------|------|
| De(Gy)          | 300  | 261  | 256  | 246  | 247  |
| NI              | 29.2 | 24.1 | 23.3 | 22.6 | 23.6 |
| Imax            | 38.9 | 35   | 31   | 31.5 | 32.3 |
| 2D0(Gy)         | 432  | 448  | 368  | 388  | 376  |
| De/2D0          | 0.69 | 0.58 | 0.70 | 0.63 | 0.66 |
| Saturation rate | 0.75 | 0.69 | 0.75 | 0.72 | 0.73 |
| g-value         | 0    | 4.94 | 0.87 | 0    | 0    |
| age(ka)         | 50   | 43   | 42   | 41   | 41   |
| True age (ka)   | 50   | 49   | 43   | 41   | 41   |
|                 |      |      |      |      |      |
| IR225           | 11   | 12   | 13   | 14   | 15   |
| De(Gy)          | 258  | 256  | 248  | 254  | 270  |
| NI              | 19.5 | 21.4 | 20   | 19.6 | 20.6 |
| Imax            | 18.6 | 19.3 | 18   | 18.1 | 18.7 |
| 2D0(Gy)         | 258  | 256  | 248  | 254  | 270  |
| De/2D0          | 1.12 | 1.12 | 1.12 | 1.12 | 1.12 |
| Saturation rate | 1.05 | 1.11 | 1.11 | 1.08 | 1.10 |
| g-value         | 0    | 3.53 | 0    | 0    | 1.08 |
| age(ka)         | 43   | 42   | 41   | 42   | 45   |
| True age (ka)   | 14   | -    | -    | -    | -    |

#### 表 2.6-2 IR(50, 125, 225)実験の測定結果

| IR125           | 11   | 12   | 13   | 14   | 15   |
|-----------------|------|------|------|------|------|
| De(Gy)          | 366  | 340  | 334  | 328  | 372  |
| NI              | 27.2 | 27.9 | 25.9 | 27   | 26.3 |
| lmax            | 28   | 27.7 | 26.9 | 26.3 | 27.5 |
| 2D0(Gy)         | 366  | 340  | 334  | 328  | 372  |
| De/2D0          | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Saturation rate | 0.97 | 1.01 | 0.96 | 1.03 | 0.96 |
| g-value         | 3.21 | 1.74 | 1.53 | 5.32 | 1.2  |
| age(ka)         | 60   | 56   | 555  | 54   | 62   |
| True age (ka)   | -    | -    | -    | -    | -    |

赤字 De は飽和蓄積線量、灰色塗色の Saturation ratio は飽和度 0.865 未満で未飽和試料。

## 【付録4】

20

107

23.15

20.8

107

1.00

1.11

0.95

18

| IR50             | 16   | 17    | 18    | 19    | 20    | IR75             |
|------------------|------|-------|-------|-------|-------|------------------|
| De(Gy)           | 300  | 252   | 241   | 226   | 222   | De(Gy)           |
| NI               | 24.9 | 23.67 | 23    | 20.76 | 21.66 | NI               |
| Imax             | 29.9 | 31.7  | 32.4  | 26.9  | 30.1  | Imax             |
| 2D0(Gy)          | 336  | 368   | 390   | 306   | 350   | 2D0(Gy)          |
| De/2D0           | 0.89 | 0.68  | 0.62  | 0.74  | 0.63  | De/2D0           |
| Saturation ratio | 0.83 | 0.75  | 0.71  | 0.77  | 0.72  | Saturation ratio |
| g-value          | -    | -     | 3.19  | 5.16  | 2.71  | g-value          |
| age(ka)          |      |       | 40    | 50    | 37    | age(ka)          |
| True age (ka)    | -    | -     | 43    | 58    | 39    | True age (ka)    |
| IR100            | 16   | 17    | 18    | 19    | 20    | IR125            |
| De(Gv)           | 260  | 310   | 240   | 208   | 262   | De(Gv)           |
| NI               | 21   | 19.8  | 20.17 | 22.81 | 23.64 | NI               |
| Imax             | 19.3 | 23.8  | 20.1  | 18.6  | 21.5  | Imax             |
| 2D0(Gy)          | 260  | 350   | 240   | 208   | 262   | 2D0(Gy)          |
| De/2D0           | 1.00 | 0.89  | 1.00  | 1.00  | 1.00  | De/2D0           |
| Saturation ratio | 1.09 | 0.83  | 1.00  | 1.23  | 1.10  | Saturation ratio |
| g-value          | -    | -     | 1.02  | 4.1   | 0     | g-value          |
| age(ka)          |      |       | 40    | 34    | 43    | age(ka)          |
| True age (ka)    | -    | -     | ~     | ~     | 7     | True age (ka)    |
| IDDDE            | 16   | 17    | 10    | 10    | 20    | 1                |
|                  | 202  | 276   | 10    | 19    | 20    | -                |
| De(Gy)           | 302  | 276   | 340   | 358   | 348   | -                |
|                  | 17.6 | 18.29 | 16.87 | 16.7  | 16.81 | -                |
| Imax             | 17.7 | 18.3  | 19    | 18.6  | 19.2  | -                |
| 2D0(Gy)          | 302  | 276   | 340   | 358   | 348   | -                |
| De/2D0           | 1.00 | 1.00  | 1.00  | 1.00  | 1.00  | -                |
| Saturation ratio | 0.99 | 1.00  | 0.89  | 0.90  | 0.88  | -                |
| g-value          | -    | -     | 5.9   | 2.8   | 0     | -                |
| age(ka)          |      |       | 56    | 59    | 57    |                  |
| True age (ka)    | -    | -     | -     | -     | -     |                  |

### 表 2.6-3 MET(50, 75, 100, 125, 225)実験の測定結果

17 19 20 16 18 306 286 248 414 341 19.5 19.87 18.25 18.54 19.85 26.3 19 20 18.2 21.8 306 286 248 436 486 1.00 1.00 1.00 0.95 0.70 atio 0.99 0.85 0.75 1.03 1.00 2.77 1.26 0 41 68 56 71 56 a) --

16

270

23.3

23

270

1.00

1.01

17

288

23.47

22.6

288

1.00

1.04

18

324

24.05

23.9

324

1.00

1.01

3.02

53

19

262

28.91

21.1

262

1.00

1.37

0

43

赤字 De は飽和蓄積線量、灰色塗色の Saturation ratio は飽和度 0.865 未満で未飽和試料。



図 2.6-1 MET(50, 75, 100, 125, 225)で得られた線量応答曲線の一例(試料番号 TS3\_18) MET50 の NI(赤丸)は I(2D<sub>0</sub>)未満の領域にあり未飽和であるが、他の測定ではすべて飽和領域にある。
#### 2.7 IRSL フェーディング評価

フェーディング実験は各 IRSL 測定温度のフェーディング率を確かめる目的で、飽和した試料 についても行った。それらの測定結果を表 2.6-1~表 2.6-3 の g-value に表記した。それぞれの 測定温度ごとに区分した場合、IR50、IR75、IR100、IR125、IR225 の g 値は以下の通りである (括弧内は測定数)。IR50 =  $2.28 \pm 0.40$  (20)、IR75 =  $1.32 \pm 0.89$  (3)、IR100 =  $1.71 \pm 1.23$  (3)、 IR125 =  $2.13 \pm 0.57$  (8)、IR225 =  $2.34 \pm 0.56$  (20)。一般に認められる IR50 の g 値が IR225 よ り高い傾向はなく、IR50 と IR225 でも誤差内でほぼ近似の g 値を示した。したがって、IR50 と IR225 の飽和度の違いはフェーディングの強弱が原因ではないことを示している。

#### 2.8 測定試料の飽和度の評価

フェーディングが各 IR 測定温度で大きな差がないと判断されたので、ここで(2)式に基づいて 飽和度について検討する。試料(TS3)のA.IR(50,225)、B.IR(50,125,225)、C.MET(50,75, 100,125,225)で得られた飽和度を図 2.8-1 に示した。破線の傾きは(2)式から示された 0.865 で、 このラインより上位に位置する点は飽和、下位は未飽和の領域にあたる。A、B、C 実験で得られ た飽和度は IR50 が他の IR よりいずれも右下に位置し、多くが飽和域に達していない。また、A、 B、C 実験のほとんど全ての IR75,100,125,225 は破線より左上に分布し、飽和域に達している。 したがって、断層ガウジの低温測定の IR50 だけが未飽和にある。このことは断層ガウジに低温 の加熱があり、IR50 シグナルが部分リセットした可能性と、それより高温の IR75 以上には影響 を与えていない可能性とを推定させる。加熱に対して測定温度の上昇とともに、IRSL シグナル がより保存される傾向があることが Li and Li (2013)によって示されており、今後さらなる加 熱実験等の検討が必要である。



図 2.8-1 測定時加熱温度の異なる条件で得られた飽和比(*NI/I<sub>max</sub>*) A. IR(50, 225)、B. IR(50, 125, 225)、C. MET (50, 75, 100, 125, 225)。

#### 2.9 IRSL 年代について

表 2.6-1~表 2.6-3 に示した IRSL 年代は、De が未飽和の場合(飽和度 < 0.865)、フェーディング補正を行い、年間線量(Da = 6.06 mGy/a)を用いて決定した。年間線量の値は、北海道 教育大学・日本原子力研究開発機構(2017)等の既存データを新たに再検討した値を用いた。多 くの IR50 をこの方法で補正した。前節で IR50 シグナルは部分リセットと評価されたので、IR50 年代は部分リセット年代である。一方 IR75、IR100、IR125、IR225 の場合、多くが飽和に達し ているので、真の De は 2D<sub>0</sub> より高いはずで、示された IRSL 年代(2D<sub>0</sub>/Da)は下限値である。 この場合、フェーディング補正は意味がない。したがって、IR50 年代を含め、表 2.6-1~表 2.6-3 に示された年代を断層活動年代に直接関連させて議論することはできない。昨年度の共同研究で 測定を行った TS6b、TS-BS2L についても飽和比を求めたところ、いずれもほぼ 0.865 以上の値 を示した。したがって、これらの 44~95 ka の範囲にある IRSL 年代は、飽和に到達していると 考えられる。

#### 2.10 ESR 年代測定

TS6B、TS-CS2S1 及び TS-BS2L から抽出した石英を用いて ESR 年代測定を行った。石英粒 径は 125~250 µm で、1 測定試料あたり 0.2~0.7 gを用意した。Co-60 照射は高崎量子応用研 究所第 6 照射室にて、線量率 1 kGy/h で、0.5、1.0、2.0、4.0、5.0 時間の5 ステップの照射を行 った。ESR 測定装置は日本電子製 JES-X320 で、Mn マーカーによる感度補正を行った。測定信 号は、Al 中心と Ti-Li 中心である。E'中心は TS-CS2S1 で試みたが、線量応答性に乏しかったの で、測定を中止した。ESR 測定は各ステップの照射試料ごとに 9 データ(3 アリコート×3 方位) もしくは 6 データ(2 アリコート×3 方位)の測定を行った。

その結果、各試料の Al 中心と Ti-Li 中心について、Co-60 照射に対して図 2.10-1 のような線 量応答線が得られた。外挿された蓄積線量はAl 中心で 3.3~4.2 kGy、Ti-Li 中心で 1.5~2.0 kGy であった。測定した Al 中心と Ti-Li 中心の間に蓄積線量(De)の差が認められるが、試料間の差 は小さい(表 2.10-1)。昨年度の共同研究で測定した年間線量率(外部線量率 = 3.7~4.7 mGy/a) を用いた 3 試料の ESR 年代は、Al 中心で 0.7~1.1 Ma、Ti-Li 中心で 0.32~0.52 Ma であった。 断層と接する砂礫層(TS6B、TS-CS2S1)と断層から離れた砂礫層(TSBS2L)との比較では、 断層と接する砂礫層の年代の方が古い傾向がある(表 2.10-1)。昨年度の共同研究で報告した TS6B と TSBS2L の IRSL 年代にも同様の傾向が認められる。ESR 年代は IRSL 年代と比べて 有意に古い年代を示すが、ESR 信号は IRSL 信号に比べ飽和線量が高く、また、熱や光に対して はるかに安定であることが原因と考えられる。例えば、北海道教育大学・日本原子力研究開発機 構(2016)で行った 15 分加熱による ESR 信号消失実験では、Al 中心は 500℃で, Ti-Li 中心は 300℃でほぼゼロリセットする。一方、IRSL 信号に関する予備的な実験では、5分加熱を350~ 400℃の条件で行うと、IR50 と p-P-IR225 信号はほぼリセットされる。断層と接する砂礫層と比 べ断層から離れた砂礫層の方が古い年代を示した原因は現時点では不明であるが、少なくとも断 層と接する砂礫層からの石英の ESR 信号は、断層運動における熱影響をほとんど受けていない ことは明らかである。



| Sampla           | De           | (kGy)   | $D_{2}$ (mGy/2) | Age (Ma) |         |  |  |
|------------------|--------------|---------|-----------------|----------|---------|--|--|
| Sample           | AI           | Ti-Li   |                 | AI       | Ti-Li   |  |  |
| TS-CS2S1 3.8 1.7 |              | 3.7     | 1.03            | 0.46     |         |  |  |
| TS6B             | 4.2 2.0      |         | 3.8             | 1.10     | 0.52    |  |  |
| TSBS2L 3.3 1.5   |              | 4.7     | 0.32            |          |         |  |  |
| Sampla           | De           | (Gy)    | $D_{2}$ (mGy/2) | Age      | (ka)    |  |  |
| Sample           | IR50         | IRIR225 |                 | IR50     | IRIR225 |  |  |
| TS-CS2S1         |              |         |                 |          |         |  |  |
| TS6B             | TS6B 428 392 |         | 4.51            | 95       | 87      |  |  |
| TSBS2L           | 255          | 239     | 5.42            | 47       | 44      |  |  |

表 2.10-1 TS6B、TS-CS2S1 及び TS-BS2L が示した年代

上段は ESR 年代、下段は IRSL 年代。

#### 3. まとめ

- ・今年度の共同研究を進めるうえで、多数の試料の蓄積線量測定を正確に行うことが必要とされた。そのため、Co-60 照射された石英試料を標準試料とし、X線装置(Varian 社製 VF-50)のX線強度を決定した。7 試料測定の結果、平均値として 10.65 Gy/分が得られ、この値を蓄積線量決定に用いた。
- Robert and Duller (2004) によって示された成長曲線を示す関数に基づき、飽和度を設定した。 NIIImax=0.865を基準にこれ以上を飽和、これ未満を未飽和と定義することとした。
- ・IRSL 測定にあたり、実験方法を段階的に発展させた。最初に IR50 と IR225 をセットとした 一般的な測定、A. IR(50, 225)を採用した。その結果、今年度の共同研究で用いた試料(阿寺 断層のガウジから抽出したアルカリ長石)では、IR50 で不飽和、IR225 で飽和という結果が 示された。そこで、B. IR(50, 125, 225)、さらに C. MET(50, 75, 100, 125, 225)と実験を詳細 化した。
- ・A、B、C 実験を通して、IR50 のほとんどが未飽和、IR75、IR100、IR125、IR225 は飽和域 に達していることが明らかとなった。このことは断層ガウジに低温の加熱があり、IR50 シグ ナルが部分リセット、それより高温のIR75 以上には影響がないことが示唆された。
- ・フェーディングについて検討したが、一般に認められる IR50 の g 値が IR225 より高い傾向はなく、誤差内で近似した。このことは両者の飽和度の違いに g 値が影響していないことを示す。
- ・阿寺断層下盤側の砂礫層から抽出した石英の ESR 年代は Al 中心で 0.7~1.1 Ma、Ti-Li 中心 で 0.32~0.52 Ma であった。別途行われた ESR 信号のリセット実験に基づくと、断層運動に 伴う ESR 信号への熱影響はほとんどないと考えられる。
- ・今年度の共同研究で、IRSLの異なる温度間で飽和度の違いが明らかになった点は大きな前進である。本報告で採用した手法を他の試料にも適用し事例を拡充することや、人工加熱実験等を組み合わせて熱影響の及ぶ範囲や加熱条件を明らかにすることが今後の課題である。

引用文献

- Buyleart, J.P., Murray, A.S., Thmsen, K.J. Jain, M., Testing the potential of an elevated temperature IRSL signal from K-feldspar, Radiation Measurements, vol.44, pp.560-565, 2009.
- 北海道教育大学・日本原子力研究開発機構, 放射線損傷を用いた断層破砕帯の活動性評価手法に 関する研究, 北海道教育大学・日本原子力研究開発機構, 平成 27 年度共同研究報告書, 6p, 2016.
- 北海道教育大学・日本原子力研究開発機構, 放射線損傷を用いた断層破砕帯の活動性評価手法に 関する研究, 北海道教育大学・日本原子力研究開発機構, 平成 28 年度共同研究報告書, 8p, 2017.
- Huntley, D.J., Lamothe, M., Ubiquity of anomalous fading in K-feldspars and the measurement and correction for it in optical dating, Canadian Journal of Earth Sciences, vol.38, pp.1093-1106, 2001.
- Li, B., Li, S., The effect of band-tail states on the thermal stability of the infrared stimulated luminescence from K-feldspar, Journal of Luminescence, vol.136, pp.5-10, 2013.
- 町田 洋・新井房夫・宮内崇裕・奥村晃史, 北日本を広くおおう洞爺火山灰, 第四紀研究, vol.26, pp.129-145, 1987.
- Robert, H.M., Duller, G.A.T., Standardized growth curves for optical dating of sediment using multiple-grain aliquots, Radiation Measurements, Vol.38, pp.241-252, 2004.
- 遠田晋次・井上大栄・高瀬信一・久保内明彦・冨岡伸芳, 阿寺断層の最新活動時期:1586 年天正 地震の可能性, 地震第2 輯, vol.47, pp.73-77, 1994.

# 機械学習に基づいた

断層の活動性評価手法の開発に関する共同研究

平成 31 年度共同研究報告書

# 令和2年1月

国立大学法人富山大学

国立研究開発法人日本原子力研究開発機構 核燃料・バックエンド研究開発部門 東濃地科学センター 地層科学研究部 ネオテクトニクス研究グループ

# 目 次

| 1. 概要                        |
|------------------------------|
| 1.1 共同研究件名                   |
| 1.2 共同研究先                    |
| 1.3 研究目的                     |
| 1.4 研究内容                     |
| 1.5 研究期間                     |
| 2. データベースの作成                 |
| 2.1 文献収集                     |
| 2.2 整理結果                     |
| 3. 既往試料の化学分析                 |
| 3.1 手法10                     |
| <b>3.2</b> 結果11              |
| 4. 機械学習による検討作業12             |
| 4.1 解析手法12                   |
| 4.1.1 概要                     |
| 4.1.2 解析の流れとツール13            |
| 4.2 結果18                     |
| 4.2.1 線形判別分析(変数選択なし)18       |
| 4.2.2 変数選択(AIC)23            |
| 4.2.3 線形判別分析(変数選択あり)25       |
| 5. 考察                        |
| <b>5.1</b> 2 群の違いを表す元素に関する考察 |
| 5.2 より良い判別式に関する考察            |
| 5.3 活動性が未知の試料に対する判別式の適用      |
| 6. まとめと今後の課題                 |
| 付録A 既往報告書における試料採取位置41        |
| 付録 B 既往報告書における全岩化学組成分析結果52   |
| 付録 C 既往試料の化学分析における試料採取位置     |
| 付録 D 既往試料の化学分析における全岩化学組成分析結果 |

## 図目次

| 义 | 4.1-1 | 結果図の例              | 17 |
|---|-------|--------------------|----|
| 図 | 4.2-1 | 線形判別分析の結果図(CASE 1) | 20 |
| 図 | 4.2-2 | 線形判別分析の結果図(CASE 2) | 20 |
| 図 | 4.2-3 | 線形判別分析の結果図(CASE 3) | 21 |
| 図 | 4.2-4 | 線形判別分析の結果図(CASE 4) | 21 |
| 図 | 4.2-5 | 重判別分析の結果図(CASE 5)  | 22 |
| 図 | 4.2-6 | 重判別分析の結果図(CASE 6)  | 22 |
| 図 | 4.2-7 | 線形判別分析の結果図(CASE 7) | 26 |
|   |       |                    |    |

| 义 | 4.2-8         | 線形判別分析の結果図  | (CASE 8)  |  |
|---|---------------|-------------|-----------|--|
| 义 | 4.2-9         | 線形判別分析の結果図  | (CASE 9)  |  |
| 図 | $5.1 \cdot 1$ | 上位6元素のクロスプロ | ロット       |  |
| 図 | 5.1-2         | 線形判別分析の結果図  | (CASE 10) |  |
| 义 | $5.1^{-3}$    | 線形判別分析の結果図  | (CASE 11) |  |
| 図 | 5.1-4         | 線形判別分析の結果図  | (CASE 12) |  |
| 図 | $5.1^{-5}$    | 線形判別分析の結果図  | (CASE 13) |  |
| 図 | 5.1-6         | 線形判別分析の結果図  | (CASE 14) |  |
| 図 | 5.1-7         | 線形判別分析の結果図  | (CASE 15) |  |
| 义 | 5.1-8         | 線形判別分析の結果図  | (CASE 16) |  |
| 図 | 5.2 - 1       | 線形判別分析の結果図  | (CASE 8') |  |
| 図 | 5.2-2         | 線形判別分析の結果図  | (CASE 8") |  |
|   |               |             |           |  |

# 表 目 次

| 表 2.1-1 | 収集文献一覧                            | 7  |
|---------|-----------------------------------|----|
| 表 2.1-2 | 既往報告書一覧                           | 8  |
| 表 2.2-1 | 化学組成データベースの分類一覧                   | 8  |
| 表 2.2-2 | 化学組成データベースの例①                     | 9  |
| 表 2.2-3 | 化学組成データベースの例②                     | 9  |
| 表 2.2-4 | 化学組成データベースの例③                     | 9  |
| 表 2.2-5 | 化学組成データベースの例④                     | 9  |
| 表 2.2-6 | 化学組成データベースの例⑤                     | 9  |
| 表 2.2-7 | 化学組成データベースの例⑥                     | 9  |
| 表 2.2-8 | 化学組成データベースの例⑦                     | 9  |
| 表 3.1-1 | 分析試料一覧                            | 11 |
| 表 4.1-1 | 解析の流れと使用ツール                       | 13 |
| 表 4.1-2 | 入力データの概要                          | 13 |
| 表 4.1-3 | 解析対象試料の一覧                         | 14 |
| 表 4.2-1 | CASE 1~CASE 6 の判別式の係数 8           | 23 |
| 表 4.2-2 | AIC により選択された元素の組合せ                | 26 |
| 表 4.2-3 | CASE 7~CASE 9 の各元素の判別係数 6 と VIF   | 28 |
| 表 5.1-1 | CASE 7~CASE 9 の判別式の係数 B(降順)       | 29 |
| 表 5.1-2 | CASE 10~CASE 14 の元素の組合せ           | 31 |
| 表 5.1-3 | CASE 10~CASE 14 の各元素の判別係数 6 と VIF | 34 |
| 表 5.1-4 | CASE 15~CASE 16 の各元素の判別係数 6 と VIF | 34 |
| 表 5.2-1 | CASE 8'~CASE 8"の各元素の判別係数 ß と VIF  | 38 |
| 表 5.3-1 | 判別式の未知試料への適用結果                    | 38 |
|         |                                   |    |

#### 1. 概要

#### 1.1 共同研究件名

機械学習に基づいた断層の活動性評価手法の開発に関する共同研究

#### 1.2 共同研究先

国立大学法人富山大学大学院理工学研究部

#### 1.3 研究目的

わが国においては、従来から、高レベル放射性廃棄物の地層処分の安全評価において重要とな る、放射性核種が地下水を介して生物圏へ移行するという「地下水シナリオ」に係る評価の信頼 性向上に資するための要素技術開発が進められている。平成 30 年 3 月に公開された「地層処分 研究開発に関する全体計画(平成 30 年度~平成 34 年度)」では、地層処分に適した地質環境の 選定及びモデル化において自然現象の影響を把握することの重要性が示されるとともに、火山・ 火成活動、深部流体、地震・断層活動、隆起・侵食に関する調査・評価技術の高度化に関する研 究開発課題が整理されている。

日本原子力研究開発機構(以下、原子力機構)では、経済産業省資源エネルギー庁から受託し た「平成31年度高レベル放射性廃棄物等の地層処分に関する技術開発事業(地質環境長期安定 性評価技術高度化開発)」において、地層処分に適した地質環境の選定に係る自然現象の影響把 握及びモデル化に関連する研究課題として示された火山・火成活動、深部流体、地震・断層活 動、隆起・侵食に対して、地質学、地形学、地震学、地球年代学等の各学術分野における最新の 研究を踏まえた技術の適用による事例研究を通じて、課題の解決に必要な知見の蓄積や調査・評 価技術の高度化を総合的に進めている。

このうち地震・断層活動に関しては、上載地層がない場合の断層の活動性評価手法の開発が技 術開発課題として提示されている。平成30年度における国立大学法人富山大学(以下、富山大 学)との共同研究「機械学習に基づいた断層の活動性評価手法の開発に関する共同研究」では、 断層帯物質である断層粘土の化学成分等の分析結果と機械学習を組み合わせることで、これらの 課題に係る検討を実施した。その結果、断層ガウジの化学組成を用いた線形判別分析により、活 断層と非活断層を区別可能な判別式を複数得ることができた。また、これらの判別式に共通する 元素の組合せから、活断層と非活断層の違いを表す元素を絞り込むことができた。しかし、本共 同研究で得られた判別式の汎化性能や線形判別分析における仮定には課題が残った。このこと は、本手法の未知試料への適用性に疑問があることを意味する。したがって、本年度の共同研究 では機械学習による検討を継続するとともに、手法の信頼度を向上させるため昨年度作成したデ ータベースの拡充を行う。

共同研究先である富山大学は、断層活動に関する応用地質学と地震地質学における多くの研究 実績と関連する情報を有しているほか、機械学習に精通している。また、原子力機構は、これら の分野における各種分析に必要な最新の装置を数多く有しており、国内でも有数の分析環境を備 えている。そのため、本共同研究を行うことにより、上記のような課題に対して活断層と非活断 層の断層粘土の化学成分を明らかにすることができ、明らかにされた断層粘土の化学成分データ を使用することで、活断層と非活断層を区別するパラメータの抽出を目的とした多変量解析等を 用いた機械学習を効果的に進めることができる。本共同研究を通じて、富山大学は断層粘土の化 学成分等のデータの拡充とともに断層に関する応用地質学等の研究を進めることができ、原子力 機構は上載地層が存在しない断層に適用可能な活動性評価手法の整備を図ることができる。 なお、本共同研究は、原子力機構が経済産業省資源エネルギー庁から受託した「平成 31 年度 高レベル放射性廃棄物等の地層処分に関する技術開発事業(地質環境長期安定性評価技術高度化 開発)」の一環として行うものである。

## 1.4 研究内容

本共同研究では、以下に示す作業を行い、成果を取りまとめる。

- (1) データベースの作成 日本国内の断層岩の全岩化学組成が掲載された公表文献を取集し、それらのデータを取り まとめたデータベースを作成する。
- (2) 既往試料の化学分析 機械学習のためのデータベースの充実に向けて原子力機構が保有する試料を対象に化学分 析を実施し、全岩化学成分等を明らかにする。
- (3) 機械学習による検討作業 上記(1)と(2)で得られたデータに対して、多変量解析等を用いた機械学習を適用し、活断層 と非活断層の効率的な判別手法について検討する。
- (4) 取りまとめ上記(1)~(3)における実施・検討内容を取りまとめた報告書を作成する。

## 1.5 研究期間

令和元年5月7日~令和2年1月31日

## 2. データベースの作成

日本国内の断層岩の全岩化学組成が掲載された公表文献を収集し、それらのデータを取りまと めたデータベースを作成した。昨年度も同様の作業を行っており、今年度は追加文献の収集・整 理を行った。

#### 2.1 文献収集

文献収集は、国内の活断層及び非活断層の断層ガウジの化学組成分析値が掲載されている文献 を対象として行った。表 2.1-1、表 2.1-2 に収集した文献の一覧を示す。

表 2.1-1 は論文として公表されているものの一覧である。論文の収集にあたっては、分析対象 が活断層か非活断層かが明記されていること、付加体、花崗岩質岩など多様な基盤岩を持つこと に留意した。今年度、追加文献の収集を行った結果、1本の論文を追加した(表 2.1-1着色部)。 表 2.1-2 は原子力機構において過去に実施した、断層を分析対象とした業務の報告書である。表 2.1-2 の文献番号 1~5 は、上載地層法により活断層か非活断層かが明らかになっている花崗岩質 岩中の断層を分析対象とした報告書である。文献番号 6 は、本共同研究の昨年度の報告書である。 文献番号 1~5 の試料採取位置、ブロックサンプリング試料からの採取部位、化学組成分析値など は、付録 A および付録 B に示すほか、各文献を参照されたい。

## 表 2.1-1 収集文献一覧

| 通番 | 著者名                                                                                                                                                        | 発行年  | 論文タイトル                                                                                                                                                                                      | 雑誌名                              | 巻, 号, 頁             | 分析値の<br>出典                      | 分析対象                                                      | 活断層の<br>断層タイプ |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------|---------------------------------|-----------------------------------------------------------|---------------|
| 1  | R. Sugisaki, H.Anno, M.<br>Adachi and H. Ui                                                                                                                | 1980 | Geochemical features of<br>gases and rocks along<br>active faults                                                                                                                           | Geochemical<br>Journal           | 14,<br>101-112      | Table 3a,<br>Table 3b           | 【活断層】跡津川断層, 牛首<br>断層, 根尾谷断層, 飯田断層,<br>富坂断層<br>【非活断層】中央構造線 | 横ずれ断層         |
| 2  | K. Fujimoto, H. Tanaka,<br>T. Higuchi, N. Tomida,<br>T. Ohtani and H. Ito                                                                                  | 2001 | Alteration and mass<br>transfer inferred from<br>the Hirabayashi GSJ drill<br>penetrating the Nojima<br>Fault, Japan                                                                        | The Island Arc                   | 10,<br>401-410      | Table 1                         | 【活断層】野島断層                                                 | 横ずれ断層         |
| 3  | T. Matsuda, T. Arai, R.<br>Ikeda, K. Omura, K.<br>Kobayashi, H. Sano, T.<br>Sawaguchi, H. Tanaka,<br>T. Tomita, N. Tomida,<br>S. Hirano and A.<br>Yamazaki | 2001 | Examination of mineral<br>assemblage and chemical<br>composition in the<br>fracture zone of the<br>Nojima Fault at a depth<br>of 1140 m: Analyses of<br>the Hirabayashi NIED<br>drill cores | The Island Arc                   | 10,<br>422-429      | Table 1,<br>Table 2             | 【活断層】野島断層                                                 | 横ずれ断層         |
| 4  | Y. Hashimoto, A.<br>Nikaizo and G. Kimura                                                                                                                  | 2009 | A geochemical<br>estimation of fluid flux<br>and permeability for a<br>fault zone in Mugi<br>me'lange, the Cretaceous<br>Shimanto Belt, SW Japan                                            | Journal of<br>Structural Geology | 31,<br>208-214      | Table 1                         | 【非活断層】地質境界断層                                              | _             |
| 5  | 長友晃夫・吉田英一                                                                                                                                                  | 2009 | 断層と割れ目系およびそ<br>の重点鉱物を用いた阿寺<br>断層の地質的履歴解析                                                                                                                                                    | 地質学雑誌                            | 115, 10,<br>512-527 | Table 1                         | 【活断層】阿寺断層                                                 | 横ずれ断層         |
| 6  | 加藤尚希・廣野哲郎・石<br>川剛志・大谷具幸                                                                                                                                    | 2015 | 阿寺断層田瀬露頭におけ<br>る断層ガウジの鉱物学<br>的・地球科学的特徴                                                                                                                                                      | 活断層研究                            | 43,<br>1-16         | Table 2                         | 【活断層】阿寺断層                                                 | 横ずれ断層         |
| 7  | M. Niwa, Y. Mizuochi<br>and A. Tanase                                                                                                                      | 2015 | Changes in chemical<br>composition caused by<br>water–rock interactions<br>across a strike-slip fault<br>zone: case study of the<br>Atera Fault, Central<br>Japan                           | Geofluids                        | 15,<br>387-409      | Table 3                         | 【活断層】阿寺断層                                                 | 横ずれ断層         |
| 8  | M. Niwa, K. Shimada, T.<br>Ishimaru and Y. Tanaka                                                                                                          | 2019 | Identification of capable<br>faults using fault rock<br>geochemical signatures:<br>A case study from offset<br>granitic bedrock on the<br>Tsuruga Peninsula,<br>central Japan               | Engineering<br>Geology           | 260                 | Table 3,<br>Table 4,<br>Table 5 | 【活断層】白木 – 丹生断層<br>【非活断層】花崗岩中の断<br>層                       | 逆断層           |

【付録5】

| 通番 | 報告書名                              | 年度     | 分析値の<br>出典            | 分析対象                          | 活断層の<br>断層タイプ |
|----|-----------------------------------|--------|-----------------------|-------------------------------|---------------|
| 1  | 22 耐震工学 陸域断層の活動性評価に資する断層破砕部の調査・分析 | 平成22年度 | 表3.3.6-1,<br>表3.3.6-2 | 【活断層】五助橋断層,下蔦木断層              | 横ずれ断層         |
| 2  | 23 耐震工学 陸域断層の活動性評価に資する断層破砕部の調査・分析 | 平成23年度 | 表3.3.6-1              | 【活断層】六甲断層                     | 横ずれ断層         |
| 3  | 24 耐震工学 陸域断層の活動性評価に資する断層破砕部の調査・分析 | 平成24年度 | 表3.5.7-1              | 【非活断層】六甲蓬莱峡                   |               |
| 4  | 25耐震工学 陸域断層の活動性評価に資する 断層破砕部の調査・分析 | 平成25年度 | _                     | _                             |               |
| 5  | 26 耐震工学 陸域断層の活動性評価に資する断層破砕部の調査・分析 | 平成26年度 | _                     | _                             |               |
| 6  | 機械学習に基づいた断層の活動性評価手法の開発に関する共同研究    | 平成30年度 | 付録B                   | 【活断層】白木-丹生断層<br>【非活断層】花崗岩中の断層 | 逆断層           |

表 2.1-2 既往報告書一覧

## 2.2 整理結果

ここでは、2.1 で収集した文献に掲載されている化学組成の分析値を抽出し、化学組成データベースを作成した。このデータベースには、各試料の試料名と分析値のほか、文献中の記載に基づいて表 2.2-1 に示す二つの分類を与えた。表 2.2-2~表 2.2-8 に作成した化学組成データベースの一部を例として示す。なお、化学組成データベースは別途電子ファイルを作成した。

| Type 1 | 説明   |
|--------|------|
| AF     | 活断層  |
| NF     | 非活断層 |
| R      | 母岩   |

表 2.2-1 化学組成データベースの分類一覧

| Type 2 | 説明            |
|--------|---------------|
| AFB    | 活断層・断層角礫      |
| AFC    | 活断層・カタクレーサイト  |
| AFG    | 活断層・断層ガウジ     |
| AFW    | 活断層・弱変形       |
| NFB    | 非活断層・断層角礫     |
| NFC    | 非活断層・カタクレーサイト |
| NFG    | 非活断層・断層ガウジ    |
| NFW    | 非活断層・弱変形      |
| R      | 母岩            |

## 【 付録 5 】

### 表 2.2-2 化学組成データベースの例①

| 連番 | 文献番号 | Sample  | type1 | type2 | SiO <sub>2</sub> | TIO <sub>2</sub> | Al <sub>2</sub> O <sub>3</sub> | Fe <sub>2</sub> O <sub>3</sub> | FeO  | MnO  | MgO  | CaO  | Na <sub>2</sub> O | K <sub>2</sub> 0 | P206 |
|----|------|---------|-------|-------|------------------|------------------|--------------------------------|--------------------------------|------|------|------|------|-------------------|------------------|------|
| 1  | 8    | GSB-C01 | AF    | AFC   | 71.46            | 0.22             | 13.19                          | 1.37                           | 1.88 | 0.09 | 0.45 | 2.12 | 3.01              | 2.60             | 0.12 |
| 2  | 8    | GSB-C09 | AF    | AFG   | 70.87            | 0.19             | 12.84                          | 1.92                           | 0.98 | 0.04 | 0.45 | 1.07 | 2.29              | 2.79             | 0.05 |
| 3  | 8    | GSB-C10 | AF    | AFG   | 71.29            | 0.20             | 13.04                          | 2.61                           | 0.04 | 0.06 | 0.44 | 1.12 | 2.40              | 2.63             | 0.05 |
| 4  | 8    | GSB-C11 | AF    | AFG   | 68.80            | 0.24             | 13.02                          | 2.29                           | 0.62 | 0.10 | 0.45 | 3.18 | 2.64              | 2.64             | 0.08 |
| 5  | 8    | GSB-C02 | AF    | AFG   | 70.39            | 0.21             | 12.59                          | 1.78                           | 1.21 | 0.07 | 0.43 | 2.42 | 2.43              | 2.78             | 0.06 |
| 6  | 8    | GSB-C03 | AF    | AFG   | 70.20            | 0.21             | 12.92                          | 2.20                           | 0.55 | 0.08 | 0.44 | 2.75 | 2.64              | 2.66             | 0.06 |
| 7  | 8    | GSB-C04 | AF    | AFC   | 70.09            | 0.22             | 13.06                          | 2.32                           | 0.51 | 0.10 | 0.46 | 3.05 | 2.72              | 2.63             | 0.05 |
| 8  | 8    | GSB-C05 | AF    | AFC   | 69.52            | 0.21             | 12.89                          | 2.70                           | 0.17 | 0.08 | 0.44 | 2.55 | 2.49              | 2.69             | 0.06 |
| 9  | 8    | GSB-C06 | AF    | AFG   | 68.34            | 0.21             | 12.80                          | 2.70                           | 0.12 | 0.05 | 0.45 | 2.85 | 2.43              | 2.65             | 0.06 |
| 10 | 8    | GSB-C07 | AF    | AFG   | 69.41            | 0.21             | 13.40                          | 1.21                           | 1.40 | 0.06 | 0.46 | 2.86 | 2.86              | 2.65             | 0.05 |

### 表 2.2-3 化学組成データベースの例2

| 連番 | 文献番号 | Sample  | type1 | type2 | Cr <sub>2</sub> O <sub>3</sub> | SrO | BaO | LOI  | H <sub>2</sub> O+ | H <sub>2</sub> O- | Li | Be | F | S |
|----|------|---------|-------|-------|--------------------------------|-----|-----|------|-------------------|-------------------|----|----|---|---|
| 1  | 8    | GSB-C01 | AF    | AFC   |                                |     |     | 2.16 | 1.60              | 0.90              |    | 2  |   |   |
| 2  | 8    | GSB-C09 | AF    | AFG   |                                |     |     | 5.18 | 2.30              | 2.90              |    | 2  |   |   |
| 3  | 8    | GSB-C10 | AF    | AFG   |                                |     |     | 4.86 | 2.00              | 2.40              |    | 2  |   |   |
| 4  | 8    | GSB-C11 | AF    | AFG   |                                |     |     | 5.30 | 1,80              | 1.90              |    | 2  |   |   |
| 5  | 8    | GSB-C02 | AF    | AFG   |                                |     |     | 3.74 | 2.10              | 1.10              |    | 2  |   |   |
| 6  | 8    | GSB-C03 | AF    | AFG   |                                |     |     | 4.13 | 2.10              | 1.20              |    | 2  |   |   |
| 7  | 8    | GSB-C04 | AF    | AFC   |                                |     |     | 4.29 | 1.70              | 1.50              |    | 2  |   |   |
| 8  | 8    | GSB-C05 | AF    | AFC   |                                |     |     | 4.92 | 2.30              | 1.70              |    | 2  |   |   |
| 9  | 8    | GSB-C06 | AF    | AFG   |                                |     |     | 5.64 | 1.70              | 2.10              |    | 2  |   |   |
| 10 | 8    | GSB-C07 | AF    | AFG   |                                |     |     | 4.63 | 2.10              | 1.40              |    | 2  |   |   |

#### 表 2.2-4 化学組成データベースの例③

| 連番 | 文献番号 | Sample  | type1 | type2 | CI | к | Sc | Ti | V  | Cr | Mn | Co | Ni | Cu |
|----|------|---------|-------|-------|----|---|----|----|----|----|----|----|----|----|
| 1  | 8    | GSB-C01 | AF    | AFC   |    |   | 6  |    | 13 | 20 |    | 3  | 20 | 40 |
| 2  | 8    | GSB-C09 | AF    | AFG   |    |   | 6  |    | 9  | 20 |    | 2  | 20 | 10 |
| 3  | 8    | GSB-C10 | AF    | AFG   |    |   | 6  |    | 12 | 20 |    | 2  | 20 | 10 |
| 4  | 8    | GSB-C11 | AF    | AFG   |    |   | 8  |    | 11 | 20 |    | 2  | 20 | 10 |
| 5  | 8    | GSB-C02 | AF    | AFG   |    |   | 7  |    | 8  | 20 |    | 2  | 20 | 10 |
| 6  | 8    | GSB-C03 | AF    | AFG   |    |   | 6  |    | 10 | 20 |    | 3  | 20 | 20 |
| 7  | 8    | GSB-C04 | AF    | AFC   |    |   | 6  |    | 11 | 20 |    | 2  | 20 | 20 |
| 8  | 8    | GSB-C05 | AF    | AFC   |    |   | 7  |    | 11 | 20 |    | 3  | 20 | 10 |
| 9  | 8    | GSB-C06 | AF    | AFG   |    |   | 6  |    | 11 | 20 |    | 1  | 20 | 10 |
| 10 | 8    | GSB-007 | ۵F    | AEG   |    |   | 6  |    | 12 | 20 |    | 3  | 20 | 10 |

### 表 2.2-5 化学組成データベースの例④

| 連番 | 文献番号 | Sample  | type1 | type2 | Zn | Ga | Ge | As | Rb | Sr  | Y  | Zr  | Nb | Mo |
|----|------|---------|-------|-------|----|----|----|----|----|-----|----|-----|----|----|
| 1  | 8    | GSB-C01 | AF    | AFC   | 60 | 17 | 2  | 12 | 77 | 215 | 25 | 136 | 7  | 2  |
| 2  | 8    | GSB-C09 | AF    | AFG   | 80 | 17 | 2  | 5  | 88 | 127 | 23 | 135 | 8  | 2  |
| 3  | 8    | GSB-C10 | AF    | AFG   | 70 | 17 | 1  | 5  | 87 | 144 | 26 | 132 | 8  | 2  |
| 4  | 8    | GSB-C11 | AF    | AFG   | 70 | 17 | 1  | 5  | 79 | 153 | 32 | 161 | 9  | 2  |
| 5  | 8    | GSB-C02 | AF    | AFG   | 70 | 16 | 2  | 5  | 79 | 153 | 25 | 154 | 8  | 2  |
| 6  | 8    | GSB-C03 | AF    | AFG   | 60 | 16 | 2  | 5  | 81 | 226 | 27 | 133 | 8  | 2  |
| 7  | 8    | GSB-C04 | AF    | AFC   | 50 | 17 | 1  | 5  | 80 | 222 | 26 | 130 | 7  | 2  |
| 8  | 8    | GSB-C05 | AF    | AFC   | 70 | 17 | 2  | 5  | 82 | 172 | 28 | 150 | 8  | 1  |
| 9  | 8    | GSB-C06 | AF    | AFG   | 70 | 16 | 2  | 5  | 80 | 208 | 27 | 148 | 8  | 2  |
| 10 | 8    | GSB-C07 | AF    | AFG   | 70 | 16 | 1  | 12 | 79 | 227 | 26 | 145 | 8  | 2  |

## 表 2.2-6 化学組成データベースの例⑤

| 連番 | 文献番号 | Sample  | type1 | type2 | Ag | In | Sn | Sb | Cs | Ba  | La | Ce | Pr | Nd |
|----|------|---------|-------|-------|----|----|----|----|----|-----|----|----|----|----|
| 1  | 8    | GSB-C01 | AF    | AFC   | 1  | 0  | 3  | 0  | 3  | 663 | 30 | 60 | 6  | 25 |
| 2  | 8    | GSB-C09 | AF    | AFG   | 1  | 0  | 3  | 0  | 4  | 669 | 30 | 50 | 6  | 26 |
| 3  | 8    | GSB-C10 | AF    | AFG   | 1  | 0  | 5  | 0  | 5  | 694 | 29 | 60 | 6  | 27 |
| 4  | 8    | GSB-C11 | AF    | AFG   | 1  | 0  | 3  | 0  | 4  | 636 | 31 | 59 | 6  | 28 |
| 5  | 8    | GSB-C02 | AF    | AFG   | 1  | 0  | 2  | 0  | 4  | 666 | 25 | 48 | 5  | 22 |
| 6  | 8    | GSB-C03 | AF    | AFG   | 1  | 0  | 4  | 0  | 3  | 924 | 29 | 56 | 6  | 25 |
| 7  | 8    | GSB-C04 | AF    | AFC   | 1  | 0  | 2  | 0  | 3  | 765 | 29 | 56 | 6  | 24 |
| 8  | 8    | GSB-C05 | AF    | AFC   | 1  | 0  | 2  | 0  | 4  | 721 | 31 | 66 | 6  | 27 |
| 9  | 8    | GSB-C06 | AF    | AFG   | 1  | 0  | 2  | 0  | 4  | 704 | 30 | 55 | 6  | 26 |
| 10 | 8    | GSB-C07 | AF    | AFG   | 1  | 0  | 2  | 0  | 4  | 858 | 30 | 58 | 6  | 26 |

### 表 2.2-7 化学組成データベースの例⑥

| 連番 | 文献番号 | Sample  | type1 | type2 | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu |
|----|------|---------|-------|-------|----|----|----|----|----|----|----|----|----|----|
| 1  | 8    | GSB-C01 | AF    | AFC   | 5  | 1  | 5  | 1  | 4  | 1  | 3  | 0  | 3  | 0  |
| 2  | 8    | GSB-C09 | AF    | AFG   | 5  | 1  | 4  | 1  | 4  | 1  | 2  | 0  | 3  | 0  |
| 3  | 8    | GSB-C10 | AF    | AFG   | 5  | 1  | 5  | 1  | 4  | 1  | 3  | 0  | 3  | 0  |
| 4  | 8    | GSB-C11 | AF    | AFG   | 5  | 1  | 5  | 1  | 5  | 1  | 3  | 0  | 3  | 0  |
| 5  | 8    | GSB-C02 | AF    | AFG   | 4  | 1  | 4  | 1  | 4  | 1  | 2  | 0  | 2  | 0  |
| 6  | 8    | GSB-C03 | AF    | AFG   | 5  | 1  | 4  | 1  | 4  | 1  | 2  | 0  | 2  | 0  |
| 7  | 8    | GSB-C04 | AF    | AFC   | 5  | 1  | 4  | 1  | 4  | 1  | 2  | 0  | 2  | 0  |
| 8  | 8    | GSB-C05 | AF    | AFC   | 5  | 1  | 5  | 1  | 5  | 1  | 3  | 0  | 3  | 0  |
| 9  | 8    | GSB-C06 | AF    | AFG   | 5  | 1  | 5  | 1  | 5  | 1  | 3  | 0  | 3  | 0  |
| 10 | 8    | GSB-C07 | AF    | AFG   | 5  | 1  | 4  | 1  | 4  | 1  | 3  | 0  | 3  | 0  |

## 表 2.2-8 化学組成データベースの例⑦

| 連番 | 文献番号 | Sample  | type1 | type2 | Hf | Та | W | TI | Pb | Bi | Th | U |
|----|------|---------|-------|-------|----|----|---|----|----|----|----|---|
| 1  | 8    | GSB-C01 | AF    | AFC   | 4  | 1  | 1 | 1  | 15 | 2  | 9  | 1 |
| 2  | 8    | GSB-C09 | AF    | AFG   | 4  | 1  | 1 | 1  | 21 | 1  | 9  | 1 |
| 3  | 8    | GSB-C10 | AF    | AFG   | 4  | 1  | 1 | 0  | 19 | 0  | 9  | 1 |
| 4  | 8    | GSB-C11 | AF    | AFG   | 5  | 1  | 1 | 1  | 18 | 0  | 8  | 2 |
| 5  | 8    | GSB-C02 | AF    | AFG   | 4  | 1  | 1 | 1  | 18 | 0  | 8  | 1 |
| 6  | 8    | GSB-C03 | AF    | AFG   | 4  | 1  | 1 | 1  | 17 | 2  | 8  | 1 |
| 7  | 8    | GSB-C04 | AF    | AFC   | 4  | 1  | 1 | 1  | 14 | 2  | 8  | 1 |
| 8  | 8    | GSB-C05 | AF    | AFC   | 4  | 1  | 1 | 1  | 21 | 1  | 8  | 1 |
| 9  | 8    | GSB-C06 | AF    | AFG   | 4  | 1  | 1 | 0  | 20 | 2  | 8  | 1 |
| 10 | 8    | GSB-C07 | AF    | AFG   | 4  | 1  | 1 | 1  | 18 | 1  | 8  | 2 |

### 3. 既往試料の化学分析

#### 3.1 手法

今年度新たに化学分析を行った試料のうち、解析に用いた断層中軸部の 23 試料を表 3.1-1 に 示す(Type 1、Type 2 は表 2.2-1 に同じ)。露頭における試料採取位置、ブロックサンプリング 試料からの採取部位などは、付録 C に示すほか、各文献を参照されたい。

採取試料は、東濃地科学センター設置の高速粉砕機(安井器械株式会社製マルチビーズショッカーPV1001(S))を用いて粉砕した。試料への異質物の混染を防ぐため、試料はポリカーボネイト製の粉砕容器に入れ、粉砕にはめのう製のコーンを用いた。

全岩化学組成の分析は東濃地科学センター設置の蛍光 X 線分析装置(株式会社リガク製 ZSX Primus II)を使用し、希釈率 1:2のガラスビードにて行った。ガラスビードの作成方法及び分析方法は清水ほか(2017)に従った。分析は、主要元素(SiO<sub>2</sub>、TiO<sub>2</sub>、Al<sub>2</sub>O<sub>3</sub>、Fe<sub>2</sub>O<sub>3</sub>、MnO、MgO、CaO、Na<sub>2</sub>O、K<sub>2</sub>O、P<sub>2</sub>O<sub>5</sub>の 10元素)と微量元素(Ba、Ce、Cl、Co、Cr、F、Ga、Nb、Ni、Pb、Rb、S、Sc、Sr、Th、U、V、Y、Zrの19元素)について行った。分析条件、分析誤差などについては、清水ほか(2017)に準ずる。

## 【 付録 5 】

| 試料名      | 母岩          | Type 1   | Type 2 | 参照                |
|----------|-------------|----------|--------|-------------------|
| S14-1a2  | 江若花崗岩       | AF       | AFG    | —                 |
| S14-1a3  | 江若花崗岩       | AF       | AFG    | —                 |
| MP-07-1  | 江若花崗岩       | NF       | NFG    | 日本原子力研究開発機構(2013) |
| MP-07-2  | 江若花崗岩       | NF       | NFG    | 日本原子力研究開発機構(2013) |
| MP-07-3  | 江若花崗岩       | NF       | NFG    | 日本原子力研究開発機構(2013) |
| Ko12-1-1 | 江若花崗岩       | NF       | NFG    | 植木ほか(2016)        |
| GSK1     | 六甲花崗岩       | AF       | AFG    | —                 |
| GSK2     | 六甲花崗岩       | AF       | AFG    | —                 |
| GSK3     | 六甲花崗岩       | AF       | AFG    | —                 |
|          | ·六甲花崗岩      | ٨F       | AEG    | 日本百工力研究閉発機構(2014) |
| AINIVII  | ・有馬層群の溶結凝灰岩 | AI       | AFU    | 口平床了刀仰无册光候件(2014) |
|          | •六甲花崗岩      | ٨F       | AFG    | 日木百子力研究開発機構(2014) |
|          | ・有馬層群の溶結凝灰岩 | Al       | AIO    |                   |
| SGR2     | 美濃帯堆積岩      | NF       | NFG    | —                 |
| SGR3     | 美濃帯堆積岩      | NF       | NFG    | —                 |
| SGP5     | •美濃帯堆積岩     |          |        |                   |
| SUKJ     | ·奈川花崗岩      |          |        |                   |
| NMG5     | 奈川花崗岩       |          | _      | —                 |
| 96-g     | 紫尾山花崗閃緑岩    |          | _      | —                 |
| 101-1    | 紫尾山花崗閃緑岩    |          | —      | —                 |
| 118-4a   | 四万十带堆積岩     | <u> </u> | —      | —                 |
| YD-14①   | 四万十带堆積岩     | <u> </u> | —      | —                 |
| YD-142   | 四万十带堆積岩     |          | —      | —                 |
| YD-143   | 四万十带堆積岩     | —        | —      | —                 |
| YD-14④   | 四万十带堆積岩     |          | _      | —                 |
| YD-145   | 四万十带堆積岩     |          | _      | —                 |

表 3.1-1 分析試料一覧

## 3.2 結果

全岩化学組成の分析結果を付録 D に示す。微量元素については、分析下限未満のものを表中に 灰色で示す。検量線作成に用いた標準試料の組成値を上回る、または下回る値は赤太字で示した。 Ig (Ignission Loss) は、ここでは含有率の計算時に残分として取り扱う成分を表す。すなわち Ig の含有率は 100 wt.%から他の成分の合計を差し引いた値である。

#### 4. 機械学習による検討作業

本章では、2. で作成した化学組成データベースに 3. で得られたデータを加えたものに対して、 多変量解析を用いた機械学習を適用し、活断層と非活断層の効率的な判別手法について検討した。

#### 4.1 解析手法

### 4.1.1 概要

多変量解析は、複数の変数からなるデータを統計的に扱う手法であり、地球科学分野でも応用 が進んできている。例えば、Kuwatani et al. (2014)は、2011年東北地方太平洋沖地震時の津波 堆積物と非津波堆積物の化学組成(18元素)を説明変数として、多変量解析手法の一つである SVM(サポートベクターマシン)を用いて両者が高確率で分けられることを示すとともに、18元 素から最も判別率の良い元素の組合せを探索した。昨年度の本共同研究では、Kuwatani et al.

(2014)の考え方を踏襲し、活断層/非活断層の断層ガウジの化学組成データを用いて線形判別 分析を行い、その結果得られた複数の一次式が両者を誤判別なく識別できること、両者の違いを 表す元素の組み合わせが TiO<sub>2</sub>、Al<sub>2</sub>O<sub>3</sub>、MgO、Na<sub>2</sub>O、P<sub>2</sub>O<sub>5</sub>、Baの6元素に絞られることを示し た。また、さらに検討を進めた立石ほか(2019)は、この6元素の判別への寄与の程度が TiO<sub>2</sub>、 MgO、P<sub>2</sub>O<sub>5</sub>、Na<sub>2</sub>O、Al<sub>2</sub>O<sub>3</sub>、Baの順になることを明らかにするとともに、入力データに1つだ け含まれている西南日本外帯のデータが母集団からかけ離れたものであり、汎化性能を下げる可 能性があることを示した。

本年度は、更新・追加された化学組成データベースをもとに、昨年度と同様に線形判別分析を 行い、その結果について検討する。また、判別分析に用いる元素の組み合わせの選択方法につい ても、寄与の程度を参考に検討する。これにより、より汎用性の高い判別式が得られること、活 断層/非活断層の違いを表す元素をさらに絞り込むことが期待される。

多変量解析の概要については、昨年度の報告書を参照されたい。ここでは、昨年度に引き続き 実施する線形判別分析について述べる。線形判別分析は、2群が正規分布すること、等分散性を持 つことを前提として、2群が最も良く分かれる判別式を一次式(線形)で求める手法である。この 時、基準となるのは多次元における2群の中心点である。今回のように元素を説明変数とした場 合、判別式の形は以下のようになる。

判別式:  $Y = \beta_1 \times SiO_2 + \beta_2 \times TiO_2 + \cdots + \alpha$ 

ここで、αとβは判別係数である。得られた一次式に2群のどちらか不明な試料の化学組成を 代入すると、どちらのグループに属するかが判別できる。判別の精度は、データ数が多いほど高 くなることが期待される。

## 4.1.2 解析の流れとツール

解析の流れと使用したツールを表 4.1-1 に示す。

| 順番 | 作業       | ツール                                                                   |
|----|----------|-----------------------------------------------------------------------|
| 1  | 入力データの整理 | Microsoft Excel<br>( <u>https://products.office.com/ja-jp/excel</u> ) |
| 2  | 変数選択     | R<br>( <u>https://www.r-project.org</u> )                             |
| 3  | 線形判別分析   | 使用パッケージ<br>② glmnet, glmnetUtils                                      |
| 4  | 結果図作成    | <ul><li>③ MASS</li><li>④ ggplot2, GGally</li></ul>                    |

| 表  | 4 1-1            | 解析の流れと使用ツール |
|----|------------------|-------------|
| 11 | <b>T</b> . I T I |             |

## (1) 入力データの整理

入力データは 2. で作成した化学組成データベースに 3. で得られたデータを加えたものを元と している。これを、Microsoft Excel を用いて整理し、CSV(コンマ区切りテキスト)形式に変換 した。

線形判別分析において必要な情報は、2 群の分類とそれに付随する多変量である。今回の解析では、2 群の分類として昨年度と同様に表 2.2-1の AFG 及び NFG (活断層/非活断層の断層ガウジ)を選択した。判別分析において、質の良い結果を得るためには、できるだけ多くの入力データを準備することが肝要である。しかし、化学組成データベースに収録した試料は、必ずしも同じ元素が測定されている訳ではない。そこで、データ数が多く取れるように元素を取捨選択し、昨年度と同じ 17 元素と、そこから Nb、Pb を除いた 15 元素とした。なお、立石ほか (2019) における検討を踏まえて、外帯のデータは入力データから除いた。除外対象としたのは、Sugisaki et al. (1980)の ML7、及び Hashimoto et al. (2009)の Fault gouge の 2 試料である。表 4.1-2 に入力データの概要を、表 4.1-3 に解析対象試料の一覧を示す。

| 解析対象試料     | 試料の数                              | 解析に使用した元素                                                                 | ファイル名                   |
|------------|-----------------------------------|---------------------------------------------------------------------------|-------------------------|
|            |                                   |                                                                           | 17 元素(CASE 1):          |
|            | 17 元素 : 計 72 試料                   | Sign Tign Alage For $O_{2}$ *                                             | $CASE1_17 elements_$    |
| 主 9 9-1 の  | (AFG51, NFG21)                    | $M_{2}O_{2}$ , $M_{2}O_{2}$ , $M_{2}O_{3}$ , $Fe_{2}O_{3}$ , $M_{2}O_{2}$ | 72samples.csv           |
|            |                                   | $K_{2}O$ $D_{2}O_{2}$ $D_{2}O_{3}$ $N_{2}O_{3}$ $N_{2}O_{3}$              |                         |
| AFG 20 NFG | 15 元素 : 計 77 試料<br>(AFG53, NFG24) | $R_{20}$ , $r_{205}$ , $R_{0}$ , $Sr$ , $r$ , $Da$ ,<br>Th (Nh Ph)        | 15 元素(CASE 2):          |
|            |                                   |                                                                           | $CASE2_{15}elements_{}$ |
|            |                                   |                                                                           | 77samples.csv           |

表 4.1-2 入力データの概要

【付録5】

| 通番 | 試料名    | タイプ | 通番 | 試料名     | タイプ | 通番 | 試料名      | タイプ | 通番 | 試料名       | タイプ |
|----|--------|-----|----|---------|-----|----|----------|-----|----|-----------|-----|
| 1  | AU1b   | AFG | 21 | FG02-A  | AFG | 41 | FSW-C08  | AFG | 61 | 2301      | AFG |
| 2  | AU5    | AFG | 22 | FG02-B  | AFG | 42 | FSW-C09  | AFG | 62 | 2504      | NFG |
| 3  | AU6    | AFG | 23 | K-19    | AFG | 43 | FSW-C10  | AFG | 63 | 2602      | NFG |
| 4  | AU8a   | AFG | 24 | K-20    | AFG | 44 | 3-202    | AFG | 64 | 2603      | NFG |
| 5  | AU8b   | AFG | 25 | GSB-C09 | AFG | 45 | 3-203    | AFG | 65 | Hr10A_1   | NFG |
| 6  | AU9    | AFG | 26 | GSB-C10 | AFG | 46 | 3-204    | AFG | 66 | Hr10A_2   | NFG |
| 7  | Ne3    | AFG | 27 | GSB-C11 | AFG | 47 | GSK1     | AFG | 67 | Ko9-4-2_2 | NFG |
| 8  | Ne4    | AFG | 28 | GSB-C02 | AFG | 48 | GSK2     | AFG | 68 | Ko9-4-2_3 | NFG |
| 9  | Ne5    | AFG | 29 | GSB-C03 | AFG | 49 | GSK3     | AFG | 69 | SGR2      | NFG |
| 10 | Ne6    | AFG | 30 | GSB-C06 | AFG | 50 | ARM1     | AFG | 70 | SGR3      | NFG |
| 11 | IT3    | AFG | 31 | GSB-C07 | AFG | 51 | ARM4     | AFG | 71 | MP-07-1   | NFG |
| 12 | IT5    | AFG | 32 | GSB-C08 | AFG | 52 | S14-1a_2 | AFG | 72 | MP-07-2   | NFG |
| 13 | 98-10  | AFG | 33 | GSB-C12 | AFG | 53 | S14-1a_3 | AFG | 73 | MP-07-3   | NFG |
| 14 | 99-1   | AFG | 34 | GSB-C13 | AFG | 54 | HRK-C05  | NFG | 74 | Ko12-1-1  | NFG |
| 15 | 114-1  | AFG | 35 | GSB-C14 | AFG | 55 | HRK-C09  | NFG | 75 | m003-1    | NFG |
| 16 | FG01-1 | AFG | 36 | STK-C02 | AFG | 56 | HRK-C13  | NFG | 76 | m003-3    | NFG |
| 17 | FG01-2 | AFG | 37 | STK-C03 | AFG | 57 | HRK-C14  | NFG | 77 | m003-4    | NFG |
| 18 | FG03-1 | AFG | 38 | STK-C07 | AFG | 58 | HRK-C15  | NFG |    |           |     |
| 19 | FG05-1 | AFG | 39 | STK-C08 | AFG | 59 | 1602     | NFG |    |           |     |
| 20 | FG06-1 | AFG | 40 | STK-C09 | AFG | 60 | 1603     | NFG |    |           |     |

表 4.1-3 解析対象試料の一覧

※着色したセルは15元素のケースのみで使用した試料を示す。

岩石学における化学組成の検討では、酸化物の総和を 100%として規格化されることも多い。 この場合、吸着水 (H<sub>2</sub>O-) や構造水 (H<sub>2</sub>O+) 及び強熱減量 (LOI; loss of ignition) などは無視 されることになる。また、鉄の酸化物については、目的により、Fe<sub>2</sub>O<sub>3</sub> と FeO とが湿式分析を用 いて分けて定量される場合や、全鉄を Fe<sub>2</sub>O<sub>3</sub> もしくは FeO として機器分析で定量される場合があ る。文献により、これらの扱いは様々であるものの、本研究の目的に照らせば、極力簡単な作業 で活断層と非活断層が区別される可能性を追求することが必要である。したがって、化学組成の 文献表示の 100%規格化は行わず文献値をそのまま採用する。主要元素については各酸化物の重 量%、微量元素については各元素の ppm の数値である。さらに鉄については湿式分析を不要とす べく、全鉄を Fe<sub>2</sub>O<sub>3</sub> 換算することとした。具体的には、文献に Fe<sub>2</sub>O<sub>3</sub>、FeO それぞれの重量%が 掲載されている場合、FeO の値を 1.1114 倍して Fe<sub>2</sub>O<sub>3</sub> の値と足し合わせる岩石学の一般的取り 扱いに則った。

#### (2) 変数選択

入力データの説明変数は表 4.1-2 の通り 17、あるいは 15 元素である。これは本来、100 に満 たないデータ数では到底分けられない次元とみなされる。一般に、説明変数の数(=次元)が増 えると、個別のデータの差異が小さくなり、判別ができなくなる(これを次元の呪いと呼ぶ)。ま た、説明変数が増えた結果、分類が細分化し、入力データに特化した判別式となってしまう場合 がある(過剰適合と呼ぶ)。その他にも、説明変数同士に極端に高い相関がある場合、標準誤差が 大きくなり、新たなデータが加わった時に推定値が大きく変化する問題がある(多重共線性と呼 ぶ)。これらはいずれも、線形判別分析の結果として得られる判別式の汎化性能を低下させる原因 となりうる。さらに、15 個の元素の組合せは約 3 万通りとなり、最適な元素の組合せの探索が困 難になる。これを回避するためには、予め判別に適した元素を選択する必要がある。そこで、赤 池情報量規準(AIC、Akaike, 1973)を使って変数選択を行った。また、選択された変数同士が多 重共線性をもつかどうかを判断するため、各変数の分散拡大係数(VIF)を算出した。

AIC は、複数の統計的モデルの良さを比較評価するための規準であり、AIC= -2×(モデルの 最大対数尤度)+2×(モデルの自由パラメータ数) の値が小さいほど予測精度の高いモデルであ るとしたものである(二宮, 1999)。R で実装されているものは、変数の組合せを変えて AIC を 逐次評価し、最も低い値を出したものを最良モデルとする。昨年度の本共同研究でも AIC による 変数選択を行っているが、今年度は変数選択の方法と結果の出力を変更した。昨年度の変数選択 の方法は、説明変数を全て含んだ状態から1ステップごとに各変数を除いてAIC を計算し、重回 帰分析の結果が最も改善する変数の組合せを逐次求めていく変数減少法と呼ばれる方法を採用し ていた。これに対して今年度は、1 ステップごとに前のステップで除いた変数を加えて AIC が改 善するかどうかを確かめる変数増減法と呼ばれる方法を採用した。なお、変数選択にはこの他に も変数増加法と呼ばれるものがある。結果の出力は、昨年度はAICのステップと残った元素だけ を示す形となっていたが、今年度はそれらとともに、重回帰分析により計算した各元素の t 値と p 値、及びそれに基づく重みが出力されるようにした。t 値と p 値はいずれも統計的仮説検定に用 いられ、本共同研究の場合は活断層と非活断層の2群における各元素の平均値が有意に異なると 言えるかどうかを検定する値となる。t値が大きく、p値が小さいほど、その元素は2群の違いを 有意に説明しうる、ということになる。 通例、p値が 0.05 (5%)を下回ると帰無仮説が棄却され、 各変数における2群の分布が等しいことを否定する。

VIF は、多重共線性の程度を表す量であり、VIF=1/(1-R<sup>2</sup>)の値が小さいほど多重共線性が低い。 ここで、R<sup>2</sup>はある説明変数(Xとする)を他の全ての説明変数で重回帰分析した時の決定係数で ある。Xを他の説明変数で9割説明できる場合のVIFは10であり、完全相関の場合はゼロ除算 となるため解が得られない。VIFが10を超えると、その変数は多重共線性の要因になっているこ とが示唆される(川端ほか, 2018など)。

これらの作業は全て、オープンソースの統計解析プログラミング言語である R で実行した。R 及び CRAN と呼ばれる R の計算ライブラリの信頼性は高く、FDA (アメリカ食品医薬局) にお ける薬事申請・報告での使用が公式に認められている。

以下に R における AIC 計算のコードを解説(#で始まる行がコードとして実行されない解説で ある)とともに示す。このコードを実行すると、最適な元素の組合せの候補が計算過程とともに aic.txt というテキストファイルに出力される。

#### #パッケージの読み込み

> library(glmnet, glmnetUtils, car) #入力データ(forAIC.csv)の読み込み(タイプを数値化した Z という列を追加したファイル) > data<-read.csv("forAIC.csv",header = T)</pre> #重回帰分析(目的変数 Z を説明変数候補である元素 15 個でどの程度説明できるか) > mod.full<-glm(Z ~.,data=dat) #変数を減らしたり増やしたりして AIC を計算し、改善されなくなった時に残っている変数を採用する > mod.step<-stepAIC(mod.full, direction = "both")</pre> #AIC の出力ファイルの用意 > sink("aic.txt") #AIC の結果の出力 > summary(mod.step) #出力ファイルを閉じる > sink() #VIFの出力ファイルの用意 > sink("vif.txt") #VIF の結果の出力 > vif(mod.full)

#出力ファイルを閉じる > sink()

## (3) 線形判別分析

変数選択で決定した元素の組合せで線形判別分析を行った。分析は変数選択と同じく R で行った。以下に解析の一連のコードを解説とともに示す。

```
#ライブラリの読み込み
> library("MASS")
#入力データ(CASE1_*.csv)の読み込み
> data <- read.csv("CASE1_*.csv",header = T)</pre>
#2 群の分類データ列の読み込み(AFG/NFG)
> type <- data[,3]
#多変量列の読み込み(15元素の場合)
> com <- data[4:18]
#多変量列の標準化 係数比較のために必要
> com.scale <- data.frame(scale(com))</pre>
#分類データ列と多変量列の結合(教師データ作成)
> learn.data <- cbind(type, com.scale)
#線形判別分析
> Z<-lda(type ~., data = learn.data)
#一次式の係数 α
> aa <- apply(Z$means %*% Z$scaling, 2, mean)
#一次式の係数 B
> scaling <- Z$scaling
#各試料の判別得点 正負で2群の推定結果が判別できる
> score <- predict(Z)$x - aa
#type と score の結合
> df <- data.frame(type, score)
#\alpha, \beta, 判別得点の出力
> sink("CASE1_a.txt")
> aa
> sink()
> sink("CASE1_b.txt")
> scaling
> sink()
> sink("CASE1_score.txt")
> score
> sink()
```

## (4) 結果図作成

線形判別分析の結果を判断しやすくするため、R のグラフ描画ライブラリ ggplot2 を用いて図 4.1-1 のような結果図を作成した。



プロットは判別得点のヒストグラムであり、横軸(LD1)が判別得点を、縦軸が頻度を表す。 図中赤色の棒が活断層(AFG)のデータ、緑色の棒が非活断層(NFG)のデータである。LD1 が正の値なら非活断層、負の値なら活断層と判別されたことになり、この図を見れば誤判別の数 が把握できる。プロットのタイトルは、以下の情報を表す。

CASE 1, FG\_17elements, N=72

1 2 3

① 分析ケースの番号を示す。

②③ 線形判別分析に用いた元素の数と試料の数をそれぞれ表す。 結果図のプロット用のコードを以下に示す。

> library(ggplot2, GGally)
> g <- ggplot (df, aes (x = LD1, fill = type))
> g <- g + geom\_histogram(position="stack",binwidth = 0.2, boundary=0,
colour="black",alpha=0.6,breaks=seq(-6,6,by=0.2))+scale\_y\_continuous(breaks =
seq(0,15,by=2),limits=c(0,15))+labs(title="CASE 1, FG\_17elements, N=72")+theme\_gray(base\_size =
18)
> plot(g)

#### 4.2 結果

#### 4.2.1 線形判別分析(変数選択なし)

最初に、変数選択をしない状態で線形判別分析を2ケース行った。CASE1は昨年度と同じ17 元素(72試料)、CASE2は17元素からNbとPbを除いた15元素(77試料)である。なお、 昨年度は17元素(57試料)で同様の解析を行い、誤判別なしの結果が得られている。

#### (1) CASE 1:17 元素・72 試料

17 元素全てで線形判別分析を行った結果を図 4.2-1 に示す。判別率は 92%で、72 試料中 6 試料で誤判別となった。誤判別となったのは 5 試料が活断層試料、1 試料が非活断層試料で、活断層試料は六甲断層のものが 1 試料、その他 4 試料は今年度新たに追加した白木-丹生断層の試料であった。非活断層試料は江若花崗岩中の断層のものであった。

#### (2) CASE 2:15 元素・77 試料

15 元素全てで線形判別分析を行った結果を図 4.2-2 に示す。判別率は 92%で、77 試料中 6 試料で誤判別となった。誤判別となったのは 5 試料が活断層試料、1 試料が非活断層試料で、活断層試料は全て今年度新たに追加した白木-丹生断層の試料であった。非活断層試料は江若花崗岩中の断層のものであった。

CASE 1、CASE 2 とも、誤判別となった試料には白木-丹生断層の試料が含まれており、これ が誤判別を生む要因となっている可能性がある。これを検証するために、白木-丹生断層の試料を 除いて 17 元素と 15 元素の解析を行った。

#### (3) CASE 3:17 元素・67 試料(白木-丹生断層試料除く)

17 元素のデータから白木-丹生断層の試料を除いて線形判別分析を行った結果を図 4.2-3 に示 す。判別率は 100%であった。

#### (4) CASE 4:15 元素・72 試料(白木-丹生断層試料除く)

15 元素のデータから白木-丹生断層の試料を除いて線形判別分析を行った結果を図 4.2-4 に示す。判別率は 100%であった。

CASE 3 と CASE 4 で白木-丹生断層の試料を除いて解析を行った結果、17 元素と 15 元素のい ずれも判別率に改善が見られた。CASE 1 と CASE 2 で見られた誤判別の要因は、白木-丹生断層 のデータにあると考えられる。これは、母集団が 2 群ではなく実際には 3 群である可能性を示唆 しており、これを検証するため、白木-丹生断層試料を含めたデータで AFG を SFG(横ずれ断層) と RFG(逆断層;本共同研究のデータでは白木-丹生断層試料のみ)に分け、3 群の線形判別分析 (重判別分析と呼ぶ)を行った。

#### (5) CASE 5:17 元素・72 試料(3 群)

**17** 元素のデータを SFG、RFG、NFG の 3 群に分けて重判別分析を行った結果を図 4.2-5 に示 す。分析の結果、LD1 と LD2 の 2 つの判別得点を与える判別式が得られ、LD1 で SFG とそれ以 外が、LD2 で RFG と NFG がほぼ分かれる結果となった。LD1 では非活断層試料の誤判別が 1 試料あり、LD2 では逆断層試料の誤判別が 1 試料あった。

### (6) CASE 6:15 元素・77 試料(3 群)

15 元素のデータを SFG、RFG、NFG の 3 群に分けて重判別分析を行った結果を図 4.2-6 に示 す。分析の結果、LD1 と LD2 の 2 つの判別式が得られ、LD1 で SFG とそれ以外が、LD2 で RFG と NFG がほぼ分かれる結果となった。LD1 では非活断層試料の誤判別が 1 試料あり、LD2 では 逆断層試料の誤判別が 1 試料、非活断層試料の誤判別が 5 試料あった。

CASE 5 と CASE 6 で横ずれ断層、逆断層(白木-丹生断層)、非活断層の3 群で重判別分析を 行った結果、いずれも母集団が3 群の性質を持っている可能性が示された。白木-丹生断層の化学 組成データが独立した性質を示す要因は、以下のように2 つ考えられる。

- ・逆断層と横ずれ断層が異なる化学的性質を持っている可能性。本共同研究で対象とした活断層のうち、逆断層は白木-丹生断層のみであり、他は横ずれ断層である。
- ・白木-丹生断層が他の活断層と異なる固有の化学的性質を持っている可能性。

これを検証するには逆断層のデータを増やす必要があるため、現段階では可能性以上の議論を するのは難しい。また、本共同研究の目的を踏まえると、試料数は多い方が望ましい。そこで、 これ以降の解析は、白木-丹生断層の試料を除いた CASE 4 のデータを用いて行うこととする。

表 4.2-1 に、CASE 1 から CASE 6 で得られた判別式における各元素の係数 β を示す。













【付録5】









| CASE 1                  | $\beta$ _LD1  | CASE 2            | $\beta$ _LD1      | CASE 3       | $\beta$ _LD1 | CASE 4      | $\beta$ _LD1 |
|-------------------------|---------------|-------------------|-------------------|--------------|--------------|-------------|--------------|
| SiO <sub>2</sub>        | 0.53          | $SiO_2$           | 0.48              | $SiO_2$      | -0.74        | $SiO_2$     | -0.49        |
| $TiO_2$                 | -1.18         | $TiO_2$           | -0.60             | $TiO_2$      | -2.28        | $TiO_2$     | -1.59        |
| $AI_2O_3$               | -0.88         | $AI_2O_3$         | -0.81             | $AI_2O_3$    | -1.35        | $AI_2O_3$   | -1.50        |
| ${\sf Fe}_2{\sf O}_3^*$ | 1.28          | $Fe_2O_3^*$       | 0.24              | $Fe_2O_3^*$  | -0.77        | $Fe_2O_3^*$ | -0.65        |
| MnO                     | -1.15         | MnO               | 0.14              | MnO          | 0.00         | MnO         | 0.31         |
| MgO                     | 0.38          | MgO               | 0.33              | MgO          | 0.71         | MgO         | 0.53         |
| CaO                     | -0.11         | CaO               | -0.23             | CaO          | -1.29        | CaO         | -1.19        |
| $Na_2O$                 | 0.26          | Na <sub>2</sub> O | -0.18             | $Na_2O$      | -0.29        | $Na_2O$     | -0.24        |
| $K_2O$                  | 0.25          | $K_2O$            | -0.02             | $K_2O$       | 0.22         | $K_2O$      | 0.11         |
| $P_2O_5$                | 1.04          | $P_2O_5$          | 0.57              | $P_2O_5$     | 1.85         | $P_2O_5$    | 1.42         |
| Rb                      | 0.93          | Rb                | 1.01              | Rb           | 1.03         | Rb          | 1.09         |
| Sr                      | 0.12          | Sr                | 0.30              | Sr           | 0.56         | Sr          | 0.60         |
| Υ                       | 0.13          | Υ                 | 0.10              | Y            | -0.46        | Y           | -0.56        |
| Nb                      | 0.46          | Ва                | -0.39             | Nb           | 0.27         | Ва          | -0.86        |
| Ba                      | <b>-</b> 0.72 | Th                | 0.02              | Ва           | -1.02        | Th          | 0.62         |
| Pb                      | -0.38         |                   |                   | Pb           | -0.28        |             |              |
| Th                      | 0.06          |                   |                   | Th           | 0.49         |             |              |
|                         |               |                   |                   |              |              |             |              |
|                         |               |                   |                   |              |              |             |              |
| CASE 5                  | $\beta$ _LD1  | β_LD2             | CASE 6            | $\beta$ _LD1 | $\beta$ _LD2 |             |              |
| $SiO_2$                 | 0.66          | 1.42              | $SiO_2$           | 0.46         | 1.58         |             |              |
| $TiO_2$                 | 2.32          | 0.33              | $TiO_2$           | 1.64         | 0.82         |             |              |
| $AI_2O_3$               | 1.32          | -0.13             | $AI_2O_3$         | 1.48         | 0.17         |             |              |
| ${\sf Fe}_2{\sf O}_3^*$ | 0.98          | 2.89              | $Fe_2O_3^*$       | 0.62         | 1.30         |             |              |
| MnO                     | -0.23         | -2.00             | MnO               | -0.30        | -0.08        |             |              |
| MgO                     | -0.75         | -0.11             | MgO               | -0.55        | 0.00         |             |              |
| CaO                     | 1.39          | 1.12              | CaO               | 1.24         | 1.08         |             |              |
| $Na_2O$                 | 0.33          | 0.70              | Na <sub>2</sub> O | 0.22         | -0.09        |             |              |
| $K_2O$                  | -0.22         | 0.18              | $K_2O$            | -0.10        | -0.16        |             |              |
| $P_2O_5$                | -1.92         | -0.18             | $P_2O_5$          | -1.44        | -0.62        |             |              |
| Rb                      | -0.80         | 0.69              | Rb                | -1.02        | 0.84         |             |              |
| Sr                      | -0.58         | -0.35             | Sr                | -0.61        | -0.15        |             |              |
| Y                       | 0.35          | 0.52              | Y                 | 0.57         | 0.94         |             |              |
| Nb                      | -0.28         | 0.44              | Ba                | 0.91         | 0.34         |             |              |
| Ba                      | 1.07          | -0.11             | Th                | -0.66        | -0.79        |             |              |
|                         |               |                   |                   |              |              |             |              |
| Pb                      | 0.20          | -0.40             |                   |              |              |             |              |

表 4.2-1 CASE 1~CASE 6 の判別式の係数 β

#### 4.2.2 変数選択(AIC)

Th

(1) CASE 4:15元素・72 試料(白木-丹生断層試料除く)

-0.45

-0.32

AIC の結果、15 個の元素から TiO<sub>2</sub>、Al<sub>2</sub>O<sub>3</sub>、MnO、MgO、CaO、P<sub>2</sub>O<sub>5</sub>、Rb、Sr、Y、Ba、Th の 11 元素が最適な組合せとして抽出された。AIC の計算過程を以下に示す。Start 時点での元素 の数は 15 個で、AIC は-13.3 であった。Step ごとに元素の数が一つずつ減り、AIC が改善されて いき、最後の Step では前述の 11 個の元素が残り、AIC は-16.96 となった。

Start: AIC=-13.3 Judge ~ SiO2 + TiO2 + Al2O3 + Fe2O3 + MnO + MgO + CaO + Na2O + K2O + P2O5 + Rb + Sr + Y + Ba + Th

```
\begin{array}{l} \mathrm{Step:} \quad \mathrm{AIC}{=}{}^{-1}4.87\\ \mathrm{Judge} \sim \mathrm{SiO2} + \mathrm{TiO2} + \mathrm{Al2O3} + \mathrm{Fe2O3} + \mathrm{MnO} + \mathrm{MgO} + \mathrm{CaO} + \mathrm{Na2O} + \mathrm{P2O5} + \mathrm{Rb} + \mathrm{Sr} + \mathrm{Y} + \mathrm{Ba} + \mathrm{Th}\\ \mathrm{Step:} \quad \mathrm{AIC}{=}{}^{-1}5.9\\ \mathrm{Judge} \sim \mathrm{SiO2} + \mathrm{TiO2} + \mathrm{Al2O3} + \mathrm{Fe2O3} + \mathrm{MnO} + \mathrm{MgO} + \mathrm{CaO} + \mathrm{P2O5} + \mathrm{Rb} + \mathrm{Sr} + \mathrm{Y} + \mathrm{Ba} + \mathrm{Th}\\ \mathrm{Step:} \quad \mathrm{AIC}{=}{}^{-1}6.95\\ \mathrm{Judge} \sim \mathrm{TiO2} + \mathrm{Al2O3} + \mathrm{Fe2O3} + \mathrm{MnO} + \mathrm{MgO} + \mathrm{CaO} + \mathrm{P2O5} + \mathrm{Rb} + \mathrm{Sr} + \mathrm{Y} + \mathrm{Ba} + \mathrm{Th}\\ \mathrm{Step:} \quad \mathrm{AIC}{=}{}^{-1}6.96\\ \mathrm{Judge} \sim \mathrm{TiO2} + \mathrm{Al2O3} + \mathrm{MnO} + \mathrm{MgO} + \mathrm{CaO} + \mathrm{P2O5} + \mathrm{Rb} + \mathrm{Sr} + \mathrm{Y} + \mathrm{Ba} + \mathrm{Th}\\ \mathrm{Call:}\\ \mathrm{glm}(\mathrm{formula} = \mathrm{Judge} \sim \mathrm{TiO2} + \mathrm{Al2O3} + \mathrm{MnO} + \mathrm{MgO} + \mathrm{CaO} + \mathrm{P2O5} + \mathrm{Rb} + \mathrm{Sr} + \mathrm{Y} + \mathrm{Ba} + \mathrm{Th}, \, \mathrm{data} = \\ \mathrm{aic.data}) \end{array}
```

AIC の Summary を以下に示す。Coefficients の項に各元素のt 値とp 値、及びp 値に基づく 重みが\*の数として出力されている。p 値が 0 から 0.001 の間であれば "\*\*\*"、0.001 から 0.01 の 間であれば "\*\*"、0.01 から 0.05 の間であれば "\*"、0.05 から 0.1 の間であれば "." が出力され、 0.1 から 1 の間であれば何も出力されない。抽出された 11 元素のうち TiO<sub>2</sub>、Al<sub>2</sub>O<sub>3</sub>、CaO、P<sub>2</sub>O<sub>5</sub>、 Rb、Ba が\*\*\*で特に重みが高く、MgO、Th が\*\*でそれに続く。

| Call:<br>glm(formul<br>aic.data | la = Judge ~ Ti<br>h) | 02 + Al2O3 + ]                 | MnO + Mg | 0 + CaO + P. | 2O5 + Rb + Sr + Y + Ba + Th, data = |
|---------------------------------|-----------------------|--------------------------------|----------|--------------|-------------------------------------|
| Deviance R                      | Residuals:            |                                |          |              |                                     |
| Min                             | 1Q M                  | Iedian 3Q                      | Ma       | х            |                                     |
| -0.43699                        | -0.12308 -0           | 0.01845 0.0                    | 9901 0.4 | 9708         |                                     |
|                                 |                       |                                |          |              |                                     |
| Coefficient                     | s:<br>Estimato        | Std Error                      | t valuo  | $\Pr(> + )$  | Signif codes                        |
| (Intercent)                     | 1 2/83/69             | 0 1986902                      | 6 283    | 110-08       | ***                                 |
| TiO2                            | -1 3018926            | 0.3199883                      | -4 069   | 0.000140     | ***                                 |
| A12O3                           | -0.0905050            | 0.0126563                      | -7 151   | 1.38e-09     | ***                                 |
| MnO                             | 0 1033768             | 0.0542123                      | 1 907    | 0.061326     |                                     |
| MgO                             | 0.3458374             | 0.1078834                      | 3.206    | 0.002161     | **                                  |
| CaO                             | -0.1105317            | 0.0195513                      | -5.653   | 4.62e-07     | ***                                 |
| P2O5                            | 4.6945047             | 1.3052440                      | 3.597    | 0.000653     | ***                                 |
| Rb                              | 0.0020886             | 0.0003880                      | 5.383    | 1.28e-06     | ***                                 |
| Sr                              | 0.0007945             | 0.0003492                      | 2.275    | 0.026483     | *                                   |
| Y                               | -0.0009190            | 0.0004163                      | -2.208   | 0.031113     | *                                   |
| Ba                              | -0.0004492            | 0.0001042                      | -4.310   | 6.16e-05     | ***                                 |
| Th                              | 0.0118683             | 0.0043461                      | 2.731    | 0.008283     | **                                  |
|                                 |                       |                                |          |              |                                     |
| Signif. code                    | es:                   |                                |          |              |                                     |
| 0 '***' 0.00                    | 1 '**' 0.01 '*' 0.0   | $05 ^{\circ}  0.1 ^{\circ}  1$ |          |              |                                     |
| (D)                             |                       |                                |          | 1 0 000 000  | 227)                                |

Null deviance: 16.0000 on 71 degrees of freedom Residual deviance: 2.3213 on 60 degrees of freedom AIC: -16.959

Number of Fisher Scoring iterations: 2

#### 4.2.3 線形判別分析(変数選択あり)

AIC による変数選択の結果抽出された元素を用いて線形判別分析を行った。各ケースの元素の 組み合わせを表 4.2-2 に示す。

### (1) CASE 7:11 元素/15 元素・72 試料(白木-丹生断層試料除く)

15 個の元素から抽出された TiO<sub>2</sub>、Al<sub>2</sub>O<sub>3</sub>、MnO、MgO、CaO、P<sub>2</sub>O<sub>5</sub>、Rb、Sr、Y、Ba、Th の 11 元素のデータを用いて線形判別分析を行った結果を図 4.2-7 に示す。判別率は 100%で、15 元 素全てを用いた CASE 4 の解析と同じ結果となった。VIF は全ての元素で 10 を下回っており、 明らかな多重共線性は認められない (表 4.2-3)。しかし、TiO<sub>2</sub> と P<sub>2</sub>O<sub>5</sub> の 2 つは 8 を超えており、 かなり高い。

### (2) CASE 8:8元素/15元素・72 試料(白木-丹生断層試料除く)

AIC の Summary で重みが\*\*以上となった 8 元素 (TiO<sub>2</sub>、Al<sub>2</sub>O<sub>3</sub>、MgO、CaO、P<sub>2</sub>O<sub>5</sub>、Rb、Ba、Th)のデータを用いて線形判別分析を行った結果を図 4.2·8 に示す。判別率は 100%で、15 元素全てを用いた CASE 4 の解析と同じ結果となった。VIF は全ての元素で 10 を下回っており、明らかな多重共線性は認められない (表 4.2·3)。TiO<sub>2</sub> と P<sub>2</sub>O<sub>5</sub>の VIF も 4~5 前後と、CASE 7 に比べ改善されている。

#### (3) CASE 9:6元素/15元素・72 試料(白木-丹生断層試料除く)

AIC の Summary で重みが\*\*\*となった 6 元素(TiO<sub>2</sub>、Al<sub>2</sub>O<sub>3</sub>、CaO、P<sub>2</sub>O<sub>5</sub>、Rb、Ba)のデー タを用いて線形判別分析を行った結果を図 4.2-9 に示す。判別率は 97%で、72 試料中 2 試料で 誤判別となった。誤判別となった 2 試料はいずれも非活断層試料で、境峠断層周辺の断層のもの である。VIF は全ての元素で10を下回っており、明らかな多重共線性は認められない(表 4.2-3)。 TiO<sub>2</sub> と P<sub>2</sub>O<sub>5</sub> の VIF は CASE 8 とあまり変わらない。

#### CASE 7 CASE 8 CASE 9 CASE AIC\*\*,\*\*\* AIC\*\*\* NOTE AIC ELEMENTS 11 8 6 ${\rm SiO}_2$ $TiO_2$ $\mathsf{AI}_2\mathsf{O}_3$ $Fe_2O_3^*$ MnO MgO CaO $Na_2O$ $K_2O$ $\mathsf{P}_2\mathsf{O}_5$ Rb Sr Y Ва Τh RESULT 100% 100% 97%







表 4.2-2 AIC により選択された元素の組合せ

【付録5】







CASE 9, FG\_6elements, N=72

付 5-27

| CASE 7           | $\beta$ _LD1 | VIF  | CASE 8           | $\beta$ _LD1 | VIF  | CASE 9           | $\beta$ _LD1 | VIF  |
|------------------|--------------|------|------------------|--------------|------|------------------|--------------|------|
| TiO <sub>2</sub> | -1.62        | 8.25 | TiO <sub>2</sub> | -1.17        | 4.80 | TiO <sub>2</sub> | -0.95        | 4.41 |
| $AI_2O_3$        | -1.30        | 1.72 | $AI_2O_3$        | -1.08        | 1.61 | $AI_2O_3$        | -1.09        | 1.57 |
| MnO              | 0.31         | 1.37 | MgO              | 0.40         | 1.45 | CaO              | -0.80        | 1.52 |
| MgO              | 0.58         | 1.72 | CaO              | -0.78        | 1.59 | $P_2O_5$         | 0.97         | 3.97 |
| CaO              | -1.05        | 1.78 | $P_2O_5$         | 1.07         | 4.00 | Rb               | 0.94         | 1.77 |
| $P_2O_5$         | 1.41         | 8.02 | Rb               | 0.91         | 2.32 | Ba               | -0.61        | 1.52 |
| Rb               | 1.24         | 2.75 | Ba               | -0.58        | 1.76 |                  |              |      |
| Sr               | 0.53         | 2.86 | Th               | 0.35         | 2.80 |                  |              |      |
| Y                | -0.69        | 5.02 |                  |              |      |                  |              |      |
| Ва               | -0.85        | 2.02 |                  |              |      |                  |              |      |
| Th               | 0.68         | 3.20 |                  |              |      |                  |              |      |

表 4.2-3 CASE 7~CASE 9 の各元素の判別係数 β と VIF

#### 5. 考察

#### 5.1 2群の違いを表す元素に関する考察

昨年度の共同研究、及び立石ほか (2019) では、判別に強く寄与する元素は TiO<sub>2</sub>、MgO、P<sub>2</sub>O<sub>5</sub>、 Na<sub>2</sub>O、Al<sub>2</sub>O<sub>3</sub>、Ba という結論となった。データ数を増やした今年度の結果から、AFG と NFG の 判別に強く寄与する元素、ひいては 2 群の違いを表す元素について考察する。

|表 5.1-1 に、CASE 4 及び CASE 7 から CASE 9 の判別式の係数 β を降順で示す。今年度の分 析では、データを標準化しており、各元素にかかる係数βを直接比較することで、判別への寄与 度を測ることができる。これによれば、上位6位の元素(TiO<sub>2</sub>、Al<sub>2</sub>O<sub>3</sub>、CaO、P<sub>2</sub>O<sub>5</sub>、Rb、Ba; CASE 9 と同じ元素)は、順位の変動はあるものの4つのケースで共通であり(表 5.1-1の網掛 け部)、これらの元素が2群の違いを表す元素の候補と見なせる。中でも、TiO<sub>2</sub>、Al<sub>2</sub>O<sub>3</sub>、P<sub>2</sub>O<sub>5</sub>、 Rb は 3 つのケースで上位 4 位を占めている。上位 6 位の各元素間の関係を、入力データのクロ スプロットで示す(図 5.1-1)。クロスプロットの色は線形判別分析の結果図と対応しており、赤 がAFGの、青がNFGのデータである。 左上から右下にかけて配置した各元素の密度分布図から は、TiO<sub>2</sub>、CaO、P<sub>2</sub>O<sub>5</sub>、Baで共通の分布パターンが認められ、NFG が低い値に集中するのに対 して、AFG はより高い値で幅広い分布を示す。このため、左下に配置した各元素間の散布図では、 これらの元素のプロットは線形に近い分布となる。中でも特に、TiO2と P2O5 は顕著な線形性を 有する。右上に配置した各元素間の相関係数でも、TiO2 と P2O5 は AFG、NFG の 2 群と非常に 高い相関を示している。次いで2群との相関が高い組合せは Al2O3 と Rb である。両者は単体の 密度分布図では2群の分布が重なっていて、判別に寄与しなさそうに見える。しかし、両者の関 係を表す散布図では、右下から左上の軸を境に2群が分散する。このようなデータの分布は、線 形判別分析の概念を2次元で表した場合の理想に近い。すなわち、この2つの元素で判別分析を 行った場合、この軸に直交する軸が判別式となる。このような元素間の関係は CASE 7 から CASE 9のVIFにも表れており、TiO<sub>2</sub>と $P_2O_5$ は共通して高い値を出すが、 $Al_2O_3$ とRbは共存しても高 い値にならない(表 4.2-3)。線形判別分析の変数選択の観点から見ると、Al<sub>2</sub>O<sub>3</sub> と Rb は判別に 強く寄与するが、TiO<sub>2</sub>とP<sub>2</sub>O<sub>5</sub>はどちらか片方を除いた方が良い。後者は相関関係にあり、同じ 変数が2の入っているのと変わらないためである。従って、判別に強く寄与する元素はAl2O3と Rb、そしてTiO<sub>2</sub>とP<sub>2</sub>O<sub>5</sub>のどちらかと予想される。しかし、2群の違いを表す元素という意味で は、これら4つの元素はいずれも重要と考えられる。

| 表 5.1-1 CASE 4,7 | 7, 8, | 9の判別式の係数β | (降順) |
|------------------|-------|-----------|------|
|------------------|-------|-----------|------|

| No. | CASE 4           | $\beta$ _LD1 | $\beta$ _ABS | _ | CASE 7                        | $LD1_{\beta}$ | $\beta$ _ABS |
|-----|------------------|--------------|--------------|---|-------------------------------|---------------|--------------|
| 1   | TiO <sub>2</sub> | -1.59        | 1.59         |   | TiO <sub>2</sub>              | -1.62         | 1.62         |
| 2   | $AI_2O_3$        | -1.50        | 1.50         |   | P <sub>2</sub> O <sub>5</sub> | 1.41          | 1.41         |
| 3   | $P_2O_5$         | 1.42         | 1.42         |   | $AI_2O_3$                     | -1.30         | 1.30         |
| 4   | CaO              | -1.19        | 1.19         |   | Rb                            | 1.24          | 1.24         |
| 5   | Rb               | 1.09         | 1.09         |   | CaO                           | -1.05         | 1.05         |
| 6   | Ва               | -0.86        | 0.86         |   | Ва                            | -0.85         | 0.85         |
| 7   | $Fe_2O_3$        | -0.65        | 0.65         |   | Υ                             | -0.69         | 0.69         |
| 8   | Th               | 0.62         | 0.62         |   | Th                            | 0.68          | 0.68         |
| 9   | Sr               | 0.60         | 0.60         |   | MgO                           | 0.58          | 0.58         |
| 10  | Y                | -0.56        | 0.56         |   | Sr                            | 0.53          | 0.53         |
| 11  | MgO              | 0.53         | 0.53         |   | MnO                           | 0.31          | 0.31         |
| 12  | $SiO_2$          | -0.49        | 0.49         |   |                               |               |              |
| 13  | MnO              | 0.31         | 0.31         |   |                               |               |              |
| 14  | $Na_2O$          | -0.24        | 0.24         |   |                               |               |              |
| 15  | $K_2O$           | 0.11         | 0.11         |   |                               |               |              |

| CASE 8           | $LD1_{\beta}$ | $\beta_{ABS}$ | CASE 9                                      | $LD1_{\beta}$ | $\beta$ _ABS |
|------------------|---------------|---------------|---------------------------------------------|---------------|--------------|
| TiO <sub>2</sub> | -1.17         | 1.17          | $AI_2O_3$                                   | -1.09         | 1.09         |
| $Al_2O_3$        | -1.08         | 1.08          | <b>P</b> <sub>2</sub> <b>O</b> <sub>5</sub> | 0.97          | 0.97         |
| $P_2O_5$         | 1.07          | 1.07          | TiO <sub>2</sub>                            | -0.95         | 0.95         |
| Rb               | 0.91          | 0.91          | Rb                                          | 0.94          | 0.94         |
| CaO              | -0.78         | 0.78          | CaO                                         | -0.80         | 0.80         |
| Ва               | -0.58         | 0.58          | Ва                                          | -0.61         | 0.61         |
| MgO              | 0.40          | 0.40          |                                             |               |              |
| Th               | 0.35          | 0.35          |                                             |               |              |



図 5.1-1 上位6元素のクロスプロット

以上述べてきたように、2 群の違いを表す元素は TiO<sub>2</sub>、Al<sub>2</sub>O<sub>3</sub>、CaO、P<sub>2</sub>O<sub>5</sub>、Rb、Ba の 6 つで あり、中でも TiO<sub>2</sub> と Al<sub>2</sub>O<sub>3</sub>、P<sub>2</sub>O<sub>5</sub> と Rb の 4 元素はそれぞれの組合せも含め重要と考えられる。 ここで、判別に強く寄与する元素を更に絞り込むため、TiO<sub>2</sub>、Al<sub>2</sub>O<sub>3</sub>、P<sub>2</sub>O<sub>5</sub>、Rb の組合せで線形 判別分析を行った。各ケースの元素の組み合わせを表 5.1-2 に示す。TiO<sub>2</sub> と P<sub>2</sub>O<sub>5</sub> は高い相関を 示すため、TiO<sub>2</sub> と P<sub>2</sub>O<sub>5</sub>が共存する組合せからは良い判別式が得られないと予想される。

#### (1) CASE 10:4 元素/15 元素・72 試料(白木-丹生断層試料除く)

TiO<sub>2</sub>、Al<sub>2</sub>O<sub>3</sub>、P<sub>2</sub>O<sub>5</sub>、Rbのデータを用いて線形判別分析を行った結果を図 5.1-2 に示す。判別 率は 96%で、72 試料中 3 試料で誤判別となった。誤判別となったのは活断層試料 1 試料と非活 断層試料 2 試料で、活断層試料は阿寺断層の試料、非活断層試料は江若花崗岩中の断層と境峠断 層周辺の断層の試料であった。

#### (2) CASE 11:3元素/15元素・72 試料(白木-丹生断層試料除く)

TiO<sub>2</sub>、Al<sub>2</sub>O<sub>3</sub>、P<sub>2</sub>O<sub>5</sub>のデータを用いて線形判別分析を行った結果を図 5.1-3 に示す。判別率は 76%で、72 試料中 17 試料で誤判別となった。誤判別となったのは活断層試料 15 試料と非活断 層試料 2 試料で、活断層試料は阿寺断層、五助橋断層、下蔦木断層の試料、非活断層試料は境峠 断層周辺の断層の試料であった。

#### (3) CASE 12:3元素/15元素・72 試料(白木-丹生断層試料除く)

TiO<sub>2</sub>、Al<sub>2</sub>O<sub>3</sub>、Rbのデータを用いて線形判別分析を行った結果を図 5.1-4 に示す。判別率は 94% で、72 試料中 4 試料で誤判別となった。誤判別となったのは活断層試料 1 試料と非活断層試料 3 試料で、活断層試料は阿寺断層の試料、非活断層試料は江若花崗岩中の断層と境峠断層周辺の断層の試料であった。

#### (4) CASE 13:3元素/15元素・72 試料(白木-丹生断層試料除く)

TiO<sub>2</sub>、P<sub>2</sub>O<sub>5</sub>、Rb のデータを用いて線形判別分析を行った結果を図 5.1-5 に示す。判別率は 94% で、CASE 12 と同じ結果であった。

#### (5) CASE 14:3元素/15元素・72 試料(白木-丹生断層試料除く)

Al<sub>2</sub>O<sub>3</sub>、P<sub>2</sub>O<sub>5</sub>、Rbのデータを用いて線形判別分析を行った結果を図 5.1-6 に示す。判別率は 96% で、72 試料中 3 試料で誤判別となった。誤判別となったのは活断層試料 1 試料と非活断層試料 2 試料で、活断層試料は阿寺断層の試料、非活断層試料は江若花崗岩中の断層と境峠断層周辺の断層の試料であった。

結果は予想に従うものと反するものの両方がある。TiO<sub>2</sub> と P<sub>2</sub>O<sub>5</sub>の両方を含む CASE 10、CASE 11、CASE 13 のうち、CASE 11 では顕著な判別率の低下が見られるが、CASE 10 と CASE 13 は高い判別率を示す。これら 3 つのケースの違いは Rb の有無であり、Rb のみ、含まれる全ての ケースで判別率が高い。判別係数  $\beta$  から見ても、Rb は含まれる全てのケースで最も高く、逆に VIF は最も低い(表 5.1·3)。Rb と対になると考えられる Al<sub>2</sub>O<sub>3</sub> は、CASE 11 の判別率低下や CASE 12 と CASE 13 で判別率が変わらないことを踏まえると、Rb よりも寄与の程度が低いと 見なせる。また、TiO<sub>2</sub> と P<sub>2</sub>O<sub>5</sub>のうち判別に寄与するのは、CASE 14 が相対的に高い判別率を示 すことから、P<sub>2</sub>O<sub>5</sub> と考えられる。





CASE 10, FG\_4elements, N=72

図 5.1-2 線形判別分析の結果図(CASE 10)



図 5.1-3 線形判別分析の結果図(CASE 11)



CASE 12, FG\_3elements, N=72










| CASE 10          | $\beta$ _LD1 | VIF  | CASE 11   | $\beta$ _LD1 | VIF  | CASE12    | $\beta$ _LD1 | VIF  |
|------------------|--------------|------|-----------|--------------|------|-----------|--------------|------|
| $TiO_2$          | -0.63        | 4.22 | $TiO_2$   | -1.29        | 3.98 | $TiO_2$   | -0.31        | 1.59 |
| $AI_2O_3$        | -0.85        | 1.54 | $AI_2O_3$ | -0.49        | 1.47 | $AI_2O_3$ | -0.86        | 1.54 |
| $P_2O_5$         | 0.36         | 3.44 | $P_2O_5$  | 0.59         | 3.42 | Rb        | 1.40         | 1.09 |
| Rb               | 1.39         | 1.10 |           |              |      |           |              |      |
|                  |              |      |           |              |      |           |              |      |
| CASE13           | $\beta$ _LD1 | VIF  | CASE 14   | $\beta$ _LD1 | VIF  |           |              |      |
| TiO <sub>2</sub> | -1.14        | 3.51 | $AI_2O_3$ | -0.99        | 1.28 |           |              |      |
| $P_2O_5$         | 0.42         | 3.43 | $P_2O_5$  | -0.09        | 1.29 |           |              |      |
| Rb               | 1.16         | 1.04 | Rb        | 1.44         | 1.03 |           |              |      |

表 5.1-3 CASE 10~CASE 14 の各元素の判別係数 β と VIF

最後に、TiO<sub>2</sub>、P<sub>2</sub>O<sub>5</sub>、Al<sub>2</sub>O<sub>3</sub>、Rbの判別への寄与の程度を比較するため、TiO<sub>2</sub> と P<sub>2</sub>O<sub>5</sub>、Al<sub>2</sub>O<sub>3</sub> と Rbの組合せで線形判別分析を行った。TiO<sub>2</sub> と P<sub>2</sub>O<sub>5</sub> は高い相関を示すため、多重共線性の影響で良い判別式が得られないことが予想される。これに対して Al<sub>2</sub>O<sub>3</sub> と Rb の組合せは良好な判別結果を示すと考えられる。

#### (6) CASE 15:2元素/15元素・72 試料(白木-丹生断層試料除く)

TiO<sub>2</sub>、P<sub>2</sub>O<sub>5</sub>のデータを用いて線形判別分析を行った結果を図 5.1-7 に示す。判別率は 68%で、 72 試料中 23 試料で誤判別となった。誤判別となったのは活断層試料 21 試料と非活断層試料 2 試 料で、活断層試料は跡津川断層、阿寺断層、野島断層、五助橋断層、下蔦木断層の試料、非活断 層試料は境峠断層周辺の断層の試料であった。

#### (7) CASE 16:2元素/15元素・72 試料(白木-丹生断層試料除く)

Al<sub>2</sub>O<sub>3</sub>、Rbのデータを用いて線形判別分析を行った結果図 5.1-8 に示す。判別率は 96%で、72 試料中3試料で誤判別となった。誤判別となったのは活断層試料1試料と非活断層試料2試料で、 活断層試料は阿寺断層の試料、非活断層試料は江若花崗岩中の断層と境峠断層周辺の断層の試料 であった。

CASE 15、CASE 16 ともに予想通りの結果となったが、CASE 16 は 2 つの元素だけで判別率 96%を示した。CASE 16 の結果は、3 つの元素の組合せで最も高い判別率を示した CASE 14 と 同じである。前述の CASE 10~CASE 14 についての考察から、判別への寄与の程度は Rb>Al<sub>2</sub>O<sub>3</sub>、 P<sub>2</sub>O<sub>5</sub>>TiO<sub>2</sub> であり、更に CASE 10~CASE 16 の結果や判別係数 $\beta$ 、VIF を踏まえると、 Rb>Al<sub>2</sub>O<sub>3</sub>>P<sub>2</sub>O<sub>5</sub>>TiO<sub>2</sub> と見なせる(表 5.1-3、表 5.1-4)。

表 5.1-4 CASE 15~CASE 16 の各元素の判別係数 β と VIF

| CASE 15          | $\beta$ _LD1 | VIF  | CASE 16   | $\beta$ _LD1 | VIF  |
|------------------|--------------|------|-----------|--------------|------|
| TiO <sub>2</sub> | -1.65        | 3.41 | $AI_2O_3$ | -1.03        | 1.00 |
| $P_2O_5$         | 0.65         | 3.41 | Rb        | 1.45         | 1.00 |



図 5.1-7 線形判別分析の結果図 (CASE 15)



CASE 16, FG\_2elements, N=72



#### 5.2 より良い判別式に関する考察

今年度の分析で判別率 100%となったのは、17 元素で解析を行った CASE 3、15 元素で解析を 行った CASE 4、そこから AIC で抽出した元素で解析を行った CASE 7、CASE 8 であった。こ の中で最も元素の数が少なく、汎化性能が高いと考えられるのは CASE 8 である。しかし、CASE 8 に含まれる TiO<sub>2</sub> と P<sub>2</sub>O<sub>5</sub> は、多重共線性を持つため共存させない方が良いことが明らかになっ た。そこで、CASE 8 から TiO<sub>2</sub> と P<sub>2</sub>O<sub>5</sub> の 2 つの元素を削減したケースをそれぞれ CASE 8'、 CASE 8"として線形判別分析を行った。

- (1) CASE 8':7元素/15元素・72 試料(白木-丹生断層試料除く)
  - Al<sub>2</sub>O<sub>3</sub>、MgO、CaO、P<sub>2</sub>O<sub>5</sub>、Rb、Ba、Th のデータを用いて線形判別分析を行った結果を CASE 8', FG\_7elements, N=72



図 5.2-1 に示す。判別率は 99%で、72 試料中 1 試料で誤判別となった。誤判別となったのは 非活断層試料 1 試料で、境峠断層周辺の断層の試料であった。

#### (2) CASE 8":7元素/15元素・72 試料(白木-丹生断層試料除く)

TiO<sub>2</sub>、Al<sub>2</sub>O<sub>3</sub>、MgO、CaO、Rb、Ba、Thのデータを用いて線形判別分析を行った結果を図 5.2-2 に示す。結果は CASE 8'と同じであった。

CASE 8'と CASE 8"では、いずれも判別率 100%にはならなったが、99%という高確率で2群 を判別することができた。5.1 の考察を踏まえると、判別性能は TiO<sub>2</sub>を除いた CASE 8'の方がよ り高いと考えられるが、両者の結果図、及び表 5.2-1 に示す判別係数β、VIF では優劣は決め難 い。以上の結果から、活動性が既知の試料を判別する能力は CASE 8 が最も高いが、未知の試料 に対する判別性能の面では CASE 8'、あるいは CASE 8"の方が高いことが予想される。



図 5.2-1 線形判別分析の結果図(CASE 8')





付 5-37

| CASE 8'   | $\beta$ _LD1 | VIF  | CASE 8''  | $\beta$ _LD1 | VIF  |
|-----------|--------------|------|-----------|--------------|------|
| $AI_2O_3$ | -1.25        | 1.36 | $TiO_2$   | -0.30        | 2.33 |
| MgO       | 0.21         | 1.34 | $AI_2O_3$ | -1.00        | 1.61 |
| CaO       | -0.59        | 1.52 | MgO       | 0.40         | 1.45 |
| $P_2O_5$  | 0.28         | 1.95 | CaO       | -0.56        | 1.48 |
| Rb        | 0.94         | 2.28 | Rb        | 1.06         | 2.12 |
| Ba        | -0.50        | 1.75 | Ba        | -0.40        | 1.69 |
| Th        | 0.46         | 2.72 | Th        | 0.25         | 2.78 |

表 5.2-1 CASE 8'~CASE 8"の各元素の判別係数 βと VIF

#### 5.3 活動性が未知の試料に対する判別式の適用

最後に、活動性が未知の試料に対して高い判別率を示す判別式を適用し、その活動性を推定す る。対象とする試料は、境峠断層周辺の断層試料 NMG5、SGR5 及び南九州の花崗岩の断層 96g、101-1、同じく南九州の非花崗岩の断層 118-4a、YD-14①~⑤の 10 試料である。CASE 4、 CASE 7、CASE 8、CASE 8"の4つのケースの判別式を適用した結果、101-1を除いて結果は共 通であり、境峠断層周辺の断層試料はいずれも非活断層側、南九州の断層試料は活断層側の値を 示す(表 5.3-1)。101-1 試料は CASE 8"のみ活断層側の値で、他の3つの判別式では非活断層側 の値であり、相反する結果となっている。101-1の活動性は不明なため、どちらが正しいか結論を 出すことはできないが、101-1は 96-g と同じ露頭、同じ断層ガウジの試料であることから、活動 性も同じと考えられる。96-g は 4 つの判別式全てで活断層側となっており、これと同じ結果が出 たのは CASE 8"のみであることから、判別性能は CASE 8">CASE 8'の可能性がある。一方、南 九州の四万十帯堆積岩起源の試料である 118-4a と YD-14①~⑤は、断層中軸部の粘土ではない 断層角礫部分(YD-14①、③~⑤)も含めたすべてで活断層側の値となっており、YD-14 が断層 角礫部分も含めて活断層として活動している可能性と、原岩の違いが判別式の適用限界を超えた 可能性とが否定できない結果となった。これらの破砕帯が活断層か否かについては、本研究とは 異なるアプローチも含めて引き続き検討していくことが必要である。

| No   | Sampla        | CASE 4 | CASE 7 | CASE 8' | CASE 8'' | Estimated |
|------|---------------|--------|--------|---------|----------|-----------|
| 110. | Sample        | score  | score  | score   | score    | activity  |
| 1    | NMG5          | 0.06   | 0.06   | 0.30    | 0.23     | NF        |
| 2    | SGR5          | 0.57   | 0.85   | 0.18    | 0.19     | NF        |
| 3    | 96 <b>-</b> g | -1.89  | -2.26  | -0.89   | -1.02    | AF        |
| 4    | 101-1         | 0.44   | 0.15   | 0.14    | -1.38    | AF?       |
| 5    | 118-4a        | -2.69  | -2.69  | -1.99   | -1.40    | AF        |
| 6    | YD-141)       | -1.70  | -1.55  | -1.99   | -1.82    | AF        |
| 7    | YD-142        | -2.04  | -2.30  | -1.77   | -1.09    | AF        |
| 8    | YD-143        | -1.58  | -1.49  | -1.74   | -1.48    | AF        |
| 9    | YD-14④        | -2.81  | -2.63  | -2.32   | -1.80    | AF        |
| 10   | YD-14⑤        | -1.26  | -0.94  | -1.67   | -1.53    | AF        |

表 5.3-1 判別式の未知試料への適用結果

### 6. まとめと今後の課題

今年度は、昨年度から試料数を増やすとともに、より定量的な評価ができる変数選択法を取り 入れて断層ガウジの化学組成を用いた線形判別分析を行った。その結果、活断層(AFG・48 試料) と非活断層(NFG・24 試料)の2群を高確率で判別する式が複数得られ、その中から汎化性能が 高いと予想される判別式を選び出すことができた。さらに、これらの判別式に共通する元素の組 合せから、活断層と非活断層の違いを表す元素を6つに絞り込むとともに、うち4つの元素(TiO<sub>2</sub> と P<sub>2</sub>O<sub>5</sub>、Al<sub>2</sub>O<sub>3</sub> と Rb)が2組ずつのセットとなっていること、Al<sub>2</sub>O<sub>3</sub> と Rb 以外の4つの元素 (TiO<sub>2</sub>、CaO、P<sub>2</sub>O<sub>5</sub>、Ba)が同じ分布パターンを示すことを明らかにした。このような成果は、 活断層と非活断層の化学組成の違いを生むメカニズムの解明に大きく貢献するものである。

また、母集団に白木-丹生断層(逆断層)のデータを取り込んで線形判別分析を行った結果、3 群の特徴を持つ集団として認識された。この要因としては、他の活断層データとの断層タイプの 違い、あるいは白木-丹生断層固有の化学的性質という2つの可能性が考えられるが、試料数が少 ないため現段階で結論は出せない。さらに、活動性が未知の試料に対して判別式の適用を試みた ところ、判別結果と産状の比較から判別性能の評価ができる可能性や、原岩の化学的性質の差異 が判別性能の限界を超える可能性が認められた。今後、逆断層タイプの活断層も含め、より多く の断層ガウジのデータを追加することで、信頼度が高く、断層タイプの違いも識別可能な式が得 られる可能性がある。 引用文献

- Akaike, H., Information theory and an extension of the maximum likelihood principle, Proceedings of the 2nd International Symposium on Information Theory, Petrov, B. N., and Caski, F. (eds.), Akadimiai Kiado, Budapest: p. 267-281, 1973.
- 原子力規制委員会,国立研究開発法人日本原子力研究開発機構もんじゅの敷地内破砕帯の評価に ついて,http://www.nsr.go.jp/data/000161557.pdf(最終閲覧日,2019年1月29日)
- 川端一光・岩間徳兼・鈴木雅之, Rによる多変量解析, オーム社, 417pp, 2018.
- 国立大学法人富山大学・日本原子力研究開発機構,機械学習に基づいた断層の活動性評価手法の 開発に関する共同研究 平成 30 年度共同研究報告書,平成 30 年度高レベル放射性廃棄物等 の地層処分に関する技術開発事業 地質環境長期安定性評価技術高度化開発 付録集, p.45-80, 2019
- Kuwatani, T., Nagata, K., Okada, M., Watanabe, T., Ogawa, Y., Komai T. and Tsuchiya, N., Machine-learning techniques for geochemical discrimination of 2011 Tohoku tsunami deposits. Scientific Reports volume 4, Article number: 7077, 2014.
- 日本原子力研究開発機構,高速増殖原型炉もんじゅ 敷地内破砕帯の追加地質調査報告書,126p, 2013.
- 日本原子力研究開発機構,高速増殖原型炉もんじゅ 敷地内破砕帯の追加地質調査 全体とりまと め報告 補足資料,83p,2014.
- 二宮正士, AIC(赤池情報量規準:Akaike Information Criterion), 日本食品科学工学会誌, 46, 1, p.37-38, 1999.
- Niwa, M., Shimada, K., Ishimaru, T. and Tanaka, Y., Identification of capable faults using fault rock geochemical signatures: A case study from offset granitic bedrock on the Tsuruga Peninsula, central Japan. Engineering Geology, 260, 105235, 2019.
- 清水麻由子, 佐野直美, 柴田健二, 東濃地科学センターにおける蛍光 X 線分析装置を用いた岩石 試料の主要元素および微量元素の定量分析, JAEA-Testing 2016-004, 40p, 2017.
- 杉山雄一・山本博文・村上文敏・宇佐見琢哉・畠山一人・島崎裕行,柳ヶ瀬・関ヶ原断層帯主部北 方延長域(坂井市沖〜福井市沖)における活断層の分布と活動性,活断層・古地震研究報告, No.13, p.145-185, 2013.
- 立石 良・島田耕史・植木忠正・清水麻由子・小松哲也・末岡 茂・丹羽正和・安江健一・石丸恒 存,断層ガウジの化学組成を用いた多変量解析による断層活動の有無の推定,日本地球惑星科 学連合 2019 年大会, SSS15\_P27, 2019
- 植木忠正,田辺裕明,丹羽正和,石丸恒存,島田耕史,花崗岩中に発達する粘土脈の観察・分析デ ータ, JAEA-Data/Code 2016-010, 292p, 2016.

### 付録 A 既往報告書における試料採取位置

22 耐震工学 陸域断層の活動性評価に資する断層破砕部の調査・分析 報告書

(1) 五助橋断層 五助ダム上流露頭



五助橋断層の地質図(神戸市, 1998)(報告書 図 3.2.1-3)



五助橋断層、五助ダム上流露頭周辺のルートマップ(報告書 図 3.2.2-1)



(1) 五助橋断層 五助ダム上流露頭(続き)

五助橋断層、五助ダム上流露頭全景(報告書 図 3.2.2-4)



五助橋断層、五助ダム上流露頭スケッチ(報告書 図 3.2.2-5(1))

【付録5】

(1) 五助橋断層 五助ダム上流露頭(続き)



五助橋断層、五助ダム上流地点の試料採取状況(報告書 図 3.2.6-2 より抜粋)



五助橋断層の分析試料の状況(報告書 図 3.3.5-1)

(2) 下蔦木断層 釜無川左岸露頭



下蔦木断層の地質図(小山, 1988に加筆)(報告書 図 3.2.1-10)



下蔦木断層、釜無川左岸露頭の全景(報告書 図 3.2.2-11(2))

【付録5】

(2) 下蔦木断層 釜無川左岸露頭(続き)



下蔦木断層、釜無川左岸露頭のスケッチ(露頭上部)(報告書 図 3.2.2-13(1))



下蔦木断層、釜無川左岸露頭のスケッチ(露頭下部)(報告書 図 3.2.2-15(1))

### (2) 下蔦木断層 釜無川左岸露頭(続き)



下蔦木断層、釜無川左岸露頭の試料採取状況(報告書 図 3.2.6-4)







下蔦木断層の分析試料の状況(報告書 図 3.3.5-2)

23 耐震工学 陸域断層の活動性評価に資する断層破砕部の調査・分析 報告書 (1) 六甲断層 船坂西露頭、白水峡露頭



五助橋断層の位置図(岡田・東郷 編, 2000を改変)(報告書 図 3.2-1)



(1) 六甲断層 船坂西露頭、白水峡露頭(続き)



六甲断層 船坂西露頭の試料採取位置

赤:ブロックサンプル,緑:簡易定方位サンプル,青:その他のサンプル,黄:リングサンプル(力学試験用)の採取範囲. 実線:地表付近で採取したサンプル,波線:掘削部から採取したサンプル. 水糸は横 1m 間隔,縦 0.5m 間隔.

### 船坂西露頭の試料採取位置(報告書 図 3.4.5-1)

| 断層名  | 地点        | 試料番号<br>(現地)  | 試料番号      | 露頭での<br>破砕部<br>区分 | X線分析<br>(不定方位)<br>試料番号 | X線分析<br>(分級定方位)<br>試料番号 | 化学分析<br>試料番号 | F1断層からの<br>距離* | 試料記載 (露頭レベル)                  |
|------|-----------|---------------|-----------|-------------------|------------------------|-------------------------|--------------|----------------|-------------------------------|
| 数量   |           |               |           |                   | 10試料                   | 20試料<br>(5試料x4分級)       | 20試料         |                |                               |
|      |           | FSW-B-01      | FSW-B-01  | 1                 |                        |                         |              |                | 淡青灰色、変質した弱変形流紋岩、やや軟質          |
|      |           | FSW-B-02      | FSW-B-02  | 2                 |                        |                         |              |                | 黄褐色~白色,弱変形流紋岩,硬質              |
|      |           | FSW-BL-04     | FSW-BL-04 | 4                 | FSW-X01                |                         | FSW-C01      |                | 白色, 流紋岩質カタクレーサイト, 硬質, F2断層中軸部 |
|      |           | FSW-B-05(仮)   | FSW-B-05  | 5                 |                        |                         | FSW-C02      |                | 黄褐色~白色,弱変形流紋岩,硬質              |
|      |           | FSW-B-06'(仮)  | FSW-B-06  | 6                 |                        |                         |              |                | 白色、やや破砕した流紋岩起源のカタクレーサイト、硬質    |
|      |           | FSW-B-06(仮)   | FSW-B-07  | 6                 |                        |                         |              |                | 白色、破砕した流紋岩起源のカタクレーサイト、硬質      |
|      |           |               |           | 6                 |                        |                         | FSW-C03      | -10.0~-7.0 cm  | 白色,流紋岩質カタクレーサイト,硬質            |
|      |           |               |           | 6-7               |                        |                         | FSW-C04      | -5.0~-3.0 cm   | 白色~褐色、流紋岩質カタクレーサイト、硬質         |
|      |           |               |           | 7                 |                        |                         | FSW-C05      | -3.0~-1.5 cm   | 濃褐色カタクレーサイト, 硬質               |
|      |           |               |           | 7                 | FSW-X06                |                         | FSW-C06      | -1.5~-0.5 cm   | 濃褐色カタクレーサイト, 硬質               |
|      | 船坂西       |               |           | 8                 | FSW-X07                | FSW-X07                 | FSW-C07      | -0.5~0.0 cm    | 黒色細粒なカタクレーサイト? 硬質, F1断層下盤側    |
|      |           | FOW DL 00     | FOW DL 00 | 9                 | FSW-X08                | FSW-X08                 | FSW-C08      | 0.0~0.5 cm     | 褐色ガウジ,0.0~0.5mm,軟質,F1断層上盤側    |
|      |           | FSW-DL-02     | FSW-DL-02 | 9                 | FSW-X09                | FSW-X09                 | FSW-C09      | 0.5~1.0 cm     | 褐色ガウジ,0.5~10mm, 軟質            |
| 六甲断層 |           |               |           | 9                 | FSW-X10                | FSW-X10                 | FSW-C10      | 1.0~3.0 cm     | 褐色ガウジ, 10~20mm, 軟質            |
|      |           |               |           | 10                | FSW-X11                | FSW-X11                 | FSW-C11      | 3.0~6.0 cm     | 面状カタクレーサイト(内),軟質              |
|      |           |               |           | 10                |                        |                         | FSW-C12      | 6.0~8.0 cm     | 面状カタクレーサイト(外),軟質              |
|      |           |               |           | 11                |                        |                         | FSW-C13      | 8.0~10.0 cm    | 淡褐色、変質花崗岩起源のカタクレーサイト、軟質       |
|      |           |               |           | 11                | FSW-X14                |                         | FSW-C14      | 11.0~14.0 cm   | 白色,変質花崗岩起源のカタクレーサイト,軟質        |
|      |           | FSW-B-12-2(仮) | FSW-B-08  | 13                |                        |                         | FSW-C15      |                | 青灰色,変質花崗岩起源のカタクレーサイト,硬質       |
|      |           | FSW-B-12(仮)   | FSW-B-09  | 12                |                        |                         |              |                | 白色、変質花崗岩起源のカタクレーサイト、軟質        |
|      |           | FSW-B-13(仮)   | FSW-B-10  | 13                |                        |                         | FSW-C16      |                | 白色、変質花崗岩起源のカタクレーサイト、硬質~やや軟質   |
|      |           | HSK-R-01      | HSK-Rh-01 | Rh                |                        |                         |              |                | 弱風化した流紋岩                      |
|      |           | HSK-R-02      | HSK-Rh-02 | Rh                | FSW-X17                |                         | FSW-C17      |                | 流紋岩                           |
|      | the state | HSK-R-03      | HSK-Rh-03 | Rh                |                        |                         | FSW-C18      |                | 流紋岩                           |
|      | 日水峡       | HSK-Gr-01     | HSK-Gr-01 | Gr                | FSW-X19                |                         | FSW-C19      |                | 弱変形した花崗岩、破砕脈に囲まれたコア部          |
|      |           | HSK-Gr-02     | HSK-Gr-02 | Gr                |                        |                         | FSW-C20      |                | 弱変形した花崗岩、破砕脈に近い               |
|      |           | HSK-Gr-03     | HSK-Gr-03 | Gr                |                        |                         |              |                | 強風化、弱変形した花崗岩、小破砕脈を含む          |

船坂西露頭、白水峡露頭の分析試料一覧表(報告書 表 3.5.6-1)

24 耐震工学 陸域断層の活動性評価に資する断層破砕部の調査・分析 報告書





蓬莱峡及び白水峡の位置図(岡田・東郷編、2000を改変)(報告書 図 3.3-2)



蓬莱峡及び白水峡の断層露頭分布図(報告書 図 3.3-4)国土地理院2万5千分の1地形図「宝塚」を使用

【付録5】

### (1) 六甲蓬莱峡断層(仮称) K-3 露頭(続き)



K地点の試料採取位置(報告書 図 3.4.5-1)



K-3 地点 露頭写真、露頭スケッチ(報告書 図 3.4.1-7、図 3.4.5-2)

付録A 引用文献

- 神戸市,六甲断層帯(神戸市地域)に関する調査,第2回活断層調査成果報告会予稿集, pp.153-162, 1998.
- 小山 彰, 下蔦木衝上断層 —糸魚川-静岡構造線の屈曲部—, 地質学雑誌, vol.94, pp.257-277, 1988.

岡田篤正,東郷正美,編,近畿の活断層,東京大学出版会,395p,2000.

| 地点 就料no.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | F                                                                                |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 分析no. 区.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (分 茶                                                                             | 岩種                                                                                                                                                                                           | 色調                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | No. 1702, AUO, FEUO, FEUO MEU MEU AND MEU CAU NAU K. 12, P.V. 1701, FAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| GSB-04<br>助ダム上波<br>GSB-09<br>GSB-06<br>GSB-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GSB-001         酸           GSB-001         酸           GSB-003         酸           GSB-003         酸           GSB-003         酸           GSB-003         酸           GSB-004         酸           GSB-005         酸           GSB-005         酸           GSB-005         酸           GSB-006         酸           GSB-006         酸           GSB-006         酸           GSB-006         酸           GSB-006         酸           GSB-006         酸           GSB-008         酸           GSB-010         酸           GSB-011         酸           GSB-013         酸           GSB-014         酸           GSB-013         酸           GSB-014         酸           GSB-013         酸           GSB-014         酸           GSB-0 | (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)                                          | はほんどうかいしゃイト<br>ガランジ<br>ガランジ<br>通常とのタントーサイト<br>通常とのタントーサイト<br>ガランジ<br>ガランジ<br>ガランジ<br>ガランジ<br>イランジ<br>イランジ<br>イランジ<br>イランジ<br>イランジ<br>イランジ<br>イランジ<br>イ                                       | 憲政部合<br>憲法<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999年<br>1999<br>1999<br>1999<br>1999<br>1999<br>1999<br>1999<br>1999<br>1999<br>1999<br>1999<br>1999<br>1999<br>1999<br>1999<br>1999<br>1999<br>1999<br>1999<br>1999<br>1999<br>1999<br>1999<br>1999<br>1999<br>1999<br>1999<br>1999<br>1999<br>1999<br>1999<br>1999<br>1999<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>1990<br>100<br>10 | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| GSB-06A<br>GSB-06B<br>GSB-06B<br>GSB-06C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | GSB-C15 款<br>GSB-C16 款<br>GSB-C17 餘<br>GSB-C17 餘<br>GSB-C18 餘<br>GSB-C19 衡                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2                                         | 面状カタクレーサイト<br>面状カタクレーサイト<br>花崗岩<br>花崗岩                                                                                                                                                       | 縁白色<br>縁白色<br>(黒色・)白色<br>(黒色・)白色<br>(黒色・)白色                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6730         12201         12201         12201         12201         1201         10         10         1         6         14         4         200         12         65         103         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 地点                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 播                                                                                |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 五助ダムビネ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 橋<br>(後)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2時帯16款約<br>ガウジ11就体<br>上盤側面状<br>119款約の平<br>119款約の平<br>119款約の平                     | 4の平均値<br>100平均値<br>10971サイト3款料<br>10710-1-サイト3款料<br>1071均値<br>17の場合は、含有量-<br>1下の場合は、含有量-                                                                                                     | の平均値<br>の平均値<br>=0として平均値を計算                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 69:56         0.23         10:0         20:0         0.64         20:0         10:0         40:0         10:0         60:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0         10:0 <t< td=""></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1点 就料no.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 分析no. 区.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (分 差                                                                             | 皆種                                                                                                                                                                                           | 色調                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Nb Mo Ag in Sn Sb Cs Ba La Ce Pr Nd Sn Bu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W T1 Pb Bi Th U by m ppm ppm ppm ppm ppm ppm ppm ppm ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| GSB-04<br>GSB-04<br>助ダム上演<br>GSB-06<br>GSB-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GSB-001         6           GSB-001         6           GSB-001         6           GSB-003         6           GSB-003         6           GSB-003         6           GSB-003         6           GSB-003         6           GSB-003         6           GSB-004         6           GSB-005         6           GSB-005         6           GSB-005         6           GSB-005         6           GSB-005         6           GSB-005         6           GSB-006         6           GSB-007         6           GSB-011         6           GSB-013         6           GSB-0 | 等部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部等部署等部署部署部署部署部署部署部署部署部署部署部署部署部署部署部署部署署署署、2、2、2、2 | 間波とあるアレーサイト<br>オウジン<br>オウジン<br>回波とタクレーサイト<br>回避なりクシレーサイト<br>オウジン<br>オウジン<br>イロウジン<br>イロクジン<br>イロクジン<br>イロクジン<br>イロクジン<br>イロクジン<br>イロクジン<br>イロクジン<br>イロクジン<br>イロクシン<br>イロクシン<br>イロクシン<br>イサイト | 後援援援援援援援援援援援援援援援援援援援援援援援援援援援援援援援援援援援援                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| GSB-06C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GSB-C19 陳<br>GSB-C19 健                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 治治                                                                               | 花崗岩<br>花崗岩                                                                                                                                                                                   | (黒色-)白色<br>(黒色-)白色                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.0 <2 0.6 < 0.1 1 < 0.2 2.0 673 22.0 673 22.0 43.0 22.1 0 2 < 1.0 2 < 0.2 3.0 43.0 32.0 3.4 0.775 3.0 0.51 2.96 0.51 1.226 0.58 1.91 0.238 1.91 0.321 3.4 0.52 < 0.5 0.44 1.2 < 0.1 7.36 1.250 < 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 |
| 地点エージョン                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | r<br>第                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e種<br>:00-45-1 Gittest                                                           | 1.小可松储                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Nb         Mo         Ag         In         Sh         Cs         Ba         Lat         Ce         Pr         Nd         Sh         Ha         Yh         Lat         Hf         Ta         W         T1         Pb         Bi         Th         U           pm         pm </td                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| u de la comunicación de la com | ₽<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20年前10回20年<br>ガウジ11試術<br>下盤側面状:<br>上盤側面状:<br>「協岩3試料の平<br>19試料の平                  | 40-4-30m<br>科の平均値<br>カタクレーサイト2款料<br>の平均値<br>5均値                                                                                                                                              | の平均値<br>の平均値                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 77         0         0.7         0.0         4         1.1         4.1         5.2         5.6         5.7         5.1         5.6         5.7         5.7         5.6         5.6         5.7         5.1         5.6         5.7         5.1         5.6         5.7         5.6         5.7         5.6         5.7         5.8         5.7         5.6         5.7         5.8         5.6         5.7         5.8         5.6         5.7         5.8         5.6         5.7         5.8         5.6         5.7         5.8         5.6         5.7         5.8         5.7         5.8         5.7         5.8         5.7         5.8         5.7         5.8         5.7         5.8         5.7         5.8         5.7         5.8         5.7         5.8         5.7         5.8         5.7         5.8         5.7         5.8         5.7         5.8         5.7         5.8         5.7         5.8         5.7         5.8         5.7         5.8         5.7         5.8         5.7         5.8         5.7         5.8         5.7         5.8         5.7         5.8         5.7         5.8         5.8         5.8         5.8         5.8         5.8         5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

付録 B 既往報告書における全岩化学組成分析結果

22 耐震工学 陸域断層の活動性評価に資する断層破砕部の調査・分析

# 【付録5】

22 耐震工学 陸域断層の活動性評価に資する断層破砕部の調査・分析 報告書 表 3.3.6-5 下蔦木断層 釜無川左岸露頭

|      |       |                |         |         |             |             | 0.0                | -                  | -       | 1        | :       |        |       |                     | 1 10               | 4                  |                  |          | 10.00                         |                  | ļ   |     |     | 1    | 4   |      |       |       |       |       | 1        | -     | ;      |      |  |
|------|-------|----------------|---------|---------|-------------|-------------|--------------------|--------------------|---------|----------|---------|--------|-------|---------------------|--------------------|--------------------|------------------|----------|-------------------------------|------------------|-----|-----|-----|------|-----|------|-------|-------|-------|-------|----------|-------|--------|------|--|
|      | 接近    | 影影no.          | 分析no.   | 区分      | 装箍          | 色調          | SiO <sub>2</sub> 1 | CiO <sub>2</sub> A | 1203 Fe | 203 Ft   | Mn 06   | Mg O   | 0 Cat | 0 Na <sub>2</sub> 4 | 0 K <sub>2</sub> ( | 0 P <sub>2</sub> 0 | <sup>5</sup> LOI | total    | H207                          | H <sub>2</sub> 0 | Be  | ŝ   | >   | c    | c   | N    | Cu    | Zn    | Ga    | Ge A  | As RI    | Sr    | Y      | Zr   |  |
|      | ~~~~~ | - OVE L. LA. 4 |         |         | HE1. 1-4    | 5.44 m      | wt% w              | wt%                | vt% w   | t% w     | % wt:   | % wt5  | % wt  | % wt%               | % wt%              | % wt%              | 6 wt%            | 5 wt%    | wt%                           | wt%              | ppm | ppm | ppm | ppm  | ppm | ppm  | ppm 1 | ppm p | ppm p | pm pr | idd mo   | n ppn | ppm    | ppm  |  |
|      |       |                | STK-C01 | 破砕帯     | カタクレーサイト    | 灰白色         | 75.37 0            | 0.096              | 2.13    | 1.38 6   | .59 0.1 | 64 0.  | 13 1. | 86 3.0              | 05 2.2             | 37 < 0.6           | 01 1.5           | 7.86 7   | 1.1                           | 0.5              | 2   | 5   | 5   | < 20 | 1   | < 20 | < 10  | 120   | 16    | 2.1   | < 5      | 76 5  | 0 41.  | 84   |  |
|      |       |                | STK-C02 | 破砕帯     | ガウジ         | 赤褐色         | 65.53 0            | 141                | 1.03    | 1.21 6   | .81 0.2 | 56 0.  | 38 7. | 57 2.6              | 64 2.t             | 62 0.0             | 34 6.6           | 12 98.85 | 9 1.5                         | 3 0.4            | 2   | 9   | 13  | < 20 | 2   | < 20 | 10    | 100   | 14    | 1.8   | < 5<br>< | 84 7  | 1 40.  | 73   |  |
|      |       | STK-01         | STK-C03 | 破砕帯     | ガウジ         | 赤褐色         | 65.50 0            | 0.165              | 10.97   | 1.55 6   | .55 0.2 | 91 0.  | 43 7. | 40 2.5              | 59 2.4             | 46 0.0             | 0.7 .0.          | 5 99.02  | 2 1.5                         | 5 0.7            | 2   | 9   | 18  | < 20 | 3   | < 20 | 10    | 110   | 15    | 1.8   | < 5      | 82 7  | 4 39.  | 80   |  |
|      |       |                | STK-C04 | 破砕帯     | カタクレーサイト    | 緑色          | 75.28 0            | 0.088              | 1.98    | 1.17 6   | .39 0.0 | 31 0.  | 10 0. | 66 3.5              | 31 4.7             | 79 0.0             | 33 0.5           | 7 98.38  | 8 0.7                         | 7 0.1            | 2   | 5   | < 5 | < 20 | <1  | < 20 | < 10  | < 30  | 16    | 2.2   | < 5 1    | 56 2  | 7 38.  | 83   |  |
|      |       |                | STK-C05 | 破砕帯     | カタクレーサイト    | 灰白色         | 75.15 0            | 1.090.0            | 2.03    | 0.97 6   | .52 0.0 | 66 0.  | 10 0. | 68 3.4              | 44 4.4             | 48 0.0             | 32 0.8           | 0 98.3   | 5 0.7                         | 2.0              | 5   | 5   | < 5 | < 20 | -   | < 20 | < 10  | 40    | 16    | 2.2   | < 5 1    | 27 4  | 2 36.  | 78   |  |
| 木断層  | 釜無川左岸 |                | STK-C06 | 破砕帯     | カタクレーサイト    | 灰白色         | 75.98 0            | 1.089              | 2.07    | 1.11 6   | .52 0.0 | 154 0. | 13 0. | 92 3.5              | 22 4.1             | 50 0.0             | 32 1.0           | 12.66 6t | 9.0 0.8                       | 3 0.5            | 5   | 5   | < 5 | < 20 | 1   | < 20 | < 10  | 40    | 16    | 2.1   | < 5 1    | 32 4  | 2 34.1 | 79   |  |
|      |       |                | STK-C07 | 破砕帯     | ガウジ         | 赤褐色-褐色      | 68.72 0            | 0.209              | 1.87    | 2.58 < 0 | 01 0.1  | 03 0.  | 57 4. | 70 2.5              | 57 2.4             | 40 0.0             | 04 5.2           | 0 98.96  | 6 1.6                         | 3 1.0            | 2   | 7   | 21  | 20   | 4   | < 20 | 10    | 80    | 17    | 2.0   | < 5      | 81 5  | 3 37.  | 88   |  |
|      |       | STK-02         | STK-C08 | 破砕帯     | ガウジ         | 赤褐色         | 67.76 0            | 1.219              | 1.77    | 0 68.1   | .74 0.0 | 0.0    | 67 4. | 45 2.¢              | 62 2.4             | 43 0.0             | 34 6.2           | 5 98.92  | 2 1.5                         | 2.1              | 2   | 7   | 25  | 20   | 4   | < 20 | 10    | 80    | 16    | 2.0   | N<br>N   | 79 10 | 8 36.  | 89   |  |
|      |       |                | STK-C09 | 破砕帯     | ガウジ         | 赤褐色         | 69.26 0            | 0.190              | 2.06    | 2.29 0   | .67 0.2 | 52 0.  | 53 3. | 99 2.5              | 85 1.8             | 89 0.0             | 35 4.8           | 0 98.85  | 3 1.4                         | 1.4              | 57  | 7   | 20  | < 20 | 3   | < 20 | 10    | 130   | 16    | 2.4   | < 5      | 63 12 | 0 46.  | 87   |  |
|      |       |                | STK-C10 | 破砕帯     | カタクレーサイト    | 灰白色         | 75.48 0            | 0.088              | 1.85    | 000.1    | 64 0.0  | 58 0.  | 12 0. | 92 3.C              | 04 3.5             | 96 0.0             | 11 1.8           | 6 99.04  | 4 0.7                         | 1.1              | ~   | 5   | < 5 | < 20 | -   | < 20 | 10    | 60    | 16    | 2.1   | < 5 1    | 32 4  | 5 38.  | 77   |  |
|      |       | STK-03A        | STK-C11 | 徒岩      | 花崗岩         | 灰色          | 76.74 0            | 0.073              | 2.52    | 0.43 C   | .98 0.0 | 19 0.  | 08 0. | 55 3.t              | 51 4.              | 77 < 0.6           | 0.1 0.2          | 6.66 6   | 7 0.5                         | 0.1              | 8   | 9   | < 5 | < 20 | < 1 | < 20 | < 10  | < 30  | 17    | 2.3   | < 5 1    | 75 1  | 9 47.  | 82   |  |
|      |       |                |         |         |             |             |                    |                    |         |          |         |        |       |                     |                    |                    |                  |          |                               |                  |     |     |     |      |     |      |       |       |       |       |          |       |        |      |  |
| H.   |       | 七季             |         | 御守      |             |             | SiO <sub>2</sub> T | TiO2 A             | 1203 Fe | 203 Ft   | O Mn    | O Mg   | 0 Cat | O Na2               | 0 K2C              | 0 P20              | 5 LOI            | total    | H <sub>2</sub> O <sup>+</sup> | H20              | Be  | ŝ   | 2   | c    | S   | ïN   | Cu    | Zn    | Ga    | Ge A  | As RI    | Sr    | Y      | Zr   |  |
| 7    |       | NU DA          |         | WEL 124 |             |             | wt% w              | vt%                | vt% w   | t% W1    | % wt    | % wt5  | % wt  | % wt%               | % wt%              | 16 wt%             | 6 wt%            | 5 wt%    | wt%                           | wt%              | ppm | ppm | ppm | ppm  | ppm | ppm  | ppm 1 | ppm p | ppm p | pm pr | pm pp    | n ppn | n ppm  | ppm  |  |
|      |       |                |         | 破砕帯10詞  | 大科の平均値      |             | 71.40 0            | 0.138              | 1.78    | 1.52 (   | 54 0.1  | 35 0.  | 32 3. | 32 2.5              | 93 3.1             | 19 0.0             | 3.5              | 98.86    | 8 1.2                         | 0.7              | 2   | 9   | 10  | 4    | 2   | 0    | 9     | 76    | 16    | 2.1   | 0        | 01    | 1 38.  | 81.8 |  |
|      |       |                |         | ガウジ5試   | 、料の平均値      |             | 67.35 0            | 0.185              | 1.54    | 06.1     | .55 0.1 | .0 96  | 52 5. | 62 2.t              | 65 2.2             | 36 0.0             | 04 5.9           | 98.92    | 2 1.5                         | 1.1              | 2   | 7   | 19  | 8    | 8   | 0    | 10    | 100   | 16    | 2.0   | 0        | 78 5  | 39.    | 83.4 |  |
|      |       |                |         | カタクレー   | -サイト5武科の平均4 | 値           | 75.45 0            | 060.0              | 2.01    | 1.13 6   | .53 0.0 | 175 0. | 12 1. | 01 3.5              | 21 4.(             | 02 0.0             | 32 1.1           | 8 98.8   | 4 0.8                         | 3 0.4            | 2   | ũ   | 1   | 0    | -   | 0    | 2     | 52    | 16    | 2.1   | 0        | 25 4  | 9 37.  | 80.2 |  |
| 5木断層 |       | 釜無川左岸          |         | 花崗岩1試   | 料の値         |             | 76.74 0            | 0.073              | 2.52    | 0.43 C   | .98 0.0 | 19 0.  | 08 0. | 55 3.t              | 51 4.              | 77 0.0             | 33 0.2           | 6.99.9   | 7 0.5                         | 0.1              | 8   | 9   | 0   | 0    | 0   | 0    | 0     | 0     | 17    | 2.3   | 0        | 75 1  | 9 47.  | 82.0 |  |
|      |       |                |         | 蒙頭上部51  | 武料の平均値      |             | 71.37 0            | 0.116              | 1.63    | 1.26 0   | 57 0.1  | 62 0.  | 23 3. | 63 3.0              | 01 3.5             | 34 0.6             | 3.3              | 3 98.6   | 7 1.1                         | 3.0              | 2   | 5   | 7   | 0    | 1   | 0    | 4     | 74    | 15    | 2.0   | 0 1      | 05 6  | 1 39.  | 79.6 |  |
|      |       |                |         | 蒙頭下部5%  | 試料の平均値      |             | 71.44 0            | 0.159              | 1.92    | 1.77 6   | 51 0.1  | 0 60   | 40 3. | 00 2.5              | 86 3.(             | 04 0.0             | 33 3.8           | 14 99.05 | 9 1.5                         | 1.2              | 2   | 9   | 13  | 8    | 8   | 0    | 8     | 78    | 16    | 2.1   | 0        | 97 8  | 2 38.  | 84.0 |  |
|      |       |                |         | 全11試料の  | つ平均値        |             | 71.89 0            | 0.132              | 1.84    | 1.42 0   | .58 0.1 | 25 0.  | 29 3. | 06 2.5              | 99 3.1             | 33 0.6             | 33 3.2           | 98.96    | 8 1.1                         | 0.7              | 2   | 9   | 6   | 4    | 2   | 0    | 5     | 69    | 16    | 2.1   | 0 1      | 08 6  | 6 39.  | 81.8 |  |
|      |       |                |         | 米榆出限界   | 1以下の場合は、含4  | 有量=0として平均値を | を計算した.             |                    |         |          |         |        |       |                     |                    |                    |                  |          |                               |                  |     |     |     |      |     |      |       |       |       |       |          |       |        |      |  |

付録 B 既往報告書における全岩化学組成分析結果(続き)

| U d          | mqq mc   | 4.60 2.20 | 2.70 2.39 | 3.50 2.23 | 9.88 1.52 | 1.20 1.60 | 0.00 1.61 | 7.50 1.98 | 3.10 1.65 | 3.20 2.42 | 4.90 1.84 | 1.00 2.03 | U qu             | mqq mc | 4.36 1.94 | 5.00 2.13 | 2.72 1.75 | 1.00 2.03 | 2.98 1.99 | 5.74 1.90 | 4.05 1.95 |                |
|--------------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------------|--------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|----------------|
| Bi T         | id md    | 1.7 14    | 1.0 12    | 1.0 15    | 0.1       | 0.2 14    | 0.2 10    | 1.4 27    | 1.8 15    | 2.2 18    | 0.4 14    | < 0.1 11  | Bi T             | id md  | 1.0 14    | 1.5 16    | 0.5 12    | 0.0 11    | 0.8 12    | 1.2 15    | 0.9 14    |                |
| Pb           | ppm p    | 12        | 10        | 12        | 12        | 12        | 10        | 13        | 13        | 16        | 12        | 10 <      | Pb               | pm p   | 12        | 13        | 12        | 10        | 12        | 13        | 12        |                |
| Ш            | 1 mdd    | 0.53      | 0.53      | 0.50      | 0.87      | 0.79      | 0.77      | 0.45      | 0.48      | 0.44      | 0.70      | 0.84      | IL               | 1 mdd  | 0.61      | 0.48      | 0.73      | 0.84      | 0.64      | 0.57      | 0.63      |                |
| M            | ppm 1    | < 0.5     | < 0.5     | < 0.5     | < 0.5     | < 0.5     | < 0.5     | < 0.5     | < 0.5     | < 0.5     | < 0.5     | < 0.5     | M                | ppm 1  | 0.0       | 0.0       | 0.0       | 0.0       | 0.0       | 0.0       | 0.0       |                |
| Ta           | ppm      | 0.94      | 0.81      | 0.87      | 0.86      | 0.89      | 0.93      | 0.85      | 0.86      | 06.0      | 0.99      | 1.30      | Та               | ppm    | 0.89      | 0.86      | 0.92      | 1.30      | 0.87      | 0.91      | 0.93      |                |
| Ηf           | ppm      | 3.3       | 2.8       | 3.0       | 3.3       | 3.1       | 3.1       | 3.1       | 3.1       | 3.3       | 3.1       | 3.7       | Hf               | ppm    | 3.1       | 3.1       | 3.2       | 3.7       | 3.1       | 3.1       | 3.2       |                |
| Lu           | ppm      | 0.693     | 0.618     | 0.646     | 0.663     | 0.601     | 0.581     | 0.583     | 0.577     | 0.782     | 0.702     | 0.803     | Γn               | ppm    | 0.645     | 0.641     | 0.648     | 0.803     | 0.644     | 0.645     | 0.659     |                |
| γp           | ppm      | 4.24      | 3.83      | 3.97      | 4.08      | 3.75      | 3.64      | 3.64      | 3.66      | 4.84      | 4.33      | 5.09      | ЧY               | ppm    | 4.00      | 3.99      | 4.01      | 5.09      | 3.97      | 4.02      | 4.10      |                |
| Tm           | ppm      | 0.625     | 0.573     | 0.585     | 0.605     | 0.561     | 0.537     | 0.539     | 0.543     | 0.688     | 0.621     | 0.754     | Tm               | bpm    | 0.588     | 0.586     | 0.590     | 0.754     | 0.590     | 0.586     | 0.603     |                |
| Er           | ppm      | 4.05      | 3.66      | 3.72      | 3.84      | 3.57      | 3.41      | 3.49      | 3.41      | 4.30      | 3.88      | 4.85      | Er               | ppm    | 3.73      | 3.72      | 3.75      | 4.85      | 3.77      | 3.70      | 3.83      |                |
| Ηο           | ppm      | 1.38      | 1.23      | 1.23      | 1.30      | 1.20      | 1.15      | 1.19      | 1.14      | 1.41      | 1.31      | 1.67      | Ho               | ppm    | 1.25      | 1.24      | 1.27      | 1.67      | 1.27      | 1.24      | 1.29      |                |
| Dy           | ppm      | 6.71      | 5.90      | 5.94      | 6.30      | 1 5.86    | 5.55      | 5.82      | 5.44      | 6.75      | 6.36      | 5 7.94    | Dy               | ppm    | 6.07      | 5.98      | 6.16      | 5 7.94    | 6.14      | 5.95      | 6.24      |                |
| Tb           | ppm      | 1.11      | 0.95      | 1 0.96    | 4 1.02    | 5 0.94    | 0.90      | 3 0.94    | 0.87      | 3 1.07    | 5 1.02    | 9 1.26    | Tb               | ppm    | 36.0 7    | 2 0.96    | 1.00      | 9 1.26    | 1.00      | 3 0.96    | 1.00      |                |
| Gd           | ppm      | 0 6.35    | 4 5.45    | 4 5.44    | 4 5.94    | 5.35      | 4 5.19    | 7 5.36    | 0 4.90    | 4 5.96    | 2 5.75    | 6.95      | Gd               | mdd    | 5.57      | 5.45      | 1 5.71    | 5 6.95    | 3 5.70    | 1 5.45    | 5.70      |                |
| Eu           | ppm      | 4 0.230   | 8 0.24    | 1 0.28    | 6 0.17    | 9 0.158   | 0 0.16    | 5 0.29'   | 0.300     | 7 0.45    | 3 0.195   | 4 0.13    | Eu               | ppm    | 9 0.250   | 4 0.316   | 4 0.18-   | 4 0.13    | 0 0.21    | 9 0.28    | 9 0.23    |                |
| Sm           | ppm      | 5.9       | 5.28      | 5.2       | 6.16      | 5.35      | 5.30      | 5.0       | 0 4.90    | 5.7       | 5.93      | 6.5       | Sm               | ppm    | 1 5.49    | 5.2       | 5.7       | 6.5       | 5.60      | 5.35      | 5.5       |                |
| Nd           | ppm      | 8 26.50   | 8 23.30   | 8 23.70   | 0 28.80   | 0 24.30   | 7 23.50   | 2 22.10   | 8 22.10   | 26.20     | 4 27.90   | 8 26.30   | PN               | ppm    | 1 24.84   | 6 23.48   | 6 26.20   | 8 26.30   | 1 25.32   | 1 24.36   | 24.9      |                |
| Pr           | ppm      | 0 6.1     | 0 5.2     | 0 5.2     | 0 6.7     | 0 5.6     | 0 5.3     | 0 5.0     | 0 5.0     | 0 6.1     | 0 6.4     | 0 5.8     | Pr               | ppm    | 5 5.7     | 6 5.3     | 4 6.0     | 0 5.8     | 2 5.8     | 8 5.6     | 5 5.7     |                |
| Ce           | ppm      | 0 58.6    | 0 50.1    | 0 50.3    | 0 63.6    | 0 53.0    | 0 51.4    | 0 46.8    | 0 47.8    | 0 59.3    | 0 61.6    | 0 53.2    | Ce               | ppm    | 8 54.2    | 8 50.8    | 8 57.6    | 0 53.2    | 2 55.1    | 4 53.3    | 4 54.1    |                |
| La           | ppm      | 2 28.4    | 0 23.8    | 7 24.1    | 5 29.6    | 5 25.2    | 8 24.2    | 0 22.4    | 7 23.3    | 3 28.8    | 6 29.0    | 9 24.3    | La               | ppm    | 9 25.8    | 5 24.4    | 3 27.2    | 9 24.3    | 0 26.2    | 9 25.5    | 6 25.7    |                |
| Ba           | m ppm    | 6 25      | 0 25      | 1 22      | 8 24      | 5 27      | 6 25      | 2 22      | 4 23      | 2 19      | 8 23      | 3 19      | Ba               | mdd 1  | 2 23      | 0 22      | 5 25      | 3 19      | 4 25      | 0 22      | 3 23      |                |
| Cs           | mqq 1    | 5 3.      | 2 4.      | 2 4.      | 2 6.      | 2 3.      | 2 4.      | 2 4.      | 3 4       | 4 3.      | 2 3.      | 2 5.      | Cs               | n ppm  | 1 4.      | .1 4.     | .1 4.     | 0 5.      | 1 4.      | 1 4.      | 1 4.      |                |
| Sb           | nqq 1    | 7 0.      | 4 < 0.    | 0 > 0     | 3 < 0.    | 3 < 0.    | 1 < 0     | 22 < 0.   | 4 0.      | 8.0       | 8 < 0.    | 4 < 0     | $^{\mathrm{gp}}$ | nqq i  | 1 0       | .6 0.     | 6 0       | 4 0.      | 7 0.      | 5 0.      | 1 0       |                |
| Sn           | nqq n    | 17        | -         | 5         | 5         | 17        | -         | 1.        | -         | -         | D         | I.        | Sn               | nqq n  | 0.        | 0.        | 0.        | 0.        | 0.        | 0.        | 0.        |                |
| II           | n ppr    | 0.5 < 0   | 0.5 < 0   | 0.5 < 0   | 0.5 < 0   | 0.5 < 0   | 0.5 < 0   | 0.5 < 0   | 0.5 < 0   | 0.5 < 0   | 0.5 < 0   | 0.5 < 0   | In               | n ppr  | 0.0       | 0.0       | 0.0       | 0.0       | 0.0       | 0.0       | 0.0       |                |
| A Ag         | n ppr    | < 2 < 0   | 2 < 0     | < 2 < 0   | 2 < 0     | 2 < 0     | < 2 < 0   | < 2 < 0   | 2 < 0     | 2 < 0     | 2 < 0     | < 2 < 0   | A Ag             | n ppr  | 0         | 0         | 0         | 0         | 0         | 0         | 0         |                |
| M            | n ppi    | 7.3 <     | 3.5       | s.9 ×     | 3.8       | s.9       | 7.3 <     | 7.5       | 7.2 <     | • 6.7     | 7.5       | > 7.e     | M                | n ppi  | 7.2       | 7.2       | 7.2       | 7.6       | 3.9       | 7.5       | 7.4       | Lt.            |
| N            | bb       |           | -         |           | -         | -         |           |           |           |           |           |           | N                | bb     |           |           |           | -         |           |           |           | 均值を計算          |
| 47, 338      |          | 灰白色       | 赤褐色       | 赤褐色       | 緑色        | 灰白色       | 灰白色       | 赤褐色-褐在    | 赤褐色       | 赤褐色       | 灰白色       | 灰色        |                  |        |           |           |           |           |           |           |           | <b>第=0として平</b> |
| Γ            |          | 44        |           |           | 44        | 44        | +1+       |           |           |           | 44        |           |                  |        |           |           | の平均値      |           | Ť         | *         |           | は, 含有)         |
| 御行           | 日日       | サタクレー     | ガウジ       | がかジ       | カタクレー     | カサクレー     | カタクレー     | ガウジ       | ガウジ       | ガウジ       | カタクレー     | 花崗岩       |                  |        | 料の平均値     | 時の平均値     | サイト5試料    | すの値       | (料の平均値    | (料の平均値    | 平均值       | 以下の場合          |
| 472          | 1        | 该砕帯       | 波砕帯       | 波砕帯       | 波砕帯       | 波砕帯       | 波砕帯       | 波砕帯       | 该砕帯       | 该砕帯       | 波砕帯       | 建岩        | 出師               | 13F    | 波砕帯10試    | ガウジ5試     | カタクレー     | 花崗岩1試準    | 驚頭上部5章    | 驚頭下部5章    | 全11試料の    | %検出限界。         |
| Brno F       | -DI 110- | TK-C01 4  | TK-C02 &  | TK-C03 §  | TK-C04    | TK-C05 &  | TK-C06 §  | TK-C07    | TK-C08    | TK-C09 &  | TK-C10 &  | TK-C11 1  | -                |        | -45       |           |           |           | -4        | -4        |           |                |
| 4            | 10. X    | ŝ         | S         | 01 S      | S         | S         | ŝ         | S         | 02 S.     | S         | ŝ         | 03A S'    |                  |        |           |           |           | 左岸        |           |           |           |                |
| artstr       | There    |           |           | STK-      |           |           | 业         |           | STK-      |           |           | STK-      | the de           | NUE    |           |           |           | 釜無)       |           |           |           |                |
| 144 AC       | War      |           |           |           |           |           | 釜無川左,     |           |           |           |           |           |                  |        |           |           |           |           |           |           |           |                |
| <b>地印刷</b> 化 | 12-11V   |           |           |           |           |           | 下萬木断層     |           |           |           |           |           | NG 105 AL        |        |           |           |           | 下蔦木断層     |           |           |           |                |

## 【付録5】

| 020       | 34    | 029    | 90    | 70     | 034    | 02   | 65   | 57   | 01     | 58   | 76      | 9    | _     |      |       |          |       |         |        |        |       | _    |       |        | 14          |        | 7                                       |       | 9    | _       |       | ~ ~      | <u>م</u>    | 90     | 30     | 84            | 70            | 115    | 18    | 17   | 51    | 8 6           | 804    | 73         | 966   | 4    | 94   | 5             | 2      | < 0.1 | 40    | 12    |
|-----------|-------|--------|-------|--------|--------|------|------|------|--------|------|---------|------|-------|------|-------|----------|-------|---------|--------|--------|-------|------|-------|--------|-------------|--------|-----------------------------------------|-------|------|---------|-------|----------|-------------|--------|--------|---------------|---------------|--------|-------|------|-------|---------------|--------|------------|-------|------|------|---------------|--------|-------|-------|-------|
| HSK-      | 77.   | 0 5    | 0     | 0      | 0      | 0    |      | 4    | × 0.   | 0    | 66      | 0    | < 0.  | ~ ~  | 2 40  | < 20     | ~ 1 × | < 20    | < 10   | 50     | 16    | 21   | 0 > 0 | 202    | 1T          | 99     | 10.                                     | < 2   | 0    | .0<br>V | 9     | v<br>v   | 20          | 12     | 30.    | ŝ             | 15.           |        | .9    | 1    |       | 1 20          |        | . <u>0</u> | 0     | ς,   |      | 5 -           | 32     |       | 25.   | 4     |
| HSK-C19   | 76.75 | 19 50  | 0.26  | 0.70   | 0.044  | 0.02 | 3.54 | 4.56 | 0.02   | 0.71 | 99.75   | 0.4  | < 0.1 |      | 2 10  | < 20     | <1>   | < 20    | < 10   | 50     | 17    | 2.2  | 0.0   | 200    | 45 O        | 66     | 11.0                                    | < 2   | 0.7  | < 0.1   | 7     | < 0.2    | 4.2         | 14.50  | 34.30  | 4.37          | 17.30         | 0.127  | 5.88  | 1.15 | 7.39  | 10.1          | 0.828  | 5.70       | 0.919 | 3.4  | 1.65 | 0.7           | 31     | < 0.1 | 26.50 | 4.40  |
| HSK-C18   | 76.70 | 12.00  | 0.03  | 1.50   | 0.039  | 0.18 | 9.67 | 4.92 | 0.02   | 0.61 | 100.60  | 0.8  | < 0.1 | 57 0 | ~ •   | < 20     | <1    | < 20    | < 10   | 40     | 15    | 1.0  | 0.2   | 100    | 187         | 94     | 6.4                                     | < 2   | 1.0  | < 0.1   | °     | 0.7      | 1.1         | 20.20  | 40.90  | 4.57          | 3.35          | 0.487  | 3.21  | 0.51 | 3.13  | 1 98          | 0.322  | 2.17       | 0.362 | 3.2  | 0.72 | < 0.5         | 31     | 0.1   | 13.80 | 2.86  |
| ISK-C17   | 75.22 | 0.082  | 0.04  | 1.60   | 0.041  | 0.17 | 9.73 | 5.04 | 0.02   | 0.81 | 100.20  | 0.8  | 0.1   | 7 0  | ~ °   | 30       | <1    | < 20    | < 10   | 40     | 16    | 0.9  | 0.2   | 0/1    | 10.7        | 1.01   | 6.7                                     | 6     | 1.0  | < 0.1   | eo    | 0.6      | 818         | 23.00  | 45.70  | 5.17          | 3 94          | 0.515  | 3.58  | 0.60 | 3.42  | 0.14          | 0.341  | 2.36       | 0.378 | 3.2  | 0.75 | < 0.5         | 37     | 0.1   | 14.90 | 2.99  |
| SW-C16 F  | 78.23 | 0.040  | 0.13  | 0.50   | 0.035  | 0.02 | 07.0 | 4.77 | 0.03   | 1.02 | 00.00   | 0.6  | < 0.1 | ~ ~  | 57 13 | 20       | <1    | 20      | 10     | 80     | 16    | 1.8  | 0.2   | 11     | 34          | 40.1   | 8.9                                     | < 2   | 0.7  | < 0.1   | 9     | < 0.2    | 3.8         | 15.20  | 33.70  | 4.15          | 15.90         | 0.218  | 5.16  | 0.99 | 6.76  | 4.52          | 0.720  | 4.97       | 0.822 | 3.2  | 1.11 | < 0.5         | 44     | < 0.1 | 20.70 | 6.54  |
| W-C15 FS  | 80.09 | 0.091  | 9.00  | 3.30   | 0.166  | 0.08 | 0.15 | 4.37 | 0.04   | 1.12 | 99.30 1 | 1.6  | 0.1   | 7 0  | 77 13 | > 08     | , -   | 20 <    | 10 <   | 40 2   | 16    | 1.2  | 0     | 90     | 10          | 85     | 8.4                                     | 2     | 0.9  | 0.2     | 16    | 0.2      | 3.0         | 18.60  | 35.40  | 4.01          | 14.40<br>3 99 | 0.257  | 3.61  | 0.64 | 4.10  | 9.63          | 0.415  | 2.74       | 0.444 | 3.0  | 0.81 | 3.8           | 27     | 0.1   | 15.30 | 7.26  |
| /-C14 FS  | 9.89  | 0.118  | 0.19  | 0.30   | 0.009  | 0.05 | 0.81 | 4.76 | 0.04   | 1.98 | 0.40    | 1.7  | 0.2   | 4.   | 4 -   | - 0      | 1     | v<br>0  | ×<br>0 | 0 4    | 2     | 1.4  | •     |        | 101         | 1.6    | 8.4                                     | 2     | 1.2  | 0.1     | 4     | 0.2      | 0.0         | 7.60   | 5.00   | 8.05          | 8.30          | 0.673  | 5.37  | 0.84 | 4.75  | 9.45          | 0.373  | 2.39       | 0.376 | 3.6  | 0.75 | 1.2           | 9      | 0.1   | 5.80  | 9.03  |
| C13 FSW   | .51 7 | 109    | .64 1 | .10    | .014   | -07  | 39   | 17   | .04    | .19  | .99 10  | .4   | .5    |      |       | < 2      | ? V   | < 2     | <1     | 21     | -     | .5   | v :   | 91<br> | 2<br>5<br>6 |        |                                         | v     | .3   | .1      | 1     | 2. C     | 0.          | .90 3  | .10 6  | 66.           | .40 2<br>56   | .747   | .06   | .36  | .72   | 46            | .859   | .78        | .948  | 6.   | 69.  | .4            | .01    | .6    | .00   | .70   |
| 12 FSW-   | 59 74 | 145 0  | 29 4  | 0 01   | 0 690  | 13 0 |      | 4    | 04 0   | 25 3 | 86 62   | 4 3  | 0     | 12   | 0 01  | < 20     | 1     | < 20    | < 10   | 580    | 15    |      | 0     | 152    | 10.4        | 110    | 7 10                                    | <2    | 3 1  | 1       | 20    | 0 ;<br>2 | 426         | 30 35  | 00 58  | 16 7          | 30 28<br>88 6 | 545 0  | 28 7  | 35 1 | 25    | 1 2 60        | 944 0  | 54 5       | 020 0 | 3    | 32   | 8U 1          | 47     | 0     | 30 15 | 30 10 |
| 1 FSW-0   | 64.0  | 2 0.   | 15.2  | 0      | 9 0.0  | 00   |      | 2    | iö     | 5.5  | .66     | 4.4  | 0.9   | 77   | - 10  | < 20     | 5     | < 20    | < 10   | 1,420  | 16    | -1.0 | 32    | 108    | 30          | 145    | 12.                                     | < 2   | 1.6  | 0.      | 45    | <0.0 ×   | 23.         | 15.3   | 21.(   | 4.            | 16.0          | 1 0.6  | 6.9   |      | 6.0   | 9             | 0.0    | 6.1        | 0 1.( | 4.   | 0.0  | 1             | 32     | 2.5   | 14.3  | 16.0  |
| FSW-C1    | 56.85 | 10.35  | 18.40 | 0.40   | 0.04   | 0.32 | 0.56 | 2.40 | 0.05   | 7.46 | 100.60  | 6.0  | 1.6   | 31   |       | < 20     | 0,00  | < 20    | 10     | 2,150  | 16    | 2.6  | 0.    | 1:4    | 17          | 232    | 35.2                                    | <2    | 2.4  | < 0.1   | 12    | 0.6      | 0.02        | 20.60  | 22.40  | 5.51          | 21.90<br>6.43 | 0.67   | 8.59  | 1.87 | 12.80 | 8.40          | 1.27   | 8.49       | 1.33  | 9.6  | 0.79 | 3.9           | 20.1   | 0.6   | 13.80 | 23.90 |
| FSW-C10   | 64.09 | 0.440  | 8.58  | < 0.10 | 0.175  | 0.39 | 0.64 | 2.61 | 0.04   | 6.37 | 98.99   | 5.3  | 1.3   | 16   | 12    | < 20     | 0,00  | < 20    | < 10   | 1,270  | 18    | 2.6  | 34    | 189    | 707         | 238    | 39.9                                    | < 2   | 2.6  | < 0.1   | 12    | 0.6      | 302         | 20.10  | 29.20  | 4.47          | 16.70         | 0.465  | 5.98  | 1.19 | 8.23  | 5.68          | 0.840  | 5.42       | 0.848 | 10.0 | 0.91 | 6.1           | 29     | 0.8   | 15.30 | 16.50 |
| FSW-C09   | 60.48 | 0.417  | 14.00 | < 0.10 | 0.161  | 0.33 | 02.0 | 2.66 | 0.08   | 7.08 | 100.40  | 5.0  | 1.7   | 19   | 11    | < 20     | 5     | < 20    | < 10   | 1,200  | 18    | 2.5  | 98    | 6/.T   | 66.0        | 251    | 40.2                                    | < 2   | 2.9  | < 0.1   | 10    | 0.7      | 301         | 17.00  | 26.20  | 4.03          | 15.50         | 0.466  | 5.74  | 1.20 | 8.56  | 5.85          | 0.900  | 6.05       | 0.945 | 10.3 | 1.03 | 5.2           | 35     | 0.8   | 16.80 | 27.70 |
| FSW-C08   | 62.42 | 0.466  | 14.92 | < 0.10 | 0.280  | 0.36 | 0.74 | 2.65 | 0.06   | 6.81 | 100.40  | 5.2  | 1.5   | 16   | 11    | < 20     | 0,0   | < 20    | < 10   | 1,110  | 19    | 2.7  | 20    | 188    | 63.7        | 245    | 42.3                                    | < 2   | 2.6  | < 0.1   | 6     | 0.6      | 325         | 18.00  | 32.40  | 4.00          | 3.87          | 0.415  | 5.34  | 1.11 | 1.70  | 5 26          | 0.778  | 5.18       | 0.848 | 10.8 | 0.99 | 5.6           | 32     | 0.8   | 15.40 | 21.70 |
| FSW-C07   | 51.50 | 0.267  | 10.04 | < 0.10 | 10.200 | 0.17 | 0.64 | 2.96 | 0.03   | 8.81 | 96.51   | 5.8  | 1.6   | 15   | x o   | < 20     | 47    | 20      | 30     | 3,390  | 19    | 2.5  | 29    | 108    | 0.020       | 157    | 26.4                                    | 2     | 2.0  | < 0.1   | æ     | 0.5      | 33.3<br>898 | 135.00 | 610.00 | 35.30         | 38.40         | 3.100  | 41.50 | 7.78 | 47.50 | 9.04<br>26.50 | 3.970  | 23.00      | 3.660 | 7.0  | 0.66 | 3.5           | 292    | 0.7   | 16.50 | 33.70 |
| SW-C06    | 73.25 | 0.096  | 2.84  | < 0.10 | 0.473  | 0.03 | 0.76 | 5.92 | < 0.01 | 3.00 | 99.72   | 2.6  | 0.4   | 4    | 71 0  | < 20     | 5     | < 20    | < 10   | 360 8  | 11    | 1.6  | 39    | 190    | 15.7        | 96     | 9.8                                     | 9     | 1.0  | < 0.1   | 16    | < 0.2    | 738 5       | 6.66   | 29.60  | 1.70          | 6.23          | 0.202  | 1.76  | 0.37 | 2.61  | 1 92          | 0.321  | 2.38       | 0.414 | 3.3  | 0.85 | < 0.5         | 108    | 0.8   | 16.60 | 9.34  |
| SW-C05 I  | 73.58 | 0.088  | 1.62  | < 0.10 | 0.339  | 0.03 | 0.89 | 5.41 | 0.02   | 3.03 | 98.94   | 2.9  | 0.4   | ~ ~  | N 1   | 06       | 1     | 20      | 10     | 260    | =     | 1.5  | 30    | 211    | 13.7        | 1.0.1  | 8.7                                     | 7     | 0.9  | < 0.1   | 15    | < 0.2    | 0.3         | 4.42   | 13.80  | 1.11          | 4.04          | 0.128  | 1.27  | 0.27 | 1.97  | 1.55          | 0.264  | 1.94       | 0.363 | 3.0  | 0.85 | < 0.5         | 87     | 1.0   | 17.30 | 5.79  |
| SW-C04 F  | 75.51 | 0.088  | 1.30  | < 0.10 | 0.155  | 0.03 | 0.90 | 5.32 | 0.02   | 2.77 | 99.53   | 2.3  | 0.4   | .7 0 |       | - 06     | <1    | 20      | 10     | 140    | 11    | 1.4  | 30    | 1/3    | 11 8        | 86     | 8.7                                     | 5     | 1.0  | < 0.1   | 14    | < 0.2    | 1.6         | 3.94   | 8.84   | 0.88          | 3.35          | 0.126  | 0.94  | 0.21 | 1.62  | 1.37          | 0.236  | 1.77       | 0.320 | 3.0  | 0.85 | < 0.5         | 80     | 0.9   | 15.50 | 4.69  |
| W-C03 F   | 74.51 | 0.092  | 14.42 | < 0.10 | 0.068  | 0.03 | 0.68 | 5.65 | 0.02   | 3.24 | 00.80   | 3.0  | 0.4   | .7 , | 1     | > 03     | ×1    | 20 <    | 10 <   | 20     | 12    | 1.4  | 13    | 20     | 11 5        | 82.    | 7.8                                     | 3     | 0.9  | < 0.1   | 19    | < 0.2    | 0.2         | 3.99   | 6.31   | 0.88          | 3.17          | 0.106  | 0.94  | 0.20 | 1.45  | 1.94          | 0.218  | 1.68       | 0.312 | 2.9  | 0.83 | < 0.5<br>1 67 | 97     | 0.7   | 15.40 | 5.16  |
| W-C02 FS  | 79.54 | 0.098  | 0.18  | 0.10   | 0.005  | 0.04 | 0.46 | 5.19 | 0.01   | 2.48 | 0.80 1  | 2.4  | 0.3   | - 0  | 2 1   | > 00     | , -   | × 02    | > 01   | 10 1   | =     | 1.3  | 0     |        | 00          | 10.0   | 8.5                                     | 2     | 1.3  | 0.1     | 91    | 0.2      | 2.0         | 6.15   | 6.22   | 1.28          | 4.44          | 0.123  | 1.11  | 0.25 | 1.87  | 0.40          | 0.274  | 2.11       | 0.378 | 3.2  | 0.95 | 0.5           | 1.40   | 0.4   | 12.80 | 2.68  |
| V-C01 FS  | 7.33  | 0.093  | 2.59  | 0.20 < | 0.043  | 0.07 | 0.0  | 4.71 | > 10.0 | 3.19 | 0.80 10 | 3.0  | 0.5   |      | 4 0   | v        | , , , | v 0     | × 0    | · 0    | ~     | 1.6  | × ;   |        | 2 1 2 2     | 0.0    | 8.2                                     | -     | 1.8  | 0.1 <   | 9     | 0.4      | 5.1         | 6.90   | 1.40   | 3.90          | 3.80          | 0.364  | 3.18  | 0.59 | 3.85  | 0.00          | 0.423  | 3.03       | 0.508 | 4.2  | 0.89 | 0.9           | 3 (    | 0.4   | 8.10  | 4.56  |
| VSI Pot   | ICP 7 | ICP    | ICP   | R      | ICP    | ICP  | ICP  | ICP  | ICP <  | ICP  | 10      | AV   | AV    | -ICP | TCP   | MS < 9   | > SW  | -MS < 2 | -MS 3  | -MS 12 | -MS 1 | -MS  | Z SW- | IT SW- | AIG 9       | TCP 11 | MS                                      | -MS 1 | SM-  | SM-     | -MS 2 | SM-      | TCP 50      | MS 1   | -MS 2  | SM-           | -MS I         | SW     | SM-   | SM-  | -MS   | SW            | SW     | SM-        | SM-   | SM-  | SM-  | SM-           | -MS 30 | SM    | -MS 1 | -MS   |
| imit meth | FUS-  | 1 FUS- | FUS-  | TIT    | 1 FUS- | FUS- | FUS- | FUS- | FUS-   | FUS- |         | GR   | GR    | FUS  | FUS.  | FUS-     | FUS-  | FUS     | FUS    | FUS    | FUS   | FUS  | FUS   | FUS    | FUS.        | FUS-   | FUS-                                    | FUS   | FUS- | FUS     | FUS   | FUS      | FUS<br>FUS- | FUS-   | FUS    | FUS           | FUS-          | 5 FUS- | FUS   | FUS  | FUS   | FUS           | 5 FUS- | FUS        | 2 FUS | FUS  | FUS  | FUS<br>FUS    | FUS-   | FUS   | FUS-  | FUS   |
| Detect. I | 0.01  | 0.00   | 10.0  | 0.01   | 00.00  | 0.01 | 0.01 | 0.01 | 0.01   | 0.01 |         | 0.1  | 0.1   |      | - 10  | 20       | 1     | 20      | 10     | 30     | -     | 0.5  | 0,    | - 0    | 40          |        | 0.2                                     | 2     | 0.5  | 0.1     | -     | 0.2      | 1.0<br>8    | 0.05   | 0.05   | 0.01          | 0.05          | 0.00   | 0.01  | 0.01 | 0.01  | 0.01          | 0.00   | 0.01       | 0.00. | 0.1  | 0.01 | 0.05          | 5      | 0.1   | 0.05  | 0.01  |
| Units     | %     | %      | %     | %      | %      | %    | %    | %    | %      | %    | %       | %    | %     | mqq  | mudd  | mdd      | mdd   | mdd     | mqq    | mqq    | mqq   | mqq  | mqq   | mdd    | nuu         | maa    | ppm                                     | bpm   | mqq  | mqq     | mqq   | mqq      | mun         | mdd    | ppm    | mqq           | mun           | mdd    | mdd   | mqq  | mqq   | muu           | mdd    | mdd        | mqq   | mqq  | mqq  | mqq           | mdd    | bpm   | mdd   | mdd   |
| Element   | Si02  | Ti02   | Fe203 | FeO    | MnO    | MgO  | Na20 | K20  | P205   | IOI  | total   | H20+ | H20-  | Be   | 20    | <u>ئ</u> | 00    | Ņ       | Cu     | Zn     | Ga    | Ge . | As    | KD     | V           | Zr     | and | Mo    | Ag   | In      | Sn    | s,       | Ba          | La     | Ce     | $\mathbf{Pr}$ | Nd            | Eu     | Gd    | Tb   | Dy    | Er.           | Tm     | Yb         | Lu    | Hf   | Ta   | N II          | Pb     | Bi    | Th    | n     |

付録 B 既往報告書における全岩化学組成分析結果(続き)

23 耐震工学 陸域断層の活動性評価に資する断層破砕部の調査・分析

表 3.3.6-1 六甲断層 船坂西露頭、白水峡露頭

報告書

付録 B 既往報告書における全岩化学組成分析結果(続き)

24 耐震工学 陸域断層の活動性評価に資する断層破砕部の調査・分析

## 【付録5】

### 【付録5】

付録 B 既往報告書における全岩化学組成分析結果(続き)

- ・22 耐震工学 陸域断層の活動性評価に資する断層破砕部の調査・分析
- ・23 耐震工学 陸域断層の活動性評価に資する断層破砕部の調査・分析
- ・24 耐震工学 陸域断層の活動性評価に資する断層破砕部の調査・分析

全岩化学組成分析の方法

①分析試料を粉砕し、粉末試料として以下の分析に用いた.

②Fe<sub>2</sub>O<sub>3</sub>/FeO 比を求めるため FeO については滴定法による分析を行った.

③H<sub>2</sub>O+と H<sub>2</sub>O<sup>-</sup>については重量法により分析を行った.

④その他の主要及び微量成分については、ThermoJarrell-Ash 社製の誘導結合プラズマ発光分析(ICP-AES; Inductively Coupled Plasma Atomic Emission Spectrometry) ENVIRO II ICP,及び PerkinElmer 社製の誘導結合プラズマ質量分析装置(ICP-MS; Inductively Coupled Plasma Mass Spectrometer) ELAN9000を用いて分析を行った.



図 3.5.7-1 ICP-MS PerkinElmer SCIEX - ELAN9000.

24 耐震工学 陸域断層の活動性評価に資する断層破砕部の調査・分析 報告書 3.5.7. 化学組成分析より抜粋

### 付録 C 既往試料の化学分析における試料採取位置

以下、「地形図は国土地理院電子地図国土 Web」を利用。

(1) 五助橋断層



GSK1: brownish clay (Gr/clay boundary) GSK2: gray clay GSK3: brownish clay (2) 六甲断層





ARM1: brownish clay (Gr/clay boundary) ARM2: gray clay ARM3: brownish clay



ARM4: brownish clay (Gr/clay boundary) ARM5: gray clay (ryolite origin)



(3) 白木-丹生断層



# 【付録5】

### (4) 境峠断層



ABONC STREAM STR

狩事乳まか(2002)



NMG1: brownish clay NMG2: gray clay NMG3: Gr. cataclasite w/greenish clay NMG4: Gr. cataclasite just beneath the fault plane NMG5: brownish clay w/brack materials NMG6: white foliated gouge



(4) 境峠断層 (続き)





SGR1: Gr. cataclasite SGR2: white clay (Gr. origin?) SGR3: black clay (chert origin?) SGR4: gray clay (Gr/chert boundary) SGR5: WNW trend clay SGR6: white clay (5) 境峠断層 (続き)





SHO1: Gr. cataclasite along the fault plane SHO2: Gr. cataclasite w/greenish clay

(5) もんじゅ剥ぎ取り地点 (β系)



# 【付録5】

### (6) 江若花崗岩中の破砕帯



### (7) 南九州せん断帯 紫尾花崗岩中の破砕帯



(8) 南九州せん断帯 四万十帯砂岩中の破砕帯





130° 27'30"E

130° 27'50″E

130° 28'10"E

130° 27'10"E



130° 28'30'

31°

YD-14bb①~③は, 樹脂固化側で YD-14①~③相当の位置

試料番号 採取位置 岩相 YD-14① 西1~2cm 褐色角礫部(礫混じり砂質) YD-14② 中軸 0cm ガウジ(やや軟質層厚2mm以下) YD-14③ 東1~2cm 褐色角礫部(礫混じり砂質) YD-14④ 東2~5cm 暗灰色砂質等粒状 YD-14⑤ 東3~6cm 褐色角礫部(礫混じり砂質) 付録C 引用文献

狩野謙一, 丸山 正, 林 愛明, 飛騨山地南部, 境峠断層の後期更新世-完新世における活動, 地質 学雑誌, vol.108, pp.291-305, 2002.

日本原子力研究開発機構,敷地内破砕帯追加地質調查 報告書,2013.

植木忠正,田辺裕明,丹羽正和,石丸恒存,島田耕史,花崗岩中に発達する粘土脈の観察・分析デ ータ. JAEA-Data/Code 2016-010, 292p, 2016.

| 試料名                     | S14-1a(2)    | S14-1a③                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MP-07-1      | MP-07-2                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MP-07-3                | Ko12-1-1                | GSK1 GS         | K2 G5          | SK3                   | ARM1         | ARM4                        |
|-------------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------|-----------------|----------------|-----------------------|--------------|-----------------------------|
|                         | 断層ガウジ<br>中軸部 | <ul> <li>● 「</li> <li>● 「</li> <li>● ○</li> <li>● ○<th>断層ガウジ<br/>中軸部</th><th><ul><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li></ul></th><th>断層ガウジ<br/>中軸部<br/>(樹脂含む)</th><th>断層ガウジ 中軸部<br/>(古い粘土脈)</th><th>断層ガウジ<br/>(数字が小さ</th><th>中軸部<br/>にいまど新しい</th><th>(圓)</th><th>断層ガウジ<br/>中軸部</th><th>断層<br/>市<br/>車<br/>部<br/>の<br/>、</th></li></ul> | 断層ガウジ<br>中軸部 | <ul><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li><li>・</li></ul> | 断層ガウジ<br>中軸部<br>(樹脂含む) | 断層ガウジ 中軸部<br>(古い粘土脈)    | 断層ガウジ<br>(数字が小さ | 中軸部<br>にいまど新しい | (圓)                   | 断層ガウジ<br>中軸部 | 断層<br>市<br>車<br>部<br>の<br>、 |
| SiO <sub>2</sub> (wt.%) | 76.99        | 77.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 77.82        | 75.42                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 71.45                  | 72.92                   | 71.91           | 71.16          | 71.06                 | 65.46        | 62.41                       |
| $TIO_2$                 | 0.038        | 0.040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.058        | 3 0.058                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.063                  | 0.044                   | 0.2.09          | 0.221          | 0.204                 | 0.518        | 0.656                       |
| $AI_2O_3$               | 12.64        | 4 12.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12.96        | 3 12.73                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.29                  | 13.79                   | 14.01           | 13.92          | 13.64                 | 17.22        | 18.54                       |
| $Fe_2O_3$               | 1.365        | 5 1.266                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.179        | 1.192                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.072                  | 2.824                   | 2.579           | 2.684          | 2.598                 | 2.202        | 2.894                       |
| MnO                     | 0.116(       | 0.0930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0260       | 0.0120                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0280                 | 0.0510                  | 0.0490          | 0.0630         | 0.0480                | 0.0500       | 0.0230                      |
| MgO                     | 0.636        | 5 0.597                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.452        | 0.479                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.393                  | 0.879                   | 0.519           | 0.517          | 0.490                 | 0.507        | 0.764                       |
| CaO                     | 0.063        | 0.061                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.418        | 3 0.421                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.374                  | 0.217                   | 2.510           | 2.946          | 2.357                 | 1.400        | 1.453                       |
| Na <sub>2</sub> O       | 0.98         | 0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.71         | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.74                   | 0.77                    | 2.70            | 2.71           | 2.57                  | 1.02         | 0.79                        |
| K <sub>2</sub> 0        | 2.891        | 1 3.051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.010        | 3.857                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.857                  | 3.751                   | 2.801           | 2.699          | 2.728                 | 2.998        | 2.446                       |
| $P_2O_5$                | 0.005(       | 090000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0080       | 0.0070                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0070                 | 0.0090                  | 0.0530          | 0.0570         | 0.0530                | 0.0830       | 0.1210                      |
| - Tot                   | al 95.73     | 3 95.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 97.65        | 94.80                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 90.28                  | 95.26                   | 97.33           | 96.98          | 95.75                 | 91.45        | 90.10                       |
| Ba (nnm)                | 10           | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100          | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 202                    | 100                     | 787             | 202            | 69.4                  | 358          | 100                         |
| Ce<br>Ce                | 51           | 1 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 33                     | 85                      | 67              | 627<br>68      | 004<br>63             | 000<br>99    | 2 34<br>88                  |
| 3 12                    | 26           | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5            | 206                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 796                    | 27                      | 60              | 75             | 40                    | 3            | S <b>~</b>                  |
| őő                      | 2.5          | 3 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.4          | 1 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.0                    | 7.1                     | 2.3             | 2.7            | 2.5                   | 2.6          | .9<br>6.6                   |
| ç                       |              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17           | , 5                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 39                     | 6                       | 16              | 6              | 36                    | 34           | 49                          |
| ш                       | 300          | 3 278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 386          | 3 428                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 394                    | 604                     | 249             | 374            | 220                   | 1476         | 1281                        |
| Ga                      | 17.4         | 4 17.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17.7         | / 16.9                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15.9                   | 18.5                    | 17.1            | 17.3           | 17.2                  | 25.0         | 27.4                        |
| Nb                      | 17.4         | 4 16.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 19.6         | 9 21.0                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22.4                   | 13.8                    | 10.0            | 11.3           | 11.2                  | 64.7         | 55.1                        |
| Ni                      | 3.7          | 1 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.8          | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.8                    | 6.6                     | 2.5             | 2.2            | 3.8                   | 5.8          | 8.4                         |
| Pb                      | 39.1         | 1 28.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13.5         | 11.2                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.8                    | 19.4                    | 24.2            | 21.9           | 24.6                  | 34.1         | 109.9                       |
| Rb                      | 165.         | 1 171.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 256.0        | 0 253.3                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 239.2                  | 232.4                   | 108.4           | 0.06           | 103.2                 | 261.8        | 216.2                       |
| s o                     | 12.(         | 0 15.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 33.7         | 9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.3                    | 7.8                     | 31.1            | 663.3          | 7.9                   | 43.3         | 200.2                       |
| 20                      | -            | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ς, υ<br>     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.7                    |                         | 0.9             | 9.9            | 8./                   | 9.7<br>      | C. /                        |
| ن مر                    | 16.(         | 5 16.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 26.1         | 26.9                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26.1                   | 29.7                    | 250.3           | 213.7          | 160.4                 | 75.2         | 89.6                        |
| Ч                       | 28.          | 1 27.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 29.6         | 30.2                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25.4                   | 55.6                    | 13.0            | 12.7           | 13.1                  | 15.8         | 16.1                        |
| D                       | 5.7          | 7 5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.L          | t 8.2                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.7                    | 28.4                    | 1.9             | 3.1            | 2.1                   | 3.4          | 8.2                         |
| >                       | 7            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4                      | 9                       | 17              | 18             | 16                    | 45           | 68                          |
| 7                       | 139.7        | 7 133.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 120.9        | 9 119.9                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 104.6                  | 341.2                   | 26.9            | 29.6           | 29.4                  | 44.7         | 59.2                        |
| Zr                      | 83.          | 1 82.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 97.0         | 100.6                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 89.6                   | 85.2                    | 158.5           | 166.3          | 166.4                 | 204.0        | 205.7                       |
| Ig* (wt%)               | 4.17         | 7 4.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.23         | 3 5.05                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.52                   | 4.57                    | 2.49            | 2.77           | 4.08                  | 8.27         | 9.63                        |
|                         |              | 」は定量下限                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 未満の測定値。      | 。<br>赤太字<br>は検量                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ■線作成に用い<br>            | に標準試料の組成値を上回            | 回るまたは下回         | る値。            | יי<br> <br> <br> <br> |              |                             |
|                         | 、気をして、       | 有率の計算時                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | に残分として即      | こり扱っ成分をま                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>きす</b> 。すなわちle(     | り 会 有 率 は 100 wt % から # | もの取ぐの心理         | - を 弄 し 引し 1   | て値である                 |              |                             |

### 付録 D 既往試料の化学分析における全岩化学組成分析結果

| 試料名                            | SGR2         | SGR3         | SGR5                                                  | NMG5    | 96-g         | 101-1   | 118-4a | YD-14(])  | YD-14②   | YD-14③      | YD-14④         | YD-14⑤ |
|--------------------------------|--------------|--------------|-------------------------------------------------------|---------|--------------|---------|--------|-----------|----------|-------------|----------------|--------|
|                                | 白色の<br>断層ガウジ | 黒色の<br>断層ガウジ | 粘土馬                                                   | 粘土馬     | 断層ガウジ        | 断層ガウジ   | 御總部    | 角礫部       | 断層ガウジ    | 角礫部         | 角礫部            | 角礫部    |
| SiO <sub>2</sub> (wt.%)        | 70.71        | 68.67        | 70.14                                                 | 77.91   | 64.76        | 59.77   | 70.18  | 72.37     | 62.43    | 68.18       | 67.32          | 70.33  |
| TiO <sub>2</sub>               | 0.464        | I 0.529      | 0.496                                                 | 0.193   | 0.668        | 0.749   | 0.411  | 0.391     | 0.624    | 0.497       | 0.522          | 0.450  |
| AI <sub>2</sub> O <sub>3</sub> | 14.43        | 14.61        | 14.00                                                 | 11.35   | 15.95        | 12.98   | 13.23  | 13.41     | 16.33    | 14.56       | 15.52          | 13.78  |
| $Fe_2O_3$                      | 3.119        | 3.969        | 3.778                                                 | 2.661   | 5.330        | 5.657   | 3.122  | 3.018     | 3.678    | 3.936       | 3.132          | 3.662  |
| MnO                            | 0.0550       | 0.0680       | 0.0690                                                | 0.0170  | 0.1070       | 0.0650  | 0.2610 | 0.0350    | 0.0530   | 0.0520      | 0.0350         | 0.0480 |
| MgO                            | 1.087        | 1.282        | 1.240                                                 | 0.342   | 1.298        | 1.268   | 1.244  | 0.933     | 1.862    | 1.313       | 1.362          | 1.149  |
| CaO                            | 1.630        | 1.441        | 1.413                                                 | 0.300   | 0.697        | 5.906   | 0.968  | 1.046     | 1.176    | 1.145       | 1.177          | 1.013  |
| Na <sub>2</sub> O              | 2.69         | 2.36         | 2.19                                                  | 1.33    | 0.23         | 0.64    | 2.17   | 2.74      | 1.28     | 2.41        | 3.14           | 3.33   |
| K <sub>2</sub> O               | 5.024        | 1 3.394      | 3.916                                                 | 3.708   | 4.401        | 3.839   | 2.644  | 3.089     | 3.169    | 3.000       | 3.027          | 2.452  |
| $P_2O_5$                       | 0.1530       | 0.1250       | 0.1130                                                | 0.0390  | 0:0030       | 0.2290  | 0.0360 | 0.0920    | 0060.0   | 0660.0      | 0.0650         | 0.0970 |
| To<br>T                        | tal 99.37    | 96.45        | 97.35                                                 | 97.85   | 93.531       | 91.101  | 94.262 | 97.13     | 90.692   | 95.184      | l 95.292       | 96.301 |
| Ba (pom)                       | 971          | 467          | 660                                                   | 568     | 612          | 458     | 1058   | 1027      | 809      | 791         | 734            | 744    |
| Ce                             | 92           | 82           | 98                                                    | 56      | 95           | 122     | 92     | 51        | 71       | 58          | 48             | 46     |
| CI                             | 100          | ) 50         | 53                                                    | 17      | 253          | 222     | 3      | 30        | 10       | 6           | 23             | 13     |
| Co                             | <u>r.</u> r  | , 6.7        | .8.3                                                  | 3.4     | 8.3          | 10.0    | 13.2   | 4.4       | 11.4     | 8.9         | 10.5           | 10.4   |
| ç                              | 45           | 5 62         | 68                                                    | 24      | 42           | 20      | 65     | 72        | 82       | 71          | 61             | 47     |
| Ŀ                              | 3242         | 1502         | 2364                                                  | 576     | 539          | 525     | 178    | 311       | 327      | 326         | 89             | 223    |
| Ga                             | 18.2         | 20.7         | 18.6                                                  | 14.9    | 18.8         | 17.6    | 15.5   | 14.9      | 23.0     | 17.6        | 18.0           | 15.3   |
| Nb                             | 11.5         | 14.1         | 13.2                                                  | 8.2     | 40.2         | 48.1    | 7.6    | 8.6       | 11.1     | 9.4         | i 9.9          | 8.7    |
| iN                             | 15.6         | 3 13.8       | 21.0                                                  | 3.4     | 9.1          | 10.5    | 16.2   | 14.2      | 14.9     | 19.4        | 19.4           | 12.7   |
| Pb                             | 40.4         | 19.3         | 24.6                                                  | 14.0    | 20.9         | 19.0    | 17.7   | 15.5      | 14.7     | 15.9        | 15.4           | 13.7   |
| 원                              | 239.6        | 3 205.0      | 219.7                                                 | 155.4   | 155.8        | 146.4   | T.TT   | 86.4      | 149.0    | 100.2       | 98.8           | 74.8   |
| s o                            | 1850.9       | 3945.1       | 3306.0                                                | 126.9   | 19.0         | 11.0    | 9.5    | 56.3      | 66.3     | 71.3        | 2079.1         | 58.3   |
| Sc                             | 6.2          | 9.1          | 6.2                                                   | 3.7     | 9.9          | 16.8    | 4.5    | 7.1       | 7.5      | 8.1         | 7.8            | 6.3    |
| γ                              | 156.5        | 9 206.1      | 184.4                                                 | 62.8    | 65.6         | 94.2    | 264.3  | 323.9     | 177.1    | 268.8       | 326.1          | 341.7  |
| ЧT                             | 16.C         | 16.8         | 16.2                                                  | 13.7    | 21.7         | 32.9    | 8.9    | 7.0       | 10.5     | 8.2         | 8.2            | 6.5    |
| D                              | 9.6          | 3.0          | 1.2                                                   | 3.6     | 9.9          | 13.0    | 2.2    | 2.3       | 1.6      | 2.3         | 3.5            | 2.2    |
| >                              | 22           | 60           | 59                                                    | 24      | 33           | 64      | 62     | 58        | 94       | 13          | 3 70           | 59     |
| ×                              | 29.4         | 1 31.2       | 30.6                                                  | 39.1    | 21.8         | 33.5    | 16.3   | 15.0      | 27.7     | 22.5        | 14.4           | 15.7   |
| Zr                             | 241.1        | 202.4        | 212.4                                                 | 126.5   | 223.0        | 251.6   | 168.9  | 137.7     | 173.4    | 153.8       | 150.1          | 131.6  |
| Ig* (wt.%)                     | -0.08        | 2.86         | 1.91                                                  | 1.96    | 6.25         | 8.68    | 5.53   | 2.65      | 9.10     | 4.61        | 4.33           | 3.51   |
|                                |              |              | 「は定量下版                                                | 1年話の道5  | ÷値 - 赤大字(1:) | 始量線作成に用 | いた踵進計  | 對の組成値     | キト回るまた   | は下回る値       |                |        |
|                                |              | ● *          | 「そう」と、「本」で、「本」で、「、「」、「、」、「、」、「、」、「、」、「、」、「、」、「、」、「、」、 | 「人で掛し曲」 | 「「「下間」「あっぽう  | マート もっち | たこの今本が | 索1+100 wt | 「こう」のです。 | 1 * 1 * 9 * | 。<br>ミニュニット・値・ | がおん    |

付録 D 既往試料の化学分析における全岩化学組成分析結果(続き)

隆起・沈降量の評価手法の高度化に関する共同研究

# 平成 31 年度共同研究報告書

# 令和2年1月

# 国立大学法人東京大学

国立研究開発法人日本原子力研究開発機構 核燃料・バックエンド研究開発部門 東濃地科学センター 地層科学研究部 ネオテクトニクス研究グループ
## 目 次

| 1. | 概要4                     |
|----|-------------------------|
|    | 1.1 共同研究件名4             |
|    | 1.2 研究目的4               |
|    | 1.3 実施期間4               |
| 2. | ボーリングコア試料の分析手法に関する情報収集5 |
|    | 2.1 指標について5             |
|    | 2.2 調査・分析について7          |
| 3. | 本共同研究開発における方法8          |
|    | 3.1 堆積相の記載              |
|    | 3.2 粒度分析                |
|    | 3.3 帯磁率測定               |
|    | 3.4 元素組成分析              |
|    | 3.5 珪藻分析                |
|    | 3.6 花粉分析                |
|    | 3.7 テフラ分析9              |
| 4. | 結果10                    |
|    | 4.1 堆積相10               |
|    | 4.2 化石相17               |
|    | 4.2.1 珪藻群集組成            |
|    | 4.2.2 花粉群集組成            |
|    | 4.3 テフラ                 |
| 5. | 堆積物の層序区分と対比             |
| 6. | 研究開発手法の評価               |
| 7. | まとめ                     |
| 8. | 引用文献                    |

## 図目次

| 図 2.2. | 1 本共同研究における調査・分析フロー                     | 7 |
|--------|-----------------------------------------|---|
| 図 4.1. | 1 左から GC-OY2、GC-OY1 及び GC-NG1 コアの岩相柱状図  |   |
| 図 4.1. | 2 GC-NG1, -OY1 及び -OY2 の各コアの柱状図と堆積物の粒度、 |   |
| 図 4.1. | 3 代表的な層準の剥ぎ取り写真の例                       |   |
| 図 4.1. | 4 代表的な X 線 CT 画像                        |   |
| 図 4.2. | 1 GC-NG-1 コアの珪藻群集組成                     |   |
| 図 4.2. | 2 GC-OY-1 コアの珪藻群集組成                     |   |
| 図 4.2. | 3 GC-OY-2 コアの珪藻群集組成                     |   |
| 図 4.2. | 4 GC-NG-1 コアの花粉群集組成                     |   |
| 図 4.2. | 5 GC-OY-1 コアの花粉群集組成                     |   |
| 図 4.2. | 6 GC-OY-2 コアの花粉群集組成                     |   |
| 図 4.3. | 1 火山ガラスの化学組成グラフ                         |   |
| 図 4.3. | 1 コア堆積物から認定した地層境界面と MIS との対比            |   |

# 表 目 次

| 表 2.1.1 | 堆積年代を推定するための指標 | <b>5</b> |
|---------|----------------|----------|
| 表 2.1.2 | 堆積環境を推定するための指標 | 6        |
| 表 4.3.1 | テフラー覧          | 23       |

#### 1. 概要

#### 1.1 共同研究件名

隆起・沈降量の評価手法の高度化に関する共同研究

#### 1.2 研究目的

日本原子力研究開発機構(以下、「原子力機構」という)では、経済産業省資源エネルギー庁か ら受託した「平成 31 年度高レベル放射性廃棄物等の地層処分に関する技術開発事業(地質環境 長期安定性評価技術高度化開発)」において、地層処分に適した地質環境の選定に係る自然現象の 影響把握及びモデル化に関連する研究課題として示された火山・火成活動、深部流体、地震・断 層活動及び隆起・侵食に対し、地質学、地形学、地震学及び地球年代学などの各学術分野におけ る最新の研究を踏まえた技術の適用による事例研究を通じて、課題の解決に必要な知見の蓄積や 調査・評価技術の高度化を総合的に進めている。このうち隆起・侵食に関する技術的課題の一つ に、沿岸部の隆起・侵食を把握するための技術の高度化が挙げられる。

沿岸部では、海洋酸素同位体ステージ(Marine Isotope Stage:以下、「MIS」という)5e やそ れ以前の高海水準期の海水準高度を示す地形・地層の分布・高さに基づき、過去十万年~数十万 年間の隆起・沈降量の空間分布やその時空間変遷が把握されている。しかし、沿岸部の隆起域と 沈降域の境界域においては、MIS 5e やそれ以前の高海水準期の海成層の高度分布が不明瞭であ るため、隆起域~沈降域にかけてシームレスかつ正確に過去十万年~数十万年間の地殻変動様式 を把握することは困難となっている。そこで本共同研究では、過去十万年~数十万年前の高海水 準期の海成層の保存が期待される平野の隆起域と沈降域の境界域で採取されたボーリングコア試 料を用いて、隆起・沈降境界域における地殻変動様式の把握に必要な手法の検討を行う。具体的 には、まず、高海水準期の海成層を特定するために必要となる堆積相解析、地球化学・物理化学 的分析及びテフラ分析に関する情報を収集し、適切な手法を検討する。次いで、検討した分析手 法に基づきボーリングコア試料の詳細な記載及び分析を行い、堆積物の層序区分及びコア堆積物 と MIS との対比を行う。最後に、特定された高海水準期の海成層の高度に基づいて、隆起・沈降 境界域の地殻変動量・速度を推定し、その値と既存研究などとの比較から、本手法の妥当性や精 度の評価を行う。

#### 1.3 実施期間

平成 31 年 4 月 23 日~令和 2 年 1 月 31 日

#### 2. ボーリングコア試料の分析手法に関する情報収集

本共同研究で使用するボーリングコアは砂礫層、砂・泥層からなり、堆積年代や堆積環境(海 成層か非海成層か)を推定する必要がある。ボーリングコア試料の堆積年代及び堆積環境を推定 するために有効と考えられる指標及びその調査・分析手法についての情報を収集した。

#### 2.1 指標について

堆積年代を推定するための指標は生物学的指標・年代学的指標に分けて整理できる(表 2.1.1)。 また、堆積環境の指標については堆積学的指標、生物学的指標、化学的指標及び物理的指標に大 別できる(表 2.1.2)。

| 分類         | 指標                        | 調查·分析手法                                                                  | 既存研究の事例                                         |
|------------|---------------------------|--------------------------------------------------------------------------|-------------------------------------------------|
|            | 珪藻化石                      | 海性~淡水性植物プランクトンであり、顕微鏡観察による堆積物に<br>含まれる化石を観察し、化石基準面を区分することで堆積年代を推<br>定する。 | 本山・丸山(1998),<br>伊藤ほか(1999)                      |
| 生物学的<br>指標 | 浮遊性有孔虫化石                  |                                                                          | 伊藤ほか(1999)                                      |
| 10.02      | 放散虫化石                     | 海性動物プランクトンであり、顕微鏡観察による堆積物に含まれる化<br>石を観察し、化石基準面を区分することで堆積年代を推定する。         | 本山・丸山(1998)                                     |
|            | 石灰質ナンノ化石                  |                                                                          | 高山ほか(1995)                                      |
|            | テフラ                       | 地層中に挟在する火山灰層中のジルコン年代測定や火山ガラスの<br>屈折率などを用いて堆積年代の推定や地層対比を行う。               | 鈴木ほか(1998)                                      |
| 年代学的<br>手法 | 光ルミネッセンス<br>(OSL)         | 堆積物中に含まれる石英や長石の光ルミネッセンスから蓄積線量を<br>求め、堆積年代の推定を行う。                         | Hardy and Lamothe(1997),<br>Tamura et al.(2018) |
|            | 炭素同位体比(δ <sup>14</sup> C) | 地層中に含まれる有機物や貝化石から放射炭素年代値を求め、堆<br>積年代を推定する。                               | 中西ほか(2011)                                      |

表 2.1.1 堆積年代を推定するための指標

|            |                                       | ~    |                                                                                                                                                                          |                                                                                          |        |                                                                                                |          |
|------------|---------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------|------------------------------------------------------------------------------------------------|----------|
| 分類         | 指標                                    |      | 調查·分析手法                                                                                                                                                                  | 既存研究の事例                                                                                  |        |                                                                                                |          |
| 堆積学的<br>指標 | 堆                                     | 積相   | 肉眼観察による堆積相解析(現世の堆積物や地層から組み立てられた<br>堆積相のモデルと、地層の岩相、堆積構造、分布形態、累重様式との比<br>較から堆積環境を推定する方法)から推定する。ボーリングコアでは、得<br>られる情報が限られるため、生物学的指標や化学的手法などの他の指<br>標を併用することが多い。              | 増田 (1988),<br>増田 (1992),<br>横山ほか(2004)                                                   |        |                                                                                                |          |
|            | 海生大型化石                                |      | 肉眼観察による堆積物に含まれる化石と現世の海域に生息する生物や<br>過去に地層から産出した化石との比較から推定する。軟体動物を指標と<br>する研究事例が多い。                                                                                        | 横山ほか(2003),<br>中西ほか(2011)                                                                |        |                                                                                                |          |
|            |                                       | 渦鞭毛藻 | 海性~淡水性動植物プランクトンであり、顕微鏡観察による堆積物に含まれる化石と現世の海域に生息する種や過去に地層から産出した種との<br>比較から推定する。                                                                                            | 栗田(1997),<br>栗田ほか(1997),<br>松岡(1992)                                                     |        |                                                                                                |          |
|            |                                       | 珪藻   | 海性~淡水性植物プランクトンであり、顕微鏡観察による堆積物に含ま<br>れる化石と現世の海域に生息する種や過去に地層から産出した種との比<br>較から推定する。                                                                                         | 中西ほか(2011),<br>千葉・澤井(2014)                                                               |        |                                                                                                |          |
|            |                                       | 放散虫  | 海性動物プランクトンであり、顕微鏡観察による堆積物に含まれる化石と<br>現世の海域に生息する種や過去に地層から産出した種との比較から推<br>定する。示準化石として利用されることが多い。                                                                           | 板木(2005)                                                                                 |        |                                                                                                |          |
| 生物学的<br>指標 | 微化石                                   | 有孔虫  | 海性動物プランクトンであり、顕微鏡観察による堆積物に含まれる化石と<br>現世の海域に生息する種や過去に地層から産出した種との比較から推<br>定する。                                                                                             | 長谷川ほか、(1989),<br>高田(2000)                                                                |        |                                                                                                |          |
|            |                                       | 貝形虫  | 海性~淡水性動物プランクトンであり、顕微鏡観察による堆積物に含ま<br>れる化石と現世の海域に生息する種や過去に地層から産出した種との比<br>較から推定する。                                                                                         | 石田・高安(2005),<br>入月・松原(1994)                                                              |        |                                                                                                |          |
|            |                                       |      |                                                                                                                                                                          |                                                                                          | 石灰質ナンノ | 海性動物プランクトンであり、顕微鏡観察による堆積物に含まれる化石と<br>現世の海域に生息する種や過去に地層から産出した種との比較から推<br>定する。示準化石として利用されることが多い。 | 平松(1998) |
|            |                                       | 花粉   | 顕微鏡観察による堆積物に含まれる化石の群集を対比することで地層区<br>分や地層対比を行う。                                                                                                                           | 竹内ほか(2005),<br>本郷ほか(2011)                                                                |        |                                                                                                |          |
|            | 生痕化石                                  | 生痕相  | 肉眼観察による堆積物に認められる生痕化石と現世の生物活動や地層<br>に認められる生痕化石から組み立てられた生痕相との比較から推定す<br>る。                                                                                                 | Pemberton et al. (1992),<br>市原ほか、(1996),<br>下山ほか、(1999)                                  |        |                                                                                                |          |
|            | 硫黄                                    |      | 元素分析による含有量から推定する。海成堆積物は硫黄を多く含み、<br>0.3~0.5wt%以上を示す。                                                                                                                      | 狛 (1992),<br>Berner (1984)                                                               |        |                                                                                                |          |
|            | 有機炭素/硫黄比                              |      | 元素分析による含有量の比から推定する。有機炭素/硫黄比は、酸化的<br>な海成堆積物が3前後、汽水から内湾の堆積物が1前後を示す。                                                                                                        | Berner and Raiswell<br>(1983),<br>Berner and Raiswell<br>(1984),<br>Sampei et al. (1997) |        |                                                                                                |          |
|            | 有機炭素/窒素比<br>炭素同位体比(δ <sup>13</sup> C) |      | 元素分析による含有量比から推定する。有機炭素/窒素比は有機物の起源の指標であり、動植物プランクトン起源の有機物が6-9前後、陸源高等<br>植物が15より大きい値を示す。質量分析で求められる炭素同位体比と有<br>機炭素/窒素比との関係からは、有機物の起源をより細分することができ<br>る。                       | Willson et al. (2005), 中<br>井ほか(1982)                                                    |        |                                                                                                |          |
| 化学的<br>指標  | ホウ素<br>ホウ素同位体比(δ <sup>11</sup> B)     |      | 元素分析による含有量、質量分析による同位体比から推定する。海成堆<br>積物は非海成堆積物に比較して多くのホウ素を含み、100ppmを超える<br>値を示すことがある。蒸発岩の同位体比は海成で大きく、非海性で小さ<br>い。ホウ素はイライト中に濃集しており、砕屑性のイライトが含まれると非<br>海成堆積物でも大きな値を示すことがある。 | 相澤・赤岩(1979),<br>石川・中村(1989),<br>大井(2001)                                                 |        |                                                                                                |          |
|            | 粘土鉱物                                  |      | X線回折分析による粘土鉱物組成から推定する。海成粘土は硫化物を<br>多く含むため、風化に伴い生成した硫酸が粘土鉱物を分解する傾向に<br>ある。また、海水環境下では火山砕屑物の化学的な変質が進行し易く、<br>スメクタイが優勢となる。                                                   | 市原(1960),<br>江頭ほか(1999)                                                                  |        |                                                                                                |          |
|            | 電気伝導度                                 |      | 懸濁液を作成して、その電気伝導度から推定する。懸濁液の電気伝導<br>度は、海成堆積物が1mS/cm以上、汽水成堆積物が0.6~1mS/cmを示<br>す。ただし、懸濁液のpHと電気伝導度は、作成過程の各処理(ろ過、乾<br>燥、振どう)の影響を受ける。                                          | 佐藤・横山(1992),<br>内園・森(2004),<br>内山ほか(2011)                                                |        |                                                                                                |          |
| 物理的<br>指標  | 9 色彩                                  |      | 色彩色差計を用いて測定した堆積物の色彩から推定する。含水状態に<br>ある海成堆積物の色彩は固相の化学成分の濃度と存在形態と相関があ<br>り、沖積粘性土におけるL*とa*の値と海成層との関係は0.63L*-36.7>0、-<br>7.42a*+5.90>0が得られている。                                | Nagano and Nakashima<br>(1991),<br>磯野・木村(2005)                                           |        |                                                                                                |          |

| 表 | 2.1.2    | 堆積環境を推定するための指標 |
|---|----------|----------------|
| 1 | <u> </u> |                |

\*産業技術総合研究所ほか(2017)に加筆修正した。

#### 2.2 調査・分析について

本共同研究では、前述した堆積年代及び堆積環境を推定するための指標を得るために下記の各 種分析を行った。作業のフローを図 2.2.1 に示す。

### ○堆積年代を推定する指標

- ・テフラ:テフラ分析(ジルコン年代測定、火山ガラス屈折率及び鉱物組成分析)
- o堆積環境を推定する指標
- ・堆積学的指標:ボーリングコア観察(写真撮影・剥ぎ取り)、X線CT解析、帯磁率及び粒度分析
- ·生物学的指標: 珪藻化石分析、花粉化石分析
- ・化学的指標:元素組成分析 (XRF)

| 得られる指標      |
|-------------|
| -           |
|             |
| 堆積環境を推定する指標 |
| (堆積学的指標)    |
|             |
| -           |
|             |
| 堆積環境を推定する指標 |
| (堆積学的指標)    |
|             |
|             |
| 堆積年代を推定する指標 |
| (年代学的指標)    |
| 堆積環境を推定する指標 |
| (堆積学的指標)    |
| 堆積環境を推定する指標 |
| (生物学的指標)    |
| 堆積環境を推定する指標 |
| (化学的指標)     |
|             |

図 2.2.1 本共同研究における調査・分析フロー

#### 3. 本共同研究開発における方法

#### 3.1 堆積相の記載

コアの半割面及び半割面を剥ぎ取りした試料を肉眼観察し、粒度の上方粗粒化/細粒化傾向や堆 積構造、貝化石、生痕化石、テフラなどに注目しつつ、縮尺5分の1で岩相を中心に記載を行っ た。剥ぎ取りは、石浜ほか(2015)などを参照しながら,礫層を除く層準を対象として実施した。 さらに、GC-OY2コアの一部の層準を対象として、X線CT解析を実施した。

#### 3.2 粒度分析

粒度分析は、堀場製作所製レーザ回折/散乱式粒子径分布測定装置 LA-960 を用い、粒径 3 mm 以下の細粒層を対象として、コアの深度方向へ 50 cm 間隔で測定した。試料を直接装置に投入し、 超音波でほぐした試料を循環させて計測した。溶媒は水を用いた。

#### 3.3 帯磁率測定

帯磁率測定は ZH instrument 製 SM30 を用いて、コアの深度方向へ 50 cm 間隔で実施した。

#### 3.4 元素組成分析

Na、Mg、Al、Si、P、S、K、Ca、Ti及びFeの10種類の主要元素について、合計50試料を 対象として、定量分析した。試料は珪藻分析用試料と同一層準で採取し、元素分析と珪藻分析の 結果を比較及び補完できるようにした。分析手法は、若林ほか(2012)を参考にして、パウダー 法によって、波長分散型蛍光線装置 Rigaku ZSX Primus IIを用いて以下のように実施した。ま ず、採取試料を40℃で12時間、恒温乾燥機で乾燥させた。次に、乾燥試料をアルミナの容器に 入れ、粉砕機を用いて10分間粉砕した。粉砕試料を内径30mm、高さ5mmの塩化ビニルリン グに入れ、タングステンカーバイド製のダイスで挟み、プレス機を用いて200 kNの圧力で加圧 成型した。成型した試料を30mmΦの分析試料ホルダーにセットし、検量線法によって定量測定 した。検量線作成には、産業技術総合研究所地質調査総合センターが提供している標準試料を用 いた。各元素の検量線はすべて1次関数を用い、決定係数は0.988~0.999である。硫黄濃度をみ ることにより陸成堆積物と海成堆積物を区別することができる(狛, 1990)ことから、主に硫黄 濃度を分析に用いた。

#### 3.5 珪藻分析

堆積物試料に含まれる珪藻の種の同定やその含有量などの分析を合計 61 試料で行った。珪藻 の分離と抽出は、試料の性状に基づき、一般的に確立された中で最適な手法により実施した。珪 藻の同定に当たっては、海生、海~汽水生、汽水生、汽水~淡水生、淡水生、その他に分類して、 海~淡水生珪藻の総数が一試料につき合計 200 個を超えるまで計数して、全体の群集組成を計算 した。珪藻化石の含有度が低く総数が 200 以下の試料については、計数できた分類種の群集組成 を参考値として計算した。分析結果は各コアの深度ごとの群集組成を示した。また、1g 試料当た りの珪藻化石の含有量を検討して、代表的な構成種及び保存状態について写真撮影を行った。浮 遊生、底生、流水生、止水生、付着生、陸生など堆積環境を推定する上で重要な個体について検 討した。その際、化石の保存状態などにも留意した。

#### 3.6 花粉分析

堆積物試料に含まれる花粉・胞子化石の種の同定やその含有量などの分析を合計 61 で行った。 花粉・胞子化石の分離と抽出は、試料の性状に基づき、一般的に確立された中で最適な手法によ り実施した。花粉・胞子化石の同定に当たっては、木本植物、草本植物、シダ植物、コケ植物、 その他に分類して、木本植物の花粉が一試料につき合計 250 個を超えるまで計数して、各分類の 群集組成を計算した。木本植物の含有度が低く総数が 250 以下の試料については、計数できた分 類種の群集組成を参考値として計算した。分析結果は各コアの深度ごとの群集組成を示した。ま た、1 g 試料当たりの花粉の含有量を検討して、代表的な構成種及び保存状態について写真撮影 を行った。気温や湿度、堆積環境を推定する上で重要な個体について検討した。その際、花粉の 保存状態などにも留意して記載した。

#### 3.7 テフラ分析

肉眼観察されたテフラのうち、最上部の風成層に挟在する試料並びにコア深度 30 m よりも浅い層準の試料を中心に採取し、分析に供した。試料は超音波洗浄機を用いて洗浄し、乾燥させたのち、実体顕微鏡及び偏光顕微鏡を用いて鉱物組成及び火山ガラスの形状を観察した。

火山ガラスはピッキングして樹脂包埋し、恒温乾燥機で固化したのち、研磨してフラットな面を出し、表面をカーボンコーティングして、SEM-EDS(日本電子株式会社製 JSM-6300LA)を用いて主成分化学分析を行った。電子銃のフィラメントにはLaB6フィラメントを用い、加速電 圧 20 KeV、分析時間(Live Time) 100 秒、火山ガラス1 片あたり1 点、1 試料当たり 20 点を目安に測定を行った。

4. 結果

#### 4.1 堆積相

各コアの岩相柱状図を図 4.1.1 に、堆積物の粒度、酸化硫黄含有率、帯磁率のコア深度方向への変化を示したグラフと柱状図を図 4.1.2 に示す。また、代表的な層準の剥ぎ取り写真を図 4.1.3 に、X線 CT 画像を図 4.1.4 に示す。



図 4.1.1 左から GC-OY2、GC-OY1 及び GC-NG1 コアの岩相柱状図

【付録7】



【付録7】



図 4.1.2 GC-NG1, -OY1 及び -OY2 の各コアの柱状図と堆積物の粒度、 酸化硫黄含有率(%)及び帯磁率(SI unit)の深度方向への変化



図 4.1.3 代表的な層準の剥ぎ取り写真の例 (左) GC-NG1 コアの深度 3~6 m(右) GC-OY1 コアの深度 46~47 m 及び 53~55 m



図 4.1.4 代表的なX線CT画像 左から順にGC-OY-2の24~25m、33~34m、36~37m、73~74m

GC-NG1、GC-OY1及びGC-OY2の各コアは未固結な礫、砂、泥層で構成され、GC-OY2コアのみ、最深部において、酸化した半固結シルト層が認められた。

岩相観察や貝化石の産出の有無、各種分析結果をもとに、GC-NG1、GC-OY1及びGC-OY2の 各コアを以下の9つの堆積相ユニットに区分した。ユニット1:風成ローム層、ユニット2:泥流 堆積物、ユニット 3: 網状河川堆積物、ユニット 4: 蛇行河川堆積物、ユニット 5: デルタフロン ト堆積物、ユニット 6: 内湾泥底堆積物、ユニット 7: 河口低地堆積物、ユニット 8: 砂質海浜堆 積物、ユニット 9: 半固結シルト層。年代観や古地理がはっきりしているコア浅部に関しては、ユ ニット 4 を泥質の氾濫原堆積物からなるサブユニット 4a と、砂質の自然堤防・クレバススプレ ー・チャネル堆積物からなるサブユニット 4b に細分した。以下では、区分した堆積ユニットごと に記載する。

なお、GC-NG1 コアの 57.4 m 以深、GC-OY1 コアの深度 72.6~69.54 m、GC-OY2 コアの深 度 79.43~43.11 m の堆積物に関しては、以下に述べる堆積相区分結果は、今後の研究の進展に よって、変更される可能性もある。

ユニット1 (風成ローム堆積物)

本ユニットは、褐色や茶褐色を呈し、全体的に粒度・色調共に均質なシルト質層で、部分的に 黄白色や淡黄色の直径 1~10 mm の軽石が散在する(GC-OY1:深度 3.0~1.75 m)。また、GC-OY1 の深度 1.2~0.7 m、GC-OY2 の 2.22~2.14 m においては暗褐色の腐植層を挟む。本ユニッ トは、GC-NG1 コアの深度 3.76~1.0 m、GC-OY1 コアの深度 2.7~0.04 m、GC-OY2 コアの深 度 3.9~0.6 m に見られる。

本ユニットは河成段丘面である宝木台地を覆う風成ローム層であると解釈できる。なお、GC-NG1の深度 1.0~0 m、GC-OY1 の深度 0.04~0 m、GC-OY2 の深度 0.6~0 m は人工盛土層で ある。

ユニット2(泥流堆積物)

本ユニットは、茶灰~灰白色を呈し、シルト~極粗砂の淘汰不良なマトリクス中に、中礫サイズ(最大3mm径)の角~亜角礫が混入する。マトリクスはシルト質の細粒分が多い傾向があり、やや上方細粒化の傾向を示す。ユニット全体において、1~3mm程度の大きさの炭質物が散在する。本ユニットは、GC-OY1コアの深度 3.88~3.00mに見られ、下位の堆積ユニットとの境界は漸移的である。

ユニット3 (網状河川堆積物)

全体として茶褐色や茶灰色を呈する礫質支持層を主体とし、一部に基質支持層も認められる。 直径 50 mm程度の礫を主とし、礫種は砂岩・安山岩・凝灰岩・チャートが見られる。基質支持層に おける基質は淘汰が悪く、砂質であるがシルトも混在する。

本堆積ユニットは、GC-NG1 コアの深度 74.6~72.4 m、52.25~51.3 m、GC-OY1 コアの深度 90.0~89.2 m、70.55~69.54 m、51.77~44.1 m、9.68~3.88 m、GC-OY2 の深度 43.11~37.4 m、11.28~6.55 m に見られる。

本ユニットは、中礫を多く含み、礫質支持の層準が卓越する特徴から、礫質網状河川環境にお ける流路堆積物を中心とした堆積物であると解釈できる。ユニット3の構成礫は、山本ほか(2009) で記載された鬼怒川現河床の礫種や、遠藤ほか(1983)、山元(2006)で示された鬼怒川低地帯 における段丘構成礫層の礫種と類似することから、帝釈山地・日光火山を後背地とする鬼怒川水 系の運搬礫を含む可能性が高い。

ユニット4 (蛇行河川堆積物)

サブユニット 4.1 (氾濫原堆積物)

シルトが主体で、極細砂~中砂層を挟む。緑灰色や茶灰、暗灰色を呈し、全体的に平行葉理が

発達する。また、砂質部においては斜交葉理が発達する箇所も存在する。1~4mm 長の炭化した 植物片が散在する。

本サブユニットは、GC-NG1 コアの深度 9.15~3.76 m、GC-OY1 コアの深度 24.7~21.3 m、 16.23~9.68 m、3.0~2.7 m、GC-OY2 コアの深度 28.9~27.55 m、15.15~11.28 m、6.55~3.9 m で見られる。

本サブユニットは、上述した堆積相の特徴から、蛇行河川帯の氾濫原において形成されたと考 えられる。また、各コアにおいて、本サブユニットの最上部は、黄褐~淡灰色で凝灰質の細砂~ シルト層となり、上述したユニット1(風成ローム堆積物)へ漸移することから、段丘化直前の フラッドローム堆積物であると解釈できる。

サブユニット 4.2 (自然堤防堆積物、河川流路堆積物)

層相は茶灰、暗灰色を示す。不淘汰の極細砂〜細礫によって構成され、約10cmごとに有機質 シルトを主とする層と極粗砂〜細礫を主とする層が互層をなしている。

本サブユニットは、GC-OY1 コアの深度 21.3~16.23 m、GC-OY2 コアの深度 27.55~15.15 m、GC-NG1 コアの深度 25.07~17.26 m で確認された。

本サブユニットは、蛇行河川の流路堆積物及び自然堤防堆積物と解釈できる。一部にクレバス 堆積物も含まれる可能性が高い。砂・シルト互層において部分的にみられる逆級化構造は、自然堤 防帯における洪水堆積物(増田・伊勢屋,1985)であると考えられる。なお、本サブユニットは、 宝木段丘面を構成するコア浅部の堆積物を対象とした認定にとどまっている。今後、さらに深部 の堆積物についても、詳細な堆積相解析を進めることによって、例え、後述するユニット7の堆 積物を細区分することによって、新たに認定される可能性が高い。

#### ユニット5 (デルタフロント堆積物)

層相は暗灰色や茶灰色を示す。砂質シルト〜中粒砂を主体に構成され、二枚貝またはカキ殻と みられる貝殻片交じりのシルト層から、平行葉理が発達した細砂層または斜交葉理が発達した中 砂層へ全体的に上方粗粒化傾向を示す。また、GC-NG1 コアでは 28.7 m 以浅の細砂主体の層に おいて、生物擾乱の痕跡が確認され、特に 27.5~25.9 m 付近において顕著である。ユニット全体 の層厚は 1.3~5.3 m である。10~50 cm ほどの間隔で、層厚 5~10 cm 程度のカキなどの 2 枚貝 の殻片密集層を複数挟在する。

本ユニットは、GC-NG1 コアの深度 31.6~25.07 m、GC-OY1 コアの深度 79.6~72.6 m、55.57 ~51.77 m 及び 31.0~24.9 m、GC-OY2 コアの深度 69.6~63.5 m、53.3~45.4 m 及び 31.25~ 28.7 m に見られる。

ユニット5は、貝化石片が産出することや、砂質堆積物を主とし、上方粗粒化傾向を示すことから、デルタフロント堆積物であると解釈できる。なお、GC-OY1の深度 55.57~51.77 m、GC-OY2 の深度 53.3~45.4 m については、浅海化する環境下で、海水面付近の高度で堆積した砂質 堆積物であると考えられるが、今後の解析によって、解釈がデルタフロント堆積物から変更され る可能性もある。

ユニット6(内湾泥底堆積物)

二枚貝の化石を含む泥質堆積物であり、二枚貝は、基質支持の摩耗破壊の進んでいない化石を 主とする。部分的に生物遺骸片支持の貝殻密集層が認められる。しばしば、生痕化石が発達し、 極細砂〜細砂の薄層が挟在することもある。GC-OY2の31.25~28.9mは大半がカキ礁によって 占められている。 このユニットは GC-NG1 の深度 57.4~52.25 m、37.85~31.6 m、GC-OY1 の深度 85.9~79.6 m、69.54~55.57 m 及び 39.9~31.0 m、GC-OY2 の深度 79.43~69.6 m、54.1~53.1 m 及び 31.25~28.9 m に見られる。

本ユニットは酸化硫黄の含有率が高く、海成珪藻化石群集を産出する細粒層であり、両 殻揃っ た二枚貝化石が直立の姿勢をとって地層中に入っている場合も多く観察され、比較的静穏な海底 で堆積したと考えられることから、内湾泥底堆積物であると解釈できる。GC-OY2の深度 79.43 ~69.6 m の堆積物は、平均粒径が極細砂と粗粒シルトの境界付近の堆積物であり、保存状態のよ い貝殻片を含むこと、その下位の堆積物が上方細粒化し、かつ海浜または河口の堆積相を示し、 上位の堆積物が上方粗粒化するデルタフロント堆積物と解釈されることなどから、内湾砂質泥底 堆積物と解釈されるが、本報告ではユニット6に含めた。

ユニット7 (河口低地堆積物)

比較的淘汰の良い砂層と泥層及び砂泥互層を主体とする。一部に細礫の薄層が挟まる。貝殻片 を含む箇所も散見される。

このユニットは、GC-NG1 コアの深度 72.4~57.4 m、51.3~37.85 m、GC-OY1 の深度 89.2~ 85.9 m、72.6~70.55 m 及び 44.1~39.9 m、GC-OY2 の深度 37.4~33.8 m、45.4~43.11 m に見 られる。

本ユニットは、今後さらに精緻な分析を進めることで、氾濫原堆積物、感潮河川堆積物、干潟 堆積物などに細分できる可能性があるが、現段階では一括して示す。

ユニット8(砂質海浜堆積物)

淘汰の良い細砂~中砂が主体で、しばしば、クロスラミナや平行ラミナが発達する。有色鉱物 の密集する葉理や微小な貝殻片を含む。

このユニットは、GC-OY2 コアの深度 63.5~54.1 m に見られる。

ユニット9(基盤地質(上総層群))

酸化して黄~褐色に変色した塊状のシルト層で、半固結している。他の堆積物と比べて、明らか に固結度が高い。

このユニットは、GC-OY2 コアの深度 86~79.43 m にみられる。本堆積ユニットは、後述のように、MIS11 に年代対比できる未固結堆積物に覆われることや、不連続的に固結度が高くなることから、上総層群に対比される。酸化硫黄含有率が低いことから、陸上の湿地ないし湖沼堆積物の可能性があるが、珪藻化石が産出せず、詳細は不明である。

#### 4.2 化石相

珪藻及び花粉の群集組成解析の結果について GC-NG-1、GC-OY-1 及び GC-OY-2 コアの順で 概要を記載する。

#### 4.2.1 珪藻群集組成

珪藻の群集組成解析結果を GC-NG-1、GC-OY-1 及び GC-OY-2 コアの順で図 4.2.1, 図 4.2.2, 図 4.2.3 に示す。

GC-NG-1 コアから分取した 17 試料の珪藻化石分析結果に基づいて、同コアの群集組成は下位 から NG1-1~8 に区分される (図 4.2.1)。 深度 71.33~71.32 m の NG1-1 は *Diadesmis contenta* や *Achnanthidium minutissimum* などの陸生種や *Fragilaria* spp.などの淡水生種で主に構成さ れ、汽水生の Actinocyclus octonarius や海生の Cyclotella spp.も数%確認された。深度 66.75~ 59.30 m の NG1-2 は Fragilaria capucina などの Fragilaria spp.や Reimeria sinuata などの淡 水生種で主に構成され、汽水生の Navicula veneta も数%確認された。深度 53.97~53.96 m の NG1-3 は Paralia sulcata や Cyclotella striata、Thalassiosira spp.などの海生種で主に構成さ れ、Fragilaria spp.などの淡水生種も 10%以上確認された。深度 48.26~45.64 m の NG1-4 は Diadesmis contenta などの陸生種や Fragilaria spp.などの淡水生種で主に構成され、汽水生の Navicula gregaria も極僅か確認された。深度 40.62~24.39 m の NG1-5 は下部から中部にかけ て Thalassiosira spp. や Paralia sulcata などの海生種で主に構成されるが、上部では淡水生の Fragilaria brevistriata などの Fragilaria spp.が大勢を示す。深度 17.71~14.68 m の NG1-6 は Diadesmis contenta などの陸生種や Eunotia praerupta var. bidens などの淡水生種で主に構成 され、海生の Cyclotella spp.も数%確認された。深度 10.26~7.26 m の NG1-7 は Eunotia tenelloides などの陸生種や Fragilaria spp.などの淡水生種で主に構成される。深度 3.81~1.25 m の NG1-8 は珪藻化石がほとんど確認できなかった。



図 4.2.1 GC-NG-1コアの珪藻群集組成

GC-OY-1 コアから分取した 23 試料の珪藻化石分析結果に基づいて、同コアの群集組成は下位 から OY1-1~7 に区分される (図 4.2.2)。コア境界から 3~4 cm 直下にあたる深度 46.24~46.23 mの試料 14 は海生種と陸生種がほぼ等量で混在して、層状の堆積構造が確認できなかったので、 コア掘削時に上位から落下したと判断して記載と解釈は省略する。深度 85.04~72.62 m の OY1-1 は珪藻化石がほとんど確認できなかったが、海生の Paralia sulcata などが極僅か確認された。 深度 69.10~63.85 m の OY1-2 は Paralia sulcata や Tryblionella granulata などの海生種で主 に構成される。深度 57.90~52.18 m の OY1-3 も珪藻化石がほとんど確認できなかったが、海生 の Paralia sulcata などが極僅か確認された。深度 42.65~27.59 m の OY1-4 は Paralia sulcata や Thalassiosira spp.などの海生種で主に構成され、汽水生や淡水生種も極僅か確認された。深 度 23.57~11.26 m の OY1-5 は Diadesmis contenta や Achnanthidium minutissimum などの 陸生種や Achnanthidium convergens や Planothidium lanceolatum などの淡水生種で主に構成 される。深度 2.10~2.09 m の OY1-6 では種が同定できる珪藻化石を確認できなかった。深度 1.15~1.13 m の OY1-7 では Nitzschia frustulum などの淡水生種で主に構成される。



図 4.2.2 GC-OY-1コアの珪藻群集組成

GC-OY-2 コアから分取した 21 試料の珪藻化石分析結果に基づいて、同コアの群集組成は下位 から OY2-1~7 に区分される(図 4.2.3)。深度 85.61~79.68 mの OY2-1 では種が同定できる珪 藻化石を確認できなかった。深度 74.21~68.87 mの OY2-2 は珪藻化石がほとんど確認できなか

ったが、海生種や海~汽水生種、淡水生種が極僅か確認された。深度 65.33~43.80 m の OY2-3 も珪藻化石がほとんど確認できなかったが、海生種や海~汽水生種が極僅か確認された。深度 37.07~30.61 m の OY2-4 は Paralia sulcata や Cyclotella striata、Tryblionella granulata など の海生種で主に構成される。深度 28.60~19.33 m の OY2-5 は Planothidium lanceolatum や Staurosira construens などの淡水生種や Achnanthidium minutissimum などの陸生種で主に構 成される。深度 15.17~11.31 m の OY2-6 は Staurosira construens var. venter や Fragilaria exigua などの淡水生種や Luticola mutica などの陸生種で主に構成される。深度 5.47~1.52 m の OY2-7 では Pinnularia subcapitata や Neidium alpinum などの陸生種や Pinnularia subcapitata var. elongata などの淡水生種で主に構成される。



#### 図 4.2.3 GC-OY-2 コアの珪藻群集組成

#### 4.2.2 花粉群集組成

花粉の群集組成解析結果を GC-NG-1、GC-OY-1 及び GC-OY-2 コアの順で図 4.2.4、図 4.2.5 及び 図 4.2.6 に示す。

GC-NG-1 コアから分取した 17 試料の花粉の分析結果に基づいて、同コアの群集組成は下位から NG1-1~6 に区分される (図 4.2.4)。深度 71.35~66.72 m の NG1-1 は胞子の含有率が花粉 よりも高く、樹木花粉はハンノキ属が優勢で、ニレ属・ケヤキ属、カバノキ属、コナラ属コナラ 亜族、クマシデ属、ハリゲヤキ属、マツ属がこれに次ぐ。深度 59.32~53.94 m の NG1-2 は草本 及び樹木花粉が優勢で、樹木花粉はクルミ属・サワグルミ属とコナラ属コナラ亜族が優勢で、トウヒ属、ブナ属、ハンノキ属、クマシデ属がこれらに次ぐ。深度 48.30~24.39 m の NG1-3 はコナラ属コナラ亜族、クルミ属・サワグルミ属、ハリゲヤキ属が優勢で、ブナ属、ツガ属、マツ属、

よりも極めて高く、樹木花粉はハンノキ属が極めて優勢で、コウヤマキ属、マツ属、ツガ属がこ れに次ぐ。深度 10.27~3.80 mの NG1-5 はスギ属が優勢で、コウヤマキ属、トウヒ属、ツガ属、 マツ属、ハンノキ属がこれに次ぐ。深度 1.29~1.25 mの NG1-6 はスギ属が極めて優勢で、コウ ヤマキ属、クマシデ属、ブナ属、マツ属がこれに次ぐ。



GC-OY-1 コアから分取した 23 試料の花粉の分析結果に基づいて、同コアの群集組成は下位から OY1-1~5 に区分される (図 4.2.5)。先述した通り試料 14 はコア掘削時に上位から落下した と判断して記載と解釈は省略する。深度 85.05~82.70 m の OY1-1 はコナラ属アカガシ亜族が優勢で、ブナ属、マツ属、ヒノキ科、ツガ属、モミ属、ハンノキ属、コナラ属コナラ亜族がこれに 次ぐ。深度 77.48~63.85 m の OY1-2 はハンノキ属が極めて優勢で、ブナ属、ツガ属、トウヒ属、 ヒノキ科、コナラ属コナラ亜族、スギ属、ニレ属・ケヤキ属がこれに次ぐ。深度 57.90~52.14 m の OY1-3 はスギ属が極めて優勢で、ハンノキ属、コナラ属コナラ亜族、ニレ属・ケヤキ属、ヒノ キ科、ブナ属、トウヒ属、クマシデ属がこれに次ぐ。深度 46.24~27.57 m の OY1-4 はハリゲヤ キ属とクマシデ属が極めて優勢で、ハンノキ属、クルミ属・サワグルミ属、コナラ属コナラ亜族、 マツ属、ツガ属、ブナ属がこれらに次ぐ。深度 23.60~15.66 m の OY1-5 はスギ属が極めて優勢 で、トウヒ属、ハンノキ属、ツガ属、マツ属、モミ属、コウヤマキ属がこれに次ぐ。深度 11.28~11.23 m の OY1-6 はマツ属が極めて優勢で、トウヒ属、コウヤマキ属、スギ属、ハンノキ属、ツ ガ属、ヒノキ科、コナラ属コナラ亜族がこれに次ぐ。深度 2.10~1.10 m の OY1-7 ではマツ属と スギ属が極めて優勢で、モチノキ属、コナラ属コナラ亜族、ヒノキ科がこれに次ぐ。

【付録7】



図 4.2.5 GC-OY-1 コアの花粉群集組成

GC-OY-2 コアから分取した 21 試料の花粉の分析結果に基づいて、同コアの群集組成は下位か ら OY2-1~7 に区分される(図 4.2.6)。深度 85.61~79.68 m の OY2-1 ではツガ属、ハンノキ 属、ニレ属・ケヤキ属が優勢で、クルミ属・サワグルミ属、コナラ属コナラ亜族、モミ属がこれ に次ぐ。深度 74.23~68.87 m の OY2-2 はコナラ属アカガシ亜族が優勢で、ヒノキ科、ブナ属、 マツ属、ツガ属、ハンノキ属、スギ属がこれらに次ぐ。深度 65.33~65.32 mの OY2-3 はハンノ キ属が極めて優勢で、ヒノキ科、スギ属、マツ属、ツガ属、ブナ属がこれに次ぐ。深度 54.07~ 43.76 mの OY2-4 はブナ属が優勢で、スギ属、マツ属、ニレ属・ケヤキ属、ハンノキ属、クマシ デ属、トウヒ属、クルミ属・サワグルミ属がこれに次ぐ。深度 37.10~28.57 m の OY2-5 はクマ シデ属が極めて優勢で、ハリゲヤキ属、コナラ属コナラ亜族、ブナ属、ハンノキ属、クルミ属・ サワグルミ属、マツ属、ツガ属がこれに次ぐ。深度26.64~15.12mのOY2-6はスギ属とハンノ キ属が極めて優勢で、トウヒ属、ヒノキ科、ツガ属、クマシデ属、マツ属、コウヤマキ属がこれ らに次ぐ。深度 11.36~11.31 m の OY2-7 はコウヤマキ属が優勢で、スギ属、マツ属、ツガ属、 トウヒ属がこれに次ぐ。深度 5.49~5.44 mの OY2-8 ではハンノキ属が極めて優勢で、ブナ属、 クルミ属・サワグルミ属、コウヤマキ属、マツ属、クマシデ属、コナラ属コナラ亜族、トウヒ属 がこれに次ぐ。深度1.53~1.48mのOY2-9ではマツ属が極めて優勢で、スギ属、コナラ属コナ ラ亜族、ニレ属・ケヤキ属、ヒノキ科がこれに次ぐ。



図 4.2.6 GC-OY-2 コアの花粉群集組成

#### 4.3 テフラ

テフラの産出頻度は、大局的には、GC-OY2、GC-OY-1 及び GC-NG1 の順で下がり、コア深 度 30 m 以浅の層準に多く認められた。分析試料ごとに結果の特徴を記載する(表 4.3.1)。各テフ ラ名は、コア名と採取深度による仮称である。火山ガラスの主成分化学組成分析の結果を図 4.3.1 に示す。

| No | コア       | テフラ名(仮称)  | 深度(m) | ガラス     | 有色鉱物            | 備考                                                    | Ν  | 対比先                |
|----|----------|-----------|-------|---------|-----------------|-------------------------------------------------------|----|--------------------|
| 1  |          | OY1-2.7   | 2.7   | pm      | ho,opx,cpx      | 褐色風成ローム層-河成シルト境界付近の黄白色軽石層(~小磯サイズ直径、層厚約5cm)<br>中から採取   | 20 | KP                 |
| 2  | CC 0V1   | OY1-11.9  | 11.9  | -       | орх срх         | ※10/24,29測定ではガラス確認できず 河川相ラミナ中から採取                     | -  | -                  |
| 3  | GC-011   | OY1-13.46 | 13.46 | pm      | opx,cpx,ho      | 褐色~黒岩片多い。St~fs主体河川相ラミナ中に入る小~中礫サイズ白色軽石層(約3cm<br>厚)から採取 | 21 |                    |
| 4  |          | OY1-15.6  | 15.6  | pm      | opx cpx ol?     | 褐色〜黒岩片多い。St〜vfs主体の河川相に入る、fs主体ラミナ中から採取                 | 18 | OY2 16.93と近い分布     |
| 5  |          | OY2-2-2   | 2.2   | bw      | орх срх         | 褐色風成ローム層中に挟まる有機質土層(約10cm/厚)から採取                       | 13 | AT                 |
| 6  |          | OY2-3.32  | 3.32  | なし      | орх срх         |                                                       | -  | -                  |
| 7  | GC-OY2   | OY2-3.91  | 3.91  | なし      | орх срх         |                                                       | -  | -                  |
| 8  |          | OY2-2.75  | 2.75  | bw      | opx.cpx.ho      | 褐色風成ローム層中に挟まる、直径ms~cs程度の白色粒子部(約15cm厚)から採取             | 22 | AT(OY2 2.2mより近い分布) |
| 9  |          | OY2-2.98  | 2.98  | pm      | ho.opx.cpx      | 褐色風成ローム層-河成シルト境界付近の、黄白色軽石(vfs~ms程度径)層(約6cm厚)から<br>採取  | 21 | KP                 |
| 10 |          | OY2-5.47  | 5.47  | pm      | opx cpx (ti)    | fs~ms主体の河川相中に入る、白色軽石(約1mm径)層(8cm程度厚)から採取              | -  | NG1 8.5と近い分布       |
| 11 |          | OY2-16.93 | 16.93 | pm      | орх срх         | fs~cs主体河川相中に入る、小~中礫サイズ軽石層(5cm程度厚)中から採取                | 16 | OY1 15.6と近い分布      |
| 12 |          | NG1-2.75  | 2.75  | pm      | opx,cpx,ho      | 褐色風成ローム層中から採取                                         | 24 | KPまたはAg-UPの可能性あり   |
| 13 | 3 00 101 | NG1-8-62  | 8.62  | pm      | opx cpx (bt ti) | vfs~fs主体河川相中に挟まる白色粒子層(10cm程度厚)から採取                    | 20 | OY2 5.47と近い分布      |
| 14 | do-Na1   | NG1-12.85 | 12.85 | pm      | орх срх         | fs~cs主体の河川相中に挟まる白色軽石層(直径約1~2mm、層厚約10cm)から採取           | 21 | MzP1               |
| 15 |          | NG1-13.48 | 13.48 | pm      | opx cpx ti      | fs~g(p)主体の河川相中に挟まる白色軽石層(1~5mm径、層厚約8cm)から採取            | 22 | MzP1               |
| 16 | UT-ST1   | ST1-2.75  | 2.75  | pm(黄~白) | ho ,opx,cpx     |                                                       | 22 | KP                 |

表 4.3.1 テフラ一覧





(c) Mz-P1 に対比されるテフラ。

#### GC-NG1-2.75

GC-NG1 コアのユニット1下部、褐色風成ローム層中から採取した。ローム層は風化が進んで おり、軽石は明瞭な純層をなしておらず、粒子も不明瞭である。火山ガラスは pm 型であり、主 な有色鉱物は卓越するものから順に opx (orthopyroxene、斜方輝石)、cpx (clinopyroxene、単 斜輝石)、ho (hornblende、普通角閃石) である。

本試料は、最終氷期の形成された宝木台地を覆う風成層であるユニット1の下部にあることや、 既知の降下テフラの分布範囲を考慮すると、赤城火山を給源とし、44 ka に噴出・降下した赤城-鹿沼軽石(Ag-KP:町田・新井, 2003)に対比される可能性が高いと考えられる。しかし、火山 ガラスの主成分化学組成分析の結果(図 4.3.1)は、Ag-KPと比べて、SiO2値が2%程度高値を 示した。本テフラは、Ag-KP または赤城湯ノロテフラ(Ag-UP.町田・新井, 2003:50ka)と対 比できる可能性はあるが、軽石層が純層として保存されている堆積環境の良い場所での再検討が 必要である。

#### GC-NG1-8.62

GC-NG1 コアのユニット 4 上部、極細砂~細砂主体の自然堤防堆積物中に層厚 10 cm で挟まる粒径 1~2 mm の白色軽石層である。火山ガラスの形態は pm 型、主な有色鉱物は opx、cpx 及 び bt(biotite、黒雲母)の順である。

主成分化学組成分析の結果、後述する GC-OY2-5.47 テフラに類似した値が得られた。

GC-NG1-12.85

GC-NG1 コアのユニット 4 上部、細砂~粗砂主体の氾濫原堆積物中に層厚 10 cm で斜交ラミ ナとして挟まる 1~mm 径の良く円磨された白色軽石層である。火山ガラスの形態は pm 型、主 な有色鉱物は opx、cpx の順である。

鉱物組成及び主成分化学組成の結果から、本テフラは、赤城水沼第1軽石(Ag-MzP1)に対比 できると考えられる。また、当テフラは河川の流れを反映した斜交ラミナ中において産出され、 円磨されている状況から、異なる地点において降下・堆積したものが河川により運搬され再堆積 したものであると考えられる。

#### GC-NG1-13.48

GC-NG1 コアのユニット4上部、細砂~極粗砂主体の自然堤防堆積物中に層厚8 cm で挟まる 粒径1~5 mm径の良く円磨された白色軽石層である。火山ガラスはpm型、主な有色鉱物はopx、 cpx の順である。鉱物組成及び主成分化学組成分析の結果からGC-NG1-12.85 と同様、赤城水沼 第1軽石(Ag-MzP1)に対比される可能性が高い。堆積状況から、このテフラも再堆積した軽石 であると考えられる。

#### GC-OY1-2.7

GC-OY1 コアのユニット 1 の最下部、深度 2.66~2.71m の褐色風成ローム層と陸成シルト層 の境界付近において、層厚 5 cm で堆積する黄白色軽石層である。火山ガラスは、軽石 (pm) 型 で、有色鉱物は ho, opx 及び cpx の順に卓越する。

有色鉱物の組成及び主成分化学組成分析の結果から、当テフラは赤城-鹿沼軽石(Ag-KP:町田・新井, 2003)に対比されると考えられる。

#### GC-OY1-13.46

GC-OY1 コア中のユニット 4-2、シルト〜細砂を主とする自然堤防堆積物中に、深度 13.4~ 13.47 m にかけ約 3 cm 厚で挟まる、小〜中礫サイズの白色軽石層から採取した。火山ガラスは pm 型が確認された。有色鉱物は opx、cpx 及び ho の順に卓越する。また、褐色〜黒色の岩片を 多く含む。

#### GC-OY1-15.6

GC-OY1 コア中のユニット4 中部、シルト~極細砂主体の河川相に深度 15.55~15.6 m に挟在 する細砂から採取した。火山ガラスは pm 型で、卓越する有色鉱物は opx、cpx 及び ol (olivine、 橄欖石)の順である。また、褐色~黒色の岩片を多く含む。

鉱物組成及び主成分化学組成分析の結果より、後述する GC-OY2-16.93 に対比される可能性がある。

#### GC-OY2-2.2

GC-OY2 コアのユニット1上部、深度2.13~2.24 mの、褐色風成ローム層に挟在する層厚11 cmの黒色有機質土層中から採取した。肉眼ではテフラ層として識別できなかったが、バブル(bw) 型の火山ガラスが見られ、卓越する有色鉱物はopx、cpxの順である。有色鉱物の組成及び主成 分化学組成分析の結果から、姶良カルデラを給源とし、29ka に噴出・降下した姶良 Tn 火山灰 (AT:町田・新井,2003)に対比される。産状から、GC-OY2-2.75の降下以降に再堆積した可能 性が考えられる。 GC-OY2-2.75

GC-OY2 コアのユニット1下部、深度 2.68~2.78 m の、褐色風成ローム層中に挟在する層厚 10 cm の極細砂~粗砂の白色層から採取した。bw 型の火山ガラスが認められ、卓越する有色鉱 物は opx、cpx 及び ho の順である。

有色鉱物の組成及び主成分化学組成分析の結果から、姶良 Tn 火山灰(AT) に対比できる。

#### GC-OY2-2.98

GC-OY2 コアのユニット1最下部の褐色風成ローム層とユニット4最上部のフラッドローム層 との境界付近である深度 2.9 m 付近から 3.03 m にかけて、層厚約 10 cm で挟在する細砂~中砂 サイズの黄白色軽石層を採取した。火山ガラスは pm 型、卓越する有色鉱物は ho、opx 及び cpx の順である。

有色鉱物の組成及び主成分化学組成分析の結果から、赤城・鹿沼軽石(Ag-KP)に対比される。

#### GC-OY2-5.47

GC-OY2 コア中のユニット4 中部、細砂~中粒砂主体の河川相中に入る、層厚8 cm 厚の良く 円磨された白色軽石(直径約1 mm)層から採取した。火山ガラスは pm型、卓越する有色鉱物 は opx、cpx の順である。鉱物組成及び主成分化学組成分析の結果より、GC-NG1-8.62 と対比さ れる可能性がある。

#### GC-OY2-16.93

GC-OY2 コア中のユニット4上部、細砂~粗砂主体の河川相中に5 cm 程度厚で入る、小~中 礫サイズ(2~4 mm 径)の白色軽石である。火山ガラスは pm 型、卓越する有色鉱物は opx cpx の順である。

鉱物組成及び主成分化学組成分析の結果より、GC-OY1-15.6と対比される可能性がある。

#### 5. 堆積物の層序区分と対比

ボーリングコアの堆積物の堆積環境に着目した層序区分を行うとともに、コア堆積物から認定 した地層境界面と MIS との対比を行った(図 4.3.1)。



図 4.3.1 コア堆積物から認定した地層境界面と MIS との対比

3本のボーリングコアは、いずれも、砂泥質海成層と礫質ないし砂泥質の陸成層の互層で構成 されている。花粉化石分析結果からアカガシ亜族の産出層準が、GC-OY2、GC-OY1の両コアの 下部の堆積相ユニット 6 (内湾泥底ないし砂質泥底堆積物) で確認された。珪藻の産出はわずか であるが、二枚貝化石を多く含み、硫黄含有率が高く、海進期から高海水準期の海底堆積物であ ることは確実である。アカガシ亜族の産出層準は、関東では中期更新世以降では MIS 11 に房総 で堆積した地蔵堂層に対比されていることから(楡井・本郷, 2018)、これらの堆積ユニットは MIS 11 に対比される (図 4.3.1)。GC-NG1 コアは、アカガシ亜族の産出層準が認められないが、コ アの基底が MIS 11 に到達していないためであると考えられる。

MIS 11 に対比される海成層の上部は、GC-OY2 コアでは上方粗粒化するデルタフロント堆積 物もしくは海浜砂に厚く覆われ、上部を MIS6 に対比される河成礫層に境される。このデルタフ ロントまたは海浜堆積物は、MIS9 または MIS7、あるいは両方の海進期~高海水準期の堆積物 に対比されると考えられるが、詳細は今後の検討課題である。一方、GC-OY1 コアは、深度 70 m 付近まで上方粗粒化し、深度 70~65 m 付近に海成泥層が堆積しており、MIS 9 に対比される可 能性を示唆するものの、MIS 7 に対比される可能性も排除できない。他方、GC-NG1 コアにおい ては、最下部に河成礫層が見られ、MIS 8 の低海水準期堆積体に対比される可能性があり、その 場合、上部のコア深度 55 m 前後の細粒層(内湾低泥堆積物)は MIS 7 に対比されることになる。 関東平野における既存研究において、MIS 7 の海成層の分布範囲は、MIS 9 や MIS 5 のそれと比 べて狭く、MIS 8 の河谷地形の制約を受けていると推定されることから(須貝ほか, 2013)、今後、 対象範囲をさらに関東平野の中央部に広げて、MIS 8 の谷地形の広域分布を明らかにしていく必 要がある。

CG-OY2 コアで MIS 6 に対比される河成礫層は、GC-OY1、GC-NG1 コアにおいても見られ、 これら 3 本のコアを対比することによって復元される河床縦断面形は、上下の堆積層の境界面よ りも急勾配である。またこの河成礫層の層厚は下流へ向かって減少する。このことは、本礫層が 海面低下期から低海水準期に堆積したことを示唆する。

MIS6に対比される河成礫層の上位には、上方細粒化する河口堆積物、内湾泥底堆積物、上方 粗粒化するデルタフロント堆積物が累重しており、これらの一連の堆積層はMIS5の海進とそれ に続く高海水準期に堆積したと解釈できる。

#### 6. 研究開発手法の評価

10 万年オーダーでの地殻変動量を推定するためには、MIS 11, MIS 9, MIS 5 及び MIS 1 の海 面上昇~高海水準期の海成層の分布を面的に追跡することが重要である。本共同研究では、MIS 11 の海成層の分布の上面高度(標高)が GC-OY1 コアの掘削地点で標高約-40 m、MIS 5 の海 成層の分布の上面高度(標高)が GC-OY2、GC-OY1 及び GC-NG1 の各コアの掘削地点におい て順に、+6 m、+5 m 及び-5~0 m であると推定された。ここで、GC-NG1 コアの標高-5~ 0mの堆積物は流路堆積物と推定でき、堆積物の上限と下限のいずれが海水面に近いか不明ない ため、GC-NG1 コアの MIS 5 の海成層の上面高度に -5~0 m と幅を持たせている。

MIS 5 の最高海面期のユースタチックな海水準は、MIS 1 の海水準+5.5~+9 m 程度と推定 されていること(Murray-Wallace and Woodroffe, 2014)を考えると、圧密沈降の影響が無視で きると仮定した場合、過去 12 万年間の上下地殻変動量(変動速度)は、GC-OY2、GC-OY1 コア 掘削地点では概ねゼロ、GC-NG1 コア掘削地点では 5~10 m の沈降(0.04~0.1 mm/年の沈降速 度)と算出される。この結果は、従来の研究成果(例えば、貝塚, 1987; Tajikara, 2000)と大き くは矛盾しない。

一方、MIS 11 の最高海面期の海水準は MIS1 の海水準と同程度ないし数 m 高かった程度であ ると推定されている(Murray-Wallace and Woodroffe, 2014)。仮に、MIS1と MIS11の海水準 が同じで、圧密の影響が無いものとして、GC-OY1 掘削地点における過去 40 万年間の上下地殻 変動速度を求めると 0.1 mm/年の沈降速度が得られる。

このように、MIS 11 の海成層と MIS 5 の海成層の堆積標高を求めることによって、過去 40 万 年間と 12 万年間の平均地殻変動速度を推定可能である。さらに、両者を比較することによって、 10 万年スケールでの地殻変動の変化傾向を推定することができる。地殻変動が安定した地域で は、MIS 10、MIS 8 及び MIS 6 の低海水準期の河川侵食によって、より古い時代の高海水準期 の堆積物が侵食される可能性があり、cut and fill によって、地層の側方対比が難しくなりがちで ある。その一方で、MIS 12 の海退とそれに続く MIS 11 の海進は、中期更新世以降に繰り返され てきた氷河性海水準変動に伴う海退—海進シーケンスのなかでも最大級の規模であり、MIS 11 の 海成段丘面や海成層が沿岸部に広く分布している。加えて、MIS 11 の細粒堆積物からはアカガ シ亜族の花粉化石が特異的に産出することから、花粉分析によって、地層対比が可能であるとい う大きな利点がある。こうしたことを考えると、MIS 11 の海成層の分布を追求し、MIS5 の海成 層の分布と比較していくことは、日本列島における長期的な地殻変動像の復元にとって有用な手 法であると考えられる。この方針の妥当性を評価し、信頼性を高めるために、本共同研究におい て詳細に層序区分ができなかった MIS 9 と MIS 7 の地層からも平均地殻変動速度を算出し、そ れらの値と MIS 11 と MIS 5 の平均地殻変動速度との比較を実施することが課題として残され る。

#### 7. まとめ

本共同研究では、過去 10 万年~数十万年前の高海水準期の海成層の保存が期待される平野の 隆起域と沈降域の境界域で採取されたボーリングコアから長期的な地殻変動様式・速度の把握に 必要な手法を整備した。さらに、整備した手法を用いて過去 40 万年間と過去 12 万年間の平均地 殻変動速度を推定し、その推定値と既存資料とを比較することで、本手法の妥当性や精度につい て評価した。

本共同研究では、MIS 11 と MIS 5 の海成層についての認定・区分は可能であったが、その間 に堆積したと考えられる MIS 9, MIS 7 の海成層の認定・区分は不十分であった。それゆえ、今 後の課題としては、MIS 9, MIS 7 の海成層の認定・区分と、その結果に基づく、MIS 11, MIS 9, MIS 7 及び MIS 5 の各時期の地層の深度から算出される地殻変動速度の比較・評価が残される。 さらに、本共同研究において整備した手法や調査における考え方が他の沿岸堆積平野にも適用可 能であるか否か、その適用性を確認することも今後の課題である。

#### 謝辞

電力中央研究所の佐々木俊法氏には、コアのX線CT解析に関して、ご指導いただいた。記して感謝いたします。

#### 8. 引用文献

2.ボーリングコア試料の分析手法に関する情報収集

- 相沢省一,赤岩英夫,北海道夕張炭田に分布する古代三紀堆積岩のホウ素含量一古堆積環境指示 元素としてのホウ素一,地球化学,vol.13, pp.32-40, 1979.
- Berner, R. A., Sedimentary pyrite formation: An update, Geochimica et Cosmochimica Acta, vol.48, pp.605-615, doi:10.1016/0016-7037(84)90089-9, 1984.
- Berner, R. A. and Raiswell, R., Burial of organic carbon and pyrite sulfur in sediments over Phanerozoic time: a new theory, Geochimica et Cosmochimica Acta, vol.47, pp.855-862, doi: 10.1016/0016-7037(83)90151-5, 1983.
- Berner, R. A. and Raiswell, R., C/S method for distinguishing freshwater from marine sedimentary rocks, Geology, vol.12, pp.365-368, 1984.
- 千葉 崇, 澤井祐紀, 環境指標種群の再検討と更新, Diatom, vol.30, pp.17-30, 2014.
- 江頭和彦, 宮崎真行, 山田惣平, 山下大輔, 磯田雅子, 安部友子, 稲葉 剛, 有明海北岸低地第四紀 堆積物の粘土鉱物組成と堆積環境及び陸上風化環境との関係, 粘土科学, vol.39, pp.65-75, 1999.
- Hardy, F. and Lamothe, M., Quaternary basin analysis using infrared stimulated luminescence on borehole cores and cuttings, Quaternary Science Reviews (Quaternary Geochronology), vol.16, pp417-426, doi:10.1016/S0277-3791(96)00105-9, 1997.
- 長谷川 四郎, 秋元和實, 北里 洋, 的場保望, 底生有孔虫にもとづく日本の後期新生代古水深指 標, 地質学論集, vol.32, pp.241-253, 1989.
- 本郷美佐緒,納谷友規,山口正秋,水野清秀,関東平野中央部埼玉県県菖蒲町で掘削された 350 m ボーリングコア (GS-SB-1)から産出した花粉化石群集,地質調査研究報告,vol.62, pp.281-318, 2011.
- 平松 力,石油探鉱における石灰質ナンノ化石の役割-その生層序学,シーケンス層序学および 古海洋学的有効性-,石油技術協会誌,vol.63, pp.258-265, 1998.
- 市原季彦, 高塚 潔, 下山正一, 生痕層序, 地質学雑誌, vol.102, pp.685-699, 1996.
- 市原優子,海成粘土層にみられる粘土鉱物の風化,地質学雑誌,vol.66, pp.812-819, 1960.
- 入月俊明, 松原尚志, 貝形虫化石群集解析に基づく下-中部中新統門ノ沢層の堆積環境の垂直変化, 地質学雑誌, vol.100, pp.136-149, 1994.
- 石田 桂, 高安克己, 島根県出雲平野西部における沖積層コアの貝形虫群集, LAGUNA, vol.12, pp.73-79, 2005.
- 石川 剛, 中村栄三, ホウ素の同位体地球・宇宙化学, 地球化学, vol.23, pp.23-34, 1989.
- 磯野陽子,木村隆行,色彩測定による堆積環境と土質特性の評価,日本応用地質学会研究発表会 講演論文集,pp.161-164,2005.
- 板木拓也, 放散虫学のススメ, 化石, vol.77, pp.45-50, 2005.
- 伊藤知佳,入月俊明,岩井雅夫,第一瀬戸内区中新統(師崎,岩村,富草層群)の珪藻示準化石と 地質年代,地質学雑誌,vol.105, pp152-155, 1999.
- 狛 武, 堆積岩の化学組成による堆積環境の研究-特に硫黄含有量による識別-, 地質調査所月 報, vol.43, pp.473-548, 1992.
- 栗田祐司, 渦鞭毛藻化石の石油探鉱への利用, 石油技術協会誌, vol.62, pp.321-327, 1997.
- 栗田祐司, 松岡數充, 小布 施明子, 堆積環境指標としての有機質微化石 (パリノモルフ), 堆積学研究, vol.44, pp.59-69, 1997.

増田 富士雄,ダイナミック地層学-古東京湾域の堆積相解析から-(その1基礎編),応用地質, vol.29, pp.28-37, 1988.

増田 富士雄, 大阪湾の完新統と上部更新統の堆積様式, 堆積学研究会報, vol.37, pp.71-77, 1992.

- 松岡敷充, 海産パリノモルフ化石群集からみた対馬・三根湾における完新世の沿岸海洋環境の変 遷, 第四紀研究, vol.31, pp.147-157, 1992.
- 本山 功, 丸山俊明, 中・高緯度北西太平洋地域における新第三紀珪藻・放散虫化石年代尺度:地磁気極性年代尺度 CK92 および CK95 への適合, 地質学雑誌, vol.104, pp171-183, 1998.
- Nagao, S. and Nakashima, S., A convenient method of color measurement of marine sediments by colorimeter, Geochemical Journal, vol.25, pp.187-197, doi:10.2343/geochemj.25.187, 1991.
- 中井信之,太田友子,藤澤 寛,吉田正夫,堆積物コアの炭素同位体比,C/N 比および FeS2 含有量 からみた名古屋港周辺の古気候,古海水準変動,第四紀研究,vol.21, pp.169-177, 1982.
- 中西利典,田辺 晋,木村克己,中島 礼,内山 美恵子,柴田康行,埼玉県三郷市彦成地区の沖積 層コア(GS-MHI-1)の堆積相・珪藻化石群集組成・物性・放射性炭素年代値,地質調査研究 報告,vol.62, pp.3-46, 2011.

大井隆夫,ホウ素同位体地球化学,日本海水学会誌,vol.55, pp.3-10, 2001.

- Pemberton, S. G., MacEachern, J. A. and Frey, R. W., Trace fossil facies models: environmental and allostratigraphic significance, Facies models: response to sea-level change, pp. 47-72, 1992.
- 産業技術総合研究所,日本原子力研究開発機構,原子力環境整備促進・資金管理センター,電力中 央研究所,平成28年度地層処分技術調査等事業沿岸部処分システム高度化開発報告書,368p, 2017.
- Sampei, Y., Matsumoto, E. and Tokuoka, T., Sulfur and organic carbon relationship in sediments from coastal brackish lakes in the Shimane peninsula district, southwest Japan, Geochemical Journal, vol.31, pp.245-262, doi: 10.2343/geochemj.31.245, 1997.
- 佐藤 万寿美,横山卓雄,粘土混濁水の電気伝導度による古環境の推定-関西国際空港ボーリン グ・コアの場合-,地質学雑誌,vol.98, pp.825-839, 1992.
- 下山正一,木下裕子,宮原百々,田中ゆか里,市原季彦,竹村恵二,旧汀線高度からみた九州の後 期更新世地殻変動様式,地質学雑誌,vol.105,pp.311-331,1999.
- 鈴木毅彦, 藤原 治, 檀原 徹, 関東・中部地方に分布する第四紀テフラのフィッション・トラック 年代, 地学雑誌, vol.107, pp348-367, 1998.
- 高田裕行,有孔虫化石群集解析にもとづく富山県小矢部市周辺の大桑層堆積時(後期鮮新世~前 期更新世)の古環境変遷,化石,vol.67, pp.1-18,2000.
- 竹内貞子, 安藤一男, 藤本 潔, 吉田明弘, 宮城県宮城野海岸平野南部地域における完新世の環境 変遷, 第四紀研究, vol.44, pp.371-381, 2005.
- 高山俊昭, 佐藤時幸, 亀尾浩司, 後藤 登美子, 第四系石灰質ナンノ化石層序と鮮新統/更新統境界 の年代値, 第四紀研究, vol.34, pp157-170, 1995.
- Tamura, T., Nicholas, W.A., Oliver, T.S. and Broole B.P., Coarse-sand beach ridges at Crowley Beach, north-eastern Australia: Their formative processes and potential as records of tropical cyclone history, Sedimentology, vol.65, pp721-744, doi:10.1111/sed.12402, 2018.
- 内山 美恵子,原 未来也,竹内美緒,木村克己,東京低地と中川低地の沖積層堆積物で作成した 懸濁液の水素イオン濃度指数及び電気伝導度,地質調査研究報告,vol.62, pp.85-104, 2011.

- 内園立男,森勇一,濃尾平野南部ボーリングコアの粘土混濁水の電気伝導度および pH 測定に基づく堆積環境の推定,第四紀研究, vol.43, pp.375-382, 2004.
- Wilson, G. P., Lamb, A. L., Leng, M. J., Gonzalez, S. and Huddart, D., Variability of organic  $\delta^{13}$ C and C/N in the Mersey Estuary, U.K. and its implications for sea-level reconstruction studies, Estuarine, Coastal and Shelf Science, vol.64, pp.685-698, 2005.
- 横山芳春,七山太,安藤寿男,大塚一広,完新統海成粘土層中に産出する軟体動物化石群と堆積 過程:瀬戸内海伊予灘海域,下灘沖海上ボーリングコアの解析結果の例,化石,vol.74, pp.7-17, 2003.
- 横山芳春,七山 太,桑原 拓一郎,安藤寿男,堆積学的手法によって明らかにされた海成段丘の 形成過程 - 青森県上北平野, MIS5e 高館面構成層での試み - ,地質ニュース, vol.595, pp.10-18, 2004.

#### 3. 本共同研究開発における方法

- 石浜 佐栄子, 笠間友博, 山下浩之, 平田大二, 新井田 秀一, 地層剥ぎ取り技法を用いた箱根火山 起源噴出物の実物標本化 - 神奈川県立生命の星・地球博物館における露頭情報の収集・保存・ 活用 - , 火山, vol.60, pp.341-348, 2015.
- 狛 武, 堆積物中の硫黄・炭素・窒素による環境解析の一例, Researches in Organic Geochemistry, vol.7, pp.47-50, 1990.
- 若林 徹, 須貝俊彦, 笹尾英嗣, 大上隆史, 濃尾平野完新統中の重金属元素濃度と分布の特徴, 地 学雑誌, vol.121, pp.441-459, 2012.

#### 4. 結果

遠藤邦彦, 高野 司, 鈴木正章, 北関東, 小貝川低地における立川期礫層の年代とその意義, 第四 紀研究, vol.22, pp.91-96, 1983.

町田 洋,新井房夫編,新編 火山灰アトラス・日本列島とその周辺,東京大学出版会,360p,2003. 増田 富士雄,伊勢屋 ふじこ,"逆グレーディング構造":自然堤防帯における氾濫原洪水堆積物 の示相堆積構造,堆積学研究会報,vol.22-23, pp.108-116, 1985.

- 山本晃一, 阿左美敏和, 田中成尚, 新 清晃, 鈴木克尚, 鬼怒川の河道特性と河道管理の課題ー沖 積層の底が見える河川-, 公益財団法人 河川環境管理財団 河川環境総合研究所, 128p, 2009.
- 山元孝弘, 宇都宮市宝積寺段丘で掘削された UT05 コアの層序記載と鬼怒川の堆積侵食履歴, 地 質調査研究報告, vol.57, pp.217-228, 2006.

#### 5. 堆積物の層序区分と対比

- 楡井 尊,本郷 美佐緒,中部日本における前期末~中期更新世の花粉生層序,第四紀研究, vol.57, pp.143-155, 2018.
- 須貝俊彦, 松島(大上) 紘子, 水野清秀, 過去 40 万年間の関東平野の地形発達-地殻変動と氷河 性海水準変動の関わりを中心に-, 地学雑誌, vol.122, pp.921-948, 2013.

### 6. 研究開発手法の評価

貝塚爽平, 関東の第四紀地殻変動, 地学雑誌, vol.96, pp.51-68, 1987.

Murray-Wallace, C.V. and Woodroffe, C.D., Quaternary Sea-Level Changes: A Global Perspective, Cambridge University Press, 504p, 2014.

Tajikara, M., Late Quaternary crustal movement around Kanto mountains, Japan, Proceedings of the Hokudan International Symposium and School on Active Faulting – Active Fault Research for the New Millenium –, pp.503-505, 2000.

# 断層破砕帯の内部構造解析に関する共同研究

# 平成 31 年度共同研究報告書

# 令和2年1月

学校法人日本大学

国立研究開発法人日本原子力研究開発機構 核燃料・バックエンド研究開発部門 東濃地科学センター 地層科学研究部 ネオテクトニクス研究グループ

| 目 | 欠 |
|---|---|
|---|---|

| 1. | 概要            |                               | 3    |
|----|---------------|-------------------------------|------|
|    | 1.1 共同        | 研究件名                          | 3    |
|    | 1.2 研究        | 目的                            | 3    |
|    | 1.3 実施        | 期間                            | 3    |
| 2. | 研究内容          | 容                             | 4    |
|    | 2.1 はじ        | めに                            | 4    |
|    | 2.2 付加        | 体中の断層の内部構造と透水異方性・物質移動特性に関する検討 | 4    |
|    | 2.2.1         | 目的                            | 4    |
|    | 2.2.2 🗦       | 新第三紀付加体における検討                 | 4    |
|    | $2.2.3$ $\pm$ | 先新第三紀付加体における検討                | 8    |
|    | 2.2.4         | まとめ                           | . 12 |
|    | 2.3 火山        | 岩中の破砕組織に関する検討                 | . 13 |
|    | 2.3.1         | 目的                            | . 13 |
|    | 2.3.2         | 結果と考察                         | . 13 |
| 3. | まとめ           |                               | . 15 |

## 図目次

| 义 | 2.2.2-1      | 新第三紀三浦層群三崎層中に発達する面なし断層        | . 5 |
|---|--------------|-------------------------------|-----|
| 义 | $2.2.2^{-2}$ | 新第三紀堆積岩の"面なし断層"の岩石片および薄片写真    | . 5 |
| 义 | 2.2.2-3      | "面なし断層"と母岩の SEM 画像と二値化画像      | . 6 |
| 义 | 2.2.2-4      | SEM 画像からの空隙率測定結果(300 倍)       | . 6 |
| 义 | $2.2.2^{-5}$ | SXAM 分析の結果(新第三紀堆積岩)           | . 7 |
| 义 | 2.2.2-6      | 室内透水試験における試料整形(新第三紀堆積岩)       | . 7 |
| 义 | 2.2.2-7      | 室内透水試験(変水位透水試験)の様子と透水係数の算出方法  | . 8 |
| 义 | 2.2.2-8      | 室内透水試験結果(新第三紀堆積岩)             | . 8 |
| 义 | 2.2.3-1      | 先新第三紀(秩父帯)堆積岩中のメランジュの露頭       | . 9 |
| 义 | 2.2.3-2      | 秩父帯中の泥岩中の鱗状へき開とこれらを切る石英脈      | 10  |
| 义 | 2.2.3 - 3    | 室内透水試験における試料整形(先新第三紀堆積岩)      | 10  |
| 义 | 2.2.3-4      | 室内透水試験結果(先新第三紀堆積岩)            | 11  |
| 义 | 2.2.3-5      | SXAM 分析の結果(先新第三紀堆積岩)          | 11  |
| 义 | 2.2.3-6      | SXAM によるへき開を横断する方向の Fe の分布状況  | 12  |
| 义 | 2.2.4-1      | 物質移行モデル(左:新第三紀堆積岩、右:先新第三紀堆積岩) | 13  |
| 汊 | 2.3.2-1      | SXAM による試料 1 の面分析結果           | 14  |
| 汊 | 2.3.2-2      | SXAM による試料 2 の面分析結果           | 15  |

#### 1. 概要

#### 1.1 共同研究件名

断層破砕帯の内部構造解析に関する共同研究

#### 1.2 研究目的

地層処分に適した地質環境の選定においては、火山・火成活動、深部流体の移動・流入、地震・ 断層活動、隆起・侵食といった自然現象の影響や長期的な変化を把握し、適切にモデル化するこ とが重要である。日本原子力研究開発機構(以下、原子力機構)では、これらの自然現象の把握 およびモデル化に関連する研究課題に対し、地質学、地形学、地震学、地球年代学等の各学術分 野における最新の研究を踏まえた技術の適用による事例研究を通じて、課題の解決に必要な知見 の蓄積や調査・評価技術の高度化を総合的に進めている。

このうち地震・断層活動に関しては、断層変位の有無の判定に係る年代既知の被覆層(上載地 層)がない場合の断層の活動性評価や、地震・断層活動による破砕等の力学的影響を把握するた めの技術の高度化が課題の一つとして挙げられている。これらの課題への対応として、断層破砕 帯内物質に着目した評価手法(例えば、破砕帯内物質を用いた年代測定や、破砕帯内物質の組成 等の違いに基づく活断層と非活断層との識別)を確立することが考えられる。その際、破砕帯内 物質の組成や内部構造の変化と、母岩の種類や断層の発達史の違いとの関係を詳細に把握するこ とが非常に重要である。そこで本共同研究では、断層の活動性や力学的影響の評価手法の高度化 に資するため、破砕帯内物質の内部構造に関する検討を行う。

原子力機構および共同研究先である学校法人日本大学(以下、日本大学)では、断層破砕帯内 物質の分析・解析に係る多くの実績をそれぞれ有している。原子力機構ではこれまでに、鉱物粒 子の表面構造解析に基づく断層活動性の検討や、K-Ar 法等による破砕帯内物質の年代測定手法 の開発に取り組んできた。日本大学では、破砕帯の重要な物質学的特性である透水構造や粒子フ ァブリック(形態や配列等)の解析に基づく断層の発達史に関する研究に精力的に取り組んでき ている。そのため、本共同研究を行うことにより、日本大学は、地震・断層活動に関し原子力機 構が有する知見を取り入れることで断層の発達史に関する研究を効果的に進めることができると ともに、原子力機構においては、地層処分に適した地質環境の選定に係る調査・評価において課 題となっている断層の活動性や力学的影響の評価に関する調査技術の高度化を効果的に進めるこ とができる。

なお、本共同研究は、原子力機構が経済産業省資源エネルギー庁から受託した「平成31年度高 レベル放射性廃棄物等の地層処分に関する技術開発事業(地質環境長期安定性評価技術高度化開 発)」の一環として行うものである。

#### 1.3 実施期間

平成 31 年 4 月 23 日~令和 2 年 1 月 31 日
#### 2. 研究内容

### 2.1 はじめに

断層破砕帯内物質を用いた断層の活動性評価や、地震・断層活動による破砕等の力学的影響の 把握のためには、断層破砕帯内に発達する微細組織の性状や形成過程に関する情報に基づき検討 することが非常に需要である。このような破砕帯の内部構造に関しては、過去にも多数の事例研 究があり(例えば、Chester et al., 1993; Niwa et al., 2009)、地層処分のサイト選定や安全評 価において重要な水理地質特性の観点から取りまとめられた研究も知られているが(例えば、 Caine et al., 1996; Bense et al., 2013)、破砕帯の内部構造は周辺母岩や断層の発達史によって 多様な性状を呈するため、さらなる事例の蓄積が進められることが望ましい。そこで本共同研究 では、相対的に研究事例の非常に少ない付加体中の断層の内部構造と透水異方性・物質移動特性 に関する検討、および、火山岩中の破砕組織に関する検討を実施した。

#### 2.2 付加体中の断層の内部構造と透水異方性・物質移動特性に関する検討

#### 2.2.1 目的

プレートの沈み込み境界で形成される付加体は、日本列島の地質の基盤の70%以上を構成して いると考えられている(狩野・村田, 1998)ことから、高レベル放射性廃棄物の地層処分のサイ ト選定において無視できない岩種と考えられる。付加体中にはプレートの沈み込みに伴って形成 された亀裂や断層等の不連続構造が多数存在するため、仮に付加体中に放射性廃棄物が埋設され 岩盤中に放射性物質が漏洩した場合、放射性物質は地下水とともに不連続構造中を移行すること が懸念される。このため、付加体中の不連続構造が有する物質移行上の特徴を理解することが重 要である。しかしながら、付加体において透水性や物質移行の観点からの検討事例は極めて少な い。そこで本共同研究では、付加体中の断層等の不連続構造を対象として、透水異方性・物質移 動特性に係る特徴を明らかにすることを目的とする。既に、関東地方の新第三紀および先新第三 紀付加体中に観察される亀裂や断層等の不連続構造を含む試料を対象に、地質学的な観察や室内 透水試験等により、不連続構造における物質移行特性について検討されている(竹内ほか, 2019)。 これらの結果に加え、本共同研究では、特に不連続構造における透水異方性や不連続構造におけ る元素の分布状況、さらには不連続構造が地下水や物質移行に与える影響等に関して検討した。

試料は新第三紀付加体が分布する三浦層群三崎層および先新第三紀付加体である秩父帯から採 取した岩石を使用した。三崎層には、普遍的に発達する"面なし断層"(井尻ほか,1955)を含む 試料を、秩父帯では付加体を特徴づけるメランジュ中の基質部の泥岩をそれぞれ採取し、室内透 水試験、光学顕微鏡観察、走査型電子顕微鏡(SEM)観察、走査型X線分析顕微鏡(SXAM)に よる分析等を実施した。

### 2.2.2 新第三紀付加体における検討

試料を採取した神奈川県三浦半島南端に露出する三浦層群三崎層中には、面なし断層が三次元 的な網目状に普遍的に発達する(図 2.2.2-1)。この地域に分布する新第三紀堆積岩類は山本ほか (2017)によれば、付加体浅部で形成された堆積物とされている。この"面なし断層"は断層面 が癒着して剥がれにくい性質を有していることから、堆積物が未固結な環境下で形成されたもの と考えられ、プレートの沈み込みに伴う浅部での変形構造であることを示唆し、山本ほか(2017) の考え方を支持する。試料の岩石片観察・薄片観察の結果、"面なし断層"の断層部は母岩に比べ、 鉱物や岩片が細粒化していることが観察された(図 2.2.2-2)。さらに母岩と"面なし断層"部の SEM画像を300倍の拡大率で撮影し、これを二値化し空隙部分の面積を測定することで空隙率を

### 【付録6】

求めた(村上ほか,2008;図 2.2.2-3)。これを試料の複数個所で測定した結果、断層部の空隙率 の平均値は約1.2%、母岩部のそれは約2.7%となり、断層部が低い値を示した(図 2.2.2-4)。また、 SXAMによる分析では、"面なし断層"部と母岩では元素分布に相違がなく、熱水等による鉱物の 変質は確認されなかった(図 2.2.2-5)。このことは"面なし断層"が比較的浅部で形成されたこ とを示唆するものと考えられる。さらに、"面なし断層"に直交する方向(断層を含む方向)とこ れを含まない断層に平行する方向とで試料を整形し(図 2.2.2-6)、室内透水試験(変水位透水試 験)を実施した(図 2.2.2-7)。変水位透水試験では次式を用いて透水係数(k)を算出した。

$$k = \frac{aL}{A(t_1 - t_2)} \ln \frac{h_1}{h_2}$$
(1)

ここで、aはピエゾ管の断面積、Lは試料の長さ、Aは試料の断面積、t<sub>1</sub>は初期時間、t<sub>2</sub>は一定時間 経過後の時間、h<sub>1</sub>は時間t<sub>1</sub>での水位、h<sub>2</sub>は時間t<sub>2</sub>での水位である。これらの値は、図 2.2.2-8に示 す水位の時間変化曲線から見いだされる直線部分を用いて算出される。その結果、"面なし断層" を含む試料では6.1E-9 (m/s)、含まない試料では2.0E-8 (m/s)の値が得られた(図 2.2.2-8)。この 結果は、"面なし断層"は地下水流動に対するバリアになっており、透水異方性の原因となってい ると考えられる。

以上のことから、"面なし断層"を含む岩石の透水異方性は、母岩の破砕に伴う断層部の細粒化 が関与していると考えられる。



図 2.2.2-1 新第三紀三浦層群三崎層中に発達する面なし断層



図 2.2.2-2 新第三紀堆積岩の"面なし断層"の岩石片および薄片写真



図 2.2.2-3 "面なし断層"と母岩の SEM 画像と二値化画像



図 2.2.2-4 SEM 画像からの空隙率測定結果(300 倍)

### 【付録6】



図 2.2.2-5 SXAM 分析の結果(新第三紀堆積岩)



図 2.2.2-6 室内透水試験における試料整形 (新第三紀堆積岩)





図 2.2.2-7 室内透水試験(変水位透水試験)の様子と透水係数の算出方法



# 2.2.3 先新第三紀付加体における検討

試料を採取した先新第三紀秩父帯中の付加体には、泥岩中に発達する鱗状へき開、泥岩基質中 に存在する砂岩やチャートのブロックからなるblock-in-matrix組織、砂岩泥岩互層ブロックの非 対称変形組織等、付加体中のメランジュを特徴づける組織が観察される(図 2.2.3-1)。また、泥 岩試料の岩石片やその薄片観察の結果、泥岩中に発達する鱗片状のへき開面は曲面を有し、途中 で分岐する形態で特徴づけられる。さらにこれらを切る、後生構造としての石英脈も観察される (図 2.2.3・2)。室内透水試験(変水位透水試験)ではこのへき開面に直交する方向と平行な方向 に試料を整形した(図 2.2.3・3)。透水係数を算出した結果、へき開面に平行な方向では4.2E・8 (m/s)、直交方向では2.5E-8 (m/s)の値を示した(図 2.2.3・4)。この透水異方性はわずかな差であ り、理由として鱗片状へき開のへき開面が湾曲していることや、地表部での風化により、深部の 新鮮な試料と比較して開口していること等が考えられる。このことから、先新第三紀付加体中に 発達する泥岩基質中の鱗片上へき開面は、その湾曲した形態により地下水流動や物質の選択的な 移行経路となっていることを示唆する。一方でこのへき開面を後から切る石英脈は地下水や物質 移行の経路とはなりにくいと推定される。さらに、SXAM分析の結果、へき開沿いに鉄(Fe)の 充填のみが明瞭に確認された(図 2.2.3・5)。このFeの母岩側への濃度(分析結果はカウント数) 分布を数値化したところ、Feの母岩側への顕著な拡散は確認されなかった(図 2.2.3・6)。このFe は地表付近の酸化した地下水中のFe成分の酸化によるものと考えられ、比較的新しい時期に形成 されたものである可能性もあることから、今後はより古い時期の元素の移動現象が確認できる試 料について検討することが課題である。



図 2.2.3-1 先新第三紀(秩父帯)堆積岩中のメランジュの露頭



図 2.2.3-2 秩父帯中の泥岩中の鱗状へき開とこれらを切る石英脈



図 2.2.3-3 室内透水試験における試料整形(先新第三紀堆積岩)

【付録6】



図 2.2.3-4 室内透水試験結果 (先新第三紀堆積岩)



図 2.2.3-5 SXAM 分析の結果(先新第三紀堆積岩)

【付録6】



図 2.2.3-6 SXAM によるへき開を横断する方向の Fe の分布状況

### 2.2.4 まとめ

新第三系付加体に発達する"面なし断層"および先新第三系付加体に発達する鱗片状へき開等 の不連続構造を対象とした地質試料の観察、および室内透水試験等から得られた知見に基づき、 これらの断層やへき開等の不連続構造における物質移行上の特性が概略的に明らかとなってきた。 すなわち、調査領域の新第三紀付加体中に三次元的にかつ普遍的に発達する"面なし断層"を含 む試料は透水異方性を示し、"面なし断層"で囲まれた領域の内部から外側への物質の移行が抑制 され、物質移行上の遅延効果が期待される。また、先新第三紀付加体中のメランジュを特徴づけ る鱗片状へき開は、物質移行上の選択的な経路となり得るものの、鉱物充填されたものは移行経 路としては閉塞されるものと考えられる。

以上の結果を踏まえて、新旧付加体中の不連続構造における物質移行上の特性を示す概念モデ ルを構築した(図 2.2.4-1)。新第三紀付加体では、比較的浅部で形成された"面なし断層"が三 次元的に網目状に発達し、地下水や物質の移行は"面なし断層"の内部で抑制されることが期待 される、また先新第三紀付加体では、網目状に発達した鱗片状へき開面が一般的には選択的な経 路となりえるものと考えられる。

今回の試料は地表付近の風化した試料であり実際の地下の状態とは異なる条件下にあることか ら、今後は新鮮な試料を用いることにより、より現実的な付加体中の物質移行モデルに改良して いくことが課題である。



### 図 2.2.4-1 物質移行モデル(左:新第三紀堆積岩、右:先新第三紀堆積岩)

### 2.3 火山岩中の破砕組織に関する検討

#### 2.3.1 目的

火山岩のうち流紋岩溶岩は、黒曜石部、軽石部、結晶質部等から構成され、それらには、しばしば脈状組織や破砕組織、またそれらが治癒・固着したような組織が観察される(例えば、Furukawa et al., 2019)。しかしながら、それらがいつ、どのように形成されるのかについては、多くの謎が残されている。流紋岩溶岩流出は極めて稀であることから、その流動様式を含め、破砕等の組織の研究には、過去に噴出した溶岩の断面の観察・各種分析が必要である。また、それらの組織の成因や形成環境・形成条件を明らかにすることで、破砕帯中の流体の移行特性や、流体と周辺岩石との反応に関する有益な情報が得られることが期待される。そこで本研究では、顕著な破砕状組織を示すことで知られる北海道北東部に産する約220万年前に噴出した白滝黒曜石流紋岩溶岩について、走査型X線分析顕微鏡(SXAM)により面的な化学組成分布を測定し、その破砕の伸展様式について検討を行った。測定には、以下の2種類の特徴をもつ試料を供した。試料1:ガラス質な黒曜石であり、赤色酸化した基質部が特徴的な角礫状組織が認められる。試料2:pebble サイズの球顆構造が認められ、全体に細粒な結晶質であり、一部に角礫状の組織が弱く認められる。

### 2.3.2 結果と考察

試料1は、Feを除くすべての元素について、試料に特徴的な赤色酸化した基質部の分布とは 無関係な元素分布となった(図 2.3.2-1)。これは、角礫化の際、メルトやフルイドの移動を伴 わず、水素の脱ガスにより酸化した基質部が形成されたことを示唆する。Fe は角礫部の一部で 点々とした分布を示し、酸化時に細粒な磁鉄鉱や赤鉄鉱が晶出した可能性を示す。角礫状組織の

【 付録 6 】

基質部と角礫部は、現在、完全に癒着していることから、角礫化後も、高温であったためそれら が癒着したと考えられる。

試料2については、特にKとFeについて特徴的な元素分布が認められた(図 2.3.2-2)。K は肉眼的に認められる球顆構造と調和的な分布を示していることから、過冷却状態となった際に 長石類が結晶成長し、球顆構造を形成したことを示唆する。Feは、Kと異なり球顆構造とは非 調和で、肉眼的に弱く認められる角礫状組織の縁辺部に点々と集中している。これは、角礫化時 に磁鉄鉱または赤鉄鉱が晶出したことを示唆し、冷却までに試料1に比べ時間的な余裕があっ た可能性を示す。また、球顆構造はFeの分布と全く無関係に成長していることから、破砕後に 過冷却状態となった溶岩から球顆構造が上書きするように成長したことが示唆される。

以上のように、今回の測定結果は、流紋岩溶岩の破砕が、その組織の発達に重要な役割を示していることを示唆している。今後の更なる検討により、流紋岩溶岩の流動や破砕の伸展の様子が 明らかになることが期待される。



図 2.3.2-1 SXAM による試料 1 の面分析結果 a) Fe、b) Si、c) 分析に用いた試料。赤枠は分析部分を示す。



図 2.3.2-2 SXAM による試料 2 の面分析結果 a) Fe、b) K、c) 分析に用いた試料。赤枠は分析部分を示す。

### 3. まとめ

本共同研究では、破砕帯内物質の内部構造に関し、相対的に研究事例の非常に少ない付加体中 の断層の内部構造、および、流紋岩中の破砕組織に関する検討を行った。付加体における検討で は、新第三紀および先新第三紀のそれぞれについて、特徴的な不連続構造を考慮した物質移行モ デルを提示することができた。流紋岩における検討では、元素マッピングに基づき、破砕組織の 成因について考察を進めることができた。これらの結果や考察は、断層の活動性や、地震・断層 活動による破砕等の力学的影響について、破砕体内物質を用いて検討するうえでも有用な知見と なることが期待される。

### 引用文献

- Bense, V.F., Gleeson, T., Loveless, S.E., Bour, O., Scibek, J., Fault zone hydrogeology, Earth-Science Reviews, vol.127, pp.171-192, 2013.
- Caine, J.S., Evans, J.P., Forster, C.B., Fault zone architecture and permeability structure, Geology, vol.24, pp.1025-1028, 1996.
- Chester, F.M., Evans, J.P., Biegel, R.L., Internal structure and weakening mechanisms of the San Andreas Fault, Journal of Geophysical Research, vol.98, pp.771-786, 1993.
- Furukawa, K., Uno, K., Kanamaru, T., Nakai, K., Structural variation and the development of thick rhyolite lava: A case study of the Sanukayama rhyolite lava on Kozushima Island, Japan, Journal of Volcanology and Geothermal Research, vol.369, pp.1-20, 2019.

井尻正二,藤田至則,陶山国男,面なし断層,地球科学,vol.24, pp.12-19, 1955.

狩野謙一,村田明宏,構造地質学,朝倉書店,300p,1998.

- 村上英明, 濱田秀則, 佐川康貴, 川端雄一郎, 画像解析による再生モルタルの空隙量評価手法に 関する検討, 土木学会第63回年次学術講演会講演要旨, pp.775-776, 2008.
- Niwa, M., Mizuochi, Y., Tanase, A., Reconstructing the evolution of fault zone architecture: A field-based study of the core region of the Atera Fault, Central Japan, Island Arc, vol.18, pp.577-598, 2009.
- 竹内真司, 倉田 力, 丹羽正和, 植木忠正, 物質移行の観点から見た付加体中の不連続構造の特徴, 日本地球惑星科学連合 2019 年大会講演要旨, H-CG31, 2019.
- 山本由弦,千代延俊,神谷奈々,濱田洋平,斎藤実篤,付加型沈み込み帯浅部の地質構造: 房総半 島南部付加体 - 被覆層システム,地質学雑誌, vol.123, pp.41-55, 2017.

# 地質環境長期安定性評価技術高度化開発委員会の 開催実績

- A. 第1回委員会開催実績
- B. 第2回委員会開催実績

国立研究開発法人日本原子力研究開発機構 一般財団法人電力中央研究所

A. 第1回委員会開催実績

| 日    | 時                          | 令和元年6月19日(水) 13時30分~17時30分                                                                                                                                  |
|------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 場    | 所                          | 電力中央研究所大手町本部 711 会議室                                                                                                                                        |
| 審    | 議事項                        | 平成 30 年度の成果と平成 31 年度の実施内容について報告し、その適切<br>性の観点から検討を行っていただく。                                                                                                  |
| 主なコメ | 全体                         | 地球物理学的な解析が重要であるという印象をもった。より高分解能・<br>高解像度での解析ができるとよい。また、年代測定も重要な柱であると<br>感じた。年代測定技術が JAEA 東濃でまとまった形で開発・整備されて<br>いるのは心強い。今後もその体制が維持されていくことを希望する。              |
|      |                            | 地球物理学的手法は、観測網があれば広い範囲を見られるという点で強<br>力である。化学分析・年代分析等は、いろいろな場所や時間スケールに応<br>じた手法の適用性を整理したうえで、汎用性・網羅性についても検討し、<br>どんな対象に対しても分析ができるように手法の開発や拡充が行われる<br>ことを期待したい。 |
|      |                            | 現時点では「特徴的な」現象が生じた事例を対象とした検討が多いが、そ<br>のような現象が生じなかった事例との対比が今後必要になっていくので<br>はないかと感じた。                                                                          |
|      |                            | 広範囲に亘る分野・テーマについて、今後は的をしぼって研究がなされ<br>ていく必要があると思われる。成果について上手に取りまとめてほしい。                                                                                       |
| ĥ    | 火山・火成活動<br>に関する調査・<br>評価技術 | 火山の活動範囲とマグマ(部分溶融域)の水平移動はオーバーラップし<br>ているようにみえる。マグマの水平移動のスケールも合わせると火山活<br>動の範囲が規定できるのではないか。                                                                   |
|      |                            | マグマの活動範囲に関する概念モデルの妥当性を検証するために、岩石<br>学的なフォローが必要。                                                                                                             |
|      |                            | 「マントル内の流体分布・移動に関する検討」と「マグマの活動範囲に関<br>する検討」の二つの課題はいずれ連携していくものと思料する。したが<br>って、地震波トモグラフィの空間分解能と精度をどこまで確保できるか<br>が重要であろう。                                       |
|      | 深部流体に関<br>する調査・評価<br>技術    | S 波スプリッティング解析は、必ずしも既存の断層等の構造が見えるわけではなく、むしろ現在の応力場に支配されたマイクロクラックの方が<br>強調されて見えることも多いため、解釈する際に注意が必要である。                                                        |

| 主な   | 深部流体に関<br>する調査・評価<br>技術    | 流体の移動は断層や亀裂を通るため「面」と考えがちであるが、実際は必ずしも亀裂全面の「面」ではなく亀裂一部の「パイプ状」の場合もあり得る。                                                                                                          |
|------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |                            | 熊野酸性岩地域には南傾斜の貫入構造等も見られるため、スラブ起源水<br>が熊野酸性岩に沿って上昇していると考えると、解析結果をうまく解釈<br>できるかもしれない。                                                                                            |
|      | 地震・断層活動<br>に関する調査・<br>評価技術 | GNSS 観測で捉えられた地殻変動(ひずみの蓄積)は、南海トラフの地<br>震によってリセットされる可能性もある。地殻変動とリニアメントでは<br>タイムスケールが異なるはずなので、それらを一緒にして考えるのは避<br>けるべきである。また、GNSS 観測により捉えられた地殻変動について、<br>二次元解析だけでなく、三次元解析もできるとよい。 |
|      |                            | 機械学習によって活断層と非活断層が正確に分類されるというのは大変<br>興味深いが、結果に対する科学的根拠に基づく意味付けをきちんと検討<br>する必要がある。また、今回の機械学習は57箇所に共通する元素を対象<br>として実施しているが、今回除外された元素も判別に対して効果を発揮<br>する可能性もある。                    |
| ニメント |                            | 石英水和層の計測は、段丘の年代推定に適用できる可能性もあるかもし<br>れない。                                                                                                                                      |
| (続き) |                            | 地震に伴って水理学的影響が生じたことが分かっている場所を検討対象<br>としているが、逆に水理学的影響が生じなかった場所についても検討を<br>実施し、違いの要因について議論するというのはいかがか。                                                                           |
|      | 隆起・侵食に関<br>する調査・評価<br>技術   | OSL 法を東濃コアに適用し成果が得られているようであるが TCN 法を<br>東濃の花崗岩が露出している地域に適用することは可能であろうか。東<br>濃地域は地史がやや複雑であり、シンプルな説明は難しいかもしれない<br>が。ただし、いろいろな手法を包括的に適用できればより良いのではな<br>いか。                       |
|      |                            | FT 年代測定について、1 億年の年代のものは隆起侵食速度が遅いという<br>結果が示されているが、これはいろいろなプロセスが重なった結果を見<br>ている可能性がある。                                                                                         |
|      |                            | 解析結果を見ると 20 万年前を境に隆起速度が大きく変化しているよう<br>に見える。将来予測がどこまで可能か検討が必要。                                                                                                                 |
|      |                            | 離水地形のマルチ年代測定について、環流旧河谷の解析について、多少<br>比高が低くても、平坦面が広く残っている地点を選ぶ方がよいのではな<br>いか。                                                                                                   |

| 主なコメント(続き) | 隆起・侵食に関<br>する調査・評価<br>技術(続き) | 段丘礫の風化に関する文献上の記載は、詳細な観察ではなく大まかな印<br>象として述べられているものが多いと思われるため、可能であれば現地<br>に出向いて確認するのがよい。 |
|------------|------------------------------|----------------------------------------------------------------------------------------|
|            |                              | 機械的に文献を収集していくと、段丘対比が間違っているものを含めて<br>しまう危険性があるので注意が必要。                                  |
|            |                              | 酸を用いて礫試料を溶解させるのは天然の風化を模擬できているのであ<br>ろうか。むしろ鉄鉱物を生成する実験のほうがよいのではないか。                     |

B. 第2回委員会開催実績

| E      | 時                          | 令和2年3月6日(金)~3月11日(水)(書面による審議)                                                                                                                                                                                                                                              |
|--------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 審      | 議 事 項                      | 平成 31 年度の実施内容・成果について報告し、その適切性の観点から検討を行っていただく。                                                                                                                                                                                                                              |
| 主なコメント | 全体                         | 各分野により差はあるものの、それぞれの項目につき平成 31 年度に<br>は大きな進展があったことを確認した。                                                                                                                                                                                                                    |
|        |                            | 地層処分の長期安定性に関して、マグマや深部流体、地震、削剥の影響が様々な角度から検討されており、平成 31 年度においてもそれらの影響を査定するための技術の高度化が果たされている。                                                                                                                                                                                 |
|        |                            | 4つの研究開発項目の進展において極端に遅れを感じるものはなく、各<br>項目で新たに見いだされた課題も妥当であり、その解決策もある程度示<br>されているため、今後の発展がさらに期待できる。                                                                                                                                                                            |
|        |                            | 平成 31 年度における本事業は4つの研究開発項目がそれぞれ順調に進展したと言える。4つの項目はそれぞれの目的のために高い技術力を培っているが、おそらく担当者の所属や専門分野の枠によって項目同士の交流が区切られているように感じられる部分があるものの、今後もこれまで通りの手法や方針に添って事業を進めても問題ないと考えられる。                                                                                                         |
|        | 火山・火成活<br>動に関する調<br>査・評価技術 | 青野山単成火山群は比抵抗が低い部分が地表に向かって細く伸びた部分<br>に密集している、その南にもいくつかの単成火山が認められる。この部<br>分の地下 20km までは他の地域より比抵抗が高く、ほとんど部分溶融が<br>起こっていないのではないかと推定される。このような分布があること<br>から、単純に、単成火山群下は「現在の」低比抵抗体の上部に「今後(数<br>万年間)も」形成されるとは言えないのではないではないか。個々の単成<br>火山の形成年代と今回の成果との関係の検討や、他の断面を切った検討<br>も必要ではないか。 |
|        |                            | マントルウェッジにおける三次元地震波速度構造の推定における現状の<br>解析結果において有意な特徴がみられないのは、背弧域ではS波速度で<br>火山分布の特徴を捉えることができないことを示しているという可能性<br>はないか?「当初の研究目的を達成するのは難しいということがわかっ<br>た」というのも重要な研究成果であると考えるので、予想された有効で<br>あるという成果に固執することもないと思われる。もちろんデータや解<br>析方法を改善することにより、予想されたような成果が得られることは<br>期待する。          |

| 主なコメント(続き) | <ul> <li>火山・火成活動</li> <li>に関する調査・</li> <li>評価技術(続き)</li> </ul> | 地震波トモグラフィの分解能が査定され、マントルウェッジにおける流<br>体の存在に係る議論の確かさが格段に向上したと感じる。様々な地域お<br>よび角度の地震波トモグラフィ断面図から、マントルウェッジにおける<br>流体分布に関する議論が進展することを願う。                                                                                                                                                                                               |
|------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                                                                | 本事業で実施された検測値データの追加により、地殻から上部マント<br>ルにかけての空間分解能の向上が確認され、本事業において目的とす<br>るマントルウェッジにおける流体分布の把握について既存の研究よ<br>り精度の良い結果が得られる可能性が示されたことは評価できる。そ<br>の一方、P波およびS波の初動データのみを用いた精度向上には限界<br>があることも指摘されており、今後は後続波の検測値データを積極的<br>に利用し、さらなる空間分解能の向上を期待する。<br>また、トモグラフィの実施にあたっては各種パラメータの設定値によ<br>る結果の変化についても十分に考慮し、適切な三次元地震波速度構造<br>を得ることに努めてほしい。 |
|            |                                                                | MT法による青野山近辺の比抵抗構造も大変明瞭で、注目する地域直下<br>のマグマ活動やその変遷についての議論が可能になったことがわかる。<br>欲を言えば。比抵抗構造から推定される近過去における火山中心の移動<br>ベクトルが、この地域周辺の第四紀火山の活動年代から推測される火山<br>中心の移動ベクトルと整合的と言えるのか検証していただきたい。整合<br>性が言えるならば、今後、火成活動が発現する地域を比抵抗構造から推<br>定できるかもしれない。また。マグマ活動の範囲に関しても現在の火山<br>中心から半径 15 km のままで良いのか議論できるようになるかもしれな<br>い。                          |
|            |                                                                | 青野山単成火山群においても平成 30 年度に整理した成層火山やカルデ<br>ラと同等にモホ面付近の数十 km の空間スケールの部分溶融域と地殻内<br>へ延びる流体通路のイメージが得られたことは興味深く、有用な指標と<br>なりうることが期待できる。地殻浅所の岩脈マグマの長距離移動の実態<br>解明とともに、さらに事例を整理し、モホ面付近の数十 km の空間スケ<br>ールの部分溶融域に対して地表の第四紀火山の空間分布がどの程度の拡<br>がりを持ちうるのか確率的に表すことができると良いと思われる。                                                                    |

| 主なコメント(続き) | 深部流体に関する調査・評価技術 | 深部流体判別フローの試行について、平成31年度には混合評価フローの<br>構築を終了することとなっているが、そのあとでストロンチウム同位体<br>比、放射性ヨウ素、Li、B安定同位体比などを指標とする可能性が示され<br>ており、今回示された試案は、今後大きく改定される可能性を感じる。研<br>究計画を着実に実施するためには混合評価フローを早急に確定する必要<br>があるのではないか。                                                                                                                                                                                                                                                                              |
|------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                 | 深部流体について、フローの形でまとまっているのは利便性が高くいい<br>と思う。Heの同位体については軽い元素であるため動きやすい点が議論<br>されているため、He同位体が低い場合の分類についても、さらに測定結<br>果に基づき選択肢を広げていけるのではないか。現在指標を増やしてい<br>るところだと思うので、その成果が今後反映されることを期待する。                                                                                                                                                                                                                                                                                               |
|            |                 | マントル由来の判定には <sup>3</sup> He/ <sup>4</sup> He が最も有効だと思われるが、スラブ由<br>来流体の同定においては窒素同位体比(δ <sup>15</sup> N)も有用かもしれない。窒<br>素は地表物質による影響を受けやすいが化学的不活性元素であるため、<br>ヘリウムと同様にマントルウェッジを通過する際に通り道の鉱物から影<br>響を受けにくい特徴を持つ。                                                                                                                                                                                                                                                                      |
|            |                 | S 波スプリッティング解析によるクラック方位の推定は興味深い。この<br>解析から得られたクラック分布の確度評価のため、温泉水の分布や化学<br>的特徴との整合性検証が有用ではなかろうか。                                                                                                                                                                                                                                                                                                                                                                                  |
|            |                 | 速いS波の方向(φ)が広域応力場の最大水平圧縮応力軸の方向と異な<br>る観測点においては、これらの観測点下の地殻において、応力場に支配<br>されたクラックが卓越していないことを意味しており、本宮観測点との<br>対応関係から深部流体の上昇と関連する可能性があるとの解釈は大変興<br>味深いものである。しかしながら、解析結果についてはばらつきが大き<br>く、その信頼性については十分とは現時点の解析結果からは言えない。<br>今後、質の良いデータの解析をさらに進め、S波スプリッティングの空間<br>分布について信頼性のある結果が得られれば、S波スプリッティングの<br>結果の解釈の信頼性も高くなることが期待でき、深部流体の上昇につい<br>て議論することが可能となるかもしれないため、引き続き研究を進めて<br>ほしい。また、S波スプリッティングの結果を3次元地震波速度構造等の<br>他の地球物理学的結果と比較することにより、S波スプリッティングの<br>結果が何を反映しているのかより明確になることが期待される。 |

| 土なコメント (続き) | 地震・断層活動に関する調査・評価技術 | 活断層地形が不明瞭な剪断帯における活構造の調査について、調査対象<br>は地下深部で剪断が生じているが浅部では固着しており断層が分布しな<br>い地域であるが、この地域では浅部では弾性的に振る舞い、隣接する地<br>域の断層活動などで歪みが解放され、この地域では歪みが蓄積しない可<br>能性もあるのではないかと思われる。あるいは剪断が最近始まり、地表<br>の構造がまだ形成され始めたばかりで長い断層が成熟していない状態<br>で、今後歪みが蓄積すると既存割れ目を繋ぐような明瞭な断層が形成さ<br>れてくる、という状況なのかもしれない。歪みが大きい地域と活断層が<br>密に分布する地域は必ずしも一致せず、いわゆる新潟・神戸歪み集中帯で<br>も活断層が特にそこに集中しているわけではないようである。全国の測<br>地的歪みの大きい地域と活断層の分布との関係を検討するのが良いので<br>はないだろうか。また、ここで見られる剪断歪みが近隣の構造が動くこ<br>とにより解消可能かということも検討した方が良いかもしれない。 |
|-------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             |                    | 活構造の検出には往々にして恣意的な判定が指摘されており、断層調査<br>等の信頼性向上のため、より客観的な手法や指標の導入が望まれている。<br>その点において DEM を用いたリニアメントの自動抽出は大変画期的な<br>試みだと思われる。平成 31 年度の段階では華々しい成果が得られたとは<br>言えないようであるが、活構造抽出にどこまで迫れるか検討の継続を切<br>に願いたい。                                                                                                                                                                                                                                                                               |
|             |                    | 活断層地形が不明瞭な地域でも地下の活断層が地表地形・地表構造に表<br>れており、それを明示できる手法が示されたと思う。                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             |                    | IRSL についての長石の trap depth について、文献を調べてみることを<br>お勧めする。また対象の試料についての trap depth の分布などを調査す<br>る基礎的な実験を充実されることも視野に入れ、研究をさらに進めると<br>いいと思う。                                                                                                                                                                                                                                                                                                                                             |
|             |                    | 地球化学のデータは誤差やノイズが大きいために普通は明瞭に判別できることはないが、機械学習ではきれいに判別できている。今後は、それぞれの元素の断層中の移動特性や環境応答特性と、示された判別への寄与度( $Rb > Al_2O_3 > P_2O_5 > TiO_2$ )がどのように関係するのかに関する物理・化学的な議論を展開すべき。                                                                                                                                                                                                                                                                                                          |
|             | 1                  | 活断層-非活断層を見極める地球化学的経験則は興味深い。S 波スプリ<br>ッティング解析で推定されたクラックの活動度について地球化学的に制<br>約できるのであれば、処分地選定において危険度の評価がより確かにな<br>ると思われる。経験則に理論が付加されることも願いたい。                                                                                                                                                                                                                                                                                                                                       |

| 主なコメント(続き) | 地震・断層活動<br>に関する調査・<br>評価技術(続<br>き) | 機械学習の成果は面白くポテンシャルがある手法だと思うので、できた<br>ら深部流体で提案されたように、いくつかの機械学習セットを組み合わ<br>せたフローを考えて、断層の形態や規模などに応じた分類ができるよう<br>になるといいと思う。そのためにはさらに多くの研究された断層のデー<br>タが必要だと思うので、研究を進めていただきたい。                 |
|------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                                    | 機械学習に基づいた断層ガウジの活断層・非活断層の判別について、津<br>波ならば津波か通常の堆積物かのどちらかにキッチリ分かれると思う<br>が、断層の場合、変位速度や活動間隔によって活断層と非活断層との中<br>間的な性質のガウジが存在する可能性はないか。もし中間的な性質のも<br>のがあるとすれば、活動度の高低をガウジの性質から判別できる可能性<br>はないか。 |
|            |                                    | 断層の活動性評価手法の開発について、多くのテーマが基礎的実験段階<br>にある。様々な年代測定手法は、計画通りに「有望手法の絞り込み」まで<br>持っていけるのかどうかが不透明であり、場合によっては、研究計画の<br>小修正も必要ではないか。                                                                |
|            |                                    | 石英水和層の厚さに基づく断層年代推定手法について、石英の破断が断<br>層イベントごとに複数回発生し、それに対応した破断面があると思うが、<br>それぞれの厚さの違いから複数のイベント年代を推定できる可能性があ<br>るのではないか。                                                                    |
|            |                                    | 地震・断層活動による水理学的影響について、松代地震震源域は明瞭な<br>断層を生じない群発地震発生域というかなり特殊な場所と思う。そもそ<br>もの地震発生に流体が大きく関与していると思われる。その他の一般的<br>な地震断層でも同様の傾向があるか、あるとしたらどの程度かというこ<br>とも検討する必要がある。                             |
|            |                                    | MT 法電磁探査により推定した松代群発地震の活動域における二次元比<br>抵抗構造に示される地震の震源分布について、より高精度の震源決定結<br>果を用いて二次元比抵抗構造と比較すると、さらなる知見が得られる可<br>能性がある。                                                                      |

| 主なコメント(続き) | 地震・断層活動<br>に関する調査・<br>評価技術(続<br>き) | S 波スプリッティング結果については、湧水域南部に位置する観測点に<br>おいて速い S 波の方向が広域的な最大水平圧縮応力軸の方向と一致せ<br>ず、松代地震断層との関連が考えられる北東一南西方向に卓越すること<br>は、この観測点下において、流体移動に関連したクラックの存在が示唆<br>され、現在流体が存在する領域の検出に S 波スプリッティング、二次元<br>比抵抗構造、三次元地波速度構造を組み合わせることは有効であること<br>を示している。S 波の入射方位の範囲が広いデータセットを構築できれ<br>ば、ドライなクラックか流体に飽和したクラックかについて議論できる<br>可能性はあるか、現状では難しいかもしれない。また、松代地震前の状況<br>については分からないため、S 波スプリッティングで示された結果は地<br>震後に生じた現象である可能性もある。本解析結果で得られる知見をど<br>の程度の時空間スケールで適用できるかについては今後の研究結果を踏<br>まえて議論する必要があるだろう。 |
|------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | 隆起・侵食に関する調査・評価技術                   | 隆起・侵食に関して、技術・手法の開発が本事業の主たる目的であるの<br>で、それぞれの技術にあったレファレンスサイトがあるのは当然だと思<br>われる。その一方で、複数の手法の適用が可能なサイトにおいて多手法<br>の組み合わせ事例を増やす検討も必要である。そのような研究を拡充す<br>ることによって、将来的には、地形や地質の特徴に応じて、どういった手<br>法を組み合わせれば、どのようなタイムスケールでの隆起・沈降もしく<br>は削剥が明らかにできるかをフロー図等で整理して提示していただきた<br>い。また、本事業で進められている分析・手法が、隆起・侵食・沈降マッ<br>プの拡充に活かされることを期待している。これまでの成果を活かした<br>さらなる研究開発の推進を期待する。                                                                                                                 |
|            |                                    | 熱年代学的手法や宇宙線生成核種を用いた年代測定法による特殊地形の<br>侵食速度の精密化や調査地域の拡大は重要であるが、隆起・侵食データ<br>マップの網羅的構築が、近い将来に訪れる処分地選定に間に合うように<br>は思えない。侵食に関して時空的精度が異なる複数の推定方法を使い分<br>け、処分地の最終地点を段階的に絞り込むための指標として機能させる<br>ようにするのはどうだろうか。                                                                                                                                                                                                                                                                      |
|            |                                    | マルチ年代測定法の技術力向上も大変高く評価できる。IRSL 法における<br>フェーディング評価は決定年代の確度評価に対して極めて重要であるた<br>め、引き続き継続していただきたい。                                                                                                                                                                                                                                                                                                                                                                            |
|            |                                    | 浅海底(大陸棚)で生じる隆起・侵食の評価手法について、クリノフォー<br>ムの地層が累重しているのならば沈降、侵食されているのならば隆起、<br>という判断基準は概ねよいと思う。隆起の場合、クリノフォームが侵食<br>されるとあるが、ごく一部になると思うが削り残しで段丘地形となって<br>いる箇所がある可能性はないか。詳細な海底地形図がないと難しいとは<br>思うが、検討の余地はあるのはないか。                                                                                                                                                                                                                                                                 |

| 主なコメント(続き) | 隆起<br>・<br>侵<br>食<br>に<br>関<br>す<br>る<br>調<br>査<br>・<br>評<br>価<br>技術<br>(続き) | ボーリングコアの基質の色彩測定結果がまとめられているが、このうち<br>TKM-1 コアは地表直下の浅い部分で、a*値と b*値にほとんど差がない<br>結果になっている。一般に、風化に伴う褐色化では b*>a*となるはず。<br>a*が顕著に高い場合、熱水変質や高温酸化など風化以外の影響を考慮す<br>る必要があると思われる。また、a*値と b*値にほとんど差がない部分に<br>ついて、どのような風化によってそれらの変色が生じたか検討すべき。 |
|------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                                                                              | 環流旧河谷の離水年代の推定について、今年度調査で本流の河川堆積物<br>と思われるものの年代が推定できたことは大きな前進で貴重な成果であ<br>ると思う。しかし、この事業では、かなり侵食が進みその上に崖錐の堆積<br>が進んでいる環流旧河谷を対象に調査されている様に思われる。元々の<br>環流する旧河床の地形がきれいに残っている場や環流旧河谷以外にも断<br>片的な段丘が多く発達する場での事例研究が望まれる。                   |
|            |                                                                              | 隆起・沈降境界域における地殻変動の一様性の評価について、MIS7や9<br>でなく MIS11の地層が明瞭で対比しやすい、という知見が得られたこと<br>は重要である。その他の地域でも同様な結果が得られれば、MIS11の地<br>層が広域的に対比できる層準として使えるということになる。海成段丘<br>でも MIS11 が比較的よく残っている可能性もあるのではないか。                                         |
|            |                                                                              | マルチタイムスケール侵食速度データベースについて、ダム堆砂と各種<br>熱年代による侵食速度の値が概ね一致するという成果は、侵食速度の一<br>様性とともに侵食速度推定の各手法の信頼性が高いということを示して<br>いるため、非常に重要な成果である。                                                                                                    |
|            |                                                                              | 過去数十年と過去数百年~1万年の比較から、丘陵~低地の侵食速度に<br>違いはないということはこれまで行われてきた地層処分の基本的な方法<br>に大きな影響は与えないことが明らかにできたと思われる。そうである<br>のであれば、本項目についての研究目的は達成されたことになり、今後3<br>年間の研究の主たるターゲットを再考する必要があるのではないか。                                                 |
|            |                                                                              | 10万年間のうちに沈降から隆起に転じた場の中には、断層の活動域の移動といった現象が関与している場もあると考えられる。隆起・沈降の一様継続性に関しては、断層の活動域の変遷という観点でも整理した方が良い。                                                                                                                             |

|         | 隆起・侵食に評価技術(続き) | 礫の風化実験と既存の段丘調査資料をデータベース化して集めた礫の風<br>化度の記載をどう結びつけるかという戦略がみえてこない。例えば、最<br>終的な目標が礫の風化度を用いた編年指標の整備であれば強酸を用いた<br>数十日の実験結果を自然界の速度論に展開する必要があると思うが、そ<br>の方法論に問題はないか。同様に、方法論的な問題点として段丘調査デ<br>ータベースについて、年代論を再解釈することなく情報を利用する分に<br>はよいと思うが、研究の出発点はそこに問題があるとした点にあるので、<br>その問題を解決すべきではないか。今後3年間の研究計画は「野外調査」<br>と「室内実験の継続」となっているが、データベース化した約3800ヶ所<br>の野外調査や室内実験の結果を年代指標として利用可能かといった見通<br>しを立てる時期にきているのではないか。 |
|---------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 主なコメント( |                | 段丘対比・編年の論点提示と高度化について、テフラに過度に依存する<br>のではなく、段丘堆積物の特徴や段丘面の形態や連続性などを総合的に<br>勘案して形成年代を推定すべきである、という論点については同意する。<br>しかし、当該分野の専門家は、段丘の形態や堆積物の特徴などの曖昧な<br>指標よりもテフラの年代の方が信用できる、という考えの方が未だに主<br>流であるように思われる。今回提示された考え方を広めるためには調査<br>事例を増やすしか方法はないと思うので、幡谷ほか(2005)のような事<br>例の異なる地域での検討を期待したい。<br>幡谷ほか(2005):宮城県川崎盆地における海洋酸素同位体ステージ6河<br>成段丘の認定とその意義.第四紀研究,44,155-167.                                       |
| (続き)    |                | 風化模擬実験に使用した砂岩の基質を構成する鉱物種は?基質に方解石<br>を含む砂岩もあるようであるが、すべてではなさそうである。風化模擬<br>実験では、石英や長石が顕著に溶解しているわけではなさそうで、基質<br>鉱物の溶解が主だと想像する。基質鉱物を集めるなどして同定したうえ<br>で、それらが溶解しているかどうかの観察を期待したい。                                                                                                                                                                                                                      |
|         |                | HCI 溶解実験で崩壊した試料には葉理状の構造が観察できたと書かれて<br>いるが、これは、砂岩の堆積時に形成されていた微細な堆積構造に沿っ<br>て破断が生じたために初生的な堆積構造が観察されるようになったもの<br>であるのか?あるいは、もともとの堆積構造とは無関係に、破断によっ<br>て新たに生じた割れ目なのであるか?風化に伴う破断がどのような力学<br>的な弱面を利用して生じているのかを検討するうえで、興味深い結果で<br>ある。                                                                                                                                                                   |
|         |                | 今回の溶解実験では、Feは岩石から溶出して溶液側に移動しているよう<br>であるが、天然の風化砂岩の場合、三価の鉄として岩石内に残留・濃集す<br>ることが多いと思う。今回の溶解実験では、なぜ三価の鉄の岩石内での<br>濃集が生じないのか?また、酸を用いた溶解実験では水酸化鉄の岩石内<br>濃集が生じにくいのであれば、風化実験によって水酸化鉄を岩石内に濃<br>集させることができる実験方法を考えられるか?                                                                                                                                                                                    |

| 主なコメント(続き) | 隆起・侵食に関する。調査、調査、総合の合同では、 | 天然の風化礫の EPMA 分析では、元素の欠乏・濃集が観察できるもの<br>と観察できないものとがあるとのこと。その理由について現段階で想定<br>しうる鉱物化学的現象や岩石物性の特徴があるか?西山・松倉(2002)<br>によれば、Na も容易に溶出してしまうように想像できるが、今回の結<br>果では Na の溶出は明確ではない。また西山・松倉(2002)では、Na<br>に富む長石が含まれている試料が多かったが、今回分析した砂岩試料で<br>は Na 長石はほとんど含まれていなかったか?<br>西山賢一・松倉公憲(2002):風化による砂岩の岩石組織の変化:南九<br>州における四万十帯砂岩の例.地質学雑誌,108,410-413. |
|------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                          | 四万十砂岩における皮膜形成比率や皮膜が形成されている試料の場合、<br>被膜のタイプの違いを生じる理由といった基礎的な事項についても、今<br>後可能であれば検討すべき。例えば、多段化した段丘が多数分布する同<br>一地域において、風化継続時間が増加するほど(=古い段丘ほど)皮膜<br>形成比率が増加していくという結果が得られれば興味深いと思う。                                                                                                                                                     |
|            |                          | 西日本ではフィルトップ段丘の発達が弱く気候段丘モデルの適用性を判<br>断するのが難しいとの記述があるが、気候段丘が発達しないということ<br>は、河床高度が気候変動にあまり影響を受けずに、隆起に応じて一様に<br>下刻してきた、とみなすこともできると思われる。そのような場合、単<br>純に段丘面の形成年代と高度から下刻速度≒隆起速度が算出可能であ<br>る。                                                                                                                                              |
|            |                          | 西日本では段丘の発達が弱いとの記述があるが、これは隆起が弱いこと<br>を示唆していると考えられるが、それ以外に気候変動の影響を受けにく<br>いので河床の安定期・下刻期が存在せず、一様に下刻してきたことに起<br>因している可能性もあると思われる。西日本の場合、ごく断片的にでも<br>段丘地形が分布していれば、その年代と高度から隆起速度を算出できる<br>可能性はあるのではないか。                                                                                                                                  |

# サンゴ骨格試料を用いた JAEA-AMS-TONO による ヨウ素同位体比測定の妥当性評価

# 令和2年3月

国立研究開発法人日本原子力研究開発機構 核燃料・バックエンド研究開発部門 東濃地科学センター 地層科学研究部 ネオテクトニクス研究グループ

| 1. 序論                                                      |    |
|------------------------------------------------------------|----|
| 2. 研究手法・試料の選定                                              | 3  |
| 3. <sup>129</sup> I/ <sup>127</sup> I 比測定の精確さ評価の実験         | 5  |
| 4. <sup>129</sup> I/ <sup>127</sup> I比測定の精確さ評価の実験結果と考察     | 6  |
| 5.129I/127I 比と測定精度の関連性評価の実験                                |    |
| 6. <sup>129</sup> I/ <sup>127</sup> I 比と測定精度の関連性評価の実験結果と考察 | 9  |
| 7. まとめ                                                     | 10 |
| 8. 引用文献                                                    | 10 |

目 次

### 図目次

| 义 | 2-1 大気への人為的 <sup>129</sup> I 放出の歴史                                        | .4  |
|---|---------------------------------------------------------------------------|-----|
| 义 | 2-2 アリゾナ大学の AMS で測定されたベトナム産サンゴ骨格年輪の 129 I/127 I 比                         | . 4 |
| 义 | 3-1 <sup>129</sup> I/ <sup>127</sup> I 比測定の精確さ評価の実験における前処理手順              | . 5 |
| 义 | 4-1 <sup>129</sup> I/ <sup>127</sup> I比の前処理操作ブランク評価実験の結果                  | . 6 |
| 义 | 4-2 <sup>129</sup> I/ <sup>127</sup> I 比が既知のベトナム産サンゴ骨格年輪(1946-47年)試料の測定結果 | . 7 |
| 义 | 6-1 西オーストラリア産サンゴ骨格年輪試料の <sup>129</sup> I/ <sup>127</sup> I 比の測定結果         | . 9 |

ヨウ素(元素記号:I)は元素周期律表において、フッ素、塩素、臭素、アスタチンとともに第 17族に属し、これらの元素は一般にハロゲンと呼ばれる。ハロゲンは単体では非常に高い反応性 を持ち、ヨウ素、臭素の揮発性は特に高い。ヨウ素には 37 種の同位体が知られており、質量数 127 の 127 目のみが安定同位体であり、その他はいずれも放射性同位体である。放射性ヨウ素同位 体の中で、<sup>129</sup>I は半減期が 1570 万年と非常に長く、その他の核種は半減期が 60 日未満である。 天然における<sup>129</sup>Iの生成機構は(1)宇宙線と大気中のキセノンの反応と(2)ウランの自発核分裂 である。一方、人為的な <sup>129</sup>I の生成機構は(1) 核実験と(2) 核燃料再処理である(松崎, 2015)。 以上の事実から、129I/127I比が地質試料の年代測定や、過去の地球環境の復元や、核実験後の海 洋循環トレーサーとして利用できる可能性がある。加速器質量分析装置(Accelerator Mass Spectrometer:以下、AMSという)を用いた<sup>129</sup>I/<sup>127</sup>I比の分析は1980年代から始まっているが (例えば、Fehn et al., 1987)、現在に至っても分析用国際標準物質が未確定であることや、試 料の前処理方法が分析値に及ぼす影響が詳細に研究されていないこと、そして、地球環境におけ るヨウ素の存在形/動態に未解明な部分が多いことなどにより(天知,2008)、この分析技術の天 然試料への適用は非常に限定的である。ここでは、日本原子力研究開発機構・東濃地科学センタ ーの加速器質量分析装置(以下、JAEA-AMS-TONO という)において、129I/127I 比測定の精確 さ評価を実施するため、129I/127I比が既に報告されている天然試料を選定・測定し、既報値との 比較を行った。さらに、129I/127I比と測定精度の関連性を評価するため(一般に、129I/127I比が増 加すれば測定精度は良くなる)、核実験や核燃料再処理の影響で 129I/127I 比が数倍~数十倍以上 の規模で変動すると予想される天然試料についても測定を実施した。

#### 2. 研究手法・試料の選定

前節で述べたように、<sup>129</sup>Iには天然での生成機構と人為的生成機構がある。1950年代半ば以降、 後者によって地球表層環境の<sup>129</sup>I/<sup>127</sup>I比が有意に上昇し (UNSCEAR, 2000; Reithmeier et al., 2006, 2010)、現在でも大気、土壌、海水、降水には人為起源の<sup>129</sup>Iが有意な濃度で滞留している。 1945年~2004年における大気への人為的<sup>129</sup>I放出量の見積りを図 2-1に示した。このような人 為起源<sup>129</sup>Iの影響は実験室環境にも及んでいると考えられるため、各実験環境において<sup>129</sup>I/<sup>127</sup>I 比のバックグラウンドレベルを評価することが、天然試料の<sup>129</sup>I/<sup>127</sup>I比測定を実施する為の前提 条件となる。このバックグラウンド評価を経た上で、天然試料の<sup>129</sup>I/<sup>127</sup>I比測定の精確さ評価を 行う為には、当然のことながら、人為起源の<sup>129</sup>Iを含んでいない試料を選定する必要がある。こ れを考慮した結果、ベトナム南部沖のコンダオ島で採取されたサンゴ骨格に刻まれている 1946-1947年の年輪試料が選定された。この年輪試料については、米国アリゾナ大学のAMS に よって<sup>129</sup>I/<sup>127</sup>I比が測定・報告されており([0.75~1.64]×10<sup>-12</sup>:図 2-2)、この値から人為起源 の<sup>129</sup>I は含まれていないと判断できる(Chang et al., 2016)。

人類の核活動は 1945 年から始まったが、1950 年代初頭まではその規模が比較的小さく(図 2・1)、この期間に人為的に放出・生成された <sup>129</sup>I の地球環境への影響はほとんど検出されないレ ベルである。つまり、少なくとも 1950 年以前はサンゴ年輪の <sup>129</sup>I/<sup>127</sup>I 比に有意な変動はなく、ほ とんど一定であった可能性が高い。図 2・2 において、1920 年~1932 年の期間の方が 1933 年~ 1950 年代初頭の期間よりも <sup>129</sup>I/<sup>127</sup>I 比が有意に高くなっているが、この原因は不明である。一方、 上でも少しふれたが、1950 年代半ば~1963 年の期間は大気圏核実験が頻繁かつ大規模に実施さ れたこと、更に 1970 年代後半~1990 年代半ばの期間は核燃料の再処理により、地球表層環境中 の <sup>129</sup>I/<sup>127</sup>I 比は 1940 年代以前と比べて数倍~数十倍(局所的には百倍以上)に上昇した (UNSCEAR, 2000; Reithmeier et al., 2006, 2010)。サンゴ骨格年輪にはこのような <sup>129</sup>I/<sup>127</sup>I 比 の上昇も記録されていることから(図 2-2)、<sup>129</sup>I/<sup>127</sup>I 比と測定精度の関連性を評価するのに有用 と考えられる。この評価を実施する為に、西オーストラリア沖(インド洋)のローリーショール ズ(環礁)で採取されたサンゴ骨格年輪試料が選定された。この試料には1880年代~1990年代 の年輪が刻まれている。なお、ローリーショールズから南西約530 kmにはモンテベロ諸島があ り、同諸島では英国が1952年に1回、1956年に2回、海上あるいは地上で核実験を行っている。



図 2-1 大気への人為的 129 放出の歴史

<sup>(1)</sup>大気圏核実験のよる放出量は核分裂収率に基づく見積値(Reithmeier et al., 2006; UNSCEAR, 2000); <sup>(2)</sup>核燃料再処理施設からの大気への放出量(海洋への放出は含まれない: Reithmeier et al., 2006, 2010); 1986年のチェルノブイリ原発事故による大気放出量(39 GBq: Aldahan et al., 2007)を赤で示す。



図 2-2 アリゾナ大学の AMS で測定されたベトナム産サンゴ骨格年輪の<sup>129</sup>I/<sup>127</sup>I 比 1946-1947 年の値は[0.75~1.64]×10<sup>-12</sup>。この試料では 1959 年から人為起源<sup>129</sup>I による明瞭な上 昇が見られる(データ出典: Chang, 2016)。

#### 3.<sup>129</sup>I/<sup>127</sup>I 比測定の精確さ評価の実験

この実験で用いた試料は、ベトナム南部沖のコンダオ島から採取されたサンゴ骨格試料に刻ま れていた西暦 1946-1947 年の年輪である。このサンゴ骨格年輪試料の前処理は以下の手順で行っ た(図 3·1): [1] サンゴ骨格試料を1%塩酸で処理し、骨格表面(試料重量の 6~8%)を溶解・ 除去、[2] メノウ乳鉢で粉末化、[3] 粉末試料から2g×6個をポリプロピレン遠沈管(50 mL) に分取、[4] 各々を17%リン酸21 mL で溶解、[5] 各溶液試料から0.070 mL を分取し、これを 200 倍希釈して1.7%リン酸溶液(14 mL)とし、ICP-MSで<sup>127</sup>I 濃度を測定、[6] 各溶液試料に Woodward ヨウ素標準(0.7 mg I 当量: <sup>129</sup>I/<sup>127</sup>I 比=1.5×10<sup>-14</sup>: Matsuzaki et al., 2015)を亜硫 酸ナトリウム溶液として添加、[7] 各溶液試料から溶媒抽出法(n-ヘキサン、濃塩酸、純水、亜 硫酸ナトリウム、亜硝酸ナトリウムを使用)でヨウ素を分離、[8] 各ヨウ素分離液に5%硝酸銀 水溶液(0.1 mL)を加えてヨウ化銀沈澱を形成し、遠心分離して上澄みを捨て、純水で洗浄後、 再び遠心分離して上澄みを捨て、凍結乾燥、[9] 各沈澱試料をニオブ粉末と混合し(沈澱:ニオ ブの重量比=1:5)、銅製カソードにプレス、[10] JAEA-AMS-TONOで<sup>129</sup>I/<sup>127</sup>I 比を測定。この 実験で得られた6 個の繰り返し試料の結果に基づき、<sup>129</sup>I/<sup>127</sup>I 比測定の精確さ評価を行った。な お、上記の前処理手順は Bautista VII et al. (2016, 2017)及び Muramatsu et al. (2008)に基 づいている。



図 3-1 <sup>129</sup> //<sup>127</sup> | 比測定の精確さ評価の実験における前処理手順

前節で述べたように、<sup>129</sup>I/<sup>127</sup>I 比測定の精確さ評価を行う前提として、試料前処理環境のバッ クグラウンド<sup>129</sup>I/<sup>127</sup>I 比を評価する必要がある。これを行うために、前処理操作ブランク評価実 験、すなわち、サンゴ骨格試料を用いずに上記の前処理手順[4]~[10]を実施して試料調製を行っ た。サンゴ骨格試料を用いる場合と同様に、前処理操作ブランク評価実験においても6個の繰り 返し試料の結果からバックグラウンド<sup>129</sup>I/<sup>127</sup>I 比を評価した。

### 4. 129 | /127 | 比測定の精確さ評価の実験結果と考察

まず前処理操作ブランク評価実験の結果を図 4-1 に示すが、ここでは Woodward ヨウ素標準 の 129 J/127 I 比の値(1.5×10-14)は既に差し引かれている。図中の誤差棒はAMS 測定誤差(10) を表している。試料 4~6 は <sup>129</sup>I/<sup>127</sup>I 比がほぼ一定であり、誤差も大体同じであるのに対し、試料 1~3の129 J/127 I比は相対的に高く、測定誤差も大きく、ばらつきが見られる。この原因としては 以下の事実が考えられる。JAEA-AMS-TONO で 129I/127I 比を測定する場合、通常は、ヨウ化銀 沈殿試料とニオブ粉末を混合して銅製カソードにプレスした当日に(すなわち図 3-1 の[手順 9] を行った当日に)AMSに装填して高真空状態にした後、AMSを慎重に調整して測定を開始する。 しかしながら今回の場合、試料1~3をプレスし終わった時にAMSに不調が生じたため、他の試 料のプレス作業は行わず、プレス済試料1~3は実験室の真空デシケータに保管した。その22日 後に AMS が復調したため、その日のうちに、 試料 4~6 及びベトナム産サンゴ骨格から調製した ヨウ化銀試料(6個)をプレスした上、保管していたプレス済試料 1~3 と共に AMS に装填後、 測定を実施した。つまり試料 1~3 の結果は、AMS に装填するまでの過程(実験室の真空デシケ ータで 22 日間保管) での汚染を示唆している。一方、試料 4~6 及びベトナム産サンゴ骨格から 調製した試料(6 個)についてはプレス当日に AMS に装填しているので、試料 4~6 の結果のみ をベトナム産サンゴ骨格前処理時のバックグラウンド評価として用いるべきであり、これら三つ の試料の測定値及び誤差から、バックグラウンドは[4.3±0.5]×10-14と見積もられる(誤差は1o)。



図 4-1<sup>129</sup>I/<sup>127</sup>I比の前処理操作ブランク評価実験の結果

ここでは Woodward ヨウ素標準の<sup>129</sup>//<sup>127</sup> 比の値(1.5 × 10<sup>-14</sup>)は既に差し引かれており、誤差 棒は AMS 測定誤差(1σ)を表している。試料 1~3の結果は不適格であるため(本文参照)、試 料 4~6の結果から前処理操作バックグラウンドの平均値と 1σ 誤差(赤の直線及び点線)を見積 もった([4.3 ± 0.5] ×10<sup>-14</sup>)。 図 4-2 はベトナム産サンゴ骨格年輪試料(1946~47 年の年輪を粉末化)からの繰り返し試料 (6 個)の <sup>129</sup>I/<sup>127</sup>I 比測定結果を示しているが、その計算方法は次の通りである。すなわち、以 下の各値:(1)各プレス試料のAMS 測定値から上記のバックグラウンド値([4.3±0.5]×10<sup>-14</sup>) を差し引いた値、(2)Woodward ヨウ素標準の<sup>129</sup>I/<sup>127</sup>I比(1.5×10<sup>-14</sup>)と各試料への添加量(0.7 mg I)(図 3-1の[手順 6])及び(3) ICP-MS による<sup>127</sup>I 濃度測定値(図 3-1の[手順 5])を同位体 希釈の式に代入して計算した。なお、(3)の測定値から求めたサンゴ骨格(6 個の繰り返し試料) の<sup>127</sup>I 濃度の平均値と標準偏差は4.80±0.17 ppm であり、ほぼ一定であった。図中の誤差棒は 10を示しており、AMS 測定誤差、<sup>127</sup>I 濃度測定誤差及び同位体希釈に伴う誤差を含んでいる(誤 差伝播式による)。



図 4-2<sup>129</sup>//<sup>127</sup> 比が既知のベトナム産サンゴ骨格年輪(1946–47年) 試料の測定結果 この結果は前処理操作ブランク評価実験から求めたバックグラウンドの補正を行って計算した <sup>129</sup>//<sup>127</sup> 比であり、誤差棒は1σを示す(AMS測定誤差、ICP-MSでの<sup>127</sup> 測定誤差、同位体希釈 誤差を含む)。試料4と6のデータを除いて計算した平均値と1σ誤差をそれぞれ赤の直線と点線 で示す([1.53±0.58]×10<sup>-12</sup>)。青色の範囲は米国アリゾナ大学による既報値:[0.75~1.64]×10<sup>-12</sup> (Chang et al., 2016)。

これら 6 個の繰り返し試料データの最小値は $[0.15 \pm 0.82] \times 10^{-12}$  (試料 6) であり、最大値は [3.77 ± 2.59] × 10<sup>-12</sup> (試料 4) である。試料 4 には他の試料と比べて明らかに大きな誤差が伴っ ており、これは AMS 測定誤差が大きいことに起因しているが、その原因は不明である。試料 1、 2、6 の相対 1 の誤差は 100%を超えているが、この主要因として考えられるものの一つとして、 今回の手法に同位体希釈が用いられていることがあげられる。アリゾナ大学で得られた結果は [1.51 ± 0.13] × 10<sup>-12</sup> (1946 年の年輪) 及び $[0.96 \pm 0.21] \times 10^{-12}$  (1947 年の年輪) であり (Chang et al., 2016)、これら二つのデータの範囲は誤差を含めると $[0.75 \sim 1.64] \times 10^{-12}$ となる (図 2-2 及び図 4-2)。この範囲と本研究のデータ (1946~47 年の年輪を粉末化→6 個の繰り返し試料を 分取して測定したデータ) の間に有意差があるとは言えないが (図 4-2)、それは、本研究の測定 誤差がアリゾナ大学の測定誤差に比べてかなり大きいこと (約 5~20 倍) が原因であることは明 らかである。本研究では、図 3-1 に示した通り、2 g のサンゴ試料 ( $^{129}I/^{127}I$  比= $10^{-12}$ レベル) をリン酸溶解したものに Woodward ヨウ素標準(1.5×10<sup>-14</sup>)を添加(同位体希釈)することに より、試料<sup>129</sup>I/<sup>127</sup>I 比を 10<sup>-14</sup> レベルに下げて AMS 測定しているのに対し(Bautista VII et al. (2016, 2017)の手法に基づく)、アリゾナ大学は約 20 gのサンゴ試料をリン酸溶解することで同 位体希釈を実施せず(したがって ICP-MS による<sup>127</sup>I 濃度測定も不要)、試料<sup>129</sup>I/<sup>127</sup>I 比を 10<sup>-12</sup> レベルのまま AMS 測定している(Chang et al., 2016)。このことが本研究のデータとアリゾナ 大学のデータの質の違い(誤差の大きさ及びばらつきの違い)を生んでいると考えられる。した がって、JAEA-AMS-TONO においてもアリゾナ大学と同等の前処理手法を採用すれば、同大学 と同様の誤差・ばらつきでデータを得ることができる可能性が高い。一方で、一つのサンゴ骨格 年輪から約 20 gの試料を採取するのは比較的困難であり、これをリン酸溶解するにはかなりの時 間(おそらく 1~2 日)を要し、溶液試料量も多くなり(十倍程度)、結果として溶媒抽出の労力 が大きくなるという難点がある。

図 4・2 のデータのうち、試料4のデータ(最大の誤差を伴う最大値)と試料6のデータ(バッ クグラウンドと有意差がない最小値)を除外して、残りの4試料で平均値と1σ誤差を計算する と[1.53 ± 0.58] × 10<sup>-12</sup> となり、アリゾナ大学の結果と凡そ一致する。このことは、 JAEA-AMS-TONOにおいて、人為起源<sup>129</sup>Iを含まない天然炭酸カルシウム試料の<sup>129</sup>I/<sup>127</sup>I比測 定(10<sup>-12</sup>レベル)に関し、試料<sup>129</sup>I/<sup>127</sup>I比が2桁減少する同位体希釈法を適用した場合でも、あ る程度正確な測定ができることを示唆している。今後はこれらの結果を十分に検討し、前処理の 簡便化と測定誤差・ばらつきの縮小を目指して、最適な前処理手法及び測定条件を探って行く必 要がある。

#### 5.<sup>129</sup>I/<sup>127</sup>I比と測定精度の関連性評価の実験

上でも述べたように、一般に、試料の1291/1271比が大きく(小さく)なると測定精度が良く(悪 く)なる。このような 129I/127I 比と測定精度の関連性を定量的に評価するために、西オーストラ リア沖(インド洋)のローリーショールズ(環礁)で採取されたサンゴ骨格年輪試料の <sup>129</sup>I/<sup>12</sup>7I 比を測定した。この試料には1880年代~1990年代の年輪が刻まれており、さらに、試料採取地 点の近海で1950年代に地上・海上核実験が実施されていることから、人類の核活動に伴う129I/127I 比の著しい変化(数倍~数+倍以上の変化)が記録されていると考えられる。そこで、上記試料 から 12 個の骨格年輪(1933年、1939年、1944年、1950年、1956年、1963年、1966年、1969 年、1975年、1981年、1987年及び1993年)を採取し、各年輪試料に対して図 3-1の前処理手 |順を施して 129I/127I 比を測定した。 ただし、 この評価実験では前処理手順に以下の変更を施した : (1) 各年輪から採取した試料数は1個(3.6g); (2) 各試料を粉末化して17%リン酸38mLで溶 解; (3) 各溶液試料から 0.075 mL を分取し、これを 200 倍希釈して 1.7 %リン酸溶液(15 mL) とし、ICP-MS で<sup>127</sup>I 濃度を測定; (4) ICP-MS 測定ではセシウムを内標準元素として用いた (Bautista VII et al., 2017)。そして、この変更に対応した前処理操作ブランク評価実験を実施 してバックグラウンド <sup>129</sup>I/<sup>127</sup>I 比を評価し(繰り返し試料数は3個)、測定結果の補正に用いた。 サンゴから調製したヨウ化銀試料(12個)と前処理操作ブランク評価実験のヨウ化銀試料(3個) は同じ日にニオブ粉末と混合してプレスし、その日のうちに AMS に装填した。なお、上記の 12 個の骨格年輪試料の西暦年は、サンゴ骨格試料のX線写真の年輪画像から読み取ったものであり、 一部の年輪画像が不明瞭であることから、±1~2 年程度の不確実性を伴う可能性がある(年輪が 古くなるほど不確実性は増加する)。

#### 6.<sup>129</sup>I/<sup>127</sup>I比と測定精度の関連性評価の実験結果と考察

この実験に対応した前処理操作ブランク評価実験に基づく <sup>129</sup>I/<sup>127</sup>I 比バックグラウンドは[3.2 ± 1.0] × 10<sup>-14</sup> と見積もられた (n=3; 誤差は 1 $\sigma$ )。この値と第4節で求められた <sup>129</sup>I/<sup>127</sup>I 比バッ クグラウンド ([ $4.3 \pm 0.5$ ] × 10<sup>-14</sup>: 図 4<sup>-1</sup>) の間に有意差があるとは言えない。そこで、(1) 前 者のバックグラウンド値を西オーストラリア産サンゴ年輪試料 (12 個のプレス試料) の各 AMS 測定値から引き算した値、(2) Woodward ヨウ素標準の <sup>129</sup>I/<sup>127</sup>I 比 ( $1.5 \times 10^{-14}$ ) と各試料への添 加量 (0.7 mg I) 及び(3) ICP-MS による <sup>127</sup>I 濃度測定値;これらを同位体希釈の式に代入して計 算した結果 (サンゴ骨格の <sup>129</sup>I/<sup>127</sup>I 比) を図 6<sup>-1</sup> に示す (<sup>129</sup>I/<sup>127</sup>I 比の変動範囲が非常に広いの で対数軸で表示してある)。なお、(3)の測定値から求めたサンゴ骨格試料 (12 個) の <sup>127</sup>I 濃度範 囲は約 3.3~3.6 ppm であり、各濃度値の相対 1 $\sigma$  誤差は 2~5%であった。図中の誤差棒は 1 $\sigma$  を 示しており、AMS 測定誤差、<sup>127</sup>I 濃度測定誤差及び同位体希釈に伴う誤差を含んでいる (誤差伝 播式による)。



図 6-1 西オーストラリア産サンゴ骨格年輪試料の<sup>129</sup>//<sup>127</sup> 比の測定結果 この結果は前処理操作ブランク評価実験から求めたバックグラウンドの補正を行って計算した <sup>129</sup>//<sup>127</sup> 比であり、誤差棒は 1σを示す(AMS 測定誤差、ICP-MS での<sup>127</sup> I 測定誤差、同位体希釈 誤差を含む)。1956 年の著しい極大値は大気圏核実験によるものであり、1970 年代以降の増加傾 向は核燃料再処理施設からの影響と考えられる。1963 年以降の測定値(10<sup>-11</sup> レベル)の誤差は、 1950 年以前の測定値(10<sup>-12</sup> レベル)の誤差よりも明らかに小さい。1956 年の測定値(10<sup>-10</sup> レ ベル)の誤差が、10<sup>-12</sup> レベルの測定値の誤差と同様の規模である理由は不明である。

1933年~1950年の期間の4試料は約1.0~3.2×10<sup>-12</sup>の<sup>129</sup>[/<sup>127</sup>]比を持ち、相対10誤差は27~82%である。この結果は、上述のベトナム産サンゴ骨格年輪(1946-47年)試料の結果(図4-2)と非常に良く似ている。したがって、これら4試料には人為起源<sup>129</sup>]は含まれていないと推定できる。1956年の試料は著しく高い<sup>129</sup>[/<sup>127</sup>]比([6.6±3.2]×10<sup>-10</sup>:相対10誤差=48%)(1933年~1950年の値の約200~700倍)を持ち、これは大気圏核実験で生じた<sup>129</sup>]の影響と考えられる。同年、このサンゴ試料の採取地点(西オーストラリア沖・ローリーショールズ環礁)から南

西約 530 km に位置するモンテベロ諸島で英国が地上核実験を 2 回実施している。1963 年~1993 年の期間の 7 試料は約 1.3~3.0×10<sup>-11</sup>の <sup>129</sup>I/<sup>12</sup>TI 比を持ち、相対 10 誤差は 6~11 %である。こ のことは、天然炭酸カルシウム試料に本研究手法を適用した場合、<sup>129</sup>I/<sup>12</sup>TI 比が 10<sup>-12</sup> レベルの試 料 (同位体希釈により 10<sup>-14</sup> レベル)よりも 10<sup>-11</sup> レベルの試料 (同位体希釈により 10<sup>-13</sup> レベル) の方が明らかに高精度で測定できることを示している(相対 10 誤差は約 1/3~1/10に縮小する)。 一方で、<sup>129</sup>I/<sup>12</sup>TI 比が 10<sup>-10</sup> レベルの 1956 年の試料 (同位体希釈により 10<sup>-11</sup> レベル)の相対 10 誤差 (48 %)は、10<sup>-12</sup> レベルの試料の相対 10 誤差 (27~82 %)と同様の規模であるが、これ は 1 試料のみの結果であり、前処理・測定過程で何らかの異常事象・誤りが起きた可能性がある ことから、同じ年輪部分を用いて再度前処理・測定の必要があると思われる。1975 年~1993 年 の 4 試料において <sup>129</sup>I/<sup>12</sup>TI 比の増加傾向が見られるが、これはベトナム産サンゴ骨格年輪のデー タ (図 2·2)や他の海域のサンゴ骨格年輪のデータ(フィリピン、パプアニューギニア、ソロモ ン諸島)と大体一致しており(Biddulph et al., 2006; Bautista VII et al. 2016; Chang et al., 2016)、この増加傾向は核燃料再処理施設から地球環境中に放出された <sup>129</sup>I の影響と考えられる (図 2·1)。

#### 7. まとめ

本研究により、人為起源<sup>129</sup>Iを含まない天然炭酸カルシウム試料(<sup>129</sup>I/<sup>127</sup>I 比 = 10<sup>-12</sup> レベル) に関して、JAEA-AMS-TONO における<sup>129</sup>I/<sup>127</sup>I 比測定結果はアリゾナ大学の結果と凡そ一致す ることが確認できた。一方で、AMS 測定誤差およびデータのばらつきはアリゾナ大学の結果と 比べてかなり大きいことが分かった(AMS 測定誤差は 5~20 倍)。この最大の原因として考えら れるのは、本研究では試料に Woodward ヨウ素標準(<sup>129</sup>I/<sup>127</sup>I 比= 1.5×10<sup>-14</sup>)を添加して<sup>129</sup>I/<sup>127</sup>I 比を 10<sup>-14</sup> レベルに希釈して測定しているのに対し、アリゾナ大学では多量の試料を用いて同位 体希釈を実施することなく、<sup>129</sup>I/<sup>127</sup>I 比が 10<sup>-12</sup> レベルのままで測定しているということである。 したがって、アリゾナ大学と同等の方法を用いれば、<sup>129</sup>I/<sup>127</sup>I 比が 10<sup>-12</sup> レベルの炭酸カルシウム 試料に関して、JAEA-AMS-TONO においても同大学と同様の誤差・ばらつきで測定できる可能 性が高い。また、本研究手法を用いた場合、<sup>129</sup>I/<sup>127</sup>I 比が 10<sup>-11</sup> レベルの試料(同位体希釈により 10<sup>-13</sup> レベルになる)は 10<sup>-12</sup> レベルの試料(同位体希釈により 10<sup>-14</sup> レベルになる)より明らか に高精度で測定できる(データの相対 10 誤差は約 1/3~1/10 に縮小する)ことが示された。今後 は、以上の結果に基づき、JAEA-AMS-TONO における<sup>129</sup>I/<sup>127</sup>I 比測定の精確さ向上に向けて、 試料前処理法、同位体希釈率、及び AMS 測定条件の最適化を図ってゆく。

本研究では <sup>129</sup>I/<sup>127</sup>I 比測定の妥当性評価にサンゴ骨格試料を用いたが、その主成分は炭酸カル シウムである。炭酸カルシウムは地質環境においては石灰岩層、鉱物としては方解石やあられ石 として高頻度で見られる物質であることから、本研究は地質試料の年代測定技術開発としての側 面を持つ。さらに、温泉水や地下水からの沈殿物、すなわち石灰華として炭酸カルシウムが生成 することがあるため、本研究は深部流体を含む地下水の動態に関する研究にも拡張できると考え られる。

### 8. 引用文献

Aldahan, A., Alfimov, V. and Possnert, G., <sup>129</sup>I anthropogenic budget: Major sources and sinks, Applied Geochemistry, vol.22, pp.606-618, 2007.

天知誠吾,ヨウ素と微生物の相互作用−ヨウ素の揮発,濃縮,還元,酸化,吸着−,食と緑の科学, no.62, pp.9-19, 2008.

Bautista VII, A.T., Matsuzaki, H. and Sigingan, F.P., Historical record of nuclear activities
from <sup>129</sup>I in corals from the northern hemisphere (Philippines), Journal of Environmental Radioactivity, vol.164, pp.174-181, 2016.

- Bautista VII, A.T., Miyake, Y., Matsuzaki, H. and Siringan, F.P., A coral <sup>129</sup>I/<sup>127</sup>I measurement method using ICP-MS and AMS with carrier addition, Analytical Methods, vol.9, pp.5181-5188, 2017.
- Biddulph, D.L., Beck, J.W., Burr, G.S. and Donahue, D.J., Two 60-year records of <sup>129</sup>I from coral skeletons in the South Pacific Ocean, Radioactivity in the Environment, vol.8, pp.592-598, 2006.
- Chang, C.-C., Iodine-129 as an oceanic tracer, Ph.D. dissertation in the University of Arizona, pp.1-93, 2016.
- Chang, C.-C., Burr, G.S., Jull, A.J.T., Russell, J.L., Biddulph, D., White, L., Prouty, N.G., Chen, Y.-G., Shen, C.-C., Zhou, W. and Lam, D.D., Reconstructing surface ocean circulation with <sup>129</sup>I time series records from corals, Journal of Environmental Radioactivity, vol.165, pp.144-150, 2016.
- Fehn, U., Tullai, S., Teng, R.T.D., Elmore, D. and Kubik, P.W., Determination of <sup>129</sup>I in heavy residues of two crude oils, Nuclear Instruments and Methods in Physics Research B, vol.29, pp.380-382, 1987.
- 松崎浩之, ヨウ素 129 を利用した地球環境中のヨウ素の研究−メタンハイドレートの年代測定の 試みと福島第一原子力発電所事故で放出されたヨウ素 131 の復元−, SIS Letters, no.16, pp.2-13, 2015.
- Matsuzaki, H., Nakano, C., Tsuchiya, Y.S., Ito, S., Morita, A., Kusuno, H., Miyake, Y., Honda, M., Bautista VII, A.T., Kawamoto, M. and Tokuyama, H., The status of the AMS system at MALT in its 20th year, Nuclear Instruments and Methods in Physics Research B, vol.361, pp.63-68, 2015.
- Muramatsu, Y., Takada, Y., Matsuzaki, H. and Yoshida, S., AMS analysis of <sup>129</sup>I in Japanese soil samples collected from background areas far from nuclear facilities, Quaternary Geochronology, vol.3, pp.291-297, 2008.
- Reithmeier, H., Lazarev, V., Rühm, W., Schwikowski, M., Gäggeler, H.W. and Nolte, E., Estimate of European <sup>129</sup>I releases supported by <sup>129</sup>I analysis in an Alpine ice core, Environmental Science & Technology, vol.40, pp.5891-5896, 2006.
- Reithmeier, H., Lazarev, V., Rühm, W. and Nolte, E., Anthropogenic <sup>129</sup>I in the atmosphere: overview over major sources, transport processes and deposition pattern, Science of The Total Environment, vol.408, pp.5052-5064, 2010.
- UNSCEAR, Sources and Effects of Ionizing Radiation, United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 2000 Report to the General Assembly, with scientific annexes, volume I: SOURCES Annex C, 2000.

# 最新知見を踏まえた隆起・侵食データマップの整備 侵食速度データー覧

国立研究開発法人日本原子力研究開発機構 核燃料・バックエンド研究開発部門 東濃地科学センター 地層科学研究部 ネオテクトニクス研究グループ 「5.6 最新知見を踏まえた隆起・侵食データマップの整備」では、平成30年度の本事業で 熱年代データベース、ダム堆砂量及び宇宙線生成核種法(TCN)データより算出した侵食速度 (Sueoka and Tagami, 2019;日本原子力研究開発機構・電力中央研究所, 2019)を用いてマル チタイムスケール侵食速度データベースを作成した。また事例対象とした14山地(日高山脈、 北上山地、飯豊山地、朝日山地、三国山脈(谷川岳周辺)、阿武隈山地、丹沢山地、飛騨山脈、 木曽山脈、赤石山脈、六甲山地、紀伊山地、四国山地及び九州山地)においてマルチタイムスケ ール侵食速度プロット図を作成し、山地の侵食速度の時間変遷過程の検討をおこなった。以下に プロット図に用いた侵食速度データ(ダム堆砂量データ(表1)、TCNデータ(表2)及び熱年 代データ(表3~表10))を示す。

|           | ばしタ   | 堆砂期間 | 侵食速度    |   | 山地々  | ゴトタ  | 堆砂期間 | 侵食速度    |
|-----------|-------|------|---------|---|------|------|------|---------|
| 山地石       | 744   | (yr) | (mm/yr) |   | 山地石  | 744  | (yr) | (mm/yr) |
| 日高山脈      | 幌満川第3 | 49   | 0.101   | _ | 四国山地 | 魚梁瀬  | 50   | 1.233   |
| 北上山地      | 日向    | 16   | 0.080   |   | ]]   | 平鍋   | 45   | 0.079   |
| 11        | 綱取    | 31   | 0.056   |   | 11   | 鏡    | 39   | 0.179   |
| 阿武隈山地     | 真野    | 22   | 0.107   |   | 11   | 津賀   | 53   | 0.074   |
| 朝日山地      | 木地山   | 52   | 0.250   |   | 11   | 坂本   | 12   | 0.182   |
|           | 荒沢    | 51   | 0.336   |   | 11   | 別子   | 49   | 0.395   |
| 飯豊山地      | 加治川治水 | 22   | 0.426   |   | 11   | 富郷   | 15   | 0.319   |
|           | 内の倉   | 18   | 0.610   |   | 11   | 面河第3 | 31   | 0.085   |
| 飛騨山脈      | 朝日小川  | 25   | 0.448   |   | 11   | 黒瀬   | 31   | 0.802   |
| 11        | 高瀬    | 35   | 3.039   |   | 11   | 正木   | 37   | 0.390   |
| 赤石山脈      | 雨畑    | 48   | 1.837   |   | 11   | 小見野々 | 47   | 0.425   |
| 11        | 畑薙第一  | 28   | 2.265   | - | 九州山地 | 祝子   | 42   | 0.349   |
| 11        | 赤石    | 25   | 0.823   |   | 11   | 北川   | 53   | 0.159   |
| 11        | 水窪    | 46   | 2.413   |   | 11   | 諸塚   | 53   | 0.268   |
| 三国山脈(谷川岳) | 矢木沢   | 34   | 0.530   |   | 11   | 立花   | 52   | 0.433   |
| 11        | 相俣    | 52   | 0.185   |   | 11   | 岩瀬   | 47   | 0.408   |
| 11        | 二居    | 37   | 0.278   |   | 11   | 綾南   | 53   | 0.302   |
| 丹沢山地      | 三保    | 24   | 1.123   |   | 11   | 田代八重 | 15   | 0.682   |
| 紀伊山地      | 宮川    | 53   | 0.445   |   |      |      |      |         |
| 11        | 三瀬谷   | 43   | 0.208   |   |      |      |      |         |
| 11        | 椿山    | 27   | 0.360   |   |      |      |      |         |
| 11        | 二川    | 47   | 0.319   |   |      |      |      |         |

表 1 ダム堆砂量に基づく流域の平均侵食速度

| 山地名           | <sup>10</sup> Be侵食速度                | $\pm 1\sigma$ | 年 <sup>**</sup> (yr) | 山地名          | <sup>10</sup> Be侵食速度 | $\pm 1\sigma$ | 年 <sup>※</sup> (yr) |
|---------------|-------------------------------------|---------------|----------------------|--------------|----------------------|---------------|---------------------|
|               |                                     | 0.010         | 6 6 6 7              |              | 1.45                 | 0.170         | 414                 |
|               | 0.09                                | 0.010         | 7,500                |              | 0.47                 | 0.170         | 414                 |
|               | 0.08                                | 0.010         | 7,500                |              | 1.20                 | 0.050         | 1,277               |
|               | 0.08                                | 0.010         | 7,300<br>6,000       | 木            | 0.06                 | 0.130         | 403                 |
|               | 0.10                                | 0.010         | 0,000                | 曽            | 0.90                 | 0.110         | 023                 |
|               | 0.08                                | 0.010         | 7,300                | 山            | 0.80                 | 0.100         | /30                 |
| <del>17</del> | 0.12                                | 0.020         | 5,000                | 脈            | 0.33                 | 0.000         | 1,091               |
| β¤J           | 0.10                                | 0.010         | 6,000                | 74/15        | 0.37                 | 0.040         | 1,022               |
| 武             | 0.10                                | 0.010         | 6,000                |              | 0.47                 | 0.050         | 1,277               |
| 隈             | 0.08                                | 0.010         | /,500                |              | 0.99                 | 0.120         | 606                 |
| Ш             | 0.12                                | 0.014         | 4,878                |              | 0.29                 | 0.037         | 2,048               |
| -<br>Hth      | 0.17                                | 0.017         | 3,593                |              | 0.29                 | 0.037         | 2,076               |
| 10            | 0.12                                | 0.003         | 5,172                |              | 0.51                 | 0.079         | 1,1/2               |
|               | 0.12 0.003 5,128<br>0.13 0.003 4800 | 5,128         |                      | 1.99         | 0.294                | 302           |                     |
|               | 0.13                                | 0.003         | 4,800                | 飛            | 0.85                 | 0.117         | 709                 |
|               | 0.13                                | 0.004         | 4,615                | 鼮            | 0.65                 | 0.085         | 919                 |
|               | 0.08                                | 0.002         | 8,000                | r⊷<br>TT     | 1.64                 | 0.270         | 365                 |
|               | 0.12                                | 0.003         | 5,042                | 旧記           | 0.91                 | 0.166         | 663                 |
|               | 0.08                                | 0.002         | 7,500                | ДЛС          | 0.23                 | 0.030         | 2,655               |
|               | 0.77                                | 0.090         | 779                  |              | 0.59                 | 0.080         | 1,024               |
|               | 1.20                                | 0.130         | 500                  |              | 0.45                 | 0.064         | 1,327               |
| г.            | 1.25                                | 0.140         | 480                  |              | 1.25                 | 0.209         | 478                 |
| 不             | 0.76                                | 0.090         | 789                  |              | 0.48                 | 0.062         | 1,247               |
| 曽             | 1.39                                | 0.160         | 432                  |              | 0.57                 | 0.090         | 1,053               |
| 山             | 1.77                                | 0.450         | 339                  | 六            | 0.54                 | 0.100         | 1,111               |
| 脈             | 0.83                                | 0.090         | 723                  | Ē            | 0.66                 | 0.140         | 909                 |
| /4/1          | 1.04                                | 0.120         | 577                  | - 11<br>- 11 | 0.60                 | 0.090         | 1,000               |
|               | 3.45                                | 0.410         | 174                  | Щ            | 0.50                 | 0.080         | 1,200               |
|               | 1.16                                | 0.130         | 517                  | 地            | 0.80                 | 0.180         | 750                 |
|               |                                     |               |                      |              | 0.37                 | 0.050         | 1,622               |

表 2 TCN 法に基づく流域の平均侵食速度一覧

**※TCN** 法の時間スケールについては、Dunai (2010)に基づき、岩盤が 60 cm 侵食される時間 とした。

| 表 3 | 熱年代に基づく流域の平均侵食速度一覧 (1/8) |  |
|-----|--------------------------|--|
|-----|--------------------------|--|

|      | FT年代 (Ma)           |       |       |      | (U-      | Th) / He | 年代 (ハ | <b>1</b> a) |         |         | f     | 曼食速度    | E (mm/y | r)    |       |       |
|------|---------------------|-------|-------|------|----------|----------|-------|-------------|---------|---------|-------|---------|---------|-------|-------|-------|
| 山地名  | AFT                 | +1σ   | ZFT   | +1σ  | A-He     | +1σ      | Z-He  | +1σ         | AFT     | +1σ     | ZFT   | +10     | A-He    | +1σ   | Z-He  | +1σ   |
|      | -                   | -     | 14.9  | 2.5  | -        | -        | -     | -           | -       | -10     | 1.315 | 0.221   | -       | -10   | -     | -     |
|      | 12.7                | 2.0   | -     | -    | -        | -        | -     | -           | 0.527   | 0.120   | -     | -       | -       | -     | -     | -     |
|      | 6.7                 | 0.8   | 16.5  | 2.6  | -        | -        | -     | -           | 1.000   | 0.203   | 1.184 | 0.187   | -       | -     | -     | -     |
|      | 6.7                 | 1.0   | -     | -    | -        | -        | -     | -           | 1.000   | 0.222   | -     | -       | -       | -     | -     | -     |
|      | 13.8                | 2.0   | -     | -    | -        | -        | -     | -           | 0.486   | 0.106   | -     | -       | -       | -     | -     | -     |
|      | 12.8                | 2.0   | -     | -    | -        | -        | -     | -           | 0.522   | 0.118   | -     | -       | -       | -     | -     | -     |
|      | 7.4                 | 0.8   | -     | -    | -        | -        | -     | -           | 0.907   | 0.178   | -     | -       | -       | -     | -     | -     |
|      | 10.1                | 1.2   | -     | -    | -        | -        | -     | -           | 0.659   | 0.133   | -     | -       | -       | -     | -     | -     |
|      | 12.0                | 3.1   | -     | -    | -        | -        | -     | -           | 0.556   | 0.170   | -     | -       | -       | -     | -     | -     |
|      | 7.4                 | 1.1   | -     | -    | -        | -        | -     | -           | 0.902   | 0.199   | -     | -       | -       | -     | -     | -     |
|      | 8.7                 | 1.4   | -     | -    | -        | -        | -     | -           | 0.771   | 0.177   | -     | -       | -       | -     | -     | -     |
| 同    | 12.1                | 1.3   | -     | -    | -        | -        | -     | -           | 0.554   | 0.108   | -     | - 0.155 | -       | -     | -     | -     |
| Ш    | 11.4                | 1.5   | 20.9  | 2.1  | -        | -        | -     | -           | 0.594   | 0.125   | 0.927 | 0.133   | -       | -     | -     | -     |
| 脈    | 10.4                | - 16  | 10.0  | 3.1  | -        | -        | -     | -           | - 0.656 | 0 144   | 1.175 | 0.219   | -       |       | -     | -     |
|      | 9.4                 | 1.0   | 19.4  | 33   | _        | _        | _     | _           | 0.721   | 0.151   | 0.990 | 0.154   | _       | _     | _     | _     |
|      | 9.9                 | 1.5   | -     | -    | -        | _        | -     | _           | 0.659   | 0.134   | -     | -       | -       | _     | -     | _     |
|      | 9.8                 | 1.3   | 15.2  | 3.4  | -        | -        | -     | -           | 0.674   | 0.141   | 1.251 | 0.280   | -       | -     | -     | -     |
|      | -                   | -     | 19.8  | 4.1  | -        | -        | -     | -           | -       | -       | 0.954 | 0.198   | -       | -     | -     | -     |
|      | 8.6                 | 2.7   | 20.1  | 5.3  | -        | -        | -     | -           | 0.755   | 0.267   | 0.936 | 0.247   | -       | -     | -     | -     |
|      | -                   | -     | 40.1  | 7.3  | -        | -        | -     | -           | -       | -       | 0.464 | 0.084   | -       | -     | -     | -     |
|      | -                   | -     | 38.8  | 8.6  | -        | -        | -     | -           | -       | -       | 0.479 | 0.106   | -       | -     | -     | -     |
|      | -                   | -     | 58.6  | 14.1 | -        | -        | -     | -           | -       | -       | 0.297 | 0.072   | -       | -     | -     | -     |
|      | -                   | -     | 67.1  | 12.1 | -        | -        | -     | -           | -       | -       | 0.257 | 0.046   | -       | -     | -     | -     |
|      | -                   | -     | 93.4  | 3.6  | -        | -        | -     | -           | -       | -       | 0.426 | 0.016   | -       | -     | -     | -     |
| 北上   | 87.1                | 4.1   | -     | -    | -        | -        | -     | -           | 0.050   | 0.009   | -     | -       | -       | -     | -     | -     |
| 山地   | 82.4                | 2.5   | -     | -    | -        | -        | -     | -           | 0.084   | 0.015   | -     | -       | -       | -     | -     | -     |
|      | 85.7                | 0.9   | -     | -    | -        | -        | -     | -           | 0.093   | 0.016   | -     | -       | -       | -     | -     | -     |
|      | 66.0                | 4.4   | -     | -    | 49.6     | 1.5      | -     | -           | 0.022   | 0.004   | -     | -       | 0.016   | 0.004 | -     | -     |
|      | -                   | -     | -     | -    | 64.3     | 4.8      | -     | -           | -       | -       | -     | -       | 0.018   | 0.005 | -     | -     |
|      | 79.5                | 8.0   | -     | -    | 57.0     | 16.8     | -     | -           | 0.022   | 0.004   | -     | -       | 0.017   | 0.007 | -     | -     |
|      | 58.7                | 1.5   | -     | -    | -        | -        | -     | -           | 0.023   | 0.004   | -     | -       | -       | -     | -     | -     |
|      | 61.3                | 3.0   | -     | -    | -        | -        | -     | -           | 0.029   | 0.005   | -     | -       | -       | -     | -     | -     |
|      | <u>59.1</u><br>62.0 | 2.4   | -     | -    | -        | -        | -     | -           | 0.039   | 0.007   | -     | -       | -       | -     | -     | -     |
|      | 67.2                | 2.2   | -     | -    | -        | -        | -     | -           | 0.044   | 0.008   | -     | -       | -       | -     | -     | -     |
|      | 63.1                | 1.5   | -     | -    |          | -        | -     | -           | 0.040   | 0.007   | -     | -       | -       | -     | -     | -     |
| रन   | 78.6                | 1.7   | -     | -    | -        | -        | -     | -           | 0.043   | 0.008   | -     | -       | -       |       | -     | -     |
| [H4] | 46.0                | 2.9   |       | -    |          | _        | _     | _           | 0.057   | 0.007   | _     | _       |         | _     | _     | _     |
| 武    | 55.0                | 13    | -     | -    | -        | -        | -     |             | 0.047   | 0.008   | -     | -       | -       | -     | -     | -     |
| 隈    | 62.5                | 1.4   | -     | -    | - 1      | -        | -     | -           | 0.040   | 0.007   | -     | -       | -       | -     | -     | -     |
| 山    | 58.9                | 1.8   | -     | -    | -        | -        | -     | -           | 0.046   | 0.008   | -     | -       | -       | -     | -     | -     |
| 地    | 71.1                | 1.8   | -     | -    | -        | -        | -     | -           | 0.049   | 0.009   | -     | -       | -       | -     | -     | -     |
|      | 53.4                | 2.6   | -     | -    | -        | -        | -     | -           | 0.063   | 0.011   | -     | -       | -       | -     | -     | -     |
|      | 100.0               | 5.0   | 86.3  | 3.6  | -        | -        | -     | -           | 0.020   | 0.004   | 0.069 | 0.003   | -       | -     | -     | -     |
|      | 100.0               | 5.0   | 83.6  | 3.0  | -        | -        | -     | -           | 0.020   | 0.004   | 0.071 | 0.003   | -       | -     | -     | -     |
|      | 78.7                | 6.3   | 87.4  | 3.4  | -        | -        | -     | -           | 0.028   | 0.005   | 0.077 | 0.003   | -       | -     | -     | -     |
|      | 78.7                | 6.3   | 80.9  | 5.1  | -        | -        | -     | -           | 0.028   | 0.005   | 0.083 | 0.005   | -       | -     | -     | -     |
|      | 93.3                | 4.7   | 102.0 | 4.0  | -        | -        | -     | -           | 0.024   | 0.004   | 0.068 | 0.003   | -       | -     | -     | -     |
|      | 93.3                | 4.7   | 79.2  | 3.4  | -        | -        | -     | -           | 0.024   | 0.004   | 0.088 | 0.004   | -       | -     | -     | -     |
|      | 96.2                | 4.5   | 94.9  | 3.7  | -        | -        | -     | -           | 0.027   | 0.005   | 0.081 | 0.003   | -       | -     | -     | -     |
|      | 96.2                | 4.5   | 92.5  | 3.5  | -        | -        | -     | -           | 0.027   | 0.005   | 0.084 | 0.003   | -       | -     | -     | -     |
| 바마   | 19.1                | 2.4   | -     | -    | 10.3     | 0.3      | 27.2  | 1.7         | 0.099   | 0.021   | -     | -       | 0.103   | 0.027 | 0.129 | 0.018 |
| 朝日   | 16.8                | 9.7   | -     | -    | 9.6      | 1.6      | 11.0  | 1.2         | 0.112   | 0.068   | -     | -       | 0.111   | 0.034 | 0.320 | 0.053 |
| 凹地   | -                   | -     | -     | -    | 12.3     | 3.1      | -     | -           | -       | -       | -     | -       | 0.090   | 0.033 | -     | -     |
|      | 10.1                | 2.9   | -     | -    | 3.0      | 1.5      | 21.9  | 12.5        | 0.24/   | 0.083   | -     | -       | 0.248   | 0.088 | 0.109 | 0.079 |
|      | 4.6                 | 0.4   | -     | -    | 5.4      | 0.7      | -     | -           | 0.316   | 0.062   | -     | -       | 0.239   | 0.080 | -     | -     |
|      |                     | -     | 3.0   | 0.1  |          | -        | -     | -           | -       | -       | 1.727 | 0.058   | -       | -     | -     | -     |
| 脈行   | -                   | -     | 3.3   | 0.2  |          | -        | -     | -           | -       | -       | 1.875 | 0.114   | -       | -     | -     | -     |
| 三二   | -                   | -     | 3.2   | 0.1  |          | -        | -     | -           | -       | -       | 1.854 | 0.058   | -       | -     | -     | -     |
| 国引   | <u> </u>            | -     | 2.9   | 0.2  | <u> </u> | -        | -     | -           | -       | -       | 1./08 | 0.118   | -       | -     | -     | -     |
| 三〇   | 24                  | - 0.2 | 2.9   | 0.2  | -        | -        | -     | -           | - 0 795 | - 0.170 | 2.700 | 0.191   |         | -     | -     | -     |
|      |                     | 0.3   | 3.0   | 0.1  |          | -        | -     | -           | -       | 0.1/0   | 1.935 | 0.004   |         | -     |       | -     |
| L    |                     | -     |       | 0.1  |          | -        |       | -           |         | -       |       | 0.000   |         | -     | i     | -     |

|       | FT年代 (Ma) |     |              |     | (U-' | Гh) / Не | 年代 (N | <b>1</b> a) |       |       | f     | 曼食速度  | E (mm/yı | r)  |      |     |
|-------|-----------|-----|--------------|-----|------|----------|-------|-------------|-------|-------|-------|-------|----------|-----|------|-----|
| 山地名   | AFT       | +1σ | ZFT          | +1σ | A-He | +1σ      | Z-He  | +1σ         | AFT   | +1σ   | ZFT   | +1σ   | A-He     | +1σ | Z-He | +1σ |
|       | 48.9      | 1.5 | 123.0        | 6.5 | -    | -10      | -     |             | 0.010 | 0.002 | 0.012 | 0.001 | -        | -10 | -    |     |
|       | 51.5      | 1.7 | 137.0        | 5.5 | -    | -        | -     | -           | 0.010 | 0.002 | 0.012 | 0.001 | -        |     | -    | -   |
|       | 45.1      | 1.6 | 123.0        | 4.0 | -    | -        | -     | -           | 0.017 | 0.003 | 0.018 | 0.001 | -        | -   | -    | -   |
|       | 39.4      | 1.5 | 120.0        | 4.0 | -    | -        | -     | -           | 0.035 | 0.006 | 0.034 | 0.001 | -        | -   | -    | -   |
|       | 45.8      | 2.0 | 99.1         | 2.9 | -    | -        | -     | -           | 0.025 | 0.004 | 0.035 | 0.001 | -        | -   | -    | -   |
|       | 49.8      | 1.3 | 103.0        | 2.5 | -    | -        | -     | -           | 0.010 | 0.002 | 0.015 | 0.000 | -        | -   | -    | -   |
|       | -         | -   | 126.0        | 4.5 | -    | -        | -     | -           | -     | -     | 0.013 | 0.001 | -        | -   | -    | -   |
|       | 43.0      | 1.3 | 129.0        | 3.5 | -    | -        | -     | -           | 0.012 | 0.002 | 0.012 | 0.000 | -        | -   | -    | -   |
|       | 39.6      | 3.5 | 138.0        | 5.0 | -    | -        | -     | -           | 0.034 | 0.007 | 0.029 | 0.001 | -        | -   | -    | -   |
|       | 47.0      | 1.6 | 78.6         | 3.2 | -    | -        | -     | -           | 0.015 | 0.002 | 0.026 | 0.001 | -        | -   | -    | -   |
|       | -         | -   | 60.5         | 1.3 | -    | -        | -     | -           | -     | -     | 0.027 | 0.001 | -        | -   | -    | -   |
|       | -         | -   | 63.2         | 1.5 | -    | -        | -     | -           | -     | -     | 0.027 | 0.001 | -        | -   | -    | -   |
|       | -         | -   | 57.5         | 1.6 | -    | -        | -     | -           | -     | -     | 0.018 | 0.001 | -        | -   | -    | -   |
|       | 54.5      | 3.5 | 00.1<br>54.1 | 1.5 | -    | -        | -     | -           | 0.007 | 0.001 | 0.016 | 0.000 | -        | -   | -    | -   |
|       | -         | -   | 54.1<br>1.6  | 0.2 | -    | -        | -     | -           | -     | -     | 1.861 | 0.004 | -        | -   | -    | -   |
|       | -         | -   | 1.0          | 0.2 | -    | -        | -     | -           | -     | -     | 2 786 | 0.233 | -        | -   | -    | -   |
|       | <u> </u>  | -   | 1.2          | 0.5 |      | -        | -     | -           |       | -     | 3.360 | 0.097 | -        | -   | -    | -   |
|       | <u> </u>  | -   | 1.7          | 0.1 |      | -        | -     | -           | -     | -     | 2.178 | 0.305 | -        | -   | -    | -   |
|       | -         | -   | 0.8          | 0.0 | -    | -        | -     | -           | -     | -     | 1.642 | 0.000 | -        | -   | -    | -   |
|       | -         | -   | 2.8          | 0.4 | -    | -        | -     | -           | -     | -     | 0.555 | 0.079 | -        | -   | -    | -   |
|       | -         | -   | 2.0          | 0.3 | - 1  | -        | -     | -           | -     | -     | 0.787 | 0.118 | -        | -   | -    | -   |
|       | -         | -   | 1.9          | 0.3 | -    | -        | -     | -           | -     | -     | 0.808 | 0.128 | -        | -   | -    | -   |
|       | -         | -   | 84.5         | 5.2 | -    | -        | -     | -           | -     | -     | 0.051 | 0.003 | -        | -   | -    | -   |
|       | -         | -   | 44.0         | 2.3 | -    | -        | -     | -           | -     | -     | 0.065 | 0.003 | -        | -   | -    | -   |
|       | -         | -   | 1.5          | 0.2 | -    | -        | -     | -           | -     | -     | 3.418 | 0.456 | -        | -   | -    | -   |
|       | -         | -   | 2.7          | 0.5 | -    | -        | -     | -           | -     | -     | 2.280 | 0.422 | -        | -   | -    | -   |
|       | -         | -   | 2.4          | 0.4 | -    | -        | -     | -           | -     | -     | 1.006 | 0.168 | -        | -   | -    | -   |
|       | -         | -   | 2.1          | 0.3 | -    | -        | -     | -           | -     | -     | 2.239 | 0.320 | -        | -   | -    | -   |
|       | -         | -   | 1.9          | 0.5 | -    | -        | -     | -           | -     | -     | 3.419 | 0.900 | -        | -   | -    | -   |
| 飛     | -         | -   | 1.0          | 0.1 | -    | -        | -     | -           | -     | -     | 4.096 | 0.410 | -        | -   | -    | -   |
| 脚     | -         | -   | 0.7          | 0.1 | -    | -        | -     | -           | -     | -     | 7.406 | 1.058 | -        | -   | -    | -   |
| 山     | -         | -   | 1.8          | 0.3 | -    | -        | -     | -           | -     | -     | 2.892 | 0.482 | -        | -   | -    | -   |
| 脈     | -         | -   | 1.8          | 0.2 | -    | -        | -     | -           | -     | -     | 2.887 | 0.321 | -        | -   | -    | -   |
| /4/14 | -         | -   | 1.3          | 0.3 | -    | -        | -     | -           | -     | -     | 4.071 | 0.939 | -        | -   | -    | -   |
|       | -         | -   | 6.9          | 0.6 | -    | -        | -     | -           | -     | -     | 0.736 | 0.064 | -        | -   | -    | -   |
|       | -         | -   | 4.6          | 0.3 | -    | -        | -     | -           | -     | -     | 1.118 | 0.073 | -        | -   | -    | -   |
|       | -         | -   | 4.0          | 0.5 | -    | -        | -     | -           | -     | -     | 1.284 | 0.161 | -        | -   | -    | -   |
|       | -         | -   | 1.0          | 0.2 | -    | -        | -     | -           | -     | -     | 3.443 | 1.089 | -        | -   | -    | -   |
|       | -         | -   | 0.7          | 0.3 | -    | -        | -     | -           | -     | -     | 7.407 | 2 141 | -        | -   | -    | -   |
|       | -         |     | 0.7          | 0.2 | -    | -        | -     | -           | -     | -     | 5 658 | 1 257 | -        |     | -    | -   |
|       | -         | -   | 5.4          | 0.4 | - 1  | -        | -     | -           | -     | -     | 0.942 | 0.070 | -        | -   | -    | -   |
|       | -         | -   | 5.4          | 0.5 | -    | -        | -     | -           | -     | -     | 0.936 | 0.087 | -        | -   | -    | -   |
|       | -         | -   | 2.6          | 0.6 | - 1  | -        | -     | -           | -     | -     | 1.931 | 0.446 | - 1      | -   | -    | -   |
|       | -         | -   | 6.6          | 0.6 | -    | -        | -     | -           | -     | -     | 0.771 | 0.070 | -        | -   | -    | -   |
|       | -         | -   | 48.2         | 3.0 | -    | -        | -     | -           | -     | -     | 0.093 | 0.006 | -        | -   | -    | -   |
|       | -         | -   | 1.5          | 0.2 | -    | -        | -     | -           | -     | -     | 3.148 | 0.420 | -        | -   | -    | -   |
|       | -         | -   | 2.2          | 0.3 | -    | -        | -     | -           | -     | -     | 2.009 | 0.274 | -        | -   | -    | -   |
|       | -         | -   | 1.0          | 0.7 | -    | -        | -     | -           | -     | -     | 4.690 | 3.283 | -        | -   | -    | -   |
|       | -         | -   | 1.1          | 0.2 | -    | -        | -     | -           | -     | -     | 4.207 | 0.765 | -        | -   | -    | -   |
|       | -         | -   | 2.2          | 0.2 | -    | -        | -     | -           | -     | -     | 1.505 | 0.137 | -        | -   | -    | -   |
|       | -         | -   | 3.0          | 0.4 | -    | -        | -     | -           | -     | -     | 1.187 | 0.158 | -        | -   | -    | -   |
|       | -         | -   | 2.3          | 0.4 | -    | -        | -     | -           | -     | -     | 1.648 | 0.287 | -        | -   | -    | -   |
|       | -         | -   | 2.6          | 0.3 | -    | -        | -     | -           | -     | -     | 1.568 | 0.181 | -        | -   | -    | -   |
|       | -         | -   | 3.5          | 0.6 | -    | -        | -     | -           | -     | -     | 1.204 | 0.207 | -        | -   | -    | -   |
|       | -         | -   | 4.2          | 0.4 | -    | -        | -     | -           | -     | -     | 1.018 | 0.097 | -        | -   | -    | -   |
|       | -         | -   | 56.7         | 5.0 | -    | -        | -     | -           | -     | -     | 0.095 | 0.008 | -        | -   | -    | -   |
|       | -         | -   | 1.5          | 0.2 | -    | -        | -     | -           | -     | -     | 3.534 | 0.471 | -        | -   | -    | -   |
|       | -         | -   | 1.6          | 0.3 | -    | -        | -     | -           | -     | -     | 3.328 | 0.624 | -        | -   | -    | -   |
|       | -         | -   | 1.6          | 0.4 | -    | -        | -     | -           | -     | -     | 3.373 | 0.843 | -        | -   | -    | -   |
|       |           | -   | 54.6         | 3.4 | -    | -        | -     | -           | -     | -     | 0.056 | 0.004 | -        | -   | -    | -   |
|       | -         | -   | 58.1         | 3.5 | -    | -        | -     | -           | -     | -     | 0.056 | 0.003 | -        | -   | -    | -   |
|       | -         | -   | 1.6          | 0.4 | -    | -        | -     | -           | -     | -     | 2.124 | 0.531 | -        | -   | -    | -   |

表 4 熱年代に基づく流域の平均侵食速度一覧 (2/8)

| 表 5 熱年代に基づく流域の平均侵食速度- | -覧 (3/8) |  |
|-----------------------|----------|--|
|-----------------------|----------|--|

|                 |            | FT年作 | ቲ (Ma)       |     | (U-  | Th) / He | 年代 (ハ      | Ma)  |       |         | f     | 曼食速度  | E (mm/y | r)    |       |       |
|-----------------|------------|------|--------------|-----|------|----------|------------|------|-------|---------|-------|-------|---------|-------|-------|-------|
| 山地名             | AFT        | ±lσ  | ZFT          | ±lσ | A-He | ±lσ      | Z-He       | ±lσ  | AFT   | ±lσ     | ZFT   | ±lσ   | A-He    | ±lσ   | Z-He  | ±lσ   |
|                 | -          | -    | 1.0          | 0.1 | -    | -        | -          | -    | -     | -       | 4.855 | 0.486 | -       | -     | -     | -     |
|                 | -          | -    | 1.5          | 0.6 | -    | -        | -          | -    | -     | -       | 3.134 | 1.254 | -       | -     | -     | -     |
|                 | -          | -    | 68.6         | 4.1 | -    | -        | -          | -    | -     | -       | 0.072 | 0.004 | -       | -     | -     | -     |
|                 | -          | -    | 23.1         | 1.4 | -    | -        | -          | -    | -     | -       | 0.198 | 0.012 | -       | -     | -     | -     |
|                 | -          | -    | 86.6         | 4.6 | -    | -        | -          | -    | -     | -       | 0.053 | 0.003 | -       | -     | -     | -     |
| <b>A</b> \$     | -          | -    | 66.0         | 4.5 | -    | -        | -          | -    | -     | -       | 0.086 | 0.006 | -       | -     | -     | -     |
| 殿               | -          | -    | 56.2         | 4.2 | -    | -        | -          | -    | -     | -       | 0.091 | 0.007 | -       | -     | -     | -     |
| 19 <del>4</del> |            | -    | 51.5         | 4.5 | -    | -        | -          | -    | -     | -       | 0.007 | 0.007 | -       | -     | -     | -     |
| Ц<br>Пре        |            | -    | 55.7         | 2.3 | -    | -        | _          | -    | -     |         | 0.107 | 0.003 | -       | -     | -     |       |
| лик             | -          | -    | 54.7         | 1.9 | -    | -        | -          | -    | -     | -       | 0.042 | 0.002 | -       | -     | -     | -     |
|                 | -          | -    | 74.8         | 2.9 | -    | -        | -          | -    | -     | -       | 0.050 | 0.002 | -       | -     | -     | -     |
|                 | -          | -    | 66.4         | 2.4 | -    | -        | -          | -    | -     | -       | 0.057 | 0.002 | -       | -     | -     | -     |
|                 | -          | -    | 94.2         | 5.9 | -    | -        | -          | -    | -     | -       | 0.041 | 0.003 | -       | -     | -     | -     |
|                 | -          | -    | 92.7         | 5.9 | -    | -        | -          | -    | -     | -       | 0.045 | 0.003 | -       | -     | -     | -     |
|                 | -          | -    | 62.2         | 3.5 | -    | -        | -          | -    | -     | -       | 0.084 | 0.005 | -       | -     | -     | -     |
|                 | -          | -    | 7.7          | 1.4 | -    | -        | -          | -    | -     | -       | 1.071 | 0.195 | -       | -     | -     | -     |
|                 | -          | -    | 7.9          | 1.3 | -    | -        | -          | -    | -     | -       | 1.020 | 0.168 | -       | -     | -     | -     |
|                 | -          | -    | 9.4          | 2.0 | -    | -        | -          | -    | -     | -       | 0.824 | 0.175 | -       | -     | -     | -     |
|                 | H÷-        | -    | 3.6          | 1.7 |      | -        | -          | -    |       |         | 2.525 | 0.200 |         | -     | -     |       |
|                 | -          | -    | -            | -   | 1.5  | 0.1      | 3.5        | 0.1  | -     | -       | -     | -     | 0.907   | 0.250 | 1.325 | 0.171 |
|                 | -          | -    | -            | -   | 1.7  | 0.4      | 3.2        | 0.1  | -     | -       | -     | -     | 0.812   | 0.289 | 1.469 | 0.190 |
| 再               | -          | -    | -            | -   | 2.1  | 0.1      | 3.7        | 0.7  | -     | -       | -     | -     | 0.655   | 0.178 | 1.269 | 0.288 |
| 71              | -          | -    | 6.9          | 0.5 | 1.4  | 0.1      | 3.4        | 0.1  | -     | -       | 1.111 | 0.081 | 0.998   | 0.273 | 1.387 | 0.178 |
|                 | -          | -    | -            | -   | 2.2  | 0.1      | 3.0        | 0.1  | -     | -       | -     | -     | 0.666   | 0.174 | 1.622 | 0.209 |
|                 | -          | -    | -            | -   | 1.7  | 0.8      | 2.9        | 0.1  | -     | -       | -     | -     | 0.846   | 0.459 | 1.704 | 0.223 |
| 地               | -          | -    | 4.5          | 0.3 | 2.1  | 0.1      | 3.4        | 0.1  | -     | -       | 1.860 | 0.124 | 0.723   | 0.195 | 1.513 | 0.195 |
|                 | -          | -    | -            | -   | 2.2  | 0.1      | 3.2        | 0.1  | -     | -       | -     | -     | 0.694   | 0.186 | 1.611 | 0.208 |
|                 | -          | -    | -            | -   | 2.5  | 0.1      | 3.5        | 0.1  | -     | -       | -     | -     | 0.606   | 0.163 | 1.469 | 0.189 |
|                 | -          | -    | -            | -   | 1.3  | 0.1      | - 7.2      | -    | -     | -       | -     | -     | 1.247   | 0.342 | -     | -     |
|                 | -          | -    | -            | -   | 2.5  | 0.1      | 1.5        | 0.2  | -     | -       | -     | -     | 0.047   | 0.174 | 3.095 | 0.096 |
|                 |            |      | 4.8          | 0.4 | -    | -        | -          | -    | -     |         | 2.218 | 0.185 | -       | -     | -     | -     |
|                 | 2.5        | 0.3  | -            | -   | -    | _        | -          | -    | 1.356 | 0.290   | -     | -     | -       | -     | -     | -     |
|                 | 45.1       | 3.6  | -            | -   | -    | -        | -          | -    | 0.121 | 0.022   | -     | -     | -       | -     | -     | -     |
|                 | 39.4       | 2.0  | -            | -   | -    | -        | -          | -    | 0.157 | 0.026   | -     | -     | -       | -     | -     | -     |
|                 | 44.0       | 1.8  | 48.3         | 2.4 | 29.4 | 4.5      | -          | -    | 0.112 | 0.020   | 0.309 | 0.015 | 0.095   | 0.028 | -     | -     |
|                 | 42.2       | 1.6  | 57.1         | 2.1 | 32.7 | 2.9      | -          | -    | 0.127 | 0.023   | 0.289 | 0.011 | 0.091   | 0.026 | -     | -     |
|                 | 3.4        | 0.3  | 54.6         | 2.3 | 5.8  | 1.4      | -          | -    | 1.753 | 0.332   | 0.322 | 0.014 | 0.598   | 0.203 | -     | -     |
|                 | 40.9       | 1.5  | 49.3         | 1.7 | 5.3  | 0.7      | -          | -    | 0.143 | 0.024   | 0.345 | 0.012 | 0.651   | 0.173 | -     | -     |
|                 | 35.6       | 1.4  | 52.8         | 2.1 | 7.8  | 1.3      | -          | -    | 0.165 | 0.028   | 0.321 | 0.013 | 0.449   | 0.126 | -     | -     |
| 1               | 40.1       | 0.2  | 53.4         | 1.9 | 3.1  | 2.5      | -          | -    | 0.152 | 0.025   | 0.327 | 0.012 | 0.470   | 0.1// | -     | -     |
| 首               | 3.1        | 0.3  | 42.1         | 1.4 | 2.2  | 0.4      | -          | -    | 1 882 | 0.105   | 0.323 | 0.008 | 1.095   | 0.300 | -     | -     |
|                 | 58.8       | 2.2  | -            | -   | -    | -        | _          | -    | 0.072 | 0.013   | -     | -     | -       | -     | _     | -     |
|                 | 56.1       | 2.3  | -            | -   | -    | -        | -          | -    | 0.087 | 0.016   | - 1   | -     | -       | -     | -     | -     |
| אוג             | 64.5       | 3.1  | -            | -   | 32.2 | 3.70     | -          | -    | 0.083 | 0.016   | -     | -     | 0.091   | 0.027 | -     | -     |
|                 | 4.2        | 0.4  | -            | -   | 7.2  | 0.80     | -          | -    | 1.230 | 0.247   | -     | -     | 0.400   | 0.115 | -     | -     |
|                 | 4.6        | 0.4  | -            | -   | -    | -        | -          | -    | 1.168 | 0.228   | -     | -     | -       | -     | -     | -     |
|                 | 3.4        | 0.3  | -            | -   | -    | -        | -          | -    | 1.561 | 0.303   | -     | -     | -       | -     | -     | -     |
|                 | 18.2       | 1.0  | -            | -   | 4.4  | 0.60     | -          | -    | 0.284 | 0.050   | -     | -     | 0.686   | 0.188 | -     | -     |
|                 | 1.7        | 0.2  | -            | -   | -    | -        | -          | -    | 2.846 | 0.595   | -     | -     | -       | -     | -     | -     |
|                 | 3.3        | 0.3  | -            | -   | 2.3  | 0.20     | -          | -    | 1.444 | 0.284   | -     | -     | 1.170   | 0.317 | -     | -     |
|                 | 59.0       | 10.0 | -            | -   | -    | -        | -          | -    | 0.092 | 0.023   | -     | -     | -       | -     | -     | -     |
|                 | -          | -    | 45.5         | 1.4 | -    | -        | 10.0       | 5.40 | -     | -       | 0.3/4 | 0.012 | -       | -     | 0.030 | 0.151 |
|                 | 0.1        | 0.4  | 109.4        | 2.8 | -    | -        | 14.5       | 1.20 | 0.926 | 0.174   | 0.158 | 0.004 | -       | -     | 0.732 | 0.110 |
| 赤               | <u>⊢ ·</u> | -    | 81.7<br>54.0 | 2.7 | -    | -        | -          | -    | -     | -       | 0.210 | 0.007 | -       | -     | -     | -     |
| 石               | 82         | -    | 54.9         | 1.6 | -    | -        | -          | -    | -     | - 0.125 | 0.500 | 0.009 | -       | -     | -     | -     |
| 山               | 5.5        | 0.8  | 85           | 0.3 |      | -        | 0.0<br>5 0 | 2.20 | 0.755 | 0.135   | 1.097 | 0.085 | -       | -     | 1.21/ | 0.530 |
| 脈               | 3.9        | 0.5  | 7.0          | 0.4 |      | -        | 4.4        | 0.40 | 1.357 | 0.297   | 2.317 | 0.132 |         | -     | 2.267 | 0.351 |
|                 | -          | -    | 6.9          | 0.4 | -    | -        | 3.4        | 1.10 | -     | -       | 2.398 | 0.139 | -       | -     | 2.989 | 1.037 |
|                 | 3.6        | 0.3  | 7.5          | 0.3 | -    | -        | 4.4        | 1.60 | 1.578 | 0.309   | 2.322 | 0.093 | -       | -     | 2.434 | 0.936 |

| .1.14.14 |          | FT年f | ቺ (Ma)       |     | (U-  | Th) / He | 年代 ( | Ma)  |       |       | f     | 曼食速度  | E (mm/yı | r)  |       |       |
|----------|----------|------|--------------|-----|------|----------|------|------|-------|-------|-------|-------|----------|-----|-------|-------|
| 山地名      | AFT      | ±lσ  | ZFT          | ±lσ | A-He | ±lσ      | Z-He | ±lσ  | AFT   | ±lσ   | ZFT   | ±lσ   | A-He     | ±lσ | Z-He  | ±lσ   |
|          | 3.3      | 0.3  | 7.1          | 0.3 | -    | -        | 4.8  | 2.40 | 1.742 | 0.349 | 2.494 | 0.105 | -        |     | 2.265 | 1.168 |
|          | 3.1      | 0.4  | 5.6          | 0.2 | -    | -        | -    | -    | 1.854 | 0.405 | 3.132 | 0.112 | -        | -   | -     | -     |
|          | 3.9      | 0.3  | 8.2          | 0.3 | -    | -        | -    | -    | 1.434 | 0.255 | 1.957 | 0.072 | -        | -   | -     | -     |
|          | 4.6      | 0.4  | 5.7          | 0.3 | -    | -        | -    | -    | 1.123 | 0.213 | 2.693 | 0.142 | -        | -   | -     | -     |
|          | 4.7      | 0.6  | 6.2          | 0.3 | -    | -        | -    | -    | 1.210 | 0.266 | 2.829 | 0.137 | -        | -   | -     | -     |
|          | 3.5      | 0.4  | 40.5         | 0.9 | -    | -        | 10.6 | 0.70 | 1.484 | 0.299 | 0.376 | 0.008 | -        | -   | 0.896 | 0.123 |
|          | -        | -    | 15.2         | 0.5 | -    | -        | -    | -    | -     | -     | 0.572 | 0.019 | -        | -   | -     | -     |
|          | -        | -    | 12.2         | 0.8 | -    | -        | -    | -    | -     | -     | 0.687 | 0.045 | -        | -   | -     | -     |
|          | -        | -    | 12.4         | 0.5 | -    | -        | -    | -    | -     | -     | 0.696 | 0.028 | -        | -   | -     | -     |
|          | -        | -    | 11.6         | 0.4 | -    | -        | -    | -    | -     | -     | 0.799 | 0.028 | -        | -   | -     | -     |
|          | 1.2      | 0.3  | 13.2         | 0.6 | -    | -        | -    | -    | 2.948 | 0.906 | 0.827 | 0.038 | -        | -   | -     | -     |
|          | -        | -    | 13.1         | 0.6 | -    | -        | -    | -    | -     | -     | 0.691 | 0.032 | -        | -   | -     | -     |
|          | 0.8      | 0.1  | 88.4         | 2.2 | -    | -        | -    | -    | 3.322 | 0.730 | 0.094 | 0.002 | -        | -   | -     | -     |
|          | -        | -    | 74.0         | 1.7 | -    | -        | -    | -    | -     | -     | 0.112 | 0.003 | -        | -   | -     | -     |
|          | -        | -    | 13.0         | 0.7 | -    | -        |      | -    | -     | -     | 0.100 | 0.004 | -        | -   | -     | -     |
|          | -        | -    | 16.2         | 0.7 |      | -        |      | -    |       | -     | 0.657 | 0.033 | -        | -   |       | -     |
|          | -        |      | 9.1          | 0.8 |      | -        |      | -    | -     | -     | 1 286 | 0.033 | -        | -   | -     | -     |
|          | <u> </u> |      | 24.3         | 1.4 | -    | _        | -    |      |       |       | 0.490 | 0.042 | -        |     | _     |       |
|          | -        | -    | 98.9         | 7.0 | -    | -        | -    | -    | -     | -     | 0.119 | 0.008 | -        | -   | -     | -     |
|          | -        | -    | 37.9         | 1.4 | - 1  | -        | -    | -    | -     | -     | 0.252 | 0.009 | -        | -   | -     | -     |
|          | -        | -    | 17.1         | 1.1 | -    | -        | -    | -    | -     | -     | 0.537 | 0.035 | -        | -   | -     | -     |
| *        |          | -    | <u>5</u> 3.7 | 2.3 | -    | -        | -    | -    | -     | -     | 0.166 | 0.007 | -        | -   | -     | -     |
|          | -        | -    | 66.6         | 2.6 | -    | -        | -    | -    | -     | -     | 0.139 | 0.005 | -        | -   | -     | -     |
|          | -        | -    | 64.4         | 1.8 | -    | -        | -    | -    | -     | -     | 0.173 | 0.005 | -        | -   | -     | -     |
| ЦЩ       | -        | -    | 95.8         | 2.0 | -    | -        | -    | -    | -     | -     | 0.114 | 0.002 | -        | -   | -     | -     |
| 脈        | -        | -    | 11.8         | 0.4 | -    | -        | -    | -    | -     | -     | 0.763 | 0.026 | -        | -   | -     | -     |
|          | -        | -    | 95.5         | 2.6 | -    | -        | -    | -    | -     | -     | 0.106 | 0.003 | -        | -   | -     | -     |
|          | -        | -    | 65.3         | 1.9 | -    | -        | -    | -    | -     | -     | 0.150 | 0.004 | -        | -   | -     | -     |
|          | -        | -    | 101.9        | 3.5 | -    | -        | -    | -    | -     | -     | 0.100 | 0.003 | -        | -   | -     | -     |
|          | 1.3      | 0.4  | 20.5         | 0.9 | -    | -        | -    | -    | 2.373 | 0.836 | 0.452 | 0.020 | -        | -   | -     | -     |
|          | -        | -    | 49.6         | 1.4 | -    | -        | -    | -    | -     | -     | 0.194 | 0.006 | -        | -   | -     | -     |
|          | -        | -    | 42.1         | 1.2 | -    | -        | -    | -    | -     | -     | 0.378 | 0.011 | -        | -   | -     | -     |
|          | -        | -    | 23.9         | 0.9 | -    | -        | -    | -    | -     | -     | 0.727 | 0.027 | -        | -   | -     | -     |
|          | -        | -    | 38.0         | 1.0 | -    | -        | -    | -    | -     | -     | 0.457 | 0.012 | -        | -   | -     | -     |
|          | -        | -    | 8.9          | 0.4 | -    | -        | -    | -    | -     | -     | 1.001 | 0.075 | -        | -   | -     | -     |
|          | -        | -    | 8./          | 0.4 | -    | -        | -    | -    | -     | -     | 1.821 | 0.084 | -        | -   | -     | -     |
|          | -        | -    | 7.9          | 0.4 | -    | -        | -    | -    | -     | -     | 2.247 | 0.114 | -        | -   | -     | -     |
|          | -        | -    | 10.0         | 0.4 | -    | -        |      | -    | -     | -     | 1 706 | 0.109 | -        | -   | -     | -     |
|          | <u> </u> | -    | 9.8          | 0.4 |      | -        | -    | -    |       | -     | 1.700 | 0.008 | -        | -   |       | -     |
|          | -        | _    | 9.2          | 0.4 | -    | -        | -    | -    | -     | -     | 1.777 | 0.007 | -        |     | -     | -     |
|          | -        | -    | 9.5          | 0.6 | -    | -        | -    | -    | -     | -     | 1.720 | 0.109 | -        | -   | -     | -     |
|          | -        | -    | 9.8          | 0.7 | -    | -        | -    | -    | -     | -     | 1.640 | 0.117 | -        | -   | -     | -     |
|          | -        | -    | 8.9          | 0.4 | - 1  | -        | -    | -    | -     | -     | 1.677 | 0.075 | -        | -   | -     | -     |
|          | -        | -    | 10.6         | 0.4 | -    | -        | -    | -    | -     | -     | 1.225 | 0.046 | -        | -   | -     | -     |
|          | -        | -    | 9.7          | 0.5 | -    | -        | -    | -    | -     | -     | 1.307 | 0.067 | -        | -   | -     | -     |
|          |          | -    | 10.9         | 0.5 | -    | -        | -    | -    | -     | -     | 1.149 | 0.053 | -        | -   | -     | -     |
|          | -        | -    | 10.1         | 0.5 | -    | -        | -    | -    | -     | -     | 1.094 | 0.054 | -        | -   | -     | -     |
|          | -        | -    | 18.8         | 1.6 | -    | -        | -    | -    | -     | -     | 0.598 | 0.051 | -        | -   | -     | -     |
|          | -        | -    | 17.0         | 0.7 | -    | -        | -    | -    | -     | -     | 0.659 | 0.027 | -        | -   | -     | -     |
|          | 14.1     | 2.5  | 14.2         | 1.0 | -    | -        | -    | -    | 0.263 | 0.066 | 0.799 | 0.056 | -        | -   | -     | -     |
|          | -        | -    | 15.9         | 1.6 | -    | -        | -    | -    | -     | -     | 0.739 | 0.074 | -        | -   | -     | -     |
|          | -        | -    | 17.3         | 1.4 | -    | -        | -    | -    | -     | -     | 0.697 | 0.056 | -        | -   | -     | -     |
| 紀        | -        | -    | 16.4         | 1.1 | -    | -        | -    | -    | -     | -     | 0.461 | 0.031 | -        | -   | -     | -     |
| 一伊       | -        | -    | 16.8         | 1.4 | -    | -        | -    | -    | -     | -     | 0.510 | 0.043 | -        | -   | -     | -     |
| 1 ili    | <u> </u> | -    | 15.2         | 1.8 | -    | -        | -    | -    | -     | -     | 0.628 | 0.074 | -        | -   | -     | -     |
|          | -        | -    | 16.0         | 0.9 | -    | -        | -    | -    | -     | -     | 0.445 | 0.025 | -        | -   | -     | -     |
| 1 45     | -        | -    | 17.5         | 2.0 | -    | -        | -    | -    | -     | -     | 0.356 | 0.041 | -        | -   | -     | -     |
|          | -        | -    | 16.4         | 1.4 | -    | -        | -    | -    | -     | -     | 0.317 | 0.027 | -        | -   | -     | -     |
|          | -        | -    | 16.9         | 1.3 | -    | -        | -    | -    | -     | -     | 0.197 | 0.015 | -        | -   | -     | -     |
|          | <u> </u> | -    | 16.4         | 1.7 |      | -        | -    | -    | -     | -     | 0.187 | 0.019 | -        | -   | -     | -     |
|          |          | -    | 75.2         | 4.0 | -    | -        | -    | -    | -     | -     | 0.108 | 0.006 | -        | -   | -     | -     |
|          | - 1      | -    | 76.6         | 4.4 | -    | -        | -    | -    | -     | -     | 0.110 | 0.006 | -        | -   | -     | -     |

表 6 熱年代に基づく流域の平均侵食速度一覧 (4/8)

| 表 7 | 熱年代に基づく | 、流域の平均侵食速度一覧 | (5/8) |
|-----|---------|--------------|-------|
|-----|---------|--------------|-------|

|            | FT年代 (Ma) |      |             |     | (U-'     | Гh) / Не | 年代 () | <b>1</b> a) |          |       | 4     | 曼食速度  | E (mm/v | r)  |      |     |
|------------|-----------|------|-------------|-----|----------|----------|-------|-------------|----------|-------|-------|-------|---------|-----|------|-----|
| 山地名        | AFT       | +1σ  | ZFT         | +1σ | A-He     | +10      | Z-He  | +1σ         | AFT      | +1σ   | ZFT   | +10   | A-He    | +1σ | Z-He | +1σ |
|            | -         | 10   | 93.1        | 4.6 | -        | -10      | -     | -10         | -        | -     | 0.090 | 0.005 | -       | 10  | -    | 10  |
|            | 36.4      | 2.6  | -           | -   | -        | -        | -     | -           | 0.074    | 0.015 | -     | -     | -       | -   | -    | -   |
|            | -         | -    | 145.1       | 8.2 | -        | -        | -     | -           | -        | -     | 0.058 | 0.003 | -       | -   | -    | -   |
|            | -         | -    | 123.7       | 5.5 | -        | -        | -     | -           | -        | -     | 0.069 | 0.003 | -       | -   | -    | -   |
|            | -         | -    | 143.2       | 6.8 | -        | -        | -     | -           | -        | -     | 0.059 | 0.003 | -       | -   | -    | -   |
|            | -         | -    | 128.4       | 8.2 | -        | -        | -     | -           | -        | -     | 0.068 | 0.004 | -       | -   | -    | -   |
|            | -         | -    | 146.4       | 3.7 | -        | -        | -     | -           | -        | -     | 0.061 | 0.002 | -       | -   | -    | -   |
|            | -         | -    | 73.8        | 4.5 | -        | -        | -     | -           | -        | -     | 0.115 | 0.007 | -       | -   | -    | -   |
|            | -         | -    | 116.9       | 5.2 | -        | -        | -     | -           | -        | -     | 0.082 | 0.004 | -       | -   | -    | -   |
|            | -         | -    | 79.6        | 5.5 | -        | -        | -     | -           | -        | -     | 0.126 | 0.009 | -       | -   | -    | -   |
|            | -         | -    | 18.7        | 1.3 | -        | -        | -     | -           | -        | -     | 0.606 | 0.042 | -       | -   | -    | -   |
|            | -         | -    | 18.0        | 1.1 | -        | -        | -     | -           | -        | -     | 0.018 | 0.037 | -       | -   | -    | -   |
|            | -         | -    | 131.0       | 5.0 | -        | -        | -     | -           | -        | -     | 0.087 | 0.003 | -       | -   | -    | -   |
|            | 16.8      | 2.5  | 154.9       | 8.6 |          |          | -     | <u>.</u>    | 0 247    | 0.058 | 0.083 | 0.004 | -       |     | -    |     |
|            | -         | -    | 147.0       | 9.5 | -        |          | -     |             | -        | -     | 0.076 | 0.005 | -       | -   | -    | -   |
|            | 37.3      | 10.4 | -           | -   | -        | -        | -     | -           | 0.087    | 0.029 | -     | -     | -       | -   | -    | -   |
|            | 15.2      | 2.9  | -           | -   | -        | -        | -     |             | 0.159    | 0.041 | -     | -     | -       | -   | -    | -   |
|            | 12.9      | 1.8  | -           | -   | -        | -        | -     | -           | 0.184    | 0.041 | -     | -     | -       | -   | -    | -   |
|            | 6.0       | 1.3  | -           | -   | -        | -        | -     | -           | 1.032    | 0.293 | -     | -     | -       | -   | -    | -   |
|            | 5.9       | 1.6  | -           | -   | -        | -        | -     | -           | 0.667    | 0.217 | -     | -     | -       | -   | -    | -   |
|            | -         | -    | 116.7       | 7.6 | -        | -        | -     | -           | -        | -     | 0.103 | 0.007 | -       | -   | -    | -   |
|            | 14.4      | 2.2  | 99.3        | 5.6 | -        | -        | -     | -           | 0.285    | 0.067 | 0.128 | 0.007 | -       | -   | -    | -   |
|            | -         | -    | 89.6        | 6.9 | -        | -        | -     | -           | -        | -     | 0.134 | 0.010 | -       | -   | -    | -   |
|            | -         | -    | 11.1        | 1.6 | -        | -        | -     | -           | -        | -     | 1.120 | 0.161 | -       | -   | -    | -   |
|            | -         | -    | 15.0        | 0.8 | -        | -        | -     | -           | -        | -     | 0.771 | 0.041 | -       | -   | -    | -   |
|            | 16.4      | 3.2  | 18.2        | 0.9 | -        | -        | -     | -           | 0.217    | 0.058 | 0.616 | 0.031 | -       | -   | -    | -   |
|            | -         | -    | 15.6        | 2.1 | -        | -        | -     | -           | -        | -     | 0.712 | 0.096 | -       | -   | -    | -   |
|            | -         | -    | <b>68.7</b> | 7.5 | -        | -        | -     | -           | -        | -     | 0.152 | 0.017 | -       | -   | -    | -   |
| <b>k</b> 3 | -         | -    | 81.0        | 5.9 | -        | -        | -     | -           | -        | -     | 0.149 | 0.011 | -       | -   | -    | -   |
|            | -         | -    | 79.9        | 5.9 | -        | -        | -     | -           | -        | -     | 0.150 | 0.011 | -       | -   | -    | -   |
| 「伊         | -         | -    | 12.5        | 0.7 | -        | -        | -     | -           | -        | -     | 0.954 | 0.053 | -       | -   | -    | -   |
| ΙЩ         | -         | -    | /5.0        | 6.6 | -        | -        | -     | -           | -        | -     | 0.159 | 0.014 | -       | -   | -    | -   |
| 地          | -         | -    | 13.2        | 4.9 | -        | -        | -     | -           | -        | -     | 0.131 | 0.009 | -       | -   | -    | -   |
|            | -         | -    | 53.1        | 6.6 |          | -        | -     | -           | -        | -     | 0.198 | 0.002 |         | -   | _    | -   |
|            | -         |      | 26.7        | 6.7 | -        |          | -     |             | -        |       | 0.190 | 0.025 | -       |     | _    |     |
|            | -         | -    | 65.0        | 7.9 | -        | -        | -     |             | -        | -     | 0.198 | 0.024 | -       | -   | -    | -   |
|            | -         | -    | 103.6       | 6.0 | -        | -        | -     | -           | -        | -     | 0.081 | 0.005 | -       | -   | -    | -   |
|            | -         | -    | 15.1        | 1.1 | -        | -        | -     | -           | -        | -     | 0.663 | 0.048 | -       | -   | -    | -   |
|            | -         | -    | 136.2       | 5.8 | -        | -        | -     | -           | -        | -     | 0.054 | 0.002 | -       | -   | -    | -   |
|            | 2.5       | 0.4  | -           | -   | -        | -        | -     | -           | 0.290    | 0.071 | -     | -     | -       | -   | -    | -   |
|            | 2.5       | 0.3  | -           | -   | -        | -        | -     | -           | 0.290    | 0.064 | -     | -     | -       | -   | -    | -   |
|            | -         | -    | 69.7        | 2.4 | -        | -        | -     | -           | -        | -     | 0.033 | 0.001 | -       | -   | -    | -   |
|            | -         | -    | 67.1        | 2.2 | -        | -        | -     | -           | -        | -     | 0.034 | 0.001 | -       | -   | -    | -   |
|            | -         | -    | 83.8        | 3.8 | -        | -        | -     | -           | -        | -     | 0.043 | 0.002 | -       | -   | -    | -   |
|            | 5.0       | 4.0  | -           | -   | -        | -        | -     | -           | 0.293    | 0.241 | -     | -     | -       | -   | -    | -   |
|            | 11.0      | 2.1  | -           | -   | -        | -        | -     | -           | 0.225    | 0.060 | -     | -     | -       | -   | -    | -   |
|            | 11.5      | 1.0  | -           | -   | -        | -        | -     | -           | 0.113    | 0.023 | -     | -     | -       | -   | -    | -   |
|            | 11.1      | 1.2  | -           | -   | -        | -        | -     | -           | 0.343    | 0.0/4 | -     | -     | -       | -   | -    | -   |
|            | -         | -    | 08.1        | 3.1 | -        | -        | -     | -           | -        | -     | 0.177 | 0.008 | -       | -   | -    |     |
|            | 10.0      | 1.1  | 10.2        | 0.0 | -        | -        | -     | -           | 0.100    | 0.055 | 0.5/0 | 0.028 | -       | -   | -    | -   |
|            |           | -    | 14.3        | 1.0 |          | -        | -     | -           |          | -     | 0.045 | 0.050 |         | -   | -    | -   |
|            | 15.7      | 22   | 15.4        | 0.9 |          | -        | -     | -           | 0.215    | 0.049 | 0.678 | 0.043 | -       | -   | -    | -   |
|            | -         | -    | 15.2        | 1.0 | -        | -        | -     | -           | -        | -     | 0.651 | 0.043 |         | -   | -    |     |
|            |           | -    | 13.9        | 0.7 | <u> </u> | -        | -     | -           | <u> </u> | -     | 0 712 | 0.036 | -       | -   |      |     |
|            |           | -    | 14.0        | 0.7 |          | -        | -     | -           | <u> </u> | -     | 0.601 | 0.030 |         | -   | -    | -   |
|            |           | -    | 13.6        | 1.1 |          | -        | _     | -           | -        | -     | 0.001 | 0.030 |         | -   | -    | -   |
|            | $\vdash$  | -    | 13.0        | 1.1 |          | -        | -     | -           |          | -     | 0.707 | 0.002 |         | -   | -    | -   |
|            | H-        | -    | 13.6        | 1.0 |          | -        | -     | -           |          | -     | 0.440 | 0.032 | -       | -   | -    |     |
|            | -         | -    | 13.9        | 0.8 | -        | -        | -     | -           | -        | -     | 0.428 | 0.025 | -       | -   | -    |     |
|            | -         | -    | 18.0        | 1.0 | -        | -        | -     | -           | -        | -     | 0.328 | 0.018 | -       | -   | -    | -   |
|            | -         | -    | 13.4        | 0.7 | -        |          | -     |             | -        | -     | 0.440 | 0.023 | -       | -   | -    | -   |

# 【 付録 10 】

| .1.16.6 | FT年代 (Ma) |     |      |     | (U-' | Th) / He | 年代 (N | Aa) |       |       | f     | 曼食速度  | E (mm/y  | r)  |      |     |
|---------|-----------|-----|------|-----|------|----------|-------|-----|-------|-------|-------|-------|----------|-----|------|-----|
| 山地名     | AFT       | ±lσ | ZFT  | ±lσ | A-He | ±lσ      | Z-He  | ±lσ | AFT   | ±lσ   | ZFT   | ±lσ   | A-He     | ±lσ | Z-He | ±lσ |
|         | -         | -   | 14.9 | 0.9 | -    | -        | -     | -   | -     | -     | 0.382 | 0.023 | -        | -   | -    | -   |
|         | -         | -   | 17.1 | 1.2 | -    | -        | -     | -   | -     | -     | 0.315 | 0.022 | -        | -   | -    | -   |
|         | -         | -   | 15.0 | 0.8 | -    | -        | -     | -   | -     | -     | 0.359 | 0.019 | -        | -   | -    | -   |
|         | -         | -   | 14.3 | 0.8 | -    | -        | -     | -   | -     | -     | 0.351 | 0.020 | -        | -   | -    | -   |
|         | 11.8      | 1.6 | -    | -   | -    | -        | -     | -   | 0.166 | 0.038 | -     | -     | -        | -   | -    | -   |
|         | -         | -   | 14.1 | 1.6 | -    | -        | -     | -   | -     | -     | 0.436 | 0.049 | -        | -   | -    | -   |
|         | -         | -   | 14.6 | 1.6 | -    | -        | -     | -   | -     | -     | 0.421 | 0.046 | -        | -   | -    | -   |
|         | -         | -   | 13.7 | 0.8 | -    | -        | -     | -   | -     | -     | 0.513 | 0.030 | -        | -   | -    | -   |
|         | -         | -   | 16.2 | 1.2 | -    | -        | -     | -   | -     | -     | 0.537 | 0.040 | -        | -   | -    | -   |
|         | -         | -   | 17.6 | 0.6 | -    | -        | -     | -   | -     | -     | 0.421 | 0.014 | -        | -   | -    | -   |
|         | -         | -   | 14.6 | 0.5 | -    | -        | -     | -   | -     | -     | 0.507 | 0.017 | -        | -   | -    | -   |
|         | -         | -   | 15.2 | 0.5 | -    | -        | -     | -   | -     | -     | 0.491 | 0.016 | -        | -   | -    | -   |
|         | -         | -   | 13.9 | 0.4 | -    | -        | -     | -   | -     | -     | 0.530 | 0.015 | -        | -   | -    | -   |
|         | -         | -   | 13.4 | 1.0 | -    | -        | -     | -   | -     | -     | 0.029 | 0.073 | -        | -   | -    | -   |
|         |           | -   | 15.1 | 0.0 |      | -        | -     | -   |       | -     | 0.530 | 0.030 | -        | -   | -    | -   |
|         |           |     | 16.6 | 0.5 | _    |          | _     |     | -     |       | 0.350 | 0.017 | -        |     |      |     |
|         | -         |     | 14.5 | 0.5 | -    | -        | -     | -   | _     | -     | 0.542 | 0.019 | -        |     | -    | _   |
|         | -         | -   | 15.7 | 0.4 | -    | -        | -     | -   | -     | -     | 0.408 | 0.010 | -        | -   | -    | -   |
|         | -         | -   | 15.0 | 0.4 | -    | -        | -     | -   | -     | -     | 0.427 | 0.011 | -        | -   | -    | -   |
|         | -         | -   | 15.0 | 0.4 | - 1  | -        | -     | -   | -     | -     | 0.686 | 0.018 | -        | -   | -    | -   |
|         | -         | -   | 15.1 | 0.6 | -    | -        | -     | -   | -     | -     | 0.577 | 0.023 | -        | -   | -    | -   |
|         | -         | -   | 15.2 | 0.6 | -    | -        | -     | -   | -     | -     | 0.573 | 0.023 | -        | -   | -    | -   |
|         | -         | -   | 14.5 | 0.4 | -    | -        | -     | -   | -     | -     | 0.601 | 0.017 | -        | -   | -    | -   |
|         | -         | -   | 15.1 | 0.7 | -    | -        | -     | -   | -     | -     | 0.577 | 0.027 | -        | -   | -    | -   |
|         | -         | -   | 15.8 | 0.6 | -    | -        | -     | -   | -     | -     | 0.551 | 0.021 | -        | -   | -    | -   |
|         | -         | -   | 15.2 | 0.6 | -    | -        | -     | -   | -     | -     | 0.550 | 0.022 | -        | -   | -    | -   |
|         | -         | -   | 13.6 | 0.6 | -    | -        | -     | -   | -     | -     | 0.614 | 0.027 | -        | -   | -    | -   |
|         | -         | -   | 14.3 | 0.6 | -    | -        | -     | -   | -     | -     | 0.584 | 0.025 | -        | -   | -    | -   |
| ψ-1     | -         | -   | 16.1 | 0.7 | -    | -        | -     | -   | -     | -     | 0.519 | 0.023 | -        | -   | -    | -   |
| 和       | -         | -   | 15.2 | 0.5 | -    | -        | -     | -   | -     | -     | 0.635 | 0.021 | -        | -   | -    | -   |
| 伊       | -         | -   | 15.8 | 0.6 | -    | -        | -     | -   | -     | -     | 0.611 | 0.023 | -        | -   | -    | -   |
| ЦЦ      | -         | -   | 14.0 | 0.6 | -    | -        | -     | -   | -     | -     | 0.705 | 0.029 | -        | -   | -    | -   |
| 地       | -         | -   | 14.2 | 0.5 | -    | -        | -     | -   | -     | -     | 0.505 | 0.020 | -        | -   | -    | -   |
|         |           | -   | 13.5 | 0.0 |      | -        | _     | -   | -     | -     | 0.546 | 0.021 | -        | -   | -    | -   |
|         |           | -   | 15.0 | 0.4 | _    | -        |       | -   | _     | -     | 0.540 | 0.010 | _        | -   |      | -   |
|         | -         | -   | 15.9 | 0.5 | -    | -        | -     | -   | -     | -     | 0.395 | 0.012 | -        | -   | -    | -   |
|         | -         | -   | 15.0 | 0.5 | -    | -        | -     | -   | -     | -     | 0.383 | 0.012 | -        | -   | -    | -   |
|         | -         | -   | 15.2 | 0.6 | -    | -        | -     | -   | -     | -     | 0.330 | 0.013 | -        | -   | -    | -   |
|         | -         | -   | 13.7 | 0.5 | -    | -        | -     | -   | -     | -     | 0.463 | 0.017 | -        | -   | -    | -   |
|         | -         | -   | 15.6 | 0.6 | -    | -        | -     | -   | -     | -     | 0.659 | 0.025 | -        | -   | -    | -   |
|         | -         | -   | 14.8 | 0.5 | -    | -        | -     | -   | -     | -     | 0.694 | 0.024 | -        | -   | -    | -   |
|         | -         | -   | 14.0 | 0.5 | -    | -        | -     | -   | -     | -     | 0.676 | 0.024 | -        | -   | -    | -   |
|         | -         | -   | 13.2 | 0.5 | -    | -        | -     | -   | -     | -     | 0.783 | 0.030 | -        | -   | -    | -   |
|         | -         | -   | 13.3 | 0.5 | -    | -        | -     | -   | -     | -     | 0.723 | 0.027 | -        | -   | -    | -   |
|         | -         | -   | 14.6 | 0.6 | -    | -        | -     | -   | -     | -     | 0.588 | 0.024 | -        | -   | -    | -   |
|         |           | -   | 16.0 | 0.5 |      | -        | -     | -   | -     | -     | 0.387 | 0.012 | -        | -   | -    | -   |
|         | -         | -   | 14.9 | 0.4 | -    | -        | -     | -   | -     | -     | 0.415 | 0.011 | -        | -   | -    | -   |
|         | -         | -   | 15.3 | 0.5 | -    | -        | -     | -   | -     | -     | 0.404 | 0.013 | -        | -   | -    | -   |
|         | -         | -   | 13.1 | 0.4 | -    | -        | -     | -   | -     | -     | 0.410 | 0.012 | -        | -   | -    | -   |
|         | -         | -   | 14./ | 0.4 | -    | -        | -     | -   | -     | -     | 0.421 | 0.012 | -        | -   | -    | -   |
|         | <u> </u>  | -   | 13.0 | 0.0 | -    | -        | -     | -   | -     | -     | 0.412 | 0.017 | -        | -   | -    | -   |
|         |           | -   | 13 3 | 0.4 | -    | -        | -     | -   |       | -     | 0 447 | 0.011 | -        | -   | -    | -   |
|         |           | -   | 14.6 | 0.0 |      | -        |       | -   |       | -     | 0.591 | 0.020 |          | -   | -    | -   |
|         | <u> </u>  | -   | 15.1 | 0.7 | -    | -        |       | -   |       | -     | 0.577 | 0.020 | <u> </u> | -   |      | -   |
|         | -         | -   | 14.2 | 0.7 |      | -        | -     | -   |       | -     | 0.572 | 0.027 | -        | -   | -    | -   |
|         | <u> </u>  | -   | 13.4 | 0.4 |      | -        | -     | -   |       | -     | 0.527 | 0.015 | -        | -   | -    | -   |
|         |           | -   | 15.4 | 0.0 |      | -        | -     | -   |       | -     | 0.339 | 0.025 |          | -   | -    | -   |
|         | <u> </u>  | -   | 15.8 | 0.7 |      | -        | -     | -   |       | -     | 0.474 | 0.021 |          | -   | -    | -   |
|         | -         | -   | 13.5 | 0.4 | -    | -        | -     | -   | -     | -     | 0.554 | 0.016 | -        | -   | -    | -   |
|         | -         | -   | 13.5 | 0.5 | -    | -        | -     | -   | -     | -     | 0.554 | 0.021 | -        | -   | -    | -   |
|         | -         | -   | 15.3 | 0.5 | -    | -        | -     | -   | -     | -     | 0.489 | 0.016 | -        | -   | -    | -   |
| L       |           |     |      |     | I    |          | 1     |     |       |       |       |       |          |     | 1    |     |

表 8 熱年代に基づく流域の平均侵食速度一覧 (6/8)

# 【 付録 10 】

| 1.44.47 | FT年代 (Ma) |               |       |               | (U-  | Th) / He      | - 年代 (N | 1a)           |         |       | ť     | <b>し</b> 食速度 | t (mm/y | r)            |      |     |
|---------|-----------|---------------|-------|---------------|------|---------------|---------|---------------|---------|-------|-------|--------------|---------|---------------|------|-----|
| 山地名     | AFT       | $\pm 1\sigma$ | ZFT   | $\pm 1\sigma$ | A-He | $\pm 1\sigma$ | Z-He    | $\pm 1\sigma$ | AFT     | ±lσ   | ZFT   | ±lσ          | A-He    | $\pm 1\sigma$ | Z-He | ±lσ |
|         | -         | -             | 14.7  | 0.4           | -    | -             | -       | -             | -       | -     | 0.509 | 0.014        | -       | -             | -    | -   |
|         | -         | -             | 14.8  | 0.7           | -    | -             | -       | -             | -       | -     | 0.777 | 0.037        | -       | -             | -    | -   |
|         | -         | -             | 13.4  | 0.7           | -    | -             | -       | -             | -       | -     | 0.846 | 0.044        | -       | -             | -    | -   |
|         | -         | -             | 15.0  | 0.6           | -    | -             | -       | -             | -       | -     | 0.745 | 0.030        | -       | -             | -    | -   |
|         | -         | -             | 15.2  | 0.5           | -    | -             | -       | -             | -       | -     | 0.757 | 0.025        | -       | -             | -    | -   |
|         | -         | -             | 14.6  | 0.5           | -    | -             | -       | -             | -       | -     | 0.629 | 0.022        | -       | -             | -    | -   |
|         | -         | -             | 15.1  | 0.5           | -    | -             | -       | -             | -       | -     | 0.534 | 0.018        | -       | -             | -    | -   |
|         | -         | -             | 14.1  | 0.5           | -    | -             | -       | -             | -       | -     | 0.513 | 0.018        | -       | -             | -    | -   |
|         | -         | -             | 15.2  | 0.5           | -    | -             | -       | -             | -       | -     | 0.455 | 0.015        | -       | -             | -    | -   |
| 紀       | -         | -             | 14./  | 0.6           | -    | -             | -       | -             | -       | -     | 0.962 | 0.039        | -       | -             | -    | -   |
|         | 14./      | 0.6           | -     | -             | -    | -             | -       | -             | 0.257   | 0.046 | -     | -            | -       | -             | -    | -   |
|         | 13.1      | 0.0           | -     | -             | -    | -             | -       | -             | 0.231   | 0.042 | -     | -            | -       | -             | -    | -   |
| ЦЩ      | 13.2      | 0.5           | -     | -             | -    | -             | -       | -             | 0.201   | 0.030 | -     | -            | -       | -             | -    | -   |
| 地       | 15.6      | 1.1           | _     | _             | _    | -             | _       | -             | 0.127   | 0.042 | -     | _            | -       | -             | _    |     |
|         | 14.6      | 1.0           | -     | -             | -    | -             | -       |               | 0.130   | 0.025 | -     | -            | -       | -             | -    |     |
|         | 14.5      | 1.1           | -     | -             | -    | -             | -       | -             | 0.164   | 0.033 | -     | -            | -       | -             | -    | -   |
|         | 2.7       | 0.4           | -     | -             | -    | -             | -       | -             | 0.358   | 0.085 | -     | -            | -       | -             | -    | -   |
|         | 2.7       | 0.3           | -     | -             | -    | -             | -       | -             | 0.317   | 0.069 | -     | -            | -       | -             | -    | -   |
|         | -         | -             | 69.7  | 2.4           | -    | -             | -       | -             | -       | -     | 0.044 | 0.002        | -       | -             | -    | -   |
|         | -         | -             | 67.1  | 2.2           | -    | -             | -       | -             | -       | -     | 0.040 | 0.001        | -       | -             | -    | -   |
|         | 12.8      | 1.2           | -     | -             | -    | -             | -       | -             | 0.170   | 0.035 | -     | -            | -       | -             | -    | -   |
|         | -         | -             | 77.8  | 3.4           | -    | -             | -       | -             | -       | -     | 0.044 | 0.002        | -       | -             | -    | -   |
|         | 5.6       | 4.1           | -     | -             | -    | -             | -       | -             | 0.258   | 0.195 | -     | -            | -       | -             | -    | -   |
|         | 56.5      | 4.8           | 68.6  | 2.6           | -    | -             | -       | -             | 0.049   | 0.009 | 0.122 | 0.005        | -       | -             | -    | -   |
|         | -         | -             | 79.9  | 8.5           | -    | -             | -       | -             | -       | -     | 0.106 | 0.011        | -       | -             | -    | -   |
|         | -         | -             | 56.6  | 5.5           | -    | -             | -       | -             | -       | -     | 0.150 | 0.015        | -       | -             | -    | -   |
|         | -         | -             | 66.9  | 8.6           | -    | -             | -       | -             | -       | -     | 0.128 | 0.017        | -       | -             | -    | -   |
|         | 65.7      | 4.1           | 42.8  | 1.5           | -    | -             | -       | -             | 0.042   | 0.008 | 0.197 | 0.007        | -       | -             | -    | -   |
|         | 64.8      | 6.5           | 64.4  | 2.2           | -    | -             | -       | -             | 0.043   | 0.009 | 0.130 | 0.004        | -       | -             | -    | -   |
| ΙЩ      | 64.0      | 4.4           | 63.1  | 1.6           | -    | -             | -       | -             | 0.042   | 0.008 | 0.132 | 0.003        | -       | -             | -    | -   |
| 地       | -         | -             | 54.2  | 4.4           | -    | -             | -       | -             | -       | -     | 0.142 | 0.012        | -       | -             | -    | -   |
|         | 40.9      | 1.9           | 40.1  | 1.3           | -    | -             | -       | -             | 0.068   | 0.013 | 0.188 | 0.005        | -       | -             | -    | -   |
|         | <u> </u>  | 2.0           | 52.7  | 1.7           | -    | -             | -       | -             | 0.031   | 0.000 | 0.127 | 0.004        | -       | -             | -    | -   |
|         | 40.0      | 2.9           | 59.4  | 2.0           |      | -             | -       | -             | 0.020   | 0.005 | 0.121 | 0.003        | -       | -             | _    |     |
|         | 42.0      | 3.9           | 58.8  | 2.0           |      | -             | -       | -             | 0.027   | 0.003 | 0.104 | 0.004        | -       | -             | -    |     |
|         | <u> </u>  |               | 62.0  | 4.2           |      |               | -       |               |         |       | 0.176 | 0.013        | -       |               | -    |     |
|         | -         | -             | 67.5  | 3.4           | -    | -             | -       | -             | -       | -     | 0.162 | 0.008        | -       | -             | -    | -   |
|         | -         | -             | 65.5  | 3.8           | -    | -             | -       | -             | -       | -     | 0.167 | 0.010        | -       | -             | -    | -   |
|         | -         | -             | 56.7  | 5.1           | -    | -             | -       | -             | -       | -     | 0.193 | 0.017        | -       | -             | -    | -   |
|         | -         | -             | 68.6  | 4.6           | -    | -             | -       | -             | -       | -     | 0.159 | 0.011        | -       | -             | -    | -   |
|         | -         | -             | 55.4  | 4.7           | -    | -             | -       | -             | -       | -     | 0.197 | 0.017        | -       | -             | -    | -   |
|         | -         | -             | 58.1  | 4.6           | -    | -             | -       | -             | -       | -     | 0.210 | 0.017        | -       | -             | -    | -   |
|         | -         | -             | 66.6  | 3.8           | -    | -             | -       | -             | -       | -     | 0.183 | 0.011        | -       | -             | -    | -   |
|         | -         | -             | 58.5  | 4.2           | -    | -             | -       | -             | -       | -     | 0.187 | 0.013        | -       | -             | -    | -   |
|         | -         | -             | 62.0  | 4.2           | -    | -             | -       | -             | -       | -     | 0.176 | 0.012        | -       | -             | -    | -   |
|         | -         | -             | 67.5  | 3.4           | -    | -             | -       | -             | -       | -     | 0.162 | 0.008        | -       | -             | -    | -   |
| 凹       | -         | -             | 65.5  | 3.8           | -    | -             | -       | -             | -       | -     | 0.167 | 0.010        | -       | -             | -    | -   |
| 国       | 10.2      | 1.1           | 147.7 | 7.3           | -    | -             | -       | -             | 0.259   | 0.056 | 0.057 | 0.003        | -       | -             | -    | -   |
| 山       | 11.4      | 1.0           | 129.1 | 6.4           | -    | -             | -       | -             | 0.224   | 0.046 | 0.063 | 0.003        | -       | -             | -    | -   |
| 地       | -         | -             | 145.4 | 9.2           | -    | -             | -       | -             | -       | -     | 0.053 | 0.003        | -       | -             | -    | -   |
|         | -         | -             | 81.5  | 5.7           | -    | -             | -       | -             | -       | -     | 0.094 | 0.007        | -       | -             | -    | -   |
|         | <u> </u>  | -             | 08.0  | 5.0           | -    | -             | -       | -             | -       | -     | 0.138 | 0.010        | -       | -             | -    | -   |
|         | -         | -             | 01.0  | 5.0           | -    | -             | -       | -             | -       | -     | 0.090 | 0.006        | -       | -             | -    | -   |
|         | -         | -             | 80.7  | 4.6           | -    | -             | -       | -             | -       | -     | 0.082 | 0.004        | -       | -             | -    | -   |
|         | -         | -             | 107.8 | 6.4           | -    | -             | -       | -             | -       | -     | 0.064 | 0.004        | -       | -             | -    | -   |
|         | -         | -             | 97.6  | 5.7           | -    | -             | -       | -             | -       | -     | 0.092 | 0.005        | -       | -             | -    | -   |
|         | <u> </u>  | -             | 58.8  | 3.0           | -    | -             | -       | -             | -       | -     | 0.139 | 0.007        | -       | -             | -    | -   |
|         | -         | -             | 109.7 | 7.1           | -    | -             | -       | -             | -       | -     | 0.059 | 0.004        | -       | -             | -    | -   |
|         |           | -             | 112.4 | 5.5           | -    | -             | -       | -             | -       | -     | 0.057 | 0.003        | -       | -             | -    | -   |
|         | <u> </u>  | -             | 100.8 | 4./           | -    | -             | -       | -             |         | -     | 0.004 | 0.003        | -       | -             | -    | -   |
|         | 13.5      | -             | 215.9 | 0.2           |      | -             | -       | -             | - 0 150 | -     | 0.009 | 0.004        | -       | -             | -    | -   |
| L       | 13.5      | 1.9           | 215.0 | 25.0          | -    | -             | -       | -             | 0.158   | 0.037 | 0.031 | 0.004        | -       | -             | -    | -   |

表 9 熱年代に基づく流域の平均侵食速度一覧 (7/8)

# 【 付録 10 】

|              |      | FT年作 | ቲ (Ma)          |      | (U-  | Th) / He | 年代 (M | <b>1</b> a) |       |         | f     | 曼食速度  | E (mm/y | r)  |      |     |
|--------------|------|------|-----------------|------|------|----------|-------|-------------|-------|---------|-------|-------|---------|-----|------|-----|
| 山地名          | AFT  | ±lσ  | ZFT             | ±1σ  | A-He | ±lσ      | Z-He  | ±lσ         | AFT   | ±lσ     | ZFT   | ±lσ   | A-He    | ±lσ | Z-He | ±lσ |
|              | 9.2  | 2.2  | 100.9           | 6.1  | -    | -        | -     | -           | 0.270 | 0.081   | 0.077 | 0.005 | -       | -   | -    | -   |
|              | 7.2  | 1.2  | 127.8           | 7.1  | -    | -        | -     | -           | 0.315 | 0.077   | 0.055 | 0.003 | -       | -   | -    | -   |
|              | 8.9  | 1.0  | 105.0           | 5.7  | -    | -        | -     | -           | 0.256 | 0.055   | 0.068 | 0.004 | -       | -   | -    | -   |
|              | 8.3  | 1.9  | 94.0            | 5.8  | -    | -        | -     | -           | 0.298 | 0.087   | 0.082 | 0.005 | -       | -   | -    | -   |
|              | 9.8  | 1.8  | 107.8           | 5.9  | -    | -        | -     | -           | 0.249 | 0.065   | 0.071 | 0.004 | -       | -   | -    | -   |
|              | -    | -    | 30.4            | 1.4  | -    | -        | -     | -           | -     | -       | 0.248 | 0.011 | -       | -   | -    | -   |
|              | -    | -    | 59.9            | 3.1  | -    | -        | -     | -           | -     | -       | 0.127 | 0.007 | -       | -   | -    | -   |
|              | -    | -    | 17.1            | 0.9  | -    | -        | -     | -           | -     | -       | 0.449 | 0.024 | -       | -   | -    | -   |
|              | -    | -    | 108.8           | 5.6  | -    | -        | -     | -           | -     | -       | 0.087 | 0.005 | -       | -   | -    | -   |
|              | -    | -    | 87.7            | 6.3  | -    | -        | -     | -           | -     | -       | 0.108 | 0.008 | -       | -   | -    | -   |
|              | -    | -    | 100.7           | 5.0  | -    | -        | -     | -           | -     | -       | 0.128 | 0.006 | -       | -   | -    | -   |
| 四            | 13.6 | 2.6  | 90.2            | 4.3  | -    | -        | -     | -           | 0.302 | 0.080   | 0.143 | 0.007 | -       | -   | -    | -   |
| 国            | -    | -    | 82.4            | 4.2  | -    | -        | -     | -           | -     | -       | 0.181 | 0.009 | -       | -   | -    | -   |
|              | -    | -    | 97.3            | 5.7  | -    | -        | -     | -           | -     | -       | 0.153 | 0.009 | -       | -   | -    | -   |
|              | -    | -    | 117.2           | 6.7  | -    | -        | -     | -           | -     | -       | 0.129 | 0.007 | -       | -   | -    | -   |
| 坦            | -    | -    | 117.9           | 6.2  | -    | -        | -     | -           | -     | -       | 0.128 | 0.007 | -       | -   | -    | -   |
|              | -    | -    | 140.6           | 7.0  | -    | -        | -     | -           | -     | -       | 0.109 | 0.005 | -       | -   | -    | -   |
|              | -    | -    | 111.7           | 5.6  | -    | -        | -     | -           | -     | -       | 0.140 | 0.007 | -       | -   | -    | -   |
|              | -    | -    | 105.0           | 5.2  | -    | -        | -     | -           | -     | -       | 0.149 | 0.007 | -       | -   | -    | -   |
|              | -    | -    | 92.3            | 3.8  | -    | -        | -     | -           | -     | -       | 0.169 | 0.007 | -       | -   | -    | -   |
|              | -    | -    | /5.3            | 3.6  | -    | -        | -     | -           | -     | -       | 0.207 | 0.010 | -       | -   | -    | -   |
|              | -    | -    | 58.8<br>71.5    | 0.0  | -    | -        | -     | -           | -     | -       | 0.129 | 0.015 | -       | -   | -    | -   |
|              | -    | -    | /1.5            | 4.8  | -    | -        | -     | -           | -     | -       | 0.100 | 0.007 | -       | -   | -    | -   |
|              | -    | -    | 100.0           | 4.8  | -    | -        | -     | -           | -     | -       | 0.110 | 0.008 | -       | -   | -    | -   |
|              | 0.0  | 2.7  | 51.0            | 2.2  | -    | -        | -     | -           | 0.277 | 0.099   | 0.075 | 0.003 | -       | -   | -    | -   |
|              | -    | -    | 01.6            | 3.5  | -    | -        | -     | -           | -     | -       | 0.140 | 0.009 | -       | -   | -    | -   |
|              | -    | -    | <sup>91.0</sup> | /.0  | -    | -        | -     | -           | -     | -       | 0.004 | 0.007 | -       | -   | -    | -   |
|              |      | -    | 12.0            | 0.4  | -    | -        | -     | -           | -     | -       | 0.756 | 0.025 | -       | -   | -    | -   |
|              | -    | -    | 14.9            | 0.7  | -    | -        | -     | -           | -     | -       | 0.750 | 0.036 | -       | -   | -    | -   |
|              | 12.6 | 2.1  | 14.5            | 2.1  | -    | -        | -     | -           | 0 278 | - 0.060 | 0.000 | 0.024 | -       | -   | -    | -   |
|              | 11.0 | 2.1  | 15.5            | 2.1  |      |          | -     |             | 0.278 | 0.009   | 0.725 | 0.099 |         |     |      |     |
|              | 17.4 | 8.3  | 15.2            | 12   | _    | _        | _     | _           | 0.206 | 0.105   | 0 740 | 0.058 | _       | _   | _    | _   |
|              | 12.2 | 1.6  | 16.0            | 1.2  | -    |          | -     | -           | 0.293 | 0.065   | 0.688 | 0.060 | -       | -   | -    | -   |
|              | -    | -    | 13.1            | 1.6  | -    | -        | -     | -           | -     | -       | 0.850 | 0.104 | -       | _   | -    | _   |
|              | 11.7 | 2.2  | -               | 1.0  | -    |          | -     |             | 0 314 | 0.083   | -     | 0.104 | -       |     | -    |     |
|              | 15.0 | 4.0  | 147             | 2.4  | -    | _        | -     | _           | 0.235 | 0.005   | 0 745 | 0.122 | -       | _   | _    | _   |
|              | 7.1  | 2.3  | -               | -    | -    | -        | -     | -           | 0.535 | 0.199   | -     | -     | -       | -   | -    | -   |
|              | 18.8 | 5.2  | -               | -    | -    | -        | -     | -           | 0.203 | 0.068   | -     | -     | -       | -   | -    | -   |
|              | 15.2 | 4.2  | 76.8            | 8.6  | -    | -        | -     | -           | 0.233 | 0.078   | 0.145 | 0.016 | -       | -   | -    | -   |
| <del>+</del> | 22.1 | 5.8  | 24.0            | 4.1  | -    |          | -     | -           | 0.162 | 0.052   | 0.470 | 0.080 | -       | -   | -    | -   |
|              | 19.0 | 6.8  | 185.6           | 15.1 | -    | -        | -     | -           | 0.189 | 0.076   | 0.061 | 0.005 | -       | -   | -    | -   |
| <u> </u>     | 8.6  | 2.1  | 76.1            | 4.6  | -    | -        | -     | -           | 0.415 | 0.127   | 0.148 | 0.009 | -       | -   | -    | -   |
| ΙЩ           | 13.0 | 3.5  | 162.5           | 16.1 | - 1  | -        | -     | -           | 0.305 | 0.100   | 0.077 | 0.008 | -       | -   | -    | -   |
| 地            | 13.5 | 5.4  | 17.9            | 1.4  | -    | -        | -     | -           | 0.281 | 0.123   | 0.656 | 0.051 | -       | -   | -    | -   |
|              | -    | -    | 55.0            | 9.1  | -    | -        | -     | -           | -     | -       | 0.214 | 0.036 | -       | -   | -    | -   |
|              | 21.1 | 3.2  | 17.2            | 4.5  | -    | -        | -     | -           | 0.176 | 0.042   | 0.675 | 0.177 | -       | -   | -    | -   |
|              | -    | -    | 125.7           | 5.1  | -    | -        | -     | -           | -     | -       | 0.065 | 0.003 | -       | -   | -    | -   |
|              | -    | -    | 111.5           | 5.6  | -    | -        | -     | -           | -     | -       | 0.079 | 0.004 | -       | -   | -    | -   |
|              | 13.3 | 1.9  | 115.6           | 5.9  | -    | -        | -     | -           | 0.222 | 0.051   | 0.079 | 0.004 | -       | -   | -    | -   |
|              | 7.1  | 1.2  | 68.1            | 3.9  | -    | -        | -     | -           | 0.420 | 0.106   | 0.139 | 0.008 | -       | -   | -    | -   |
|              | 8.8  | 3.3  | 70.4            | 4.9  | -    | -        | -     | -           | 0.342 | 0.143   | 0.136 | 0.010 | -       | -   | -    | -   |
|              | -    | -    | 76.7            | 3.8  | - 1  | -        | -     | -           | -     | -       | 0.125 | 0.006 | -       | -   | -    | -   |
|              | -    | -    | 60.2            | 2.9  | - 1  | -        | -     | -           | -     | -       | 0.160 | 0.008 | -       | -   | -    | -   |
|              | -    | -    | 123.6           | 5.9  | - 1  | -        | -     | -           | -     | -       | 0.081 | 0.004 | -       | -   | -    | -   |
|              | -    | -    | 103.2           | 5.4  | -    |          | -     | -           | -     | -       | 0.099 | 0.005 | -       | -   | -    | -   |
|              | 7.6  | 2.1  | 90.1            | 4.2  | -    | -        | -     | -           | 0.428 | 0.143   | 0.116 | 0.005 | -       | -   | -    | -   |
|              | -    | ۰.1  | 194.9           | 12 7 | -    | -        | -     | -           | -     | 0.175   | 0.056 | 0.004 | -       | -   | _    | -   |
| L            |      | -    | 174.7           | 12./ | · ·  | -        | -     | -           | -     | -       | 0.050 | 0.004 | -       | -   | -    | -   |

表 10 熱年代に基づく流域の平均侵食速度一覧 (8/8)

引用文献

- Dunai T. J., Cosmogenic Nuclides: Principles, Concepts and Applications in the Earth Surface Sciences, Cambridge University Press, 198p, 2010.
- 日本原子力研究開発機構,電力中央研究所,平成 30 年度 高レベル放射性廃棄物等の地層処分に 関する技術開発事業 地質環境長期安定性評価技術高度化開発 報告書,200p,2019.
- Sueoka, S., Tagami, T., Low temperature thermochronological database of bedrock in the Japanese Islands, Island Arc, vol.28, e12305, doi:10.1111/iar.12305, 2019.

【付録11】

離水地形のマルチ年代測定に基づく

隆起・侵食速度推定技術の高度化に係る試料採取

国立研究開発法人日本原子力研究開発機構 核燃料・バックエンド研究開発部門 東濃地科学センター 地層科学研究部 ネオテクトニクス研究グループ

# 目 次

| 1. 概要4                            |    |
|-----------------------------------|----|
| 2. 内陸部を対象とした研究4                   |    |
| <b>2.1</b> 地形・堆積物の観察・記載と年代測定試料の採取 | 4  |
| 2.1.1 TKT-TL 地点                   |    |
| 2.1.2 OOI 地点                      |    |
| 2.2 環流旧河谷のボーリングコアの分析結果            | 7  |
| 2.2.1 珪藻分析                        |    |
| 2.2.2 花粉分析 10                     |    |
| 2.2.3 テフラ分析                       |    |
| 3. 沿岸部を対象とした研究                    |    |
| 3.1 土佐湾北東岸における試料採取と試料観察           | 37 |
| 3.1.1 大山岬                         |    |
| 3.1.2 羽根岬                         |    |
| 3.1.3 行当岬                         |    |
| 3.2 房総半島南岸における試料採取と試料観察           | 42 |
| 3.2.1 地形                          |    |
| 3.2.2 地質                          |    |
|                                   |    |

図目次

| 义 | 2.1.1  | 令和元年度の試料採取地点と平成30年度のボーリング調査地点                        |
|---|--------|------------------------------------------------------|
| 义 | 2.1.2  | TKT-TL 地点の地形と堆積物                                     |
| 义 | 2.1.3  | OOI 地点の地形と堆積物                                        |
| 义 | 2.2.1  | 環流旧河谷のボーリングコアの柱状図と分析層準7                              |
| 义 | 2.2.2  | TNZ-1 コアの花粉化石ダイアグラム(木本植物)14                          |
| 义 | 2.2.3  | TKT-1 コアの花粉化石ダイアグラム(木本植物)17                          |
| 义 | 2.2.4  | TKT-2 コアの花粉化石ダイアグラム(木本植物)19                          |
| 义 | 2.2.5  | KM-1 コアの花粉化石ダイアグラム(木本植物)21                           |
| 义 | 2.2.6  | TNZ-1 コア 0.55-0.57 層準中の高温型石英中のガラス包有物の主成分分析結果24       |
| 义 | 2.2.7  | TNZ-1 コア 0.55-0.57 層準中の火山ガラスの主成分分析結果                 |
| 义 | 2.2.8  | TNZ-1 コア 0.55-0.57 層準中の角閃石の主成分分析結果                   |
| 义 | 2.2.9  | TKT-1 コア 0.55-0.57 層準中の高温型石英中のガラス包有物の主成分分析結果 29      |
| 义 | 2.2.10 | TKT-1 コア 0.45-0.47 及び 0.65-0.67 層準中の火山ガラスの主成分分析結果 30 |
| 义 | 2.2.11 | TKT-1 コア 0.45-0.47 及び 0.65-0.67 層準中の角閃石の主成分分析結果 31   |
| 义 | 2.2.12 | TKT-2 コア 1.05-1.07 層準中の高温型石英中のガラス包有物の主成分分析結果         |
|   | •••••  |                                                      |
| 义 | 2.2.13 | TKT-2 コア 19.45-19.55 層準中の角閃石の主成分分析結果                 |
| 义 | 2.2.14 | TKT-2 コア 19.45-19.55 層準中のカミングトン閃石の主成分分析結果 36         |
| 义 | 3.1.1  | 試料採取地点の地形(大山岬)                                       |
| 义 | 3.1.2  | 大山岬試料薄片写真(SP-3)                                      |
| 义 | 3.1.3  | 試料採取地点の地形(羽根岬)                                       |
| 义 | 3.1.4  | 羽根岬試料薄片写真(SP-5)40                                    |
| 义 | 3.1.5  | 試料採取地点の地形(行当岬)41                                     |
| 义 | 3.1.6  | 行当岬試料薄片写真(SP-5)41                                    |
| 义 | 3.2.1  | 試料採取地点の地形(房総半島南岸) 42                                 |
| 义 | 3.2.2  | 房総半島南岸試料薄片写真(SP-1) 43                                |

# 表 目 次

| 表 2.2 | 2.1 | 珪藻化石産出表           | . 9 |
|-------|-----|-------------------|-----|
| 表 2.2 | 2.2 | 花粉・胞子産出数一覧表 (1/3) | 11  |
| 表 2.2 | 2.3 | 花粉・胞子産出数一覧表 (2/3) | 12  |
| 表 2.2 | 2.4 | 花粉・胞子産出数一覧表 (3/3) | 13  |
| 表 2.2 | 2.5 | TNZ-1 コアのテフラ分析結果  | 23  |
| 表 2.2 | 2.6 | TKT-1 コアのテフラ分析結果  | 28  |
| 表 2.2 | 2.7 | TKT-2 コアのテフラ分析結果  | 33  |

# 【付録11】

#### 1. 概要

本付録は、「5.2 離水地形のマルチ年代測定に基づく隆起・侵食速度推定技術の高度化」におい て実施した野外作業及び分析データに係る資料集である。2 章には、内陸部を対象とした検討に 係るデータ、3 章には沿岸部を対象とした検討に係るデータをそれぞれ示す。

#### 2. 内陸部を対象とした研究

本章では、2.1 に紀伊半島の新宮川沿いで実施した地形・堆積物の観察・記載と年代測定試料の 採取に係る内容について記す(図 2.1.1)。2.2 には新宮川沿いの環流旧河谷で採取したボーリン グコア(TKM-1, TKT-1, TKT-2 及び TNZ-1;報告書本文を参照)を対象に実施した珪藻分析、花 粉分析、テフラ分析の結果を掲載する。

#### 2.1 地形・堆積物の観察・記載と年代測定試料の採取

地形・堆積物の観察・記載と年代測定試料の採取は、TKT-TL 地点と OOI 地点の計 2 地点において実施した(図 2.1.1)。



図 2.1.1 令和元年度の試料採取地点と平成 30 年度のボーリング調査地点 黒の細線は、接峰面の等高線を示している。

### 2.1.1 TKT-TL 地点

TKT-TL 地点は、TKT-1 及び TKT-2 コアの掘削地点がある環流旧河谷を開析する支流と新宮 川との合流点に位置する(図 2.1.2)。ここでは、河床からの比高 40~50 m に露頭があり、四万 十帯の基盤岩を北西に緩やかに傾斜した不整合で覆って下位から順に河川流路堆積物(RC)、氾 濫原堆積物(FP)及び斜面堆積物(SD)と解釈できる地層を確認できる(図 2.1.2)。各地層の 特徴は、以下の通りである。

### (1) 河川流路堆積物(RC)標高: 323.7~326.3 m

標高 324.7 m よりも下位の厚さ 5~40 cm の砂層と砂礫層の互層と、それより上位の円~亜角 礫主体の砂礫層に二分される。下位の互層は灰褐色の中粒~極粗粒の砂層と円礫主体の砂礫層で 構成され、上方粗粒化を示す。上位の砂礫層は礫質支持と基質支持が緩やかに遷移して円~亜角 礫主体の中に亜角礫を若干伴う。礫径は 2~330 mm で、礫種は砂岩が主体で泥岩が 10~20%程 度混入して、本流性の河床礫に含まれる白色の酸性岩類がみられる。

### (2) 氾濫原堆積物(FP)標高: 326.3~327.3 m

厚さ 10~50 cm の細粒~中粒砂層と泥層の互層で構成される。最下位の砂層は上方細粒化を示 し、基底には円礫を伴う侵食面がみられる。その上位には斜交層理が確認でき、上部では平行層 理が卓越する。中央部の泥層は、上方細粒化した後、上方粗粒化する。最も細粒な部分には高師 小僧が認められる。最上部の砂層の堆積構造は、不鮮明であった。

### (3) 斜面堆積物 (SD) 標高: 327.3~330.3 m 以上

礫径 15~45 cm の亜角~角礫が混在する砂礫層で構成される。礫種は周辺の基盤岩露頭に認め られる四万十帯の砂岩と泥岩が主体である。

この露頭において河川流路堆積物の堆積年代を推定するための光ルミネッセンス年代測定用試料を4試料採取した(図 2.1.2)。試料採取では、光曝を防ぐために内径3 cm、長さ約 30 cm の 硬質塩化ビニル管を堆積面に直角に打ち込み、回収時には管の両端を速やかに塞いで実験室に持ち帰った。

【付録11】



図 2.1.2 TKT-TL 地点の地形と堆積物 露頭の位置図は、地理院地図を用いて作成。

2.1.2 OOI 地点

OOI 地点は標高 108.5 m、河床からの比高約 40 m の河成段丘上の湿地である(図 2.1.3)。掘 削調査により、下位より順に、レンズ状のシルト層を挟在する中礫~大礫からなる礫支持の円礫 層、円磨された中礫を稀に含む塊状細粒砂層、植物根や腐植を伴う泥層が堆積していることを確 認した。円礫層と中礫混じりの細粒砂層中には、本流性の河床礫にみられる白色の酸性岩類が含 まれる。このことから円礫層と砂層は新宮川の旧流路堆積物と解釈できる。

円礫層と砂層との境界付近には、木材の密集層が認められた。旧流路堆積物の堆積年代の推定 のため、この木材の密集層から放射性炭素(14C)年代測定試料を採取した。



図 2.1.3 OOI 地点の地形と堆積物 試料採取地点図は、地理院地図を用いて作成。

### 2.2 環流旧河谷のボーリングコアの分析結果

珪藻分析、花粉分析及びテフラ分析の試料採取層準を図 2.2.1 に示す。以下に、それぞれの分 析の結果について記す。



図 2.2.1 環流旧河谷のボーリングコアの柱状図と分析層準

### 2.2.1 珪藻分析

検出された珪藻化石は、淡水種が21分類群14属11種1変種であった(表 2.2.1)。これらの珪藻 化石は、淡水域における5環境指標種群(N、O、P、Qa及びQb)に分類された(表 2.2.1)。全 体的に珪藻化石が少なく、ほとんどの試料で殻が半分以上残存している珪藻化石は検出されなか った。以下では、コア毎に珪藻化石の特徴とその堆積環境について述べる。

### (1) TNZ-1 コア

採取試料のうち最上位の試料(TNZ-1\_1)においてのみ、殻が半分以上残存している珪藻化石 は検出された(表 2.2.1)。堆積物1 g中の珪藻殻数は3.5×104個、完形殻の出現率は51.4%であり、 淡水種のみが検出された。堆積物中の珪藻殻数は非常に少ない。環境指標種群では、沼沢湿地付 着生指標種群(O)、湖沼沼沢湿地指標種群(N)、陸生珪藻A群(Qa)がわずかに検出された。

珪藻化石が少ないため、珪藻化石から復元される堆積環境は不明である。わずかに検出された 環境指標種群の特徴から、湖沼沼沢湿地~ジメジメとした陸域の影響を受けていた可能性がある。

### (2) TKT-1 コア

採取試料のうち最上位の試料(TKT-1\_1)においてのみ、殻が半分以上残存している珪藻化石 は検出された(表 2.2.1)。堆積物1 g中の珪藻殻数は5.1×10<sup>4</sup>個、完形殻の出現率は77.2%である。 淡水種のみが検出され、堆積物中の珪藻殻数は非常に少ない。環境指標種群では、陸生珪藻A群 (Qa)、高層湿原指標種群(P)、陸生珪藻B群(Qb)がわずかに検出された。

珪藻化石が少ないため、珪藻化石から復元される堆積環境は不明である。わずかに検出された 環境指標種群の特徴から、高層湿原~ジメジメとした陸域の影響を受けていた可能性がある。

### (3) TKT-2 コア

殻が半分以上残存している珪藻化石は検出されなかった。

### (4) TKM-1 コア

殻が半分以上残存している珪藻化石は検出されなかった。

| No.      |               | 分類群                                     | 種群                     | TNZ-1_1 | TKT-1_1 |  |  |
|----------|---------------|-----------------------------------------|------------------------|---------|---------|--|--|
| 1        | Amphora       | spp.                                    | ?                      | 2       |         |  |  |
| <b>2</b> | Cocconeis     | placentula                              | W                      | 2       |         |  |  |
| 3        | Cymbella      | mesiana                                 | W                      | 2       |         |  |  |
| 4        | С.            | spp.                                    | ?                      | 2       |         |  |  |
| <b>5</b> | Diadesmis     | contenta                                | Qa                     |         | 4       |  |  |
| 6        | Eunotia       | spp.                                    | ?                      |         |         |  |  |
| 7        | Fragilaria    | brevistriata                            | Ν                      |         |         |  |  |
| 8        | <i>F.</i>     | spp.                                    | ?                      |         | 1       |  |  |
| 9        | Gomphonema    | spp.                                    | ?                      | 6       |         |  |  |
| 10       | Hantzschia    | amphioxys                               | Qa                     |         | 18      |  |  |
| 11       | Luticola      | mutica                                  | Qa                     | 2       | 3       |  |  |
| 12       | Navicula      | elginensis                              | Ο                      | 6       |         |  |  |
| 13       | <i>N.</i>     | spp.                                    | ?                      | 2       | 5       |  |  |
| 14       | Nitzschia     | spp.                                    | ?                      |         | 7       |  |  |
| 15       | Pinnularia    | acrosphaeria                            | 0                      | 1       |         |  |  |
| 16       | <i>P.</i>     | subcapitata                             | $\mathbf{Q}\mathbf{b}$ |         | 2       |  |  |
| 17       | <i>P.</i>     | <i>subcapitata</i> var. <i>elongata</i> | Р                      |         | 8       |  |  |
| 18       | <i>P.</i>     | spp.                                    | ?                      |         | 5       |  |  |
| 19       | Stauroneis    | phoenicenteron                          | Ο                      | 3       |         |  |  |
| 20       | S.            | spp.                                    | ?                      |         | 1       |  |  |
| 21       | Staurosirella | pinnata                                 | Ν                      | 7       |         |  |  |
| 22       |               | Unknown                                 | ?                      |         | 3       |  |  |
|          |               | 湖沼沼沢湿地                                  | Ν                      | 7       |         |  |  |
|          |               | 沼沢湿地付着生                                 | Ο                      | 10      |         |  |  |
|          |               | 高層湿原                                    | Р                      |         | 8       |  |  |
|          |               | 陸生A群                                    | Qa                     | 2       | 25      |  |  |
|          |               | 陸生B群                                    | Qb                     |         | 2       |  |  |
|          |               | 広布種                                     | W                      | 4       |         |  |  |
|          |               | 淡水不定•不明種                                | ?                      | 12      | 19      |  |  |
|          |               | その他不明種                                  | ?                      |         | 3       |  |  |
|          |               | 海水種                                     |                        |         |         |  |  |
|          |               | 海~汽水種                                   |                        |         |         |  |  |
|          |               | 汽水種                                     |                        |         |         |  |  |
|          |               | 淡水種                                     |                        | 35      | 54      |  |  |
|          |               | 合 計                                     |                        | 35      | 57      |  |  |
|          |               | 完形殻の出現率(%)                              |                        | 51.4    | 77.2    |  |  |
|          |               | 堆積物1g中の殻数(個)                            |                        | 3.5E+04 | 5.1E+04 |  |  |

表 2.2.1 珪藻化石産出表

\*種群は、千葉・澤井(2014)による。

### 2.2.2 花粉分析

花粉分析の結果、花粉化石の群集解析の結果、花粉化石群集から推定される古環境(森林古植 生と古気候)についてボーリングコア毎に述べる。なお、本報告に用いた森林帯区分と名称は山 中(1979)と堀田(1980)に準拠した。

### (1) TNZ-1 コア

# 1) 分析結果

花粉・胞子化石の同定・計数結果および堆積物1g試料当たりに含まれる花粉・胞子化石量を 表 2.2.2~表 2.2.4 に示す。主な分類群は、常緑針葉樹のTsuga, Pinus, Sciadopitys, Cryptomeria, Cupressaceae, 落葉広葉樹の Carpinus / Ostrya, Betula, Alnus, Q. (Subgen, Lepidobalanus), 常緑広葉樹の Q. (Subgen, Cyclobalanopsis) および Castanopsis / Pasania などであった。また、 現在の日本列島には自生していない Hemiptelea が産出した。

堆積物1g試料当たりに含まれる花粉・胞子化石量、花粉・胞子総数に対する木本植物花粉・ 草本植物花粉およびシダ・コケ植物の胞子、同定不明・不能の化石の割合は、図 2.2.2 の左側に 示した。

各分類群の産出率は、表 2.2.2~表 2.2.4 に示した同定・計数結果に基づき、木本植物花粉の 総数を基数として算出し、図 2.2.2 の花粉ダイアグラムに示した。なお、TNZ-1 コア試料番号 4 (深度 32.88~32.90 m),試料番号 5 (深度 42.30~42.32 m)および試料番号 6 (深度 51.34~ 51.36 m) は木本植物の花粉化石総数が 250 粒に満たなかったため統計処理の対象外とし、分類 群の産出事実のみ表示した。

# 【付録11】

| 表 | 2.2.2 | 花粉・ | 胞子産出数一 | ·覧表 | (1/3) |
|---|-------|-----|--------|-----|-------|
|---|-------|-----|--------|-----|-------|

|                                                                                                                                                                                                                             | 分類コード                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                       | 1                                        | 1                          | 1             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                             | 2                                                                                             | 2                                       | 2                               | 2             | 2              | 2                     | 2                                                       | 2                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------|----------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------|---------------|----------------|-----------------------|---------------------------------------------------------|-----------------------|
| 試料番号                                                                                                                                                                                                                        | 分類群<br>試料深度(m)                                                                                                                                                                                                                                                                               | Cephalotaxus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | odocarpus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | lbies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Jicea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | suga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | inus                    | <ul> <li>Subgen. Diploxylon )</li> </ul> | iciad opitys               | Iryptomeria   | Jupressaceae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | salix                                                         | dyrica –                                                                                      | luglans / Pterocarya                    | Carpinus / Ostrya               | Corylus       | 3etula         | llnus (Subgen. Alnus) | 1. (Subgen. Alnaster)                                   | agus japonica type    |
| TN7_1 1                                                                                                                                                                                                                     | 0.55 - 0.57                                                                                                                                                                                                                                                                                  | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ×<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 52                    | 16                                       | 27                         | ~ 7           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •7                                                            | 1                                                                                             | <u>ر</u>                                | 6                               | 0             | 10             | ~                     | ~                                                       | 1                     |
| $TNZ I_I$                                                                                                                                                                                                                   | 0.55 0.57                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | JZ                      | 40                                       | 37                         | 20            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                             |                                                                                               |                                         | 0                               | 4             | 11             | 6.0                   | 70                                                      | '                     |
| TNZ-1_Z                                                                                                                                                                                                                     | 4.00 - 4.02                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                       | 1                                        | 4                          | 39            | c<br>d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 1                                                           |                                                                                               | 1                                       | 8                               | 4             | 1              | 02                    | /3                                                      |                       |
| TNZ-1_3                                                                                                                                                                                                                     | 15./4 - 15./6                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                       | 2                                        |                            | 33            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                               |                                                                                               | 2                                       | 15                              | - 1           | 9              | /5                    | /2                                                      |                       |
| 1 NZ-1_4                                                                                                                                                                                                                    | 32.88 - 32.90                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                       |                                          |                            | 5             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                               |                                                                                               |                                         | 1                               |               | 1              | 1                     | $\vdash$                                                |                       |
| TNZ-1_5                                                                                                                                                                                                                     | 42.30 - 42.32                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                       | 1                                        |                            | 2             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                               |                                                                                               |                                         |                                 |               |                |                       |                                                         |                       |
| TNZ-1_6                                                                                                                                                                                                                     | 51.34 - 51.36                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                       | 2                                        |                            | 1             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                               |                                                                                               |                                         | 2                               |               |                |                       |                                                         |                       |
| TKT-1_7                                                                                                                                                                                                                     | 0.25 - 0.27                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |                                          | 132                        | 2             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                               |                                                                                               |                                         |                                 |               |                |                       |                                                         |                       |
| TKT-1_8                                                                                                                                                                                                                     | 0.75 - 0.77                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12                      | 14                                       | 3                          | 64            | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                               |                                                                                               | 1                                       | 16                              | 3             | 4              | 38                    | 37                                                      | 1                     |
| TKT-1_9                                                                                                                                                                                                                     | 8.89 - 8.91                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                       | 1                                        |                            | 1             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                               |                                                                                               |                                         | 1                               |               | 1              | 1                     |                                                         |                       |
| TKT-1_10                                                                                                                                                                                                                    | 14.55 - 14.57                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         | 1                                        |                            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                               |                                                                                               |                                         |                                 |               |                |                       |                                                         |                       |
| TKT-1_11                                                                                                                                                                                                                    | 18.42 - 18.44                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                       |                                          |                            | 17            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                               | 1                                                                                             |                                         | 7                               | 1             | 2              | 24                    | 40                                                      |                       |
| TKT-2_12                                                                                                                                                                                                                    | 0.25 - 0.27                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         | 1                                        | 19                         | 7             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                               |                                                                                               |                                         |                                 | 1             |                |                       |                                                         |                       |
| TKT-2_13                                                                                                                                                                                                                    | 0.95 - 0.97                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 32                      | 37                                       | 2                          | 154           | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                               | 1                                                                                             |                                         | 1                               |               | 1              | 4                     | 2                                                       |                       |
| TKT-2_14                                                                                                                                                                                                                    | 9.87 - 9.90                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         | 2                                        |                            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                               |                                                                                               |                                         | 1                               | 1             | 1              |                       |                                                         | 1                     |
| TKT-2_15                                                                                                                                                                                                                    | 18.68 - 18.70                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |                                          | 1                          | 9             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                               |                                                                                               |                                         |                                 |               |                |                       |                                                         |                       |
| TKM-1 16                                                                                                                                                                                                                    | 3.81 - 3.83                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                       |                                          |                            | 6             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                               |                                                                                               |                                         |                                 |               | 1              |                       |                                                         |                       |
|                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |                                          |                            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                               |                                                                                               |                                         |                                 |               |                |                       |                                                         |                       |
|                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |                                          |                            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                               |                                                                                               |                                         |                                 |               |                |                       |                                                         |                       |
|                                                                                                                                                                                                                             | 分類コード                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                       | 2                                        | 2                          | 2             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                             | 2                                                                                             | 2                                       | 2                               | 2             | 2              | 2                     | 2                                                       | 2                     |
| ·····································                                                                                                                                                                                       | 分類⊐—ド<br>分類群<br>試料深度(m)                                                                                                                                                                                                                                                                      | Quercus (Subgen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Q. (Subgen.<br>Cyclobalanopsis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Castanopsis/Pasania                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ulmus / Zelkova                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Celtis / Aphananthe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Liquidambar             | Rosaceae                                 | Rutaceae                   | Mallotus      | Sapium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Rhus                                                          | llex                                                                                          | Acer                                    | Aesculus                        | Vitaceae      | Tilia          | Camellia              | Araliaceae                                              | Cornus                |
| 武<br>料<br>番<br>号                                                                                                                                                                                                            | 分類⊐ド<br>分類群<br>試料深度(m)<br>0.55 - 0.57                                                                                                                                                                                                                                                        | Quercus (Subgen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Q. (Subgen.       Cyclobalanopsis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Castanopsis/Pasania                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ω Ulmus / Zelkova                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Celtis / Aphananthe ∞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Liquidambar 2           | Rosaceae                                 | Rutaceae                   | Mallotus      | Sapium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Rhus                                                          | 2 Text                                                                                        | Acer                                    | Aesculus                        | Vitaceae      | Tilia 5        | Camellia              | Araliaceae                                              | Cornus                |
| 試<br>料<br>番<br>号<br>TNZ-1 <u>1</u><br>TNZ-1 <u>1</u>                                                                                                                                                                        | 分類⊐ード<br>分類群<br>試料深度(m)<br>0.55 - 0.57<br>4.60 - 4.62                                                                                                                                                                                                                                        | Quercus (Subgen.CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Q. (Subgen.           Cyclobalanopsis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Example a constraint     Castanopsis/Pasania                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $ \omega$ Ulmus / Zelkova $\sim$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Celtis / Aphananthe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Liquidambar 2           | Rosaceae                                 | Rutaceae 2                 | Mallotus      | Sapium 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Rhus                                                          | 2 <i>Illex</i> 3                                                                              | 2 Acer 2                                | Aesculus                        | Vitaceae      | Tilia 5        | Camellia              | Araliaceae 8                                            | Cornus                |
| 試<br>料<br>番<br>号<br>TNZ-1_1<br>TNZ-1_2<br>TNZ-1_3                                                                                                                                                                           | 分類⊐ード<br>分類群<br>試料深度(m)<br>0.55 - 0.57<br>4.60 - 4.62<br>15.74 - 15.76                                                                                                                                                                                                                       | 1     Quercus (Subgen.       2     6       2     1       2     1       2     1       2     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1         Q. (Subgen.           2         Cyclobalanopsis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L     Castanopsis/Pasania                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 L C Ulmus / Zelkova                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\sim$ Celtis / Aphananthe $\sim$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Liquidambar             | Rosaceae                                 | Rutaceae                   | Mallotus      | Sapium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L Rhus 2                                                      | 2 <i>xall</i> 1 3 4                                                                           | 2 4 <i>cer</i>                          | - Aesculus                      | Vitaceae      | Tilia 5        | Camellia              | Araliaccae   2                                          | Cornus                |
| 試<br>料<br>番<br>号<br>TNZ-1_1<br>TNZ-1_2<br>TNZ-1_3<br>TNZ-1_4                                                                                                                                                                | 分類コード<br>分類群                                                                                                                                                                                                                                                                                 | Quercus         Subgen.           0         1         1         0           0         1         1         1         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0. (Subgen.       1     0. (Subdalanopsis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L Castanopsis/Pasania                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5     Ulmus / Zelkova       9     1       6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>Celtis / Aphananthe</li> <li>∞</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Liquidambar             | Rosaceae                                 | Rutaceae                   | Mallotus      | Sapium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Rhus                                                          | 2<br><i>xəll</i> 1 3 4 1                                                                      | 2 4 <i>Cer</i>                          | Aesculus                        | Vitaceae      | Tilia 5        | Camellia              | Araliaceae                                              | Cornus                |
| 試料<br>番号<br>TNZ-1_1<br>TNZ-1_2<br>TNZ-1_3<br>TNZ-1_4<br>TNZ-1_5                                                                                                                                                             | 分類⊐ード<br>分類群<br>試料深度(m)<br>0.55 - 0.57<br>4.60 - 4.62<br>15.74 - 15.76<br>32.88 - 32.90<br>42.30 - 42.32                                                                                                                                                                                     | c     Quercus (Subgen.       c     91     cl       d     cl     10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | c         U. (Subgen.           c         Cyclobalanopsis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L     Castanopsis/Pasania                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | a     Ulmus / Zelkova                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Celtis / Aphananthe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Liquidambar             | Rosaceae                                 | Rutaceae 2                 | Mallotus 2    | Sapium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | □                                                             | 2<br><i>xəll</i> 1 3 4                                                                        | 2<br>1<br>1<br>1                        | Aesculus                        | Vitaceae      | Tilia 5        | Camellia 🛛            | Araliaceae   2                                          | Cornus                |
| 武<br>料<br>番<br>号<br>TNZ-1_1<br>TNZ-1_2<br>TNZ-1_3<br>TNZ-1_4<br>TNZ-1_5<br>TNZ-1_6                                                                                                                                          | 分類コード<br>分類群                                                                                                                                                                                                                                                                                 | Construction         Construction< | No         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 | 1     Castanopsis/Pasania                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{bmatrix} 1 \\ 9 \\ -1 \\ c \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Celtis / Aphananthe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Liquidambar             | Rosaceae                                 | Rutaceae 2                 | Mallotus 2    | Sapium 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 <i>Rhus</i> 2                                               | 2<br><i>xall</i> 1 3 4 1                                                                      | 2<br>1 2 1                              | Aesculus 2                      | Vitaceae      | 2 Tilia        | Camellia              | Araliaceae                                              | Cornus                |
| 武<br>料<br>番<br>号<br>TNZ-1_1<br>TNZ-1_2<br>TNZ-1_3<br>TNZ-1_5<br>TNZ-1_6<br>TKT-1_7                                                                                                                                          | 分類⊐ード<br>分類群                                                                                                                                                                                                                                                                                 | 2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2                                                                                                                                                                                                                                                                                                                                                                        | 00 C C C C C C C C C C C C C C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Image: Castanopsis/Pasania                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{bmatrix} 1 \\ 9 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \text{ mus } / \text{Zelkova} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Celtis / Aphananthe 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Liquidambar             | Rosaceae                                 | 2 2                        | Mallotus 8    | 2 Sapium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 snyy 2                                                      | 2<br><i>xay</i><br>1<br>3<br>4                                                                | 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | Aesculus 8                      | 2 S           | 2              | Camellia 2            | Araliaceae                                              | Cornus                |
| 武<br>料<br>番<br>号<br>TNZ-1_1<br>TNZ-1_2<br>TNZ-1_3<br>TNZ-1_3<br>TNZ-1_4<br>TNZ-1_5<br>TNZ-1_6<br>TKT-1_7<br>TKT-1_8                                                                                                         | 分類⊐ード<br>分類群<br>対料深度(m)<br>0.55 - 0.57<br>4.60 - 4.62<br>15.74 - 15.76<br>32.88 - 32.90<br>42.30 - 42.32<br>51.34 - 51.36<br>0.25 - 0.27<br>0.75 - 0.77                                                                                                                                      | 5         Quercus (Subgen.           6         99         9           6         10         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1         0         (Subgen.           1         0         5         Cyclobalanopsis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     - <td>2 Climus / Zelkova</td> <td>celtis / Aphananthe         c</td> <td>Liquidambar</td> <td>Rosaceae</td> <td>2<br/></td> <td>2 Mallotus</td> <td>2 Sapium 2</td> <td>2<br/><i>Bhuss</i></td> <td></td> <td>2<br/>1 2<br/>1 2<br/>1</td> <td>2 <i>Aesculus</i></td> <td>2 Vitaceae</td> <td>2</td> <td>Camellia 2</td> <td>Araliaceae</td> <td>Cornus</td>               | 2 Climus / Zelkova                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | celtis / Aphananthe         c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Liquidambar             | Rosaceae                                 | 2<br>                      | 2 Mallotus    | 2 Sapium 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2<br><i>Bhuss</i>                                             |                                                                                               | 2<br>1 2<br>1 2<br>1                    | 2 <i>Aesculus</i>               | 2 Vitaceae    | 2              | Camellia 2            | Araliaceae                                              | Cornus                |
| 武<br>料<br>番<br>号<br>TNZ-1_1<br>TNZ-1_2<br>TNZ-1_3<br>TNZ-1_3<br>TNZ-1_4<br>TNZ-1_5<br>TNZ-1_6<br>TKT-1_7<br>TKT-1_8<br>TKT-1_9                                                                                              | 分類コード<br>分類群<br>分類群<br>(m)<br>(m)<br>(m)<br>(m)<br>(m)<br>(m)<br>(m)<br>(m)                                                                                                                                                                                                                  | 5         Quercus (Subgen.           6         9         9         1           1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D         D         D         D         N           1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0          | +     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     - <td>2 Climus / Zelkova</td> <td>celtis / Aphananthe         c</td> <td>Liquidambar</td> <td>Rosaceae</td> <td>2<br/></td> <td>2 Mallotus</td> <td>5         5</td> <td>2<br/><i>Bhuss</i></td> <td>2 <i>xəll</i> 1 3 4 1</td> <td></td> <td>2 4<i>esculus</i></td> <td>2 Vitaceae</td> <td>2 <i>Illia</i></td> <td>Camellia 2</td> <td>Araliaceae</td> <td>Cornus c</td> | 2 Climus / Zelkova                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | celtis / Aphananthe         c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Liquidambar             | Rosaceae                                 | 2<br>                      | 2 Mallotus    | 5         5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2<br><i>Bhuss</i>                                             | 2 <i>xəll</i> 1 3 4 1                                                                         |                                         | 2 4 <i>esculus</i>              | 2 Vitaceae    | 2 <i>Illia</i> | Camellia 2            | Araliaceae                                              | Cornus c              |
| 試料<br>番号<br>TNZ-1_1<br>TNZ-1_2<br>TNZ-1_3<br>TNZ-1_4<br>TNZ-1_5<br>TNZ-1_6<br>TKT-1_7<br>TKT-1_8<br>TKT-1_9<br>TKT-1_10                                                                                                     | 分類コード<br>分類群<br>分類群<br>次類群<br>(m)<br>0.55 - 0.57<br>4.60 - 4.62<br>15.74 - 15.76<br>32.88 - 32.90<br>42.30 - 42.32<br>51.34 - 51.36<br>0.25 - 0.27<br>0.75 - 0.77<br>8.89 - 8.91<br>14.55 - 14.57                                                                                            | 5         Quercus (Subgen.           1         1         1           1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | D         D         D         D         N           1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0          | +     -     Castanopsis/Pasania                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | α         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ         Δ                                         | N         Celtis / Aphananthe         N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Liquidambar             | Rosaceae                                 | 2<br>                      | 2<br>Mallotus | x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x | 2<br><i>B U u s</i>                                           |                                                                                               | 2<br>1 2<br>1 1                         | 1         1         1         2 | 2 Vitaceae    | 2 <i>IUII</i>  | Camellia 2            | Araliaceae                                              | Cornus c              |
| 試<br>料<br>番<br>号<br>TNZ-1_1<br>TNZ-1_2<br>TNZ-1_2<br>TNZ-1_3<br>TNZ-1_4<br>TNZ-1_5<br>TNZ-1_6<br>TKT-1_7<br>TKT-1_9<br>TKT-1_10<br>TKT-1_10                                                                                 | 分類コード<br>分類群<br>分類群<br>(m)<br>(m)<br>(m)<br>(m)<br>(m)<br>(m)<br>(m)<br>(m)                                                                                                                                                                                                                  | 5         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2                                                                                                                                                                                                                                                                                                                                                                        | 2 Cyclobalanopsis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1     1     1     1     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | α [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | b         Celtis / Aphananthe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Liquidambar         2   | Rosaceae                                 | 2<br>2<br>1<br>1<br>1<br>2 | 2<br>Mallotus | 5         5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                               |                                                                                               | 2<br>1 2<br>1 1                         | 2 <i>Aesculus</i>               | 2 2           | 2              | Camellia         c    | Araliaceae         2                                    | Cornus                |
| 試<br>料<br>番<br>号<br>TNZ-1_1<br>TNZ-1_2<br>TNZ-1_2<br>TNZ-1_3<br>TNZ-1_4<br>TNZ-1_5<br>TNZ-1_6<br>TKT-1_7<br>TKT-1_7<br>TKT-1_9<br>TKT-1_10<br>TKT-1_11<br>TKT-2_12                                                          | 分類コード<br>分類群<br>分類群<br>(m)<br>(m)<br>(m)<br>(m)<br>(m)<br>(m)<br>(m)<br>(m)                                                                                                                                                                                                                  | 5         2           7         2           1         2           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 Cyclobalanopsis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1     2       1     1       1     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | b         1         6         1         6         1         6         1         7         7         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th1< th=""> <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<></th1<> | b         Celtis / Aphananthe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Liquidambar         2   | Rosaceae                                 | 2<br>2<br>1<br>1<br>2      | 2<br>Mallotus | 5         3apium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                               |                                                                                               | 2<br>1 2<br>1 1                         | 2 <i>Aesculus</i>               | 2<br>Vitaceae | 2              | Camellia         c    | 1         2         7                                   | Cornus                |
| 試<br>料<br>番<br>号<br>TNZ-1_1<br>TNZ-1_2<br>TNZ-1_2<br>TNZ-1_3<br>TNZ-1_4<br>TNZ-1_5<br>TNZ-1_6<br>TKT-1_7<br>TKT-1_7<br>TKT-1_9<br>TKT-1_10<br>TKT-1_11<br>TKT-2_12<br>TKT-2_13                                              | 分類コード<br>分類群<br>分類群<br>(m)<br>(m)<br>(m)<br>(m)<br>(m)<br>(m)<br>(m)<br>(m)                                                                                                                                                                                                                  | 2<br><i>Quercus</i> (Subgen.<br>2<br><i>Quercus</i> (Subgen.<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | b         Celtis / Aphananthe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Liquidambar         2   | 2<br>                                    | 2<br>2<br>1<br>1<br>2      | 2<br>Wallotus | apium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2<br><i>STN UB</i> 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1      | 2<br>xəll 1 3 4<br>1 1<br>1 2<br>1 2                                                          | 2<br>1 2<br>1 1                         | 2<br><i>Aesculus</i><br>2       | 2<br>Vitaceae | 2              | L Camellia            | 2         Araliaceae           1         1              | 2<br>Солииз<br>Солииз |
| 武<br>料<br>番<br>号<br>TNZ-1_1<br>TNZ-1_2<br>TNZ-1_2<br>TNZ-1_2<br>TNZ-1_3<br>TNZ-1_4<br>TNZ-1_5<br>TNZ-1_6<br>TKT-1_7<br>TKT-1_7<br>TKT-1_7<br>TKT-1_10<br>TKT-1_10<br>TKT-2_12<br>TKT-2_13<br>TKT-2_14                       | 分類コード<br>分類群<br>分類群<br>(m)<br>0.55 - 0.57<br>4.60 - 4.62<br>15.74 - 15.76<br>32.88 - 32.90<br>42.30 - 42.32<br>51.34 - 51.36<br>0.25 - 0.27<br>0.75 - 0.77<br>8.89 - 8.91<br>14.55 - 14.57<br>18.42 - 18.44<br>0.25 - 0.27<br>0.95 - 0.97<br>9.87 - 9.90                                     | 2<br><i>Quercus</i> (Subgen.<br>2<br><i>Quercus</i> (Subgen.<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 Castanopsis/Pasania                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2<br>2<br>3<br>6<br>1<br>6<br>1<br>2<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>2<br>1<br>2<br>2<br>2<br>1<br>2<br>2<br>1<br>2<br>2<br>2<br>1<br>2<br>2<br>2<br>1<br>2<br>2<br>2<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | cellis / Aphananthe         c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2<br><i>Liquidambar</i> | 2<br>                                    | 2<br>2<br>2<br>2<br>2      | 2 Mallotus    | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2<br><i>Sny</i><br>2<br>1                                     | 2<br><i>xeyl</i> 1 3 4 1 1 12 12 1                                                            | 2<br><i>1</i> 2<br>1                    | 2<br>4esculus                   | Nitaccac      | 2              | 1                     | 1         2           1         1                       | comus                 |
| 武<br>料<br>番<br>号<br>TNZ-1_1<br>TNZ-1_2<br>TNZ-1_2<br>TNZ-1_2<br>TNZ-1_3<br>TNZ-1_4<br>TNZ-1_5<br>TNZ-1_6<br>TKT-1_7<br>TKT-1_8<br>TKT-1_9<br>TKT-1_10<br>TKT-1_10<br>TKT-2_12<br>TKT-2_13<br>TKT-2_14<br>TKT-2_15           | 分類コード<br>分類群<br>分類群<br>(m)<br>(m)<br>(m)<br>(m)<br>(m)<br>(m)<br>(m)<br>(m)                                                                                                                                                                                                                  | 2<br><i>Quercus</i> (Subgen.<br>2<br><i>Quercus</i> (Subgen.<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c <thc< th=""> <thc< th=""> <thc< th=""> <thc< th=""></thc<></thc<></thc<></thc<> | clip         clip <td< td=""><td>2<br/><i>Liquidambar</i></td><td>2<br/></td><td>2<br/>2<br/>2<br/>2<br/>2</td><td>2</td><td>2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</td><td>2<br/><i>Snux</i><br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1</td><td>2 xəyl 1 3 4 1 1 12 12 1</td><td>2<br/>1 2<br/>1 1<br/>1 1</td><td>2<br/>4esculus</td><td>Nitaccac</td><td>2</td><td>1         2</td><td>1         2           1         1</td><td>Cornus</td></td<> | 2<br><i>Liquidambar</i> | 2<br>                                    | 2<br>2<br>2<br>2<br>2      | 2             | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2<br><i>Snux</i><br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 2 xəyl 1 3 4 1 1 12 12 1                                                                      | 2<br>1 2<br>1 1<br>1 1                  | 2<br>4esculus                   | Nitaccac      | 2              | 1         2           | 1         2           1         1                       | Cornus                |
| 試料<br>番号<br>号<br>TNZ-1_1<br>TNZ-1_2<br>TNZ-1_2<br>TNZ-1_3<br>TNZ-1_4<br>TNZ-1_5<br>TNZ-1_6<br>TKT-1_7<br>TKT-1_7<br>TKT-1_9<br>TKT-1_10<br>TKT-1_10<br>TKT-1_11<br>TKT-2_12<br>TKT-2_13<br>TKT-2_14<br>TKT-2_15<br>TKT-1_16 | 分類コード<br>分類群<br>次類群<br>武料深度(m)<br>0.55 - 0.57<br>4.60 - 4.62<br>15.74 - 15.76<br>32.88 - 32.90<br>42.30 - 42.32<br>51.34 - 51.36<br>0.25 - 0.27<br>0.75 - 0.77<br>8.89 - 8.91<br>14.55 - 14.57<br>18.42 - 18.44<br>0.25 - 0.27<br>0.95 - 0.97<br>9.87 - 9.90<br>18.68 - 18.70<br>3.81 - 3.83 | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2         Q. (Subgen.           2         D         D         Cyclobalanopsis)           2         2         Cyclobalanopsis)         Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L <thl< th=""> <thl< th=""> <thl< th=""> <thl< th=""></thl<></thl<></thl<></thl<>                                                                        | α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α         α                                         | x         x         x         x         x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Liquidambar             | 2<br>                                    | 2<br>                      | 2<br>Mallotus | x         x         x         x         x           x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         |                                                               | 2<br><i>xall</i> 1<br>3<br>4<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |                                         | 2<br>4esculus                   | Nitaccac      | 2              | T   Camellia          | 2         2           1         1           1         1 | Cornus                |

+:250粒の計数外で産出.

分類コード 1: 木本植物(針葉樹類); 2: 木本植物(広葉樹類); 3: 草本植物; 4: シダ植物; 5: コケ植物; 6: 不明花粉・胞子.

# 【 付録 11 】

# 表 2.2.3 花粉・胞子産出数一覧表 (2/3)

|                                                                                                                                                                                          | 分類コード                                                                                                                                                                                                           | 2              | 2                | 2          | 2              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                              | 3                | 3                                                                                                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3              | 3                                                   | 3                                                                                             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3                                       | 3                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------|------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| 試料番号                                                                                                                                                                                     | 分類群                                                                                                                                                                                                             | ceae           | south            | locos      | x              | trum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | snu                                                                                              | mum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | pyrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | conum (Sect.Bistorta)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ect.Persicaria /<br>iocaulon ) | sct.Reynoutria ) | opdiaceae                                                                                                            | phyllaceae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nculus         | ctrum                                               | ceae (Herb)                                                                                   | minosae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nium                                    | mullum                                                                                                                         |
|                                                                                                                                                                                          | 試料深度(m)                                                                                                                                                                                                         | Erica          | Diosp            | Symp       | Styra.         | Ligus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Fraxi                                                                                            | Vibur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Fago                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Polyg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | P. (Sd<br>Echin                | P.(S             | Chen                                                                                                                 | Caryo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ranu           | Thali                                               | Rosae                                                                                         | Legu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Gerai                                   | Myric                                                                                                                          |
| TNZ-1_1                                                                                                                                                                                  | 0.55 - 0.57                                                                                                                                                                                                     |                |                  |            |                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                | 3                | 2                                                                                                                    | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 38             |                                                     |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                       |                                                                                                                                |
| TNZ-1_2                                                                                                                                                                                  | 4.60 - 4.62                                                                                                                                                                                                     | 1              |                  |            | 1              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                              | 1                | 2                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | 1                                                   |                                                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                                                                                                                                |
| TNZ-1_3                                                                                                                                                                                  | 15.74 - 15.76                                                                                                                                                                                                   |                |                  |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |                  | 2                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                                                     |                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         | 1                                                                                                                              |
| TNZ-1_4                                                                                                                                                                                  | 32.88 - 32.90                                                                                                                                                                                                   |                | 1                |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |                  |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                                                     |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                                                                                                                                |
| TNZ-1_5                                                                                                                                                                                  | 42.30 - 42.32                                                                                                                                                                                                   |                |                  |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |                  |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1              |                                                     |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                                                                                                                                |
| TNZ-1_6                                                                                                                                                                                  | 51.34 - 51.36                                                                                                                                                                                                   |                |                  |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |                  |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                                                     |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                                                                                                                                |
| TKT-1_7                                                                                                                                                                                  | 0.25 - 0.27                                                                                                                                                                                                     |                |                  |            | 4              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |                  | 8                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2              |                                                     |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4                                       |                                                                                                                                |
| TKT-1_8                                                                                                                                                                                  | 0.75 - 0.77                                                                                                                                                                                                     |                |                  |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |                  | 32                                                                                                                   | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                                                     |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                                                                                                                                |
| TKT-1_9                                                                                                                                                                                  | 8.89 - 8.91                                                                                                                                                                                                     |                |                  |            |                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |                  |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                                                     |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                                                                                                                                |
| TKT-1_10                                                                                                                                                                                 | 14.55 - 14.57                                                                                                                                                                                                   |                |                  |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |                  |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                                                     |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                                                                                                                                |
| TKT-1_11                                                                                                                                                                                 | 18.42 - 18.44                                                                                                                                                                                                   |                |                  |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |                  | 5                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                                                     |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                                                                                                                                |
| TKT-2_12                                                                                                                                                                                 | 0.25 - 0.27                                                                                                                                                                                                     | 1              |                  |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                | 1                | 4                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                                                     |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                                                                                                                                |
| TKT-2_13                                                                                                                                                                                 | 0.95 - 0.97                                                                                                                                                                                                     | 1              |                  |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                | 3                | 19                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                                                     | 1                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                                                                                                                                |
| TKT-2_14                                                                                                                                                                                 | 9.87 - 9.90                                                                                                                                                                                                     |                |                  |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |                  |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                                                     |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                                                                                                                                |
| TKT-2_15                                                                                                                                                                                 | 18.68 - 18.70                                                                                                                                                                                                   |                |                  |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                              |                  | 1                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                                                     |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                                                                                                                                |
| TKM-1_16                                                                                                                                                                                 | 3.81 - 3.83                                                                                                                                                                                                     |                |                  |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |                  |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                                                     |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                                                                                                                                |
|                                                                                                                                                                                          |                                                                                                                                                                                                                 |                |                  |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |                  |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                                                     |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                                                                                                                                |
|                                                                                                                                                                                          |                                                                                                                                                                                                                 |                |                  |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |                  |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                                                     |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                                                                                                                                |
|                                                                                                                                                                                          | 分類⊐ード                                                                                                                                                                                                           | 3              | 3                | 3          | 3              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                              | 3                | 3                                                                                                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3              | 4                                                   | 4                                                                                             | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                                       | 4                                                                                                                              |
|                                                                                                                                                                                          | 分類⊐ド<br>分類群<br>試料深度(m)                                                                                                                                                                                          | Umbelliferae   | Gentiana         | Justicia   | Labiatae 6     | Valeriana 🛛                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Carduoideae                                                                                      | Artemisia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cichorioideae ∞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Typha 🛛                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Alisma 6                       | Sag ittaria      | Gramineae                                                                                                            | Cyperaceae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Eriocaulon     | Liliaceae                                           | Lycopodium (subgen.<br>Urostachys)                                                            | L. (subgen. $Lycopodium$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Osmunda                                 | Davallia                                                                                                                       |
| 武<br>料<br>番<br>号                                                                                                                                                                         | 分類コード<br>分類群<br>就料深度(m)<br>0.55 - 0.57                                                                                                                                                                          | Umbelliferae   | 1 Gentiana       | Justicia   | Labiatae 🖉     | Valeriana 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | د<br>د<br>د<br>د<br>د                                                                            | 6 Artemisia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E Cichonioideae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Typha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Alisma 3                       | Sagittaria       | 6 Gramineae                                                                                                          | α<br>Cyperaceae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Eriocaulon     | k<br>Liliaceae                                      | Lycopodium (subgen.       Lotostachys)                                                        | (L. (subgen. Lycopodium))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4 Osmunda                               | bavallia                                                                                                                       |
| 試<br>料<br>番<br>号<br>TNZ-1_1<br>TNZ-1_2                                                                                                                                                   | 分類コード<br>分類群<br>就料深度(m)<br>0.55 - 0.57<br>4.60 - 4.62                                                                                                                                                           | Umbelliferae 5 | 1 Gentiana       | Justicia   | Labiatae       | c Valeriana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 Carduoideae                                                                                    | 2 B Artemisia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | L Cichorioideae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 Typha E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 41 Alisma                      | Sagittaria       | c<br>Gramineae<br>821<br>822                                                                                         | <sup>c</sup><br><sup>c</sup><br><sup>b</sup><br><sup>c</sup><br><sup>c</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Eriocaulon     | k<br>Liliaceae                                      | Lycopodium (subgen.       Lostachys)                                                          | $\omega \left[ L. (subgen. Lycopodium) \right]_{\bullet}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4<br>Osmunda                            | 1 Davallia                                                                                                                     |
| 試<br>料<br>番<br>号<br>TNZ-1_1<br>TNZ-1_2<br>TNZ-1_3                                                                                                                                        | 分類コード<br>分類群<br>就料深度(m)<br>0.55 - 0.57<br>4.60 - 4.62<br>15.74 - 15.76                                                                                                                                          | Cumbelliferae  | L Gentiana       | Justicia   | Labiatae       | Valeriana 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | α Carduoideae                                                                                    | 121 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | G L Cichorioideae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | c z Typha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Alisma 6                       | Sag ittaria      | د<br>د 22<br>د 23<br>د 23<br>د 23<br>د 23<br>د 23<br>د 23<br>د 2                                                     | 6 b cyperaceae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Eriocaulon ©   | k Liliaceae                                         | Lycopodium (subgen.       L       Urostachys)                                                 | $\omega$ L. (subgen. Lycopodium)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Smunda                                  | - 1 <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u></u>                                   |
| 試<br>料<br>番<br>号<br>TNZ-1_1<br>TNZ-1_2<br>TNZ-1_3<br>TNZ-1_4                                                                                                                             | 分類コード<br>分類群<br>就料深度(m)<br>0.55 - 0.57<br>4.60 - 4.62<br>15.74 - 15.76<br>32.88 - 32.90                                                                                                                         | Cmbelliferae   | 1 Gentiana       | Justicia   | Labiatae 🖉     | Valeriana 🖉                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 Carduoideae                                                                                    | 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | G L Cichorioideae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Πурha         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε <td>→ Alisma</td> <td>Sagittaria 6</td> <td>3<br/>8 27<br/>2 13<br/>8 12<br/>2 13<br/>2 13<br/>5</td> <td>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2<br/>2</td> <td>Eriocaulon c</td> <td>4<br/>F<br/>Cliliaceae</td> <td>Lycopodium (subgen.       Livostachys)</td> <td><math>\infty</math> L. (subgen. Lycopodium)</td> <td>▶ Osmunda ►</td> <td>4 Davallia</td> | → Alisma                       | Sagittaria 6     | 3<br>8 27<br>2 13<br>8 12<br>2 13<br>2 13<br>5                                                                       | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Eriocaulon c   | 4<br>F<br>Cliliaceae                                | Lycopodium (subgen.       Livostachys)                                                        | $\infty$ L. (subgen. Lycopodium)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ▶ Osmunda ►                             | 4 Davallia                                                                                                                     |
| 試料<br>番号<br>TNZ-1_1<br>TNZ-1_2<br>TNZ-1_3<br>TNZ-1_4<br>TNZ-1_5                                                                                                                          | 分類コード<br>分類群<br>就料深度(m)<br>0.55 - 0.57<br>4.60 - 4.62<br>15.74 - 15.76<br>32.88 - 32.90<br>42.30 - 42.32                                                                                                        | Cumbelliferae  | Gentiana       L | Justicia   | Labiatae 6     | ναleriana ε                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 Carduoideae                                                                                    | 211<br>120<br>120<br>120<br>120<br>120<br>120<br>120<br>120<br>120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cichorioideae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ⊲ Alisma                       | Sagittaria       | 3<br>273<br>138<br>15<br>3<br>3                                                                                      | ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε         ε | Εriocaulon ε   | k F                                                 | Lycopodium (subgen.                                                                           | Δ [L. (subgen. Lycopodium)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4 Osmunda                               | 4<br>1 1 1 1                                                                                                                   |
| 試料<br>番号<br>号<br>TNZ-1_1<br>TNZ-1_2<br>TNZ-1_3<br>TNZ-1_4<br>TNZ-1_5<br>TNZ-1_6                                                                                                          | 分類コード<br>分類群<br>対類群<br>武料深度(m)<br>0.55 - 0.57<br>4.60 - 4.62<br>15.74 - 15.76<br>32.88 - 32.90<br>42.30 - 42.32<br>51.34 - 51.36                                                                                | Chmbelliferae  | L Gentiana       | Justicia   | Labiatac ∞     | Control Co    | 2 Carduoideae                                                                                    | 3<br>3<br>3<br>3<br>3<br>4<br>7<br>5<br>9<br>5<br>1<br>5<br>9<br>1<br>5<br>9<br>1<br>1<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 | □ [ ] [ ] [ ])pha [ ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ∞ ¬                            | Sagittaria       | 3<br>273<br>138<br>213<br>15<br>3<br>1<br>1                                                                          | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Eriocaulon ε   | P Liliaceae                                         | Lycopodium (subgen.       L Urostachys)                                                       | [+] $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$ $[+]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4<br>2<br>08munda                       | 4<br>1 1<br>1 1<br>1 1                                                                                                         |
| 試<br>料<br>番<br>号<br>TNZ-1_1<br>TNZ-1_2<br>TNZ-1_2<br>TNZ-1_3<br>TNZ-1_4<br>TNZ-1_5<br>TNZ-1_6<br>TKT-1_7                                                                                 | 分類コード<br>分類群<br>対類群<br>武料深度(m)<br>0.55 - 0.57<br>4.60 - 4.62<br>15.74 - 15.76<br>32.88 - 32.90<br>42.30 - 42.32<br>51.34 - 51.36<br>0.25 - 0.27                                                                 | Cumbelliferae  | Centiana E       | Justicia   | Labiatae ∞     | C C C C C C C C C C C C C C C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ۲ د د د د د د د د د د د د د د د د د د د                                                          | 3<br>3<br>3<br>4<br>4<br>3<br>6<br>175<br>159<br>159<br>1<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | G Cichorioideae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ε τ <i>Typha</i> ε                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ∞ Alisma                       | Sagittaria       | د<br>۲۰۹۵<br>۲۰۹۵<br>۲۰۹۵<br>۲۰۹۵<br>۲۰۹۵<br>۲۰۹۵<br>۲۰۹۵<br>۲۰۹۵                                                    | 3<br>3<br>45<br>6<br>8<br>6<br>8<br>2<br>2<br>3<br>3<br>2<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Eriocaulon c   | P Liliaceae                                         | Lycopodium (subgen.           L         Urostachys)                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4<br><i>Comunada</i>                    | 4<br>1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                   |
| 試<br>料<br>番<br>号<br>TNZ-1_1<br>TNZ-1_2<br>TNZ-1_2<br>TNZ-1_3<br>TNZ-1_4<br>TNZ-1_5<br>TNZ-1_6<br>TKT-1_7<br>TKT-1_8                                                                      | 分類コード<br>分類群<br>対類群<br>試料深度(m)<br>0.55 - 0.57<br>4.60 - 4.62<br>15.74 - 15.76<br>32.88 - 32.90<br>42.30 - 42.32<br>51.34 - 51.36<br>0.25 - 0.27<br>0.75 - 0.77                                                  | Cumbelliferae  | Centiana E       | Justicia c | ∞              | Γ Valeriana ∞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ۲ د د د د د د د د د د د د د د د د د د د                                                          | з<br>3<br>3<br>3<br>6<br>175<br>159<br>116<br>116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 Cichorioideae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1         C         Δ           1         1         Δ         Δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ∞ Alisma                       | Sagittaria       | 3<br>2733<br>1388<br>213<br>15<br>3<br>1<br>10<br>10<br>182                                                          | 3<br>3<br>45<br>46<br>8<br>8<br>3<br>2<br>8<br>8<br>2<br>8<br>51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Eriocauton ε   | 4<br>P<br>Initiaceae                                | 4         2         Uycopodium (subgen.           4         2         Urostachys)         4   | $\left  \begin{array}{c c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4<br>02<br>2                            | 4<br>96<br>96                                                                                                                  |
| 試<br>料<br>番<br>号<br>TNZ-1_1<br>TNZ-1_2<br>TNZ-1_2<br>TNZ-1_3<br>TNZ-1_4<br>TNZ-1_5<br>TNZ-1_6<br>TKT-1_7<br>TKT-1_8<br>TKT-1_9                                                           | 分類コード<br>分類群<br>対類群<br>試料深度(m)<br>0.55 - 0.57<br>4.60 - 4.62<br>15.74 - 15.76<br>32.88 - 32.90<br>42.30 - 42.32<br>51.34 - 51.36<br>0.25 - 0.27<br>0.75 - 0.77<br>8.89 - 8.91                                   | Cumbelliferae  | Centiana c       | Justicia   | Σ [ Tabiatac ε | Contraction σ α α α α α α α α α α α α α α α α α α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ε         ε           2         ε           1         1                                          | 3<br><i>biter biter bi</i> | 2 Cichorioideae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1         1         Σ)pha         ε                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ∞ Alisma                       | Sagittaria       | 3<br>3<br>273<br>138<br>213<br>15<br>3<br>1<br>1<br>0<br>182                                                         | 2<br>2<br>3<br>3<br>2<br>2<br>8<br>2<br>8<br>51<br>51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Eriocaulon c   | F                                                   | 4         2         Lycopodium (subgen.           4         2         Urostachy s)         4  | $\left  \begin{array}{c c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4<br>2<br>2                             | 4<br>96<br>96                                                                                                                  |
| 試料<br>番号<br>号<br>TNZ-1_1<br>TNZ-1_2<br>TNZ-1_3<br>TNZ-1_4<br>TNZ-1_5<br>TNZ-1_6<br>TKT-1_7<br>TKT-1_8<br>TKT-1_9<br>TKT-1_10                                                             | 分類コード<br>分類群                                                                                                                                                                                                    | Cumbelliferae  | Centiana c       | Justicia   | Labiatae &     | valeriana ∞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲<br>۲      | 3<br><i>biter biter bi</i> | 2 Cichorioideae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1         1         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ         δ                                                                                                                                                                                                                                                                                                                                                                                                                                      | ∞<br><i>Alisma</i>             | Sagittaria       | 3<br>3<br>273<br>138<br>213<br>15<br>3<br>1<br>10<br>182<br>10<br>10                                                 | 2<br>2<br>3<br>2<br>2<br>3<br>3<br>51<br>51<br>51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Eriocaulon ∞   |                                                     | Lycopodium (subgen.           2         Urostachys)                                           | $\sim$ $L$ (subgen. Lycopodium)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4<br>2<br>2                             | 4<br>6<br>6<br>1<br>1<br>1<br>1<br>0<br>6<br>0<br>1<br>1<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
| 試<br>料<br>番<br>号<br>TNZ-1_1<br>TNZ-1_2<br>TNZ-1_2<br>TNZ-1_3<br>TNZ-1_4<br>TNZ-1_5<br>TNZ-1_6<br>TKT-1_7<br>TKT-1_8<br>TKT-1_9<br>TKT-1_10<br>TKT-1_11                                   | 分類コード<br>分類群<br>分類群<br>試料深度(m)<br>0.55 - 0.57<br>4.60 - 4.62<br>15.74 - 15.76<br>32.88 - 32.90<br>42.30 - 42.32<br>51.34 - 51.36<br>0.25 - 0.27<br>0.75 - 0.77<br>8.89 - 8.91<br>14.55 - 14.57<br>18.42 - 18.44 | Cumbelliferae  | Gentiana c       | Justicia   | Labiatae c     | valeriana ∞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 Carduoideae                                                                                    | 3<br><i>bisineatics</i><br>3<br>3<br>3<br>3<br>4<br>1<br>1<br>5<br>9<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | c Cichorioideae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 1 1 2 2 12 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ⇒ Alisma                       | Sagittaria       | 5<br>8<br>7<br>8<br>7<br>9<br>7<br>9<br>7<br>9<br>7<br>9<br>7<br>9<br>7<br>9<br>7<br>9<br>7<br>9<br>7                | 6         6         6           6         64         64         64           7         6         64         64           16         61         61         61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Eriocaulon &   | 4<br>F<br>Liliaceae                                 | Lycopodium (subgen.           2         Urostachys)                                           | α [L. (subgen. Lycopodium)<br>Φ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4<br><i>ppunusO</i><br>2<br>2           | 4<br>96                                                                                                                        |
| 試<br>料<br>番<br>号<br>TNZ-1_1<br>TNZ-1_2<br>TNZ-1_2<br>TNZ-1_3<br>TNZ-1_4<br>TNZ-1_5<br>TNZ-1_6<br>TKT-1_5<br>TKT-1_7<br>TKT-1_8<br>TKT-1_9<br>TKT-1_10<br>TKT-1_11<br>TKT-2_12            | 分類コード<br>分類群                                                                                                                                                                                                    | Cumbelliferae  | Gentiana c       | Justicia   | 2 Labiatae     | valeriana ∞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 Carduoideae                                                                                    | 3<br>3<br>175<br>159<br>116<br>80<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 Cichorioideae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ⇒ Alisma                       | Sagittaria       | 5<br>6<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                     | 6         6         6           6         6         6         6           7         6         6         6           8         2         6         6           1         6         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ⊥ Eriocaulon ∞ | P Tiliaceae                                         | c         Lycopodium (subgen.           c         Lycostachys)                                | $\begin{array}{ c c c } \bullet & & & & \\ \bullet & & \\ \bullet$ | 4<br><i>ppunusO</i> 2<br>2<br>3         | 4<br>96<br>92                                                                                                                  |
| 試料<br>番子<br>号<br>TNZ-1_1<br>TNZ-1_2<br>TNZ-1_3<br>TNZ-1_4<br>TNZ-1_5<br>TNZ-1_6<br>TKT-1_5<br>TKT-1_7<br>TKT-1_8<br>TKT-1_9<br>TKT-1_10<br>TKT-1_11<br>TKT-2_12<br>TKT-2_13              | 分類コード<br>分類群                                                                                                                                                                                                    | Cumbelliferae  | Centiana c       | 2 Justicia | 2 Labiatae     | and a second se | 2 Carduoideae                                                                                    | 3<br><i>biter biter bi</i> | 8 S S S S S S S S S S S S S S S S S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ⇒ Alisma                       | Sag ittaria      | 5<br>8<br>7<br>8<br>7<br>9<br>7<br>9<br>7<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9 | 6         6           6         6           7         6           8         2           8         2           1         1           1         1           2         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | □ Eriocaulon ∞ | 4 P                                                 | c         Lycopodium (subgen.           c         b         Lycostachys)                      | $\sim$ + $\sim$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4<br><i>ppunusO</i> 2<br>2<br>3<br>1    | 4<br><i>payallia</i><br>96<br>92<br>5                                                                                          |
| 試料<br>番子<br>号<br>TNZ-1_1<br>TNZ-1_2<br>TNZ-1_3<br>TNZ-1_4<br>TNZ-1_5<br>TNZ-1_6<br>TKT-1_7<br>TKT-1_8<br>TKT-1_9<br>TKT-1_10<br>TKT-1_11<br>TKT-2_12<br>TKT-2_13<br>TKT-2_14             | 分類コード<br>分類群                                                                                                                                                                                                    | Cumbelliferae  | Centiana c       | Justicia © | 2 Labiatae     | Contraction a c | 2<br>2<br>2<br>2<br>1<br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 3<br><i>biside a constraint of the second second</i> | 2 Cichorioideae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ⇒ Alisma                       | Sag ittaria      | 5<br>8<br>7<br>8<br>7<br>9<br>7<br>9<br>7<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9 | 6         6           6         6           7         6           8         2           1         6           1         1           1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Eriocaulon &   | 4<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F | cs         b         Lycopodium (subgen.           cs         b         J         Urostachys) | $\sim$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4<br><i>ppunusO</i><br>2<br>2<br>3<br>1 | 4<br><i>p</i> illava<br>61<br>1<br>1<br>96<br>92<br>5                                                                          |
| 試料<br>番号<br>号<br>TNZ-1_1<br>TNZ-1_2<br>TNZ-1_3<br>TNZ-1_4<br>TNZ-1_5<br>TNZ-1_6<br>TKT-1_7<br>TKT-1_8<br>TKT-1_9<br>TKT-1_10<br>TKT-1_11<br>TKT-2_12<br>TKT-2_13<br>TKT-2_14<br>TKT-2_15 | 分類コード<br>分類群                                                                                                                                                                                                    | c Cmbelliferae | Centiana c       | Justicia 2 | 2              | C Valeriana ∞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 Carduoideae                                                                                    | 3<br><i>a</i><br><i>b</i><br><i>b</i><br><i>b</i><br><i>b</i><br><i>b</i><br><i>b</i><br><i>b</i><br><i>b</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 2 6 Cichonoideae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ⇒ 4 <i>lisma</i>               | Sagittaria       | 3<br>3<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                     | 8         2         2         4         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6 | Eriocaulon &   | 4 4                                                 | Cs         Lycopodium (subgen.           Cs         2         Urostachys)                     | α         μ         L. (subgen. Lycopodium)         μ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4<br><i>ppunuso</i><br>2<br>2<br>       | 4<br><i>pillovallia</i><br>96<br>92<br>5                                                                                       |

# 【付録11】

# 表 2.2.4 花粉・胞子産出数一覧表 (3/3)

|          | 分類コード      |            | 4             | 4                    | 4                   | 5        | 5       | 6                         |
|----------|------------|------------|---------------|----------------------|---------------------|----------|---------|---------------------------|
| 試料番号     | 分類<br>試料深り | 〕群<br>度(m) | Polypodiaceae | monolete type spores | trilete type spores | Bryophta | unubydS | unknown pollen and spores |
| TNZ-1_1  | 0.55 -     | 0.57       | 3             | 108                  | 391                 |          |         | 102                       |
| TNZ-1_2  | 4.60 -     | 4.62       |               | 374                  | 30                  | 1        |         | 72                        |
| TNZ-1_3  | 15.74 -    | 15.76      |               | 111                  | 9                   | 3        | 1       | 82                        |
| TNZ-1_4  | 32.88 -    | 32.90      |               | 11                   | 1                   |          |         | 4                         |
| TNZ-1_5  | 42.30 -    | 42.32      |               | 7                    |                     |          |         | 1                         |
| TNZ-1_6  | 51.34 -    | 51.36      |               | 1                    |                     |          |         |                           |
| TKT-1_7  | 0.25 -     | 0.27       | 6             | 612                  | 98                  |          |         | 108                       |
| TKT-1_8  | 0.75 -     | 0.77       |               |                      |                     |          |         |                           |
| TKT-1_9  | 8.89 -     | 8.91       |               |                      |                     |          |         |                           |
| TKT-1_10 | 14.55 -    | 14.57      |               |                      |                     |          |         |                           |
| TKT-1_11 | 18.42 -    | 18.44      |               |                      |                     |          |         |                           |
| TKT-2_12 | 0.25 -     | 0.27       |               | 44                   | 49                  | 3        |         | 26                        |
| TKT-2_13 | 0.95 -     | 0.97       |               | 35                   | 54                  | 1        |         | 82                        |
| TKT-2_14 | 9.87 -     | 9.90       |               | 1                    |                     |          |         | 1                         |
| TKT-2_15 | 18.68 -    | 18.70      |               | 3                    | 1                   |          |         | 6                         |
| TKM-1_16 | 3.81 -     | 3.83       |               | 2                    |                     | 5        |         | 6                         |

|          | 分類コード   |            |           |           |           |            |          |                       |
|----------|---------|------------|-----------|-----------|-----------|------------|----------|-----------------------|
| 試 嵙 番 号  | 分数      | 頁群<br>度(m) | 木本植物花粉数小計 | 草本植物花粉数小計 | シダ植物胞子数小計 | 不明花粉·胞子数小計 | 花粉·胞子数合計 | 試料1gあたりの産出粒数<br>(粒/g) |
| TNZ-1_1  | 0.55 -  | 0.57       | 262       | 590       | 575       | 102        | 1529     | 5,778                 |
| TNZ-1_2  | 4.60 -  | 4.62       | 257       | 379       | 406       | 72         | 1114     | 72                    |
| TNZ-1_3  | 15.74 - | 15.76      | 258       | 483       | 125       | 82         | 948      | 64                    |
| TNZ-1_4  | 32.88 - | 32.90      | 18        | 18        | 12        | 4          | 52       | 3                     |
| TNZ-1_5  | 42.30 - | 42.32      | 7         | 7         | 7         | 1          | 22       | 1                     |
| TNZ-1_6  | 51.34 - | 51.36      | 7         | 3         | 1         | 0          | 11       | 1                     |
| TKT-1_7  | 0.25 -  | 0.27       | 262       | 62        | 840       | 108        | 1272     | 584                   |
| TKT-1_8  | 0.75 -  | 0.77       | 250       | 390       | 0         | 0          | 640      | 30                    |
| TKT-1_9  | 8.89 -  | 8.91       | 8         | 2         | 0         | 0          | 10       | 1                     |
| TKT-1_10 | 14.55 - | 14.57      | 2         | 11        | 0         | 0          | 13       | 1                     |
| TKT-1_11 | 18.42 - | 18.44      | 108       | 142       | 0         | 0          | 250      | 11                    |
| TKT-2_12 | 0.25 -  | 0.27       | 67        | 28        | 200       | 26         | 321      | 43                    |
| TKT-2_13 | 0.95 -  | 0.97       | 295       | 190       | 98        | 82         | 665      | 7,584                 |
| TKT-2_14 | 9.87 -  | 9.90       | 8         | 2         | 1         | 1          | 12       | 0.4                   |
| TKT-2_15 | 18.68 - | 18.70      | 16        | 9         | 4         | 6          | 35       | 3                     |
| TKM-1_16 | 3.81 -  | 3.83       | 10        | 10        | 8         | 6          | 34       | 4                     |

+:250粒の計数外で産出.

分類コード 1: 木本植物(針葉樹類); 2: 木本植物(広葉樹類); 3: 草本植物; 4: シダ植物; 5: コケ植物; 6: 不明花粉・胞子.

### 2) 群集解析

木本植物花粉の分類群の組み合わせに基づき、3帯(下位よりTNZ1-1帯,-2帯及び-3帯)の 地域花粉群集帯に区分した(図 2.2.2)。以下に各地域花粉群集帯の特徴を下位より述べる。

### ① TNZ1-1帯

本本植物花粉の産出粒数が少ない層序区間である。Pinus, Cryptomeria, Carpinus/Ostrya, Betula, Alnus, Q. (Subgen. Lepidobalanus), Q. (Subgen. Cyclobalanopsis), Castanopsis / Pasania, Ulmus/Zelkova, Celtis/Aphananthe (エノキ属/ムクノキ属), Ilex (モチノキ属), Diospyros (カキノキ属) などの分類群が産出する。

### ② TNZ1-2 帯

Alnus が極めて優勢で、Cryptomeria, Q.(Subgen. Lepidobalanus), Q.(Subgen. Cyclobalanopsis) および Carpinus / Ostrya がこれに次ぐ。常緑広葉樹の Castanopsis / Pasania を低率に伴う。 Pinaceae の分類群および Sciadopitys は極めて低率であり、Fagus はほとんど産出しない。

### ③ TNZ1-3 帯

*Pinus* が優勢で、*Q.*(Subgen. *Lepidobalanus*), *Sciadopitys* および *Q.*(Subgen. *Cyclobalanopsis*) がこれに次ぐ。*Cryptomeria* は低率であり、*Fagus* および *Castanopsis / Pasania* は極めて低率である。



#### 3) 古環境の考察(図 2.2.2)

#### ① TNZ1-1帯

木本植物花粉の産出粒数が少ない層序区間であるため、古植生・古気候についての予察を 述べる。温帯針葉樹の Pinus および Cryptomeria が、温帯落葉広葉樹の Q. (Subgen. Lepidobalanus)や暖温帯常緑広葉樹の Q. (Subgen. Cyclobalanopsis) などの分類群を伴って 産出することから、森林古植生は暖温帯上部に優占する温帯針葉樹林(中間温帯林)であっ た可能性がある。また、草本植物およびシダ・コケ植物の分類群が高率に産出することから、 堆積地周辺には氾濫原が存在していた可能性がある。古気候は温暖・湿潤であったと推定さ れる。

### ② TNZ1-2 帯

草本植物およびシダ・コケ植物の分類群が高率に産出することから、堆積地周辺には広大 な氾濫原の原野植生が存在していたと考えられる。さらに、木本植物の Alnus が極めて優勢 であり、Myriophyllum および Typha などの水生植物や Eriocaulon (ホシクサ属) および Sphagnum などの湿地生植物を伴うことから、氾濫原の後背湿地には池沼・湿地の植生や Alnus を主体とする湿地林や河辺林が存在したと推定される。また、Alnus 以外の木本植物 の花粉化石群集は温帯針葉樹の Cryptomeria, 温帯落葉広葉樹の Q.(Subgen. Lepidobalanus) および Carpinus / Ostrya, 暖温帯常緑広葉樹の Q.(Subgen. Cyclobalanopsis)からなり、 Castanopsis/Pasania を低率に伴う。これらのことから、森林古植生は照葉樹林(暖温帯常 緑広葉樹林) ~暖温帯上部に優占する温帯針葉樹林(中間温帯林) であったと考えられる。 古気候は温暖であったと推定され、温帯常緑針葉樹の Cryptomeria が高率に産出することか ら、降水量は一年を通じて多かったと考えられる。

#### ③ TNZ1-3 帯

草本植物およびシダ・コケ植物の分類群が高率に産出することから、堆積地周辺には広大 な氾濫原の原野植生が存在していたと考えられる。木本植物の Pinus が極めて優勢であり、 水生植物の Alisma はわずかに産出したがその他の水生植物の分類群および湿地生植物の分 類群を伴わないことから、前述の TNZ1・2 帯と比較すると、堆積地周辺は明るく開けた環境 で土壌水分が乾燥化した土地条件であったことが推定される。Pinus 以外の木本植物の花粉 化石群集は温帯落葉広葉樹の Q.(Subgen. Lepidobalanus)が優勢で、温帯常緑針葉樹の Sciadopitys, 暖温帯常緑広葉樹の Q.(Subgen. Cyclobalanopsis) を伴う。これらのことから、 森林古植生は照葉樹林 (暖温帯常緑広葉樹林) ~暖温帯上部に優占する温帯針葉樹林 (中間 温帯林) であったと考えられる。古気候は下位の時代と比較して温暖であったと推定され、 温帯常緑針葉樹の Sciadopitys および Tsuga が下位の帯と比較して著しく増加していること から、夏期には連続的な降水があったが冬期の降水量は少なかったと考えられる。

#### (2) TKT-1コア

#### 1) 分析結果

花粉・胞子化石の同定・計数結果および堆積物1g試料当たりに含まれる花粉・胞子化石量を 表 2.2.2~表 2.2.4 に示す。主な分類群は、常緑針葉樹の Abies, Pinus, Sciadopitys, Cryptomeria, Cupressaceae, 落葉広葉樹の Carpinus/Ostrya, Alnus, Q. (Subgen. Lepidobalanus), 常緑広 葉樹の Q. (Subgen. Cyclobalanopsis) および Castanopsis/Pasania などであった。また、現在 の日本列島には自生していない Hemiptelea が産出した。

付 11-15

堆積物1g試料当たりに含まれる花粉・胞子化石量,花粉・胞子総数に対する木本植物花粉・ 草本植物花粉およびシダ・コケ植物の胞子,同定不明・不能の化石の割合は、図 2.2.3 の左側に 示した。

各分類群の産出率は、表 2.2.2~表 2.2.4 に示した同定・計数結果に基づき、木本植物花粉の 総数を基数として算出し、図 2.2.3 の花粉ダイアグラムに示した。なお、TKT-1 コア試料番号 9 (深度 8.89~8.91 m),試料番号 10(深度 14.55~14.57 m)および試料番号 11(深度 18.42~ 18.44 m)は木本植物の花粉化石総数が 250 粒に満たなかったため統計処理の対象外とし、分類 群の産出事実のみ表示した。

### 2) 群集解析

木本植物花粉の分類群の組み合わせに基づき、3帯(下位よりTKT1-1帯,-2帯,-3帯)の地 域花粉群集帯に区分した(図 2.2.3)。以下に各地域花粉群集帯の特徴を下位より述べる。

### ① TKT1-1帯

本本植物花粉の産出粒数が少ない層序区間である。*Pinus, Cryptomeria*, Cupressaceae, *Myrica*(ヤマモモ属), *Carpinus*/ *Ostrya*, *Corylus*(ハシバミ属), *Betula*, *Alnus*, *Q*. (Subgen. *Lepidobalanus*), *Q*. (Subgen. *Cyclobalanopsis*), *Castanopsis*/*Pasania*, *Ulmus*/ *Zelkova*, *Rhus* (ウルシ属), *Ligustrum*(イボタノキ属) などの分類群が産出する。

# ② TKT1-2 帯

Alnus および Cryptomeria が優勢で、Pinus, Q.(Subgen. Cyclobalanopsis), Q.(Subgen. Lepidobalanus)および Carpinus / Ostrya がこれらに次ぐ。常緑広葉樹の Castanopsis / Pasania を低率に伴う。Tsuga, Sciadopitys, Juglans / Pterocarya および Fagus は極めて低率であり、 Abies はほとんど産出しない。

# ③ TKT1-3 帯

Sciadopitys が極めて優勢で、Q.(Subgen. Lepidobalanus)および Q.(Subgen. Cyclobalanopsis) がこれに次ぐ。Cryptomeria は低率であり、Fagus および Castanopsis / Pasania はほとんど産出しない。



### 3) 古環境の考察(図 2.2.3)

#### ① TKT1-1帯

木本植物花粉の産出粒数が少ない層序区間であるため、古植生・古気候についての予察を 述べる。温帯針葉樹の Pinus および Cryptomeria が、温帯落葉広葉樹の Q. (Subgen. Lepidobalanus)や暖温帯常緑広葉樹の Q. (Subgen. Cyclobalanopsis), Castanopsis / Pasania などの分類群を伴って産出することから、森林古植生は暖温帯上部に優占する温帯 針葉樹林(中間温帯林)であった可能性がある。また、草本植物およびシダ・コケ植物の分 類群が高率に産出することから、堆積地周辺には氾濫原が存在していた可能性がある。古気 候は温暖・湿潤であったと推定される。

#### ② TKT1-2 帯

草本植物の分類群が高率に産出することから、堆積地周辺には広大な氾濫原の原野植生が存在していたと考えられる。さらに、木本植物のAlnusが優勢であることから、氾濫原には Alnus を主体とする湿地林や河辺林が存在したと推定される。また、Alnus 以外の木本植物 の花粉化石群集は温帯針葉樹の Cryptomeria が優勢で、温帯落葉広葉樹の Q.(Subgen. Lepidobalanus) および Carpinus / Ostrya, 暖温帯常緑広葉樹の Q.(Subgen. Cyclobalanopsis)などの分類群がこれに次ぐ。これらのことから、森林古植生は照葉樹林(暖 温帯常緑広葉樹林) ~暖温帯上部に優占する温帯針葉樹林(中間温帯林) であったと考えら れる。古気候は温暖であったと推定され、温帯常緑針葉樹の Cryptomeria が高率に産出する ことから、降水量は一年を通じて多かったと考えられる。

#### ③ TKT1-3 帯

シダ・コケ植物の分類群が高率に産出することから、堆積地周辺には広大な氾濫原の原野 植生が存在していたと考えられる。木本植物の花粉化石群集は温帯常緑針葉樹の Sciadopitys が極めて優勢で、温帯落葉広葉樹の Q.(Subgen. Lepidobalanus)および暖温帯常緑広葉樹の Q.(Subgen. Cyclobalanopsis) を伴う。これらのことから、森林古植生は照葉樹林(暖温帯常 緑広葉樹林) ~暖温帯上部に優占する温帯針葉樹林(中間温帯林) であったと考えられる。 古気候は下位の時代と同様に温暖であったと推定され、温帯常緑針葉樹の *Sciadopitys* が下 位の帯と比較して著しく増加していることから、夏期には連続的な降水があったが冬期の降 水量は少なかったと考えられる。

#### (3) TKT-2 コア

#### 1) 分析結果

花粉・胞子化石の同定・計数結果および堆積物 1g 試料当たりに含まれる花粉・胞子化石量を表 2.2.2~表 2.2.4 に示す。主な分類群は、常緑針葉樹の Pinus, Cryptomeria, Cupressaceae, 落 葉広葉樹の Alnus, Q. (Subgen. Lepidobalanus), 常緑広葉樹の Q. (Subgen. Cyclobalanopsis) および Castanopsis / Pasania などであった。

堆積物1g試料当たりに含まれる花粉・胞子化石量,花粉・胞子総数に対する木本植物花粉・ 草本植物花粉およびシダ・コケ植物の胞子,同定不明・不能の化石の割合は、図 2.2.4 の左側に 示した。

各分類群の産出率は、表 2.2.2~表 2.2.4 に示した同定・計数結果に基づき、木本植物花粉の 総数を基数として算出し、図 2.2.4の花粉ダイアグラムに示した。なお、TKT-2 コア試料番号 12

(深度 0.25~0.27m), 試料番号 14 (深度 9.87~9.90 m) および試料番号 15 (深度 18.68~18.70 m) は木本植物の花粉化石総数が 250 粒に満たなかったため統計処理の対象外とし、分類群の産 出事実のみ表示した。

#### 2) 群集解析

木本植物花粉の産出粒数が250粒に達したか否かにより、3帯(下位よりTKT2-1帯,-2帯,-3帯)の地域花粉群集帯に区分した(図2.2.4)。以下に各地域花粉群集帯の特徴を下位より述べる。

#### ① TKT2-1帯

本植物花粉の産出粒数が少ない層序区間である。*Pinus, Sciadopitys, Cryptomeria, Carpinus | Ostrya, Corylus, Betula, Fagus, Q.* (Subgen. *Lepidobalanus*), *Q.* (Subgen. *Cyclobalanopsis*), *Mallotus* (アカメガシワ属) などの分類群が産出する。

#### ② TKT2-2 帯

*Cryptomeria* および *Pinus* が優勢で、*Q.*(Subgen. *Lepidobalanus*), *Q.*(Subgen. *Cyclobalanopsis*) および *Castanopsis / Pasania* がこれらに次ぐ。*Abies, Picea, Tsuga* および *Sciadopitys* は極めて低率であり、*Fagus* はほとんど産出しない。

#### ③ TKT2-3 帯

本本植物花粉の産出粒数が少ない層序区間である。*Picea*, *Tsuga*, *Pinus*, *Sciadopitys*, *Cryptomeria*, *Corylus*, *Q*. (Subgen. *Lepidobalanus*), *Q*. (Subgen. *Cyclobalanopsis*), *Ilex*, Araliaceae (ウコギ科), *Cornus* (ミズキ属), Ericaceae (ツツジ科), *Fraxinus* (トネリコ属), *Viburnum* (ガマズミ属) などの分類群が産出する。



#### 3) 古環境の考察(図 2.2.4)

#### ① TKT2-1帯

木本植物花粉の産出粒数が少ない層序区間であるため、古植生・古気候についての予察を 述べる。温帯針葉樹の Cryptomeria が、温帯落葉広葉樹の Q. (Subgen. Lepidobalanus)およ び暖温帯常緑広葉樹の Q. (Subgen. Cyclobalanopsis)などの分類群を伴って産出することか ら、森林古植生は暖温帯上部に優占する温帯針葉樹林 (中間温帯林) であった可能性がある。 古気候は温暖・湿潤であったと推定される。

# ② TKT2-2帯

温帯針葉樹の Cryptomeria および Pinus が優勢で、温帯落葉広葉樹の Q.(Subgen. Lepidobalanus), 暖温帯常緑広葉樹の Q.(Subgen. Cyclobalanopsis) および Castanopsis / Pasania などの分類群を伴う。これらのことから、森林古植生は照葉樹林(暖温帯常緑広葉 樹林) ~暖温帯上部に優占する温帯針葉樹林(中間温帯林) であったと考えられる。古気候 は温暖であったと推定され、温帯常緑針葉樹の Cryptomeria が高率に産出することから、降 水量は一年を通じて多かったと考えられる。

#### ③ TKT2-3 帯

木本植物花粉の産出粒数が少ない層序区間であるため、古植生・古気候についての予察を 述べる。温帯常緑針葉樹の Sciadopitys および Cryptomeria が優勢で、温帯落葉広葉樹の Q.(Subgen. Lepidobalanus)および暖温帯常緑広葉樹の Q.(Subgen. Cyclobalanopsis)を伴う。 これらのことから、森林古植生は照葉樹林(暖温帯常緑広葉樹林) ~暖温帯上部に優占する 温帯針葉樹林(中間温帯林) であったと考えられる。古気候は下位の時代と同様に温暖であ ったと推定され、温帯常緑針葉樹の Sciadopitys が他の分類群と比較して多く産出している ことから、夏期には連続的な降水があったが冬期の降水量は少なかった可能性がある。また、 シダ・コケ植物の分類群が高率に産出することから、この時代の堆積地周辺には広大な氾濫 原の原野植生が存在していたと考えられる。

### (4) TKM-1 コア

### 1) 分析結果

花粉・胞子化石の同定・計数結果および堆積物 1g 試料当たりに含まれる花粉・胞子化石量を表 2.2.2~表 2.2.4 に示す。試料番号 16(深度 3.81~3.83 m)から産出した分類群は、常緑針葉樹 の Abies, Pinus, Cryptomeria, Cupressaceae, 落葉広葉樹の Betula であった。

堆積物1g試料当たりに含まれる花粉・胞子化石量,花粉・胞子総数に対する木本植物花粉・ 草本植物花粉およびシダ・コケ植物の胞子,同定不明・不能の化石の割合は、図 2.2.5 の左側に 示した。

試料番号16(深度3.81~3.83 m)は木本植物の花粉化石総数が250粒に満たなかったため統計処理の対象外とし、図2.2.5の花粉ダイアグラムには分類群の産出事実のみ表示した。



図 2.2.5 KM-1 コアの花粉化石ダイアグラム(木本植物)

#### 2) 古環境の考察(図 2.2.5)

試料番号 16 (深度 3.81~3.83m) は、木本植物花粉の産出粒数が少ないため、古植生・古気候 についての予察を述べる。温帯常緑針葉樹の *Cryptomeria* の産出がやや多く、その他の温帯常緑 針葉樹の分類群 (*Abies, Pinus,* Cupressaceae) を伴う。一方、落葉広葉樹の分類群は温帯落葉 広葉樹の *Betula* がわずかに産出した。これらのことから、森林古植生は温帯針葉樹林 (中間温帯 林) であった可能性がある。古気候はやや温暖であったと推定され、温帯常緑針葉樹の *Cryptomeria* が優勢であることから、降水量は一年を通じて多かった可能性がある。また、草本 植物およびシダ・コケ植物の分類群が高率に産出することから、この時代の堆積地周辺には広大 な氾濫原の原野植生が存在していたと考えられる。

# 2.2.3 テフラ分析

#### (1) TNZ-1 コア

本地点ではテフラ起源の高温型石英が試料採取最上部0.55-0.57層準に多く含まれる(表 2.2.5)。また、バブルウォールタイプ火山ガラスが上部0.18-0.57層準にやや多く(24~29/3000) 含まれる。これより下位の層準にはほとんど火山ガラスは含まれていない。最上部に含まれる火 山ガラスの屈折率は1.495~1.501および1.509~1.515にモードが見られる。同層準には緑色普通 角閃石もやや多く含まれる。角閃石の屈折率(n2)は1.670~1.676および1.686~1.689にモード が見られる。

上部0.55-0.57層準に含まれる高温型石英中のガラス包有物の主成分を分析したところ、特徴が 鬼界葛原(K-Tz)の特徴(古澤・中村,2009)と一致した(図2.2.6)。同層準はK-Tzテフラ を混在する環境(比較的K-Tzテフラ降灰期に近い堆積期)付近に堆積したと考えられる。一方、 同層準にはバブルウォールタイプ火山ガラスおよび緑色普通角閃石が含まれている。火山ガラス は形態、屈折率および主成分元素組成が姶良丹沢 (AT) および鬼界アカホヤ (K-Ah)の特徴 (町 田・新井, 2003) と一致する (図 2.2.7)。角閃石の屈折率および主成分元素組成は三瓶浮布 (SUP) テフラの特徴 (町田・新井, 2003) と一致する (図 2.2.8)。これらのテフラ起源粒子は試料採 取層準最上部形成期より後に堆積した粒子が削剥、擾乱などの作用により、K-Tz 降灰期に近い層 準に混在したと考えられる。

|           | テフラ名        |                          | K-Ah,AT,SUP,Aso-4,K-Tz   |           |           |           |           |           |           |           |           |             | SUP, Aso-4?              |             |             |             |             |             |             |             |             |                                                |
|-----------|-------------|--------------------------|--------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-------------|--------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|------------------------------------------------|
|           | 備考          | Cum含む                    | β QultM.I.多い. Cum含む      |           |           |           |           |           |           |           |           |             |                          |             |             |             |             |             |             |             |             | M.I.:ガラス包有物                                    |
|           | 角閃石の屈折率(n2) |                          | 1.670-1.676, 1.686-1.689 |           |           |           |           |           |           |           |           |             | 1.670-1.678, 1.680-1.688 |             |             |             |             |             |             |             |             |                                                |
|           | 斜方輝石の屈折率(と) |                          |                          |           |           |           |           |           |           |           |           |             | 1.700-1.705, 1.706-1.711 |             |             |             |             |             |             |             |             |                                                |
|           | 火山ガラスの屈折率   | 1.495-1.501, 1.512-1.514 | 1.496-1.501, 1.509-1.515 |           |           |           |           |           |           |           |           |             |                          |             |             |             |             |             |             |             |             |                                                |
| A石苗       | 7.3000粒子)   | 2.8                      | 6.9                      | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0           | 0                        | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0           |                                                |
| (工業00     | Cum         | 0                        | 0.5                      | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0           | 0                        | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0           |                                                |
| 1の今有景(/30 | Gho         | 20                       | 06                       | 0         | 0         | 0         | 0         | 0         | 0         | 0.1       | 0         | 0           | 0.2                      | 0           | 0.1         | 0           | 0           | 0           | 0           | 0           | 0           | 国<br>御<br>で<br>昭<br>石<br>日                     |
| 重鉱坊       | Opx 1       | 0                        | 0.5                      | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0           | 2.5                      | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0           | Opx:斜方輝子<br>Gho:緑色普近<br>Cum:カミング               |
| (/3000粉子) | 0           | 0                        | 0                        | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0           | 0                        | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0           |                                                |
| )形能別会有量   | - md        | 0                        | 0                        | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0           | 0                        | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0           | +− <i>J</i> Lタイプ<br>プ<br>プ                     |
| ルーデラスの    | Bw          | 29                       | 24                       | 0.1       | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0           | 0.1                      | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0           | Bw: バブルウ <sup>5</sup><br>Pm: パミスタイ<br>0: 低発泡タイ |
|           | 試料番号        | 0.18-0.20                | 0.55-0.57                | 0.95-0.97 | 1.33-1.35 | 2.55-2.57 | 2.94-2.96 | 3.45-3.47 | 4.60-4.62 | 5.74-5.76 | 8.81-8.83 | 20.81-20.83 | 29.66-29.68              | 32.88-32.90 | 36.91-36.93 | 40.86-40.88 | 42.45-42.47 | 43.33-43.35 | 44.88-44.90 | 46.43-46.45 | 51.34-51.36 |                                                |

表 2.2.5 TNZ-1 コアのテフラ分析結果

付 11-23

【付録11】


図 2.2.6 TNZ-1 コア 0.55-0.57 層準中の高温型石英中のガラス包有物の主成分分析結果

【 付録 11 】



図 2.2.7 TNZ-1 コア 0.55-0.57 層準中の火山ガラスの主成分分析結果

【付録11】



図 2.2.8 TNZ-1 コア 0.55-0.57 層準中の角閃石の主成分分析結果

(2) TKT-1 コア

本地点ではテフラ起源の高温型石英が試料採取上部に比較的多く含まれる(表 2.2.6)。また、 バブルウォールタイプ火山ガラスも同層準にやや多く(297~587/3000)含まれる。最上部0.25-0.27層準にバブルウォールタイプ火山ガラスの含有率スパイクが識別できる。火山ガラスの屈折 率は1.498~1.501および1.508~1.514付近の2モードに集中する。一方、025-047層準付近には 緑色普通角閃石の含有率スパイクが見られる。角閃石の屈折率(n2)は、1.670~1.680である。

上部0.55-0.57層準に含まれる高温型石英中のガラス包有物の主成分を分析したところ、特徴が K-Tzの特徴(古澤・中村,2009)と一致した(図 2.2.9)。上部にはK-Tz起源の石英が含まれ ている。このことから、試料採取層準上部形成期はK-Tzテフラを混在する環境(比較的K-Tzテ フラ降灰期に近い堆積期)にあり、擾乱などの作用でATやK-AhなどK-Tzよりかなり新しい テフラが混在した可能性がある。

また、上部の0.45-0.47及び0.65-0.67層準に含まれる火山ガラスと角閃石の主成分元素組成を分析したところ、その特徴がそれぞれ AT と三瓶浮布 (SUP) と一致することが明らかとなった(図 2.2.10~図 2.2.11)。SUP テフラは AT より若干新しい時期に降灰している。このテフラも AT 同様擾乱により混在したと考えられる。

| ラ分析結果 |
|-------|
| Γ     |
| ト     |
| 6     |
| Ā     |
| Π     |
| TKT-1 |
| 2.2.6 |
| 表     |

| 日本以中        | 火山ガラスの                          | 形態別含有量(          | /3000粒子) | 重鉱物                               | の含有量(/300  | 10粒子) | β石英       | ここよーレ そに方板                            | 会十歳十人同方法/ ^ )                         | る。「今日日の」の一番です。                        | <b>半</b> 世 | <i>4</i><br>  <br> |
|-------------|---------------------------------|------------------|----------|-----------------------------------|------------|-------|-----------|---------------------------------------|---------------------------------------|---------------------------------------|------------|--------------------|
| 四件借与        | Bw                              | Ът               | 0        | Орх                               | Gho        | Cum   | (/3000粒子) | スロシンへの直打手                             |                                       | 月內石 이泊게 平(112)                        | 馬力         | 中ノノー               |
| 0.25-0.27   | 587                             | 0                | 5        | 16                                | 376        | 0     | 1         | 1.495-1.496, 1.498-1.501, 1.508-1.514 | 1.700-1.705, 1.706-1.714              | 1.670-1.677, 1.679-1.682              | Gho自形多い    | K-Ah,AT混在          |
| 0.45-0.47   | 297                             | 0                | 0        | 1                                 | 297        | 0     | 1.2       | 1.496-1.501                           |                                       | 1.670–1.680                           |            | AT, SUP            |
| 0.55-0.57   | 0                               | 0                | 1        | 0                                 | 1          | 0     | 2         |                                       |                                       |                                       |            | K-Tz               |
| 0.65-0.67   | 61                              | 0                | 0        | 0                                 | 79         | 0     | 0.4       | 1.496–1.501                           |                                       | 1.669-1.678, 1.680-1.683, 1.687-1.689 |            | AT,SUP混在           |
| 0.85-0.87   | -                               | 0                | 0        | 0                                 | 0.5        | 0     | 0.4       |                                       |                                       |                                       |            |                    |
| 3.24-3.26   | 0                               | 0                | 0        | 0                                 | 0.9        | 0     | 0         |                                       |                                       | 1.669–1.677                           |            |                    |
| 5.62-5.63   | 0                               | 0                | 0        | 0                                 | 0          | 0     | 0         |                                       |                                       |                                       |            |                    |
| 7.16-7.18   | 0                               | 0                | 0        | 0                                 | 0          | 0     | 0         |                                       |                                       |                                       |            |                    |
| 10.23-10.25 | 0                               | 0                | 0        | 0                                 | 0          | 0     | 0         |                                       |                                       |                                       |            |                    |
| 11.90-11.92 | 0.1                             | 0                | 0        | 0                                 | 0          | 0     | 0         |                                       |                                       |                                       |            |                    |
| 12.91-12.93 | 0                               | 0                | 0        | 0                                 | 0.1        | 0     | 0         |                                       |                                       |                                       |            |                    |
| 14.55-14.57 | 0                               | 0                | 0        | 0                                 | 0.2        | 0     | 0         |                                       |                                       |                                       |            |                    |
| 15.58-15.60 | 0                               | 0                | 0        | 0                                 | 0          | 0     | 0         |                                       |                                       |                                       |            |                    |
| 16.70-16.72 | 0                               | 0                | 0        | 0                                 | 0          | 0     | 0         |                                       |                                       |                                       |            |                    |
| 17.57-17.59 | 0                               | 0                | 0        | 0                                 | 0          | 0     | 0         |                                       |                                       |                                       |            |                    |
| 18.49-18.50 | 0                               | 0                | 0        | 17                                | 0.3        | 0     | 0         |                                       | 1.701-1.705, 1.706-1.709, 1.715-1.716 | 1.672-1.678, 1.684-1.691              |            | Aso-4混在?           |
|             | Bw:バブルウォ<br>Pm:バミスタイ<br>0:低発泡タイ | -1147J<br>J<br>1 |          | Opx:斜方輝石<br>Gho:緑色普通<br>Sum:カミングト | 角関右<br>り関右 |       |           |                                       |                                       |                                       |            |                    |



図 2.2.9 TKT-1 コア 0.55-0.57 層準中の高温型石英中のガラス包有物の主成分分析結果



図 2.2.10 TKT-1 コア 0.45-0.47 及び 0.65-0.67 層準中の火山ガラスの主成分分析結果

【付録11】





(3) TKT-2 コア

本地点ではテフラ起源の高温型石英が試料採取上部1.05-1.07層準に多く含まれる(表 2.2.7)。 また、バブルウォールタイプ火山ガラスが上部0.25-0.87層準にやや多く(65~342/3000)含まれ る。最上部0.25-0.27層準にバブルウォールタイプ火山ガラスの含有率スパイクが識別できる。上 部に含まれる火山ガラスの屈折率は1.497~1.501にモードが見られ、上部最下部0.85-0.87層準に は1.512-1.516付近のものも含まれ Bi-modal となっている。一方上部層準付近には緑色普通角閃 石が多く含まれ、その含有量は下位へと減少する傾向にある。角閃石の屈折率(n2)は1.670~ 1.678である。

上部1.05-1.07層準に含まれる高温型石英中のガラス包有物の主成分を分析したところ、特徴が K-Tz の特徴(古澤・中村, 2009)と一致した(図 2.2.12)。同層準は K-Tz テフラを混在する 環境(比較的 K-Tz テフラ降灰期に近い堆積期)付近に堆積し、擾乱などの作用で AT や K-Ah な ど K-Tz よりかなり新しいテフラが混在したと考えられる。

また、上部に含まれる普通角閃石とカミングトン閃石の屈折率は三瓶浮布(SUP)テフラの特徴(町田・新井, 2003)と一致する(表 2.2.7)。SUPテフラはATより若干新しい時期に降灰している。このテフラもAT同様擾乱により混在したと考えられる。

本試料では、採取層準中部1.63-1.65層準にもバブルウォールタイプ火山ガラスおよび緑色普通 角閃石がやや多く含まれている。カミングトン閃石も微量含まれている。

さらに最下部19.45-19.55層準にも微量普通角閃石およびカミングトン閃石が含まれている。火 山ガラスは、屈折率の特徴から AT および K-Ah 起源と考えられる。普通角閃石およびカミング トン閃石は、主成分元素組成および屈折率の特徴から三瓶浮布(SUP)テフラ起源と考えられる (図 2.2.13~図 2.2.14)。これらの粒子は、前出 K-Tz 起源粒子の含有量スパイクより下位に含 まれること、および同層準を挟んで上下層準に火山ガラス・角閃石ともほとんど含まれていない ことなどから、何らかの作用で上部に堆積したテフラが下位へ混入した可能性が高いと考えられ る。

| 分析結果  |
|-------|
| ID    |
| Γ     |
| ト     |
| 6     |
| R     |
| П     |
| TKT-2 |
| 2.2.7 |
| 表     |

| 日本系行        | 火山ガラスの                          | 形態別含有量                 | (/3000粒子) | 重鉱物                                    | の含有量(/300         | 10粒子) | <i>β</i> 石英 | うちょう のにため                | 釣井鵜石の町坊核(ゞ)                    | 金調方の記を通って                         | 4<br>  <br> |
|-------------|---------------------------------|------------------------|-----------|----------------------------------------|-------------------|-------|-------------|--------------------------|--------------------------------|-----------------------------------|-------------|
| いたま ち       | Bw                              | Pm                     | 0         | Opx                                    | Gho               | Cum   | (/3000粒子)   | スロシノヘジョン手                | ™1.7 J J 年口 0.7 J 田 打  辛 ( / ) |                                   | 中ノノノ        |
| 0.25-0.27   | 342                             | 0                      | 0         | 0.2                                    | 767               | 0.5   | 8           | 1.496-1.500              |                                | 1.672-1.679(Gho) 1.661-1.668(Cum) | AT          |
| 0.45-0.47   | 191                             | 0                      | 0         | 2                                      | 243               | 1     | 17.5        | 1.497-1.500, 1.500-1.502 | 1.750-1.712, 1.729-1.735       | 1.671-1.677(Gho) 1.661-1.670(Cum) | AT,SUP      |
| 0.65-0.67   | 32                              | 0                      | 0         | 0                                      | 6                 | 0     | 18.5        |                          |                                |                                   |             |
| 0.85-0.87   | 65                              | 0                      | 0         | 0                                      | 112               | 0     | 14.5        | 1.496-1.502, 1.512-1.516 |                                | 1.670-1.678                       | АТ, К–Аһ    |
| 1.05-1.07   | 1                               | 0                      | 0         | 0                                      | 2                 | 0     | 35          |                          |                                |                                   | K-Tz        |
| 1.25-1.27   | 0                               | 0                      | 0         | 0                                      | 0.2               | 0     | 2.5         |                          |                                |                                   |             |
| 1.63-1.65   | 171                             | 0                      | 0         | 0                                      | 140               | 0.5   | 9.5         | 1.497-1.500, 1.510-1.516 |                                | 1.671-1.679(Gho) 1.660-1.668(Cum) | AT, K-Ah    |
| 1.80-1.82   | 0.1                             | 0                      | 0         | 0                                      | 0                 | 0     | 0           |                          |                                |                                   |             |
| 2.05-2.07   | 0.1                             | 0                      | 0         | 0                                      | 0.3               | 0     | 0           |                          |                                |                                   |             |
| 9.87-9.90   | 0                               | 0                      | 0         | 0                                      | 0                 | 0     | 0           |                          |                                |                                   |             |
| 17.39-17.41 | 0                               | 0                      | 0.1       | 0                                      | 0                 | 0     | 0           |                          |                                |                                   |             |
| 18.35-18.37 | 0                               | 0                      | 0         | 0                                      | 0                 | 0     | 0           |                          |                                |                                   |             |
| 18.85-18.87 | 0                               | 0                      | 0         | 0                                      | 0.4               | 0     | 0           |                          |                                |                                   |             |
| 19.54-19.55 | 0                               | 0                      | 0         | 0                                      | 0.8               | 0.3   | 0           |                          |                                | 1.670-1.680(Gho) 1.658-1.664(Cum) | SUP         |
|             | Bw:バブルウォ<br>Pm:パミスタイ<br>0:低発泡タイ | ተ– <i>ነ</i> ሁ\$ፈプ<br>ታ |           | Opx : 斜方輝石<br>Gho : 緑色普通<br>Cum : カミング | 5<br>〔角閃石<br>くり閃石 |       |             |                          |                                |                                   |             |



図 2.2.12 TKT-2 コア 1.05-1.07 層準中の高温型石英中のガラス包有物の主成分分析結果

【付録11】



図 2.2.13 TKT-2 コア 19.45-19.55 層準中の角閃石の主成分分析結果

【付録11】



図 2.2.14 TKT-2 コア 19.45-19.55 層準中のカミングトン閃石の主成分分析結果

## 【 付録 11 】

### 3. 沿岸部を対象とした研究

本章では、土佐湾北東岸と房総半島南岸に発達する完新世の海成侵食段丘(離水ベンチを含む) を事例に実施した年代測定試料採取の概要と採取した岩石試料の観察結果を記す。

年代測定試料には、宇宙生成核種(terrestrial cosmogenic nuclide:以下、「TCN」という)年 代測定用の岩石試料と海成侵食段丘の離水時期推定に用いる<sup>14</sup>C年代測定用試料(ヤッコカンザ シなどの生物遺骸)を採取した。また、海成侵食段丘の地形的特徴を詳しく把握するため無人航 空機(unmanned serial vehicle:以下、「UAV」という)を用いた写真測量を実施した。

### 3.1 土佐湾北東岸における試料採取と試料観察

土佐湾北東岸において砂岩からなる離水ベンチが発達する大山岬、羽根岬及び行当岬において 年代測定試料の採取を実施した。以下に各岬における試料採取の概要と採取試料の岩石学的特徴 について記す。

### 3.1.1 大山岬

### (1) 地形

大山岬では、標高2m、標高4m及び標高5~6mに平坦面をもつ3段のベンチを認めること ができる(図 3.1.1)。これらのベンチには、ポットホールが発達する。

TCN 試料となる岩石試料については、これら3段のベンチ上の4地点で採取した(図 3.1.1)。 また、カキ殻と考えられる<sup>14</sup>C 年代測定試料を海蝕洞内と離水ベンチ上の Stack(図 3.1.1)の計 2地点で採取した。

### (2) 岩石学的特徵

採取した岩石試料は、SP1(細粒砂岩)、SP2(細粒~中粒砂岩)、SP3(細粒~中粒砂岩)及び SP4(細粒~中粒砂岩)の計4試料である。いずれの試料も暗灰色を呈する。淘汰の程度は試料 により異なる。

鏡下観察では、いずれの試料でも石英を主とし、稀に斜長石、角閃石、黒雲母、玄武岩質岩片 などが認められた(図 3.1.2)。石英は円~亜円の円磨度を示し、粒径は 0.2~0.5 mm 程度であ る。粒度の分布は一様ではなく、細粒の粒子が集合している部分と中粒の粒子が集合している部 分とが混在している。石英の一部には不透明鉱物を内包しているものも認められる。



図 3.1.1 試料採取地点の地形(大山岬) 上:UAV 写真。地形断面図の測線を黄色で示す。下:地形断面図。



図 3.1.2 大山岬試料薄片写真(SP-3) 左:オープンニコル、右:クロスニコル。

3.1.2 羽根岬

(1) 地形

羽根岬では、海岸線に直交する方向に層理面が発達する。単層内には、高角割れ目と低角割れ 目が発達し、そうした割れ目に沿って岩石がブロック状に剥落している。そのため、単層毎に平 坦面の段数とそれらの分布高度が異なっている。このことが、離水ベンチに相当する平坦面の認 定を困難なものにしている。

測線上には、標高3m、標高5mに平坦面を認めることができる(図 3.1.3)。また、ポットホールは、標高3~4mに分布する。TCN 試料となる岩石試料については、6地点で採取した(図 3.1.3)。また、<sup>14</sup>C年代測定用の生物遺骸試料を2地点で採取した(図 3.1.3)。

### (2) 岩石学的特徵

採取した岩石試料は SP1(粗粒砂岩)、SP2(粗粒砂岩)、SP3(中粒砂岩)、SP4(細粒砂岩)、 SP5(中粒砂岩)及び SP6(中粒砂岩)の計6試料である。いずれの試料も暗灰色を呈する。淘 汰の程度は悪い。

鏡下観察では、粒径が不ぞろいな石英を主とし、少量の斜長石、角閃石、黒雲母、玄武岩質岩 片などが認められた(図 3.1.4)。鉱物粒子は亜角~亜円の円磨度を示し、粒径は SP4 が 0.1~0.3 mm 程度、他の試料は 0.1~0.5 mm 程度が主体で、稀に 1 mm を越える粒子も存在する。石英の 大部分が不透明鉱物を内包している。



上:UAV 写真。地形断面図の測線を黄色で示す。下:地形断面図。



図 3.1.4 羽根岬試料薄片写真(SP-5) 左:オープンニコル、右:クロスニコル

## 3.1.3 行当岬

## (1) 地形

行当岬においても、羽根岬と同様に海岸線に直交する方向に層理面が発達し、単層内に形成さ れた高角割れ目と低角割れ目に沿って岩石がブロック状に剥落している。そのため、単層毎に平 坦面の段数や分布高度が異なり、離水ベンチに相当する平坦面の認定は困難である。

測線上では標高 5~6 m に小起伏面が発達する(図 3.1.3)。測線上にポットホールを確認する ことはできない。TCN 試料となる岩石試料については、5 地点で採取した(図 3.1.5)。また、<sup>14</sup>C 年代測定用の生物遺骸試料を4 地点で採取した(図 3.1.5)。

## (2) 岩石学的特徴

採取した岩石試料は SP1(中粒砂岩)、SP2(中粒砂岩)、SP3(中粒砂岩)、SP4(中粒砂岩) 及び SP5(粗粒砂岩)の計5試料である。いずれの試料も暗灰色を呈する。淘汰の程度は良い。 鏡下観察では、石英と斜長石を主とし、少量の角閃石、黒雲母、玄武岩質岩片などが認められ た(図 3.1.6)。鉱物粒子は亜角~亜円の円磨度を示し、粒径は 0.2~0.5 mm 程度で、わずかに 1.0 mm 程度の粒子も含む。石英の大部分が不透明鉱物を内包している。





図 3.1.6 行当岬試料薄片写真(SP-5) 左:オープンニコル、右:クロスニコル

### 3.2 房総半島南岸における試料採取と試料観察

### 3.2.1 地形

事例対象とした房総半島南岸には、離水波食棚(ベンチ)が分布する。試料採取地点には、標 高約2mに平坦面をもつベンチの発達が良い(図 3.2.1)。このベンチを、1923年の関東地震で 隆起した大正ベンチ(茅根・吉川, 1986)であると判断し、TCN 試料となる岩石試料をベンチ上 の4ヶ所で採取した(図 3.2.1)。以下に採取試料の概要と岩石学的特徴について述べる。



上:UAV 写真。地形断面図の測線を黄色で示す。下:地形断面図。

## 3.2.2 地質

本事例地域の大正ベンチは後期鮮新世(約3.68~3.31 Ma; 蟹江ほか, 1997、亀尾ほか, 2003) に相模トラフの陸棚斜面で堆積した千倉層群白間津層からなる(小竹, 1988、三宅, 2013)。TCN 試料採取地点は、泥岩優勢の砂岩泥岩互層からなる。泥岩部は、明褐〜明灰色を呈し主として塊

状である。砂岩部は、黒~暗褐色を呈し、まれに平行葉理を伴う細粒砂岩が主体である。一部に、 中~粗粒砂岩が認められ、所々に φ 5 mm 程度の円礫が層理面と平行に含まれる。

本研究開発では細~中粒砂岩層から1試料あたり5kg程度、計4試料をTCN 試料として採取した。

#### 3.2.3 岩石学的特徴

採取した岩石試料は SP1(細~中粒砂岩)、SP2(細粒砂岩)、SP3(中粒砂岩)及び SP4(中 粒砂岩)の計4試料である。いずれの試料も暗灰色の比較的淘汰の良い砂岩である。

鏡下観察ではいずれの試料も石英・斜長石・角閃石・輝石などを含み、まれに玄武岩質の岩片 なども認められる(図 3.2.2)。石英は亜角~亜円の円磨度を示し、粒径は最大 500 µm 程度、平 均すると 200 µm 程度の大きさである。一部、不透明鉱物を包有しているものも認められる(図 3.2.2)。



図 3.2.2 房総半島南岸試料薄片写真(SP-1) 左:オープンニコル、右:クロスニコル

引用文献

千葉 崇,澤井裕紀,環境指標種群の再検討と更新,Diatom, vol.30, pp.7-30, 2014.

- 古澤 明, 中村千怜, 石英に含まれるガラス包有物の主成分分析による K-Tz の識別, 地質学雑誌, vol.115, pp.544-547, 2009.
- 堀田 満,日本列島及び近接東アジア地域の植生図について,ウルム氷期以降の生物地理昭和 54 年度報告書, pp.39-54, 1980.
- 川上俊介, 宍倉正展, 館山地域の地質, 地域地質研究報告(5万分の1地質図幅), 産業技術総合 研究所地質調査総合センター, 82p, 2006.
- 茅根 創,吉川虎雄, 房総半島南東岸における現成・離水浸食海岸地形の比較研究, 地理学評論, vol.59, pp18-36, 1986.

小竹信宏, 房総半島南端地域の海成上部新生界, 地質学雑誌, vol.94, pp187-206, 1988.

- 町田 洋, 新井房夫, 新編 火山灰アトラス-日本列島とその周辺-, 東京大学出版会, 336p, 2003. 三宅優佳, 日本堆積学会 2013 年千葉大会巡検「3.5Ma の相模トラフとその近傍での堆積作用」
- 参加報告, 堆積学研究, vol.72, pp49-53, 2013.

産業技術総合研究所,日本原子力研究開発機構,原子力環境整備促進・資金管理センター,電力中 央研究所,平成 30 年度高レベル放射性廃棄物等の地層処分に関する研究開発事業 沿岸部処 分システム高度化開発報告書,356p,2019.

山中二男, 日本の森林植生, 築地書館, 223p, 1979.

# 岩石風化模擬実験に係るデータ集

一般財団法人 電力中央研究所

目 次

| <ol> <li>岩石風化模擬実験の分析結果</li> </ol> |    |
|-----------------------------------|----|
| 1.1 試料性状                          |    |
| 1.2 光学顕微鏡観察                       |    |
| 1.3 目視観察                          |    |
| 1.4 X 線分析顕微鏡測定                    |    |
| 1.5 マイクロフォーカス X 線 CT スキャナーによる撮影結果 |    |
| 1.6 分光測色                          | 77 |
| 1.7 SEM 観察                        |    |
| 1.8 XRD 分析                        |    |
| 1.9 水銀ポロシメータ測定                    |    |
| 1.10 溶液の ICP-OES および ICP-MS 分析    |    |
| 1.11 天然の風化礫に対する EPMA 元素マッピング      |    |
|                                   |    |

図目次

| 义 | 1.1-1  | 浸漬前後の試料観察面のスキャン画像(1)      | 12 |
|---|--------|---------------------------|----|
| 义 | 1.1-2  | 浸漬前後の試料観察面のスキャン画像(2)      | 13 |
| 义 | 1.1-3  | 浸漬前後の試料観察面のスキャン画像(3)      | 14 |
| 义 | 1.1-4  | 浸漬前後の試料観察面のスキャン画像(4)      | 15 |
| 义 | 1.2-1  | 試料 A 3-1 (砂岩)の薄片写真と鉱物名略称  | 16 |
| 义 | 1.2-2  | 試料 B 3·3(砂岩)の薄片写真         | 17 |
| 义 | 1.2-3  | 試料 C 2-1 (砂岩) の薄片写真       | 18 |
| 义 | 1.2-4  | 試料 D 2-2 (砂岩) の薄片写真       | 19 |
| 义 | 1.2-5  | 試料 E 2-3(砂岩)の薄片写真         | 20 |
| 义 | 1.2-6  | 試料 F 2-6 (砂岩)の薄片写真        | 21 |
| 义 | 1.2-7  | 試料 G 1-3(砂岩)の薄片写真         | 22 |
| 义 | 1.2-8  | 試料 H 4-1(砂岩)の薄片写真         | 23 |
| 义 | 1.2-9  | 試料 I 4·3(砂岩)の薄片写真         | 24 |
| 义 | 1.2-10 | 試料 J 2-5(泥岩)の薄片写真         | 25 |
| 义 | 1.2-11 | 試料 K 4-2(砂岩)の薄片写真         | 26 |
| 义 | 1.3-1  | 30 日浸漬試料の浸漬中目視観察結果        | 27 |
| 义 | 1.3-2  | 60日浸漬試料の浸漬中目視観察結果         | 28 |
| 义 | 1.3-3  | 120日浸漬試料の浸漬中目視観察結果(1)     | 29 |
| 义 | 1.3-4  | 120日浸漬試料の浸漬中目視観察結果(2)     | 30 |
| 义 | 1.3-5  | 酸変更 60 日浸漬試料の浸漬中目視観察結果(1) | 31 |
| 义 | 1.3-6  | 酸変更 60 日浸漬試料の浸漬中目視観察結果(2) | 32 |

| 図 1.42       XGT 測定時の各試料のマッビングエリア(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 义 | 1.4-1   | XGT 測定時の各試料のマッピングエリア(1) | .34 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------|-------------------------|-----|
| 図 1.4-3       XGT 満定時の各試料のマッピングまりア(3)       36         図 1.4-4       XGT による AI のマッピング結果(1)       37         図 1.4-5       XGT による AI のマッピング結果(2)       38         図 1.4-6       XGT による Ca のマッピング結果(2)       39         図 1.4-7       XGT による Ca のマッピング結果(2)       40         図 1.4-8       XGT による Ca のマッピング結果(2)       41         図 1.4-8       XGT による Ca のマッピング結果(2)       41         図 1.4-7       XGT による Fe のマッピング結果(2)       44         I 1.4-10       XGT による Fe のマッピング結果(2)       44         I 1.4-11       XGT による Fe のマッピング結果(2)       44         I 1.4-12       XGT による Fe のマッピング結果(2)       44         I 1.4-13       XGT による Fe のマッピング結果(3)       45         図 1.4-14       XGT による K のマッピング結果(3)       46         I 1.4-13       XGT による K のマッピング結果(2)       47         図 1.4-14       XGT による Mg のマッピング結果(3)       51         図 1.4-15       XGT による Mg のマッピング結果(3)       51         図 1.4-17       XGT による Mn のマッピング結果(3)       53         図 1.4-19       XGT による Mn のマッピング結果(3)       53         図 1.4-21       XGT による Mn のマッピング結果(3)       57         図 1.4-22       XGT による Na のマッピング結果(3)       57         図 1.4-23       XGT による P のマッピング結                                                            | 义 | 1.4-2   | XGT 測定時の各試料のマッピングエリア(2) | .35 |
| 図 1.44       XGT による AI のマッピング結果(1)       37         図 1.45       XGT による AI のマッピング結果(2)       38         図 1.46       XGT による AI のマッピング結果(3)       39         図 1.47       XGT による Ca のマッピング結果(2)       41         U 1.48       XGT による Ca のマッピング結果(2)       41         U 1.48       XGT による Ca のマッピング結果(2)       41         U 1.49       XGT による Ca のマッピング結果(2)       41         U 1.41       XGT による Fe のマッピング結果(2)       44         U 1.41       XGT による Fe のマッピング結果(3)       45         I 1.41       XGT による K のマッピング結果(3)       45         I 1.41       XGT による K のマッピング結果(2)       44         U 1.415       XGT による K のマッピング結果(2)       47         Ø 1.415       XGT による K のマッピング結果(2)       47         Ø 1.415       XGT による Mg のマッピング結果(2)       50         Ø 1.416       XGT による Mg のマッピング結果(2)       50         Ø 1.417       XGT による Mn のマッピング結果(2)       53         Ø 1.421       XGT による Mn のマッピング結果(2)       53         Ø 1.422       XGT による Na のマッピング結果(3)       57         Ø 1.423       XGT による Na のマッピング結果(3)       57         Ø 1.424       XGT による Na のマッピング結果(3)       57         Ø 1.423       XGT による Na のマッピング結果(3)       58 <td>义</td> <td>1.4-3</td> <td>XGT 測定時の各試料のマッピングエリア(3)</td> <td>.36</td> | 义 | 1.4-3   | XGT 測定時の各試料のマッピングエリア(3) | .36 |
| 図 1.4-5       XGT による AI のマッピング結果(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 义 | 1.4-4   | XGT による Al のマッピング結果(1)  | .37 |
| 図 1.4-6       XGT による Al のマッピング結果(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 义 | 1.4-5   | XGT による Al のマッピング結果(2)  | .38 |
| 図 1.4-7       XGT による Ca のマッピング結果(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 义 | 1.4-6   | XGT による Al のマッピング結果(3)  | .39 |
| 図 1.4*8       XGT による Ca のマッピング結果(3)       41         図 1.4*10       XGT による Ca のマッピング結果(1)       43         図 1.4*11       XGT による Fe のマッピング結果(2)       44         図 1.4*11       XGT による Fe のマッピング結果(2)       44         図 1.4*12       XGT による Fe のマッピング結果(2)       44         図 1.4*13       XGT による Fe のマッピング結果(2)       44         図 1.4*13       XGT による Fe のマッピング結果(2)       46         図 1.4*14       XGT による K のマッピング結果(2)       47         図 1.4*15       XGT による Mg のマッピング結果(2)       49         図 1.4*16       XGT による Mg のマッピング結果(2)       50         図 1.4*17       XGT による Mg のマッピング結果(2)       50         図 1.4*17       XGT による Mg のマッピング結果(2)       53         図 1.4*19       XGT による Mn のマッピング結果(2)       53         図 1.4*19       XGT による Na のマッピング結果(2)       53         図 1.4*20       XGT による Na のマッピング結果(2)       56         図 1.4*21       XGT による Na のマッピング結果(2)       56         図 1.4*23       XGT による Na のマッピング結果(2)       56         図 1.4*24       XGT による Na のマッピング結果(2)       57         図 1.4*25       XGT による Na のマッピング結果(2)       58         図 1.4*26       XGT による S のマッピング結果(2)       58         図 1.4*27       XGT による S の                                                            | 义 | 1.4-7   | XGT による Ca のマッピング結果(1)  | .40 |
| 図 1.4-9       XGT による Ca のマッビング結果(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 义 | 1.4-8   | XGT による Ca のマッピング結果(2)  | .41 |
| 図 1.4-10       XGT による Fe のマッピング結果(1)       43         図 1.4-11       XGT による Fe のマッピング結果(2)       44         図 1.4-12       XGT による Fe のマッピング結果(2)       44         図 1.4-13       XGT による K のマッピング結果(2)       47         図 1.4-14       XGT による K のマッピング結果(2)       47         図 1.4-15       XGT による K のマッピング結果(2)       47         図 1.4-16       XGT による K のマッピング結果(2)       49         図 1.4-17       XGT による Mg のマッピング結果(2)       50         図 1.4-18       XGT による Mg のマッピング結果(2)       50         図 1.4-19       XGT による Mg のマッピング結果(2)       50         図 1.4-19       XGT による Mn のマッピング結果(2)       53         図 1.4-20       XGT による Mn のマッピング結果(2)       53         図 1.4-21       XGT による Na のマッピング結果(2)       56         図 1.4-22       XGT による Na のマッピング結果(2)       56         図 1.4-23       XGT による Na のマッピング結果(2)       56         図 1.4-24       XGT による Na のマッピング結果(2)       56         図 1.4-25       XGT による Na のマッピング結果(2)       56         図 1.4-26       XGT による Na のマッピング結果(2)       56         図 1.4-27       XGT による Na のマッピング結果(2)       60         図 1.4-28       XGT による S のマッピング結果(2)       62         図 1.4-29       XGT による S のマッ                                                            | 义 | 1.4-9   | XGT による Ca のマッピング結果(3)  | .42 |
| 図 1.4-11       XGT による Fe のマッピング結果(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 义 | 1.4-10  | XGT による Fe のマッピング結果(1)  | .43 |
| 図 1.4·12       XGT による Fe のマッピング結果(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 义 | 1.4-11  | XGT による Fe のマッピング結果(2)  | .44 |
| 図 1.4-13       XGT による K のマッピング結果(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 义 | 1.4-12  | XGT による Fe のマッピング結果(3)  | .45 |
| 図 1.4-14       XGT による K のマッピング結果(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 义 | 1.4-13  | XGT による K のマッピング結果(1)   | .46 |
| 図1.4·15XGT による K のマッピング結果(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 义 | 1.4-14  | XGT による K のマッピング結果(2)   | .47 |
| 図 1.4·16       XGT による Mg のマッピング結果(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 义 | 1.4-15  | XGT による K のマッピング結果(3)   | .48 |
| 図 1.4·17       XGT による Mg のマッピング結果(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 义 | 1.4-16  | XGT による Mg のマッピング結果(1)  | .49 |
| 図1.4·18XGT による Mg のマッピング結果(3)51図1.4·19XGT による Mn のマッピング結果(1)52図1.4·20XGT による Mn のマッピング結果(2)53図1.4·21XGT による Na のマッピング結果(3)54図1.4·22XGT による Na のマッピング結果(2)55図1.4·23XGT による Na のマッピング結果(2)56図1.4·24XGT による Na のマッピング結果(3)57図1.4·25XGT による P のマッピング結果(3)57図1.4·26XGT による P のマッピング結果(2)59図1.4·27XGT による P のマッピング結果(2)59図1.4·28XGT による S のマッピング結果(2)60図1.4·29XGT による S のマッピング結果(2)62図1.4·30XGT による S のマッピング結果(2)62図1.4·30XGT による S のマッピング結果(2)63図1.4·31XGT による Si のマッピング結果(2)65図1.4·32XGT による Si のマッピング結果(2)65図1.4·33XGT による Si のマッピング結果(3)66図1.4·34XGT による Si のマッピング結果(3)66図1.4·34XGT による Si のマッピング結果(3)66図1.4·35XGT による Si のマッピング結果(3)66図1.4·36XGT による Ti のマッピング結果(3)67図1.4·37XGT による Ti のマッピング結果(3)69図1.5·1試料 A3·1 の $\mu$ CT 測定結果画像71図1.5·2試料 B3·3 の $\mu$ CT 測定結果画像72図1.5·3試料 D2·2 の $\mu$ CT 測定結果画像72図1.5·5試料 E2·3 の $\mu$ CT 測定結果画像73                                                                                                                                                                                                                                                                                                                                                                                        | 义 | 1.4-17  | XGT による Mg のマッピング結果(2)  | .50 |
| 図 1.4-19XGT による Mn のマッピング結果(1)52図 1.4-20XGT による Mn のマッピング結果(2)53図 1.4-21XGT による Mn のマッピング結果(3)54図 1.4-22XGT による Na のマッピング結果(3)55図 1.4-23XGT による Na のマッピング結果(2)56図 1.4-24XGT による Na のマッピング結果(3)57図 1.4-25XGT による P のマッピング結果(2)59図 1.4-26XGT による P のマッピング結果(2)59図 1.4-27XGT による P のマッピング結果(2)59図 1.4-28XGT による S のマッピング結果(2)60図 1.4-29XGT による S のマッピング結果(2)62図 1.4-29XGT による S のマッピング結果(2)62図 1.4-30XGT による S のマッピング結果(2)63図 1.4-31XGT による Si のマッピング結果(1)64図 1.4-32XGT による Si のマッピング結果(2)65図 1.4-33XGT による Si のマッピング結果(2)65図 1.4-34XGT による Si のマッピング結果(2)65図 1.4-35XGT による Si のマッピング結果(2)65図 1.4-36XGT による Ti のマッピング結果(3)66図 1.4-37XGT による Ti のマッピング結果(3)67図 1.4-38XGT による Ti のマッピング結果(3)69図 1.5-1試料 A3-1 の $\mu$ CT 測定結果画像71図 1.5-2試料 B3-3 の $\mu$ CT 測定結果画像72図 1.5-3試料 D2-2 の $\mu$ CT 測定結果画像72図 1.5-5試料 D2-2 の $\mu$ CT 測定結果画像73                                                                                                                                                                                                                                                                                                                                                                                              | 义 | 1.4-18  | XGT による Mg のマッピング結果(3)  | .51 |
| 図 1.4-20 XGT による Mn のマッピング結果(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 义 | 1.4-19  | XGT による Mn のマッピング結果(1)  | .52 |
| <ul> <li>図 1.4·21 XGT による Mn のマッピング結果(3)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 义 | 1.4-20  | XGT による Mn のマッピング結果(2)  | .53 |
| <ul> <li>図 1.4-22 XGT による Na のマッピング結果(1)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 义 | 1.4-21  | XGT による Mn のマッピング結果(3)  | .54 |
| 図 1.4-23XGT による Na のマッピング結果(2)56図 1.4-24XGT による P のマッピング結果(3)57図 1.4-25XGT による P のマッピング結果(1)58図 1.4-26XGT による P のマッピング結果(2)59図 1.4-27XGT による P のマッピング結果(2)60図 1.4-28XGT による S のマッピング結果(3)60図 1.4-29XGT による S のマッピング結果(1)61図 1.4-29XGT による S のマッピング結果(2)62図 1.4-30XGT による S のマッピング結果(2)62図 1.4-31XGT による S のマッピング結果(2)63図 1.4-32XGT による Si のマッピング結果(2)65図 1.4-33XGT による Si のマッピング結果(2)65図 1.4-34XGT による Si のマッピング結果(3)66図 1.4-35XGT による Ti のマッピング結果(2)68図 1.4-36XGT による Ti のマッピング結果(3)69図 1.5-1試料 B 3-3 の µCT 測定結果画像71図 1.5-2試料 B 3-3 の µCT 測定結果画像72図 1.5-5試料 D 2-2 の µCT 測定結果画像72図 1.5-5試料 E 2-3 の µCT 測定結果画像73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 义 | 1.4-22  | XGT による Na のマッピング結果(1)  | .55 |
| <ul> <li>図 1.4·24 XGT による Na のマッピング結果(3)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 义 | 1.4-23  | XGT による Na のマッピング結果(2)  | .56 |
| <ul> <li>図 1.4·25 XGT による P のマッピング結果(1)</li> <li>58</li> <li>図 1.4·26 XGT による P のマッピング結果(2)</li> <li>59</li> <li>図 1.4·27 XGT による P のマッピング結果(3)</li> <li>60</li> <li>図 1.4·28 XGT による S のマッピング結果(1)</li> <li>61</li> <li>図 1.4·29 XGT による S のマッピング結果(2)</li> <li>62</li> <li>図 1.4·30 XGT による S のマッピング結果(2)</li> <li>63</li> <li>図 1.4·31 XGT による S i のマッピング結果(1)</li> <li>64</li> <li>図 1.4·32 XGT による S i のマッピング結果(2)</li> <li>65</li> <li>図 1.4·33 XGT による S i のマッピング結果(2)</li> <li>65</li> <li>図 1.4·34 XGT による S i のマッピング結果(2)</li> <li>67</li> <li>図 1.4·35 XGT による Ti のマッピング結果(2)</li> <li>68</li> <li>図 1.4·36 XGT による Ti のマッピング結果(2)</li> <li>68</li> <li>図 1.5·1 試料 A 3·1 の µCT 測定結果画像</li> <li>71</li> <li>図 1.5·3 試料 C 2·1 の µCT 測定結果画像</li> <li>72</li> <li>図 1.5·5 試料 E 2·3 の µCT 測定結果画像</li> <li>73</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                  | 义 | 1.4-24  | XGT による Na のマッピング結果(3)  | .57 |
| <ul> <li>図 1.4-26 XGT による P のマッピング結果(2)</li> <li>図 1.4-27 XGT による P のマッピング結果(3)</li> <li>⑥0</li> <li>図 1.4-28 XGT による S のマッピング結果(1)</li> <li>⑥1</li> <li>○ 1.4-29 XGT による S のマッピング結果(2)</li> <li>⑥2</li> <li>○ 1.4-30 XGT による S のマッピング結果(2)</li> <li>⑥3</li> <li>○ 1.4-31 XGT による S のマッピング結果(3)</li> <li>⑥3</li> <li>○ 1.4-32 XGT による Si のマッピング結果(2)</li> <li>⑥4</li> <li>○ 1.4-33 XGT による Si のマッピング結果(2)</li> <li>⑥5</li> <li>○ 1.4-34 XGT による Si のマッピング結果(3)</li> <li>⑥6</li> <li>○ 1.4-35 XGT による Ti のマッピング結果(2)</li> <li>⑥5</li> <li>○ 1.4-36 XGT による Ti のマッピング結果(2)</li> <li>⑥5</li> <li>○ 1.4-37 XGT による Ti のマッピング結果(3)</li> <li>○ 1.4-38 XGT による Ti のマッピング結果(3)</li> <li>○ 1.4-39 XGT による Ti のマッピング結果(3)</li> <li>○ 1.4-30 XGT による Ti のマッピング結果(3)</li> <li>○ 1.4-36 XGT による Ti のマッピング結果(3)</li> <li>○ 1.5-1 試料 A 3-1 の µCT 測定結果画像</li> <li>○ 1.5-3 試料 C 2-1 の µCT 測定結果画像</li> <li>○ 1.5-5 試料 E 2-3 の µCT 測定結果画像</li> <li>○ 1.5-5 試料 E 2-3 の µCT 測定結果画像</li> </ul>                                                                                                                                                                                                                                                       | 义 | 1.4-25  | XGT による P のマッピング結果(1)   | .58 |
| <ul> <li>図 1.4-27 XGT による P のマッピング結果(3)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 义 | 1.4-26  | XGT による P のマッピング結果(2)   | .59 |
| <ul> <li>図 1.4-28 XGT による S のマッピング結果(1)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 义 | 1.4-27  | XGT による P のマッピング結果(3)   | .60 |
| <ul> <li>図 1.4·29 XGT による S のマッピング結果(2)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 义 | 1.4-28  | XGT による S のマッピング結果(1)   | .61 |
| <ul> <li>図 1.4-30 XGT による S のマッピング結果(3)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 义 | 1.4-29  | XGT による S のマッピング結果(2)   | .62 |
| <ul> <li>図 1.4·31 XGT による Si のマッピング結果(1)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 义 | 1.4-30  | XGT による S のマッピング結果(3)   | .63 |
| <ul> <li>図 1.4·32 XGT による Si のマッピング結果(2)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 义 | 1.4-31  | XGT による Si のマッピング結果(1)  | .64 |
| <ul> <li>図 1.4-33 XGT による Si のマッピング結果(3)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 义 | 1.4-32  | XGT による Si のマッピング結果(2)  | .65 |
| <ul> <li>図 1.4-34 XGT による Ti のマッピング結果(1)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 义 | 1.4-33  | XGT による Si のマッピング結果(3)  | .66 |
| <ul> <li>図 1.4·35 XGT による Ti のマッピング結果(2)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 义 | 1.4-34  | XGT による Ti のマッピング結果(1)  | .67 |
| <ul> <li>図 1.4-36 XGT による Ti のマッピング結果(3)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 义 | 1.4-35  | XGT による Ti のマッピング結果(2)  | .68 |
| <ul> <li>図 1.5-1 試料A3-1のµCT測定結果画像</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 义 | 1.4-36  | XGT による Ti のマッピング結果(3)  | .69 |
| <ul> <li>図 1.5-2 試料 B 3-3 の μCT 測定結果画像</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 义 | 1.5-1   | 試料 A 3-1 の μCT 測定結果画像   | .71 |
| <ul> <li>図 1.5-3 試料 C 2-1 の μCT 測定結果画像</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 义 | 1.5-2   | 試料 B 3-3 の μCT 測定結果画像   | .71 |
| 図 1.5-4 試料 D 2-2 の µCT 測定結果画像                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 义 | 1.5-3   | 試料 C 2-1 の μCT 測定結果画像   | .72 |
| 図 1.5-5 試料 E 2-3 の µCT 測定結果画像                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 义 | 1.5-4   | 試料 D 2-2 の μCT 測定結果画像   | .72 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 义 | 1.5 - 5 | 試料 E 2-3 の μCT 測定結果画像   | .73 |

| 図 1.5-6  | 試料 F 2-6 の μCT 測定結果画像                | 73  |
|----------|--------------------------------------|-----|
| 図 1.5-7  | 試料 G 1·3 の µCT 測定結果画像                | 74  |
| 図 1.5-8  | 試料 H 4-1 の μCT 測定結果画像                | 74  |
| 図 1.5-9  | 試料Ι4-3のμCT 測定結果画像                    | 75  |
| 図 1.5-10 | ) 試料 J 2-5 の µCT 測定結果画像              | 75  |
| 図 1.5-11 | 試料 K 4·2 の µCT 測定結果画像                | 76  |
| 図 1.6-1  | 分光測色の測定箇所                            | 77  |
| 図 1.7-1  | A 3-1 (砂岩)の 30 日浸漬前・後のスキャン画像         | 83  |
| 図 1.7-2  | A 3-1 (砂岩)の 30 日浸漬前・後の SEM 画像比較(1)   | 83  |
| 図 1.7-3  | A 3-1 (砂岩) の 30 日浸漬前・後の SEM 画像比較(2)  |     |
| 図 1.7-4  | A 3-1 (砂岩) の 30 日浸漬前・後の SEM 画像比較(3)  |     |
| 図 1.7-5  | A 3-1 (砂岩) の 30 日浸漬前・後の SEM 画像比較(4)  | 85  |
| 図 1.7-6  | B 3-3(砂岩)の 30 日浸漬前・後のスキャン画像比較        |     |
| 図 1.7-7  | B 3-3(砂岩)の 30 日浸漬前・後の SEM 画像比較(1)    |     |
| 図 1.7-8  | B 3-3(砂岩)の 30 日浸漬前・後の SEM 画像比較(2)    |     |
| 図 1.7-9  | B 3-3(砂岩)の 30 日浸漬前・後の SEM 画像比較(3)    |     |
| 図 1.7-10 | ) B 3-3(砂岩)の 30 日浸漬前・後の SEM 画像比較(4)  |     |
| 図 1.7-11 | C 2-1 (砂岩)の 30 日浸漬前・後のスキャン画像比較       |     |
| 図 1.7-12 | 2 C 2-1(砂岩)の 30 日浸漬前・後の SEM 画像比較(1)  |     |
| 図 1.7-13 | 3 C 2-1 (砂岩)の 30 日浸漬前・後の SEM 画像比較(2) | 90  |
| 図 1.7-14 | ↓ C 2-1(砂岩)の 30 日浸漬前・後の SEM 画像比較(3)  | 90  |
| 図 1.7-15 | 5 D 2-2 (砂岩)の 30 日浸漬前・後のスキャン画像比較     | 91  |
| 図 1.7-16 | 5 D 2-2(砂岩)の 30 日浸漬前・後の SEM 画像比較(1)  | 91  |
| 図 1.7-17 | 7 D 2-2(砂岩)の 30 日浸漬前・後の SEM 画像比較(2)  | 92  |
| 図 1.7-18 | 3 D 2-2(砂岩)の 30 日浸漬前・後の SEM 画像比較(3)  | 92  |
| 図 1.7-19 | 9 E 2-3 (砂岩)の 30 日浸漬前・後のスキャン画像比較     | 93  |
| 図 1.7-20 | ) E 2-3(砂岩)の 30 日浸漬前・後の SEM 画像比較(1)  | 93  |
| 図 1.7-21 | E 2-3 (砂岩)の 30 日浸漬前・後の SEM 画像比較(2)   | 94  |
| 図 1.7-22 | 2 E 2-3(砂岩)の 30 日浸漬前・後の SEM 画像比較(3)  | 94  |
| 図 1.7-23 | 3 E 2-3 (砂岩)の 30 日浸漬前・後の SEM 画像比較(4) | 95  |
| 図 1.7-24 | ↓ F2-6(砂岩)の 30 日浸漬前・後のスキャン画像比較       | 96  |
| 図 1.7-25 | 5 F 2-6(砂岩)の 30 日浸漬前・後の SEM 画像比較(1)  | 96  |
| 図 1.7-26 | 3 F 2-6(砂岩)の 30 日浸漬前・後の SEM 画像比較(2)  | 97  |
| 図 1.7-27 | 7 F 2-6(砂岩)の 30 日浸漬前・後の SEM 画像比較(3)  | 97  |
| 図 1.7-28 | 3 G 1-3 (砂岩)の 30 日浸漬前・後のスキャン画像比較     |     |
| 図 1.7-29 | 9 G 1-3(砂岩)の 30 日浸漬前・後の SEM 画像比較(1)  |     |
| 図 1.7-30 | ) G 1-3(砂岩)の 30 日浸漬前・後の SEM 画像比較(2)  |     |
| 図 1.7-31 | G 1-3 (砂岩)の 30 日浸漬前・後の SEM 画像比較(3)   |     |
| 図 1.7-32 | 2 G 1-3(砂岩)の 30 日浸漬前・後の SEM 画像比較(4)  |     |
| 図 1.7-33 | 3 H 4-1 (砂岩)の 30 日浸漬前・後のスキャン画像比較     |     |
| 図 1.7-34 | ↓ H 4·1(砂岩)の 30 日浸漬前・後の SEM 画像比較(1)  | 101 |

| 図 1.7-35 | H 4-1(砂岩)  | の 30 日浸漬前 | ・後の SEM 画像比較 | (2)    |
|----------|------------|-----------|--------------|--------|
| 図 1.7-36 | H 4-1(砂岩)  | の 30 日浸漬前 | ・後の SEM 画像比較 | (3)    |
| 図 1.7-37 | I 4-3(砂岩)  | の 30 日浸漬前 | ・後のスキャン画像比   | 皎103   |
| 図 1.7-38 | I 4-3(砂岩)  | の 30 日浸漬前 | ・後の SEM 画像比較 | (1)    |
| 図 1.7-39 | I 4-3(砂岩)  | の 30 日浸漬前 | ・後の SEM 画像比較 | (2)    |
| 図 1.7-40 | I 4-3(砂岩)  | の 30 日浸漬前 | ・後の SEM 画像比較 | (3)    |
| 図 1.7-41 | A 3-1 (砂岩) | の 60 日浸漬前 | ・後のスキャン画像比   | 較105   |
| 図 1.7-42 | A 3-1 (砂岩) | の 60 日浸漬前 | ・後の SEM 画像比較 | (1)    |
| 図 1.7-43 | A 3-1 (砂岩) | の 60 日浸漬前 | ・後の SEM 画像比較 | (2)    |
| 図 1.7-44 | A 3-1 (砂岩) | の 60 日浸漬前 | ・後の SEM 画像比較 | (3)    |
| 図 1.7-45 | A 3-1 (砂岩) | の 60 日浸漬前 | ・後の SEM 画像比較 | (4)    |
| 図 1.7-46 | B 3-3(砂岩)  | の 60 日浸漬前 | ・後のスキャン画像比   | 較108   |
| 図 1.7-47 | B 3-3(砂岩)  | の 60 日浸漬前 | ・後の SEM 画像比較 | (1)    |
| 図 1.7-48 | B 3-3(砂岩)  | の 60 日浸漬前 | ・後の SEM 画像比較 | (2)    |
| 図 1.7-49 | B 3-3(砂岩)  | の 60 日浸漬前 | ・後の SEM 画像比較 | (3)    |
| 図 1.7-50 | B 3-3(砂岩)  | の 60 日浸漬前 | ・後の SEM 画像比較 | (4)110 |
| 図 1.7-51 | C 2-1 (砂岩) | の 60 日浸漬前 | ・後のスキャン画像比   | 較111   |
| 図 1.7-52 | C 2-1 (砂岩) | の 60 日浸漬前 | ・後の SEM 画像比較 | (1)    |
| 図 1.7-53 | C 2-1 (砂岩) | の 60 日浸漬前 | ・後の SEM 画像比較 | (2)112 |
| 図 1.7-54 | C 2-1 (砂岩) | の 60 日浸漬前 | ・後の SEM 画像比較 | (3)112 |
| 図 1.7-55 | D 2-2 (砂岩) | の 60 日浸漬前 | ・後のスキャン画像比   | 較113   |
| 図 1.7-56 | D 2-2 (砂岩) | の 60 日浸漬前 | ・後の SEM 画像比較 | (1)    |
| 図 1.7-57 | D 2-2 (砂岩) | の 60 日浸漬前 | ・後の SEM 画像比較 | (2)114 |
| 図 1.7-58 | D 2-2 (砂岩) | の 60 日浸漬前 | ・後の SEM 画像比較 | (3)114 |
| 図 1.7-59 | D 2-2 (砂岩) | の 60 日浸漬前 | ・後の SEM 画像比較 | (4)115 |
| 図 1.7-60 | E 2-3 (砂岩) | の60日浸漬前   | ・後のスキャン画像比   | 較116   |
| 図 1.7-61 | E 2-3 (砂岩) | の 60 日浸漬前 | ・後の SEM 画像比較 | (1)    |
| 図 1.7-62 | E 2-3 (砂岩) | の60日浸漬前   | ・後の SEM 画像比較 | (2)117 |
| 図 1.7-63 | E 2-3 (砂岩) | の 60 日浸漬前 | ・後の SEM 画像比較 | (3)117 |
| 図 1.7-64 | E 2-3 (砂岩) | の 60 日浸漬前 | ・後の SEM 画像比較 | (4)118 |
| 図 1.7-65 | F 2-6 (砂岩) | の 60 日浸漬前 | ・後のスキャン画像比   | 較119   |
| 図 1.7-66 | F 2-6 (砂岩) | の 60 日浸漬前 | ・後の SEM 画像比較 | (1)    |
| 図 1.7-67 | F 2-6 (砂岩) | の 60 日浸漬前 | ・後の SEM 画像比較 | (2)    |
| 図 1.7-68 | F 2-6 (砂岩) | の 60 日浸漬前 | ・後の SEM 画像比較 | (3)    |
| 図 1.7-69 | G 1-3(砂岩)  | の 60 日浸漬前 | ・後のスキャン画像比   | 較121   |
| 図 1.7-70 | G 1-3(砂岩)  | の 60 日浸漬前 | ・後の SEM 画像比較 | (1)    |
| 図 1.7-71 | G 1-3(砂岩)  | の60日浸漬前   | ・後の SEM 画像比較 | (2)    |
| 図 1.7-72 | G 1-3(砂岩)  | の60日浸漬前   | ・後の SEM 画像比較 | (3)    |
| 図 1.7-73 | G 1-3(砂岩)  | の 60 日浸漬前 | ・後の SEM 画像比較 | (4)    |
| 図 1.7-74 | H 4-1(砂岩)  | の 60 日浸漬前 | ・後のスキャン画像比   | 較124   |
| 図 1.7-75 | H 4-1 (砂岩) | の 60 日浸漬前 | ・後の SEM 画像比較 | (1)    |

| 図 1.7-76  | H 4-1 (砂岩) の 60 日浸漬前・後の SEM 画像比較(2) 125  |
|-----------|------------------------------------------|
| 図 1.7-77  | H 4-1(砂岩)の 60 日浸漬前・後の SEM 画像比較(3)125     |
| 図 1.7-78  | H 4-1(砂岩)の 60 日浸漬前・後の SEM 画像比較(4)126     |
| 図 1.7-79  | I 4·3(砂岩)の 60 日浸漬前・後のスキャン画像比較            |
| 図 1.7-80  | I 4·3(砂岩)の 60 日浸漬前・後の SEM 画像比較(1) 127    |
| 図 1.7-81  | I 4·3(砂岩)の 60 日浸漬前・後の SEM 画像比較(2) 128    |
| 図 1.7-82  | I 4-3(砂岩)の 60 日浸漬前・後の SEM 画像比較(3) 128    |
| 図 1.7-83  | A 3-1 (砂岩)の 120 日浸漬前・後のスキャン画像比較          |
| 図 1.7-84  | A 3-1 (砂岩)の 120 日浸漬前・後の SEM 画像比較(1) 129  |
| 図 1.7-85  | A 3-1 (砂岩)の 120 日浸漬前・後の SEM 画像比較(2)      |
| 図 1.7-86  | A 3-1 (砂岩)の 120 日浸漬前・後の SEM 画像比較(3)      |
| 図 1.7-87  | B 3-3(砂岩)の 120 日浸漬前・後のスキャン画像比較           |
| 図 1.7-88  | B 3-3(砂岩)の 120 日浸漬前・後の SEM 画像比較(1)       |
| 図 1.7-89  | B 3-3(砂岩)の 120 日浸漬前・後の SEM 画像比較(2)       |
| 図 1.7-90  | B 3-3(砂岩)の 120 日浸漬前・後の SEM 画像比較(3)       |
| 図 1.7-91  | B 3-3(砂岩)の120日浸漬前・後のSEM 画像比較(4)133       |
| 図 1.7-92  | C 2-1 (砂岩)の 120 日浸漬前・後のスキャン画像比較          |
| 図 1.7-93  | C 2-1 (砂岩)の 120 日浸漬前・後の SEM 画像比較(1)      |
| 図 1.7-94  | C 2-1 (砂岩)の 120 日浸漬前・後の SEM 画像比較(2)      |
| 図 1.7-95  | C 2-1 (砂岩)の 120 日浸漬前・後の SEM 画像比較(3) 135  |
| 図 1.7-96  | C 2-1 (砂岩)の 120 日浸漬前・後の SEM 画像比較(4) 136  |
| 図 1.7-97  | D 2-2(砂岩)の 120 日浸漬前・後のスキャン画像比較           |
| 図 1.7-98  | D 2-2(砂岩)の 120 日浸漬前・後の SEM 画像比較(1) 137   |
| 図 1.7-99  | D 2-2(砂岩)の 120 日浸漬前・後の SEM 画像比較(2)       |
| 図 1.7-100 | ) D 2-2(砂岩)の 120 日浸漬前・後の SEM 画像比較(3) 138 |
| 図 1.7-101 | D 2-2(砂岩)の 120 日浸漬前・後の SEM 画像比較(4) 139   |
| 図 1.7-102 | 2 E 2-3(砂岩)の 120 日浸漬前・後のスキャン画像比較         |
| 図 1.7-103 | 3 E 2-3(砂岩)の 120 日浸漬前・後の SEM 画像比較(1) 140 |
| 図 1.7-104 | 4 E 2-3(砂岩)の 120 日浸漬前・後の SEM 画像比較(2) 141 |
| 図 1.7-105 | 5 E 2-3(砂岩)の 120 日浸漬前・後の SEM 画像比較(3)141  |
| 図 1.7-106 | 5 F 2-6(砂岩)の 120 日浸漬前・後のスキャン画像比較 142     |
| 図 1.7-107 | 7 F 2-6(砂岩)の 120 日浸漬前・後の SEM 画像比較(1) 142 |
| 図 1.7-108 | 3 F 2-6(砂岩)の 120 日浸漬前・後の SEM 画像比較(2) 143 |
| 図 1.7-109 | F 2-6(砂岩)の120日浸漬前・後のSEM 画像比較(3)143       |
| 図 1.7-110 | ) G 1-3(砂岩)の 120 日浸漬前・後のスキャン画像比較         |
| 図 1.7-111 | G 1-3(砂岩)の 120 日浸漬前・後の SEM 画像比較(1) 144   |
| 図 1.7-112 | 2 G 1-3(砂岩)の 120 日浸漬前・後の SEM 画像比較(2) 145 |
| 図 1.7-113 | 3 G 1-3(砂岩)の 120 日浸漬前・後の SEM 画像比較(3) 145 |
| 図 1.7-114 | H 4-1(砂岩)の 120 日浸漬前・後のスキャン画像比較146        |
| 図 1.7-115 | 5 H 4-1(砂岩)の 120 日浸漬前・後の SEM 画像比較(1) 146 |
| 図 1.7-116 | 3 H 4-1(砂岩)の 120 日浸漬前・後の SEM 画像比較(2) 147 |

| 図 1.7-118 14-3 (砂岩) の 120 日浸漬前・後のスキャン画像比較 (1) 148<br>図 1.7-119 14-3 (砂岩) の 120 日浸漬前・後の SEM 画像比較 (2) 149<br>図 1.7-121 14-3 (砂岩) の 120 日浸漬前・後の SEM 画像比較 (2) 149<br>図 1.7-121 14-3 (砂岩) の 120 日浸漬前・後の SEM 画像比較 (2) 149<br>図 1.7-121 14-3 (砂岩) の 120 日浸漬前・後の SEM 画像比較 (2) 151<br>図 1.7-123 12-5 N (泥岩) の硝酸 60 日浸漬前・後の SEM 画像比較 (2) 151<br>図 1.7-125 12-5 N (泥岩) の硝酸 60 日浸漬前・後の SEM 画像比較 (2) 151<br>図 1.7-125 12-5 N (泥岩) の硝酸 60 日浸漬前・後の SEM 画像比較 (2) 151<br>図 1.7-126 12-5 C (泥岩) の硝酸 60 日浸漬前・後の SEM 画像比較 (2) 151<br>図 1.7-127 12-5 C (泥岩) の塩酸 60 日浸漬前・後の SEM 画像比較 (2) 153<br>図 1.7-128 12-5 C (泥岩) の塩酸 60 日浸漬前・後の SEM 画像比較 (2) 153<br>図 1.7-130 12-5 C (泥岩) の塩酸 60 日浸漬後の欠片画像 (1) 152<br>図 1.7-131 12-5 C (泥岩) の塩酸 60 日浸漬後の欠片画像 (2) 153<br>図 1.7-130 12-5 C (泥岩) の塩酸 60 日浸漬後の欠片画像 (2) 155<br>図 1.7-131 12-5 C (泥岩) の塩酸 60 日浸漬後の欠片 SEM 画像 (2) 155<br>図 1.7-133 12-5 S (泥岩) の塩酸 60 日浸漬後の欠片 SEM 画像 (2) 155<br>図 1.7-133 12-5 S (泥岩) の硫酸 60 日浸漬着の・後の SEM 画像比較 (1) 156<br>図 1.7-134 12-5 S (泥岩) の硫酸 60 日浸漬前・後の SEM 画像比較 (1) 156<br>図 1.7-135 12-5 S (泥岩) の硫酸 60 日浸漬前・後の SEM 画像比較 (2) 155<br>図 1.7-136 12-5 S (泥岩) の硫酸 60 日浸漬前・後の SEM 画像比較 (1) 156<br>図 1.7-137 14 22-5 S (泥岩) の硫酸 60 日浸漬前・後の SEM 画像比較 (2) 157<br>図 1.7-136 12-5 S (泥岩) の硫酸 60 日浸漬前・後の SEM 画像比較 (2) 157<br>図 1.7-137 K 4-2 N (泥岩) の硝酸 60 日浸漬前・後の SEM 画像比較 (2) 156<br>図 1.7-138 K 4-2 N (泥岩) の硝酸 60 日浸漬前・後の SEM 画像比較 (2) 157<br>図 1.7-148 K 4-2 N (泥岩) の硝酸 60 日浸漬前・後の SEM 画像比較 (2) 159<br>図 1.7-140 K 4-2 N (泥岩) の硝酸 60 日浸漬前・後の SEM 画像比較 (2) 159<br>図 1.7-140 K 4-2 N (泥岩) の硝酸 60 日浸漬前・後の SEM 画像比較 (2) 159<br>図 1.7-140 K 4-2 N (泥岩) の硝酸 60 日浸漬前・後の SEM 画像比較 (2) 160<br>図 1.7-142 K 4-2 S (砂岩) の硫酸 60 日浸漬前・後の SEM 画像比較 (2) 160<br>図 1.7-143 K 4-2 S (砂岩) の硫酸 60 日浸漬前・後の SEM 画像比較 (3) 161<br>図 1.7-144 K 4-2 S (砂岩) の硫酸 60 日浸漬前・後の SEM 画像比較 (3) 161<br>図 1.7-145 K 4-2 S (砂岩) の硫酸 60 日浸漬前・後の SEM 画像比較 (3) 162<br>図 1.7-145 K 4-2 S (砂岩) の硫酸 60 日浸漬前・後の SEM 画像比較 (4) 160<br>図 1.7-145 K 4-2 S (砂岩) の硫酸 60 日浸漬前・後の SEM 画像比較 (3) 162<br>図 1.7-145 K 4-2 S (砂岩) の硫酸 60 日浸漬前 (2) SEM 画像比較 (3) 162<br>図 1.7-145 K 4-2 S (砂岩) の硫酸 60 日浸漬前 (2) SEM 画像比較 (3) 162<br>図 1.8-1 A 3-1 0浸渍荷前後の XRD 測定結果比較 170<br>図 1.8-5 E 2-3 0浸渍荷前後の XRD 測定結果比較 171<br>0 1.8-5 E 2-3 0浸渍荷前後の XRD 測定結果比較 171<br>0 1.8-6 H                             | 図 1.7-117          | H 4-1 (砂岩)の120日浸漬前・後のSEM 画像比較(3)147       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------------------------|
| 図 1.7-119 I 4-3 (砂岩) の 120 日浸漬前・後の SEM 画像比較 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 図 1.7-118          | I 4·3 (砂岩)の120日浸漬前・後のスキャン画像比較148          |
| 図 1.7-120 14-3 (砂岩) の120 日浸漬前・後の SEM 画像比較 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 図 1.7-119          | I 4·3(砂岩)の 120 日浸漬前・後の SEM 画像比較(1) 148    |
| 図 1.7-121 14-3 (砂岩) の120 日浸漬前・後の SEM 画像比較 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 図 1.7-120          | I 4·3 (砂岩)の 120 日浸漬前・後の SEM 画像比較(2) 149   |
| 図 1.7-122 J 2-5_N (泥岩) の硝酸 60 日浸漬前・後のスキャン画像比較                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 図 1.7-121          | I 4-3(砂岩)の 120 日浸漬前・後の SEM 画像比較(3) 149    |
| 図 1.7-123 J 2-5_N (泥岩) の硝酸 60 日浸漬前・後の SEM 画像比較 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 図 1.7-122          | J 2-5_N(泥岩)の硝酸 60 日浸漬前・後のスキャン画像比較150      |
| 図 1.7-124 J 2-5_N (泥岩) の硝酸 60 日浸漬前・後の SEM 画像比較 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 図 1.7-123          | J 2-5_N(泥岩)の硝酸 60 日浸漬前・後の SEM 画像比較(1) 150 |
| 図 1.7-125       J 2-5_N (泥岩) の補酸 60 日浸漬前・後の SEM 画像比較 (3)       151         図 1.7-126       J 2-5_C (泥岩) の塩酸 60 日浸漬前・後のスキャン画像比較       152         図 1.7-127       J 2-5_C (泥岩) の塩酸 60 日浸漬前・後の SEM 画像比較 (1)       153         図 1.7-128       J 2-5_C (泥岩) の塩酸 60 日浸漬前・後の SEM 画像比較 (2)       153         図 1.7-129       J 2-5_C (泥岩) の塩酸 60 日浸漬後の欠片画像 (1)       153         図 1.7-130       J 2-5_C (泥岩) の塩酸 60 日浸漬後の欠片画像 (2)       154         図 1.7-131       J 2-5_C (泥岩) の塩酸 60 日浸漬後の欠片画像 (2)       154         図 1.7-132       J 2-5_C (泥岩) の塩酸 60 日浸漬後の欠片画像 (2)       155         図 1.7-133       J 2-5_C (泥岩) の塩酸 60 日浸漬後の欠片画像 (2)       155         図 1.7-134       J 2-5_S (泥岩) の塩酸 60 日浸漬荷前・後の SEM 画像比較 (1)       156         図 1.7-135       J 2-5_S (泥岩) の硫酸 60 日浸漬荷前・後の SEM 画像比較 (2)       157         図 1.7-135       J 2-5_S (泥岩) の硝酸 60 日浸漬荷前・後の SEM 画像比較 (2)       157         図 1.7-137       K 4-2_N (泥岩) の硝酸 60 日浸漬荷前・後の SEM 画像比較 (2)       158         図 1.7-138       K 4-2_N (泥岩) の硝酸 60 日浸漬荷前・後の SEM 画像比較 (2)       158         図 1.7-139       K 4-2_N (泥岩) の硝酸 60 日浸漬荷前・後の SEM 画像比較 (2)       159         図 1.7-140       K 4-2_S (砂岩) の硝酸 60 日浸漬荷前・後の SEM 画像比較 (3)       159         図 1.7-141       K 4-2_S (砂岩) の硝酸 60 日浸漬荷前・後の SEM 画像比較 (4)      160         図 1.7-142       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 図 1.7-124          | J 2-5_N(泥岩)の硝酸 60 日浸漬前・後の SEM 画像比較(2)151  |
| 図 1.7-126 J 2-5_C (泥岩) の塩酸 60 日浸漬前・後のスキャン画像比較.<br>1.52<br>図 1.7-127 J 2-5_C (泥岩) の塩酸 60 日浸漬前・後の SEM 画像比較 (1)<br>1.53<br>図 1.7-128 J 2-5_C (泥岩) の塩酸 60 日浸漬節・後の SEM 画像比較 (2)<br>1.7-130 J 2-5_C (泥岩) の塩酸 60 日浸漬後の欠片画像 (1)<br>1.7-131 J 2-5_C (泥岩) の塩酸 60 日浸漬後の欠片画像 (2)<br>1.7-131 J 2-5_C (泥岩) の塩酸 60 日浸漬後の欠片医M 画像 (1)<br>1.7-132 J 2-5_C (泥岩) の塩酸 60 日浸漬後の欠片 SEM 画像 (2)<br>1.7-133 J 2-5_S (泥岩) の硫酸 60 日浸漬後の欠片 SEM 画像 (2)<br>1.7-133 J 2-5_S (泥岩) の硫酸 60 日浸漬荷・後の SEM 画像比較 (1)<br>1.7-135 J 2-5_S (泥岩) の硫酸 60 日浸漬荷・後の SEM 画像比較 (1)<br>1.7-136 J 2-5_S (泥岩) の硫酸 60 日浸漬荷・後の SEM 画像比較 (1)<br>1.7-137 J 2-5_S (泥岩) の硫酸 60 日浸漬荷・後の SEM 画像比較 (2)<br>1.7-137 K 4-2_N (泥岩) の硝酸 60 日浸漬荷・後の SEM 画像比較 (1)<br>1.7-138 K 4-2_N (泥岩) の硝酸 60 日浸漬荷・後の SEM 画像比較 (2)<br>1.7-139 K 4-2_N (泥岩) の硝酸 60 日浸漬荷・後の SEM 画像比較 (2)<br>1.7-140 K 4-2_N (泥岩) の硝酸 60 日浸漬荷・後の SEM 画像比較 (2)<br>1.7-141 K 4-2_N (泥岩) の硝酸 60 日浸漬荷・後の SEM 画像比較 (2)<br>1.7-143 K 4-2_S (砂岩) の硝酸 60 日浸漬荷・後の SEM 画像比較 (3)<br>1.7-144 K 4-2_S (砂岩) の硝酸 60 日浸漬荷・後の SEM 画像比較 (3)<br>1.7-145 K 4-2_S (砂岩) の硫酸 60 日浸漬荷・後の SEM 画像比較 (4)<br>1.61<br>1.7-144 K 4-2_S (砂岩) の硫酸 60 日浸漬荷・後の SEM 画像比較 (4)<br>1.61<br>1.7-145 K 4-2_S (砂岩) の硫酸 60 日浸漬荷・後の SEM 画像比較 (4)<br>1.61<br>1.7-146 K 4-2_S (砂岩) の硫酸 60 日浸漬荷・後の SEM 画像比較 (2)<br>1.62<br>1.7-147 K 4-2_S (砂岩) の硫酸 60 日浸漬荷・後の SEM 画像比較 (3)<br>1.62<br>1.7-146 K 4-2_S (砂岩) の硫酸 60 日浸漬荷・後の SEM 画像比較 (3)<br>1.62<br>1.7-146 K 4-2_S (砂岩) の硫酸 60 日浸漬荷・後の SEM 画像比較 (4)<br>1.63<br>1.8-1 A 3-1 の浸漬荷後の XRD 測定結果比較<br>1.70<br>1.8-5 E 2-3 の浸漬荷後の XRD 測定結果比較<br>1.70<br>1.8-5 E 2-3 の浸漬荷後の XRD 測定結果比較<br>1.71<br>1.8-6 F 2-6 の浸漬荷後の XRD 測定結果比較<br>1.71<br>1.8-6 F 2-6 の浸漬荷後の XRD 測定結果比較<br>1.71<br>1.8-7 G 1-3 の浸漬荷後の XRD 測定結果比較<br>1.71<br>1.8-8 H 4-1 の浸漬荷後の XRD 測定結果比較<br>1.71<br>1.8-8 H 4-1 の浸漬荷後の XRD 測定結果比較<br>1.71<br>1.8-1 J 2-5 の浸漬荷後の XRD 測定結果比較<br>1.71<br>1.8-1 | 図 1.7-125          | J 2-5_N(泥岩)の硝酸 60 日浸漬前・後の SEM 画像比較(3) 151 |
| 図 1.7-127       J 2-5_C (泥岩)       の塩酸 60 日浸漬前・後の SEM 画像比較 (1)       152         図 1.7-128       J 2-5_C (泥岩)       の塩酸 60 日浸漬後の欠片画像 (1)       153         図 1.7-129       J 2-5_C (泥岩)       の塩酸 60 日浸漬後の欠片画像 (1)       153         図 1.7-130       J 2-5_C (泥岩)       の塩酸 60 日浸漬後の欠片画像 (2)       154         図 1.7-131       J 2-5_C (泥岩)       の塩酸 60 日浸漬後の欠片 SEM 画像 (1)       154         図 1.7-132       J 2-5_C (泥岩)       の塩酸 60 日浸漬後の欠片 SEM 画像 (1)       155         図 1.7-133       J 2-5_C (泥岩)       の塩酸 60 日浸漬後の欠片 SEM 画像 (1)       156         図 1.7-133       J 2-5_S (泥岩)       の硫酸 60 日浸漬前・後のスキャン画像比較       1.56         図 1.7-135       J 2-5_S (泥岩)       の硫酸 60 日浸漬前・後の SEM 画像比較 (1)       1.56         図 1.7-136       J 2-5_S (泥岩)       の硫酸 60 日浸漬前・後の SEM 画像比較 (2)       1.57         図 1.7-137       K 4-2_N (泥岩)       の硫酸 60 日浸漬前・後の SEM 画像比較 (1)       1.58         図 1.7-138       K 4-2_N (泥岩)       の硫酸 60 日浸漬前・後の SEM 画像比較 (2)       1.59         図 1.7-141       K 4-2_N (泥岩)       の硫酸 60 日浸漬前・後の SEM 画像比較 (2)       1.61         図 1.7-142       K 4-2_S (砂岩)       の硫酸 60 日浸漬前・後の SEM 画像比較 (1)       1.61         図 1.7-143       K 4-2_S (砂岩)       の硫酸 60 日浸漬前・後の SEM 画像比較 (1)       1.61         図 1.7-144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 図 1.7-126          | J 2-5_C(泥岩)の塩酸 60 日浸漬前・後のスキャン画像比較152      |
| 図 1.7-128       J 2-5_C (泥岩)       の塩酸 60 日浸漬節・後の SEM 画像比較 (2)       153         図 1.7-129       J 2-5_C (泥岩)       の塩酸 60 日浸漬後の欠片画像 (1)       153         図 1.7-130       J 2-5_C (泥岩)       の塩酸 60 日浸漬後の欠片画像 (2)       154         図 1.7-131       J 2-5_C (泥岩)       の塩酸 60 日浸漬後の欠片 SEM 画像 (1)       154         図 1.7-132       J 2-5_C (泥岩)       の塩酸 60 日浸漬後の欠片 SEM 画像 (1)       155         図 1.7-133       J 2-5_S (泥岩)       の塩酸 60 日浸漬節・後のスキャン画像比較       156         図 1.7-135       J 2-5_S (泥岩)       の硫酸 60 日浸漬節・後の SEM 画像比較 (1)       156         図 1.7-135       J 2-5_S (泥岩)       の硫酸 60 日浸漬節・後の SEM 画像比較 (2)       157         図 1.7-136       J 2-5_S (泥岩)       の硫酸 60 日浸漬節・後の SEM 画像比較 (2)       158         図 1.7-137       K 4-2_N (泥岩)       の硝酸 60 日浸漬節・後の SEM 画像比較 (1)       158         図 1.7-138       K 4-2_N (泥岩)       の硝酸 60 日浸漬節・後の SEM 画像比較 (2)       159         図 1.7-140       K 4-2_N (泥岩)       の硝酸 60 日浸漬節・後の SEM 画像比較 (3)       159         図 1.7-141       K 4-2_N (泥岩)       の硝酸 60 日浸漬節・後の SEM 画像比較 (4)       160         図 1.7-142       K 4-2_S (砂岩)       の硫酸 60 日浸漬節・後の SEM 画像比較 (1)       161         図 1.7-143       K 4-2_S (砂岩)       の硫酸 60 日浸漬節・後の SEM 画像比較 (2)       162         図 1.7-144 <td< td=""><td>図 1.7-127</td><td>J 2-5_C(泥岩)の塩酸 60 日浸漬前・後の SEM 画像比較(1)152</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 図 1.7-127          | J 2-5_C(泥岩)の塩酸 60 日浸漬前・後の SEM 画像比較(1)152  |
| 図 1.7-129 J 2-5_C (泥岩) の塩酸 60 目浸漬後の欠片画像 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 図 1.7-128          | J 2-5_C(泥岩)の塩酸 60 日浸漬前・後の SEM 画像比較(2)153  |
| 図 1.7-130 J 2-5_C (泥岩) の塩酸 60 日浸漬後の欠片画像 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 図 1.7-129          | J 2-5_C(泥岩)の塩酸 60 日浸漬後の欠片画像(1)153         |
| 図 1.7-131 J 2·5_C (泥岩)の塩酸 60 日浸漬後の欠片 SEM 画像 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 図 1.7-130          | J 2-5_C (泥岩)の塩酸 60 日浸漬後の欠片画像 (2)          |
| 図 1.7-132 J 2.5_C (泥岩) の塩酸 60 日浸漬後の欠片 SEM 画像 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 図 1.7-131          | J 2-5_C(泥岩)の塩酸 60 日浸漬後の欠片 SEM 画像(1) 154   |
| 図 1.7-133 J 2·5_S (泥岩) の硫酸 60 日浸漬前・後のスキャン画像比較                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 図 1.7-132          | J 2-5_C(泥岩)の塩酸 60 日浸漬後の欠片 SEM 画像(2)155    |
| 図 1.7-134 J 2-5_S (泥岩) の硫酸 60 日浸漬前・後の SEM 画像比較 (1)       156         図 1.7-135 J 2-5_S (泥岩) の硫酸 60 日浸漬前・後の SEM 画像比較 (2)       157         図 1.7-136 J 2-5_S (泥岩) の硫酸 60 日浸漬前・後の SEM 画像比較 (3)       157         図 1.7-137 K 4-2_N (泥岩) の硝酸 60 日浸漬前・後の SEM 画像比較 (3)       158         図 1.7-138 K 4-2_N (泥岩) の硝酸 60 日浸漬前・後の SEM 画像比較 (1)       158         図 1.7-139 K 4-2_N (泥岩) の硝酸 60 日浸漬前・後の SEM 画像比較 (1)       159         図 1.7-140 K 4-2_N (泥岩) の硝酸 60 日浸漬前・後の SEM 画像比較 (2)       159         図 1.7-141 K 4-2_N (泥岩) の硝酸 60 日浸漬前・後の SEM 画像比較 (3)       159         図 1.7-142 K 4-2_S (砂岩) の硫酸 60 日浸漬前・後の SEM 画像比較 (1)       161         図 1.7-143 K 4-2_S (砂岩) の硫酸 60 日浸漬前・後の SEM 画像比較 (1)       161         図 1.7-144 K 4-2_S (砂岩) の硫酸 60 日浸漬前・後の SEM 画像比較 (2)       162         図 1.7-145 K 4-2_S (砂岩) の硫酸 60 日浸漬前・後の SEM 画像比較 (3)       162         図 1.7-146 K 4-2_S (砂岩) の硫酸 60 日浸漬前・後の SEM 画像比較 (3)       162         図 1.8-1 A 3-1 の浸漬前後の XRD 測定結果比較       167         図 1.8-2 B 3-3 の浸漬前後の XRD 測定結果比較       168         図 1.8-3 C 2-1 の浸漬前後の XRD 測定結果比較       170         図 1.8-4 D 2-2 の浸漬前後の XRD 測定結果比較       171         図 1.8-5 E 2-3 の浸漬前後の XRD 測定結果比較       172         図 1.8-6 F 2-6 の浸漬前後の XRD 測定結果比較       173         図 1.8-7 G 1-3 の浸漬前後の XRD 測定結果比較       174         図 1.8-8 H 4-1 の浸漬前後の XRD 測定結果比較       174 <td>図 1.7-133</td> <td>J 2-5_S(泥岩)の硫酸 60 日浸漬前・後のスキャン画像比較156</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 図 1.7-133          | J 2-5_S(泥岩)の硫酸 60 日浸漬前・後のスキャン画像比較156      |
| <ul> <li>図 1.7-135 J 2-5_S (泥岩)の硫酸 60 日浸漬前・後の SEM 画像比較 (2)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 図 1.7-134          | J 2-5_S(泥岩)の硫酸 60 日浸漬前・後の SEM 画像比較(1) 156 |
| <ul> <li>図 1.7-136 J 2-5_S (泥岩)の硫酸 60 日浸漬前・後の SEM 画像比較 (3)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 図 1.7-135          | J 2-5_S(泥岩)の硫酸 60 日浸漬前・後の SEM 画像比較(2) 157 |
| <ul> <li>図 1.7-137 K 4-2_N (泥岩)の硝酸 60 日浸漬前・後のスキャン画像比較</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 図 1.7-136          | J 2-5_S(泥岩)の硫酸 60 日浸漬前・後の SEM 画像比較(3) 157 |
| <ul> <li>図 1.7-138 K 4·2_N (泥岩) の硝酸 60 日浸漬前・後の SEM 画像比較 (1)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 図 1.7-137          | K 4·2_N (泥岩) の硝酸 60 日浸漬前・後のスキャン画像比較158    |
| 図 1.7-139 K 4·2_N (泥岩) の硝酸 60 日浸漬前・後の SEM 画像比較(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 図 1.7-138          | K 4·2_N(泥岩)の硝酸 60 日浸漬前・後の SEM 画像比較(1) 158 |
| 図 1.7-140 K 4·2_N (泥岩) の硝酸 60 日浸漬前・後の SEM 画像比較 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 図 1.7-139          | K 4·2_N(泥岩)の硝酸 60 日浸漬前・後の SEM 画像比較(2) 159 |
| 図 1.7-141 K4·2_N (泥岩) の硝酸 60 日浸漬前・後の SEM 画像比較(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 図 1.7-140          | K 4·2_N(泥岩)の硝酸 60 日浸漬前・後の SEM 画像比較(3) 159 |
| 図 1.7-142       K 4·2_S (砂岩)の硫酸 60 日浸漬前・後のスキャン画像比較       161         図 1.7-143       K 4·2_S (砂岩)の硫酸 60 日浸漬前・後の SEM 画像比較(1)       161         図 1.7-144       K 4·2_S (砂岩)の硫酸 60 日浸漬前・後の SEM 画像比較(2)       162         図 1.7-145       K 4·2_S (砂岩)の硫酸 60 日浸漬前・後の SEM 画像比較(3)       162         図 1.7-146       K 4·2_S (砂岩)の硫酸 60 日浸漬前・後の SEM 画像比較(3)       163         図 1.7-146       K 4·2_S (砂岩)の硫酸 60 日浸漬前・後の SEM 画像比較(4)       163         図 1.7-146       K 4·2_S (砂岩)の硫酸 60 日浸漬前・後の SEM 画像比較(4)       163         図 1.8-1       A 3·1 の浸漬前後の XRD 測定結果比較       167         図 1.8-2       B 3·3 の浸漬前後の XRD 測定結果比較       168         図 1.8-3       C 2·1 の浸漬前後の XRD 測定結果比較       169         図 1.8-4       D 2·2 の浸漬前後の XRD 測定結果比較       170         図 1.8-5       E 2·3 の浸漬前後の XRD 測定結果比較       171         図 1.8-6       F 2·6 の浸漬前後の XRD 測定結果比較       172         図 1.8-7       G 1·3 の浸漬前後の XRD 測定結果比較       173         図 1.8-8       H 4·1 の浸漬前後の XRD 測定結果比較       174         図 1.8-9       I 4·3 の浸漬前後の XRD 測定結果比較       175         図 1.8-10       J 2·5 の浸漬前後の XRD 測定結果比較       176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 図 1.7-141          | K 4·2_N(泥岩)の硝酸 60 日浸漬前・後の SEM 画像比較(4) 160 |
| 図 1.7-143       K 4-2_S (砂岩)の硫酸 60 日浸漬前・後の SEM 画像比較(1)       161         図 1.7-144       K 4-2_S (砂岩)の硫酸 60 日浸漬前・後の SEM 画像比較(2)       162         図 1.7-145       K 4-2_S (砂岩)の硫酸 60 日浸漬前・後の SEM 画像比較(3)       162         図 1.7-146       K 4-2_S (砂岩)の硫酸 60 日浸漬前・後の SEM 画像比較(3)       163         図 1.7-146       K 4-2_S (砂岩)の硫酸 60 日浸漬前・後の SEM 画像比較(4)       163         図 1.8-1       A 3-1 の浸漬前後の XRD 測定結果比較       167         図 1.8-2       B 3-3 の浸漬前後の XRD 測定結果比較       168         図 1.8-3       C 2-1 の浸漬前後の XRD 測定結果比較       169         図 1.8-4       D 2-2 の浸漬前後の XRD 測定結果比較       170         図 1.8-5       E 2-3 の浸漬前後の XRD 測定結果比較       171         図 1.8-6       F 2-6 の浸漬前後の XRD 測定結果比較       172         図 1.8-7       G 1-3 の浸漬前後の XRD 測定結果比較       173         図 1.8-8       H 4-1 の浸漬前後の XRD 測定結果比較       174         図 1.8-9       I 4-3 の浸漬前後の XRD 測定結果比較       175         図 1.8-10       J 2-5 の浸漬前後の XRD 測定結果比較       176         図 1.8-10       J 2-5 の浸漬前後の XRD 測定結果比較       176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 図 1.7-142          | K 4-2_S(砂岩)の硫酸 60 日浸漬前・後のスキャン画像比較         |
| <ul> <li>図 1.7-144 K 4-2_S (砂岩)の硫酸 60 日浸漬前・後の SEM 画像比較(2)</li> <li>162</li> <li>図 1.7-145 K 4-2_S (砂岩)の硫酸 60 日浸漬前・後の SEM 画像比較(3)</li> <li>162</li> <li>図 1.7-146 K 4-2_S (砂岩)の硫酸 60 日浸漬前・後の SEM 画像比較(4)</li> <li>163</li> <li>図 1.8-1 A 3-1 の浸漬前後の XRD 測定結果比較</li> <li>167</li> <li>図 1.8-2 B 3-3 の浸漬前後の XRD 測定結果比較</li> <li>168</li> <li>図 1.8-3 C 2-1 の浸漬前後の XRD 測定結果比較</li> <li>169</li> <li>図 1.8-4 D 2-2 の浸漬前後の XRD 測定結果比較</li> <li>170</li> <li>図 1.8-5 E 2-3 の浸漬前後の XRD 測定結果比較</li> <li>171</li> <li>図 1.8-6 F 2-6 の浸漬前後の XRD 測定結果比較</li> <li>172</li> <li>図 1.8-7 G 1-3 の浸漬前後の XRD 測定結果比較</li> <li>173</li> <li>図 1.8-8 H 4-1 の浸漬前後の XRD 測定結果比較</li> <li>174</li> <li>図 1.8-10 J 2-5 の浸漬前後の XRD 測定結果比較</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 図 1.7-143          | K 4·2_S(砂岩)の硫酸 60 日浸漬前・後の SEM 画像比較(1)161  |
| 図 1.7-145K 4-2_S (砂岩) の硫酸 60 日浸漬前・後の SEM 画像比較 (3)162図 1.7-146K 4-2_S (砂岩) の硫酸 60 日浸漬前・後の SEM 画像比較 (4)163図 1.8-1A 3-1 の浸漬前後の XRD 測定結果比較167図 1.8-2B 3-3 の浸漬前後の XRD 測定結果比較168図 1.8-3C 2-1 の浸漬前後の XRD 測定結果比較169図 1.8-4D 2-2 の浸漬前後の XRD 測定結果比較170図 1.8-5E 2-3 の浸漬前後の XRD 測定結果比較171図 1.8-6F 2-6 の浸漬前後の XRD 測定結果比較172図 1.8-7G 1-3 の浸漬前後の XRD 測定結果比較173図 1.8-8H 4-1 の浸漬前後の XRD 測定結果比較174図 1.8-9I 4-3 の浸漬前後の XRD 測定結果比較175図 1.8-10J 2-5 の浸漬前後の XRD 測定結果比較176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 図 1.7-144          | K 4·2_S(砂岩)の硫酸 60 日浸漬前・後の SEM 画像比較(2)162  |
| 図 1.7-146K 4-2_S (砂岩) の硫酸 60 日浸漬前・後の SEM 画像比較 (4)163図 1.8-1A 3-1 の浸漬前後の XRD 測定結果比較167図 1.8-2B 3-3 の浸漬前後の XRD 測定結果比較168図 1.8-3C 2-1 の浸漬前後の XRD 測定結果比較169図 1.8-4D 2-2 の浸漬前後の XRD 測定結果比較170図 1.8-5E 2-3 の浸漬前後の XRD 測定結果比較171図 1.8-6F 2-6 の浸漬前後の XRD 測定結果比較172図 1.8-7G 1-3 の浸漬前後の XRD 測定結果比較173図 1.8-8H 4-1 の浸漬前後の XRD 測定結果比較174図 1.8-9I 4-3 の浸漬前後の XRD 測定結果比較175図 1.8-10J 2-5 の浸漬前後の XRD 測定結果比較176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 図 1.7-145          | K 4·2_S(砂岩)の硫酸 60 日浸漬前・後の SEM 画像比較(3)162  |
| 図 1.8-1A 3-1 の浸漬前後の XRD 測定結果比較                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 図 1.7-146          | K 4·2_S(砂岩)の硫酸 60 日浸漬前・後の SEM 画像比較(4)163  |
| 図 1.8-2B 3-3 の浸漬前後の XRD 測定結果比較                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 図 1.8-1            | A 3-1 の浸漬前後の XRD 測定結果比較167                |
| 図 1.8-3C 2-1 の浸漬前後の XRD 測定結果比較                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ⊠ 1.8 <b>-</b> 2 H | 3 3-3 の浸漬前後の XRD 測定結果比較 168               |
| 図 1.8-4D 2-2 の浸漬前後の XRD 測定結果比較170図 1.8-5E 2-3 の浸漬前後の XRD 測定結果比較171図 1.8-6F 2-6 の浸漬前後の XRD 測定結果比較172図 1.8-7G 1-3 の浸漬前後の XRD 測定結果比較173図 1.8-8H 4-1 の浸漬前後の XRD 測定結果比較174図 1.8-9I 4-3 の浸漬前後の XRD 測定結果比較175図 1.8-10J 2-5 の浸漬前後の XRD 測定結果比較176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 図 1.8-3 (          | C 2-1 の浸漬前後の XRD 測定結果比較 169               |
| 図 1.8-5E 2-3の浸漬前後の XRD 測定結果比較                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 図 1.8-4 I          | <b>D 2-2</b> の浸漬前後の XRD 測定結果比較170         |
| 図 1.8-6       F 2-6 の浸漬前後の XRD 測定結果比較                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 図 1.8-5 H          | E 2-3 の浸漬前後の XRD 測定結果比較 171               |
| <ul> <li>図 1.8-7 G 1-3の浸漬前後の XRD 測定結果比較</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 図 1.8-6 H          | F 2-6 の浸漬前後の XRD 測定結果比較172                |
| <ul> <li>図 1.8-8 H 4-1の浸漬前後の XRD 測定結果比較</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 図 1.8-7 0          | G 1-3 の浸漬前後の XRD 測定結果比較173                |
| <ul> <li>図 1.8-9 I 4-3の浸漬前後の XRD 測定結果比較</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 図 1.8-8 H          | I 4-1 の浸漬前後の XRD 測定結果比較174                |
| 図 1.8-10 J 2-5 の浸漬前後の XRD 測定結果比較                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 図 1.8-9 I          | 4-3の浸漬前後の XRD 測定結果比較175                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 図 1.8-10           | J 2-5 の浸漬前後の XRD 測定結果比較176                |
| 図 1.8-11 K 4-2 の浸頂 10 XRD 測 定結果比較                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 図 1.8-11           | K 4-2 の浸漬前後の XRD 測定結果比較                   |

| 义 | 1.9-1          | A 3-1          | の間隙径分          | 布180               |
|---|----------------|----------------|----------------|--------------------|
| 义 | 1.9-2          | В 3 <b>-</b> 3 | の間隙径分          | 冷布                 |
| 义 | 1.9-3          | C 2-1          | の間隙径分          | 冷布                 |
| 义 | 1.9-4          | D 2-2          | の間隙径分          | 亦186               |
| 义 | 1.9-5          | E 2-3          | の間隙径分          | 市                  |
| 义 | 1.9-6          | F 2-6          | の間隙径分          | 布190               |
| 义 | 1.9-7          | G 1-3          | の間隙径分          | )布192              |
| 义 | 1.9-8          | H 4 <b>-</b> 1 | の間隙径分          | 分布194              |
| 义 | 1.9-9          | I 4-3 0        | D間隙径分          | 布196               |
| 义 | 1.9-10         | J 2-5          | の間隙径           | 分布                 |
| 义 | 1.9-11         | K 4-2          | 2の間隙径          | 分布                 |
| 义 | 1.11-1         | 1 <b>-</b> 2b  | (河床礫)          | の断面および薄片写真         |
| 义 | 1.11-2         | 1 <b>-</b> 2b  | (河床礫)          | の元素マッピング結果 (1) 205 |
| 义 | 1.11-3         | 1 <b>-</b> 2b  | (河床礫)          | の元素マッピング結果 (2) 206 |
| 义 | 1.11-4         | 2 <b>-</b> 4a  | (河床礫)          | の断面および薄片写真         |
| 义 | $1.11 \cdot 5$ | 2 <b>-</b> 4a  | (河床礫)          | の元素マッピング結果 (1) 208 |
| 义 | 1.11-6         | 2 <b>-</b> 4a  | (河床礫)          | の元素マッピング結果 (2) 209 |
| 义 | 1.11-7         | 3 <b>-</b> 4a  | (河床礫)          | の断面および薄片写真         |
| 义 | 1.11-8         | 3 <b>-</b> 4a  | (河床礫)          | の元素マッピング結果 (1)     |
| 义 | 1.11-9         | 3 <b>-</b> 4a  | (河床礫)          | の元素マッピング結果 (2) 212 |
| 义 | 1.11-1(        | ) 4-5k         | <b>)</b> (河床礫) | の断面および薄片写真         |
| 义 | 1.11-11        | 4-5k           | <b>)</b> (河床礫) | の元素マッピング結果 (1)     |
| 义 | 1.11-12        | 2 4-5k         | <b>)</b> (河床礫) | の元素マッピング結果 (2)     |
| 义 | 1.11-13        | 3 5-3a         | a(段丘礫)         | の断面および薄片写真         |
| 义 | 1.11-14        | 4 <b>5</b> -3a | a(段丘礫)         | の元素マッピング結果 (1)     |
| 义 | 1.11-18        | 5 5-3a         | a (段丘礫)        | の元素マッピング結果 (2)     |

## 表 目 次

| 表 1.1-1 | 浸漬前の試料の寸法・重量・密度の測定結果       | 10 |
|---------|----------------------------|----|
| 表 1.1-2 | 浸漬後の試料の寸法・重量・密度の測定結果       | 11 |
| 表 1.4-1 | X 線分析顕微鏡の測定条件              | 33 |
| 表 1.5-1 | マイクロフォーカス X 線 CT スキャンの測定条件 | 70 |
| 表 1.5-2 | 低密度帯の厚さの測定結果               | 76 |
| 表 1.6-1 | 分光測色条件                     | 77 |
| 表 1.6-2 | 30 日浸漬試料の浸漬前後での分光測色の結果     | 78 |
| 表 1.6-3 | 60 日浸漬試料の浸漬前後での分光測色の結果     | 79 |
| 表 1.6-4 | 120 日浸漬試料の浸漬前後での分光測色の結果    | 80 |
| 表 1.6-5 | 酸変更 60 日浸漬試料の浸漬前後での分光測色の結果 | 81 |
|         |                            |    |

付 12-8

| 表 1.7-1  | SEM の観察条件                  |
|----------|----------------------------|
| 表 1.8-1  | <b>XRD</b> 分析の測定条件         |
| 表 1.8-2  | 浸漬前の鉱物組み合わせ164             |
| 表 1.8-3  | 30 日浸漬後の鉱物組み合わせ165         |
| 表 1.8-4  | 60 日浸漬後の鉱物組み合わせ165         |
| 表 1.8-5  | 120日浸漬後の鉱物組み合わせ166         |
| 表 1.8-6  | 酸変更 60 日浸漬後の鉱物組み合わせ 166    |
| 表 1.9-1  | 水銀ポロシメータの測定条件178           |
| 表 1.9-2  | A 3·1 のポロシメータ測定結果179       |
| 表 1.9-3  | B 3·3 のポロシメータ測定結果181       |
| 表 1.9-4  | C 2-1 のポロシメータ測定結果183       |
| 表 1.9-5  | <b>D</b> 2-2のポロシメータ測定結果185 |
| 表 1.9-6  | E 2-3 のポロシメータ測定結果187       |
| 表 1.9-7  | F 2-6 のポロシメータ測定結果189       |
| 表 1.9-8  | G 1-3 のポロシメータ測定結果191       |
| 表 1.9-9  | H 4·1 のポロシメータ測定結果193       |
| 表 1.9-10 | I 4·3 のポロシメータ測定結果195       |
| 表 1.9-11 | J 2-5 のポロシメータ測定結果197       |
| 表 1.9-12 | K 4·2 のポロシメータ測定結果199       |
| 表 1.10-1 | ICP-OES, ICP-MS による定量分析結果  |

### 1. 岩石風化模擬実験の分析結果

今回の実験で得られた結果について、分析項目ごとに記す。

## 1.1 試料性状

硝酸溶液への浸漬前後の実験試料について、寸法・重量・密度の測定ならびに観察面(SEM 等による表面観察の対象とする面)のスキャン画像撮影を実施した。それらの結果を表 1.1-1 と表 1.1-2 および図 1.1-1~図 1.1-4 に示す。

|    | 岩種·試  | 料名      | 幅(mm) | 奥行(mm) | 高さ(mm) | 浸漬前<br>質量(g) | 体積<br><sup>(cm<sup>3</sup>)</sup> | 密度<br>(g/cm <sup>3</sup> ) |
|----|-------|---------|-------|--------|--------|--------------|-----------------------------------|----------------------------|
|    |       | 30日試料   | 19.11 | 18.98  | 10.30  | 9.92         | 3.74                              | 2.65                       |
| 砂岩 | A 3-1 | 60日試料   | 19.46 | 20.25  | 9.86   | 10.27        | 3.89                              | 2.64                       |
|    |       | 120日試料  | 19.07 | 20.30  | 9.86   | 10.09        | 3.82                              | 2.64                       |
|    |       | 30日試料   | 19.01 | 19.85  | 10.55  | 10.48        | 3.98                              | 2.63                       |
| 砂岩 | B 3-3 | 60日試料   | 19.86 | 20.74  | 9.51   | 10.29        | 3.92                              | 2.63                       |
|    |       | 120日試料  | 19.79 | 19.91  | 10.57  | 10.91        | 4.16                              | 2.62                       |
|    |       | 30日試料   | 21.54 | 20.09  | 11.52  | 13.12        | 4.99                              | 2.63                       |
| 砂岩 | C 2-1 | 60日試料   | 19.68 | 21.65  | 10.87  | 12.28        | 4.63                              | 2.65                       |
|    |       | 120日試料  | 20.44 | 21.87  | 11.13  | 13.24        | 4.98                              | 2.66                       |
|    |       | 30日試料   | 18.25 | 19.54  | 9.35   | 8.89         | 3.33                              | 2.67                       |
| 砂岩 | D 2-2 | 60日試料   | 19.09 | 19.90  | 10.06  | 10.17        | 3.82                              | 2.66                       |
|    |       | 120日試料  | 19.46 | 18.39  | 10.15  | 9.70         | 3.63                              | 2.67                       |
|    |       | 30日試料   | 19.33 | 21.35  | 10.04  | 11.03        | 4.14                              | 2.66                       |
| 砂岩 | E 2-3 | 60日試料   | 19.34 | 21.41  | 10.04  | 11.00        | 4.16                              | 2.65                       |
|    |       | 120日試料  | 19.18 | 20.58  | 9.83   | 10.33        | 3.88                              | 2.66                       |
|    |       | 30日試料   | 19.21 | 21.86  | 8.33   | 9.20         | 3.50                              | 2.63                       |
| 砂岩 | F 2-6 | 60日試料   | 19.27 | 21.58  | 9.83   | 10.75        | 4.09                              | 2.63                       |
|    |       | 120日試料  | 19.14 | 21.87  | 9.42   | 10.32        | 3.94                              | 2.62                       |
|    |       | 30日試料   | 20.30 | 20.99  | 9.13   | 10.19        | 3.89                              | 2.62                       |
| 砂岩 | G 1-3 | 60日試料   | 20.35 | 21.04  | 8.61   | 9.67         | 3.69                              | 2.62                       |
|    |       | 120日試料  | 20.32 | 21.06  | 8.88   | 9.97         | 3.80                              | 2.62                       |
|    |       | 30日試料   | 19.73 | 19.95  | 9.23   | 9.57         | 3.63                              | 2.63                       |
| 砂岩 | H 4–1 | 60日試料   | 19.10 | 21.22  | 9.19   | 9.80         | 3.72                              | 2.63                       |
|    |       | 120日試料  | 19.19 | 21.26  | 9.68   | 10.41        | 3.95                              | 2.64                       |
|    |       | 30日試料   | 20.81 | 20.68  | 8.90   | 9.78         | 3.83                              | 2.55                       |
| 砂岩 | I 4-3 | 60日試料   | 20.88 | 20.72  | 9.54   | 10.55        | 4.13                              | 2.56                       |
|    |       | 120日試料  | 20.57 | 20.72  | 8.86   | 9.66         | 3.78                              | 2.56                       |
|    |       | 硝酸60日試料 | 24.04 | 20.35  | 10.92  | 14.71        | 5.34                              | 2.75                       |
| 砂岩 | J 2-5 | 塩酸60日試料 | 22.54 | 20.18  | 10.21  | 12.67        | 4.64                              | 2.73                       |
|    |       | 硫酸60日試料 | 22.31 | 20.05  | 10.31  | 12.60        | 4.61                              | 2.73                       |
|    |       | 硝酸60日試料 | 20.18 | 19.41  | 10.50  | 10.85        | 4.11                              | 2.64                       |
| 砂岩 | K 4-2 | 塩酸60日試料 | 19.97 | 19.33  | 10.05  | 10.23        | 3.88                              | 2.64                       |
|    |       | 硫酸60日試料 | 20.75 | 19.90  | 9.10   | 10.04        | 3.76                              | 2.67                       |

表 1.1-1 浸漬前の試料の寸法・重量・密度の測定結果

|          | 岩種·註    | 【料名     | 幅(mm) | 奧行(mm) | 高さ(mm) | 浸漬後    | 質量変化   | 質量変化  | 体積                 | 密度                   | 密度変化                 |
|----------|---------|---------|-------|--------|--------|--------|--------|-------|--------------------|----------------------|----------------------|
|          |         |         |       | 2011   |        | 質量(g)  | (g)    | 率(%)* | (cm <sup>3</sup> ) | (g/cm <sup>3</sup> ) | (g/cm <sup>3</sup> ) |
|          |         | 30日試料   | 19.11 | 19.02  | 10.31  | 9.3007 | -0.615 | 6.21  | 3.747              | 2.482                | -0.172               |
| 砂岩       | A 3-1   | 60日試料   | 19.46 | 20.19  | 9.82   | 9.4497 | -0.822 | 8.00  | 3.858              | 2.449                | -0.194               |
|          |         | 120日試料  | 19.02 | 20.30  | 9.84   | 9.1259 | -0.96  | 9.51  | 3.799              | 2.402                | -0.240               |
|          |         | 30日試料   | 19.02 | 19.87  | 10.54  | 10.103 | -0.378 | 3.61  | 3.983              | 2.536                | -0.096               |
| 砂岩       | B 3-3   | 60日試料   | 19.93 | 20.68  | 9.53   | 9.839  | -0.448 | 4.35  | 3.928              | 2.505                | -0.121               |
|          |         | 120日試料  | 19.75 | 19.88  | 10.56  | 10.3   | -0.611 | 5.60  | 4.146              | 2.484                | -0.136               |
|          |         | 30日試料   | 21.50 | 20.13  | 11.50  | 12.286 | -0.836 | 6.37  | 4.977              | 2.468                | -0.164               |
| 砂岩       | C 2-1   | 60日試料   | 19.69 | 21.68  | 10.89  | 11.242 | -1.042 | 8.48  | 4.649              | 2.418                | -0.234               |
|          |         | 120日試料  | 20.48 | 21.86  | 11.13  | 11.897 | -1.344 | 10.15 | 4.983              | 2.388                | -0.274               |
|          |         | 30日試料   | 18.30 | 19.63  | 9.38   | 8.4759 | -0.412 | 4.63  | 3.370              | 2.515                | -0.150               |
| 砂岩       | D 2-2   | 60日試料   | 19.09 | 19.91  | 10.08  | 9.6384 | -0.536 | 5.27  | 3.831              | 2.516                | -0.147               |
|          |         | 120日試料  | 19.48 | 18.43  | 10.14  | 9.0095 | -0.687 | 7.08  | 3.640              | 2.475                | -0.194               |
|          |         | 30日試料   | 19.37 | 21.34  | 10.08  | 10.566 | -0.46  | 4.18  | 4.167              | 2.536                | -0.125               |
| 砂岩       | E 2-3   | 60日試料   | 19.40 | 21.46  | 10.04  | 10.428 | -0.571 | 5.19  | 4.180              | 2.495                | -0.151               |
|          |         | 120日試料  | 19.17 | 20.57  | 9.84   | 9.5975 | -0.728 | 7.05  | 3.880              | 2.473                | -0.188               |
|          |         | 30日試料   | 19.20 | 21.86  | 8.35   | 8.758  | -0.439 | 4.77  | 3.505              | 2.499                | -0.130               |
| 砂岩       | F 2-6   | 60日試料   | 19.33 | 21.55  | 9.84   | 10.197 | -0.55  | 5.12  | 4.099              | 2.488                | -0.141               |
|          |         | 120日試料  | 19.12 | 21.84  | 9.42   | 9.6743 | -0.647 | 6.27  | 3.934              | 2.459                | -0.158               |
|          |         | 30日試料   | 20.35 | 21.02  | 9.15   | 9.7591 | -0.429 | 4.21  | 3.914              | 2.493                | -0.126               |
| 砂岩       | G 1-3   | 60日試料   | 20.36 | 21.04  | 8.61   | 9.1393 | -0.532 | 5.50  | 3.688              | 2.478                | -0.146               |
|          |         | 120日試料  | 20.34 | 21.01  | 8.87   | 9.3257 | -0.644 | 6.46  | 3.791              | 2.460                | -0.163               |
|          |         | 30日試料   | 19.71 | 19.95  | 9.24   | 9.1335 | -0.438 | 4.58  | 3.633              | 2.514                | -0.121               |
| 砂岩       | H 4-1   | 60日試料   | 19.14 | 21.21  | 9.20   | 9.3176 | -0.482 | 4.92  | 3.735              | 2.495                | -0.136               |
|          |         | 120日試料  | 19.23 | 21.30  | 9.69   | 9.8061 | -0.603 | 5.79  | 3.969              | 2.471                | -0.165               |
|          |         | 30日試料   | 20.82 | 20.65  | 8.91   | 9.3155 | -0.469 | 4.79  | 3.831              | 2.432                | -0.123               |
| 砂岩       | I 4–3   | 60日試料   | 20.84 | 20.69  | 9.53   | 9.9926 | -0.561 | 5.31  | 4.109              | 2.432                | -0.125               |
|          | 120日試料  | 20.61   | 20.71 | 8.85   | 9.0489 | -0.609 | 6.31   | 3.777 | 2.395              | -0.162               |                      |
| 砂岩 J 2-5 | 硝酸60日試料 | 24.05   | 20.35 | 10.90  | 13.965 | -0.749 | 5.09   | 5.335 | 2.618              | -0.137               |                      |
|          | J 2-5   | 塩酸60日試料 | _     | -      | -      | -      | -      | -     | -                  | -                    | -                    |
|          |         | 硫酸60日試料 | 22.29 | 20.08  | 10.31  | 12.205 | -0.39  | 3.10  | 4.615              | 2.645                | -0.086               |
|          |         | 硝酸60日試料 | -     | -      | -      | -      | -      | -     | -                  | -                    | -                    |
| 砂岩       | K 4-2   | 塩酸60日試料 | -     | -      | -      | -      | -      | -     | -                  | -                    | -                    |
|          |         | 硫酸60日試料 | -     | -      | -      | -      | -      | -     | -                  | -                    | -                    |

表 1.1-2 浸漬後の試料の寸法・重量・密度の測定結果

\*(質量変化率)=(浸漬前質量-浸漬後質量)/(浸漬前質量)x1

| A 3-1 | 30 日浸漬 | 60日浸漬 | 120 日浸漬 |
|-------|--------|-------|---------|
| 浸漬前   |        |       |         |
| 浸漬後   |        |       |         |

| B 3-3 | 30 日浸漬 | 60日浸漬 | 120 日浸漬 |
|-------|--------|-------|---------|
| 浸漬前   |        |       |         |
| 浸漬後   |        |       |         |

| C 2-1 | 30 日浸漬 | 60日浸漬 | 120 日浸漬 |
|-------|--------|-------|---------|
| 浸漬前   |        |       |         |
| 浸漬後   |        |       |         |

図 1.1-1 浸漬前後の試料観察面のスキャン画像(1)

# 【 付録 12 】

| D 2-2 | 30日浸漬 | 60 日浸漬 | 120 日浸漬 |
|-------|-------|--------|---------|
| 浸漬前   |       |        |         |
| 浸漬後   |       |        |         |

| E 2-3 | 30 日浸漬 | 60日浸漬 | 120 日浸漬 |
|-------|--------|-------|---------|
| 浸漬前   |        |       |         |
| 浸漬後   |        |       |         |

| F 2-6 | 30 日浸漬 | 60日浸漬 | 120 日浸漬 |
|-------|--------|-------|---------|
| 浸漬前   |        |       |         |
| 浸漬後   |        |       |         |

図 1.1-2 浸漬前後の試料観察面のスキャン画像(2)

| G 1-3 | 30 日浸漬 | 60日浸漬 | 120 日浸漬 |
|-------|--------|-------|---------|
| 浸漬前   |        |       |         |
| 浸漬後   |        |       |         |

| H 4-1 | 30 日浸漬 | 60日浸漬 | 120 日浸漬 |
|-------|--------|-------|---------|
| 浸漬前   |        |       |         |
| 浸漬後   |        |       |         |

| I 4-3 | 30 日浸漬 | 60日浸漬 | 120 日浸漬 |
|-------|--------|-------|---------|
| 浸漬前   |        |       |         |
| 浸漬後   |        |       |         |

図 1.1-3 浸漬前後の試料観察面のスキャン画像(3)

| J 2-5 | 60日塩酸浸漬 | 60日硝酸浸漬 | 60日硫酸浸漬 |
|-------|---------|---------|---------|
| 浸漬前   |         |         |         |
| 浸漬後   |         |         |         |

| K 4-2 | 60日塩酸浸漬          | 60日硝酸浸漬 | 60日硫酸浸漬 |
|-------|------------------|---------|---------|
| 浸漬前   |                  |         |         |
| 浸漬後   | 試料崩壊の為スキャン<br>不可 |         |         |

## 図 1.1-4 浸漬前後の試料観察面のスキャン画像(4)
#### 1.2 光学顕微鏡観察

浸漬前の試料中の構成鉱物や組織等を把握することを目的として、浸漬していない実験試料について岩石薄片を作成し観察を行った。観察結果を図 1.2-1~図 1.2-11 に示す。



| Qtz:石英   | Chl:緑泥石   |
|----------|-----------|
| PI:斜長石   | Px: 輝石    |
| Kfs:カリ長石 | Cal: 方解石  |
| Bt:黒雲母   | Zrn: ジルコン |
| Ms:白雲母   |           |

図 1.2-1 試料 A 3-1 (砂岩)の薄片写真と鉱物名略称



図 1.2-2 試料 B 3-3 (砂岩)の薄片写真



図 1.2-3 試料 C 2-1 (砂岩)の薄片写真



図 1.2-4 試料 D 2-2 (砂岩)の薄片写真



図 1.2-5 試料 E 2-3 (砂岩)の薄片写真



図 1.2-6 試料 F 2-6 (砂岩)の薄片写真



図 1.2-7 試料 G 1-3 (砂岩)の薄片写真



図 1.2-8 試料 H 4-1 (砂岩)の薄片写真



図 1.2-9 試料 I 4-3 (砂岩)の薄片写真



図 1.2-10 試料 J 2-5 (泥岩)の薄片写真



図 1.2-11 試料 K 4-2 (砂岩)の薄片写真

#### 1.3 目視観察

硝酸溶液に実験試料を浸漬している期間中、定期的に目視観察を実施し、試料および溶液の変化 を確認した。浸漬試料の観察結果を図 1.3-6 に示す。



図 1.3-1 30 日浸漬試料の浸漬中目視観察結果



図 1.3-2 60 日浸漬試料の浸漬中目視観察結果

# F G H I



D

120日

浸漬前

E



図 1.3-3 120 日浸漬試料の浸漬中目視観察結果(1)

#### 付 12-29



図 1.3-4 120 日浸漬試料の浸漬中目視観察結果(2)

| 60日      |     | 硝酸 | 〕<br>塩酸        | 硫酸          | 硝酸 | K<br>塩酸 | 硫酸 |  |
|----------|-----|----|----------------|-------------|----|---------|----|--|
| 2010/0/0 | 浸漬前 |    |                |             |    |         |    |  |
| 2013/9/9 | 浸漬後 |    | er ersteler er | A22 1807491 |    |         |    |  |



図 1.3-5 酸変更 60 日浸漬試料の浸漬中目視観察結果(1)



図 1.3-6 酸変更 60 日浸漬試料の浸漬中目視観察結果(2)

#### 1.4 X 線分析顕微鏡測定

浸漬前後での試料観察面における元素分布の変化を把握することを目的として、浸漬後の実験試料について、X線分析顕微鏡(堀場製作所(株)、XGT-7200V)による元素マッピングを実施した。 マッピングの対象とした元素は、Al、Ca、Fe、K、Mg、Mn、Na、P、S、Si、及びTiの11元 素である。測定条件を表 1.4-1に、測定結果を図 1.4-1~1.4-36に示す。

| 項目         | 測定条件   |
|------------|--------|
| X線管球ターゲット  | Rh     |
| X線管電圧      | 30kV   |
| 電流         | 1mA    |
| X線導管(XGT)径 | 100µm  |
| 測定時間       | 2,000秒 |
| 積算回数       | 5回     |
| 画素数        | 512    |

表 1.4-1 X線分析顕微鏡の測定条件

(1) マッピング

| 試料名   | 30 日浸漬後 | 60 日浸漬後 | 120 日浸漬後 |
|-------|---------|---------|----------|
| A 3-1 |         |         |          |
| B 3-3 |         |         |          |
| C 2-1 |         | -       |          |
| D 2-2 |         |         |          |
| E 2-3 |         |         |          |

図 1.4-1 XGT 測定時の各試料のマッピングエリア(1)

| 試料名   | 30 日浸漬後 | 60 日浸漬後 | 120 日浸漬後 |
|-------|---------|---------|----------|
| F 2-6 | ]10mm   |         |          |
| G 1-3 |         |         |          |
| H 4-1 |         |         |          |
| I 4-3 |         |         |          |

図 1.4-2 XGT 測定時の各試料のマッピングエリア(2)



(試料 J 2-5\_C の試料の縁および左下部の黄褐色の物質は、試料を固定するために塗布した樹脂である)

#### (2) 分析結果

各試料の測定結果を以下に示す。

1) Al

| 試料名   | 30 日浸漬後  | 60 日浸漬後 | 120 日浸漬後 |
|-------|----------|---------|----------|
| A 3-1 | <u> </u> |         |          |
| B 3-3 |          |         |          |
| C 2-1 |          |         |          |
| D 2-2 |          |         |          |
| E 2-3 |          |         |          |

図 1.4-4 XGT による AI のマッピング結果(1)

| 試料名   | 30 日浸漬後 | 60 日浸漬後 | 120 日浸漬後 |
|-------|---------|---------|----------|
| F 2-6 | j10mm   |         |          |
| G 1-3 |         |         |          |
| H 4-1 |         |         |          |
| I 4-3 |         |         |          |

図 1.4-5 XGT による AI のマッピング結果(2)



#### 2) Ca

| 試料名   | 30 日浸漬後 | 60日浸漬後 | 120 日浸漬後 |
|-------|---------|--------|----------|
| A 3-1 |         |        |          |
| B 3-3 |         |        |          |
| C 2-1 |         |        |          |
| D 2-2 |         |        |          |
| E 2-3 |         |        |          |

図 1.4-7 XGT による Ca のマッピング結果(1)

| 試料名   | 30 日浸漬後      | 60 日浸漬後 | 120 日浸漬後 |
|-------|--------------|---------|----------|
| F 2-6 | <u>110mm</u> |         |          |
| G 1-3 |              |         |          |
| H 4-1 |              |         |          |
| I 4·3 |              |         |          |

図 1.4-8 XGT による Ca のマッピング結果(2)



#### 3) Fe

| 試料名   | 30 日浸漬後     | 60 日浸漬後 | 120 日浸漬後 |
|-------|-------------|---------|----------|
| A 3-1 | <u>10mm</u> |         |          |
| B 3-3 |             |         |          |
| C 2-1 |             |         |          |
| D 2-2 |             |         |          |
| E 2-3 |             |         |          |

図 1.4-10 XGT による Fe のマッピング結果(1)

| 試料名   | 30 日浸漬後      | 60 日浸漬後 | 120 日浸漬後 |
|-------|--------------|---------|----------|
| F 2-6 | <u>110mm</u> |         |          |
| G 1-3 |              |         |          |
| H 4-1 |              |         |          |
| I 4·3 |              |         |          |

図 1.4-11 XGT による Fe のマッピング結果(2)



図 1.4-12 XGT による Fe のマッピング結果(3)

#### 4) K

| 試料名   | 30 日浸漬後     | 60 日浸漬後 | 120 日浸漬後 |
|-------|-------------|---------|----------|
| A 3-1 | <u>10mm</u> |         |          |
| B 3-3 |             |         |          |
| C 2-1 |             |         |          |
| D 2-2 |             |         |          |
| E 2-3 |             |         |          |

図 1.4-13 XGT による K のマッピング結果(1)

| 試料名   | 30 日浸漬後 | 60 日浸漬後 | 120 日浸漬後 |
|-------|---------|---------|----------|
| F 2-6 | Lj10mm  |         |          |
| G 1-3 |         |         |          |
| H 4-1 |         |         |          |
| I 4-3 |         |         |          |

図 1.4-14 XGT による K のマッピング結果(2)



#### 5) Mg

| 試料名   | 30 日浸漬後     | 60 日浸漬後 | 120 日浸漬後 |
|-------|-------------|---------|----------|
| A 3-1 | <u>10mm</u> |         |          |
| B 3-3 |             |         |          |
| C 2-1 |             |         |          |
| D 2-2 |             |         |          |
| E 2-3 |             |         |          |

図 1.4-16 XGT による Mg のマッピング結果(1)

| 試料名   | 30 日浸漬後     | 60 日浸漬後 | 120 日浸漬後 |
|-------|-------------|---------|----------|
| F 2-6 | <b>10mm</b> |         |          |
| G 1-3 |             |         |          |
| H 4-1 |             |         |          |
| I 4-3 |             |         |          |

図 1.4-17 XGT による Mg のマッピング結果(2)


#### 6) Mn

| 試料名   | 30 日浸漬後     | 60 日浸漬後 | 120 日浸漬後 |
|-------|-------------|---------|----------|
| A 3-1 | <u>10mm</u> |         |          |
| B 3-3 |             |         |          |
| C 2-1 |             |         |          |
| D 2-2 |             |         |          |
| E 2-3 |             |         |          |

図 1.4-19 XGT による Mn のマッピング結果(1)

| 試料名   | 30 日浸漬後 | 60 日浸漬後 | 120 日浸漬後 |
|-------|---------|---------|----------|
| F 2-6 | j10mm   |         |          |
| G 1-3 |         |         |          |
| H 4-1 |         |         |          |
| I 4-3 |         |         |          |

図 1.4-20 XGT による Mn のマッピング結果(2)



| 試料名   | 30 日浸漬後     | 60 日浸漬後 | 120 日浸漬後 |
|-------|-------------|---------|----------|
| A 3-1 | <u>10mm</u> |         |          |
| B 3-3 |             |         |          |
| C 2-1 |             |         |          |
| D 2-2 |             |         |          |
| E 2-3 |             |         |          |

7) Na

図 1.4-22 XGT による Na のマッピング結果(1)

| 試料名   | 30 日浸漬後 | 60 日浸漬後 | 120 日浸漬後 |
|-------|---------|---------|----------|
| F 2-6 | ]10mm   |         |          |
| G 1-3 |         |         |          |
| H 4-1 |         |         |          |
| I 4-3 |         |         |          |

図 1.4-23 XGT による Na のマッピング結果(2)



| 8) | Ρ |
|----|---|
|----|---|

| 試料名   | 30 日浸漬後 | 60 日浸漬後 | 120 日浸漬後 |
|-------|---------|---------|----------|
| A 3-1 | j10mm   |         |          |
| B 3-3 |         |         |          |
| C 2-1 |         |         |          |
| D 2-2 |         |         |          |
| E 2-3 |         |         |          |

図 1.4-25 XGT による P のマッピング結果(1)

| 試料名   | 30 日浸漬後 | 60 日浸漬後 | 120 日浸漬後 |
|-------|---------|---------|----------|
| F 2-6 | ]10mm   |         |          |
| G 1-3 |         |         |          |
| H 4-1 |         |         |          |
| I 4-3 |         |         |          |

図 1.4-26 XGT による P のマッピング結果(2)





| 武料名   | 30 日浸漬後 | 60 日浸漬後 | 120 日浸漬後 |
|-------|---------|---------|----------|
| A 3-1 | j10mm   |         |          |
| B 3-3 |         |         |          |
| C 2-1 |         |         |          |
| D 2-2 |         |         |          |
| E 2-3 |         |         |          |

図 1.4-28 XGT による S のマッピング結果(1)

| 試料名   | 30 日浸漬後 | 60 日浸漬後 | 120 日浸漬後 |
|-------|---------|---------|----------|
| F 2-6 |         |         |          |
| G 1-3 |         |         |          |
| H 4-1 |         |         |          |
| I 4-3 |         |         |          |

図 1.4-29 XGT による S のマッピング結果(2)



図 1.4-30 XGT による S のマッピング結果(3)

#### 10) Si

| 試料名   | 30 日浸漬後      | 60 日浸漬後 | 120 日浸漬後 |
|-------|--------------|---------|----------|
| A 3-1 | <b>10</b> mm |         |          |
| B 3-3 |              |         |          |
| C 2-1 |              |         |          |
| D 2-2 |              |         |          |
| E 2-3 |              |         |          |

図 1.4-31 XGT による Siのマッピング結果(1)

| 試料名   | 30 日浸漬後   | 60 日浸漬後 | 120 日浸漬後 |
|-------|-----------|---------|----------|
| F 2-6 | <b>10</b> |         |          |
| G 1-3 |           |         |          |
| H 4-1 |           |         |          |
| I 4-3 |           |         |          |

図 1.4-32 XGT による Siのマッピング結果(2)



# 11) Ti

| 試料名   | 30 日浸漬後 | 60 日浸漬後 | 120 日浸漬後 |
|-------|---------|---------|----------|
| A 3-1 | J10mm   |         |          |
| B 3-3 |         |         |          |
| C 2-1 |         |         |          |
| D 2-2 |         |         |          |
| E 2-3 |         |         |          |

図 1.4-34 XGT による Ti のマッピング結果(1)

| 試料名   | 30 日浸漬後 | 60 日浸漬後 | 120 日浸漬後 |
|-------|---------|---------|----------|
| F 2-6 | j10mm   |         |          |
| G 1-3 |         |         |          |
| H 4-1 |         |         |          |
| I 4-3 |         |         |          |

図 1.4-35 XGT による Ti のマッピング結果(2)



#### 1.5 マイクロフォーカス X線 CT スキャナーによる撮影結果

浸漬前後での試料内部の密度変化を把握することを目的として、浸漬前後の実験試料について、 マイクロフォーカスX線CTスキャナー(テスコ社、TXS-CT450/160)による観察を実施した。測 定条件を表 1.5-1に、測定結果を図 1.5-1~図 1.5-11に示す。また、浸漬後に試料表面に生じた低 密度帯の厚さを測定した結果を表 1.5-2に示す。

表 1.5-1 マイクロフォーカス X線 CT スキャンの測定条件

| 項目       | 条件                  |
|----------|---------------------|
| 使用線源     | 160kV 線源            |
| 管電圧/管電流  | 140kV/200 $\mu$ A   |
| SID/SOD  | 1000mm/200mm        |
| 拡大率      | 5                   |
| 画素サイズ    | $40\mu{ m m/pixel}$ |
| 有効視野     | 81.9mm              |
| プロジェクション | 3600                |
| 露光時間     | 500msec             |
| ゲイン      | ×1                  |
| フィルター    | 無し                  |



図 1.5-1 試料A3-1のµCT 測定結果画像



図 1.5-2 試料 B 3-3 の µ CT 測定結果画像



図 1.5-3 試料 C 2-1 の µ CT 測定結果画像



図 1.5-4 試料 D 2-2 の µ CT 測定結果画像



図 1.5-5 試料 E 2-3 の µ CT 測定結果画像



図 1.5-6 試料 F 2-6 の µ CT 測定結果画像



図 1.5-7 試料G1-3のµCT 測定結果画像



図 1.5-8 試料 H 4-1 の µ CT 測定結果画像



図 1.5-9 試料 I 4-3 の µ CT 測定結果画像



図 1.5-10 試料 J 2-5 の µ CT 測定結果画像



図 1.5-11 試料 K 4-2 の *μ* CT 測定結果画像

| 表 | 1.5-2 | 低密度帯の厚さの測定結果 |
|---|-------|--------------|
|---|-------|--------------|

| 試米    | 料名  | 30日浸漬後 | 60日浸漬後 | 120日浸漬後 |
|-------|-----|--------|--------|---------|
| A 3   | 3-1 | 2.77   | 4.94   | -       |
| вз    | 3-3 | 2.76   | 5.17   | -       |
| C 2   | 2-1 | 2.69   | 4.17   | -       |
| D 2   | 2-2 | 1.57   | 2.44   | 4.14    |
| E 2   | 2-3 | 2.04   | 3.21   | 5.40    |
| F 2-6 |     | 5.19   | -      | _       |
| G 1-3 |     | 2.17   | 4.14   | -       |
| H 4–1 |     | 2.15   | 3.77   | _       |
| I 4-3 |     | -      | -      | -       |
|       | 硝酸  | -      | 1.16   | -       |
| J 2-5 | 塩酸  | -      | -      | -       |
|       | 硫酸  | -      | 0.64   | -       |
|       | 硝酸  | -      | -      | -       |
| K 4-2 | 塩酸  | -      | -      | -       |
|       | 硫酸  | -      | -      | -       |

#### 1.6 分光測色

浸漬前後での観察面における脱色等の色調変化を捉えることを目的として、浸漬前後の実験試料 について、分光測色計(コニカミノルタ、CM-700d)を用いた測色を実施した。測定条件、測定 箇所及び測定結果を、表 1.6-1、図 1.6-1 及び表 1.6-2 から表 1.6-5 にそれぞれ示す。

| 項目       | 測定条件                                                  |
|----------|-------------------------------------------------------|
| 照明·受光光学系 | di: 8°, de: 8°(拡散照明・8°方向受光)、SCI(正反射光含む) / SCE(正反射光除   |
|          | 去)自動切替え機構付き (DIN5033 Teil7、JIS Z 8722 条件 c、ISO7724/1、 |
|          | CIE No.15、ASTM E 1164 に準拠)                            |
| 積分球サイズ   | Φ40mm                                                 |
| 分光手段     | 平面回折格子                                                |
| 受光素子     | デュアル 36 素子シリコンフォトダイオードアレイ                             |
| 測定波長範囲   | 400 nm∼700 nm                                         |
| 測定波長間隔   | 10 nm                                                 |

表 1.6-1 分光測色条件



図 1.6-1 分光測色の測定箇所

|           |          |            |         | 浸漬前     |         |               | 浸漬後     |         |
|-----------|----------|------------|---------|---------|---------|---------------|---------|---------|
| Sample    | Position | Scan Type  | L*(D65) | a*(D65) | b*(D65) | L*(D65)       | a*(D65) | b*(D65) |
|           | 1        | SCI        | 29.52   | -0.47   | -1.23   | 37.02         | -0.36   | -1.21   |
|           | -        | SCE        | 27.34   | -0.51   | -1.25   | 35.5          | -0.4    | -1.19   |
|           | 2        | SCI        | 29.58   | -0.45   | -1.2    | 36.19         | -0.21   | -0.79   |
| A_3-1_C30 |          | SCE        | 27.24   | -0.5    | -1.19   | 35.29         | -0.21   | -0.7    |
|           | 3        | SCI        | 29.9    | -0.51   | -1.4    | 37.58         | -0.33   | -1.1    |
|           |          | SCE        | 21.89   | -0.56   | -1.41   | 30.00         | -0.30   | -1.1    |
|           | 4        | SCE        | 27.16   | -0.53   | -1.13   | 36.23         | -0.39   | -1.1    |
|           |          | SCI        | 35.55   | -0.09   | 2.5     | 43.83         | -0.24   | 1.1     |
|           | 1        | SCE        | 33.86   | -0.11   | 2.74    | 42.53         | -0.26   | 0.0     |
|           |          | SCI        | 33.88   | -0.3    | 1.8     | 41.38         | -0.28   | -0.1    |
| D 2 2 C20 | 2        | SCE        | 32.42   | -0.31   | 1.99    | 40.17         | -0.29   | -0.0    |
| D_3-3_C30 | 2        | SCI        | 36.6    | -0.13   | 2.91    | 45.09         | -0.23   | 0.4     |
|           | 3        | SCE        | 34.83   | -0.12   | 3.2     | 43.59         | -0.24   | 0.      |
|           | 4        | SCI        | 34.68   | -0.12   | 2.33    | 43.93         | -0.2    | 0.4     |
|           |          | SCE        | 33.25   | -0.12   | 2.57    | 42.6          | -0.21   | 0.5     |
|           | 1        | SCI        | 36.8    | -0.75   | 1.09    | 47.54         | -0.18   | 0.      |
|           | _        | SCE        | 35.27   | -0.79   | 1.22    | 46.46         | -0.18   | 0.2     |
|           | 2        | SCI        | 36.5    | -0.79   | 0.7     | 47.64         | -0.23   | -0.0    |
| C_2-1_C30 |          | SCE        | 35.15   | -0.84   | 0.8     | 46.37         | -0.24   | 0.0     |
|           | 3        | SCI        | 37.19   | -0.5    | 2.35    | 48.5          | -0.19   | 0.1     |
|           |          | SUE        | 35.//   | -0.54   | 2.57    | 47.25         | -0.2    | 0.2     |
|           | 4        | SUI        | 31.11   | -0.19   | 1.06    | 48.8          | -0.27   | -0.0    |
|           |          | SCL        | 30.93   | -0.64   | 1.00    | 41.14         | -0.20   | 0.0     |
|           | 1        | SCE        | 28.08   | -0.72   | -1.65   | 44.69         | -0.29   | -0.3    |
|           |          | SCI        | 29.38   | -0.51   | -1.64   | 42 21         | -0.41   | -0.9    |
|           | 2        | SCE        | 26.6    | -0.59   | -1.76   | 40.31         | -0.43   | -0.     |
| D_2-2_C30 |          | SCI        | 30.35   | -0.52   | -1.69   | 42.12         | -0.39   | -1.0    |
|           | 3        | SCE        | 27.32   | -0.59   | -1.81   | 39.92         | -0.42   | -0.9    |
|           | 4        | SCI        | 31.33   | -0.59   | -1.68   | 46.01         | -0.26   | -0.2    |
|           | 4        | SCE        | 28.57   | -0.67   | -1.77   | 44.18         | -0.28   | -0.1    |
|           | 1        | SCI        | 39.18   | -1.36   | 0.34    | 48.7          | 0.51    | 5.3     |
|           | 1        | SCE        | 37.59   | -1.44   | 0.43    | 47.62         | 0.5     | 5.      |
|           | 2        | SCI        | 39.53   | -1.29   | 0.18    | 51.79         | 0.04    | 2.7     |
| E 2-3 C30 | 2        | SCE        | 36.56   | -1.42   | 0.35    | 49.77         | 0.05    | 3.0     |
| L_2 0_000 | 3        | SCI        | 40.16   | -0.13   | 3.57    | 49.98         | -0.03   | 1.8     |
|           |          | SCE        | 38.54   | -0.16   | 3.83    | 48.91         | -0.01   | 2.0     |
|           | 4        | SCI        | 39.86   | -1.39   | 0.11    | 50.89         | 0.1     | 2.1     |
|           |          | SCE        | 37.71   | -1.5    | 0.25    | 49.66         | 0.1     | 2.      |
|           | 1        | SCI        | 45.3    | -0.71   | 3.56    | 52.42         | -0.12   | 1.      |
|           |          | SUE        | 43.75   | -0.75   | 3.81    | 50.88         | -0.12   | 1.2     |
|           | 2        | SCI        | 43.18   | -0.66   | 3.15    | 51.58         | -0.08   | 1.0     |
| F_2-6_C30 |          | SCL        | 41.32   | -0.63   | 3 35    | 50.48         | -0.05   | 1.      |
|           | 3        | SCE        | 41.68   | -0.69   | 3.62    | 48.86         | -0.03   | 1.2     |
|           |          | SCI        | 43.84   | -0.67   | 4,23    | 51.73         | -0.15   | 1.4     |
|           | 4        | SCE        | 41.78   | -0.71   | 4.59    | 49.97         | -0.15   | 0.7     |
|           |          | SCI        | 39.64   | -0.01   | 3.07    | 48.47         | 0.01    | 1.6     |
|           | 1        | SCE        | 37.96   | 0       | 3.33    | 46.96         | 0       | 1.8     |
|           | 2        | SCI        | 39.9    | -0.33   | 0.25    | 48.34         | -0.11   | 1.8     |
| G 1-3 C30 | <u> </u> | SCE        | 37.96   | -0.37   | 0.37    | 46.78         | -0.09   | 2.1     |
| 3_1 3_030 | 3        | SCI        | 39.01   | -0.22   | 0.49    | 48.1          | -0.21   | 1.      |
|           | 5        | SCE        | 36.89   | -0.23   | 0.62    | 46.71         | -0.23   | 1.2     |
|           | 4        | SCI        | 37.91   | -0.13   | 1.72    | 46.92         | -0.26   | 1.5     |
|           |          | SCE        | 36.02   | -0.14   | 1.93    | 45.25         | -0.3    | 1.6     |
|           | 1        | SCI        | 35.61   | -0.7    | -0.24   | 46.06         | -0.36   | 0.5     |
|           |          | SCE        | 31.04   | -0.88   | -0.3    | 43.17         | -0.4    | 0.6     |
|           | 2        | SCI        | 37.03   | -0.78   | 0.77    | 45.89         | -0.19   | 1.2     |
| H_4-1_C30 |          | SUE        | 32      | -0.97   | 0.97    | 42.91         | -0.22   | 1.4     |
|           | 3        | 301<br>90F | 34.44   | -0.6    | 0.10    | 42.85         | -0.35   | 0.5     |
|           |          | SCI        | 29.17   | -0.19   | 0.2     | 39.7<br>42 25 | -0.39   | 0.0     |
|           | 4        | SCE        | 28.80   | -0.9    | 0.03    | 39.19         | -0.53   | 0.0     |
|           |          | SCI        | 51 27   | 0.33    | 7 35    | 56.15         | 0.00    | 1 9     |
|           | 1        | SCF        | 49.86   | 0.36    | 7.74    | 54 93         | 0.13    | 21      |
|           | _        | SCI        | 50.13   | 0.37    | 7.41    | 55.13         | 0.14    | 1.6     |
|           | 2        | SCE        | 48.68   | 0.4     | 7.86    | 53.94         | 0.16    | 1.0     |
| I_4-3_C30 |          | SCI        | 51.07   | 0.42    | 8.16    | 57.64         | 0.21    | 2.0     |
|           | 3        | SCE        | 49.37   | 0.45    | 8.73    | 56.28         | 0.22    | 2.2     |
|           | А        | SCI        | 51.12   | 0.25    | 8.05    | 60.48         | 0.25    | 2.3     |
|           | 4        | SCE        | 49.34   | 0.28    | 8.58    | 59.01         | 0.25    | 2.5     |

付 12-78

#### 表 1.6-3 60 日浸漬試料の浸漬前後での分光測色の結果

|           |          |           |         | 浸漬前     |              |         | 浸漬後     |         |
|-----------|----------|-----------|---------|---------|--------------|---------|---------|---------|
| Sample    | Position | Scan Type | L*(D65) | a*(D65) | b*(D65)      | L*(D65) | a*(D65) | b*(D65) |
|           | 1        | SCI       | 29.1    | -0.46   | -1.35        | 37.68   | -0.29   | -0.96   |
|           | -        | SCE       | 27.06   | -0.51   | -1.34        | 35.93   | -0.33   | -0.95   |
|           | 2        | SCI       | 29.37   | -0.5    | -1.32        | 37.7    | -0.32   | -1.01   |
| A 3-1 C60 | _        | SCE       | 27.38   | -0.55   | -1.34        | 36.08   | -0.34   | -0.97   |
|           | 3        | SCI       | 29.22   | -0.47   | -1.28        | 37.07   | -0.33   | -0.97   |
|           |          | SCE       | 27.02   | -0.52   | -1.32        | 35.56   | -0.34   | -0.95   |
|           | 4        | SCI       | 30.42   | -0.5    | -1.39        | 39.07   | -0.31   | -0.96   |
|           |          | SCE       | 28.09   | -0.57   | -1.4         | 37.34   | -0.33   | -0.88   |
|           | 1        | SCI       | 35.77   | -0.22   | 1.89         | 44.61   | -0.1    | 0.28    |
|           |          | SCE       | 34.59   | -0.23   | 2.01         | 43.64   | -0.12   | 0.39    |
|           | 2        | SCI       | 36.77   | -0.2    | 2.32         | 42.69   | -0.17   | -0.19   |
| B_3-3_C60 |          | SCE       | 35.63   | -0.21   | 2.49         | 41.7    | -0.18   | -0.11   |
|           | 3        | SCI       | 34.63   | -0.07   | 3.01         | 43.06   | -0.17   | -0.02   |
|           |          | SCL       | 33.39   | -0.06   | 3.Z<br>2.1.4 | 41.99   | -0.17   | 0.00    |
|           | 4        | SCI       | 37.00   | -0.04   | 3.14         | 47.29   | -0.11   | 0.37    |
|           |          | SCL       | 20.11   | -0.05   | 0.77         | 40.1    | -0.11   | 0.49    |
|           | 1        | SCE       | 36.83   | -0.91   | 0.77         | 40.01   | -0.14   | 0.2     |
|           |          | SCL       | 30.00   | -0.93   | 0.51         | 41.42   | -0.11   | 0.3     |
|           | 2        | SCE       | 37.00   | -0.58   | 0.0          | 40.00   | -0.11   | 0.24    |
| C_2-1_C60 |          | SCL       | 38.48   | -0.87   | 0.51         | 47.50   | -0.15   | 0.33    |
|           | 3        | SCE       | 36.40   | -0.07   | 0.04         | 40.00   | -0.15   | 0.11    |
|           |          | SCL       | 38.68   | -0.02   | 0.73         | 40.00   | -0.03   | 0.2     |
|           | 4        | SCF       | 37.36   | -0.93   | 0.02         | 47.83   | -0.03   | 0.5     |
|           |          | SCI       | 29.74   | -0.45   | -1.85        | 44.82   | -0.42   | -1 08   |
|           | 1        | SCE       | 26.95   | -0.54   | -1.98        | 43.12   | -0.44   | -1.07   |
|           |          | SCI       | 30.67   | -0.58   | -2           | 45.04   | -0.44   | -0.97   |
|           | 2        | SCE       | 28.43   | -0.65   | -2.11        | 43.69   | -0.48   | -0.94   |
| D_2-2_C60 | -        | SCI       | 30.99   | -0.63   | -1.75        | 47.16   | -0.31   | -0.2    |
|           | 3        | SCE       | 28.84   | -0.7    | -1.84        | 45.54   | -0.35   | -0.16   |
|           | 4        | SCI       | 31.12   | -0.58   | -1.83        | 45.42   | -0.42   | -0.87   |
|           | 4        | SCE       | 28.82   | -0.65   | -1.92        | 44.04   | -0.45   | -0.82   |
|           | 1        | SCI       | 39.75   | -1.29   | 1            | 53.48   | -0.17   | 0.6     |
|           | 1        | SCE       | 36.94   | -1.42   | 1.23         | 51.82   | -0.19   | 0.72    |
|           | 2        | SCI       | 38.65   | -1.25   | 1.23         | 52.9    | -0.22   | 0.54    |
| E 2 2 C60 | 2        | SCE       | 35.65   | -1.37   | 1.53         | 51.19   | -0.25   | 0.65    |
| E_2-3_000 | 2        | SCI       | 38.76   | -1.28   | 0.08         | 51.89   | -0.14   | 0.75    |
|           | 5        | SCE       | 37.03   | -1.34   | 0.18         | 50.25   | -0.16   | 0.86    |
|           | 4        | SCI       | 42.64   | -1.03   | 0.93         | 52.92   | -0.17   | 0.62    |
|           | 7        | SCE       | 40      | -1.1    | 1.17         | 51.08   | -0.2    | 0.67    |
|           | 1        | SCI       | 43.95   | -0.71   | 3.37         | 51.05   | -0.08   | 0.42    |
|           | -        | SCE       | 42.11   | -0.74   | 3.67         | 49.43   | -0.08   | 0.55    |
|           | 2        | SCI       | 42.84   | -0.23   | 3.85         | 51.73   | -0.01   | 0.63    |
| F_2-6 C60 |          | SCE       | 41.17   | -0.24   | 4.15         | 50.37   | -0.02   | 0.76    |
|           | 3        | SCI       | 44.75   | -0.78   | 3.83         | 52.7    | -0.07   | 0.55    |
|           |          | SCE       | 42.91   | -0.81   | 4.15         | 51.07   | -0.06   | 0.68    |
|           | 4        | SCI       | 44.54   | -0.62   | 3.98         | 52.62   | -0.02   | 0.71    |
|           |          | SCE       | 42.76   | -0.66   | 4.27         | 51.11   | -0.03   | 0.86    |
|           | 1        | SCI       | 39.24   | -0.15   | 0.34         | 50.85   | -0.22   | -0.15   |
|           | ļ        | SCE       | 37.97   | -0.16   | 0.44         | 49.65   | -0.25   | -0.09   |
|           | 2        | SCI       | 39.25   | -0.08   | 1.41         | 50.54   | -0.28   | -0.31   |
| G_1-3_C60 |          | SCE       | 37.88   | -0.09   | 1.56         | 49.33   | -0.3    | -0.26   |
|           | 3        | SCI       | 37.37   | -0.09   | 1.26         | 49.17   | -0.33   | -0.47   |
|           |          | SUE       | 35.88   | -0.1    | 1.39         | 47.91   | -0.34   | -0.43   |
|           | 4        | SCI       | 39.39   | -0.15   | 0.12         | 50.62   | -0.23   | -0.12   |
|           |          | SUE       | 38.02   | -0.15   | 0.22         | 49.47   | -0.25   | -0.07   |
|           | 1        | SCI       | 35.64   | -0.63   | 0.62         | 45.63   | -0.22   | 0.32    |
|           |          | SUE       | 31.31   | -0.8    | 0.7          | 43.08   | -0.20   | 0.4     |
|           | 2        | SCI       | 35.29   | -0.05   | 0.37         | 43.89   | -0.42   | -0.08   |
| H_4-1_C60 |          | SCL       | 25.24   | -0.0    | 0.4          | 41.1    | -0.46   | -0.07   |
|           | 3        | SCE       | 30.34   | -0.08   | 0.11         | 45.02   | -0.46   | -0.45   |
|           |          | SOE       | 30.91   | -0.63   | 0.1          | 42.44   | -0.31   | -0.45   |
|           | 4        | SCE       | 30.00   | -0.71   | 0.20         | 43.78   | -0.47   | -0.01   |
|           |          | SCL       | 51.27   | 0.07    | 0.3Z<br>9.77 | 56 61   | -0.34   | -0.00   |
|           | 1        | SCE       | 10 Q1   | 0.40    | 9.26         | 55.01   | 0.24    | 1.40    |
|           |          | SCL       | 51 16   | 0.52    | 9.30<br>8 37 | 55.09   | 0.20    | 1.00    |
|           | 2        | SCF       | 49 55   | 0.20    | 8 93         | 54.48   | 0.21    | 2.04    |
| I_4-3_C60 |          | SCI       | 52 11   | 0.4     | 9.25         | 56.39   | 0.23    | 1 55    |
|           | 3        | SCF       | 50.09   | 0.4     | 9.23         | 54.88   | 0.25    | 1.33    |
|           | L        | SCI       | 50.3    | 0.11    | 7.2          | 55.31   | 0.19    | 1.49    |
|           | 4        | SCE       | 48.74   | 0.15    | 7.77         | 53.8    | 0.21    | 1.69    |
|           |          | -         |         |         |              | 1       |         |         |

#### 表 1.6-4 120 日浸漬試料の浸漬前後での分光測色の結果

|            |          |           |         | 浸漬前     |         |         | 浸漬後     |         |
|------------|----------|-----------|---------|---------|---------|---------|---------|---------|
| Sample     | Position | Scan Type | L*(D65) | a*(D65) | b*(D65) | L*(D65) | a*(D65) | b*(D65) |
|            | 1        | SCI       | 29.35   | -0.44   | -1.31   | 41.99   | 0       | 0.4     |
|            | _        | SCE       | 26.57   | -0.48   | -1.36   | 40.12   | 0       | 0.4     |
|            | 2        | SCI       | 27.54   | -0.38   | -1.01   | 42.62   | -0.04   | 0.5     |
| A_3-1_C120 |          | SUE       | 25.75   | -0.43   | -1      | 41.3    | -0.05   | 0.6     |
|            | 3        | SCE       | 29.27   | -0.44   | -1.20   | 42.87   | -0.04   | 0.5     |
|            |          | SCL       | 20.03   | -0.43   | -1.31   | 41.43   | -0.00   | 0.3     |
|            | 4        | SCE       | 27.27   | -0.53   | -1.02   | 40.22   | 0.04    | 0.3     |
|            |          | SCI       | 33.77   | -0.38   | 0.68    | 47.16   | 0.12    | 1.4     |
|            | 1        | SCE       | 32.8    | -0.4    | 0.74    | 46.03   | 0.12    | 1.5     |
|            | -        | SCI       | 37.78   | -0.27   | 2.29    | 49.27   | 0.17    | 2.0     |
| D 2 2 C120 | 2        | SCE       | 37.2    | -0.28   | 2.41    | 48.43   | 0.16    | 2.      |
| B_3-3_C120 | 2        | SCI       | 37.24   | 0.18    | 4.2     | 49.73   | 0.17    | 2.0     |
|            | 2        | SCE       | 36.33   | 0.19    | 4.36    | 48.69   | 0.15    | 2.1     |
|            | 4        | SCI       | 35.32   | -0.18   | 1.8     | 47.65   | 0.18    | 1.6     |
|            | -        | SCE       | 34.47   | -0.2    | 1.88    | 46.59   | 0.17    | 1.7     |
|            | 1        | SCI       | 38.92   | -0.93   | 0.81    | 52.07   | 0.04    | 1.1     |
|            | _        | SCE       | 37.21   | -0.98   | 0.97    | 50.72   | 0.05    | 1.2     |
|            | 2        | SCI       | 40.63   | -0.86   | 1.11    | 52.59   | 0.03    | 1.3     |
| C_2-1_C120 |          | SCE       | 39.28   | -0.89   | 1.26    | 51.47   | 0.03    | 1.4     |
|            | 3        | SCI       | 39.5    | -0.92   | 0.7     | 52.3    | 0.03    | 1.3     |
|            |          | SCE       | 37.74   | -0.98   | 0.83    | 51      | 0.03    | 1.4     |
|            | 4        | 501       | 39.46   | -0.89   | 0.86    | 51.28   | 0.03    | 1.3     |
|            |          | SUE       | 38.09   | -0.92   | 0.98    | 50.07   | 0.04    | 1.4     |
|            | 1        | SCE       | 29.74   | -0.01   | -1.98   | 49.19   | -0.27   | -0.0    |
|            |          | SCL       | 23.24   | -0.7    | -2.1    | 52 37   | -0.3    | 0.0     |
|            | 2        | SCE       | 31.66   | -0.87   | -1.98   | 50.83   | -0.12   | 0.7     |
| D_2-2_C120 |          | SCI       | 31.52   | -0.66   | -1 94   | 48.69   | -0.22   | 0.0     |
|            | 3        | SCE       | 30.19   | -0.73   | -2.02   | 47.33   | -0.26   | 0.2     |
|            |          | SCI       | 31.01   | -0.62   | -2.29   | 49.85   | -0.21   | 0.2     |
|            | 4        | SCE       | 29.83   | -0.66   | -2.4    | 48.69   | -0.23   | 0.3     |
|            |          | SCI       | 42.43   | -0.26   | 5.51    | 48.34   | 1.1     | 3.5     |
|            | 1        | SCE       | 40.26   | -0.27   | 6.08    | 46.74   | 1.13    | 3.7     |
|            | 2        | SCI       | 41.12   | -0.58   | 4.21    | 49.84   | 1.11    | 3.7     |
| E 2 2 C120 | 2        | SCE       | 38.73   | -0.61   | 4.7     | 48.06   | 1.15    | 4.0     |
| L_2-3_0120 | ۲<br>۲   | SCI       | 41.64   | -0.54   | 4.22    | 47.72   | 1.21    | 4.0     |
|            |          | SCE       | 39.65   | -0.56   | 4.63    | 46.05   | 1.23    | 4.2     |
|            | 4        | SCI       | 42.09   | -0.16   | 5.57    | 49.29   | 0.87    | 3.2     |
|            |          | SCE       | 39.9    | -0.16   | 6.13    | 47.62   | 0.89    | 3.4     |
|            | 1        | SCI       | 40.04   | -0.01   | 0.53    | 55.58   | 0.23    | 1.8     |
|            |          | SCE       | 38.29   | -0.01   | 0.66    | 53.99   | 0.25    | 1.9     |
|            | 2        | SCI       | 38.88   | -0.19   | 0.24    | 55.14   | 0.23    | 1.6     |
| F_2-6_C120 |          | SUE       | 30.01   | -0.21   | 0.37    | 53.30   | 0.25    | 1.0     |
|            | 3        | SCI       | 38.9    | -0.21   | 1.0     | 53.30   | 0.28    | 2.1     |
|            |          | SCL       | 30.09   | -0.23   | 1.01    | 55.04   | 0.28    | 2.2     |
|            | 4        | SCE       | 37.49   | -0.12   | 1.02    | 53.18   | 0.23    | 2.5     |
|            |          | SCI       | 35.48   | -0.69   | 0.25    | 52.24   | -0.15   | 0.3     |
|            | 1        | SCE       | 31.18   | -0.85   | 0.26    | 50.79   | -0.17   | 0.4     |
|            | _        | SCI       | 35.7    | -0.68   | 0.03    | 52.5    | -0.21   | 0.1     |
| 0 1 0 0105 | 2        | SCE       | 31.54   | -0.85   | 0       | 50.87   | -0.22   | 0.2     |
| G_1-3_C120 |          | SCI       | 35.29   | -0.62   | 0.39    | 52.34   | -0.27   | -0.1    |
|            | 3        | SCE       | 30.37   | -0.79   | 0.44    | 50.9    | -0.29   | -0.0    |
|            | л        | SCI       | 35.05   | -0.52   | 0.8     | 51.75   | -0.18   | 0.0     |
|            | 4        | SCE       | 29.97   | -0.68   | 0.96    | 50.3    | -0.2    | 0.1     |
|            | 1        | SCI       | 51.67   | 0.36    | 7.88    | 48.91   | -0.44   | -0.3    |
|            | 1        | SCE       | 50.05   | 0.39    | 8.41    | 46.6    | -0.49   | -0.2    |
|            | 2        | SCI       | 51.61   | 0.44    | 8.21    | 49.36   | -0.48   | -0.7    |
| H 4-1 C120 | £        | SCE       | 50.28   | 0.46    | 8.59    | 47.06   | -0.53   | - 0.    |
| 1_0120     | 3        | SCI       | 52.15   | 0.18    | 7.98    | 49.46   | -0.53   | -0.7    |
|            | -        | SCE       | 50.66   | 0.21    | 8.49    | 46.86   | -0.59   | - 0.    |
|            | 4        | SCI       | 50      | 0.34    | 7.73    | 49.77   | -0.49   | -0.6    |
|            | -        | SCE       | 48.21   | 0.4     | 8.19    | 47.32   | -0.54   | -0.6    |
|            | 1        | SCI       | 39.37   | -1.27   | 0.24    | 57.91   | 0.23    | 1.9     |
|            |          | SCE       | 37.26   | -1.36   | 0.39    | 56.42   | 0.25    | 2.1     |
|            | 2        | SCI       | 40.64   | -1.47   | 0.14    | 56.11   | 0.25    | 1.9     |
| I_4-3_C120 |          | SCE       | 38.29   | -1.58   | 0.29    | 54.91   | 0.26    | 2.1     |
|            | 3        | SCI       | 40.13   | -1.44   | -0.1    | 57.4    | 0.21    |         |
|            |          | SCE       | 38.03   | -1.54   | 0.02    | 56.07   | 0.22    | 2.1     |
|            | 4        | SCI       | 40.53   | -1.48   | 0.68    | 57.54   | 0.26    | 2.1     |
|            |          | SCE       | 38.1    | -1.6    | 0.91    | 56.02   | 0.27    | 2.3     |

付 12-80

#### 表 1.6-5 酸変更 60 日浸漬試料の浸漬前後での分光測色の結果

|              |          |           | 浸漬前     |         |         | 浸漬後     |         |         |
|--------------|----------|-----------|---------|---------|---------|---------|---------|---------|
| Sample       | Position | Scan Type | L*(D65) | a*(D65) | b*(D65) | L*(D65) | a*(D65) | b*(D65) |
|              | 1        | SCI       | 23.48   | 1.06    | 0.19    | 65.34   | 0.76    | 2.57    |
|              | T        | SCE       | 22.14   | 1.13    | 0.3     | 64.76   | 0.77    | 2.77    |
|              | 2        | SCI       | 23.6    | 1.08    | 0.43    | 59.7    | 0.36    | 1.99    |
|              | 2        | SCE       | 22.38   | 1.15    | 0.54    | 59.1    | 0.36    | 2.14    |
| J_2-5_14_C00 | 3        | SCI       | 24.7    | 1.1     | 0.7     | 56.72   | -0.18   | 0.38    |
|              | J        | SCE       | 23.62   | 1.14    | 0.8     | 56.06   | -0.18   | 0.52    |
|              | Δ        | SCI       | 23.35   | 1.22    | 0.29    | 70.63   | 0.64    | 3.94    |
|              | 4        | SCE       | 22.27   | 1.29    | 0.35    | 70.15   | 0.65    | 4.14    |
|              | 1        | SCI       | 23.36   | 1.07    | 0.13    | 61.17   | 0.45    | 5.18    |
|              | -        | SCE       | 22.17   | 1.09    | 0.22    | 59.01   | 0.49    | 5.55    |
|              | 2        | SCI       | 23.22   | 1.2     | 0.21    | 57.33   | 0.56    | 5.36    |
| 1 2-5 C C60  | 2        | SCE       | 22.16   | 1.28    | 0.31    | 53.26   | 0.66    | 5.64    |
| 5_2-5_0_000  | З        | SCI       | 24.26   | 1.25    | 0.52    | 55.75   | 0.48    | 6.2     |
|              | 5        | SCE       | 22.95   | 1.34    | 0.6     | 53.46   | 0.54    | 6.48    |
|              | Л        | SCI       | 23.56   | 1.1     | 0.15    | 60.19   | 0.46    | 5.32    |
|              | 4        | SCE       | 22.41   | 1.19    | 0.24    | 59.32   | 0.55    | 5.63    |
|              | 1        | SCI       | 23.72   | 1.01    | 0.06    | 78.34   | 0.4     | 3.09    |
|              | 1        | SCE       | 22.4    | 1.07    | 0.16    | 77.68   | 0.42    | 3.3     |
|              | 2        | SCI       | 25.27   | 0.81    | 0.27    | 77.93   | 0       | 2.66    |
| 1 2-5 5 60   | 2        | SCE       | 24.11   | 0.84    | 0.36    | 77.13   | 0.02    | 2.9     |
| 5_2 5_5_000  | З        | SCI       | 25.47   | 1.11    | 0.5     | 75.41   | 0.32    | 3.44    |
|              | 5        | SCE       | 24.57   | 1.16    | 0.6     | 74.77   | 0.34    | 3.64    |
|              | Л        | SCI       | 25.38   | 0.97    | 0.47    | 78.57   | -0.04   | 2.52    |
|              | 4        | SCE       | 24.28   | 1.01    | 0.58    | 77.75   | -0.02   | 2.77    |
|              | 1        | SCI       | 40.02   | -0.28   | 3.98    | 57.39   | -0.09   | 0.67    |
|              | -        | SCE       | 37.45   | -0.3    | 4.52    | 55.46   | -0.06   | 0.9     |
|              | 2        | SCI       | 40.64   | -1.12   | 4.84    | 63      | -0.01   | 1.04    |
| K 4-2 N C60  | ۷        | SCE       | 38.95   | -1.2    | 5.19    | 61.47   | 0       | 1.25    |
| N_1 2_N_000  | 3        | SCI       | 37.85   | -1.09   | 1.32    | 60.26   | -0.06   | 1.14    |
|              |          | SCE       | 35.83   | -1.15   | 1.52    | 59.13   | -0.05   | 1.31    |
|              | 4        | SCI       | 36.89   | -1.27   | 1.55    | 62.25   | 0.25    | 1.84    |
|              |          | SCE       | 35.18   | -1.34   | 1.76    | 61.28   | 0.26    | 1.99    |
|              | 1        | SCI       | 39.04   | -1.15   | 2.46    | —       | _       | _       |
|              | -        | SCE       | 38.18   | -1.17   | 2.61    | _       | —       | _       |
|              | 2        | SCI       | 44.06   | -0.92   | 3.81    | _       | —       | —       |
| K_4-2_C_C60  | _        | SCE       | 42.83   | -0.96   | 4.04    | _       | —       | —       |
|              | 3        | SCI       | 40.27   | -0.41   | 3.78    | 73.1    | 0.14    | 1.23    |
|              |          | SCE       | 39.14   | -0.43   | 4.13    | 71.55   | 0.19    | 1.42    |
|              | 4        | SCI       | 38.94   | -0.94   | 2.92    | —       | —       | —       |
|              |          | SCE       | 38.2    | -0.92   | 3.19    | —       | —       | —       |
|              | 1        | SCI       | 38.97   | -1.7    | 0.25    | 53.33   | 0.13    | 1.88    |
|              |          | SCE       | 37.61   | -1.77   | 0.35    | 51.9    | 0.13    | 1.94    |
|              | 2        | SCI       | 40.59   | -1.52   | -0.4    | 59.33   | 0.01    | 1.63    |
| K_4-2 S C60  |          | SCE       | 39.27   | -1.58   | -0.3    | 57.95   | 0.02    | 1.78    |
|              | 3        | SCI       | 41.9    | -2.03   | -0.82   | 56.25   | 0.24    | 2.2     |
|              |          | SCE       | 40.55   | -2.11   | -0.75   | 55.22   | 0.23    | 2.35    |
|              | 4        | SCI       | 43.32   | -1.9    | -1.33   | 50.19   | 2.87    | 14.98   |
|              |          | SCE       | 42.35   | -1.95   | -1.27   | 49.02   | 2.98    | 15.6    |

#### 1.7 SEM 観察

浸漬前後での観察面における鉱物や結晶粒間等の形状変化を捉えることを目的として、浸漬前後の実験試料について、SEM(日本電子(株)、JSM-7001F)を用いた表面観察を実施した。浸漬前後で、同一試料の同一位置を対象として観察した。測定条件及び測定結果を、それぞれ表 1.7-1 及び図 1.7-1~図 1.7-146 に示す。

| 観察 | 加速電圧     | 15kV                   |
|----|----------|------------------------|
| 余件 | エミッション電流 | 1.8×10 <sup>-4</sup> A |
|    | 画像形式     | вмр                    |

表 1.7-1 SEM の観察条件

#### (1) 30 日浸漬 SEM 観察結果

1) A 3-1



Before

After

図 1.7-1 A 3-1 (砂岩)の 30 日浸漬前・後のスキャン画像



図 1.7-2 A 3-1(砂岩)の 30 日浸漬前・後の SEM 画像比較(1)



図 1.7-3 A 3-1 (砂岩)の 30 日浸漬前・後の SEM 画像比較(2)



図 1.7-4 A 3-1(砂岩)の 30 日浸漬前・後の SEM 画像比較(3)



図 1.7-5 A 3-1 (砂岩)の 30 日浸漬前・後の SEM 画像比較(4)

2) B 3-3





After

図 1.7-6 B 3-3 (砂岩)の 30 日浸漬前・後のスキャン画像比較



図 1.7-7 B 3-3(砂岩)の 30 日浸漬前・後の SEM 画像比較(1)



図 1.7-8 B 3-3 (砂岩)の 30 日浸漬前・後の SEM 画像比較(2)



図 1.7-9 B 3-3(砂岩)の 30 日浸漬前・後の SEM 画像比較(3)
# 【 付録 12 】



図 1.7-10 B 3-3 (砂岩)の 30 日浸漬前・後の SEM 画像比較(4)

3) C 2-1





After





図 1.7-12 C 2-1 (砂岩)の 30 日浸漬前・後の SEM 画像比較(1)

# 【 付録 12 】



図 1.7-13 C 2-1(砂岩)の30日浸漬前・後のSEM画像比較(2)



図 1.7-14 C 2-1(砂岩)の 30 日浸漬前・後の SEM 画像比較(3)







図 1.7-16 D 2-2(砂岩)の 30 日浸漬前・後の SEM 画像比較(1)

## 【 付録 12 】



図 1.7-17 D 2-2(砂岩)の 30 日浸漬前・後の SEM 画像比較(2)



図 1.7-18 D 2-2(砂岩)の 30 日浸漬前・後の SEM 画像比較(3)

5) E 2-3



図 1.7-19 E 2-3 (砂岩)の 30 日浸漬前・後のスキャン画像比較





# 【 付録 12 】



図 1.7-21 E 2-3 (砂岩)の 30 日浸漬前・後の SEM 画像比較(2)

B. Zircon, Apatite



図 1.7-22 E 2-3 (砂岩)の 30 日浸漬前・後の SEM 画像比較(3)





6) F 2-6







図 1.7-25 F 2-6 (砂岩)の 30 日浸漬前・後の SEM 画像比較(1)



図 1.7-26 F 2-6(砂岩)の30日浸漬前・後のSEM画像比較(2)



図 1.7-27 F 2-6(砂岩)の 30 日浸漬前・後の SEM 画像比較(3)

7) G 1-3



図 1.7-28 G1-3 (砂岩)の30日浸漬前・後のスキャン画像比較







図 1.7-30 G 1-3(砂岩)の30日浸漬前・後のSEM画像比較(2)



図 1.7-31 G 1-3 (砂岩)の 30 日浸漬前・後の SEM 画像比較(3)



図 1.7-32 G 1-3(砂岩)の30日浸漬前・後のSEM画像比較(4)

8) H 4-1



図 1.7-33 H4-1 (砂岩)の 30 日浸漬前・後のスキャン画像比較



図 1.7-34 H 4-1(砂岩)の 30 日浸漬前・後の SEM 画像比較(1)



図 1.7-35 H 4-1 (砂岩)の 30 日浸漬前・後の SEM 画像比較(2)

#### C. Mica



図 1.7-36 H 4-1 (砂岩)の 30 日浸漬前・後の SEM 画像比較(3)

9) 14-3



Before

After









図 1.7-39 14-3(砂岩)の30日浸漬前・後のSEM画像比較(2)

C. Plagioclase, Mica, Quartz



図 1.7-40 | 4-3 (砂岩)の 30 日浸漬前・後の SEM 画像比較(3)

#### (2) 60 日浸漬 SEM 観察結果

1) A 3-1



Before

After





図 1.7-42 A 3-1(砂岩)の60日浸漬前・後のSEM画像比較(1)



図 1.7-43 A 3-1(砂岩)の60日浸漬前・後のSEM画像比較(2)



図 1.7-44 A 3-1(砂岩)の60日浸漬前・後のSEM画像比較(3)



図 1.7-45 A 3-1(砂岩)の60日浸漬前・後のSEM画像比較(4)

2) B 3-3





After



A. Biotite



図 1.7-47 B 3-3(砂岩)の60日浸漬前・後のSEM画像比較(1)



図 1.7-48 B 3-3(砂岩)の60日浸漬前・後のSEM画像比較(2)



図 1.7-49 B 3-3(砂岩)の60日浸漬前・後のSEM画像比較(3)





3) C 2-1



図 1.7-51 C 2-1 (砂岩)の60日浸漬前・後のスキャン画像比較

A. Calcite, Plagioclase, Mica



図 1.7-52 C 2-1(砂岩)の60日浸漬前・後のSEM画像比較(1)

付 12-111



図 1.7-53 C 2-1(砂岩)の60日浸漬前・後のSEM画像比較(2)



図 1.7-54 C 2-1(砂岩)の60日浸漬前・後のSEM画像比較(3)

4) D 2-2











図 1.7-56 D 2-2(砂岩)の60日浸漬前・後のSEM画像比較(1)



図 1.7-57 D 2-2(砂岩)の60日浸漬前・後のSEM画像比較(2)

C. Calcite, Apatite



図 1.7-58 D 2-2(砂岩)の60日浸漬前・後のSEM画像比較(3)



図 1.7-59 D 2-2(砂岩)の60日浸漬前・後のSEM画像比較(4)

5) E 2-3







図 1.7-61 E 2-3(砂岩)の60日浸漬前・後のSEM画像比較(1)



図 1.7-62 E 2-3(砂岩)の60日浸漬前・後のSEM画像比較(2)

B. Pyrite, K-Feldspar, Quartz



図 1.7-63 E 2-3(砂岩)の60日浸漬前・後のSEM画像比較(3)



図 1.7-64 E 2-3(砂岩)の60日浸漬前・後のSEM画像比較(4)

6) F 2-6





After





図 1.7-66 F 2-6 (砂岩)の60日浸漬前・後のSEM画像比較(1)



図 1.7-67 F 2-6(砂岩)の60日浸漬前・後のSEM画像比較(2)



図 1.7-68 F 2-6(砂岩)の60日浸漬前・後のSEM画像比較(3)

7) G 1-3





After



A. Ilmenite, Biotite, Quartz



図 1.7-70 G 1-3 (砂岩)の60日浸漬前・後のSEM画像比較(1)

付 12-121

# 【 付録 12 】



図 1.7-71 G 1-3 (砂岩)の60日浸漬前・後のSEM画像比較(2)



図 1.7-72 G 1-3(砂岩)の60日浸漬前・後のSEM画像比較(3)



図 1.7-73 G 1-3(砂岩)の60日浸漬前・後のSEM画像比較(4)
8) H 4-1



Before

After





図 1.7-75 H 4-1 (砂岩)の60日浸漬前・後のSEM画像比較(1)



図 1.7-76 H 4-1 (砂岩)の60日浸漬前・後のSEM画像比較(2)



図 1.7-77 H 4-1(砂岩)の60日浸漬前・後のSEM画像比較(3)



図 1.7-78 H 4-1 (砂岩)の60日浸漬前・後のSEM画像比較(4)

9) 14-3



図 1.7-79 14-3 (砂岩)の60日浸漬前・後のスキャン画像比較



図 1.7-80 | 4-3(砂岩)の60日浸漬前・後のSEM画像比較(1)



図 1.7-81 | 4-3(砂岩)の60日浸漬前・後のSEM画像比較(2)



図 1.7-82 | 4-3 (砂岩)の60日浸漬前・後のSEM画像比較(3)

- (3) 120 日浸漬 SEM 観察結果
- 1) A 3-1







図 1.7-84 A 3-1 (砂岩)の 120 日浸漬前・後の SEM 画像比較(1)

#### 【 付録 12 】



図 1.7-85 A 3-1 (砂岩)の120日浸漬前・後のSEM画像比較(2)



図 1.7-86 A 3-1 (砂岩)の120日浸漬前・後のSEM画像比較(3)

2) B 3-3





After

図 1.7-87 B 3-3(砂岩)の120日浸漬前・後のスキャン画像比較

A. K-Feldspar



図 1.7-88 B 3-3(砂岩)の120日浸漬前・後のSEM画像比較(1)

#### 【 付録 12 】



図 1.7-89 B 3-3(砂岩)の120日浸漬前・後のSEM画像比較(2)



図 1.7-90 B 3-3 (砂岩)の 120 日浸漬前・後の SEM 画像比較(3)



図 1.7-91 B 3-3(砂岩)の120日浸漬前・後のSEM画像比較(4)

3) C 2-1







図 1.7-93 C 2-1(砂岩)の 120 日浸漬前・後の SEM 画像比較(1)



図 1.7-94 C 2-1(砂岩)の120日浸漬前・後のSEM画像比較(2)

B. Quartz



図 1.7-95 C 2-1(砂岩)の120日浸漬前・後のSEM画像比較(3)



図 1.7-96 C 2-1(砂岩)の 120 日浸漬前・後の SEM 画像比較(4)

4) D 2-2





After

#### 図 1.7-97 D 2-2(砂岩)の120日浸漬前・後のスキャン画像比較



図 1.7-98 D 2-2(砂岩)の120日浸漬前・後のSEM画像比較(1)

#### 【 付録 12 】



図 1.7-99 D 2-2(砂岩)の120日浸漬前・後のSEM画像比較(2)



図 1.7-100 D 2-2(砂岩)の120日浸漬前・後の SEM 画像比較(3)



図 1.7-101 D 2-2(砂岩)の120日浸漬前・後のSEM画像比較(4)

5) E 2-3





After





図 1.7-103 E 2-3(砂岩)の120日浸漬前・後のSEM画像比較(1)

#### 【 付録 12 】



図 1.7-104 E 2-3(砂岩)の120日浸漬前・後のSEM画像比較(2)



図 1.7-105 E 2-3 (砂岩)の120日浸漬前・後のSEM画像比較(3)

6) F 2-6



Before

After





図 1.7-107 F 2-6(砂岩)の120日浸漬前・後のSEM画像比較(1)



図 1.7-108 F 2-6(砂岩)の120日浸漬前・後のSEM画像比較(2)



図 1.7-109 F 2-6(砂岩)の120日浸漬前・後のSEM画像比較(3)

7) G 1-3







図 1.7-111 G1-3 (砂岩)の120日浸漬前・後のSEM画像比較(1)



図 1.7-112 G 1-3(砂岩)の120日浸漬前・後のSEM画像比較(2)

C. K-Feldspar, Mica



図 1.7-113 G 1-3 (砂岩)の120日浸漬前・後のSEM画像比較(3)

8) H 4-1



Before

After







図 1.7-115 H 4-1 (砂岩)の120日浸漬前・後のSEM画像比較(1)



図 1.7-116 H 4-1 (砂岩)の120日浸漬前・後のSEM画像比較(2)



図 1.7-117 H 4-1 (砂岩)の120日浸漬前・後のSEM画像比較(3)

9) 14-3



図 1.7-118 |4-3(砂岩)の120日浸漬前・後のスキャン画像比較





### 【 付録 12 】



図 1.7-120 | 4-3(砂岩)の120日浸漬前・後のSEM画像比較(2)





図 1.7-121 | 4-3(砂岩)の120日浸漬前・後のSEM画像比較(3)

- (4) 酸変更 60 日浸漬 SEM 観察結果
- 1) J 2-5\_N



Before

After

図 1.7-122 J 2-5\_N(泥岩)の硝酸 60 日浸漬前・後のスキャン画像比較



図 1.7-123 J 2-5\_N(泥岩)の硝酸 60 日浸漬前・後の SEM 画像比較(1)

### 【 付録 12 】



C. Chalcopyrite, Albite, Pyroxene



### 2) J 2-5\_C



Before

After



位置A.が樹脂滲出により撮影不可能でした。





図 1.7-128 J 2-5\_C(泥岩)の塩酸 60 日浸漬前・後の SEM 画像比較(2)





HCI浸漬により試料が崩壊したので、大きい破片を取り分けた。

図 1.7-129 J 2-5\_C(泥岩)の塩酸 60 日浸漬後の欠片画像(1)



破片JC-1を樹脂(E-205)で固め, 断面にそってlsometカッターで 切断した。切り出した断面を SEM観察に使用した。



図 1.7-130 J 2-5\_C(泥岩)の塩酸 60 日浸漬後の欠片画像(2)



図 1.7-131 J 2-5\_C(泥岩)の塩酸 60 日浸漬後の欠片 SEM 画像(1)



図 1.7-132 J 2-5\_C(泥岩)の塩酸 60 日浸漬後の欠片 SEM 画像(2)

3) J 2-5\_S



図 1.7-133 J 2-5\_S(泥岩)の硫酸 60 日浸漬前・後のスキャン画像比較



図 1.7-134 J 2-5\_S(泥岩)の硫酸 60 日浸漬前・後の SEM 画像比較(1)



図 1.7-135 J 2-5\_S (泥岩)の硫酸 60 日浸漬前・後の SEM 画像比較(2)

C. K-Feldspar, Mica, Monazite

浸漬前

浸漬後



図 1.7-136 J 2-5\_S(泥岩)の硫酸 60 日浸漬前・後の SEM 画像比較(3)

4) K 4-2\_N



Before

After

図 1.7-137 K 4-2\_N (泥岩)の硝酸 60 日浸漬前・後のスキャン画像比較





図 1.7-138 K 4-2\_N(泥岩)の硝酸 60 日浸漬前・後の SEM 画像比較(1)



図 1.7-139 K 4-2\_N (泥岩)の硝酸 60 日浸漬前・後の SEM 画像比較(2)



図 1.7-140 K 4-2\_N(泥岩)の硝酸 60 日浸漬前・後の SEM 画像比較(3)
# 【付録12】



図 1.7-141 K 4-2\_N(泥岩)の硝酸 60 日浸漬前・後の SEM 画像比較(4)

- 5) K4-2\_C 塩酸による試料崩壊の為, SEM 観察不可能
- 6) K 4-2\_S

浸漬前

浸漬後





After





図 1.7-143 K 4-2\_S(砂岩)の硫酸 60 日浸漬前・後の SEM 画像比較(1)

<u>\_\_\_\_\_</u>



図 1.7-144 K 4-2\_S(砂岩)の硫酸 60 日浸漬前・後の SEM 画像比較(2)

B. Calcite, Quartz



図 1.7-145 K 4-2\_S(砂岩)の硫酸 60 日浸漬前・後の SEM 画像比較(3)



図 1.7-146 K 4-2\_S(砂岩)の硫酸 60 日浸漬前・後の SEM 画像比較(4)

1.8 XRD 分析

浸漬前後での試料中の鉱物種や鉱物組成の変化を把握することを目的として、浸漬前試料及び浸 漬後試料に対し、X線回折装置(Malvern Panalytical 社、X'Pert)を用いた分析を実施した。な お、浸漬後の試料は、表面から約2mm厚の範囲を岩石カッターで切出し、分析に資した。測定条 件を表 1.8-1に示す。また、浸漬前後試料における鉱物組合せを表 1.8-2~表 1.8-6に、浸漬前後の 測定結果の比較を図 1.8-1~図 1.8-11に示す。

|           | 不定方位試料                                     | 水ひ, エチレングリ<br>コール処理, 及び塩<br>酸処理試料          |
|-----------|--------------------------------------------|--------------------------------------------|
| X線管球      | Cu                                         | Cu                                         |
| 波長        | CuKα, 1.54178Å                             | CuKα, 1.54178Å                             |
| 電圧・電流     | 40kV • 50mA                                | 40kV • 50mA                                |
| 測定角度・測定速度 | 2~70°, 2°/分                                | 2~40°, 2°/分                                |
| サンプリング幅   | 0.02°                                      | 0.02°                                      |
| スリット条件    | DS : AS : RS = 15<br>mm : 15 mm :<br>0.2mm | DS : AS : RS = 15<br>mm : 15 mm :<br>0.2mm |

表 1.8-1 XRD 分析の測定条件

表 1.8-2 浸漬前の鉱物組み合わせ

|       | 浸漬 | 石英 | 斜長石 | カリ長石 | 雲母 | 緑泥石 | スメクタイト | 方解石 | 角閃石 | 輝石 |
|-------|----|----|-----|------|----|-----|--------|-----|-----|----|
| A_3-1 | 0日 | 0  | 0   | 0    | 0  | 0   |        | 0   |     | 0  |
| B_3-3 | 0日 | 0  | 0   | 0    | 0  | 0   |        | 0   |     |    |
| C_2-1 | 0日 | 0  | 0   | 0    | 0  | 0   |        | 0   |     | 0  |
| D_2-2 | 0日 | 0  | 0   |      | 0  | 0   |        | 0   |     |    |
| E_2-3 | 0日 | 0  | 0   | 0    | 0  | 0   |        |     |     | 0  |
| F_2-6 | 0日 | 0  | 0   |      | 0  | 0   |        |     |     |    |
| G_1-3 | 0日 | 0  | 0   | 0    | 0  | 0   |        |     |     | 0  |
| H_4-1 | 0日 | 0  | 0   |      | 0  | 0   |        |     |     |    |
| I_4-3 | 0日 | 0  | 0   | 0    | 0  | 0   |        |     |     |    |
| J_2-5 | 0日 | 0  | 0   |      | 0  | 0   |        |     | 少   |    |
| K_4-2 | 0日 | 0  | 0   | 0    | 0  | 0   | •      | 0   |     |    |

粘土鉱物は定方位試料から存在 を評価。少量。

# 【付録12】

|       | 浸漬  | 石英 | 斜長石 | カリ長石 | 雲母 | 緑泥石 | スメクタイト | 方解石 | 角閃石 | 輝石 | トリディマイ<br>ト |
|-------|-----|----|-----|------|----|-----|--------|-----|-----|----|-------------|
| A_3-1 | 30日 | 0  | 0   | 0    | 0  |     |        |     |     |    |             |
| B_3-3 | 30日 | 0  | 0   | 0    | 0  |     |        |     |     |    |             |
| C_2-1 | 30日 | 0  | 0   | 0    | 0  |     |        |     |     |    |             |
| D_2-2 | 30日 | 0  | 0   |      | 0  |     |        |     |     |    |             |
| E_2-3 | 30日 | 0  | 0   | 0    | 0  |     |        |     |     |    |             |
| F_2-6 | 30日 | 0  | 0   |      | 0  |     |        |     |     |    |             |
| G_1-3 | 30日 | 0  | 0   | 0    | 0  |     |        |     |     |    |             |
| H_4-1 | 30日 | 0  | 0   |      | 0  |     |        |     |     |    |             |
| I_4-3 | 30日 | 0  | 0   | 0    | 0  |     |        |     |     |    |             |
|       |     |    |     |      |    |     |        |     |     |    |             |

#### 表 1.8-3 30 日浸漬後の鉱物組み合わせ

粘土鉱物は定方位試料から存在 を評価。少量。

|       |     |    | 1   | 1.0-4 0 |    | 頁反♥♥♥₩ | 1831/110 1. [1] 1 | 2   |     |    |             |
|-------|-----|----|-----|---------|----|--------|-------------------|-----|-----|----|-------------|
|       | 浸漬  | 石英 | 斜長石 | カリ長石    | 雲母 | 緑泥石    | スメクタイト            | 方解石 | 角閃石 | 輝石 | トリディマイ<br>ト |
| A_3-1 | 60日 | 0  | 0   | 0       | 0  |        |                   |     |     |    |             |
| B_3-3 | 60日 | 0  | 0   | 0       | 0  |        |                   |     |     |    |             |
| C_2-1 | 60日 | 0  | 0   | 0       | 0  |        |                   |     |     |    |             |
| D_2-2 | 60日 | 0  | 0   |         | 0  |        |                   |     |     |    |             |
| E_2-3 | 60日 | 0  | 0   | 0       | 0  |        |                   |     |     |    |             |
| F_2-6 | 60日 | 0  | 0   |         | 0  |        |                   |     |     |    |             |
| G_1-3 | 60日 | 0  | 0   | 0       | 0  |        |                   |     |     |    |             |
| H_4-1 | 60日 | 0  | 0   |         | 0  |        |                   |     |     |    |             |
| I_4-3 | 60日 | 0  | 0   | 0       | 0  |        |                   |     |     |    |             |
|       |     |    |     |         |    |        |                   |     |     |    |             |

# 表 1.8-4 60 日浸漬後の鉱物組み合わせ

粘土鉱物は定方位試料から存在 を評価。少量。

# 【付録12】

|       | 浸漬   | 石英 | 斜長石 | カリ長石 | 雲母 | 緑泥石 | スメクタイト | 方解石 | 角閃石 | 輝石 | トリディマイ<br>ト |
|-------|------|----|-----|------|----|-----|--------|-----|-----|----|-------------|
| A_3-1 | 120日 | 0  | 0   | 0    | 0  |     |        |     |     |    |             |
| B_3-3 | 120日 | 0  | 0   | 0    | 0  |     |        |     |     |    |             |
| C_2-1 | 120日 | 0  | 0   | 0    | 0  |     |        |     |     |    |             |
| D_2-2 | 120日 | 0  | 0   |      | 0  |     |        |     |     |    |             |
| E_2-3 | 120日 | 0  | 0   | 0    | 0  |     |        |     |     |    |             |
| F_2-6 | 120日 | 0  | 0   |      | 0  |     |        |     |     |    |             |
| G_1-3 | 120日 | 0  | 0   | 0    | 0  |     |        |     |     |    |             |
| H_4-1 | 120日 | 0  | 0   |      | 0  |     |        |     |     |    |             |
| I_4-3 | 120日 | 0  | 0   | 0    | 0  |     |        |     |     |    |             |
|       |      |    |     |      |    |     |        |     |     |    |             |

#### 表 1.8-5 120 日浸漬後の鉱物組み合わせ

粘土鉱物は定方位試料から存在 を評価。少量。

# 表 1.8-6 酸変更 60 日浸漬後の鉱物組み合わせ

|         | 浸漬  | 石英 | 斜長石 | カリ長石 | 雲母 | 緑泥石 | スメクタイト | 方解石 | 角閃石 | 輝石 | トリディマイ<br>ト |
|---------|-----|----|-----|------|----|-----|--------|-----|-----|----|-------------|
| J 2-5_C | 60日 | 0  | 0   |      | 0  |     |        |     |     |    |             |
| J 2-5_N | 60日 | 0  | 0   |      | 0  |     |        |     |     |    |             |
| J 2-5_S | 60日 | 0  | 0   |      | 0  |     |        |     |     |    |             |
| K 4-2_C | 60日 | 0  | 0   |      | 0  |     |        |     |     |    |             |
| K 4-2_N | 60日 | 0  | 0   |      | 0  |     |        |     |     |    |             |
| K 4-2_S | 60日 | 0  | 0   |      | 0  | ?   |        |     |     |    |             |

粘土鉱物は定方位試料から存在 を評価。少量。



(1) A 3-1

【付録12】









付 12-171



(6) F 2-6

【付録12】



(7) G 1-3

付 12-173

【付録12】



(8) H 4-1

【 付録 12 】





(10) J 2-5

【付録12】



1.9 水銀ポロシメータ測定

浸漬前後での試料の間隙率や間隙径分布の変化を捉えることを目的として、浸漬していない試料および浸漬後の試料について、水銀ポロシメータ(Micromeritics 社、AutoPore IV 9505)を用いた間隙測定 を実施した。測定条件を表 1.9-1 に、測定結果を表 1.9-2~表 1.9-12 および図 1.9-1~図 1.9-11 に示 す。

|      | 低圧測定部                                     | 高圧測定部                                          |
|------|-------------------------------------------|------------------------------------------------|
| 接続点  | 0.50psia(34.47kPa) ~<br>30psia(206.84kPa) | 30psia(206.84kPa)~<br>約30,000psia(206.8428MPa) |
| 孔隙径  | 約360µm~約6µm                               | 約6µm~0.006µm                                   |
| 測定点数 | 約30                                       | 20点                                            |

表 1.9-1 水銀ポロシメータの測定条件

(1) A 3-1

| A3-1 浸清前                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                        | A3-1                                                                                                                                                                                                 | Pb-1                                                                                                                                                                                                                         | A3-1                                                                                                                                                                                                                             | Pb-2                                                                                                                                                                                                                    | A3-1                                                                                                                                                                                                                      | l Pb                                                                                                                                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Unit                                                                                                                   | Value                                                                                                                                                                                                | Pressure(psia)                                                                                                                                                                                                               | Value                                                                                                                                                                                                                            | Pressure(psia)                                                                                                                                                                                                          | Average                                                                                                                                                                                                                   | STDEV.S                                                                                                                                                                                                                                            |
| Total intrusion volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mL/g                                                                                                                   | 0.0022                                                                                                                                                                                               | 29.991.82                                                                                                                                                                                                                    | 0.002                                                                                                                                                                                                                            | 29.991.86                                                                                                                                                                                                               | 0.0021                                                                                                                                                                                                                    | 0.00014                                                                                                                                                                                                                                            |
| Total pore area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | m²/g                                                                                                                   | 0.031                                                                                                                                                                                                | 29.991.82                                                                                                                                                                                                                    | 0.161                                                                                                                                                                                                                            | 29.991.86                                                                                                                                                                                                               | 0.096                                                                                                                                                                                                                     | 0.09192                                                                                                                                                                                                                                            |
| Median pore diameter (volume) at 0.001 mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | um                                                                                                                     | 19,45209                                                                                                                                                                                             | 9.3                                                                                                                                                                                                                          | 1,13564                                                                                                                                                                                                                          | 159.26                                                                                                                                                                                                                  | 10.293865                                                                                                                                                                                                                 | 12,95169                                                                                                                                                                                                                                           |
| Median pore diameter (area) at 0.000 $m^2/g$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | um                                                                                                                     | 0.04429                                                                                                                                                                                              | 4.083.72                                                                                                                                                                                                                     | 0.02473                                                                                                                                                                                                                          | 7.313.73                                                                                                                                                                                                                | 0.03451                                                                                                                                                                                                                   | 0.01383                                                                                                                                                                                                                                            |
| Average pore diameter (4V/A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | um                                                                                                                     | 0.28551                                                                                                                                                                                              | -                                                                                                                                                                                                                            | 0.05107                                                                                                                                                                                                                          | -                                                                                                                                                                                                                       | 0.16829                                                                                                                                                                                                                   | 0.1657741                                                                                                                                                                                                                                          |
| Bulk density at 0.50 psia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | g/mL                                                                                                                   | 2.6502                                                                                                                                                                                               | 0.50                                                                                                                                                                                                                         | 2.6524                                                                                                                                                                                                                           | 0.50                                                                                                                                                                                                                    | 2.6513                                                                                                                                                                                                                    | 0.00156                                                                                                                                                                                                                                            |
| Apparent (skeletal) density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | g/mL                                                                                                                   | 2.6657                                                                                                                                                                                               | 29.991.82                                                                                                                                                                                                                    | 2.6671                                                                                                                                                                                                                           | 29.991.86                                                                                                                                                                                                               | 2.6664                                                                                                                                                                                                                    | 0.00099                                                                                                                                                                                                                                            |
| Porosity:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | %                                                                                                                      | 0.5831                                                                                                                                                                                               |                                                                                                                                                                                                                              | 0.5508                                                                                                                                                                                                                           |                                                                                                                                                                                                                         | 0.56695                                                                                                                                                                                                                   | 0.02284                                                                                                                                                                                                                                            |
| Stem volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | %                                                                                                                      | 1                                                                                                                                                                                                    | _                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                | -                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                        |                                                                                                                                                                                                      |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                         | _                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                  |
| A3-1_30日間浸漬                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                        | A3-1_                                                                                                                                                                                                | P30-1                                                                                                                                                                                                                        | A3-1_                                                                                                                                                                                                                            | P30-2                                                                                                                                                                                                                   | A3-1                                                                                                                                                                                                                      | _P30                                                                                                                                                                                                                                               |
| Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Unit                                                                                                                   | Value                                                                                                                                                                                                | Pressure(psia)                                                                                                                                                                                                               | Value                                                                                                                                                                                                                            | Pressure(psia)                                                                                                                                                                                                          | Average                                                                                                                                                                                                                   | STDEV.S                                                                                                                                                                                                                                            |
| Total intrusion volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mL/g                                                                                                                   | 0.018                                                                                                                                                                                                | 29,992.15                                                                                                                                                                                                                    | 0.0198                                                                                                                                                                                                                           | 29,991.90                                                                                                                                                                                                               | 0.0189                                                                                                                                                                                                                    | 0.00127                                                                                                                                                                                                                                            |
| Total pore area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | m²/g                                                                                                                   | 2.146                                                                                                                                                                                                | 29,992.15                                                                                                                                                                                                                    | 3.332                                                                                                                                                                                                                            | 29,991.90                                                                                                                                                                                                               | 2.739                                                                                                                                                                                                                     | 0.83863                                                                                                                                                                                                                                            |
| Median pore diameter (volume) at 0.001 mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | μm                                                                                                                     | 0.04277                                                                                                                                                                                              | 4,228.41                                                                                                                                                                                                                     | 0.03309                                                                                                                                                                                                                          | 5,466.17                                                                                                                                                                                                                | 0.03793                                                                                                                                                                                                                   | 0.00684                                                                                                                                                                                                                                            |
| Median pore diameter (area) at 0.000 m²/g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | μm                                                                                                                     | 0.01886                                                                                                                                                                                              | 9,588.80                                                                                                                                                                                                                     | 0.01275                                                                                                                                                                                                                          | 14,182.15                                                                                                                                                                                                               | 0.015805                                                                                                                                                                                                                  | 0.00432                                                                                                                                                                                                                                            |
| Average pore diameter (4V/A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | μm                                                                                                                     | 0.03349                                                                                                                                                                                              | -                                                                                                                                                                                                                            | 0.02379                                                                                                                                                                                                                          | -                                                                                                                                                                                                                       | 0.02864                                                                                                                                                                                                                   | 0.00686                                                                                                                                                                                                                                            |
| Bulk density at 0.50 psia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | g/mL                                                                                                                   | 2.4486                                                                                                                                                                                               | 0.50                                                                                                                                                                                                                         | 2.4485                                                                                                                                                                                                                           | 0.50                                                                                                                                                                                                                    | 2.44855                                                                                                                                                                                                                   | 0.00007                                                                                                                                                                                                                                            |
| Apparent (skeletal) density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | g/mL                                                                                                                   | 2.5614                                                                                                                                                                                               | 29,992.15                                                                                                                                                                                                                    | 2.5733                                                                                                                                                                                                                           | 29,991.90                                                                                                                                                                                                               | 2.56735                                                                                                                                                                                                                   | 0.00841                                                                                                                                                                                                                                            |
| Porosity:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | %                                                                                                                      | 4.4005                                                                                                                                                                                               | -                                                                                                                                                                                                                            | 4.8519                                                                                                                                                                                                                           | -                                                                                                                                                                                                                       | 4.6262                                                                                                                                                                                                                    | 0.31919                                                                                                                                                                                                                                            |
| Stem volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | %                                                                                                                      | 7                                                                                                                                                                                                    | -                                                                                                                                                                                                                            | 7                                                                                                                                                                                                                                | -                                                                                                                                                                                                                       | 7                                                                                                                                                                                                                         | 0.00000                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                        |                                                                                                                                                                                                      |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                         |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                        |                                                                                                                                                                                                      |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                         |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                    |
| A3-1_60日間浸漬                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                        | A3-1_                                                                                                                                                                                                | P60-1                                                                                                                                                                                                                        | A3-1_                                                                                                                                                                                                                            | P60-2                                                                                                                                                                                                                   | A3-1                                                                                                                                                                                                                      | _P60                                                                                                                                                                                                                                               |
| A3-1_60日間浸漬<br>Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Unit                                                                                                                   | A3-1_<br>Value                                                                                                                                                                                       | P60-1<br>Pressure(psia)                                                                                                                                                                                                      | A3-1_<br>Value                                                                                                                                                                                                                   | P60-2<br>Pressure(psia)                                                                                                                                                                                                 | A3-1<br>Average                                                                                                                                                                                                           | _P60<br>STDEV.S                                                                                                                                                                                                                                    |
| A3-1_60日間浸漬<br>Contents<br>Total intrusion volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Unit<br>mL/g                                                                                                           | A3-1_<br>Value<br>0.0217                                                                                                                                                                             | .P60-1<br>Pressure(psia)<br>29,991.58                                                                                                                                                                                        | A3-1_<br>Value<br>0.0247                                                                                                                                                                                                         | P60-2<br>Pressure(psia)<br>29,991.96                                                                                                                                                                                    | A3-1<br>Average<br>0.0232                                                                                                                                                                                                 | _P60<br>STDEV.S<br>0.00212                                                                                                                                                                                                                         |
| A3-1_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Unit<br>mL/g<br>m²/g                                                                                                   | A3-1_<br>Value<br>0.0217<br>3.847                                                                                                                                                                    | P60-1<br>Pressure(psia)<br>29,991.58<br>29,991.58                                                                                                                                                                            | A3-1_<br>Value<br>0.0247<br>3.955                                                                                                                                                                                                | P60-2<br>Pressure(psia)<br>29,991.96<br>29,991.96                                                                                                                                                                       | A3-1<br>Average<br>0.0232<br>3.901                                                                                                                                                                                        | _P60<br>STDEV.S<br>0.00212<br>0.07637                                                                                                                                                                                                              |
| A3-1_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Unit<br>mL/g<br>m²/g<br>µm                                                                                             | A3-1_<br>Value<br>0.0217<br>3.847<br>0.0302                                                                                                                                                          | P60-1<br>Pressure(psia)<br>29,991.58<br>29,991.58<br>5,989.61                                                                                                                                                                | A3-1_<br>Value<br>0.0247<br>3.955<br>0.04127                                                                                                                                                                                     | P60-2<br>Pressure(psia)<br>29,991.96<br>29,991.96<br>4,382.20                                                                                                                                                           | A3-1<br>Average<br>0.0232<br>3.901<br>0.035735                                                                                                                                                                            | _P60<br>STDEV.S<br>0.00212<br>0.07637<br>0.00783                                                                                                                                                                                                   |
| A3-1_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g                                                                                                                                                                                                                                                                                                                                                                                                      | Unit<br>mL/g<br>m²/g<br>μm<br>μm                                                                                       | A3-1_<br>Value<br>0.0217<br>3.847<br>0.0302<br>0.01276                                                                                                                                               | P60-1<br>Pressure(psia)<br>29,991.58<br>29,991.58<br>5,989.61<br>14,178.18                                                                                                                                                   | A3-1_<br>Value<br>0.0247<br>3.955<br>0.04127<br>0.01235                                                                                                                                                                          | P60-2<br>Pressure(psia)<br>29,991.96<br>29,991.96<br>4,382.20<br>14,639.65                                                                                                                                              | A3-1<br>Average<br>0.0232<br>3.901<br>0.035735<br>0.012555                                                                                                                                                                | _P60<br>STDEV.S<br>0.00212<br>0.07637<br>0.00783<br>0.00029                                                                                                                                                                                        |
| A3-1_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)                                                                                                                                                                                                                                                                                                                                                                      | Unit<br>mL/g<br>m²/g<br>μm<br>μm<br>μm                                                                                 | A3-1_<br>Value<br>0.0217<br>3.847<br>0.0302<br>0.01276<br>0.02256                                                                                                                                    | P60-1<br>Pressure(psia)<br>29,991.58<br>29,991.58<br>5,989.61<br>14,178.18<br>-                                                                                                                                              | A3-1_<br>Value<br>0.0247<br>3.955<br>0.04127<br>0.01235<br>0.02497                                                                                                                                                               | P60-2<br>Pressure(psia)<br>29,991.96<br>29,991.96<br>4,382.20<br>14,639.65<br>-                                                                                                                                         | A3-1<br>Average<br>0.0232<br>3.901<br>0.035735<br>0.012555<br>0.023765                                                                                                                                                    | _P60<br>STDEV.S<br>0.00212<br>0.07637<br>0.00783<br>0.00029<br>0.00170                                                                                                                                                                             |
| A3-1_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia                                                                                                                                                                                                                                                                                                                                         | Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>µm<br>g/mL                                                                         | A3-1_<br>Value<br>0.0217<br>3.847<br>0.0302<br>0.01276<br>0.02256<br>2.4269                                                                                                                          | P60-1<br>Pressure(psia)<br>29,991.58<br>29,991.58<br>5,989.61<br>14,178.18<br>-<br>0.50                                                                                                                                      | A3-1_<br>Value<br>0.0247<br>3.955<br>0.04127<br>0.01235<br>0.02497<br>2.4077                                                                                                                                                     | P60-2<br>Pressure(psia)<br>29,991.96<br>29,991.96<br>4,382.20<br>14,639.65<br>-<br>0.50                                                                                                                                 | A3-1<br>Average<br>0.0232<br>3.901<br>0.035735<br>0.012555<br>0.023765<br>2.4173                                                                                                                                          | _P60<br>STDEV.S<br>0.00212<br>0.07637<br>0.00783<br>0.00029<br>0.00170<br>0.01358                                                                                                                                                                  |
| A3-1_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density                                                                                                                                                                                                                                                                                                          | Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>g/mL<br>g/mL                                                                       | A3-1_<br>Value<br>0.0217<br>3.847<br>0.0302<br>0.01276<br>0.02256<br>2.4269<br>2.5619                                                                                                                | P60-1<br>Pressure(psia)<br>29,991.58<br>29,991.58<br>5,989.61<br>14,178.18<br>-<br>0.50<br>29,991.58                                                                                                                         | A3-1_<br>Value<br>0.0247<br>3.955<br>0.04127<br>0.01235<br>0.02497<br>2.4077<br>2.5599                                                                                                                                           | P60-2<br>Pressure(psia)<br>29,991.96<br>29,991.96<br>4,382.20<br>14,639.65<br>-<br>0.50<br>29,991.96                                                                                                                    | A3-1<br>Average<br>0.0232<br>3.901<br>0.035735<br>0.012555<br>0.023765<br>2.4173<br>2.5609                                                                                                                                | _P60<br>STDEV.S<br>0.00212<br>0.007637<br>0.00783<br>0.00029<br>0.00170<br>0.01358<br>0.00141                                                                                                                                                      |
| A3-1_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:                                                                                                                                                                                                                                                                                             | Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>g/mL<br>g/mL<br>%                                                                  | A3-1_<br>Value<br>0.0217<br>3.847<br>0.0302<br>0.01276<br>0.02256<br>2.4269<br>2.5619<br>5.2689                                                                                                      | P60-1<br>Pressure(psia)<br>29,991.58<br>5,989.61<br>14,178.18<br>-<br>0.50<br>29,991.58<br>-                                                                                                                                 | A3-1_<br>Value<br>0.0247<br>3.955<br>0.04127<br>0.01235<br>0.02497<br>2.4077<br>2.5599<br>5.9441                                                                                                                                 | P60-2<br>Pressure(psia)<br>29,991.96<br>4,382.20<br>14,639.65<br>-<br>0.50<br>29,991.96<br>-                                                                                                                            | A3-1<br>Average<br>0.0232<br>3.901<br>0.035735<br>0.012555<br>0.023765<br>2.4173<br>2.5609<br>5.6065                                                                                                                      | _P60<br>STDEV.S<br>0.00212<br>0.07637<br>0.00783<br>0.00029<br>0.00170<br>0.01358<br>0.00141<br>0.47744                                                                                                                                            |
| A3-1_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume                                                                                                                                                                                                                                                                              | Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>g/mL<br>g/mL<br>%<br>%                                                             | A3-1_<br>Value<br>0.0217<br>3.847<br>0.0302<br>0.01276<br>0.02256<br>2.4269<br>2.5619<br>5.2689<br>9                                                                                                 | P60-1<br>Pressure(psia)<br>29,991.58<br>5,989.61<br>14,178.18<br>-<br>0.50<br>29,991.58<br>-<br>-                                                                                                                            | A3-1_<br>Value<br>0.0247<br>3.955<br>0.04127<br>0.01235<br>0.02497<br>2.4077<br>2.5599<br>5.9441<br>9                                                                                                                            | P60-2<br>Pressure(psia)<br>29,991.96<br>29,991.96<br>4,382.20<br>14,639.65<br>-<br>0.50<br>29,991.96<br>-<br>-                                                                                                          | A3-1<br>Average<br>0.0232<br>3.901<br>0.035735<br>0.012555<br>0.023765<br>2.4173<br>2.5609<br>5.6065<br>9                                                                                                                 | _P60<br>STDEV.S<br>0.00212<br>0.07637<br>0.00783<br>0.00029<br>0.00170<br>0.01358<br>0.00141<br>0.47744<br>0.00000                                                                                                                                 |
| A3-1_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume                                                                                                                                                                                                                                                                              | Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>g/mL<br>g/mL<br>%                                                                  | A3-1_<br>Value<br>0.0217<br>3.847<br>0.0302<br>0.01276<br>0.02256<br>2.4269<br>2.5619<br>5.2689<br>9                                                                                                 | P60-1<br>Pressure(psia)<br>29,991.58<br>29,991.58<br>5,989.61<br>14,178.18<br>-<br>0.50<br>29,991.58<br>-<br>-                                                                                                               | A3-1_<br>Value<br>0.0247<br>3.955<br>0.04127<br>0.01235<br>0.02497<br>2.4077<br>2.5599<br>5.9441<br>9                                                                                                                            | P60-2<br>Pressure(psia)<br>29,991.96<br>29,991.96<br>4,382.20<br>14,639.65<br>-<br>0.50<br>29,991.96<br>-<br>-                                                                                                          | A3-1<br>Average<br>0.0232<br>3.901<br>0.035735<br>0.012555<br>0.023765<br>2.4173<br>2.5609<br>5.6065<br>9                                                                                                                 | _P60<br>STDEV.S<br>0.00212<br>0.07637<br>0.00783<br>0.00029<br>0.00170<br>0.01358<br>0.00141<br>0.47744<br>0.00000                                                                                                                                 |
| A3-1_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>A3-1_120日間浸漬                                                                                                                                                                                                                                                              | Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>g/mL<br>g/mL<br>%                                                                  | A3-1_<br>Value<br>0.0217<br>3.847<br>0.0302<br>0.01276<br>0.02256<br>2.4269<br>2.5619<br>5.2689<br>9<br>9<br>5.2689<br>9                                                                             | P60-1<br>Pressure(psia)<br>29,991.58<br>29,991.58<br>5,989.61<br>14,178.18<br>-<br>0.50<br>29,991.58<br>-<br>-<br>P120-1                                                                                                     | A3-1_<br>Value<br>0.0247<br>3.955<br>0.04127<br>0.01235<br>0.02497<br>2.4077<br>2.5599<br>5.9441<br>9<br>A3-1_                                                                                                                   | P60-2<br>Pressure(psia)<br>29,991.96<br>4,382.20<br>14,639.65<br>-<br>0.50<br>29,991.96<br>-<br>-<br>P120-2                                                                                                             | A3-1<br>Average<br>0.0232<br>3.901<br>0.035735<br>0.012555<br>0.023765<br>2.4173<br>2.5609<br>5.6065<br>9<br>9                                                                                                            | _P60<br>STDEV.S<br>0.00212<br>0.07637<br>0.00783<br>0.00029<br>0.00170<br>0.01358<br>0.00141<br>0.47744<br>0.00000                                                                                                                                 |
| A3-1_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>A3-1_120日間浸漬<br>Contents<br>Total intrusion volume                                                                                                                                                                                                                        | Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>g/mL<br>g/mL<br>%<br>%                                                             | A3-1_<br>Value<br>0.0217<br>3.847<br>0.0302<br>0.01276<br>0.02256<br>2.4269<br>2.5619<br>5.2689<br>9<br>5.2689<br>9<br>4.3-1_<br>Value                                                               | P60-1<br>Pressure(psia)<br>29,991.58<br>29,991.58<br>5,989.61<br>14,178.18<br>-<br>0.50<br>29,991.58<br>-<br>-<br>P120-1<br>Pressure(psia)<br>20.002.01                                                                      | A3-1_<br>Value<br>0.0247<br>3.955<br>0.04127<br>0.01235<br>0.02497<br>2.4077<br>2.5599<br>5.9441<br>9<br>4.3-1_<br>Value                                                                                                         | P60-2<br>Pressure(psia)<br>29,991.96<br>4,382.20<br>14,639.65<br>-<br>0.50<br>29,991.96<br>-<br>-<br>-<br>P120-2<br>Pressure(psia)                                                                                      | A3-1<br>Average<br>0.0232<br>3.901<br>0.035735<br>0.012555<br>0.023765<br>2.4173<br>2.5609<br>5.6065<br>9<br>9<br>A3-1_<br>Average                                                                                        | _P60<br>STDEV.S<br>0.00212<br>0.07637<br>0.00783<br>0.00029<br>0.00170<br>0.01358<br>0.00141<br>0.47744<br>0.00000<br>P120<br>STDEV.S                                                                                                              |
| A3-1_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>A3-1_120日間浸漬<br>Contents<br>Total intrusion volume                                                                                                                                                                                                                        | Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>g/mL<br>g/mL<br>g/mL<br>%<br>%<br>Unit<br>mL/g                                     | A3-1_<br>Value<br>0.0217<br>3.847<br>0.0302<br>0.01276<br>0.02256<br>2.4269<br>2.5619<br>5.2689<br>9<br>9<br>A3-1_<br>Value<br>0.0276                                                                | P60-1<br>Pressure(psia)<br>29,991.58<br>29,991.58<br>5,989.61<br>14,178.18<br>-<br>0.50<br>29,991.58<br>-<br>-<br>P120-1<br>Pressure(psia)<br>29,992.01<br>20,002.01                                                         | A3-1_<br>Value<br>0.0247<br>3.955<br>0.04127<br>0.01235<br>0.02497<br>2.4077<br>2.5599<br>5.9441<br>9<br>A3-1_1<br>Value<br>0.0269                                                                                               | P60-2<br>Pressure(psia)<br>29,991.96<br>4,382.20<br>14,639.65<br>-<br>0.50<br>29,991.96<br>-<br>-<br>P120-2<br>Pressure(psia)<br>29,992.23<br>20,002.23                                                                 | A3-1<br>Average<br>0.0232<br>3.901<br>0.035735<br>0.012555<br>0.023765<br>2.4173<br>2.5609<br>5.6065<br>9<br>5.6065<br>9<br>4.3-1_<br>Average<br>0.02725                                                                  | _P60<br>STDEV.S<br>0.00212<br>0.07637<br>0.00783<br>0.00029<br>0.00170<br>0.01358<br>0.00141<br>0.47744<br>0.00000<br>P120<br>STDEV.S<br>0.00049<br>0.47447                                                                                        |
| A3-1_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>A3-1_120日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 ml                                                                                                                                                        | Unit<br>mL/g<br>m²/g<br>µm<br>g/mL<br>g/mL<br>g/mL<br>%<br>%<br>Unit<br>mL/g<br>m²/g                                   | A3-1_<br>Value<br>0.0217<br>3.847<br>0.0302<br>0.01276<br>0.02256<br>2.4269<br>2.5619<br>5.2689<br>9<br>5.2689<br>9<br>4.3-1_<br>Value<br>0.0276<br>4.512                                            | P60-1<br>Pressure(psia)<br>29,991.58<br>5,989.61<br>14,178.18<br>-<br>0.50<br>29,991.58<br>-<br>-<br>P120-1<br>Pressure(psia)<br>29,992.01<br>29,992.01<br>5,578.11                                                          | A3-1_<br>Value<br>0.0247<br>3.955<br>0.04127<br>0.01235<br>0.02497<br>2.4077<br>2.5599<br>5.9441<br>9<br>A3-1_<br>Value<br>0.0269<br>5.183                                                                                       | P60-2<br>Pressure(psia)<br>29,991.96<br>29,991.96<br>4,382.20<br>14,639.65<br>-<br>0.50<br>29,991.96<br>-<br>P120-2<br>Pressure(psia)<br>29,992.23<br>29,992.23<br>6,177.50                                             | A3-1<br>Average<br>0.0232<br>3.901<br>0.035735<br>0.012555<br>0.023765<br>2.4173<br>2.5609<br>5.6065<br>9<br>9<br>A3-1_<br>Average<br>0.02725<br>4.8475<br>0.02925                                                        | P60<br>STDEV.S<br>0.00212<br>0.07637<br>0.00783<br>0.00029<br>0.00170<br>0.01358<br>0.00141<br>0.47744<br>0.00000<br>P120<br>STDEV.S<br>0.00049<br>0.47447                                                                                         |
| A3-1_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>A3-1_120日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/                                                                                                                                                       | Unit<br>mL/g<br>m²/g<br>µm<br>g/mL<br>g/mL<br>g/mL<br>%<br>Unit<br>mL/g<br>m²/g<br>µm                                  | A3-1_<br>Value<br>0.0217<br>3.847<br>0.0302<br>0.01276<br>0.02256<br>2.4269<br>2.5619<br>5.2689<br>9<br>4.512<br>0.0276<br>4.512<br>0.03242                                                          | P60-1<br>Pressure(psia)<br>29,991.58<br>29,991.58<br>5,989.61<br>14,178.18<br>-<br>0.50<br>29,991.58<br>-<br>-<br>P120-1<br>Pressure(psia)<br>29,992.01<br>29,992.01<br>5,578.11<br>12,256 EE                                | A3-1_<br>Value<br>0.0247<br>3.955<br>0.04127<br>0.01235<br>0.02497<br>2.4077<br>2.5599<br>5.9441<br>9<br>A3-1_1<br>Value<br>0.0269<br>5.183<br>0.02928                                                                           | P60-2<br>Pressure(psia)<br>29,991.96<br>29,991.96<br>4,382.20<br>14,639.65<br>-<br>0.50<br>29,991.96<br>-<br>P120-2<br>Pressure(psia)<br>29,992.23<br>29,992.23<br>6,177.50<br>14,094.20                                | A3-1<br>Average<br>0.0232<br>3.901<br>0.035735<br>0.012555<br>0.023765<br>2.4173<br>2.5609<br>5.6065<br>9<br>4.8471<br>0.02725<br>4.8475<br>0.03085<br>0.012725                                                           | P60<br>STDEV.S<br>0.00212<br>0.07637<br>0.00783<br>0.00029<br>0.00170<br>0.01358<br>0.00141<br>0.47744<br>0.00000<br>P120<br>STDEV.S<br>0.00049<br>0.47447<br>0.00222<br>0.00128                                                                   |
| A3-1_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>A3-1_120日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g                                                                                                          | Unit<br>mL/g<br>m²/g<br>µm<br>g/mL<br>g/mL<br>%<br>%<br>Unit<br>mL/g<br>m²/g<br>µm<br>µm                               | A3-1_<br>Value<br>0.0217<br>3.847<br>0.0302<br>0.01276<br>0.02256<br>2.4269<br>2.5619<br>5.2689<br>9<br>4.512<br>0.0276<br>4.512<br>0.03242<br>0.01464                                               | P60-1<br>Pressure(psia)<br>29,991.58<br>29,991.58<br>5,989.61<br>14,178.18<br>-<br>0.50<br>29,991.58<br>-<br>-<br>P120-1<br>Pressure(psia)<br>29,992.01<br>29,992.01<br>29,992.01<br>5,578.11<br>12,356.55                   | A3-1_<br>Value<br>0.0247<br>3.955<br>0.04127<br>0.01235<br>0.02497<br>2.4077<br>2.5599<br>5.9441<br>9<br>A3-1_1<br>Value<br>0.0269<br>5.183<br>0.02928<br>0.01283                                                                | P60-2<br>Pressure(psia)<br>29,991.96<br>29,991.96<br>4,382.20<br>14,639.65<br>-<br>0.50<br>29,991.96<br>-<br>P120-2<br>Pressure(psia)<br>29,992.23<br>29,992.23<br>6,177.50<br>14,094.20                                | A3-1<br>Average<br>0.0232<br>3.901<br>0.035735<br>0.012555<br>0.023765<br>2.4173<br>2.5609<br>5.6065<br>9<br>9<br>A3-1_<br>Average<br>0.02725<br>4.8475<br>0.03085<br>0.013735                                            | _P60<br>STDEV.S<br>0.00212<br>0.07637<br>0.00783<br>0.00029<br>0.00170<br>0.01358<br>0.00141<br>0.47744<br>0.00000<br>FP120<br>STDEV.S<br>0.00049<br>0.47447<br>0.00222<br>0.00128                                                                 |
| A3-1_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>A3-1_120日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (4V/A)<br>Pulk density at 0.50 psic                                                                                           | Unit<br>mL/g<br>m²/g<br>μm<br>μm<br>g/mL<br>g/mL<br>%<br>%<br>Unit<br>mL/g<br>m²/g<br>μm<br>μm<br>μm                   | A3-1_<br>Value<br>0.0217<br>3.847<br>0.0302<br>0.01276<br>2.4269<br>2.5619<br>5.2689<br>9<br>5.2689<br>9<br>4.3-1_<br>Value<br>0.0276<br>4.512<br>0.03242<br>0.01464<br>0.02449                      | P60-1<br>Pressure(psia)<br>29,991.58<br>29,991.58<br>5,989.61<br>14,178.18<br>-<br>0.50<br>29,991.58<br>-<br>-<br>P120-1<br>Pressure(psia)<br>29,992.01<br>29,992.01<br>5,578.11<br>12,356.55<br>-<br>-                      | A3-1_<br>Value<br>0.0247<br>3.955<br>0.04127<br>0.01235<br>0.02497<br>2.4077<br>2.5599<br>5.9441<br>9<br>A3-1_<br>Value<br>0.0269<br>5.183<br>0.02928<br>0.01283<br>0.02076                                                      | P60-2<br>Pressure(psia)<br>29,991.96<br>29,991.96<br>4,382.20<br>14,639.65<br>-<br>0.50<br>29,991.96<br>-<br>-<br>P120-2<br>Pressure(psia)<br>29,992.23<br>6,177.50<br>14,094.20<br>-<br>-                              | A3-1<br>Average<br>0.0232<br>3.901<br>0.035735<br>0.012555<br>0.023765<br>2.4173<br>2.5609<br>5.6065<br>9<br>4.8475<br>0.022725<br>4.8475<br>0.03085<br>0.013735<br>0.022625<br>2.255                                     | P60<br>STDEV.S<br>0.00212<br>0.07637<br>0.00783<br>0.00029<br>0.00170<br>0.01358<br>0.00141<br>0.47744<br>0.00000<br>P120<br>STDEV.S<br>0.00049<br>0.47447<br>0.00222<br>0.00128<br>0.00264                                                        |
| A3-1_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>A3-1_120日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density              | Unit<br>mL/g<br>m²/g<br>µm<br>g/mL<br>g/mL<br>%<br>%<br>Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>µm<br>g/mL                 | A3-1_<br>Value<br>0.0217<br>3.847<br>0.0302<br>0.01276<br>0.02256<br>2.4269<br>2.5619<br>5.2689<br>9<br>5.2689<br>9<br>4.512<br>0.0276<br>4.512<br>0.03242<br>0.01464<br>0.02449<br>2.3767           | P60-1<br>Pressure(psia)<br>29,991.58<br>29,991.58<br>5,989.61<br>14,178.18<br>-<br>0.50<br>29,991.58<br>-<br>-<br>P120-1<br>Pressure(psia)<br>29,992.01<br>29,992.01<br>5,578.11<br>12,356.55<br>-<br>0.49<br>29,02.01       | A3-1_<br>Value<br>0.0247<br>3.955<br>0.04127<br>0.01235<br>0.02497<br>2.4077<br>2.5599<br>5.9441<br>9<br>A3-1_<br>Value<br>0.0269<br>5.183<br>0.02928<br>0.01283<br>0.02928<br>0.01283                                           | P60-2<br>Pressure(psia)<br>29,991.96<br>29,991.96<br>4,382.20<br>14,639.65<br>-<br>0.50<br>29,991.96<br>-<br>-<br>P120-2<br>Pressure(psia)<br>29,992.23<br>29,992.23<br>6,177.50<br>14,094.20<br>-<br>0.49<br>20.022 22 | A3-1<br>Average<br>0.0232<br>3.901<br>0.035735<br>0.012555<br>0.023765<br>2.4173<br>2.5609<br>5.6065<br>9<br>5.6065<br>9<br>4.8475<br>0.02725<br>4.8475<br>0.03085<br>0.013735<br>0.022625<br>2.3858<br>2.5517            | _P60<br>STDEV.S<br>0.00212<br>0.07637<br>0.00783<br>0.00029<br>0.00170<br>0.01358<br>0.00141<br>0.47744<br>0.00000<br>FP120<br>STDEV.S<br>0.00049<br>0.47447<br>0.00222<br>0.00128<br>0.00264<br>0.01287                                           |
| A3-1_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>A3-1_120日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity: | Unit<br>mL/g<br>m²/g<br>μm<br>g/mL<br>g/mL<br>%<br>%<br>Unit<br>mL/g<br>m²/g<br>μm<br>μm<br>μm<br>g/mL<br>g/mL         | A3-1_<br>Value<br>0.0217<br>3.847<br>0.0302<br>0.01276<br>0.02256<br>2.4269<br>2.5619<br>5.2689<br>9<br>5.2689<br>9<br>4.512<br>0.0276<br>4.512<br>0.03242<br>0.01464<br>0.02449<br>2.3767<br>2.5436 | P60-1<br>Pressure(psia)<br>29,991.58<br>29,991.58<br>5,989.61<br>14,178.18<br>-<br>0.50<br>29,991.58<br>-<br>-<br>P120-1<br>Pressure(psia)<br>29,992.01<br>5,578.11<br>12,356.55<br>-<br>0.49<br>29,992.01                   | A3-1_<br>Value<br>0.0247<br>3.955<br>0.04127<br>0.01235<br>0.02497<br>2.4077<br>2.5599<br>5.9441<br>9<br>A3-1_1<br>Value<br>0.0269<br>5.183<br>0.02928<br>0.01283<br>0.02928<br>0.01283<br>0.02076<br>2.3949<br>2.5598           | P60-2<br>Pressure(psia)<br>29,991.96<br>29,991.96<br>4,382.20<br>14,639.65<br>-<br>0.50<br>29,991.96<br>-<br>-<br>P120-2<br>Pressure(psia)<br>29,992.23<br>6,177.50<br>14,094.20<br>-<br>0.49<br>29,992.23              | A3-1<br>Average<br>0.0232<br>3.901<br>0.035735<br>0.012555<br>0.023765<br>2.4173<br>2.5609<br>5.6065<br>9<br>4.8475<br>0.02725<br>4.8475<br>0.03085<br>0.013735<br>0.022625<br>2.3858<br>2.5517<br>6.5025                 | _P60<br>STDEV.S<br>0.00212<br>0.07637<br>0.00783<br>0.00029<br>0.00170<br>0.01358<br>0.00141<br>0.47744<br>0.00000<br>P120<br>STDEV.S<br>0.00049<br>0.47447<br>0.00222<br>0.00128<br>0.00264<br>0.01287<br>0.01146<br>0.02500                      |
| A3-1_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>A3-1_120日間浸漬<br>Contents<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Ctam undume            | Unit<br>mL/g<br>m²/g<br>μm<br>g/mL<br>g/mL<br>%<br>%<br>Unit<br>mL/g<br>m²/g<br>μm<br>μm<br>μm<br>g/mL<br>g/mL<br>g/mL | A3-1_<br>Value<br>0.0217<br>3.847<br>0.0302<br>0.01276<br>0.02256<br>2.4269<br>2.5619<br>5.2689<br>9<br>3<br>4.512<br>0.0276<br>4.512<br>0.03242<br>0.01464<br>0.02449<br>2.3767<br>2.5436<br>6.5641 | P60-1<br>Pressure(psia)<br>29,991.58<br>29,991.58<br>5,989.61<br>14,178.18<br>-<br>0.50<br>29,991.58<br>-<br>-<br>P120-1<br>Pressure(psia)<br>29,992.01<br>29,992.01<br>5,578.11<br>12,356.55<br>-<br>0.49<br>29,992.01<br>- | A3-1_<br>Value<br>0.0247<br>3.955<br>0.04127<br>0.01235<br>0.02497<br>2.4077<br>2.5599<br>5.9441<br>9<br>A3-1_1<br>Value<br>0.0269<br>5.183<br>0.02288<br>0.01283<br>0.02288<br>0.01283<br>0.02076<br>2.3949<br>2.5598<br>6.4412 | P60-2<br>Pressure(psia)<br>29,991.96<br>29,991.96<br>4,382.20<br>14,639.65<br>-<br>0.50<br>29,991.96<br>-<br>-<br>P120-2<br>Pressure(psia)<br>29,992.23<br>6,177.50<br>14,094.20<br>-<br>0.49<br>29,992.23<br>-         | A3-1<br>Average<br>0.0232<br>3.901<br>0.035735<br>0.012555<br>0.023765<br>2.4173<br>2.5609<br>5.6065<br>9<br>9<br>A3-1_<br>Average<br>0.02725<br>4.8475<br>0.03085<br>0.013735<br>0.022625<br>2.3858<br>2.5517<br>6.50265 | P60<br>STDEV.S<br>0.00212<br>0.07637<br>0.00783<br>0.00029<br>0.00170<br>0.01358<br>0.00141<br>0.47744<br>0.00000<br>P120<br>STDEV.S<br>0.00049<br>0.47447<br>0.00222<br>0.00128<br>0.00028<br>0.00264<br>0.01287<br>0.01146<br>0.08690<br>0.27211 |

#### 表 1.9-2 A 3-1 のポロシメータ測定結果



図 1.9-1 A 3-1の間隙径分布 (a)・(b) 未浸漬、(c)・(d) 30 日浸漬、(e)・(f) 60 日浸漬、(g)・(h) 120 日浸漬

(2) B 3-3

|                                            |      | -        |                |           |                |           |          |
|--------------------------------------------|------|----------|----------------|-----------|----------------|-----------|----------|
| B3-3_浸漬前                                   |      | B3-3     | _Pb-1          | B3-3      | _Pb-2          | B3-3      | 3_Pb     |
| Contents                                   | Unit | Value    | Pressure(psia) | Value     | Pressure(psia) | Average   | STDEV.S  |
| Total intrusion volume                     | mL/g | 0.0041   | 29,991.62      | 0.0071    | 29,991.82      | 0.0056    | 0.00212  |
| Total pore area                            | m²/g | 0.000    | 29,991.62      | 0.019     | 29,991.82      | 0.0095    | 0.01344  |
| Median pore diameter (volume) at 0.001 mL/ | μm   | 130.3993 | 1.39           | 118.14207 | 1.53           | 124.27069 | 8.66717  |
| Median pore diameter (area) at 0.000 m²/g  | μm   | 98.97762 | 1.83           | 0.07712   | 2,345.12       | 49.52737  | 69.93321 |
| Average pore diameter (4V/A)               | μm   | 0.0000   | -              | 1.47465   | -              | 0.737325  | 1.042735 |
| Bulk density at 0.50 psia                  | g/mL | 2.6064   | 0.50           | 2.5746    | 0.50           | 2.5905    | 0.02249  |
| Apparent (skeletal) density                | g/mL | 2.6349   | 29,991.62      | 2.6224    | 29,991.82      | 2.62865   | 0.00884  |
| Porosity:                                  | %    | 1.0833   | -              | 1.8239    | -              | 1.4536    | 0.52368  |
| Stem volume                                | %    | 2        | -              | 2         | -              | 2         | C        |
|                                            |      |          |                |           |                |           |          |
| B3-3_30日間浸漬                                |      | B3-3_    | _P30-1         | B3-3_     | P30-2          | B3-3      | _P30     |
| Contents                                   | Unit | Value    | Pressure(psia) | Value     | Pressure(psia) | Average   | STDEV.S  |
| Total intrusion volume                     | mL/g | 0.0093   | 29,992.18      | 0.0051    | 29,992.15      | 0.0072    | 0.00297  |
| Total pore area                            | m²/g | 2.378    | 29,992.18      | 0.439     | 29,992.15      | 1.4085    | 1.37108  |
| Median pore diameter (volume) at 0.001 mL/ | μm   | 0.01402  | 12,899.68      | 0.09543   | 1,895.33       | 0.054725  | 0.05757  |
| Median pore diameter (area) at 0.000 m²/g  | μm   | 0.00835  | 21,651.09      | 0.02914   | 6,206.17       | 0.018745  | 0.01470  |
| Average pore diameter (4V/A)               | μm   | 0.01563  | -              | 0.04601   | -              | 0.03082   | 0.02148  |
| Bulk density at 0.50 psia                  | g/mL | 2.5064   | 0.50           | 2.5357    | 0.50           | 2.52105   | 0.02072  |
| Apparent (skeletal) density                | g/mL | 2.5662   | 29,992.18      | 2.5686    | 29,992.15      | 2.5674    | 0.00170  |
| Porosity:                                  | %    | 2.3323   | -              | 1.2809    | -              | 1.8066    | 0.74345  |
| Stem volume                                | %    | 4        | -              | 2         | -              | 3         | 1.41421  |
|                                            |      |          |                |           |                |           |          |
| B3-3_60日間浸漬                                |      | B3-3_    | _P60-1         | B3-3_     | P60-2          | B3-3      | _P60     |
| Contents                                   | Unit | Value    | Pressure(psia) | Value     | Pressure(psia) | Average   | STDEV.S  |
| Total intrusion volume                     | mL/g | 0.0114   | 29,992.15      | 0.0089    | 29,991.52      | 0.01015   | 0.00177  |
| Total pore area                            | m²/g | 2.797    | 29,992.15      | 2.572     | 29,991.52      | 2.6845    | 0.15910  |
| Median pore diameter (volume) at 0.001 mL/ | μm   | 0.0125   | 14,470.17      | 0.01004   | 18,023.17      | 0.01127   | 0.00174  |
| Median pore diameter (area) at 0.000 m²/g  | μm   | 0.00909  | 19,903.34      | 0.00944   | 19,165.31      | 0.009265  | 0.00025  |
| Average pore diameter (4V/A)               | μm   | 0.01631  | -              | 0.01377   | -              | 0.01504   | 0.00180  |
| Bulk density at 0.50 psia                  | g/mL | 2.502    | 0.50           | 2.4963    | 0.50           | 2.49915   | 0.00403  |
| Apparent (skeletal) density                | g/mL | 2.5755   | 29,992.15      | 2.5527    | 29,991.52      | 2.5641    | 0.01612  |
| Porosity:                                  | %    | 2.8529   | -              | 2.2094    | -              | 2.53115   | 0.45502  |
| Stem volume                                | %    | 5        | -              | 4         | -              | 4.5       | 0.70711  |
|                                            |      |          |                |           |                |           |          |
| B3-3_120日間浸漬                               |      | B3-3_    | P120-1         | B3-3_     | P120-2         | B3-3_     | _P120    |
| Contents                                   | Unit | Value    | Pressure(psia) | Value     | Pressure(psia) | Average   | STDEV.S  |
| Total intrusion volume                     | mL/g | 0.0159   | 29,991.17      | 0.0161    | 29,992.12      | 0.016     | 0.00014  |
| Total pore area                            | m²/g | 3.715    | 29,991.17      | 4.338     | 29,992.12      | 4.0265    | 0.44053  |
| Median pore diameter (volume) at 0.001 mL/ | μm   | 0.01727  | 10,474.43      | 0.01592   | 11,358.56      | 0.016595  | 0.00095  |
| Median pore diameter (area) at 0.000 m²/g  | μm   | 0.01367  | 13,228.25      | 0.01181   | 15,314.10      | 0.01274   | 0.00132  |
| Average pore diameter (4V/A)               | μm   | 0.01711  | -              | 0.01484   | -              | 0.015975  | 0.00161  |
| Bulk density at 0.50 psia                  | g/mL | 2.4702   | 0.50           | 2.466     | 0.50           | 2.4681    | 0.00297  |
| Apparent (skeletal) density                | g/mL | 2.5711   | 29,991.17      | 2.5679    | 29,992.12      | 2.5695    | 0.00226  |
| Porosity:                                  | %    | 3.9273   | -              | 3.9688    | -              | 3.94805   | 0.02934  |
| Stem volume                                | %    | 6        | -              | 7         | -              | 6.5       | 0.70711  |

### 表 1.9-3 B 3-3 のポロシメータ測定結果

【付録12】



図 1.9-2 B 3-3の間隙径分布 (a)・(b) 未浸漬、(c)・(d) 30 日浸漬、(e)・(f) 60 日浸漬、(g)・(h) 120 日浸漬

(3) C 2-1

| C2-1_P6-1         C2-1_P6-2         C2-1_P6-2         C2-1_P6-2           Contents         Unit         Value         Pressure(rsis)         Awarge         STDEV.S           Total intrusion volume         m1/g         0.0041         29.991.65         0.0018         29.992.51         0.0022         0.0008           Median pore diameter (volume) at 0.001 m1         µm         0.03834         4,717.64         0.0228         7.600.53         0.03107         0.00283           Avarage pore diameter (volume) at 0.001 m1/g         µm         0.03834         4,717.64         0.0228         7.600.53         0.03107         0.00283           Avarage pore diameter (volume) at 0.001 m2/g         µm         0.03834         4,717.64         0.0228         7.600.53         0.03107         0.00188           Statik density at 0.50 pois         g/mL         2.6622         2.991.65         2.6595         2.9992.51         0.660         0.00189           Stam volume         %         1         -         1         -         1         0           C2-1_30clfig 28         C611         TC2+1 <p30-2< td="">         C2+P30-2         C2+P30-2         C2+P30-2         C2+P30-2         C2+P30-2         C2+P30-2         C2+P30-2         C2+P30-2         C2+P30-2         C2+P30</p30-2<>                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                           |                                                                                                                                                                                                             |                                                                                                                                                                                        |                                                                                                                                                                                                           |                                                                                                                                                                                             |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Contents         Unit         Value         Pressure(pisia         Value         Pressure(pisia         Average         STDEVS           Total intrusion volume         m <sup>2</sup> /g         0.0021         29.991.65         0.0016         29.992.51         0.0026           Median pore diameter (wolume) at 0.001 m/g         um         0.03344         4.717.64         0.0228         7.600.53         0.03107           Average pore diameter (wolume) at 0.001 m/g         um         0.03344         4.717.64         0.02836         -         0.156455         0.156455         0.15625           Average pore diameter (wolume) at 0.001 m/g         um         0.02805         -         0.04654         -         0.55975         0.18434           Buik denalty at 0.50 pala         g/mL         2.6622         2.999.165         2.5695         2.999.23         0.60198           Poorality:         %         0.7261         -         0.4654         -         0.59775         0.18434           Stom volume         mL/g         0.0226         2.9992.36         0.0216         2.9992.34         0.0221         0.00071           Gotta intrusion volume         mL/g         0.0225         2.394.94         0.0226         2.639.99         0.0222         0.00074         0.00027                                                                                                                                                                                                                 | C2-1_浸漬前                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                           | C2-1_                                                                                                                                                                                                       | _Pb-1                                                                                                                                                                                  | C2-1_                                                                                                                                                                                                     | _Pb-2                                                                                                                                                                                       | C2-1                                                                                                                                                                                                                    | L_Pb                                                                                                                                                                                                                                     |
| Total intrusion volume         mL/g         0.0027         29.991.65         0.0018         29.992.51         0.0022         0.0024           Madian pore diameter (volume) at 0.001 mL         µm         168.27403         1.07         6.82123         26.51         87.54766         114.16433           Madian pore diameter (volume) at 0.001 mL         µm         0.02384         4.717.64         0.0228         7.600.53         0.03107         0.10384           Average pore diameter (volume) at 0.000 m <sup>7</sup> /g         µm         0.26306         -         0.16465         0.158323         0.0304         2.64515         0.0304           Average pore diameter (volume) at 0.000 m <sup>7</sup> /g         µm         0.26262         2.999.16         2.6693         2.999.251         0.16345         0.18343           Stem volume         %         0.7261         C2-1_P30-2         C0.0071         C3.1584         2.999.24         1.448         0.16405         C3.00712         C.00454         0.0221         0.00454         0.0221 <td< td=""><td>Contents</td><td>Unit</td><td>Value</td><td>Pressure(psia)</td><td>Value</td><td>Pressure(psia)</td><td>Average</td><td>STDEV.S</td></td<> | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Unit                                                                                                                      | Value                                                                                                                                                                                                       | Pressure(psia)                                                                                                                                                                         | Value                                                                                                                                                                                                     | Pressure(psia)                                                                                                                                                                              | Average                                                                                                                                                                                                                 | STDEV.S                                                                                                                                                                                                                                  |
| Total pore area         m <sup>2</sup> /g         0.041         29.99.165         0.165         29.992.51         0.0105         0.0005         0.0105           Median pore diameter (slume) 1001 mL         µm         108.27403         1.017         6.82129         2.651         87.5476         11.41543           Median pore diameter (area) at 0.000 m <sup>2</sup> /g         µm         0.02805         -         0.04386         -         0.056455         0.59234           Bulk density at 0.50 psia         g/mL         2.6422         0.49         2.6472         0.49         2.6455         0.59234         0.00304           Apparent (skuleal) density         g/mL         2.6622         0.49         2.6472         0.49         2.64505         0.0394           Apparent (skuleal) density         g/mL         2.6622         0.992.36         0.4654         -         0.5575         0.18434           Stem volume         %         0.7261         -         1         -         1         0         0         0.0221         0.00071         2.992.34         0.0221         0.00071         0.00071         0.00071         0.00071         0.00071         0.00071         0.000745         0.00221         0.00071         0.000745         0.000745         0.00221         0.                                                                                                                                                                                                                | Total intrusion volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mL/g                                                                                                                      | 0.0027                                                                                                                                                                                                      | 29,991.65                                                                                                                                                                              | 0.0018                                                                                                                                                                                                    | 29,992.51                                                                                                                                                                                   | 0.00225                                                                                                                                                                                                                 | 0.00064                                                                                                                                                                                                                                  |
| Median pore diameter (volume) at 0.001 m/g         µm         1068,27403         1.07         6.82129         2.8513         8.754766         114.16433           Median pore diameter (arva) at 0.000 m/g         µm         0.03834         4.717.764         0.04386         -         0.15655         0.159234           Bulk density at 0.50 psia         g/mL         2.26423         0.49         2.6472         0.49         2.64505         0.00398           Porosity:         %         0.7561         -         0.4664         0.5575         0.18443           Stem volume         %         0.7561         -         0.4664         0.5575         0.18443           Stem volume         %         0.7561         C2-1_P30-1         C2-1_P30-2                                                                                                                                                                                               | Total pore area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | m²/g                                                                                                                      | 0.041                                                                                                                                                                                                       | 29,991.65                                                                                                                                                                              | 0.16                                                                                                                                                                                                      | 29,992.51                                                                                                                                                                                   | 0.1005                                                                                                                                                                                                                  | 0.08415                                                                                                                                                                                                                                  |
| Median pore diameter (avp) + 10,0000 m <sup>3</sup> /g         µm         0.03834         4.717.64         0.0238         7,600.53         0.01028           Average pore diameter (4V/A)         µm         0.02606         -         0.04386         -         0.156455         0.0159234           Buik donsity to 15.05 pain         µ/m         2.6622         2.9.991.65         2.6595         2.9.992.51         2.6667         0.00104           Apparent (skeletal) density         µ/m         2.6622         2.9.991.65         2.6595         2.9.992.51         2.6667         0.00104           Stem volume         %         1         -         1         -         0.0021           Stem volume         %         1         -         1         -         0.0021           Contents         Unit         Value         Pressure(psia         Verage 2.992.36         0.0216         2.9.992.34         0.6052         2.9.902.36         1.584         2.9.923.4         0.6052         2.0.902.20         0.00021         2.00021         0.00021         0.00071         0.00071         0.00071         0.00564         3.206.79         0.05188         3.486.18         0.06414         0.00825           Median pore diameter (volume) at 0.001 mL         µm         0.05664                                                                                                                                                                                                                              | Median pore diameter (volume) at 0.001 mL/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | μm                                                                                                                        | 168.27403                                                                                                                                                                                                   | 1.07                                                                                                                                                                                   | 6.82129                                                                                                                                                                                                   | 26.51                                                                                                                                                                                       | 87.54766                                                                                                                                                                                                                | 114.16433                                                                                                                                                                                                                                |
| Average pore diameter (4V/A)         µm         0.26905         -         0.04386         -         0.156455         0.159234           Bulk density at 0.50 psia         g/mL         2.6423         0.49         2.6472         0.49         2.6405         0.00304           Apperent (skeletal) density         g/mL         2.6623         2.9991.65         2.6595         2.9592.51         2.6609         0.00189           Porosity:         %         0.7261         -         0.4654         -         0.5575         0.18434           Stem volume         %         0.7261         -         0.4654         -         0.5975         0.1843           Stem volume         %         1         -         1         -         1         0         0           C2-1_30E183234         Wolme         Pressure(sial         Value         Pressure(sial         Value         Pressure(sial         Value         Pressure(sial         Value         1.66053         0.05164         0.00221         0.00021         0.00021         0.00022         0.00221         0.00022         0.00224         0.05363         0.05164         0.00324         0.05363         0.05164         0.00324         0.05234         0.52586         -         0.53464                                                                                                                                                                                                                                                                    | Median pore diameter (area) at 0.000 m²/g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | μm                                                                                                                        | 0.03834                                                                                                                                                                                                     | 4,717.64                                                                                                                                                                               | 0.0238                                                                                                                                                                                                    | 7,600.53                                                                                                                                                                                    | 0.03107                                                                                                                                                                                                                 | 0.01028                                                                                                                                                                                                                                  |
| Bulk density at 0.50 psin         g/mL         2.6429         0.49         2.6472         0.49         2.64605         0.00304           Apparent (skeletal) density         g/mL         2.6622         29.991.65         2.6636         2.992.51         2.6609         0.00188           Stem volume         %         0         -         1         -         0.56575         0.18434           Stem volume         %         1         -         1         -         0.05675         0.18434           Stem volume         %         0.7261         -         C21_P30-1         C21_P30-2         C21_P30           Total intrusion volume         mL/g         0.0226         29.992.36         0.0216         29.992.34         0.0021         0.00071           Total pore area         m <sup>4</sup> /g         1.352         29.992.36         1.584         29.992.34         0.6651         0.66174         0.00320           Median pore diameter (volume) at 0.001 mL         µm         0.0564         3.206.79         0.05188         3.486.18         0.05414         0.00320           Average pore diameter (valo Abosin         g/mL         2.4247         0.5050         2.43464         0.00274         0.02373         0.00274         0.992.31         2.57                                                                                                                                                                                                                                             | Average pore diameter (4V/A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | μm                                                                                                                        | 0.26905                                                                                                                                                                                                     | -                                                                                                                                                                                      | 0.04386                                                                                                                                                                                                   | -                                                                                                                                                                                           | 0.156455                                                                                                                                                                                                                | 0.1592334                                                                                                                                                                                                                                |
| Apparent (skelstal) density         g/mL         2.6623         29.991.65         2.6595         29.992.51         2.6609         0.00198           Prosity:         %         0.7261         -         0.4654         -         0.59575         0.18434           Stem volume         %         1         -         1         -         0         0           C2-1_301Bil%ä         Unit         Value         Pressure(psin         Value         Pressure(psin         Average         STDEV.S           Total intrusion volume         mL/g         0.0226         29.992.36         0.0216         29.992.34         0.0648         0.0664           Median pore diameter (area) at 0.001 mL/g         µm         0.06563         -         0.06645         0.06188         3.486.18         0.06614         0.00320           Average pore diameter (area) at 0.000 m <sup>7</sup> /g         µm         0.06663         -         0.060745         0.00875         0.00875           Bulk density at 0.50 psia         g/mL         2.4327         0.50         2.4368         0.50         2.43475         0.00274           Orasity:         %         5.5024         -         5.2668         -         5.3841         0.16730           Stem volume                                                                                                                                                                                                                                                                     | Bulk density at 0.50 psia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | g/mL                                                                                                                      | 2.6429                                                                                                                                                                                                      | 0.49                                                                                                                                                                                   | 2.6472                                                                                                                                                                                                    | 0.49                                                                                                                                                                                        | 2.64505                                                                                                                                                                                                                 | 0.00304                                                                                                                                                                                                                                  |
| Porosity:         %         0.7261         -         0.4654         -         0.59675         0.18434           Stem volume         %         1         -         1         -         1         0           C2-1_30日間浸漬         C2-1_P30-1         C2-1_P30-2         C2-1_P30         C2-1_P30-2         C2-1_P30           Total intrusion volume         mL/g         0.0226         29.992.36         0.0216         29.992.34         0.0221         0.0071           Total pore area         m <sup>7</sup> /g         1.352         29.992.36         0.1584         29.992.34         0.06652         2.639.59         0.07202         0.00495           Median pore diameter (volume) at 0.001 mL/g         µm         0.05693         -         0.05456         -         0.060745         0.006745         0.006745         0.00290           Average pore diameter (vol/A)         µm         0.06693         -         5.2681         -         5.3841         0.16735         0.00273         2.9992.34         2.57335         0.00148           Porosity:         %         5.5024         -         5.2681         -         5.3841         0.16735           Stem volume         %         11         -         9         -         10 <td>Apparent (skeletal) density</td> <td>g/mL</td> <td>2.6623</td> <td>29,991.65</td> <td>2.6595</td> <td>29,992.51</td> <td>2.6609</td> <td>0.00198</td>                                                                                                                 | Apparent (skeletal) density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | g/mL                                                                                                                      | 2.6623                                                                                                                                                                                                      | 29,991.65                                                                                                                                                                              | 2.6595                                                                                                                                                                                                    | 29,992.51                                                                                                                                                                                   | 2.6609                                                                                                                                                                                                                  | 0.00198                                                                                                                                                                                                                                  |
| Stem volume         %         1         -         1         -         1         0           C2-1_30日開浸漬         C2-1_P30-1         C2-1_P30-2         C2-1_P30         C2-1_P30-2         C2-1_P30           Total intrusion volume         mL/g         0.0226         29.992.36         0.0216         29.992.34         0.0221         0.00071           Total prore area         m <sup>7</sup> /g         1.352         29.992.36         0.6852         2.639.59         0.07202         0.04945           Median pore diameter (area) at 0.000 m <sup>1/</sup> /g         µm         0.0564         3.206.79         0.05188         3.486.18         0.0514         0.00275         0.00495           Average pore diameter (area) at 0.000 m <sup>1/</sup> /g         µm         0.0564         -         0.06045         0.00275         0.00276         0.00275         0.0216         0.00274         0.0504         0.00275         0.00276         0.0273         2.9992.02         2.43475         0.0029           Bulk density at 0.50 psia         µ/mL         2.5742         29.992.14         0.0273         2.9992.02         0.2773         0.00173           C2-1_601112/2         C2-1_P60-1         C2-1_P60-2         C2-1_P60         C2-1_P60-2         C2-1_P60         0.0273         2.9992.02                                                                                                                                                                                                     | Porosity:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | %                                                                                                                         | 0.7261                                                                                                                                                                                                      | -                                                                                                                                                                                      | 0.4654                                                                                                                                                                                                    | -                                                                                                                                                                                           | 0.59575                                                                                                                                                                                                                 | 0.18434                                                                                                                                                                                                                                  |
| C2-1_90日間浸漬         C2-1_P30-1         C2-1_P30-2         C2-1_P30           Cantents         Unit         Value         Pressure(psia)         Value         Pressure(psia)         Average         STDEV.S           Total intrusion volume         mL/g         0.0226         29.992.36         0.0216         29.992.34         0.0683           Median pore diameter (value) at 0.001 mL/g         µm         0.06643         2.034.94         0.06852         2.03955         0.07145         0.00216         0.00875           Buik density at 0.50 psia         g/mL         2.4327         0.50         2.4386         0.05         2.43735         0.00290           Apparent (skeletal) density         g/mL         2.5774         29.992.36         2.5723         29.992.34         2.5735         0.0143           Porosity:         %         5.524         -         5.2668         -         5.341         0.16730           Stem volume         %         11         -         9         -         10         1.41421           C2-1_60Ell浸漬         C2-1_P60-1         C2-1_P60-2         C2-1_P60         C2-1_P60-1         C2-1_F00-2         C2-1_P60         C0.7275         0.00017         1.4312         0.04451         0.0432         0.04325                                                                                                                                                                                                                                                       | Stem volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | %                                                                                                                         | 1                                                                                                                                                                                                           | -                                                                                                                                                                                      | 1                                                                                                                                                                                                         | -                                                                                                                                                                                           | 1                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                        |
| C2-1_930-1         C2-1_P30-1         C2-1_P30-2         C2-1_P30           Contents         Unit         Value         Pressure(psia         Value         Pressure(psia         Average         STDEV.S           Total intrusion volume         mL/g         0.0226         29.992.36         0.0216         29.992.34         0.0681           Total pore area         m²/g         1.352         29.992.36         1.584         29.992.34         0.0651           Median pore diameter (area) at 0.000 m²/g         µm         0.05663         -         0.06614         0.00755           Average pore diameter (area) at 0.000 m²/g         µm         0.06663         -         0.06515         0.0233         0.00715           Average pore diameter (4V/A)         µm         0.06663         -         0.060745         0.00875           Bulk donsity at 0.50 psia         g/mL         2.5474         29.992.36         2.5723         29.992.34         2.57335         0.00148           Porosity:         %         5.5024         -         5.2658         -         5.3841         0.16730           Stem volume         mL/g         0.02717         2.992.14         0.0273         2.992.02         2.4415         0.03732         0.00077                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                           |                                                                                                                                                                                                             |                                                                                                                                                                                        |                                                                                                                                                                                                           |                                                                                                                                                                                             |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                          |
| Contents         Unit         Value         Pressure(psia         Value         Pressure(psia         Average         STDEV.S.           Total intrusion volume         mL/g         0.0226         29.992.36         0.0216         29.992.34         0.00211         0.00071           Median pore diameter (volume) at 0.001 mL/m         µm         0.07552         2.394.94         0.06852         2.639.95         0.07202         0.00455           Median pore diameter (area) at 0.000 m²/g         µm         0.05644         3.206.79         0.05188         3.486.18         0.05144         0.00320           Average pore diameter (AV/A)         µm         0.06693         -         0.05466         -         0.060745         0.00290           Apparent (Skeltal) density         g/mL         2.4327         0.50         2.43486         0.0512         2.43475         0.00290           Apparent (Skeltal) density         g/mL         2.5734         2.992.26         2.5773         2.9992.24         2.5733         2.9992.26         2.5773         2.9992.20         0.02735         0.000075           C2-1_601B%ĝ         C2-1_P60-1         C2-1_P60-2         C2-1_P60-2         C2-1_P60         0.03735         0.000073         0.000073         0.000375         0.00015         0                                                                                                                                                                                                          | C2-1 30日間浸漬                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                           | C2-1_                                                                                                                                                                                                       | P30-1                                                                                                                                                                                  | C2-1_                                                                                                                                                                                                     | P30-2                                                                                                                                                                                       | C2-1                                                                                                                                                                                                                    | P30                                                                                                                                                                                                                                      |
| Total intrusion volume         mL/g         0.0226         29,992.36         0.0211         29,992.34         0.0211         0.00071           Total pore area         m²/g         1.352         29,992.36         1.584         29,992.34         1.6405           Median pore diameter (volume) at 0.001 mL         µm         0.0552         2.394.94         0.06642         2.633.59         0.00702         0.00495           Median pore diameter (volume) at 0.000 m²/g         µm         0.05643         -         0.05456         -         0.060745         0.00290           Average pore diameter (VA/A)         µm         0.05653         -         0.5588         0.502         2.4368         0.050         2.4368         0.0502         0.00148           Average pore diameter (VA/A)         µm         0.05643         -         5.6588         -         5.3644         0.16730           Stem volume         %         11         -         9         -         10         1.4121           C2-1_6011355         CDrt         Value         Pressure(psia         Value         Pressure(psia         Average         STDEV.S           Total intrusion volume         mL/g         0.0274         29.992.14         0.4477         29.992.02         2.4145                                                                                                                                                                                                                                             | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Unit                                                                                                                      | Value                                                                                                                                                                                                       | Pressure(psia)                                                                                                                                                                         | Value                                                                                                                                                                                                     | Pressure(psia)                                                                                                                                                                              | Average                                                                                                                                                                                                                 | STDEV.S                                                                                                                                                                                                                                  |
| m²/g         1.352         29.992.36         1.584         29.992.34         1.468         0.16405           Median pore diameter (volume) at 0.001 mL, µm         0.07552         2.394.94         0.06852         2.639.59         0.07202         0.00495           Median pore diameter (area) at 0.000 m²/g         µm         0.06693         -         0.05456         -         0.000745         0.00375           Bulk density at 0.50 psia         g/mL         2.4327         0.50         2.4368         0.50         2.4375         0.00204           Apparent (skeletal) density         g/mL         2.5724         29.992.34         2.57335         0.00148           Porosity:         %         5.5024         -         5.2658         -         5.3841         0.16730           Stem volume         %         11         -         9         -         10         141421           C2-1_60Hll/3½         C2-1_P60-1         C2-1_P60-2         C2-1_F00         10         141421           C1_1 fool flig/3         Unit         Value         Pressure(psia         Average         STDEV.S           Total pore area         m²/g         0.3232         29.992.14         0.05738         3.152.14         0.057725         0.00017                                                                                                                                                                                                                                                                      | Total intrusion volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mL/g                                                                                                                      | 0.0226                                                                                                                                                                                                      | 29.992.36                                                                                                                                                                              | 0.0216                                                                                                                                                                                                    | 29,992.34                                                                                                                                                                                   | 0.0221                                                                                                                                                                                                                  | 0.00071                                                                                                                                                                                                                                  |
| Control         Control         µm         CONTROL         Quart           Median pore diameter (volume) at 0.001 mL/         µm         0.07552         2.394.94         0.06852         2.639.59         0.07202         0.004354           Median pore diameter (area) at 0.000 m²/g         µm         0.0564         3.206.79         0.05188         3.486.18         0.05014         0.000320           Average pore diameter (4V/A)         µm         0.06693         -         0.05456         -         0.000745         0.00290           Apparent (skeletal) density         g/mL         2.5724         29.92.34         2.5733         0.00148           Porosity:         %         5.5024         -         5.2658         -         5.3841         0.16730           Stem volume         %         11         -         9         -         10         1.41421           C2-1_60-1         C2-1_P60-2         C2-1_P60-2         C2-1_P60-2         C2-1_P60-2         C2-1_P60-2         C2-1_P60-2         C2-1_P60-2         C2-1_P60-2         C2-1_P60-2         C2-1_P10-1         C2-1_P60-2         C2-1_P10-1         C2-1_P10-2         C2-1_P10-1         C2-1_P10-1         C2-1_P10-1         C2-1_P10-1         C2-1_P10-1         C2-1_P10-1         C2-1_P10-1 <t< td=""><td>Total pore area</td><td>m²/g</td><td>1.352</td><td>29,992,36</td><td>1.584</td><td>29,992.34</td><td>1.468</td><td>0.16405</td></t<>                                                                                | Total pore area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | m²/g                                                                                                                      | 1.352                                                                                                                                                                                                       | 29,992,36                                                                                                                                                                              | 1.584                                                                                                                                                                                                     | 29,992.34                                                                                                                                                                                   | 1.468                                                                                                                                                                                                                   | 0.16405                                                                                                                                                                                                                                  |
| Median pore diameter (area) at 0.000 m²/g         µm         0.0564         3.206.79         0.0518         3.486.18         0.06414         0.00320           Average pore diameter (4V/A)         µm         0.06693         -         0.05456         -         0.060745         0.00320           Apparent (skeletal) density         g/mL         2.4327         0.50         2.4388         0.50         2.43475         0.00290           Apparent (skeletal) density         g/mL         2.5744         29.992.36         2.5772         29.992.34         2.57335         0.00148           Porosity:         %         5.5024         -         5.568         -         5.3841         0.16730           Stem volume         %         11         -         9         -         10         1.41421           Stem volume         %         0.0271         29.992.14         0.0273         29.992.02         0.0275         0.00071           Total pore area         m²/g         2.382         29.992.14         0.0471         2.992.02         0.0275         0.00072           Total pore area         m²/g         2.382         0.03717         3.163.53         0.0573         3.152.14         0.057275         0.00011           Averag                                                                                                                                                                                                                                                                       | Median pore diameter (volume) at 0.001 mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | , 8                                                                                                                       | 0.07552                                                                                                                                                                                                     | 2 394 94                                                                                                                                                                               | 0.06852                                                                                                                                                                                                   | 2 639 59                                                                                                                                                                                    | 0.07202                                                                                                                                                                                                                 | 0.00495                                                                                                                                                                                                                                  |
| Average pore diameter (4V/A)         µm         0.06693         -         0.06745         0.00875           Bulk density at 0.50 psia         g/mL         2.4327         0.50         2.4368         0.50         2.43475         0.00290           Apparent (skeletal) density         g/mL         2.5744         29.992.36         2.5723         29.992.34         2.57335         0.00148           Porosity:         %         5.5024         -         5.2668         -         5.3841         0.16730           Stem volume         %         11         -         9         -         10         1.41421           C2-1_60-fll         C2-1_P60-1         C2-1_P60-2         C2-1_P60         C0.0073         0.00073         0.00077           Total intrusion volume         mL/g         0.0274         29.992.14         0.0273         29.992.02         0.02745         0.00007           Total pore area         m²/g         2.382         29.992.14         0.03717         3.152.14         0.057275         0.00017           Median pore diameter (area) at 0.000 m²/g         µm         0.03717         4.826.54         0.03717         4.865.53         0.00021           Average pore diameter (4V/A)         µm         0.04535         -                                                                                                                                                                                                                                                              | Median pore diameter (area) at 0.000 $m^2/g$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | um                                                                                                                        | 0.0564                                                                                                                                                                                                      | 3 206 79                                                                                                                                                                               | 0.05188                                                                                                                                                                                                   | 3 486 18                                                                                                                                                                                    | 0.05414                                                                                                                                                                                                                 | 0.00320                                                                                                                                                                                                                                  |
| Nonzego bots dameter (VF/V)         μm         Coords                                                                                                                                                                                                               | Average nore diameter $(4V/A)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | um                                                                                                                        | 0.06693                                                                                                                                                                                                     | -                                                                                                                                                                                      | 0.05456                                                                                                                                                                                                   | -                                                                                                                                                                                           | 0.060745                                                                                                                                                                                                                | 0.00875                                                                                                                                                                                                                                  |
| Dark Guinstry at Co.0 plan         g/mL         C.452.47         C.053         C.450.47         C.050         C.450.47         C.050           Apparent (skeletal) density         g/mL         2.5744         29.992.36         2.5733         0.00148           Porosity:         %         5.5024         -         5.2668         -         5.3841         0.16730           Stem volume         %         11         -         9         -         10         1.41421           Contents         Unit         Value         Pressure(psia)         Value         Pressure(psia)         Average         STDEV.S           Total intrusion volume         mL/g         0.0274         29.992.14         0.0273         29.992.02         0.02735         0.00007           Total pore area         m²/g         2.382         29.992.14         2.447         29.992.02         0.04465         0.04575         0.00015           Median pore diameter (volume) at 0.001 mL/         µm         0.05717         3.163.53         0.05738         3.152.14         0.05775         0.00012           Average pore diameter (area) at 0.000 m²/g         µm         0.04595         -         0.04469         -         0.04452         0.00037                                                                                                                                                                                                                                                                                  | Bulk density at $0.50$ psia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | g/ml                                                                                                                      | 2 // 327                                                                                                                                                                                                    | 0.50                                                                                                                                                                                   | 2 / 368                                                                                                                                                                                                   | 0.50                                                                                                                                                                                        | 2 / 3/75                                                                                                                                                                                                                | 0.00010                                                                                                                                                                                                                                  |
| Apparent (skeleda) density         g/nL         2.3743         2.3743         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723         2.3723                                                                                                                                                                                                              | Apparent (ekoletel) density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | g/IIIL                                                                                                                    | 2.4327                                                                                                                                                                                                      | 20.002.26                                                                                                                                                                              | 2.4300                                                                                                                                                                                                    | 20 002 24                                                                                                                                                                                   | 2.43473                                                                                                                                                                                                                 | 0.00230                                                                                                                                                                                                                                  |
| Notsity.         3.3024         -         3.3034         -         3.3041         0.1033           Stem volume         %         11         -         9         -         10         1.41421           C2-1_60日間浸漬         C2-1_P60-1         C2-1_P60-2         C2-1_P60         Xerage         STDEV.S           Total intrusion volume         mL/g         0.0274         29,992.14         0.0273         29,992.02         0.02735         0.00007           Total pore area         m²/g         2.382         29,992.14         2.447         29,992.02         2.4145         0.04596           Median pore diameter (volume) at 0.001 mL         µm         0.05717         3,163.53         0.05738         3,152.14         0.057275         0.00015           Median pore diameter (volume) at 0.000 m²/g         µm         0.03747         4,865.53         0.03732         0.00029           Bulk density at 0.50 psia         g/mL         2.3927         0.50         2.3874         0.50         2.3905         0.00375           Apparent (skeletal) density         g/mL         2.5602         29,992.14         2.5541         29,992.02         2.55715         0.00431           Porosity:         %         6.5459         -         6.526                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | g/111L<br>0/                                                                                                              | 2.0744<br>5.5024                                                                                                                                                                                            | 29,992.30                                                                                                                                                                              | E 2659                                                                                                                                                                                                    | 29,992.34                                                                                                                                                                                   | E 20/1                                                                                                                                                                                                                  | 0.00140                                                                                                                                                                                                                                  |
| Stem volume $\pi$ 11         -         9         -         10         1.4421           C2-1_60日間浸漬         C2-1_F60-1         C2-1_F60-2         C2-1_F60           Call         Value         Pressure(psia         Value         Pressure(psia         Average         STDEV.S           Total intrusion volume         mL/g         0.0274         29,992.14         0.0273         29,992.02         0.0273         0.00007           Total pore area         m²/g         2.382         29,992.14         2.447         29,992.02         2.4145         0.04596           Median pore diameter (volume) at 0.001 mL         µm         0.03747         4,826.54         0.03717         4,865.53         0.03732         0.00021           Average pore diameter (4V/A)         µm         0.04595         -         0.04469         -         0.04322         0.00037           Apparent (skeletal) density         g/mL         2.5602         29,992.14         2.5541         29,992.02         2.55715         0.00431           Porosity:         %         6.5459         -         6.526         -         6.53595         0.01407           Stem volume         %         12         -         11         -         11.5                                                                                                                                                                                                                                                                                            | Folosity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | /0                                                                                                                        | 5.5024                                                                                                                                                                                                      | -                                                                                                                                                                                      | 5.2058                                                                                                                                                                                                    | -                                                                                                                                                                                           | 10                                                                                                                                                                                                                      | 1 41 4 21                                                                                                                                                                                                                                |
| C2-1_00 HBB $\bar{B}_{-}$ C2-1_F0-1         C2-1_F0-2         C2-F0-1         C2-1_F0-2         C2-F0-1           Contents         ml/g         0.0274         29.992.14         0.0273         29.992.02         0.0073         0.0007           Total intrusion volume         ml/g         0.0274         29.992.14         0.0273         29.992.02         2.4445         0.0073         0.0007           Total pore area         m²/g         2.382         29.992.14         2.447         29.992.02         2.4445         0.0073         0.0007           Median pore diameter (volume) at 0.001 m²/g         µm         0.05717         3.163.53         0.05738         3.152.14         0.05725         0.00013           Median pore diameter (volume) at 0.000 m²/g         µm         0.03747         4.826.54         0.03717         4.865.53         0.03732         0.00021           Average pore diameter (4V/A)         µm         0.04595         -         0.04469         -         0.04532         0.00037           Apparent (skeletal) density         g/mL         2.3927         0.50         2.3874         0.50         2.3905         0.0031           Stor wolume         g/mL         2.5602         2.9992.14         2.551         29.992.02         2.5571<                                                                                                                                                                                                                                  | Stern volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 70                                                                                                                        | 11                                                                                                                                                                                                          | -                                                                                                                                                                                      | 9                                                                                                                                                                                                         | -                                                                                                                                                                                           | 10                                                                                                                                                                                                                      | 1.41421                                                                                                                                                                                                                                  |
| $C2-100-1$ $C2-100-2$ $C2-100-2$ $C2-100-2$ $C$ Contents         Unit $Value$ $ressure(psia$ $Value$ $ressure(psia$ $Average$ $STDEVS$ Total intrusion volume         mL/g $0.0274$ $29,992.14$ $0.0273$ $29,992.02$ $0.02735$ $0.00007$ Total pore area         mL/g $0.05717$ $3.163.3$ $0.05738$ $3.152.14$ $0.057275$ $0.00021$ Median pore diameter (area) at $0.000 m^2/g$ $\mu$ m $0.03747$ $4.826.54$ $0.03717$ $4.865.53$ $0.03727$ $0.00021$ Average pore diameter (area) at $0.000 m^2/g$ $\mu$ m $0.04595$ $ 0.04469$ $ 0.04532$ $0.00021$ Average pore diameter (area) at $0.000 m^2/g$ $\mu$ m $0.04595$ $ 0.04469$ $ 0.04532$ $0.00021$ Average pore diameter (area) at $0.000 m^2/g$ $g/mL$ $2.5602$ $2.992.14$ $2.5541$ $29.992.02$ $2.55715$ $0.00037$ Apparent (skeletal) density $g/mL$ $2.5602$ $2.9992.14$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                           |                                                                                                                                                                                                             |                                                                                                                                                                                        |                                                                                                                                                                                                           |                                                                                                                                                                                             |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                          |
| ContentsOnitValueressure(psia)Valueressure(psia)Valueressure(psia)Valueressure(psia)Valueressure(psia)ValueFessure(psia)ValueFessure(psia)ValueFessure(psia)ValueFessure(psia)ValueFessure(psia)ValueFessure(psia)ValueFessure(psia)ValueFessure(psia)ValueFessure(psia)ValueFessure(psia)ValueFessure(psia)ValueFessure(psia)ValueFessure(psia)ValueFessure(psia)ValueFessure(psia)ValueFessure(psia)ValueFessure(psia)ValueFessure(psia)ValueFessure(psia)ValueFessure(psia)ValueFessure(psia)ValueFessure(psia)ValueFessure(psia)ValueFessure(psia)ValueFessure(psia)ValueFessure(psia)ValueFessure(psia)ValueFessure(psia)ValueFessure(psia)ValueFessure(psia)ValueFessure(psia)ValueFessure(psia)ValueFessure(psia)ValueFessure(psia)ValueFessure(psia)ValueFessure(psia)ValueFessure(psia)ValueFessure(psia)ValueFessure(psia)ValueFessure(psia)ValueFessure(psia)ValueFessure(psia)ValueFessure(psia)ValueFessure(psia)ValueFessure(psia)ValueFessure(psia)ValueFessure(psia)ValueFessure(psia)ValueFessure(psia)ValueFessure(psia)ValueFessu                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C2 1 60口問這法                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                           | $C_{2-1}$                                                                                                                                                                                                   | P60_1                                                                                                                                                                                  | C2-1                                                                                                                                                                                                      | P60-2                                                                                                                                                                                       | C2-1                                                                                                                                                                                                                    | P60                                                                                                                                                                                                                                      |
| Intersion volume         Int_/g         0.02/4         29,992.14         0.02/3         29,992.02         0.02/3         0.000/7           Total pore area         m²/g         2.382         29,992.14         2.447         29,992.02         2.4145         0.04596           Median pore diameter (volume) at 0.001 mL         µm         0.05717         3,163.53         0.05738         3,152.14         0.057275         0.00015           Median pore diameter (area) at 0.000 m²/g         µm         0.03747         4,826.54         0.03717         4,865.53         0.03732         0.00021           Average pore diameter (4V/A)         µm         0.04595         -         0.04469         -         0.04532         0.00089           Bulk density at 0.50 psia         g/mL         2.3927         0.50         2.3874         0.50         2.3905         0.00375           Apparent (skeletal) density         g/mL         2.5602         29,992.14         2.5541         29,992.02         2.55715         0.00431           Porosity:         %         6.5459         -         6.526         -         6.53595         0.01407           Stem volume         mL/g         0.0303         29,992.33         0.0331         29,992.40         0.321         0.0548<                                                                                                                                                                                                                                     | C2-1_60日間浸漬                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Unit                                                                                                                      | C2-1_                                                                                                                                                                                                       | P60-1                                                                                                                                                                                  | C2-1_                                                                                                                                                                                                     | P60-2                                                                                                                                                                                       | C2-1                                                                                                                                                                                                                    | P60                                                                                                                                                                                                                                      |
| Interpretation         m²/g         2.382         2.9,992.14         2.447         29,92.02         2.4445         0.04596           Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g         µm         0.05717         3,163.53         0.05738         3,152.14         0.057275         0.00015           Median pore diameter (area) at 0.000 m²/g         µm         0.03747         4,826.54         0.03717         4,865.53         0.03732         0.00021           Average pore diameter (4V/A)         µm         0.04595         -         0.04469         -         0.04532         0.00039           Bulk density at 0.50 psia         g/mL         2.3927         0.50         2.3874         0.50         2.39005         0.00375           Apparent (skeletal) density         g/mL         2.5602         29,992.14         2.5541         29,992.02         2.55715         0.00431           Porosity:         %         6.5459         -         6.526         -         6.53595         0.01407           Stem volume         %         12         -         11         -         11.5         0.70711           C2-1_120日間浸漬         Contents         Unit         Value         Pressure(psia)         Average         STDEV.S     <                                                                                                                                                                                                                              | C2-1_60日間浸漬<br>Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Unit                                                                                                                      | C2-1_<br>Value                                                                                                                                                                                              | P60-1<br>Pressure(psia)                                                                                                                                                                | C2-1_<br>Value                                                                                                                                                                                            | P60-2<br>Pressure(psia)                                                                                                                                                                     | C2-1                                                                                                                                                                                                                    | _P60<br>STDEV.S                                                                                                                                                                                                                          |
| Median pore diameter (volume) at 0.001 mL, µm       0.05717       3,153.55       0.05738       3,152.14       0.057275       0.00015         Median pore diameter (area) at 0.000 m²/g       µm       0.03747       4,826.54       0.03717       4,865.53       0.03732       0.00021         Average pore diameter (4V/A)       µm       0.04595       -       0.04469       -       0.04532       0.00039         Bulk density at 0.50 psia       g/mL       2.3927       0.50       2.3874       0.50       2.3905       0.00375         Apparent (skeletal) density       g/mL       2.5602       29,992.14       2.5541       29,992.02       2.55715       0.00431         Porosity:       %       6.5459       -       6.526       -       6.53595       0.01407         Stem volume       %       12       -       11       -       11.5       0.70711         C2-1_120日間浸漬       C2-1_P120-1       C2-1_P120-2       C2-1_P120-7       C2-1_P120-2       C2-1_P120-7       C2-1_P1                                                                                                                                                                                                                                                                            | C2-1_60日間浸漬<br>Contents<br>Total intrusion volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Unit<br>mL/g                                                                                                              | C2-1_<br>Value<br>0.0274                                                                                                                                                                                    | P60-1<br>Pressure(psia)<br>29,992.14                                                                                                                                                   | C2-1_<br>Value<br>0.0273                                                                                                                                                                                  | P60-2<br>Pressure(psia)<br>29,992.02                                                                                                                                                        | C2-1<br>Average<br>0.02735                                                                                                                                                                                              | _P60<br>STDEV.S<br>0.00007                                                                                                                                                                                                               |
| Median pore diameter (area) at 0.000 m²/gμm0.0374/4,826.540.0371/4,856.530.037320.00021Average pore diameter (4V/A)μm0.04595-0.04469-0.045320.00089Bulk density at 0.50 psiag/mL2.39270.502.38740.502.39050.00375Apparent (skeletal) densityg/mL2.560229,992.142.554129,992.022.557150.00431Porosity:%6.5459-6.526-6.535950.01407Stem volume%12-11-11.50.70711C2-1_120日間浸漬C2-1_P120-1C2-1_P120-2C2-1_P120-7C2-1_P120-7C2-1_P120-7C2-1_P120-7C2-1_P120-7C2-1_P120-7C2-1_P120-70.001770.00188Total intrusion volumemL/g0.030329,992.330.033129,992.400.03170.00198Total pore aream²/g3.26829,992.333.21429,992.403.2410.036550.00196Median pore diameter (volume) at 0.001 mLµm0.021958,241.410.026056,943.480.0240.00290Average pore diameter (4V/A)µm0.03712-0.04114-0.039130.00284Bulk density at 0.50 psiag/mL2.38060.492.37380.502.37720.00481Apparent (skeletal) densityg/mL2.565929,992.332.57629,992.402.570550.00714 <tr <tr="">Porosi</tr>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C2-1_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Unit<br>mL/g<br>m²/g                                                                                                      | C2-1_<br>Value<br>0.0274<br>2.382                                                                                                                                                                           | P60-1<br>Pressure(psia)<br>29,992.14<br>29,992.14                                                                                                                                      | C2-1_<br>Value<br>0.0273<br>2.447                                                                                                                                                                         | P60-2<br>Pressure(psia)<br>29,992.02<br>29,992.02                                                                                                                                           | C2-1<br>Average<br>0.02735<br>2.4145                                                                                                                                                                                    | _P60<br>STDEV.S<br>0.00007<br>0.04596                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                           |                                                                                                                                                                                                             |                                                                                                                                                                                        |                                                                                                                                                                                                           |                                                                                                                                                                                             |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                          |
| Average pore diameter (4V/A)         µm         0.04359         -         0.04469         -         0.04352         0.00089           Bulk density at 0.50 psia         g/mL         2.3927         0.50         2.3874         0.50         2.39005         0.00375           Apparent (skeletal) density         g/mL         2.5602         29,992.14         2.5541         29,992.02         2.55715         0.00431           Porosity:         %         6.5459         -         6.526         -         6.53595         0.01407           Stem volume         %         12         -         11         -         11.5         0.70711           C2-1_120日間浸漬         C2-1_V10-1         C2-1_V10-2         C2-1_V120         C2-1_V120         C2-1_V120         C2-1_V120         C2-1_V120         C2-1_V120         0.0317         0.00198           Total intrusion volume         mL/g         0.0303         29,992.33         0.0331         29,992.40         0.321         0.0317         0.00198           Total pore area         m²/g         3.268         29,992.33         3.214         29,992.40         0.324         0.03216           Median pore diameter (volume) at 0.001 mL/         µm         0.02195         8.241.41         0.02605                                                                                                                                                                                                                                                         | C2-1_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Unit<br>mL/g<br>m²/g<br>µm                                                                                                | C2-1_<br>Value<br>0.0274<br>2.382<br>0.05717                                                                                                                                                                | P60-1<br>Pressure(psia)<br>29,992.14<br>29,992.14<br>3,163.53                                                                                                                          | C2-1_<br>Value<br>0.0273<br>2.447<br>0.05738                                                                                                                                                              | P60-2<br>Pressure(psia)<br>29,992.02<br>29,992.02<br>3,152.14                                                                                                                               | C2-1<br>Average<br>0.02735<br>2.4145<br>0.057275                                                                                                                                                                        | _P60<br>STDEV.S<br>0.00007<br>0.04596<br>0.00015                                                                                                                                                                                         |
| Bulk density at 0.50 psia         g/mL         2.3927         0.50         2.3874         0.50         2.39005         0.00375           Apparent (skeletal) density         g/mL         2.5602         29,992.14         2.5541         29,992.02         2.55715         0.00431           Porosity:         %         6.5459         -         6.526         -         6.53595         0.01407           Stem volume         %         12         -         11         -         11.5         0.70711           C2-1_120日間浸漬         C2-1_V20-1         C2-1_V10-2         C2-1_V10           C2-1_V10-1         C2-1_V10-2         C2-1_V10           C2-1_V10-1         C2-1_V10-2         C2-1_V10           C2-1_V10-1         C2-1_V10-2         C2-1_V10           C2-1_V10-1         C2-1_V10-2         C2-1_V10           C2-1_V20-1         C2-1_V10-2         C2-1_V10           Total intrusion volume         ML/g         0.0303         29,992.33         0.0331         29,992.40         0.0317         0.00188           Median pore diameter (volume) at 0.001 mL/<                                                                                                                                                                                                                                                                                                                                                                                                                                          | C2-1_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m <sup>2</sup> /g                                                                                                                                                                                                                                                                                                                                                                                         | Unit<br>mL/g<br>m²/g<br>µm<br>µm                                                                                          | C2-1_<br>Value<br>0.0274<br>2.382<br>0.05717<br>0.03747                                                                                                                                                     | P60-1<br>Pressure(psia)<br>29,992.14<br>29,992.14<br>3,163.53<br>4,826.54                                                                                                              | C2-1_<br>Value<br>0.0273<br>2.447<br>0.05738<br>0.03717                                                                                                                                                   | P60-2<br>Pressure(psia)<br>29,992.02<br>29,992.02<br>3,152.14<br>4,865.53                                                                                                                   | C2-1<br>Average<br>0.02735<br>2.4145<br>0.057275<br>0.03732                                                                                                                                                             | _P60<br>STDEV.S<br>0.00007<br>0.04596<br>0.00015<br>0.00021                                                                                                                                                                              |
| Apparent (skeletal) density         g/mL         2.5602         29,992.14         2.5541         29,992.02         2.55715         0.00431           Porosity:         %         6.5459         -         6.526         -         6.53595         0.01407           Stem volume         %         12         -         11         -         11.5         0.70711           C2-1_120日間浸漬         C2-1_V10-1         C2-1_V10-2         C2-1_V10-1           C2-1_120日間浸漬         Value         Pressure(psia)         Value         Pressure(psia)         Average         STDEV.S           Total intrusion volume         mL/g         0.0303         29,992.33         0.031         29,992.40         0.0317         0.00198           Total pore area         m²/g         3.268         29,992.33         3.214         29,992.40         3.241         0.03818           Median pore diameter (volume) at 0.001 mL, µm         0.02195         8,241.41         0.02605         6,943.48         0.024         0.00290           Average pore diameter (4V/A)         µm         0.03712         -         0.04114         -         0.03913         0.002490           Alkeansity at 0.50 psia         g/mL                                                                                                                                                                                                                                                                                                                 | C2-1_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m <sup>2</sup> /g<br>Average pore diameter (4V/A)                                                                                                                                                                                                                                                                                                                                                         | Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>µm                                                                                    | C2-1_<br>Value<br>0.0274<br>2.382<br>0.05717<br>0.03747<br>0.03747                                                                                                                                          | P60-1<br>Pressure(psia)<br>29,992.14<br>29,992.14<br>3,163.53<br>4,826.54<br>-                                                                                                         | C2-1_<br>Value<br>0.0273<br>2.447<br>0.05738<br>0.03717<br>0.04469                                                                                                                                        | P60-2<br>Pressure(psia)<br>29,992.02<br>29,992.02<br>3,152.14<br>4,865.53<br>-                                                                                                              | C2-1<br>Average<br>0.02735<br>2.4145<br>0.057275<br>0.03732<br>0.04532                                                                                                                                                  | _P60<br>STDEV.S<br>0.00007<br>0.04596<br>0.00015<br>0.00021<br>0.00089                                                                                                                                                                   |
| Porosity:%6.5459-6.526-6.536950.01407Stem volume%12-11-11.50.70711C2-1_120日間浸漬C2-1_120日間浸漬Pressure(psia)ValuePressure(psia)AverageSTDEV.STotal intrusion volumemL/g0.030329,992.330.033129,992.400.03170.00198Total pore aream²/g3.26829,992.333.21429,992.403.2410.03818Median pore diameter (volume) at 0.001 mL/µm0.054983,289.750.057753,131.710.0563650.00196Median pore diameter (area) at 0.000 m²/gµm0.021958,241.410.026056,943.480.0240.00290Average pore diameter (4V/A)µm0.03712-0.04114-0.039130.00284Bulk density at 0.50 psiag/mL2.38060.492.37380.502.37720.00414Porosity:%7.2212-7.8491-7.535150.44399Stem volume%14-12-131.41421                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C2-1_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia                                                                                                                                                                                                                                                                                                                                         | Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>g/mL                                                                                  | C2-1_<br>Value<br>0.0274<br>2.382<br>0.05717<br>0.03747<br>0.03747<br>0.04595<br>2.3927                                                                                                                     | P60-1<br>Pressure(psia)<br>29,992.14<br>3,163.53<br>4,826.54<br>-<br>0.50                                                                                                              | C2-1_<br>Value<br>0.0273<br>2.447<br>0.05738<br>0.03717<br>0.04469<br>2.3874                                                                                                                              | P60-2<br>Pressure(psia)<br>29,992.02<br>3,152.14<br>4,865.53<br>-<br>0.50                                                                                                                   | C2-1.<br>Average<br>0.02735<br>2.4145<br>0.057275<br>0.03732<br>0.04532<br>2.39005                                                                                                                                      | _P60<br>STDEV.S<br>0.00007<br>0.04596<br>0.00015<br>0.00021<br>0.00089<br>0.000375                                                                                                                                                       |
| Stem volume         %         12         -         11         -         11.5         0.70711           C2-1_120日間浸漬         C2-1_P120-1         C2-1_P120-2         C2-1_P120-2           Contents         Unit         Value         Pressure(psia)         Value         Pressure(psia)         Average         STDEV.S           Total intrusion volume         mL/g         0.0303         29,992.33         0.0331         29,992.40         0.0317         0.00198           Total pore area         m²/g         3.268         29,992.33         3.214         29,992.40         3.241         0.03518           Median pore diameter (volume) at 0.001 mL/         µm         0.05498         3,289.75         0.05775         3,131.71         0.056365         0.00196           Median pore diameter (area) at 0.000 m²/g         µm         0.02195         8,241.41         0.02605         6,943.48         0.024         0.00290           Average pore diameter (4V/A)         µm         0.03712         -         0.04114         -         0.03913         0.00284           Bulk density at 0.50 psia         g/mL         2.3806         0.49         2.3738         0.50         2.3772         0.00414           Porosity:                                                                                                                                                                                                                                                                                  | C2-1_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density                                                                                                                                                                                                                                                                                                          | Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>g/mL<br>g/mL                                                                          | C2-1_<br>Value<br>0.0274<br>2.382<br>0.05717<br>0.03747<br>0.03747<br>2.3927<br>2.5602                                                                                                                      | P60-1<br>Pressure(psia)<br>29,992.14<br>3,163.53<br>4,826.54<br>-<br>0.50<br>29,992.14                                                                                                 | C2-1_<br>Value<br>0.0273<br>2.447<br>0.05738<br>0.03717<br>0.04469<br>2.3874<br>2.5541                                                                                                                    | P60-2<br>Pressure(psia)<br>29,992.02<br>3,152.14<br>4,865.53<br>-<br>0.50<br>29,992.02                                                                                                      | C2-1.<br>Average<br>0.02735<br>2.4145<br>0.057275<br>0.03732<br>0.04532<br>2.39005<br>2.55715                                                                                                                           | _P60<br>STDEV.S<br>0.00007<br>0.04596<br>0.00015<br>0.00021<br>0.00089<br>0.000375<br>0.00431                                                                                                                                            |
| C2-1_120日間浸漬         C2-1V20-1         C2-1V20-2         C2-1V20-1         C2-1V20-2         C2-1V20-1           Contents         Unit         Value         Pressure(psia)         Value         Pressure(psia)         Average         STDEV.S           Total intrusion volume         mL/g         0.0303         29,992.33         0.0331         29,992.40         0.0317         0.00198           Total pore area         m²/g         3.268         29,992.33         3.214         29,992.40         3.241         0.03818           Median pore diameter (volume) at 0.001 mL/         µm         0.05498         3,289.75         0.05775         3,131.71         0.056365         0.00196           Median pore diameter (area) at 0.000 m²/g         µm         0.02195         8,241.41         0.02605         6,943.48         0.024         0.00290           Average pore diameter (4V/A)         µm         0.03712         -         0.04114         -         0.03913         0.00248           Bulk density at 0.50 psia         g/mL         2.3806         0.49         2.3738         0.50         2.3772         0.00414           Porosity:         g/mL         2.3605         29,992.33         2.576         29,992.40         2.57095         0.04149                                                                                                                                                                                                                                             | C2-1_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:                                                                                                                                                                                                                                                                                             | Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>g/mL<br>g/mL<br>%                                                                     | C2-1_<br>Value<br>0.0274<br>2.382<br>0.05717<br>0.03747<br>0.04595<br>2.3927<br>2.5602<br>6.5459                                                                                                            | P60-1<br>Pressure(psia)<br>29,992.14<br>3,163.53<br>4,826.54<br>-<br>0.50<br>29,992.14<br>-                                                                                            | C2-1_<br>Value<br>0.0273<br>2.447<br>0.05738<br>0.03717<br>0.04469<br>2.3874<br>2.5541<br>6.526                                                                                                           | P60-2<br>Pressure(psia)<br>29,992.02<br>29,992.02<br>3,152.14<br>4,865.53<br>-<br>0.50<br>29,992.02<br>-                                                                                    | C2-1.<br>Average<br>0.02735<br>2.4145<br>0.057275<br>0.03732<br>0.04532<br>2.39005<br>2.55715<br>6.53595                                                                                                                | _P60<br>STDEV.S<br>0.00007<br>0.04596<br>0.00015<br>0.00021<br>0.00089<br>0.00375<br>0.00431<br>0.01407                                                                                                                                  |
| C2-1_120日間浸漬         C2-1_P120-1         C2-1_P120-2         C2-1_P120           Contents         Unit         Value         Pressure(psia)         Value         Pressure(psia)         Average         STDEV.S           Total intrusion volume         mL/g         0.0303         29,992.33         0.0331         29,992.40         0.0317         0.00198           Total pore area         m <sup>2</sup> /g         3.268         29,992.33         3.214         29,992.40         3.241         0.0317         0.00198           Median pore diameter (volume) at 0.001 mL/ $\mu$ m         0.05498         3,289.75         0.05775         3,131.71         0.056365         0.00196           Median pore diameter (area) at 0.000 m <sup>2</sup> /g $\mu$ m         0.02195         8,241.41         0.02605         6,943.48         0.024         0.00290           Average pore diameter (4V/A) $\mu$ m         0.03712         -         0.04114         -         0.03913         0.00244           Bulk density at 0.50 psia         g/mL         2.3806         0.49         2.3738         0.50         2.3772         0.00481           Apparent (skeletal) density         g/mL         2.5659         29,992.33         2.576         29,992.40         2.57095         0.04399                                                                                                                                                                                                                           | C2-1_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume                                                                                                                                                                                                                                                                              | Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>g/mL<br>g/mL<br>%<br>%                                                                | C2-1_<br>Value<br>0.0274<br>2.382<br>0.05717<br>0.03747<br>0.04595<br>2.3927<br>2.5602<br>6.5459<br>12                                                                                                      | P60-1<br>Pressure(psia)<br>29,992.14<br>3,163.53<br>4,826.54<br>-<br>0.50<br>29,992.14<br>-<br>-                                                                                       | C2-1_<br>Value<br>0.0273<br>2.447<br>0.05738<br>0.03717<br>0.04469<br>2.3874<br>2.5541<br>6.526<br>11                                                                                                     | P60-2<br>Pressure(psia)<br>29,992.02<br>3,152.14<br>4,865.53<br>-<br>0.50<br>29,992.02<br>-<br>-<br>-                                                                                       | C2-1.<br>Average<br>0.02735<br>2.4145<br>0.057275<br>0.03732<br>0.04532<br>2.39005<br>2.55715<br>6.53595<br>11.5                                                                                                        | _P60<br>STDEV.S<br>0.00007<br>0.04596<br>0.00015<br>0.00021<br>0.00089<br>0.00375<br>0.00431<br>0.01407<br>0.70711                                                                                                                       |
| Contents         Unit         Value         Pressure(psia)         Value         Pressure(psia)         Average         STDEV.S           Total intrusion volume         mL/g         0.0303         29,992.33         0.0331         29,992.40         0.0317         0.00198           Total pore area         m²/g         3.268         29,992.33         3.214         29,992.40         3.241         0.03818           Median pore diameter (volume) at 0.001 mL/         μm         0.05498         3,289.75         0.05775         3,131.71         0.056365         0.00196           Median pore diameter (area) at 0.000 m²/g         μm         0.02195         8,241.41         0.02605         6,943.48         0.024         0.00290           Average pore diameter (4V/A)         μm         0.03712         -         0.04114         -         0.03913         0.00240           Bulk density at 0.50 psia         g/mL         2.3806         0.49         2.3738         0.50         2.3772         0.00414           Porosity:         g/mL         2.5659         29,992.33         2.576         29,992.40         2.5705         0.04149           Porosity:         %         7.2212         -         7.8491         -         1.3         1.41421                                                                                                                                                                                                                                                   | C2-1_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume                                                                                                                                                                                                                                                                              | Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>g/mL<br>g/mL<br>%<br>%                                                                | C2-1_<br>Value<br>0.0274<br>2.382<br>0.05717<br>0.03747<br>0.04595<br>2.3927<br>2.5602<br>6.5459<br>12                                                                                                      | P60-1<br>Pressure(psia)<br>29,992.14<br>3,163.53<br>4,826.54<br>-<br>0.50<br>29,992.14<br>-<br>-<br>-                                                                                  | C2-1_<br>Value<br>0.0273<br>2.447<br>0.05738<br>0.03717<br>0.04469<br>2.3874<br>2.5541<br>6.526<br>11                                                                                                     | P60-2<br>Pressure(psia)<br>29,992.02<br>3,152.14<br>4,865.53<br>-<br>0.50<br>29,992.02<br>-<br>-<br>-                                                                                       | C2-1.<br>Average<br>0.02735<br>2.4145<br>0.057275<br>0.03732<br>0.04532<br>2.39005<br>2.55715<br>6.53595<br>11.5                                                                                                        | _P60<br>STDEV.S<br>0.00007<br>0.04596<br>0.00015<br>0.00021<br>0.00089<br>0.00375<br>0.00431<br>0.01407<br>0.70711                                                                                                                       |
| Total intrusion volume         mL/g         0.0303         29,992.33         0.0331         29,992.40         0.0317         0.00198           Total pore area         m²/g         3.268         29,992.33         3.214         29,992.40         3.241         0.0318           Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g         μm         0.05498         3,289.75         0.05775         3,131.71         0.056365         0.00196           Average pore diameter (area) at 0.000 m²/g         μm         0.02195         8,241.41         0.02605         6,943.48         0.024         0.00290           Average pore diameter (4V/A)         μm         0.03712         -         0.04114         -         0.03913         0.00284           Bulk density at 0.50 psia         g/mL         2.3806         0.49         2.3738         0.50         2.3772         0.00414           Apparent (skeletal) density         g/mL         2.5659         29,992.33         2.576         29,992.40         2.5705         0.0414           Porosity:         %         7.2212         -         7.8491         -         7.53515         0.44399           Stem volume         %         14         -         12         -         13                                                                                                                                                                                                                                      | C2-1_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>C2-1_120日間浸漬                                                                                                                                                                                                                                                              | Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>g/mL<br>g/mL<br>%                                                                     | C2-1_<br>Value<br>0.0274<br>2.382<br>0.05717<br>0.03747<br>0.04595<br>2.3927<br>2.5602<br>6.5459<br>12<br>C2-1_                                                                                             | P60-1<br>Pressure(psia)<br>29,992.14<br>3,163.53<br>4,826.54<br>-<br>0.50<br>29,992.14<br>-<br>-<br>P120-1                                                                             | C2-1_<br>Value<br>0.0273<br>2.447<br>0.05738<br>0.03717<br>0.04469<br>2.3874<br>2.5541<br>6.526<br>11<br>C2-1_                                                                                            | P60-2<br>Pressure(psia)<br>29,992.02<br>3,152.14<br>4,865.53<br>-<br>0.50<br>29,992.02<br>-<br>-<br>P120-2                                                                                  | C2-1.<br>Average<br>0.02735<br>2.4145<br>0.057275<br>0.03732<br>0.04532<br>2.39005<br>2.55715<br>6.53595<br>11.5<br>C2-1_                                                                                               | _P60<br>STDEV.S<br>0.00007<br>0.04596<br>0.00015<br>0.00021<br>0.00089<br>0.00375<br>0.00431<br>0.01407<br>0.70711                                                                                                                       |
| Total pore area         m²/g         3.268         29,992.33         3.214         29,992.40         3.241         0.03818           Median pore diameter (volume) at 0.001 mL/         μm         0.05498         3,289.75         0.05775         3,131.71         0.056365         0.00196           Median pore diameter (area) at 0.000 m²/g         μm         0.02195         8,241.41         0.02605         6,943.48         0.024         0.00290           Average pore diameter (4V/A)         μm         0.03712         -         0.04114         -         0.03913         0.00284           Bulk density at 0.50 psia         g/mL         2.3806         0.49         2.3738         0.50         2.3772         0.00414           Apparent (skeletal) density         g/mL         2.5659         29,992.33         2.576         29,992.40         2.5705         0.0414           Porosity:         %         7.2212         -         7.8491         -         7.53515         0.44399           Stem volume         %         14         -         12         -         13         1.41421                                                                                                                                                                                                                                                                                                                                                                                                                  | C2-1_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>C2-1_120日間浸漬<br>Contents                                                                                                                                                                                                                                                  | Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>g/mL<br>g/mL<br>g/mL<br>%<br>%                                                        | C2-1_<br>Value<br>0.0274<br>2.382<br>0.05717<br>0.03747<br>0.04595<br>2.3927<br>2.5602<br>6.5459<br>12<br>C2-1_1<br>Value                                                                                   | P60-1<br>Pressure(psia)<br>29,992.14<br>29,992.14<br>3,163.53<br>4,826.54<br>-<br>0.50<br>29,992.14<br>-<br>P120-1<br>Pressure(psia)                                                   | C2-1_<br>Value<br>0.0273<br>2.447<br>0.05738<br>0.03717<br>0.04469<br>2.3874<br>2.5541<br>6.526<br>11<br>C2-1_l<br>Value                                                                                  | P60-2<br>Pressure(psia)<br>29,992.02<br>3,152.14<br>4,865.53<br>-<br>0.50<br>29,992.02<br>-<br>-<br>P120-2<br>Pressure(psia)                                                                | C2-1.<br>Average<br>0.02735<br>2.4145<br>0.057275<br>0.03732<br>0.04532<br>2.39005<br>2.55715<br>6.53595<br>11.5<br>C2-1_<br>Average                                                                                    | _P60<br>STDEV.S<br>0.00007<br>0.04596<br>0.00015<br>0.00021<br>0.00089<br>0.00375<br>0.00431<br>0.01407<br>0.70711<br>P120<br>STDEV.S                                                                                                    |
| Median pore diameter (volume) at 0.001 mL/         μm         0.05498         3,289.75         0.05775         3,131.71         0.056365         0.00196           Median pore diameter (area) at 0.000 m²/g         μm         0.02195         8,241.41         0.02605         6,943.48         0.024         0.00290           Average pore diameter (4V/A)         μm         0.03712         -         0.04114         -         0.03913         0.00284           Bulk density at 0.50 psia         g/mL         2.3806         0.49         2.3738         0.50         2.3772         0.00414           Apparent (skeletal) density         g/mL         2.5659         29,992.33         2.576         29,992.40         2.57095         0.04139           Porosity:         %         7.2212         -         7.8491         -         7.53515         0.44399           Stem volume         %         14         -         12         -         13         1.41421                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C2-1_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>C2-1_120日間浸漬<br>Contents<br>Total intrusion volume                                                                                                                                                                                                                        | Unit<br>mL/g<br>μm<br>μm<br>g/mL<br>g/mL<br>g/mL<br>%<br>%<br>Unit<br>mL/g                                                | C2-1_<br>Value<br>0.0274<br>2.382<br>0.05717<br>0.03747<br>0.04595<br>2.3927<br>2.5602<br>6.5459<br>12<br>C2-1_1<br>Value<br>0.0303                                                                         | P60-1<br>Pressure(psia)<br>29,992.14<br>3,163.53<br>4,826.54<br>-<br>0.50<br>29,992.14<br>-<br>P120-1<br>Pressure(psia)<br>29,992.33                                                   | C2-1_<br>Value<br>0.0273<br>2.447<br>0.05738<br>0.03717<br>0.04469<br>2.3874<br>2.5541<br>6.526<br>11<br>C2-1_<br>Value<br>0.0331                                                                         | P60-2<br>Pressure(psia)<br>29,992.02<br>29,992.02<br>3,152.14<br>4,865.53<br>-<br>0.50<br>29,992.02<br>-<br>-<br>P120-2<br>Pressure(psia)<br>29,992.40                                      | C2-1.<br>Average<br>0.02735<br>2.4145<br>0.057275<br>0.03732<br>0.04532<br>2.39005<br>2.55715<br>6.53595<br>11.5<br>C2-1_<br>Average<br>0.0317                                                                          | _P60<br>STDEV.S<br>0.00007<br>0.04596<br>0.00015<br>0.00021<br>0.00089<br>0.00375<br>0.00431<br>0.01407<br>0.70711<br>P120<br>STDEV.S<br>0.00198                                                                                         |
| Median pore diameter (area) at 0.000 m²/g         μm         0.02195         8,241.41         0.02605         6,943.48         0.024         0.00200           Average pore diameter (4V/A)         μm         0.03712         -         0.04114         -         0.03913         0.00284           Bulk density at 0.50 psia         g/mL         2.3806         0.49         2.3738         0.50         2.3772         0.00481           Apparent (skeletal) density         g/mL         2.5659         29,992.33         2.576         29,992.40         2.5709         0.00414           Porosity:         %         7.2212         -         7.8491         -         7.53515         0.44399           Stem volume         %         14         -         12         -         13         1.41421                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C2-1_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>C2-1_120日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area                                                                                                                                                                                                     | Unit<br>mL/g<br>μm<br>μm<br>g/mL<br>g/mL<br>%<br>%<br>%<br>Unit<br>mL/g<br>m²/g                                           | C2-1_<br>Value<br>0.0274<br>2.382<br>0.05717<br>0.03747<br>0.04595<br>2.3927<br>2.5602<br>6.5459<br>12<br>C2-1_1<br>Value<br>0.0303<br>3.268                                                                | P60-1<br>Pressure(psia)<br>29,992.14<br>3,163.53<br>4,826.54<br>-<br>0.50<br>29,992.14<br>-<br>P120-1<br>Pressure(psia)<br>29,992.33<br>29,992.33                                      | C2-1_<br>Value<br>0.0273<br>2.447<br>0.05738<br>0.03717<br>0.04469<br>2.3874<br>2.5541<br>6.526<br>11<br>C2-1_1<br>Value<br>0.0331<br>3.214                                                               | P60-2<br>Pressure(psia)<br>29,992.02<br>29,992.02<br>3,152.14<br>4,865.53<br>-<br>0.50<br>29,992.02<br>-<br>-<br>P120-2<br>Pressure(psia)<br>29,992.40<br>29,992.40                         | C2-1.<br>Average<br>0.02735<br>2.4145<br>0.057275<br>0.03732<br>0.04532<br>2.39005<br>2.55715<br>6.53595<br>11.5<br>C2-1_<br>Average<br>0.0317<br>3.241                                                                 | _P60<br>STDEV.S<br>0.00007<br>0.04596<br>0.00015<br>0.00021<br>0.00089<br>0.00375<br>0.00431<br>0.01407<br>0.70711<br>P120<br>STDEV.S<br>0.00198<br>0.03818                                                                              |
| Average pore diameter (4V/A)         μm         0.03712         -         0.04114         -         0.03913         0.00284           Bulk density at 0.50 psia         g/mL         2.3806         0.49         2.3738         0.50         2.3772         0.00481           Apparent (skeletal) density         g/mL         2.5659         29,992.33         2.576         29,992.40         2.5709         0.00714           Porosity:         %         7.2212         -         7.8491         -         7.53515         0.44399           Stem volume         %         14         -         12         -         13         1.41421                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C2-1_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>C2-1_120日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/                                                                                                                                                       | Unit<br>mL/g<br>m²/g<br>µm<br>g/mL<br>g/mL<br>g/mL<br>%<br>%<br>%<br>Unit<br>mL/g<br>m²/g<br>µm                           | C2-1_<br>Value<br>0.0274<br>2.382<br>0.05717<br>0.03747<br>0.04595<br>2.3927<br>2.5602<br>6.5459<br>12<br>C2-1_1<br>Value<br>0.0303<br>3.268<br>0.05498                                                     | P60-1<br>Pressure(psia)<br>29,992.14<br>3,163.53<br>4,826.54<br>-<br>0.50<br>29,992.14<br>-<br>P120-1<br>Pressure(psia)<br>29,992.33<br>29,992.33<br>3,289.75                          | C2-1_<br>Value<br>0.0273<br>2.447<br>0.05738<br>0.03717<br>0.04469<br>2.3874<br>2.5541<br>6.526<br>111<br>C2-1_1<br>Value<br>0.0331<br>3.214<br>0.05775                                                   | P60-2<br>Pressure(psia)<br>29,992.02<br>29,992.02<br>3,152.14<br>4,865.53<br>-<br>0.50<br>29,992.02<br>-<br>P120-2<br>Pressure(psia)<br>29,992.40<br>29,992.40<br>3,131.71                  | C2-1.<br>Average<br>0.02735<br>2.4145<br>0.057275<br>0.03732<br>0.04532<br>2.39005<br>2.55715<br>6.53595<br>11.5<br>C2-1_<br>Average<br>0.0317<br>3.241<br>0.056365                                                     | P60<br>STDEV.S<br>0.00007<br>0.04596<br>0.00015<br>0.00021<br>0.00089<br>0.00375<br>0.00431<br>0.01407<br>0.70711<br>P120<br>STDEV.S<br>0.00198<br>0.03818<br>0.00196                                                                    |
| Bulk density at 0.50 psia         g/mL         2.3806         0.49         2.3738         0.50         2.3772         0.00481           Apparent (skeletal) density         g/mL         2.5659         29,992.33         2.576         29,992.40         2.5709         0.00714           Porosity:         %         7.2212         -         7.8491         -         7.53515         0.44399           Stem volume         %         14         -         12         -         13         1.41421                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C2-1_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>C2-1_120日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g                                                                                                          | Unit<br>mL/g<br>m²/g<br>µm<br>g/mL<br>g/mL<br>g/mL<br>g/mL<br>%<br>%<br>%<br>Unit<br>mL/g<br>m²/g<br>µm<br>µm             | C2-1_<br>Value<br>0.0274<br>2.382<br>0.05717<br>0.03747<br>0.04595<br>2.3927<br>2.5602<br>6.5459<br>12<br>C2-1_l<br>Value<br>0.0303<br>3.268<br>0.05498<br>0.02195                                          | P60-1<br>Pressure(psia)<br>29,992.14<br>3,163.53<br>4,826.54<br>-<br>0.50<br>29,992.14<br>-<br>P120-1<br>Pressure(psia)<br>29,992.33<br>29,992.33<br>3,289.75<br>8,241.41              | C2-1_<br>Value<br>0.0273<br>2.447<br>0.05738<br>0.03717<br>0.04469<br>2.3874<br>2.5541<br>6.526<br>111<br>C2-1_1<br>Value<br>0.0331<br>3.214<br>0.05775<br>0.02605                                        | P60-2<br>Pressure(psia)<br>29,992.02<br>29,992.02<br>3,152.14<br>4,865.53<br>-<br>0.50<br>29,992.02<br>-<br>P120-2<br>Pressure(psia)<br>29,992.40<br>3,131.71<br>6,943.48                   | C2-1.<br>Average<br>0.02735<br>2.4145<br>0.057275<br>0.03732<br>0.04532<br>2.39005<br>2.55715<br>6.53595<br>11.5<br>C2-1_<br>Average<br>0.0317<br>3.241<br>0.056365<br>0.024                                            | _P60<br>STDEV.S<br>0.00007<br>0.04596<br>0.00015<br>0.00021<br>0.00089<br>0.00375<br>0.00431<br>0.01407<br>0.70711<br>P120<br>STDEV.S<br>0.00198<br>0.03818<br>0.00196<br>0.00290                                                        |
| Apparent (skeletal) density         g/mL         2.5659         29,992.33         2.576         29,992.40         2.57095         0.00714           Porosity:         %         7.2212         -         7.8491         -         7.53515         0.44399           Stem volume         %         14         -         12         -         13         1.41421                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C2-1_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>C2-1_120日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)                                                                          | Unit<br>mL/g<br>m²/g<br>µm<br>g/mL<br>g/mL<br>g/mL<br>g/mL<br>%<br>%<br>Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>µm            | C2-1_<br>Value<br>0.0274<br>2.382<br>0.05717<br>0.03747<br>0.04595<br>2.3927<br>2.5602<br>6.5459<br>12<br>C2-1_l<br>Value<br>0.0303<br>3.268<br>0.05498<br>0.02195<br>0.03712                               | P60-1<br>Pressure(psia)<br>29,992.14<br>3,163.53<br>4,826.54<br>-<br>0.50<br>29,992.14<br>-<br>P120-1<br>Pressure(psia)<br>29,992.33<br>29,992.33<br>3,289.75<br>8,241.41<br>-         | C2-1_<br>Value<br>0.0273<br>2.447<br>0.05738<br>0.03717<br>0.04469<br>2.3874<br>2.5541<br>6.526<br>111<br>C2-1_<br>Value<br>0.0331<br>3.214<br>0.05775<br>0.02605<br>0.04114                              | P60-2<br>Pressure(psia)<br>29,992.02<br>3,152.14<br>4,865.53<br>-<br>0.50<br>29,992.02<br>-<br>P120-2<br>Pressure(psia)<br>29,992.40<br>3,131.71<br>6,943.48<br>-                           | C2-1.<br>Average<br>0.02735<br>2.4145<br>0.057275<br>0.03732<br>0.04532<br>2.39005<br>2.55715<br>6.53595<br>11.5<br>C2-1_<br>Average<br>0.0317<br>3.241<br>0.056365<br>0.024<br>0.03913                                 | _P60<br>STDEV.S<br>0.00007<br>0.04596<br>0.00015<br>0.00021<br>0.00089<br>0.00375<br>0.00431<br>0.01407<br>0.70711<br>P120<br>STDEV.S<br>0.00198<br>0.03818<br>0.00196<br>0.00290<br>0.00284                                             |
| Porosity:         %         7.2212         -         7.8491         -         7.53515         0.44399           Stem volume         %         14         -         12         -         13         1.41421                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C2-1_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>C2-1_120日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia                                             | Unit<br>mL/g<br>m²/g<br>µm<br>g/mL<br>g/mL<br>g/mL<br>%<br>%<br>%<br>Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>µm<br>g/mL       | C2-1_<br>Value<br>0.0274<br>2.382<br>0.05717<br>0.03747<br>0.04595<br>2.3927<br>2.5602<br>6.5459<br>12<br>C2-1_<br>Value<br>0.0303<br>3.268<br>0.05498<br>0.02195<br>0.03712<br>2.3806                      | P60-1<br>Pressure(psia)<br>29,992.14<br>3,163.53<br>4,826.54<br>-<br>0.50<br>29,992.14<br>-<br>P120-1<br>Pressure(psia)<br>29,992.33<br>29,992.33<br>3,289.75<br>8,241.41<br>-<br>0.49 | C2-1_<br>Value<br>0.0273<br>2.447<br>0.05738<br>0.03717<br>0.04469<br>2.3874<br>2.5541<br>6.526<br>11<br>C2-1_<br>Value<br>0.0331<br>3.214<br>0.05775<br>0.02605<br>0.04114<br>2.3738                     | P60-2<br>Pressure(psia)<br>29,992.02<br>3,152.14<br>4,865.53<br>-<br>0.50<br>29,992.02<br>-<br>-<br>P120-2<br>Pressure(psia)<br>29,992.40<br>29,992.40<br>3,131.71<br>6,943.48<br>-<br>0.50 | C2-1.<br>Average<br>0.02735<br>2.4145<br>0.057275<br>0.03732<br>0.04532<br>2.39005<br>2.55715<br>6.53595<br>11.5<br>C2-1_<br>Average<br>0.0317<br>3.241<br>0.056365<br>0.024<br>0.03913<br>2.3772                       | _P60<br>STDEV.S<br>0.00007<br>0.04596<br>0.00015<br>0.00021<br>0.00089<br>0.00375<br>0.00431<br>0.01407<br>0.70711<br>P120<br>STDEV.S<br>0.00198<br>0.03818<br>0.00196<br>0.00290<br>0.00284<br>0.00481                                  |
| Stem volume % 14 - 12 - 13 1.41421                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C2-1_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>C2-1_120日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density              | Unit<br>mL/g<br>m²/g<br>µm<br>g/mL<br>g/mL<br>g/mL<br>%<br>%<br>Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>µm<br>g/mL<br>g/mL    | C2-1_<br>Value<br>0.0274<br>2.382<br>0.05717<br>0.03747<br>0.04595<br>2.3927<br>2.5602<br>6.5459<br>12<br>C2-1_1<br>Value<br>0.0303<br>3.268<br>0.05498<br>0.02195<br>0.03712<br>2.3806<br>2.5659           | P60-1<br>Pressure(psia)<br>29,992.14<br>3,163.53<br>4,826.54<br>-<br>0.50<br>29,992.14<br>-<br>P120-1<br>Pressure(psia)<br>29,992.33<br>3,289.75<br>8,241.41<br>-<br>0.49<br>29,992.33 | C2-1_<br>Value<br>0.0273<br>2.447<br>0.05738<br>0.03717<br>0.04469<br>2.3874<br>2.5541<br>6.526<br>11<br>C2-1_<br>Value<br>0.0331<br>3.214<br>0.05775<br>0.02605<br>0.04114<br>2.3738<br>2.576            | P60-2 Pressure(psia) 29,992.02 3,152.14 4,865.53 - 0.50 29,992.02 - Pressure(psia) 29,992.40 29,992.40 3,131.71 6,943.48 - 0.50 29,992.40                                                   | C2-1.<br>Average<br>0.02735<br>2.4145<br>0.057275<br>0.03732<br>0.04532<br>2.39005<br>2.55715<br>6.53595<br>11.5<br>C2-1_<br>Average<br>0.0317<br>3.241<br>0.056365<br>0.024<br>0.03913<br>2.3772<br>2.57095            | _P60<br>STDEV.S<br>0.00007<br>0.04596<br>0.00015<br>0.00021<br>0.00089<br>0.00375<br>0.00431<br>0.01407<br>0.70711<br>P120<br>STDEV.S<br>0.00198<br>0.03818<br>0.00196<br>0.00290<br>0.00284<br>0.00481<br>0.00714                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C2-1_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>C2-1_120日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity: | Unit<br>mL/g<br>m²/g<br>µm<br>g/mL<br>g/mL<br>g/mL<br>%<br>Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>µm<br>g/mL<br>g/mL<br>g/mL | C2-1_<br>Value<br>0.0274<br>2.382<br>0.05717<br>0.03747<br>0.04595<br>2.3927<br>2.5602<br>6.5459<br>12<br>C2-1_0<br>Value<br>0.0303<br>3.268<br>0.05498<br>0.02195<br>0.03712<br>2.3806<br>2.5659<br>7.2212 | P60-1  Pressure(psia) 29,992.14 29,992.14 3,163.53 4,826.54 - 0,50 29,992.14 - 1 Pressure(psia) 29,992.33 29,992.33 3,289.75 8,241.41 - 0,49 29,992.33                                 | C2-1_<br>Value<br>0.0273<br>2.447<br>0.05738<br>0.03717<br>0.04469<br>2.3874<br>2.5541<br>6.526<br>11<br>C2-1_1<br>Value<br>0.0331<br>3.214<br>0.05775<br>0.02605<br>0.04114<br>2.3738<br>2.576<br>7.8491 | P60-2 Pressure(psia) 29,992.02 3,152.14 4,865.53 - 0.50 29,992.02 - Pressure(psia) 29,992.40 29,992.40 3,131.71 6,943.48 - 0.50 29,992.40                                                   | C2-1.<br>Average<br>0.02735<br>2.4145<br>0.057275<br>0.03732<br>0.04532<br>2.39005<br>2.55715<br>6.53595<br>11.5<br>C2-1_<br>Average<br>0.0317<br>3.241<br>0.056365<br>0.024<br>0.03913<br>2.3772<br>2.57095<br>7.53515 | _P60<br>STDEV.S<br>0.00007<br>0.04596<br>0.00015<br>0.00021<br>0.00089<br>0.00375<br>0.00431<br>0.01407<br>0.70711<br>P120<br>STDEV.S<br>0.00198<br>0.03818<br>0.00196<br>0.00290<br>0.00284<br>0.00284<br>0.00714<br>0.00714<br>0.00714 |

#### 表 1.9-4 C 2-1 のポロシメータ測定結果



図 1.9-3 C 2-1 の間隙径分布 (a)・(b) 未浸漬、 (c)・(d) 30 日浸漬、 (e)・(f) 60 日浸漬、 (g)・(h) 120 日浸漬

| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                  |                                                                                                                                                                                                          | • • •                                                                                                                                                                                                                                |                                                                                                                                                                                                           |                                                                                                                                                                                                                         |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D2-2_浸漬前                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                  | D2-2                                                                                                                                                                                                     | _Pb-1                                                                                                                                                                                                                                | D2-2_                                                                                                                                                                                                     | _Pb-2                                                                                                                                                                                                                   | D2-2                                                                                                                                                                                                                     | 2_Pb                                                                                                                                                                                                                                                   |
| Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Unit                                                                                                                             | Value                                                                                                                                                                                                    | Pressure(psia)                                                                                                                                                                                                                       | Value                                                                                                                                                                                                     | Pressure(psia)                                                                                                                                                                                                          | Average                                                                                                                                                                                                                  | STDEV.S                                                                                                                                                                                                                                                |
| Total intrusion volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mL/g                                                                                                                             | 0.0028                                                                                                                                                                                                   | 29,992.16                                                                                                                                                                                                                            | 0.0047                                                                                                                                                                                                    | 29,992.56                                                                                                                                                                                                               | 0.00375                                                                                                                                                                                                                  | 0.00134                                                                                                                                                                                                                                                |
| Total pore area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | m²/g                                                                                                                             | 0                                                                                                                                                                                                        | 29,992.16                                                                                                                                                                                                                            | 0.003                                                                                                                                                                                                     | 29,992.56                                                                                                                                                                                                               | 0.0015                                                                                                                                                                                                                   | 0.00212                                                                                                                                                                                                                                                |
| Median pore diameter (volume) at 0.001 mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | μm                                                                                                                               | 92.20915                                                                                                                                                                                                 | 1.96                                                                                                                                                                                                                                 | 58.36512                                                                                                                                                                                                  | 3.1                                                                                                                                                                                                                     | 75.287135                                                                                                                                                                                                                | 23.93134                                                                                                                                                                                                                                               |
| Median pore diameter (area) at 0.000 m²/g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | μm                                                                                                                               | 32.89188                                                                                                                                                                                                 | 5.50                                                                                                                                                                                                                                 | 0.79014                                                                                                                                                                                                   | 228.90                                                                                                                                                                                                                  | 16.84101                                                                                                                                                                                                                 | 22.69936                                                                                                                                                                                                                                               |
| Average pore diameter (4V/A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | μm                                                                                                                               | 0                                                                                                                                                                                                        | -                                                                                                                                                                                                                                    | 5.68292                                                                                                                                                                                                   | -                                                                                                                                                                                                                       | 2.84146                                                                                                                                                                                                                  | 4.0184313                                                                                                                                                                                                                                              |
| Bulk density at 0.50 psia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | g/mL                                                                                                                             | 2.6602                                                                                                                                                                                                   | 0.50                                                                                                                                                                                                                                 | 2.6372                                                                                                                                                                                                    | 0.50                                                                                                                                                                                                                    | 2.6487                                                                                                                                                                                                                   | 0.01626                                                                                                                                                                                                                                                |
| Apparent (skeletal) density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | g/mL                                                                                                                             | 2.6805                                                                                                                                                                                                   | 29,992.16                                                                                                                                                                                                                            | 2.6701                                                                                                                                                                                                    | 29,992.56                                                                                                                                                                                                               | 2.6753                                                                                                                                                                                                                   | 0.00735                                                                                                                                                                                                                                                |
| Porosity:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | %                                                                                                                                | 0.7576                                                                                                                                                                                                   | -                                                                                                                                                                                                                                    | 1.2321                                                                                                                                                                                                    | -                                                                                                                                                                                                                       | 0.99485                                                                                                                                                                                                                  | 0.33552                                                                                                                                                                                                                                                |
| Stem volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | %                                                                                                                                | 1                                                                                                                                                                                                        | -                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                         | -                                                                                                                                                                                                                       | 1.5                                                                                                                                                                                                                      | 0.7071068                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                  |                                                                                                                                                                                                          |                                                                                                                                                                                                                                      |                                                                                                                                                                                                           |                                                                                                                                                                                                                         |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                        |
| D2-2_30日間浸漬                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                  | D2-2_                                                                                                                                                                                                    | P30-1                                                                                                                                                                                                                                | D2-2_                                                                                                                                                                                                     | P30-2                                                                                                                                                                                                                   | D2-2                                                                                                                                                                                                                     | _P30                                                                                                                                                                                                                                                   |
| Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Unit                                                                                                                             | Value                                                                                                                                                                                                    | Pressure(psia)                                                                                                                                                                                                                       | Value                                                                                                                                                                                                     | Pressure(psia)                                                                                                                                                                                                          | Average                                                                                                                                                                                                                  | STDEV.S                                                                                                                                                                                                                                                |
| Total intrusion volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mL/g                                                                                                                             | 0.0048                                                                                                                                                                                                   | 29,992.42                                                                                                                                                                                                                            | 0.0039                                                                                                                                                                                                    | 29,992.20                                                                                                                                                                                                               | 0.00435                                                                                                                                                                                                                  | 0.00064                                                                                                                                                                                                                                                |
| Total pore area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | m²/g                                                                                                                             | 0.38                                                                                                                                                                                                     | 29,992.42                                                                                                                                                                                                                            | 0.308                                                                                                                                                                                                     | 29,992.20                                                                                                                                                                                                               | 0.344                                                                                                                                                                                                                    | 0.05091                                                                                                                                                                                                                                                |
| Median pore diameter (volume) at 0.001 mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | μm                                                                                                                               | 0.17201                                                                                                                                                                                                  | 1,051.44                                                                                                                                                                                                                             | 0.06151                                                                                                                                                                                                   | 2,940.36                                                                                                                                                                                                                | 0.11676                                                                                                                                                                                                                  | 0.07814                                                                                                                                                                                                                                                |
| Median pore diameter (area) at 0.000 m²/g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | μm                                                                                                                               | 0.0166                                                                                                                                                                                                   | 10,895.00                                                                                                                                                                                                                            | 0.03264                                                                                                                                                                                                   | 5,540.36                                                                                                                                                                                                                | 0.02462                                                                                                                                                                                                                  | 0.01134                                                                                                                                                                                                                                                |
| Average pore diameter (4V/A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | μm                                                                                                                               | 0.05038                                                                                                                                                                                                  | -                                                                                                                                                                                                                                    | 0.05092                                                                                                                                                                                                   | -                                                                                                                                                                                                                       | 0.05065                                                                                                                                                                                                                  | 0.00038                                                                                                                                                                                                                                                |
| Bulk density at 0.50 psia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | g/mL                                                                                                                             | 2.5556                                                                                                                                                                                                   | 0.49                                                                                                                                                                                                                                 | 2.552                                                                                                                                                                                                     | 0.49                                                                                                                                                                                                                    | 2.5538                                                                                                                                                                                                                   | 0.00255                                                                                                                                                                                                                                                |
| Apparent (skeletal) density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | g/mL                                                                                                                             | 2.5873                                                                                                                                                                                                   | 29,992.42                                                                                                                                                                                                                            | 2.5779                                                                                                                                                                                                    | 29,992.20                                                                                                                                                                                                               | 2.5826                                                                                                                                                                                                                   | 0.00665                                                                                                                                                                                                                                                |
| Porosity:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | %                                                                                                                                | 1.2233                                                                                                                                                                                                   | -                                                                                                                                                                                                                                    | 1.0022                                                                                                                                                                                                    | -                                                                                                                                                                                                                       | 1.11275                                                                                                                                                                                                                  | 0.15634                                                                                                                                                                                                                                                |
| Stem volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | %                                                                                                                                | 2                                                                                                                                                                                                        | -                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                         | -                                                                                                                                                                                                                       | 2                                                                                                                                                                                                                        | 0.00000                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                  |                                                                                                                                                                                                          |                                                                                                                                                                                                                                      |                                                                                                                                                                                                           |                                                                                                                                                                                                                         |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                  |                                                                                                                                                                                                          |                                                                                                                                                                                                                                      |                                                                                                                                                                                                           |                                                                                                                                                                                                                         |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                        |
| D2-2_60日間浸漬                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                  | D2-2_                                                                                                                                                                                                    | P60-1                                                                                                                                                                                                                                | D2-2_                                                                                                                                                                                                     | P60-2                                                                                                                                                                                                                   | D2-2                                                                                                                                                                                                                     | _P60                                                                                                                                                                                                                                                   |
| D2-2_60日間浸漬<br>Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Unit                                                                                                                             | D2-2_<br>Value                                                                                                                                                                                           | P60-1<br>Pressure(psia)                                                                                                                                                                                                              | D2-2_<br>Value                                                                                                                                                                                            | P60-2<br>Pressure(psia)                                                                                                                                                                                                 | D2-2<br>Average                                                                                                                                                                                                          | _P60<br>STDEV.S                                                                                                                                                                                                                                        |
| D2-2_60日間浸漬<br>Contents<br>Total intrusion volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Unit<br>mL/g                                                                                                                     | D2-2_<br>Value<br>0.007                                                                                                                                                                                  | P60-1<br>Pressure(psia)<br>29,992.10                                                                                                                                                                                                 | D2-2_<br>Value<br>0.0116                                                                                                                                                                                  | P60-2<br>Pressure(psia)<br>29,991.91                                                                                                                                                                                    | D2-2<br>Average<br>0.0093                                                                                                                                                                                                | _P60<br>STDEV.S<br>0.00325                                                                                                                                                                                                                             |
| D2-2_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unit<br>mL/g<br>m²/g                                                                                                             | D2-2_<br>Value<br>0.007<br>1.11                                                                                                                                                                          | P60-1<br>Pressure(psia)<br>29,992.10<br>29,992.10                                                                                                                                                                                    | D2-2_<br>Value<br>0.0116<br>2.504                                                                                                                                                                         | P60-2<br>Pressure(psia)<br>29,991.91<br>29,991.91                                                                                                                                                                       | D2-2<br>Average<br>0.0093<br>1.807                                                                                                                                                                                       | P60<br>STDEV.S<br>0.00325<br>0.98571                                                                                                                                                                                                                   |
| D2-2_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Unit<br>mL/g<br>m²/g<br>µm                                                                                                       | D2-2_<br>Value<br>0.007<br>1.11<br>0.03812                                                                                                                                                               | P60-1<br>Pressure(psia)<br>29,992.10<br>29,992.10<br>4,744.92                                                                                                                                                                        | D2-2_<br>Value<br>0.0116<br>2.504<br>0.02374                                                                                                                                                              | P60-2<br>Pressure(psia)<br>29,991.91<br>29,991.91<br>7,619.16                                                                                                                                                           | D2-2<br>Average<br>0.0093<br>1.807<br>0.03093                                                                                                                                                                            | P60<br>STDEV.S<br>0.00325<br>0.98571<br>0.01017                                                                                                                                                                                                        |
| D2-2_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m <sup>2</sup> /g                                                                                                                                                                                                                                                                                                                                                                                                        | Unit<br>mL/g<br>m²/g<br>μm<br>μm                                                                                                 | D2-2_<br>Value<br>0.007<br>1.11<br>0.03812<br>0.012                                                                                                                                                      | P60-1<br>Pressure(psia)<br>29,992.10<br>29,992.10<br>4,744.92<br>15,077.61                                                                                                                                                           | D2-2_<br>Value<br>0.0116<br>2.504<br>0.02374<br>0.00994                                                                                                                                                   | P60-2<br>Pressure(psia)<br>29,991.91<br>7,619.16<br>18,203.96                                                                                                                                                           | D2-2<br>Average<br>0.0093<br>1.807<br>0.03093<br>0.01097                                                                                                                                                                 | P60<br>STDEV.S<br>0.00325<br>0.98571<br>0.01017<br>0.00146                                                                                                                                                                                             |
| D2-2_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)                                                                                                                                                                                                                                                                                                                                                                                     | Unit<br>mL/g<br>m²/g<br>μm<br>μm                                                                                                 | D2-2_<br>Value<br>0.007<br>1.11<br>0.03812<br>0.012<br>0.02507                                                                                                                                           | P60-1<br>Pressure(psia)<br>29,992.10<br>29,992.10<br>4,744.92<br>15,077.61                                                                                                                                                           | D2-2_<br>Value<br>0.0116<br>2.504<br>0.02374<br>0.00994<br>0.01852                                                                                                                                        | P60-2<br>Pressure(psia)<br>29,991.91<br>29,991.91<br>7,619.16<br>18,203.96                                                                                                                                              | D2-2<br>Average<br>0.0093<br>1.807<br>0.03093<br>0.01097<br>0.021795                                                                                                                                                     | _P60<br>STDEV.S<br>0.00325<br>0.98571<br>0.01017<br>0.00146<br>0.00463                                                                                                                                                                                 |
| D2-2_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia                                                                                                                                                                                                                                                                                                                                                        | Unit<br>mL/g<br>m²/g<br>μm<br>μm<br>μm<br>g/mL                                                                                   | D2-2_<br>Value<br>0.007<br>1.11<br>0.03812<br>0.012<br>0.02507<br>2.5144                                                                                                                                 | P60-1<br>Pressure(psia)<br>29,992.10<br>29,992.10<br>4,744.92<br>15,077.61<br>-<br>0.50                                                                                                                                              | D2-2_<br>Value<br>0.0116<br>2.504<br>0.02374<br>0.00994<br>0.01852<br>2.4951                                                                                                                              | P60-2<br>Pressure(psia)<br>29,991.91<br>29,991.91<br>7,619.16<br>18,203.96<br>-<br>0.50                                                                                                                                 | D2-2<br>Average<br>0.0093<br>1.807<br>0.03093<br>0.01097<br>0.021795<br>2.50475                                                                                                                                          | P60<br>STDEV.S<br>0.00325<br>0.98571<br>0.01017<br>0.00146<br>0.00463<br>0.01365                                                                                                                                                                       |
| D2-2_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density                                                                                                                                                                                                                                                                                                                         | Unit<br>mL/g<br>m²/g<br>μm<br>μm<br>μm<br>g/mL<br>g/mL                                                                           | D2-2_<br>Value<br>0.007<br>1.11<br>0.03812<br>0.012<br>0.02507<br>2.5144<br>2.5592                                                                                                                       | P60-1<br>Pressure(psia)<br>29,992.10<br>29,992.10<br>4,744.92<br>15,077.61<br>-<br>0.50<br>29,992.10                                                                                                                                 | D2-2_<br>Value<br>0.0116<br>2.504<br>0.02374<br>0.00994<br>0.01852<br>2.4951<br>2.5695                                                                                                                    | P60-2<br>Pressure(psia)<br>29,991.91<br>29,991.91<br>7,619.16<br>18,203.96<br>-<br>0.50<br>29,991.91                                                                                                                    | D2-2<br>Average<br>0.0093<br>1.807<br>0.03093<br>0.01097<br>0.021795<br>2.50475<br>2.56435                                                                                                                               | P60<br>STDEV.S<br>0.00325<br>0.98571<br>0.01017<br>0.00146<br>0.00463<br>0.01365<br>0.00728                                                                                                                                                            |
| D2-2_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:                                                                                                                                                                                                                                                                                                            | Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>g/mL<br>g/mL<br>%                                                                            | D2-2_<br>Value<br>0.007<br>1.11<br>0.03812<br>0.012<br>0.02507<br>2.5144<br>2.5592<br>1.7488                                                                                                             | P60-1<br>Pressure(psia)<br>29,992.10<br>29,992.10<br>4,744.92<br>15,077.61<br>-<br>0.50<br>29,992.10<br>-                                                                                                                            | D2-2_<br>Value<br>0.0116<br>2.504<br>0.02374<br>0.00994<br>0.01852<br>2.4951<br>2.5695<br>2.8944                                                                                                          | P60-2<br>Pressure(psia)<br>29,991.91<br>29,991.91<br>7,619.16<br>18,203.96<br>-<br>0.50<br>29,991.91<br>-                                                                                                               | D2-2<br>Average<br>0.0093<br>1.807<br>0.03093<br>0.01097<br>0.021795<br>2.50475<br>2.56435<br>2.3216                                                                                                                     | P60<br>STDEV.S<br>0.00325<br>0.98571<br>0.01017<br>0.00146<br>0.00463<br>0.01365<br>0.00728<br>0.81006                                                                                                                                                 |
| D2-2_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume                                                                                                                                                                                                                                                                                             | Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>g/mL<br>g/mL<br>%<br>%                                                                       | D2-2_<br>Value<br>0.007<br>1.11<br>0.03812<br>0.012<br>0.02507<br>2.5144<br>2.5592<br>1.7488<br>3                                                                                                        | P60-1<br>Pressure(psia)<br>29,992.10<br>29,992.10<br>4,744.92<br>15,077.61<br>-<br>0.50<br>29,992.10<br>-<br>-                                                                                                                       | D2-2_<br>Value<br>0.0116<br>2.504<br>0.02374<br>0.00994<br>0.01852<br>2.4951<br>2.5695<br>2.8944<br>5                                                                                                     | P60-2<br>Pressure(psia)<br>29,991.91<br>7,619.16<br>18,203.96<br>-<br>0.50<br>29,991.91<br>-<br>-                                                                                                                       | D2-2<br>Average<br>0.0093<br>1.807<br>0.03093<br>0.01097<br>0.021795<br>2.50475<br>2.56435<br>2.3216<br>4                                                                                                                | P60<br>STDEV.S<br>0.00325<br>0.98571<br>0.01017<br>0.00146<br>0.00463<br>0.01365<br>0.00728<br>0.81006<br>1.41421                                                                                                                                      |
| D2-2_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume                                                                                                                                                                                                                                                                                             | Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>g/mL<br>g/mL<br>%<br>%                                                                       | D2-2_<br>Value<br>0.007<br>1.11<br>0.03812<br>0.012<br>0.02507<br>2.5144<br>2.5592<br>1.7488<br>3                                                                                                        | P60-1<br>Pressure(psia)<br>29,992.10<br>29,992.10<br>4,744.92<br>15,077.61<br>-<br>0.50<br>29,992.10<br>-<br>-                                                                                                                       | D2-2_<br>Value<br>0.0116<br>2.504<br>0.02374<br>0.00994<br>0.01852<br>2.4951<br>2.5695<br>2.8944<br>5                                                                                                     | P60-2<br>Pressure(psia)<br>29,991.91<br>7,619.16<br>18,203.96<br>-<br>0.50<br>29,991.91<br>-<br>-                                                                                                                       | D2-2<br>Average<br>0.0093<br>1.807<br>0.03093<br>0.01097<br>0.021795<br>2.50475<br>2.56435<br>2.3216<br>4                                                                                                                | P60<br>STDEV.S<br>0.00325<br>0.98571<br>0.01017<br>0.00146<br>0.00463<br>0.01365<br>0.00728<br>0.81006<br>1.41421                                                                                                                                      |
| D2-2_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>D2-2_120日間浸漬                                                                                                                                                                                                                                                                             | Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>g/mL<br>g/mL<br>%<br>%                                                                       | D2-2_<br>Value<br>0.007<br>1.11<br>0.03812<br>0.012<br>0.02507<br>2.5144<br>2.5592<br>1.7488<br>3<br>3                                                                                                   | P60-1<br>Pressure(psia)<br>29,992.10<br>29,992.10<br>4,744.92<br>15,077.61<br>-<br>0.50<br>29,992.10<br>-<br>P120-1                                                                                                                  | D2-2_<br>Value<br>0.0116<br>2.504<br>0.02374<br>0.00994<br>0.01852<br>2.4951<br>2.5695<br>2.8944<br>5<br>D2-2_1                                                                                           | P60-2<br>Pressure(psia)<br>29,991.91<br>7,619.16<br>18,203.96<br>-<br>0.50<br>29,991.91<br>-<br>-<br>P120-2                                                                                                             | D2-2<br>Average<br>0.0093<br>1.807<br>0.03093<br>0.01097<br>0.021795<br>2.50475<br>2.50475<br>2.56435<br>2.3216<br>4                                                                                                     | P60<br>STDEV.S<br>0.00325<br>0.98571<br>0.01017<br>0.00146<br>0.00463<br>0.01365<br>0.00728<br>0.81006<br>1.41421                                                                                                                                      |
| D2-2_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>D2-2_120日間浸漬<br>Contents                                                                                                                                                                                                                                                                 | Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>g/mL<br>g/mL<br>%<br>%<br>Unit                                                               | D2-2_<br>Value<br>0.007<br>1.11<br>0.03812<br>0.012<br>0.02507<br>2.5144<br>2.5592<br>1.7488<br>3<br>3<br>D2-2_<br>Value                                                                                 | P60-1<br>Pressure(psia)<br>29,992.10<br>29,992.10<br>4,744.92<br>15,077.61<br>-<br>0.50<br>29,992.10<br>-<br>P120-1<br>Pressure(psia)                                                                                                | D2-2_<br>Value<br>0.0116<br>2.504<br>0.02374<br>0.00994<br>0.01852<br>2.4951<br>2.5695<br>2.8944<br>5<br>D2-2_<br>Value                                                                                   | P60-2<br>Pressure(psia)<br>29,991.91<br>7,619.16<br>18,203.96<br>-<br>0.50<br>29,991.91<br>-<br>-<br>P120-2<br>Pressure(psia)                                                                                           | D2-2<br>Average<br>0.0093<br>1.807<br>0.03093<br>0.01097<br>0.021795<br>2.50475<br>2.50475<br>2.56435<br>2.3216<br>4<br>D2-2<br>Average                                                                                  | P60<br>STDEV.S<br>0.00325<br>0.98571<br>0.01017<br>0.00146<br>0.00463<br>0.01365<br>0.00728<br>0.81006<br>1.41421<br>P120<br>STDEV.S                                                                                                                   |
| D2-2_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>D2-2_120日間浸漬<br>Contents<br>Total intrusion volume                                                                                                                                                                                                                                       | Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>g/mL<br>g/mL<br>g/mL<br>%<br>%<br>Unit<br>mL/g                                               | D2-2_<br>Value<br>0.007<br>1.11<br>0.03812<br>0.012<br>0.02507<br>2.5144<br>2.5592<br>1.7488<br>3<br>D2-2_<br>Value<br>0.019                                                                             | P60-1<br>Pressure(psia)<br>29,992.10<br>29,992.10<br>4,744.92<br>15,077.61<br>-<br>0.50<br>29,992.10<br>-<br>P120-1<br>Pressure(psia)<br>29,992.47                                                                                   | D2-2_<br>Value<br>0.0116<br>2.504<br>0.02374<br>0.00994<br>0.01852<br>2.4951<br>2.5695<br>2.8944<br>5<br>D2-2_<br>Value<br>0.0185                                                                         | P60-2<br>Pressure(psia)<br>29,991.91<br>7,619.16<br>18,203.96<br>-<br>0.50<br>29,991.91<br>-<br>-<br>P120-2<br>Pressure(psia)<br>29,992.48                                                                              | D2-2<br>Average<br>0.0093<br>1.807<br>0.03093<br>0.01097<br>0.021795<br>2.50475<br>2.50475<br>2.56435<br>2.3216<br>4<br>D2-2<br>Average<br>0.01875                                                                       | P60<br>STDEV.S<br>0.00325<br>0.98571<br>0.01017<br>0.00146<br>0.00463<br>0.01365<br>0.00728<br>0.81006<br>1.41421<br>P120<br>STDEV.S<br>0.00035                                                                                                        |
| D2-2_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>D2-2_120日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area                                                                                                                                                                                                                    | Unit<br>mL/g<br>m²/g<br>µm<br>g/mL<br>g/mL<br>g/mL<br>%<br>%<br>Unit<br>mL/g<br>m²/g                                             | D2-2_<br>Value<br>0.007<br>1.11<br>0.03812<br>0.012<br>0.02507<br>2.5144<br>2.5592<br>1.7488<br>3<br>D2-2_<br>Value<br>0.019<br>2.859                                                                    | P60-1<br>Pressure(psia)<br>29,992.10<br>29,992.10<br>4,744.92<br>15,077.61<br>-<br>0.50<br>29,992.10<br>-<br>P120-1<br>Pressure(psia)<br>29,992.47<br>29,992.47                                                                      | D2-2_<br>Value<br>0.0116<br>2.504<br>0.02374<br>0.00994<br>0.01852<br>2.4951<br>2.5695<br>2.8944<br>5<br>D2-2_<br>Value<br>0.0185<br>3.083                                                                | P60-2<br>Pressure(psia)<br>29,991.91<br>7,619.16<br>18,203.96<br>-<br>0.50<br>29,991.91<br>-<br>-<br>P120-2<br>Pressure(psia)<br>29,992.48<br>29,992.48                                                                 | D2-2<br>Average<br>0.0093<br>1.807<br>0.03093<br>0.01097<br>0.021795<br>2.50475<br>2.56435<br>2.3216<br>4<br>D2-2<br>Average<br>0.01875<br>2.971                                                                         | P60<br>STDEV.S<br>0.00325<br>0.98571<br>0.01017<br>0.00146<br>0.00463<br>0.01365<br>0.00728<br>0.81006<br>1.41421<br>P120<br>STDEV.S<br>0.00035<br>0.15839                                                                                             |
| D2-2_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>D2-2_120日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/                                                                                                                                                                      | Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>g/mL<br>g/mL<br>%<br>%<br>Unit<br>mL/g<br>m²/g<br>µm                                         | D2-2_<br>Value<br>0.007<br>1.11<br>0.03812<br>0.012<br>0.02507<br>2.5144<br>2.5592<br>1.7488<br>3<br>D2-2_<br>Value<br>0.019<br>2.859<br>0.03469                                                         | P60-1<br>Pressure(psia)<br>29,992.10<br>29,992.10<br>4,744.92<br>15,077.61<br>-<br>0.50<br>29,992.10<br>-<br>P120-1<br>Pressure(psia)<br>29,992.47<br>29,992.47<br>5,213.81                                                          | D2-2_<br>Value<br>0.0116<br>2.504<br>0.02374<br>0.00994<br>0.01852<br>2.4951<br>2.5695<br>2.8944<br>5<br>D2-2_<br>Value<br>0.0185<br>3.083<br>0.03012                                                     | P60-2<br>Pressure(psia)<br>29,991.91<br>7,619.16<br>18,203.96<br>-<br>0.50<br>29,991.91<br>-<br>-<br>P120-2<br>Pressure(psia)<br>29,992.48<br>29,992.48<br>6,004.94                                                     | D2-2<br>Average<br>0.0093<br>1.807<br>0.03093<br>0.01097<br>0.021795<br>2.50475<br>2.56435<br>2.3216<br>4<br>D2-2<br>Average<br>0.01875<br>2.971<br>0.032405                                                             | P60<br>STDEV.S<br>0.00325<br>0.98571<br>0.01017<br>0.00146<br>0.00463<br>0.01365<br>0.00728<br>0.81006<br>1.41421<br>P120<br>STDEV.S<br>0.00035<br>0.15839<br>0.00323                                                                                  |
| D2-2_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>D2-2_120日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g                                                                                                                         | Unit<br>mL/g<br>μm<br>μm<br>g/mL<br>g/mL<br>%<br>%<br>Unit<br>mL/g<br>m <sup>2</sup> /g<br>μm                                    | D2-2_<br>Value<br>0.007<br>1.11<br>0.03812<br>0.012<br>0.02507<br>2.5144<br>2.5592<br>1.7488<br>3<br>3<br>D2-2_<br>Value<br>0.019<br>2.859<br>0.03469<br>0.01617                                         | P60-1<br>Pressure(psia)<br>29,992.10<br>29,992.10<br>4,744.92<br>15,077.61<br>-<br>0.50<br>29,992.10<br>-<br>P120-1<br>Pressure(psia)<br>29,992.47<br>29,992.47<br>5,213.81<br>11,184.54                                             | D2-2_<br>Value<br>0.0116<br>2.504<br>0.02374<br>0.00994<br>0.01852<br>2.4951<br>2.5695<br>2.8944<br>5<br>D2-2_<br>Value<br>0.0185<br>3.083<br>0.03012<br>0.01493                                          | P60-2<br>Pressure(psia)<br>29,991.91<br>7,619.16<br>18,203.96<br>-<br>0.50<br>29,991.91<br>-<br>-<br>P120-2<br>Pressure(psia)<br>29,992.48<br>29,992.48<br>6,004.94<br>12,115.21                                        | D2-2<br>Average<br>0.0093<br>1.807<br>0.03093<br>0.01097<br>0.021795<br>2.50475<br>2.56435<br>2.3216<br>4<br>D2-2<br>Average<br>0.01875<br>2.971<br>0.032405<br>0.01555                                                  | P60<br>STDEV.S<br>0.00325<br>0.98571<br>0.01017<br>0.00146<br>0.00463<br>0.01365<br>0.00728<br>0.81006<br>1.41421<br>STDEV.S<br>0.00035<br>0.15839<br>0.00323<br>0.00088                                                                               |
| D2-2_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>D2-2_120日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)                                                                                         | Unit<br>mL/g<br>m²/g<br>µm<br>g/mL<br>g/mL<br>g/mL<br>%<br>0%<br>Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>µm                          | D2-2_<br>Value<br>0.007<br>1.11<br>0.03812<br>0.012<br>0.02507<br>2.5144<br>2.5592<br>1.7488<br>3<br>3<br>D2-2_<br>Value<br>0.019<br>2.859<br>0.03469<br>0.01617<br>0.02664                              | P60-1<br>Pressure(psia)<br>29,992.10<br>29,992.10<br>4,744.92<br>15,077.61<br>-<br>0.50<br>29,992.10<br>-<br>-<br>P120-1<br>Pressure(psia)<br>29,992.47<br>29,992.47<br>5,213.81<br>11,184.54                                        | D2-2_<br>Value<br>0.0116<br>2.504<br>0.02374<br>0.00994<br>0.01852<br>2.4951<br>2.5695<br>2.8944<br>5<br>D2-2_<br>Value<br>0.0185<br>3.083<br>0.03012<br>0.01493<br>0.02396                               | P60-2<br>Pressure(psia)<br>29,991.91<br>7,619.16<br>18,203.96<br>-<br>0.50<br>29,991.91<br>-<br>-<br>P120-2<br>Pressure(psia)<br>29,992.48<br>29,992.48<br>6,004.94<br>12,115.21                                        | D2-2<br>Average<br>0.0093<br>1.807<br>0.03093<br>0.01097<br>0.021795<br>2.50475<br>2.56435<br>2.3216<br>4<br>D2-2<br>Average<br>0.01875<br>2.971<br>0.032405<br>0.01555<br>0.0253                                        | P60<br>STDEV.S<br>0.00325<br>0.98571<br>0.01017<br>0.00146<br>0.00463<br>0.01365<br>0.00728<br>0.81006<br>1.41421<br>STDEV.S<br>0.00035<br>0.15839<br>0.00323<br>0.00088<br>0.00190                                                                    |
| D2-2_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>D2-2_120日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (4V/A)<br>Bulk density at 0.50 psia                                                                                                          | Unit<br>mL/g<br>m²/g<br>µm<br>g/mL<br>g/mL<br>%<br>%<br>Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>µm<br>g/mL                           | D2-2_<br>Value<br>0.007<br>1.11<br>0.03812<br>0.012<br>0.02507<br>2.5144<br>2.5592<br>1.7488<br>3<br>D2-2_<br>Value<br>0.019<br>2.859<br>0.03469<br>0.01617<br>0.02664<br>2.445                          | P60-1<br>Pressure(psia)<br>29,992.10<br>29,992.10<br>4,744.92<br>15,077.61<br>-<br>0.50<br>29,992.10<br>-<br>-<br>P120-1<br>Pressure(psia)<br>29,992.47<br>5,213.81<br>11,184.54<br>-<br>0.50                                        | D2-2_<br>Value<br>0.0116<br>2.504<br>0.02374<br>0.00994<br>0.01852<br>2.4951<br>2.5695<br>2.8944<br>5<br>D2-2_<br>Value<br>0.0185<br>3.083<br>0.03012<br>0.01493<br>0.02396<br>2.4455                     | P60-2<br>Pressure(psia)<br>29,991.91<br>7,619.16<br>18,203.96<br>-<br>0.50<br>29,991.91<br>-<br>-<br>P120-2<br>Pressure(psia)<br>29,992.48<br>29,992.48<br>6,004.94<br>12,115.21<br>-<br>0.49                           | D2-2<br>Average<br>0.0093<br>1.807<br>0.03093<br>0.01097<br>0.021795<br>2.50475<br>2.56435<br>2.3216<br>4<br>D2-2<br>Average<br>0.01875<br>2.971<br>0.032405<br>0.01555<br>0.0253<br>2.44525                             | P60<br>STDEV.S<br>0.00325<br>0.98571<br>0.01017<br>0.00146<br>0.00463<br>0.01365<br>0.00728<br>0.81006<br>1.41421<br>P120<br>STDEV.S<br>0.00035<br>0.15839<br>0.00323<br>0.00088<br>0.00190<br>0.00035                                                 |
| D2-2_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>D2-2_120日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density                             | Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>g/mL<br>g/mL<br>g/mL<br>ML/g<br>m²/g<br>µm<br>µm<br>µm<br>g/mL<br>g/mL                       | D2-2_<br>Value<br>0.007<br>1.11<br>0.03812<br>0.012<br>0.02507<br>2.5144<br>2.5592<br>1.7488<br>3<br>D2-2_<br>Value<br>0.019<br>2.859<br>0.03469<br>0.01617<br>0.02664<br>2.445<br>2.5645                | P60-1<br>Pressure(psia)<br>29,992.10<br>29,992.10<br>4,744.92<br>15,077.61<br>-<br>0.50<br>29,992.10<br>-<br>P120-1<br>Pressure(psia)<br>29,992.47<br>5,213.81<br>11,184.54<br>-<br>0.50<br>29,992.47                                | D2-2_<br>Value<br>0.0116<br>2.504<br>0.02374<br>0.00994<br>0.01852<br>2.4951<br>2.5695<br>2.8944<br>5<br>D2-2_<br>Value<br>0.0185<br>3.083<br>0.03012<br>0.01493<br>0.02396<br>2.4455<br>2.5612           | P60-2<br>Pressure(psia)<br>29,991.91<br>29,991.91<br>7,619.16<br>18,203.96<br>-<br>0.50<br>29,991.91<br>-<br>P120-2<br>Pressure(psia)<br>29,992.48<br>6,004.94<br>12,115.21<br>-<br>0.49<br>29,992.48                   | D2-2<br>Average<br>0.0093<br>1.807<br>0.03093<br>0.01097<br>0.021795<br>2.50475<br>2.56435<br>2.3216<br>4<br>D2-2<br>Average<br>0.01875<br>2.971<br>0.032405<br>0.01555<br>0.0253<br>2.44525<br>2.56285                  | P60<br>STDEV.S<br>0.00325<br>0.98571<br>0.01017<br>0.00146<br>0.00463<br>0.01365<br>0.00728<br>0.81006<br>1.41421<br>P120<br>STDEV.S<br>0.00035<br>0.15839<br>0.000323<br>0.00038<br>0.00038<br>0.00035<br>0.00035<br>0.00035                          |
| D2-2_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>D2-2_120日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:                | Unit<br>mL/g<br>m²/g<br>µm<br>g/mL<br>g/mL<br>g/mL<br>%<br>%<br>Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>g/mL<br>g/mL<br>g/mL         | D2-2_<br>Value<br>0.007<br>1.11<br>0.03812<br>0.012<br>0.02507<br>2.5144<br>2.5592<br>1.7488<br>3<br>D2-2_<br>Value<br>0.019<br>2.859<br>0.03469<br>0.01617<br>0.02664<br>2.445<br>2.5645<br>4.6588      | P60-1<br>Pressure(psia)<br>29,992.10<br>29,992.10<br>4,744.92<br>15,077.61<br>-<br>0.50<br>29,992.10<br>-<br>P120-1<br>Pressure(psia)<br>29,992.47<br>5,213.81<br>11,184.54<br>-<br>0.50<br>29,992.47<br>-                           | D2-2_<br>Value<br>0.0116<br>2.504<br>0.02374<br>0.00994<br>0.01852<br>2.4951<br>2.5695<br>2.8944<br>5<br>D2-2_<br>Value<br>0.0185<br>3.083<br>0.03012<br>0.01493<br>0.02396<br>2.4455<br>2.5612<br>4.5158 | P60-2<br>Pressure(psia)<br>29,991.91<br>29,991.91<br>7,619.16<br>18,203.96<br>-<br>0.50<br>29,991.91<br>-<br>P120-2<br>Pressure(psia)<br>29,992.48<br>6,004.94<br>12,115.21<br>-<br>0.49<br>29,992.48<br>-              | D2-2<br>Average<br>0.0093<br>1.807<br>0.03093<br>0.01097<br>0.021795<br>2.50475<br>2.56435<br>2.3216<br>4<br>D2-2<br>Average<br>0.01875<br>2.971<br>0.032405<br>0.01555<br>0.0253<br>2.44525<br>2.56285<br>4.5873        | P60<br>STDEV.S<br>0.00325<br>0.98571<br>0.01017<br>0.00146<br>0.00463<br>0.01365<br>0.00728<br>0.81006<br>1.41421<br>P120<br>STDEV.S<br>0.00035<br>0.15839<br>0.00323<br>0.00038<br>0.00190<br>0.00035<br>0.00233<br>0.00233<br>0.10112                |
| D2-2_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>D2-2_120日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume | Unit<br>mL/g<br>μm<br>μm<br>g/mL<br>g/mL<br>%<br>%<br>Unit<br>mL/g<br>m <sup>2</sup> /g<br>μm<br>μm<br>g/mL<br>g/mL<br>g/mL<br>% | D2-2_<br>Value<br>0.007<br>1.11<br>0.03812<br>0.012<br>0.02507<br>2.5144<br>2.5592<br>1.7488<br>3<br>3<br>D2-2_<br>Value<br>0.019<br>2.859<br>0.03469<br>0.01617<br>0.02664<br>2.445<br>2.5645<br>4.6588 | P60-1<br>Pressure(psia)<br>29,992.10<br>29,992.10<br>4,744.92<br>15,077.61<br>-<br>0.50<br>29,992.10<br>-<br>P120-1<br>Pressure(psia)<br>29,992.47<br>5,213.81<br>11,184.54<br>-<br>0.50<br>29,992.47<br>-<br>0.50<br>29,992.47<br>- | D2-2_<br>Value<br>0.0116<br>2.504<br>0.02374<br>0.00994<br>0.01852<br>2.4951<br>2.5695<br>2.8944<br>5<br>D2-2_<br>Value<br>0.0185<br>3.083<br>0.03012<br>0.01493<br>0.02396<br>2.4455<br>2.5612<br>4.5158 | P60-2<br>Pressure(psia)<br>29,991.91<br>29,991.91<br>7,619.16<br>18,203.96<br>-<br>0.50<br>29,991.91<br>-<br>P120-2<br>Pressure(psia)<br>29,992.48<br>29,992.48<br>6,004.94<br>12,115.21<br>-<br>0.49<br>29,992.48<br>- | D2-2<br>Average<br>0.0093<br>1.807<br>0.03093<br>0.01097<br>0.021795<br>2.50475<br>2.56435<br>2.3216<br>4<br>D2-2<br>Average<br>0.01875<br>2.971<br>0.032405<br>0.01555<br>0.0253<br>2.44525<br>2.56285<br>4.5873<br>7 5 | P60<br>STDEV.S<br>0.00325<br>0.98571<br>0.01017<br>0.00146<br>0.00463<br>0.01365<br>0.00728<br>0.81006<br>1.41421<br>STDEV.S<br>0.00035<br>0.15839<br>0.00323<br>0.00035<br>0.00035<br>0.00035<br>0.00035<br>0.00035<br>0.000233<br>0.10112<br>0.70711 |

## 表 1.9-5 D 2-2 のポロシメータ測定結果



図 1.9-4 D 2-2 の間隙径分布 (a)・(b) 未浸漬、 (c)・(d) 30 日浸漬、 (e)・(f) 60 日浸漬、 (g)・(h) 120 日浸漬

(5) E 2-3

| E2-3_浸漬前                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                         | E2-3_                                                                                                                                                                                                   | _Pb-1                                                                                                                                                                                                               | E2-3_                                                                                                                                                                                                    | _Pb-2                                                                                                                                                                                                                       | E2-3                                                                                                                                                                                                                  | B_Pb                                                                                                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unit                                                                                                                    | Value                                                                                                                                                                                                   | Pressure(psia)                                                                                                                                                                                                      | Value                                                                                                                                                                                                    | Pressure(psia)                                                                                                                                                                                                              | Average                                                                                                                                                                                                               | STDEV.S                                                                                                                                                                                                                      |
| Total intrusion volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mL/g                                                                                                                    | 0.0057                                                                                                                                                                                                  | 29,992.03                                                                                                                                                                                                           | 0.0037                                                                                                                                                                                                   | 29,992.35                                                                                                                                                                                                                   | 0.0047                                                                                                                                                                                                                | 0.00141                                                                                                                                                                                                                      |
| Total pore area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | m²/g                                                                                                                    | 0.023                                                                                                                                                                                                   | 29,992.03                                                                                                                                                                                                           | 0.036                                                                                                                                                                                                    | 29,992.35                                                                                                                                                                                                                   | 0.0295                                                                                                                                                                                                                | 0.00919                                                                                                                                                                                                                      |
| Median pore diameter (volume) at 0.001 mL/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | μm                                                                                                                      | 9.42217                                                                                                                                                                                                 | 19.2                                                                                                                                                                                                                | 126.72928                                                                                                                                                                                                | 1.43                                                                                                                                                                                                                        | 68.075725                                                                                                                                                                                                             | 82.94865                                                                                                                                                                                                                     |
| Median pore diameter (area) at 0.000 m²/g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | μm                                                                                                                      | 0.12165                                                                                                                                                                                                 | 1,486.75                                                                                                                                                                                                            | 0.04145                                                                                                                                                                                                  | 4,363.77                                                                                                                                                                                                                    | 0.08155                                                                                                                                                                                                               | 0.05671                                                                                                                                                                                                                      |
| Average pore diameter (4V/A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | μm                                                                                                                      | 1.00136                                                                                                                                                                                                 | -                                                                                                                                                                                                                   | 0.40427                                                                                                                                                                                                  | -                                                                                                                                                                                                                           | 0.702815                                                                                                                                                                                                              | 0.4222064                                                                                                                                                                                                                    |
| Bulk density at 0.50 psia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | g/mL                                                                                                                    | 2.628                                                                                                                                                                                                   | 0.50                                                                                                                                                                                                                | 2.6362                                                                                                                                                                                                   | 0.50                                                                                                                                                                                                                        | 2.6321                                                                                                                                                                                                                | 0.00580                                                                                                                                                                                                                      |
| Apparent (skeletal) density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | g/mL                                                                                                                    | 2.668                                                                                                                                                                                                   | 29,992.03                                                                                                                                                                                                           | 2.6621                                                                                                                                                                                                   | 29,992.35                                                                                                                                                                                                                   | 2.66505                                                                                                                                                                                                               | 0.00417                                                                                                                                                                                                                      |
| Porosity:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | %                                                                                                                       | 1.4993                                                                                                                                                                                                  | -                                                                                                                                                                                                                   | 0.9702                                                                                                                                                                                                   | -                                                                                                                                                                                                                           | 1.23475                                                                                                                                                                                                               | 0.37413                                                                                                                                                                                                                      |
| Stem volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | %                                                                                                                       | 2                                                                                                                                                                                                       | -                                                                                                                                                                                                                   | 1                                                                                                                                                                                                        | -                                                                                                                                                                                                                           | 1.5                                                                                                                                                                                                                   | 0.7071068                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                         |                                                                                                                                                                                                         |                                                                                                                                                                                                                     |                                                                                                                                                                                                          |                                                                                                                                                                                                                             |                                                                                                                                                                                                                       |                                                                                                                                                                                                                              |
| E2-3_30日間浸漬                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                         | E2-3_                                                                                                                                                                                                   | P30-1                                                                                                                                                                                                               | E2-3_                                                                                                                                                                                                    | P30-2                                                                                                                                                                                                                       | E2-3                                                                                                                                                                                                                  | _P30                                                                                                                                                                                                                         |
| Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unit                                                                                                                    | Value                                                                                                                                                                                                   | Pressure(psia)                                                                                                                                                                                                      | Value                                                                                                                                                                                                    | Pressure(psia)                                                                                                                                                                                                              | Average                                                                                                                                                                                                               | STDEV.S                                                                                                                                                                                                                      |
| Total intrusion volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mL/g                                                                                                                    | 0.009                                                                                                                                                                                                   | 29,990.94                                                                                                                                                                                                           | 0.0156                                                                                                                                                                                                   | 29,991.78                                                                                                                                                                                                                   | 0.0123                                                                                                                                                                                                                | 0.00467                                                                                                                                                                                                                      |
| Total pore area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | m²/g                                                                                                                    | 1.139                                                                                                                                                                                                   | 29,990.94                                                                                                                                                                                                           | 1.498                                                                                                                                                                                                    | 29,991.78                                                                                                                                                                                                                   | 1.3185                                                                                                                                                                                                                | 0.25385                                                                                                                                                                                                                      |
| Median pore diameter (volume) at 0.001 mL/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | μm                                                                                                                      | 0.06229                                                                                                                                                                                                 | 2,903.67                                                                                                                                                                                                            | 0.16757                                                                                                                                                                                                  | 1,079.30                                                                                                                                                                                                                    | 0.11493                                                                                                                                                                                                               | 0.07444                                                                                                                                                                                                                      |
| Median pore diameter (area) at 0.000 m²/g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | μm                                                                                                                      | 0.0116                                                                                                                                                                                                  | 15,585.85                                                                                                                                                                                                           | 0.01082                                                                                                                                                                                                  | 16,716.46                                                                                                                                                                                                                   | 0.01121                                                                                                                                                                                                               | 0.00055                                                                                                                                                                                                                      |
| Average pore diameter (4V/A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | μm                                                                                                                      | 0.03158                                                                                                                                                                                                 | -                                                                                                                                                                                                                   | 0.04165                                                                                                                                                                                                  | -                                                                                                                                                                                                                           | 0.036615                                                                                                                                                                                                              | 0.00712                                                                                                                                                                                                                      |
| Bulk density at 0.50 psia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | g/mL                                                                                                                    | 2.513                                                                                                                                                                                                   | 0.50                                                                                                                                                                                                                | 2.4574                                                                                                                                                                                                   | 0.50                                                                                                                                                                                                                        | 2.4852                                                                                                                                                                                                                | 0.03932                                                                                                                                                                                                                      |
| Apparent (skeletal) density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | g/mL                                                                                                                    | 2.5711                                                                                                                                                                                                  | 29,990.94                                                                                                                                                                                                           | 2.5554                                                                                                                                                                                                   | 29,991.78                                                                                                                                                                                                                   | 2.56325                                                                                                                                                                                                               | 0.01110                                                                                                                                                                                                                      |
| Porosity:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | %                                                                                                                       | 2.2593                                                                                                                                                                                                  | -                                                                                                                                                                                                                   | 3.8343                                                                                                                                                                                                   | -                                                                                                                                                                                                                           | 3.0468                                                                                                                                                                                                                | 1.11369                                                                                                                                                                                                                      |
| Stem volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | %                                                                                                                       | 4                                                                                                                                                                                                       | -                                                                                                                                                                                                                   | 6                                                                                                                                                                                                        | -                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                     | 1.41421                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                         |                                                                                                                                                                                                         |                                                                                                                                                                                                                     |                                                                                                                                                                                                          |                                                                                                                                                                                                                             |                                                                                                                                                                                                                       |                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                         |                                                                                                                                                                                                         |                                                                                                                                                                                                                     |                                                                                                                                                                                                          |                                                                                                                                                                                                                             |                                                                                                                                                                                                                       |                                                                                                                                                                                                                              |
| E2-3_60日間浸漬                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                         | E2-3_                                                                                                                                                                                                   | P60-1                                                                                                                                                                                                               | E2-3_                                                                                                                                                                                                    | P60-2                                                                                                                                                                                                                       | E2-3                                                                                                                                                                                                                  | _P60                                                                                                                                                                                                                         |
| E2-3_60日間浸漬<br>Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Unit                                                                                                                    | E2-3_<br>Value                                                                                                                                                                                          | P60-1<br>Pressure(psia)                                                                                                                                                                                             | E2-3_<br>Value                                                                                                                                                                                           | P60-2<br>Pressure(psia)                                                                                                                                                                                                     | E2-3<br>Average                                                                                                                                                                                                       | _P60<br>STDEV.S                                                                                                                                                                                                              |
| E2-3_60日間浸漬<br>Contents<br>Total intrusion volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Unit<br>mL/g                                                                                                            | E2-3_<br>Value<br>0.0135                                                                                                                                                                                | P60-1<br>Pressure(psia)<br>29,992.22                                                                                                                                                                                | E2-3_<br>Value<br>0.0125                                                                                                                                                                                 | P60-2<br>Pressure(psia)<br>29,991.83                                                                                                                                                                                        | E2-3<br>Average<br>0.013                                                                                                                                                                                              | _P60<br>STDEV.S<br>0.00071                                                                                                                                                                                                   |
| E2-3_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Unit<br>mL/g<br>m²/g                                                                                                    | E2-3_<br>Value<br>0.0135<br>1.563                                                                                                                                                                       | P60-1<br>Pressure(psia)<br>29,992.22<br>29,992.22                                                                                                                                                                   | E2-3_<br>Value<br>0.0125<br>1.324                                                                                                                                                                        | P60-2<br>Pressure(psia)<br>29,991.83<br>29,991.83                                                                                                                                                                           | E2-3<br>Average<br>0.013<br>1.4435                                                                                                                                                                                    | _P60<br>STDEV.S<br>0.00071<br>0.16900                                                                                                                                                                                        |
| E2-3_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/                                                                                                                                                                                                                                                                                                                                                                                                                                      | Unit<br>mL/g<br>m²/g<br>µm                                                                                              | E2-3_<br>Value<br>0.0135<br>1.563<br>0.0621                                                                                                                                                             | P60-1<br>Pressure(psia)<br>29,992.22<br>29,992.22<br>2,912.54                                                                                                                                                       | E2-3_<br>Value<br>0.0125<br>1.324<br>0.05599                                                                                                                                                             | P60-2<br>Pressure(psia)<br>29,991.83<br>29,991.83<br>3,230.31                                                                                                                                                               | E2-3<br>Average<br>0.013<br>1.4435<br>0.059045                                                                                                                                                                        | _P60<br>STDEV.S<br>0.00071<br>0.16900<br>0.00432                                                                                                                                                                             |
| E2-3_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g                                                                                                                                                                                                                                                                                                                                                                                         | Unit<br>mL/g<br>m²/g<br>µm<br>µm                                                                                        | E2-3_<br>Value<br>0.0135<br>1.563<br>0.0621<br>0.01228                                                                                                                                                  | P60-1<br>Pressure(psia)<br>29,992.22<br>29,992.22<br>2,912.54<br>14,729.19                                                                                                                                          | E2-3_<br>Value<br>0.0125<br>1.324<br>0.05599<br>0.01878                                                                                                                                                  | P60-2<br>Pressure(psia)<br>29,991.83<br>29,991.83<br>3,230.31<br>9,632.73                                                                                                                                                   | E2-3<br>Average<br>0.013<br>1.4435<br>0.059045<br>0.01553                                                                                                                                                             | _P60<br>STDEV.S<br>0.00071<br>0.16900<br>0.00432<br>0.00460                                                                                                                                                                  |
| E2-3_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)                                                                                                                                                                                                                                                                                                                                                         | Unit<br>mL/g<br>m²/g<br>μm<br>μm                                                                                        | E2-3_<br>Value<br>0.0135<br>1.563<br>0.0621<br>0.01228<br>0.03456                                                                                                                                       | P60-1<br>Pressure(psia)<br>29,992.22<br>29,992.22<br>2,912.54<br>14,729.19<br>-                                                                                                                                     | E2-3_<br>Value<br>0.0125<br>1.324<br>0.05599<br>0.01878<br>0.03769                                                                                                                                       | P60-2<br>Pressure(psia)<br>29,991.83<br>29,991.83<br>3,230.31<br>9,632.73<br>-                                                                                                                                              | E2-3<br>Average<br>0.013<br>1.4435<br>0.059045<br>0.01553<br>0.036125                                                                                                                                                 | _P60<br>STDEV.S<br>0.00071<br>0.16900<br>0.00432<br>0.00460<br>0.00221                                                                                                                                                       |
| E2-3_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia                                                                                                                                                                                                                                                                                                                            | Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>µm<br>g/mL                                                                          | E2-3_<br>Value<br>0.0135<br>1.563<br>0.0621<br>0.01228<br>0.03456<br>2.461                                                                                                                              | P60-1<br>Pressure(psia)<br>29,992.22<br>29,992.22<br>2,912.54<br>14,729.19<br>-<br>0.50                                                                                                                             | E2-3_<br>Value<br>0.0125<br>1.324<br>0.05599<br>0.01878<br>0.03769<br>2.461                                                                                                                              | P60-2<br>Pressure(psia)<br>29,991.83<br>29,991.83<br>3,230.31<br>9,632.73<br>-<br>0.50                                                                                                                                      | E2-3<br>Average<br>0.013<br>1.4435<br>0.059045<br>0.01553<br>0.036125<br>2.461                                                                                                                                        | _P60<br>STDEV.S<br>0.00071<br>0.16900<br>0.00432<br>0.00460<br>0.00221<br>0.00000                                                                                                                                            |
| E2-3_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density                                                                                                                                                                                                                                                                                             | Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>g/mL<br>g/mL                                                                        | E2-3_<br>Value<br>0.0135<br>1.563<br>0.0621<br>0.01228<br>0.03456<br>2.461<br>2.5456                                                                                                                    | P60-1<br>Pressure(psia)<br>29,992.22<br>2,912.54<br>14,729.19<br>-<br>0.50<br>29,992.22                                                                                                                             | E2-3_<br>Value<br>0.0125<br>1.324<br>0.05599<br>0.01878<br>0.03769<br>2.461<br>2.5389                                                                                                                    | P60-2<br>Pressure(psia)<br>29,991.83<br>29,991.83<br>3,230.31<br>9,632.73<br>-<br>0.50<br>29,991.83                                                                                                                         | E2-3<br>Average<br>0.013<br>1.4435<br>0.059045<br>0.01553<br>0.036125<br>2.461<br>2.54225                                                                                                                             | _P60<br>STDEV.S<br>0.00071<br>0.16900<br>0.00432<br>0.00460<br>0.00221<br>0.00000<br>0.00474                                                                                                                                 |
| E2-3_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:                                                                                                                                                                                                                                                                                | Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>g/mL<br>g/mL<br>g/mL                                                                | E2-3_<br>Value<br>0.0135<br>1.563<br>0.0621<br>0.01228<br>0.03456<br>2.461<br>2.5456<br>3.326                                                                                                           | P60-1<br>Pressure(psia)<br>29,992.22<br>2,912.54<br>14,729.19<br>-<br>0.50<br>29,992.22<br>-                                                                                                                        | E2-3_<br>Value<br>0.0125<br>1.324<br>0.05599<br>0.01878<br>0.03769<br>2.461<br>2.5389<br>3.0708                                                                                                          | P60-2<br>Pressure(psia)<br>29,991.83<br>29,991.83<br>3,230.31<br>9,632.73<br>-<br>0.50<br>29,991.83<br>-                                                                                                                    | E2-3<br>Average<br>0.013<br>1.4435<br>0.059045<br>0.01553<br>0.036125<br>2.461<br>2.54225<br>3.1984                                                                                                                   | P60<br>STDEV.S<br>0.00071<br>0.16900<br>0.00432<br>0.00460<br>0.00221<br>0.00000<br>0.00474<br>0.18045                                                                                                                       |
| E2-3_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume                                                                                                                                                                                                                                                                 | Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>g/mL<br>g/mL<br>%<br>%                                                              | E2-3_<br>Value<br>0.0135<br>1.563<br>0.0621<br>0.01228<br>0.03456<br>2.461<br>2.5456<br>3.326<br>6                                                                                                      | P60-1<br>Pressure(psia)<br>29,992.22<br>2,912.54<br>14,729.19<br>-<br>0.50<br>29,992.22<br>-<br>-                                                                                                                   | E2-3_<br>Value<br>0.0125<br>1.324<br>0.05599<br>0.01878<br>0.03769<br>2.461<br>2.5389<br>3.0708<br>5                                                                                                     | P60-2<br>Pressure(psia)<br>29,991.83<br>29,991.83<br>3,230.31<br>9,632.73<br>-<br>0.50<br>29,991.83<br>-<br>-<br>-                                                                                                          | E2-3<br>Average<br>0.013<br>1.4435<br>0.059045<br>0.01553<br>0.036125<br>2.461<br>2.54225<br>3.1984<br>5.5                                                                                                            | _P60<br>STDEV.S<br>0.00071<br>0.16900<br>0.00432<br>0.00460<br>0.00221<br>0.00000<br>0.00474<br>0.18045<br>0.70711                                                                                                           |
| E2-3_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume                                                                                                                                                                                                                                                                 | Unit<br>mL/g<br>m²/g<br>μm<br>μm<br>g/mL<br>g/mL<br>%                                                                   | E2-3_<br>Value<br>0.0135<br>1.563<br>0.0621<br>0.01228<br>0.03456<br>2.461<br>2.5456<br>3.326<br>6                                                                                                      | P60-1<br>Pressure(psia)<br>29,992.22<br>2,912.54<br>14,729.19<br>-<br>0.50<br>29,992.22<br>-<br>-                                                                                                                   | E2-3_<br>Value<br>0.0125<br>1.324<br>0.05599<br>0.01878<br>0.03769<br>2.461<br>2.5389<br>3.0708<br>5                                                                                                     | P60-2<br>Pressure(psia)<br>29,991.83<br>29,991.83<br>3,230.31<br>9,632.73<br>-<br>0.50<br>29,991.83<br>-<br>-<br>-                                                                                                          | E2-3<br>Average<br>0.013<br>1.4435<br>0.059045<br>0.01553<br>0.036125<br>2.461<br>2.54225<br>3.1984<br>5.5                                                                                                            | _P60<br>STDEV.S<br>0.00071<br>0.16900<br>0.00432<br>0.00460<br>0.00221<br>0.00000<br>0.00474<br>0.18045<br>0.70711                                                                                                           |
| E2-3_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>E2-3_120日間浸漬                                                                                                                                                                                                                                                 | Unit<br>mL/g<br>m²/g<br>μm<br>μm<br>g/mL<br>g/mL<br>%                                                                   | E2-3_<br>Value<br>0.0135<br>1.563<br>0.0621<br>0.01228<br>0.03456<br>2.461<br>2.5456<br>3.326<br>6<br>E2-3_1                                                                                            | P60-1<br>Pressure(psia)<br>29,992.22<br>2,912.54<br>14,729.19<br>-<br>0.50<br>29,992.22<br>-<br>-<br>-<br>P120-1                                                                                                    | E2-3_<br>Value<br>0.0125<br>1.324<br>0.05599<br>0.01878<br>0.03769<br>2.461<br>2.5389<br>3.0708<br>5<br>E2-3_1                                                                                           | P60-2<br>Pressure(psia)<br>29,991.83<br>29,991.83<br>3,230.31<br>9,632.73<br>-<br>0.50<br>29,991.83<br>-<br>-<br>-<br>P120-2                                                                                                | E2-3<br>Average<br>0.013<br>1.4435<br>0.059045<br>0.01553<br>0.036125<br>2.461<br>2.54225<br>3.1984<br>5.5<br>E2-3_                                                                                                   | P60<br>STDEV.S<br>0.00071<br>0.16900<br>0.00432<br>0.00460<br>0.00221<br>0.00000<br>0.00474<br>0.18045<br>0.70711                                                                                                            |
| E2-3_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>E2-3_120日間浸漬<br>Contents                                                                                                                                                                                                                                     | Unit<br>mL/g<br>m²/g<br>µm<br>g/mL<br>g/mL<br>%<br>%<br>Unit                                                            | E2-3_<br>Value<br>0.0135<br>1.563<br>0.0621<br>0.01228<br>0.03456<br>2.461<br>2.5456<br>3.326<br>6<br>E2-3_l<br>Value                                                                                   | P60-1<br>Pressure(psia)<br>29,992.22<br>2,912.54<br>14,729.19<br>-<br>0.50<br>29,992.22<br>-<br>-<br>-<br>2120-1<br>Pressure(psia)                                                                                  | E2-3_<br>Value<br>0.0125<br>1.324<br>0.05599<br>0.01878<br>0.03769<br>2.461<br>2.5389<br>3.0708<br>5<br>E2-3_1<br>Value                                                                                  | P60-2<br>Pressure(psia)<br>29,991.83<br>29,991.83<br>3,230.31<br>9,632.73<br>-<br>0.50<br>29,991.83<br>-<br>-<br>P120-2<br>Pressure(psia)                                                                                   | E2-3<br>Average<br>0.013<br>1.4435<br>0.059045<br>0.01553<br>0.036125<br>2.461<br>2.54225<br>3.1984<br>5.5<br>E2-3_<br>Average                                                                                        | P60<br>STDEV.S<br>0.00071<br>0.16900<br>0.00432<br>0.00460<br>0.00221<br>0.00000<br>0.00474<br>0.18045<br>0.70711<br>P120<br>STDEV.S                                                                                         |
| E2-3_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>E2-3_120日間浸漬<br>Contents<br>Total intrusion volume                                                                                                                                                                                                           | Unit<br>mL/g<br>m²/g<br>µm<br>g/mL<br>g/mL<br>g/mL<br>%<br>%<br>Unit<br>mL/g                                            | E2-3_<br>Value<br>0.0135<br>1.563<br>0.0621<br>0.01228<br>0.03456<br>2.461<br>2.5456<br>3.326<br>6<br>E2-3_1<br>Value<br>0.0117                                                                         | P60-1<br>Pressure(psia)<br>29,992.22<br>2,912.54<br>14,729.19<br>-<br>0.50<br>29,992.22<br>-<br>-<br>-<br>P120-1<br>Pressure(psia)<br>29,991.83                                                                     | E2-3_<br>Value<br>0.0125<br>1.324<br>0.05599<br>0.01878<br>0.03769<br>2.461<br>2.5389<br>3.0708<br>5<br>E2-3_1<br>Value<br>0.0152                                                                        | P60-2<br>Pressure(psia)<br>29,991.83<br>29,991.83<br>3,230.31<br>9,632.73<br>-<br>0.50<br>29,991.83<br>-<br>-<br>P120-2<br>Pressure(psia)<br>29,992.29                                                                      | E2-3<br>Average<br>0.013<br>1.4435<br>0.059045<br>0.01553<br>0.036125<br>2.461<br>2.54225<br>3.1984<br>5.5<br>E2-3_<br>Average<br>0.01345                                                                             | P60<br>STDEV.S<br>0.00071<br>0.16900<br>0.00432<br>0.00460<br>0.00221<br>0.00000<br>0.00474<br>0.18045<br>0.70711<br>P120<br>STDEV.S<br>0.00247                                                                              |
| E2-3_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>E2-3_120日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area                                                                                                                                                                                        | Unit<br>mL/g<br>m²/g<br>μm<br>g/mL<br>g/mL<br>g/mL<br>%<br>%<br>Unit<br>mL/g<br>m²/g                                    | E2-3_<br>Value<br>0.0135<br>1.563<br>0.0621<br>0.01228<br>0.03456<br>2.461<br>2.5456<br>3.326<br>6<br>E2-3_1<br>Value<br>0.0117<br>1.628                                                                | P60-1<br>Pressure(psia)<br>29,992.22<br>2,912.54<br>14,729.19<br>-<br>0.50<br>29,992.22<br>-<br>-<br>-<br>P120-1<br>Pressure(psia)<br>29,991.83<br>29,991.83                                                        | E2-3_<br>Value<br>0.0125<br>1.324<br>0.05599<br>0.01878<br>0.03769<br>2.461<br>2.5389<br>3.0708<br>5<br>E2-3_1<br>Value<br>0.0152<br>1.646                                                               | P60-2<br>Pressure(psia)<br>29,991.83<br>29,991.83<br>3,230.31<br>9,632.73<br>-<br>0.50<br>29,991.83<br>-<br>-<br>P120-2<br>Pressure(psia)<br>29,992.29<br>29,992.29                                                         | E2-3<br>Average<br>0.013<br>1.4435<br>0.059045<br>0.01553<br>0.036125<br>2.461<br>2.54225<br>3.1984<br>5.5<br>E2-3<br>Average<br>0.01345<br>1.637                                                                     | P60<br>STDEV.S<br>0.00071<br>0.16900<br>0.00432<br>0.00460<br>0.00221<br>0.00000<br>0.00474<br>0.18045<br>0.70711<br>P120<br>STDEV.S<br>0.00247<br>0.01273                                                                   |
| E2-3_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>E2-3_120日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/                                                                                                                                          | Unit<br>mL/g<br>m²/g<br>µm<br>g/mL<br>g/mL<br>g/mL<br>%<br>%<br>Unit<br>mL/g<br>m²/g<br>µm                              | E2-3_<br>Value<br>0.0135<br>1.563<br>0.0621<br>0.01228<br>0.03456<br>2.461<br>2.5456<br>3.326<br>6<br>E2-3_1<br>Value<br>0.0117<br>1.628<br>0.03924                                                     | P60-1<br>Pressure(psia)<br>29,992.22<br>2,912.54<br>14,729.19<br>-<br>0.50<br>29,992.22<br>-<br>-<br>P120-1<br>Pressure(psia)<br>29,991.83<br>29,991.83<br>4,609.74                                                 | E2-3_<br>Value<br>0.0125<br>1.324<br>0.05599<br>0.01878<br>0.03769<br>2.461<br>2.5389<br>3.0708<br>5<br>E2-3_1<br>Value<br>0.0152<br>1.646<br>0.06314                                                    | P60-2<br>Pressure(psia)<br>29,991.83<br>29,991.83<br>3,230.31<br>9,632.73<br>-<br>0.50<br>29,991.83<br>-<br>-<br>P120-2<br>Pressure(psia)<br>29,992.29<br>29,992.29<br>2,864.52                                             | E2-3<br>Average<br>0.013<br>1.4435<br>0.059045<br>0.01553<br>0.036125<br>2.461<br>2.54225<br>3.1984<br>5.5<br>E2-3_<br>Average<br>0.01345<br>1.637<br>0.05119                                                         | P60<br>STDEV.S<br>0.00071<br>0.16900<br>0.00432<br>0.00460<br>0.00221<br>0.000071<br>0.000074<br>0.18045<br>0.70711<br>P120<br>STDEV.S<br>0.00247<br>0.01273<br>0.01690                                                      |
| E2-3_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>E2-3_120日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g                                                                                             | Unit<br>mL/g<br>m²/g<br>µm<br>g/mL<br>g/mL<br>g/mL<br>%<br>%<br>Unit<br>mL/g<br>m²/g<br>µm<br>µm                        | E2-3_<br>Value<br>0.0135<br>1.563<br>0.0621<br>0.01228<br>0.03456<br>2.461<br>2.5456<br>3.326<br>6<br>E2-3_1<br>Value<br>0.0117<br>1.628<br>0.03924<br>0.01863                                          | P60-1<br>Pressure(psia)<br>29,992.22<br>2,912.54<br>14,729.19<br>-<br>0.50<br>29,992.22<br>-<br>-<br>P120-1<br>Pressure(psia)<br>29,991.83<br>29,991.83<br>4,609.74<br>9,707.49                                     | E2-3_<br>Value<br>0.0125<br>1.324<br>0.05599<br>0.01878<br>0.03769<br>2.461<br>2.5389<br>3.0708<br>5<br>E2-3_1<br>Value<br>0.0152<br>1.646<br>0.06314<br>0.01718                                         | P60-2<br>Pressure(psia)<br>29,991.83<br>29,991.83<br>3,230.31<br>9,632.73<br>-<br>0.50<br>29,991.83<br>-<br>P120-2<br>Pressure(psia)<br>29,992.29<br>29,992.29<br>2,864.52<br>10,528.84                                     | E2-3<br>Average<br>0.013<br>1.4435<br>0.059045<br>0.01553<br>0.036125<br>2.461<br>2.54225<br>3.1984<br>5.5<br>E2-3<br>Average<br>0.01345<br>1.637<br>0.05119<br>0.017905                                              | P60<br>STDEV.S<br>0.00071<br>0.16900<br>0.00432<br>0.00460<br>0.00221<br>0.00000<br>0.00474<br>0.18045<br>0.70711<br>P120<br>STDEV.S<br>0.00247<br>0.01273<br>0.01690<br>0.00103                                             |
| E2-3_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>E2-3_120日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)                                                             | Unit<br>mL/g<br>μm<br>μm<br>g/mL<br>g/mL<br>g/mL<br>%<br>%<br>%<br>%<br>Unit<br>mL/g<br>m²/g<br>μm<br>μm                | E2-3_<br>Value<br>0.0135<br>1.563<br>0.0621<br>0.01228<br>0.03456<br>2.461<br>2.5456<br>3.326<br>6<br>E2-3_1<br>Value<br>0.0117<br>1.628<br>0.03924<br>0.01863<br>0.02864                               | P60-1<br>Pressure(psia)<br>29,992.22<br>2,912.54<br>14,729.19<br>-<br>0.50<br>29,992.22<br>-<br>-<br>P120-1<br>Pressure(psia)<br>29,991.83<br>29,991.83<br>29,991.83<br>4,609.74<br>9,707.49<br>-                   | E2-3_<br>Value<br>0.0125<br>1.324<br>0.05599<br>0.01878<br>0.03769<br>2.461<br>2.5389<br>3.0708<br>5<br>E2-3_1<br>Value<br>0.0152<br>1.646<br>0.06314<br>0.01718<br>0.0369                               | P60-2<br>Pressure(psia)<br>29,991.83<br>29,991.83<br>3,230.31<br>9,632.73<br>-<br>0.50<br>29,991.83<br>-<br>P120-2<br>Pressure(psia)<br>29,992.29<br>29,992.29<br>2,864.52<br>10,528.84<br>-                                | E2-3<br>Average<br>0.013<br>1.4435<br>0.059045<br>0.01553<br>0.036125<br>2.461<br>2.54225<br>3.1984<br>5.5<br>E2-3_<br>Average<br>0.01345<br>1.637<br>0.05119<br>0.017905<br>0.03277                                  | P60<br>STDEV.S<br>0.00071<br>0.16900<br>0.00432<br>0.00460<br>0.00221<br>0.00000<br>0.00474<br>0.18045<br>0.70711<br>P120<br>STDEV.S<br>0.00247<br>0.01273<br>0.01690<br>0.00103<br>0.00584                                  |
| E2-3_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>E2-3_120日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (4V/A)<br>Bulk density at 0.50 psia                                                                              | Unit<br>mL/g<br>m²/g<br>μm<br>g/mL<br>g/mL<br>g/mL<br>%<br>%<br>Unit<br>mL/g<br>m²/g<br>μm<br>μm<br>μm<br>g/mL          | E2-3_<br>Value<br>0.0135<br>1.563<br>0.0621<br>0.01228<br>0.03456<br>2.461<br>2.5456<br>3.326<br>6<br>E2-3_1<br>Value<br>0.0117<br>1.628<br>0.03924<br>0.01863<br>0.02864<br>2.4605                     | P60-1<br>Pressure(psia)<br>29,992.22<br>2,912.54<br>14,729.19<br>-<br>0.50<br>29,992.22<br>-<br>-<br>P120-1<br>Pressure(psia)<br>29,991.83<br>29,991.83<br>29,991.83<br>4,609.74<br>9,707.49<br>-<br>0.50           | E2-3_<br>Value<br>0.0125<br>1.324<br>0.05599<br>0.01878<br>0.03769<br>2.461<br>2.5389<br>3.0708<br>5<br>E2-3_1<br>Value<br>0.0152<br>1.646<br>0.06314<br>0.01718<br>0.0369<br>2.4404                     | P60-2<br>Pressure(psia)<br>29,991.83<br>29,991.83<br>3,230.31<br>9,632.73<br>-<br>0.50<br>29,991.83<br>-<br>P120-2<br>Pressure(psia)<br>29,992.29<br>29,992.29<br>2,864.52<br>10,528.84<br>-<br>0.50                        | E2-3<br>Average<br>0.013<br>1.4435<br>0.059045<br>0.01553<br>0.036125<br>2.461<br>2.54225<br>3.1984<br>5.5<br>E2-3<br>Average<br>0.01345<br>1.637<br>0.05119<br>0.017905<br>0.03277<br>2.45045                        | P60<br>STDEV.S<br>0.00071<br>0.16900<br>0.00432<br>0.00460<br>0.00221<br>0.00000<br>0.00474<br>0.18045<br>0.70711<br>P120<br>STDEV.S<br>0.00247<br>0.01273<br>0.00247<br>0.01273<br>0.01690<br>0.00103<br>0.00584<br>0.01421 |
| E2-3_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>E2-3_120日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density | Unit<br>mL/g<br>m²/g<br>μm<br>g/mL<br>g/mL<br>g/mL<br>%<br>0%<br>Unit<br>mL/g<br>m²/g<br>μm<br>μm<br>μm<br>g/mL<br>g/mL | E2-3_<br>Value<br>0.0135<br>1.563<br>0.0621<br>0.01228<br>0.03456<br>2.461<br>2.5456<br>3.326<br>6<br>E2-3_1<br>Value<br>0.0117<br>1.628<br>0.03924<br>0.01863<br>0.02864<br>2.4605<br>2.5332           | P60-1<br>Pressure(psia)<br>29,992.22<br>2,912.54<br>14,729.19<br>-<br>0.50<br>29,992.22<br>-<br>-<br>-<br>P120-1<br>Pressure(psia)<br>29,991.83<br>29,991.83<br>4,609.74<br>9,707.49<br>-<br>0.50<br>29,991.83      | E2-3_<br>Value<br>0.0125<br>1.324<br>0.05599<br>0.01878<br>0.03769<br>2.461<br>2.5389<br>3.0708<br>5<br>E2-3_1<br>Value<br>0.0152<br>1.646<br>0.06314<br>0.01718<br>0.0369<br>2.4404<br>2.5343           | P60-2<br>Pressure(psia)<br>29,991.83<br>29,991.83<br>3,230.31<br>9,632.73<br>-<br>0.50<br>29,991.83<br>-<br>-<br>P120-2<br>Pressure(psia)<br>29,992.29<br>29,992.29<br>2,864.52<br>10,528.84<br>-<br>0.50<br>29,992.29      | E2-3<br>Average<br>0.013<br>1.4435<br>0.059045<br>0.01553<br>0.036125<br>2.461<br>2.54225<br>3.1984<br>5.5<br>E2-3_<br>Average<br>0.01345<br>1.637<br>0.05119<br>0.017905<br>0.03277<br>2.45045<br>2.53375            | P60<br>STDEV.S<br>0.00071<br>0.16900<br>0.00432<br>0.00460<br>0.00221<br>0.00000<br>0.00474<br>0.18045<br>0.70711<br>P120<br>STDEV.S<br>0.00247<br>0.01273<br>0.01690<br>0.00103<br>0.00584<br>0.01421<br>0.00078            |
| E2-3_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>E2-3_120日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:                                  | Unit<br>mL/g<br>m²/g<br>μm<br>g/mL<br>g/mL<br>g/mL<br>%<br>Unit<br>mL/g<br>m²/g<br>μm<br>μm<br>g/mL<br>g/mL<br>g/mL     | E2-3_<br>Value<br>0.0135<br>1.563<br>0.0621<br>0.01228<br>0.03456<br>2.461<br>2.5456<br>3.326<br>6<br>E2-3_1<br>Value<br>0.0117<br>1.628<br>0.03924<br>0.01863<br>0.02864<br>2.4605<br>2.5332<br>2.8684 | P60-1<br>Pressure(psia)<br>29,992.22<br>2,912.54<br>14,729.19<br>-<br>0.50<br>29,992.22<br>-<br>-<br>-<br>P120-1<br>Pressure(psia)<br>29,991.83<br>29,991.83<br>4,609.74<br>9,707.49<br>-<br>0.50<br>29,991.83<br>- | E2-3_<br>Value<br>0.0125<br>1.324<br>0.05599<br>0.01878<br>0.03769<br>2.461<br>2.5389<br>3.0708<br>5<br>E2-3_1<br>Value<br>0.0152<br>1.646<br>0.06314<br>0.01718<br>0.0369<br>2.4404<br>2.5343<br>3.7055 | P60-2<br>Pressure(psia)<br>29,991.83<br>29,991.83<br>3,230.31<br>9,632.73<br>-<br>0.50<br>29,991.83<br>-<br>-<br>P120-2<br>Pressure(psia)<br>29,992.29<br>29,992.29<br>2,864.52<br>10,528.84<br>-<br>0.50<br>29,992.29<br>- | E2-3<br>Average<br>0.013<br>1.4435<br>0.059045<br>0.01553<br>0.036125<br>2.461<br>2.54225<br>3.1984<br>5.5<br>E2-3_<br>Average<br>0.01345<br>1.637<br>0.05119<br>0.017905<br>0.03277<br>2.45045<br>2.53375<br>3.28695 | P60<br>STDEV.S<br>0.00071<br>0.16900<br>0.00432<br>0.00460<br>0.00221<br>0.00000<br>0.00474<br>0.18045<br>0.70711<br>P120<br>STDEV.S<br>0.00247<br>0.01273<br>0.01690<br>0.00103<br>0.00584<br>0.01421<br>0.00078<br>0.59192 |

### 表 1.9-6 E 2-3 のポロシメータ測定結果

【付録12】



図 1.9-5 E 2-3の間隙径分布 (a)・(b) 未浸漬、 (c)・(d) 30 日浸漬、 (e)・(f) 60 日浸漬、 (g)・(h) 120 日浸漬

| F2-6_浸漬前                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                        | F2-6_Pb-1                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                | F2-6_Pb-2                                                                                                                                                                                                  |                                                                                                                                                                                                                                                              | F2-6_Pb                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Unit                                                                                                                   | Value                                                                                                                                                                                                     | Pressure(psia)                                                                                                                                                                                                                                                                                                                                                 | Value                                                                                                                                                                                                      | Pressure(psia)                                                                                                                                                                                                                                               | Average                                                                                                                                                                                                                     | STDEV.S                                                                                                                                                                                                                                             |
| Total intrusion volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mL/g                                                                                                                   | 0.0061                                                                                                                                                                                                    | 29,991.92                                                                                                                                                                                                                                                                                                                                                      | 0.0062                                                                                                                                                                                                     | 29,992.11                                                                                                                                                                                                                                                    | 0.00615                                                                                                                                                                                                                     | 0.00007                                                                                                                                                                                                                                             |
| Total pore area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | m²/g                                                                                                                   | 0.404                                                                                                                                                                                                     | 29,991.92                                                                                                                                                                                                                                                                                                                                                      | 0.448                                                                                                                                                                                                      | 29,992.11                                                                                                                                                                                                                                                    | 0.426                                                                                                                                                                                                                       | 0.03111                                                                                                                                                                                                                                             |
| Median pore diameter (volume) at 0.001 mL/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | μm                                                                                                                     | 0.0548                                                                                                                                                                                                    | 3,300.67                                                                                                                                                                                                                                                                                                                                                       | 0.05938                                                                                                                                                                                                    | 3,045.85                                                                                                                                                                                                                                                     | 0.05709                                                                                                                                                                                                                     | 0.00324                                                                                                                                                                                                                                             |
| Median pore diameter (area) at 0.000 m²/g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | μm                                                                                                                     | 0.03353                                                                                                                                                                                                   | 5,393.57                                                                                                                                                                                                                                                                                                                                                       | 0.04381                                                                                                                                                                                                    | 4,128.04                                                                                                                                                                                                                                                     | 0.03867                                                                                                                                                                                                                     | 0.00727                                                                                                                                                                                                                                             |
| Average pore diameter (4V/A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | μm                                                                                                                     | 0.06036                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                              | 0.05532                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                            | 0.05784                                                                                                                                                                                                                     | 0.0035638                                                                                                                                                                                                                                           |
| Bulk density at 0.50 psia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | g/mL                                                                                                                   | 2.6108                                                                                                                                                                                                    | 0.50                                                                                                                                                                                                                                                                                                                                                           | 2.6071                                                                                                                                                                                                     | 0.50                                                                                                                                                                                                                                                         | 2.60895                                                                                                                                                                                                                     | 0.00262                                                                                                                                                                                                                                             |
| Apparent (skeletal) density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | g/mL                                                                                                                   | 2.653                                                                                                                                                                                                     | 29,991.92                                                                                                                                                                                                                                                                                                                                                      | 2.65                                                                                                                                                                                                       | 29,992.11                                                                                                                                                                                                                                                    | 2.6515                                                                                                                                                                                                                      | 0.00212                                                                                                                                                                                                                                             |
| Porosity:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | %                                                                                                                      | 1.5934                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                              | 1.6186                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                            | 1.606                                                                                                                                                                                                                       | 0.01782                                                                                                                                                                                                                                             |
| Stem volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | %                                                                                                                      | 2                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                              | 3                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                            | 2.5                                                                                                                                                                                                                         | 0.7071068                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                        |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                     |
| F2-6_30日間浸漬                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                        | F2-6_                                                                                                                                                                                                     | P30-1                                                                                                                                                                                                                                                                                                                                                          | F2-6_                                                                                                                                                                                                      | P30-2                                                                                                                                                                                                                                                        | F2-6                                                                                                                                                                                                                        | _P30                                                                                                                                                                                                                                                |
| Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Unit                                                                                                                   | Value                                                                                                                                                                                                     | Pressure(psia)                                                                                                                                                                                                                                                                                                                                                 | Value                                                                                                                                                                                                      | Pressure(psia)                                                                                                                                                                                                                                               | Average                                                                                                                                                                                                                     | STDEV.S                                                                                                                                                                                                                                             |
| Total intrusion volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mL/g                                                                                                                   | 0.0128                                                                                                                                                                                                    | 29,991.30                                                                                                                                                                                                                                                                                                                                                      | 0.0117                                                                                                                                                                                                     | 29,991.61                                                                                                                                                                                                                                                    | 0.01225                                                                                                                                                                                                                     | 0.00078                                                                                                                                                                                                                                             |
| Total pore area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | m²/g                                                                                                                   | 1.432                                                                                                                                                                                                     | 29,991.30                                                                                                                                                                                                                                                                                                                                                      | 1.47                                                                                                                                                                                                       | 29,991.61                                                                                                                                                                                                                                                    | 1.451                                                                                                                                                                                                                       | 0.02687                                                                                                                                                                                                                                             |
| Median pore diameter (volume) at 0.001 mL/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | μm                                                                                                                     | 0.0469                                                                                                                                                                                                    | 3,856.35                                                                                                                                                                                                                                                                                                                                                       | 0.03811                                                                                                                                                                                                    | 4,745.82                                                                                                                                                                                                                                                     | 0.042505                                                                                                                                                                                                                    | 0.00622                                                                                                                                                                                                                                             |
| Median pore diameter (area) at 0.000 m²/g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | μm                                                                                                                     | 0.02862                                                                                                                                                                                                   | 6,319.97                                                                                                                                                                                                                                                                                                                                                       | 0.02497                                                                                                                                                                                                    | 7,243.71                                                                                                                                                                                                                                                     | 0.026795                                                                                                                                                                                                                    | 0.00258                                                                                                                                                                                                                                             |
| Average pore diameter (4V/A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | μm                                                                                                                     | 0.03581                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                              | 0.03171                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                            | 0.03376                                                                                                                                                                                                                     | 0.00290                                                                                                                                                                                                                                             |
| Bulk density at 0.50 psia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | g/mL                                                                                                                   | 2.4856                                                                                                                                                                                                    | 0.50                                                                                                                                                                                                                                                                                                                                                           | 2.4985                                                                                                                                                                                                     | 0.50                                                                                                                                                                                                                                                         | 2.49205                                                                                                                                                                                                                     | 0.00912                                                                                                                                                                                                                                             |
| Apparent (skeletal) density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | g/mL                                                                                                                   | 2.5674                                                                                                                                                                                                    | 29,991.30                                                                                                                                                                                                                                                                                                                                                      | 2.5735                                                                                                                                                                                                     | 29,991.61                                                                                                                                                                                                                                                    | 2.57045                                                                                                                                                                                                                     | 0.00431                                                                                                                                                                                                                                             |
| Porosity:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | %                                                                                                                      | 3.1871                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                              | 2.9141                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                            | 3.0506                                                                                                                                                                                                                      | 0.19304                                                                                                                                                                                                                                             |
| Stem volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | %                                                                                                                      | 7                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                              | 6                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                            | 6.5                                                                                                                                                                                                                         | 0.70711                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                        |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                        |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                | =                                                                                                                                                                                                          |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                     |
| F2-6_60日間浸漬                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                        | F2-6_                                                                                                                                                                                                     | P60-1                                                                                                                                                                                                                                                                                                                                                          | F2-6_                                                                                                                                                                                                      | P60-2                                                                                                                                                                                                                                                        | F2-6                                                                                                                                                                                                                        | _P60                                                                                                                                                                                                                                                |
| F2-6_60日間浸漬<br>Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Unit                                                                                                                   | F2-6_<br>Value                                                                                                                                                                                            | P60-1<br>Pressure(psia)                                                                                                                                                                                                                                                                                                                                        | F2-6_<br>Value                                                                                                                                                                                             | P60-2<br>Pressure(psia)                                                                                                                                                                                                                                      | F2-6<br>Average                                                                                                                                                                                                             | _P60<br>STDEV.S                                                                                                                                                                                                                                     |
| F2-6_60日間浸漬<br>Contents<br>Total intrusion volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Unit<br>mL/g                                                                                                           | F2-6_<br>Value<br>0.0141                                                                                                                                                                                  | P60-1<br>Pressure(psia)<br>29,992.31                                                                                                                                                                                                                                                                                                                           | F2-6_<br>Value<br>0.0134                                                                                                                                                                                   | P60-2<br>Pressure(psia)<br>29,993.12                                                                                                                                                                                                                         | F2-6<br>Average<br>0.01375                                                                                                                                                                                                  | _P60<br>STDEV.S<br>0.00049                                                                                                                                                                                                                          |
| F2-6_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Unit<br>mL/g<br>m²/g                                                                                                   | F2-6_<br>Value<br>0.0141<br>2.063                                                                                                                                                                         | P60-1<br>Pressure(psia)<br>29,992.31<br>29,992.31                                                                                                                                                                                                                                                                                                              | F2-6_<br>Value<br>0.0134<br>1.815                                                                                                                                                                          | P60-2<br>Pressure(psia)<br>29,993.12<br>29,993.12                                                                                                                                                                                                            | F2-6<br>Average<br>0.01375<br>1.939                                                                                                                                                                                         | _P60<br>STDEV.S<br>0.00049<br>0.17536                                                                                                                                                                                                               |
| F2-6_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unit<br>mL/g<br>m²/g<br>µm                                                                                             | F2-6_<br>Value<br>0.0141<br>2.063<br>0.03572                                                                                                                                                              | P60-1<br>Pressure(psia)<br>29,992.31<br>29,992.31<br>5,062.99                                                                                                                                                                                                                                                                                                  | F2-6_<br>Value<br>0.0134<br>1.815<br>0.03957                                                                                                                                                               | P60-2<br>Pressure(psia)<br>29,993.12<br>29,993.12<br>4,570.94                                                                                                                                                                                                | F2-6<br>Average<br>0.01375<br>1.939<br>0.037645                                                                                                                                                                             | _P60<br>STDEV.S<br>0.00049<br>0.17536<br>0.00272                                                                                                                                                                                                    |
| F2-6_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Unit<br>mL/g<br>m²/g<br>μm<br>μm                                                                                       | F2-6_<br>Value<br>0.0141<br>2.063<br>0.03572<br>0.01891                                                                                                                                                   | P60-1<br>Pressure(psia)<br>29,992.31<br>29,992.31<br>5,062.99<br>9,563.08                                                                                                                                                                                                                                                                                      | F2-6_<br>Value<br>0.0134<br>1.815<br>0.03957<br>0.01694                                                                                                                                                    | P60-2<br>Pressure(psia)<br>29,993.12<br>29,993.12<br>4,570.94<br>10,674.23                                                                                                                                                                                   | F2-6<br>Average<br>0.01375<br>1.939<br>0.037645<br>0.017925                                                                                                                                                                 | _P60<br>STDEV.S<br>0.00049<br>0.17536<br>0.00272<br>0.00139                                                                                                                                                                                         |
| F2-6_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Unit<br>mL/g<br>m²/g<br>µm<br>µm                                                                                       | F2-6_<br>Value<br>0.0141<br>2.063<br>0.03572<br>0.01891<br>0.02732                                                                                                                                        | P60-1<br>Pressure(psia)<br>29,992.31<br>29,992.31<br>5,062.99<br>9,563.08                                                                                                                                                                                                                                                                                      | F2-6_<br>Value<br>0.0134<br>1.815<br>0.03957<br>0.01694<br>0.02951                                                                                                                                         | P60-2<br>Pressure(psia)<br>29,993.12<br>29,993.12<br>4,570.94<br>10,674.23                                                                                                                                                                                   | F2-6<br>Average<br>0.01375<br>1.939<br>0.037645<br>0.017925<br>0.028415                                                                                                                                                     | _P60<br>STDEV.S<br>0.00049<br>0.17536<br>0.00272<br>0.00139<br>0.00155                                                                                                                                                                              |
| F2-6_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>g/mL                                                                               | F2-6_<br>Value<br>0.0141<br>2.063<br>0.03572<br>0.01891<br>0.02732<br>2.4807                                                                                                                              | P60-1<br>Pressure(psia)<br>29,992.31<br>5,062.99<br>9,563.08<br>-<br>0.50                                                                                                                                                                                                                                                                                      | F2-6_<br>Value<br>0.0134<br>1.815<br>0.03957<br>0.01694<br>0.02951<br>2.4792                                                                                                                               | P60-2<br>Pressure(psia)<br>29,993.12<br>29,993.12<br>4,570.94<br>10,674.23<br>-<br>0.50                                                                                                                                                                      | F2-6<br>Average<br>0.01375<br>1.939<br>0.037645<br>0.017925<br>0.028415<br>2.47995                                                                                                                                          | _P60<br>STDEV.S<br>0.00049<br>0.17536<br>0.00272<br>0.00139<br>0.00155<br>0.00106                                                                                                                                                                   |
| F2-6_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>g/mL<br>g/mL                                                                       | F2-6_<br>Value<br>0.0141<br>2.063<br>0.03572<br>0.01891<br>0.02732<br>2.4807<br>2.5707                                                                                                                    | P60-1<br>Pressure(psia)<br>29,992.31<br>5,062.99<br>9,563.08<br>-<br>0.50<br>29,992.31                                                                                                                                                                                                                                                                         | F2-6_<br>Value<br>0.0134<br>1.815<br>0.03957<br>0.01694<br>0.02951<br>2.4792<br>2.5644                                                                                                                     | P60-2<br>Pressure(psia)<br>29,993.12<br>29,993.12<br>4,570.94<br>10,674.23<br>-<br>0.50<br>29,993.12                                                                                                                                                         | F2-6<br>Average<br>0.01375<br>1.939<br>0.037645<br>0.017925<br>0.028415<br>2.47995<br>2.56755                                                                                                                               | _P60<br>STDEV.S<br>0.00049<br>0.17536<br>0.00272<br>0.00139<br>0.00155<br>0.00106<br>0.00445                                                                                                                                                        |
| F2-6_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Ctem volume                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>g/mL<br>g/mL<br>%                                                                  | F2-6_<br>Value<br>0.0141<br>2.063<br>0.03572<br>0.01891<br>0.02732<br>2.4807<br>2.5707<br>3.498                                                                                                           | P60-1<br>Pressure(psia)<br>29,992.31<br>5,062.99<br>9,563.08<br>-<br>0.50<br>29,992.31<br>-                                                                                                                                                                                                                                                                    | F2-6_<br>Value<br>0.0134<br>1.815<br>0.03957<br>0.01694<br>0.02951<br>2.4792<br>2.5644<br>3.3207                                                                                                           | P60-2<br>Pressure(psia)<br>29,993.12<br>29,993.12<br>4,570.94<br>10,674.23<br>-<br>0.50<br>29,993.12<br>-                                                                                                                                                    | F2-6<br>Average<br>0.01375<br>1.939<br>0.037645<br>0.017925<br>0.028415<br>2.47995<br>2.56755<br>3.40935                                                                                                                    | _P60<br>STDEV.S<br>0.00049<br>0.17536<br>0.00272<br>0.00139<br>0.00155<br>0.00106<br>0.00445<br>0.12537<br>0.70711                                                                                                                                  |
| F2-6_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>g/mL<br>g/mL<br>%                                                                  | F2-6_<br>Value<br>0.0141<br>2.063<br>0.03572<br>0.01891<br>0.02732<br>2.4807<br>2.5707<br>3.498<br>7                                                                                                      | P60-1<br>Pressure(psia)<br>29,992.31<br>5,062.99<br>9,563.08<br>-<br>0.50<br>29,992.31<br>-<br>-                                                                                                                                                                                                                                                               | F2-6_<br>Value<br>0.0134<br>1.815<br>0.03957<br>0.01694<br>0.02951<br>2.4792<br>2.5644<br>3.3207<br>6                                                                                                      | P60-2<br>Pressure(psia)<br>29,993.12<br>29,993.12<br>4,570.94<br>10,674.23<br>-<br>0.50<br>29,993.12<br>-<br>-                                                                                                                                               | F2-6<br>Average<br>0.01375<br>1.939<br>0.037645<br>0.017925<br>0.028415<br>2.47995<br>2.56755<br>3.40935<br>6.5                                                                                                             | _P60<br>STDEV.S<br>0.00049<br>0.17536<br>0.00272<br>0.00139<br>0.00155<br>0.00106<br>0.00445<br>0.12537<br>0.70711                                                                                                                                  |
| F2-6_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>F2-6 120日間浸渍                                                                                                                                                                                                                                                                                                                                                                                                                                           | Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>g/mL<br>g/mL<br>%                                                                  | F2-6_<br>Value<br>0.0141<br>2.063<br>0.03572<br>0.01891<br>0.02732<br>2.4807<br>2.5707<br>3.498<br>7                                                                                                      | P60-1<br>Pressure(psia)<br>29,992.31<br>5,062.99<br>9,563.08<br>-<br>0.50<br>29,992.31<br>-<br>-                                                                                                                                                                                                                                                               | F2-6_<br>Value<br>0.0134<br>1.815<br>0.03957<br>0.01694<br>0.02951<br>2.4792<br>2.5644<br>3.3207<br>6<br>F2-6 B                                                                                            | P60-2<br>Pressure(psia)<br>29,993.12<br>29,993.12<br>4,570.94<br>10,674.23<br>-<br>0.50<br>29,993.12<br>-<br>-                                                                                                                                               | F2-6<br>Average<br>0.01375<br>1.939<br>0.037645<br>0.017925<br>0.028415<br>2.47995<br>2.56755<br>3.40935<br>6.5                                                                                                             | _P60<br>STDEV.S<br>0.00049<br>0.17536<br>0.00272<br>0.00139<br>0.00155<br>0.00106<br>0.00445<br>0.12537<br>0.70711<br>P120                                                                                                                          |
| F2-6_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>F2-6_120日間浸漬<br>Contents                                                                                                                                                                                                                                                                                                                                                                                                                               | Unit<br>mL/g<br>m²/g<br>µm<br>g/mL<br>g/mL<br>%<br>%                                                                   | F2-6_<br>Value<br>0.0141<br>2.063<br>0.03572<br>0.01891<br>0.02732<br>2.4807<br>2.5707<br>3.498<br>7<br>F2-6_I<br>Value                                                                                   | P60-1<br>Pressure(psia)<br>29,992.31<br>5,062.99<br>9,563.08<br>-<br>0.50<br>29,992.31<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                        | F2-6_<br>Value<br>0.0134<br>1.815<br>0.03957<br>0.01694<br>0.02951<br>2.4792<br>2.5644<br>3.3207<br>6<br>F2-6_F                                                                                            | P60-2<br>Pressure(psia)<br>29,993.12<br>29,993.12<br>4,570.94<br>10,674.23<br>-<br>0.50<br>29,993.12<br>-<br>-<br>-<br>P120-2<br>Pressure(psia)                                                                                                              | F2-6<br>Average<br>0.01375<br>1.939<br>0.037645<br>0.017925<br>0.028415<br>2.47995<br>2.56755<br>3.40935<br>6.5<br>F2-6<br>Average                                                                                          | _P60<br>STDEV.S<br>0.00049<br>0.17536<br>0.00272<br>0.00139<br>0.00155<br>0.00106<br>0.00445<br>0.12537<br>0.70711<br>P120<br>STDEV.S                                                                                                               |
| F2-6_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>F2-6_120日間浸漬<br>Contents<br>Total intrusion volume                                                                                                                                                                                                                                                                                                                                                                                                     | Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>g/mL<br>g/mL<br>g/mL<br>%<br>%<br>Unit                                             | F2-6_<br>Value<br>0.0141<br>2.063<br>0.03572<br>0.01891<br>0.02732<br>2.4807<br>2.5707<br>3.498<br>7<br>F2-6_1<br>Value<br>0.0183                                                                         | P60-1<br>Pressure(psia)<br>29,992.31<br>5,062.99<br>9,563.08<br>-<br>0.50<br>29,992.31<br>-<br>-<br>P120-1<br>Pressure(psia)<br>29,992.15                                                                                                                                                                                                                      | F2-6_<br>Value<br>0.0134<br>1.815<br>0.03957<br>0.01694<br>0.02951<br>2.4792<br>2.5644<br>3.3207<br>6<br>F2-6_F<br>Value<br>0.0171                                                                         | P60-2<br>Pressure(psia)<br>29,993.12<br>29,993.12<br>4,570.94<br>10,674.23<br>-<br>0.50<br>29,993.12<br>-<br>-<br>P120-2<br>Pressure(psia)<br>29,992.34                                                                                                      | F2-6<br>Average<br>0.01375<br>1.939<br>0.037645<br>0.017925<br>0.028415<br>2.47995<br>2.56755<br>3.40935<br>6.5<br>F2-6<br>Average<br>0.0177                                                                                | P60<br>STDEV.S<br>0.00049<br>0.17536<br>0.00272<br>0.00139<br>0.00155<br>0.00106<br>0.00445<br>0.12537<br>0.70711<br>P120<br>STDEV.S<br>0.00085                                                                                                     |
| F2-6_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>F2-6_120日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area                                                                                                                                                                                                                                                                                                                                                                                  | Unit<br>mL/g<br>μm<br>μm<br>g/mL<br>g/mL<br>%<br>%<br>%<br>Unit<br>mL/g<br>m <sup>2</sup> /g                           | F2-6_<br>Value<br>0.0141<br>2.063<br>0.03572<br>0.01891<br>0.02732<br>2.4807<br>2.5707<br>3.498<br>7<br>F2-6_I<br>Value<br>0.0183<br>2.784                                                                | P60-1<br>Pressure(psia)<br>29,992.31<br>5,062.99<br>9,563.08<br>-<br>0.50<br>29,992.31<br>-<br>-<br>29,992.31<br>-<br>-<br>29,992.31<br>-<br>-<br>29,992.31<br>-<br>-<br>29,992.31<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                            | F2-6_<br>Value<br>0.0134<br>1.815<br>0.03957<br>0.01694<br>0.02951<br>2.4792<br>2.5644<br>3.3207<br>6<br>F2-6_F<br>Value<br>0.0171<br>2.486                                                                | P60-2<br>Pressure(psia)<br>29,993.12<br>29,993.12<br>4,570.94<br>10,674.23<br>-<br>0.50<br>29,993.12<br>-<br>-<br>29,993.12<br>-<br>-<br>29,993.12<br>-<br>29,993.12<br>-<br>-<br>29,993.12<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | F2-6<br>Average<br>0.01375<br>1.939<br>0.037645<br>0.017925<br>0.028415<br>2.47995<br>2.56755<br>3.40935<br>6.5<br>F2-6<br>Average<br>0.0177<br>2.635                                                                       | P60<br>STDEV.S<br>0.00049<br>0.17536<br>0.00272<br>0.00139<br>0.00155<br>0.00106<br>0.00445<br>0.12537<br>0.70711<br>P120<br>STDEV.S<br>0.00085<br>0.21072                                                                                          |
| F2-6_60日間浸漬         Contents         Total intrusion volume         Total pore area         Median pore diameter (volume) at 0.001 mL/         Median pore diameter (area) at 0.000 m²/g         Average pore diameter (area) at 0.000 m²/g         Average pore diameter (4V/A)         Bulk density at 0.50 psia         Apparent (skeletal) density         Porosity:         Stem volume         F2-6_120日間浸漬         Contents         Total intrusion volume         Total pore area         Median pore diameter (volume) at 0.001 mL                                                                                                                                                                                                       | Unit<br>mL/g<br>m²/g<br>μm<br>g/mL<br>g/mL<br>g/mL<br>%<br>%<br>Unit<br>mL/g<br>m²/g<br>um                             | F2-6_<br>Value<br>0.0141<br>2.063<br>0.03572<br>0.01891<br>0.02732<br>2.4807<br>2.5707<br>3.498<br>7<br>F2-6_1<br>Value<br>0.0183<br>2.784<br>0.03536                                                     | P60-1<br>Pressure(psia)<br>29,992.31<br>29,992.31<br>5,062.99<br>9,563.08<br>-<br>0.50<br>29,992.31<br>-<br>P120-1<br>Pressure(psia)<br>29,992.15<br>29,992.15<br>5,114.20                                                                                                                                                                                     | F2-6_<br>Value<br>0.0134<br>1.815<br>0.03957<br>0.01694<br>0.02951<br>2.4792<br>2.5644<br>3.3207<br>6<br>F2-6_F<br>Value<br>0.0171<br>2.486<br>0.03212                                                     | P60-2<br>Pressure(psia)<br>29,993.12<br>29,993.12<br>4,570.94<br>10,674.23<br>-<br>0.50<br>29,993.12<br>-<br>-<br>P120-2<br>Pressure(psia)<br>29,992.34<br>29,992.34<br>5,630.16                                                                             | F2-6<br>Average<br>0.01375<br>1.939<br>0.037645<br>0.017925<br>0.028415<br>2.47995<br>2.56755<br>3.40935<br>6.5<br>F2-6<br>Average<br>0.0177<br>2.635<br>0.03374                                                            | _P60<br>STDEV.S<br>0.00049<br>0.17536<br>0.00272<br>0.00139<br>0.00155<br>0.00106<br>0.00445<br>0.12537<br>0.70711<br>-P120<br>STDEV.S<br>0.00085<br>0.21072<br>0.00229                                                                             |
| F2-6_60日間浸漬         Contents         Total intrusion volume         Total pore area         Median pore diameter (volume) at 0.001 mL/         Median pore diameter (area) at 0.000 m²/g         Average pore diameter (4V/A)         Bulk density at 0.50 psia         Apparent (skeletal) density         Porosity:         Stem volume         F2-6_120日間浸漬         Contents         Total intrusion volume         Total pore area         Median pore diameter (volume) at 0.001 mL/         Median pore diameter (area) at 0.000 m²/g                                                                                                                                                                                                       | Unit<br>mL/g<br>m²/g<br>μm<br>g/mL<br>g/mL<br>g/mL<br>%<br>%<br>Unit<br>mL/g<br>m²/g<br>μm                             | F2-6_<br>Value<br>0.0141<br>2.063<br>0.03572<br>0.01891<br>0.02732<br>2.4807<br>2.5707<br>3.498<br>7<br>F2-6_I<br>Value<br>0.0183<br>2.784<br>0.03536<br>0.01871                                          | P60-1<br>Pressure(psia)<br>29,992.31<br>5,062.99<br>9,563.08<br>-<br>0.50<br>29,992.31<br>-<br>-<br>29,992.31<br>-<br>-<br>29,992.31<br>-<br>Pressure(psia)<br>29,992.15<br>5,114.20<br>9,668.41                                                                                                                                                               | F2-6_<br>Value<br>0.0134<br>1.815<br>0.03957<br>0.01694<br>0.02951<br>2.4792<br>2.5644<br>3.3207<br>6<br>F2-6_F<br>Value<br>0.0171<br>2.486<br>0.03212<br>0.01969                                          | P60-2<br>Pressure(psia)<br>29,993.12<br>29,993.12<br>4,570.94<br>10,674.23<br>-<br>0.50<br>29,993.12<br>-<br>-<br>29,993.12<br>-<br>Pressure(psia)<br>29,992.34<br>29,992.34<br>5,630.16<br>9,183,78                                                         | F2-6<br>Average<br>0.01375<br>1.939<br>0.037645<br>0.017925<br>0.028415<br>2.47995<br>2.56755<br>3.40935<br>6.5<br>F2-6<br>Average<br>0.0177<br>2.635<br>0.03374<br>0.0192                                                  | _P60<br>STDEV.S<br>0.00049<br>0.17536<br>0.00272<br>0.00139<br>0.00155<br>0.00106<br>0.00445<br>0.12537<br>0.70711<br>P120<br>STDEV.S<br>0.00085<br>0.21072<br>0.000229<br>0.00069                                                                  |
| F2-6_60日間浸漬         Contents         Total intrusion volume         Total pore area         Median pore diameter (volume) at 0.001 mL/         Median pore diameter (area) at 0.000 m²/g         Average pore diameter (4V/A)         Bulk density at 0.50 psia         Apparent (skeletal) density         Porosity:         Stem volume         Total intrusion volume         Total pore area         Median pore diameter (volume) at 0.001 mL/         Median pore diameter (area) at 0.000 m²/g         Average pore diameter (4V/A)                                                                                                                                                                                                        | Unit<br>mL/g<br>m²/g<br>µm<br>g/mL<br>g/mL<br>g/mL<br>%<br>%<br>Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>µm                 | F2-6_<br>Value<br>0.0141<br>2.063<br>0.03572<br>0.01891<br>0.02732<br>2.4807<br>2.5707<br>3.498<br>7<br>F2-6_f<br>Value<br>0.0183<br>2.784<br>0.03536<br>0.01871<br>0.02631                               | P60-1<br>Pressure(psia)<br>29,992.31<br>5,062.99<br>9,563.08<br>-<br>0.50<br>29,992.31<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                        | F2-6_<br>Value<br>0.0134<br>1.815<br>0.03957<br>0.01694<br>0.02951<br>2.4792<br>2.5644<br>3.3207<br>6<br>F2-6_F<br>Value<br>0.0171<br>2.486<br>0.03212<br>0.01969<br>0.02745                               | P60-2<br>Pressure(psia)<br>29,993.12<br>29,993.12<br>4,570.94<br>10,674.23<br>-<br>0.50<br>29,993.12<br>-<br>-<br>2120-2<br>Pressure(psia)<br>29,992.34<br>29,992.34<br>5,630.16<br>9,183.78                                                                 | F2-6<br>Average<br>0.01375<br>1.939<br>0.037645<br>0.017925<br>0.028415<br>2.47995<br>2.56755<br>3.40935<br>6.5<br>F2-6<br>Average<br>0.0177<br>2.635<br>0.03374<br>0.0192<br>0.02688                                       | P60<br>STDEV.S<br>0.00049<br>0.17536<br>0.00272<br>0.00139<br>0.00155<br>0.00106<br>0.00445<br>0.12537<br>0.70711<br>P120<br>STDEV.S<br>0.00085<br>0.21072<br>0.00029<br>0.00069<br>0.00081                                                         |
| F2-6_60日間浸漬         Contents         Total intrusion volume         Total pore area         Median pore diameter (volume) at 0.001 mL/         Median pore diameter (area) at 0.000 m²/g         Average pore diameter (4V/A)         Bulk density at 0.50 psia         Apparent (skeletal) density         Porosity:         Stem volume         Total intrusion volume         Total pore area         Median pore diameter (volume) at 0.001 mL/         Median pore diameter (volume) at 0.001 mL/         Median pore diameter (4V/A)         Bulk density at 0.50 psia                                                                                                                                                                      | Unit<br>mL/g<br>m²/g<br>µm<br>g/mL<br>g/mL<br>%<br>%<br>%<br>Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>µm                    | F2-6_<br>Value<br>0.0141<br>2.063<br>0.03572<br>0.01891<br>0.02732<br>2.4807<br>2.5707<br>3.498<br>7<br>F2-6_1<br>Value<br>0.0183<br>2.784<br>0.03536<br>0.01871<br>0.02631<br>2.4573                     | P60-1<br>Pressure(psia)<br>29,992.31<br>5,062.99<br>9,563.08<br>-<br>0.50<br>29,992.31<br>-<br>-<br>Pressure(psia)<br>29,992.15<br>29,992.15<br>5,114.20<br>9,668.41<br>-<br>0.50                                                                                                                                                                              | F2-6_<br>Value<br>0.0134<br>1.815<br>0.03957<br>0.01694<br>0.02951<br>2.4792<br>2.5644<br>3.3207<br>6<br>F2-6_F<br>Value<br>0.0171<br>2.486<br>0.03212<br>0.01969<br>0.02745<br>2.4613                     | P60-2<br>Pressure(psia)<br>29,993.12<br>29,993.12<br>4,570.94<br>10,674.23<br>-<br>0.50<br>29,993.12<br>-<br>Pressure(psia)<br>29,992.34<br>29,992.34<br>5,630.16<br>9,183.78<br>-<br>0.50                                                                   | F2-6<br>Average<br>0.01375<br>1.939<br>0.037645<br>0.017925<br>0.028415<br>2.47995<br>2.56755<br>3.40935<br>6.5<br>7<br>F2-6<br>Average<br>0.0177<br>2.635<br>0.03374<br>0.0192<br>0.02688<br>2.4593                        | P60<br>STDEV.S<br>0.00049<br>0.17536<br>0.00272<br>0.00139<br>0.00155<br>0.00166<br>0.00445<br>0.12537<br>0.70711<br>P120<br>STDEV.S<br>0.00085<br>0.21072<br>0.00229<br>0.00069<br>0.00081<br>0.00283                                              |
| F2-6_60日間浸漬         Contents         Total intrusion volume         Total pore area         Median pore diameter (volume) at 0.001 mL/         Median pore diameter (area) at 0.000 m²/g         Average pore diameter (4V/A)         Bulk density at 0.50 psia         Apparent (skeletal) density         Porosity:         Stem volume         F2-6_120日間浸漬         Contents         Total intrusion volume         Total pore area         Median pore diameter (volume) at 0.001 mL/         Median pore diameter (volume) at 0.000 m²/g         Average pore diameter (4V/A)         Bulk density at 0.50 psia         Apparent (skeletal) density                                                                                          | Unit<br>mL/g<br>m²/g<br>µm<br>g/mL<br>g/mL<br>g/mL<br>%<br>%<br>Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>µm<br>g/mL<br>g/mL | F2-6_<br>Value<br>0.0141<br>2.063<br>0.03572<br>0.01891<br>0.02732<br>2.4807<br>2.5707<br>3.498<br>7<br>F2-6_f<br>Value<br>0.0183<br>2.784<br>0.03536<br>0.01871<br>0.02631<br>2.4573<br>2.5731           | P60-1<br>Pressure(psia)<br>29,992.31<br>5,062.99<br>9,563.08<br>-<br>0.50<br>29,992.31<br>-<br>-<br>P120-1<br>Pressure(psia)<br>29,992.15<br>5,114.20<br>9,668.41<br>-<br>0.50<br>29,992.15                                                                                                                                                                    | F2-6_<br>Value<br>0.0134<br>1.815<br>0.03957<br>0.01694<br>0.02951<br>2.4792<br>2.5644<br>3.3207<br>6<br>F2-6_f<br>Value<br>0.0171<br>2.486<br>0.03212<br>0.01969<br>0.02745<br>2.4613<br>2.5692           | P60-2<br>Pressure(psia)<br>29,993.12<br>29,993.12<br>4,570.94<br>10,674.23<br>-<br>0.50<br>29,993.12<br>-<br>P120-2<br>Pressure(psia)<br>29,992.34<br>29,992.34<br>5,630.16<br>9,183.78<br>-<br>0.50<br>29,992.34                                            | F2-6<br>Average<br>0.01375<br>1.939<br>0.037645<br>0.017925<br>0.028415<br>2.47995<br>2.56755<br>3.40935<br>6.5<br>F2-6<br>Average<br>0.0177<br>2.635<br>0.03374<br>0.0192<br>0.02688<br>2.4593<br>2.57115                  | P60<br>STDEV.S<br>0.00049<br>0.17536<br>0.00272<br>0.00139<br>0.00155<br>0.00106<br>0.00445<br>0.12537<br>0.70711<br>P120<br>STDEV.S<br>0.00085<br>0.21072<br>0.00085<br>0.21072<br>0.00029<br>0.00069<br>0.00081<br>0.00283<br>0.00276             |
| F2-6_60日間浸漬         Contents         Total intrusion volume         Total pore area         Median pore diameter (volume) at 0.001 mL/         Median pore diameter (area) at 0.000 m²/g         Average pore diameter (4V/A)         Bulk density at 0.50 psia         Apparent (skeletal) density         Porosity:         Stem volume         F2-6_120日間浸漬         Contents         Total intrusion volume         Total pore area         Median pore diameter (volume) at 0.001 mL/         Median pore diameter (volume) at 0.001 mL/         Median pore diameter (area) at 0.000 m²/g         Average pore diameter (4V/A)         Bulk density at 0.50 psia         Apparent (skeletal) density         Porosity:                       | Unit<br>mL/g<br>m²/g<br>µm<br>g/mL<br>g/mL<br>g/mL<br>%<br>%<br>Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>µm<br>g/mL<br>g/mL | F2-6_<br>Value<br>0.0141<br>2.063<br>0.03572<br>0.01891<br>0.02732<br>2.4807<br>2.5707<br>3.498<br>7<br>F2-6_1<br>Value<br>0.0183<br>2.784<br>0.03536<br>0.01871<br>0.02631<br>2.4573<br>2.5731<br>4.5004 | P60-1<br>Pressure(psia)<br>29,992.31<br>5,062.99<br>9,563.08<br>-<br>0.50<br>29,992.31<br>-<br>-<br>P120-1<br>Pressure(psia)<br>29,992.15<br>5,114.20<br>9,668.41<br>-<br>0.50<br>29,992.15<br>-                                                                                                                                                               | F2-6_<br>Value<br>0.0134<br>1.815<br>0.03957<br>0.01694<br>0.02951<br>2.4792<br>2.5644<br>3.3207<br>6<br>F2-6_F<br>Value<br>0.0171<br>2.486<br>0.03212<br>0.01969<br>0.02745<br>2.4613<br>2.5692<br>4.1988 | P60-2<br>Pressure(psia)<br>29,993.12<br>29,993.12<br>4,570.94<br>10,674.23<br>-<br>0.50<br>29,993.12<br>-<br>Pressure(psia)<br>29,992.34<br>5,630.16<br>9,183.78<br>-<br>0.50<br>29,992.34<br>-                                                              | F2-6<br>Average<br>0.01375<br>1.939<br>0.037645<br>0.017925<br>0.028415<br>2.47995<br>2.56755<br>3.40935<br>6.5<br>F2-6<br>Average<br>0.0177<br>2.635<br>0.03374<br>0.0192<br>0.02688<br>2.4593<br>2.57115<br>4.3496        | P60<br>STDEV.S<br>0.00049<br>0.17536<br>0.00272<br>0.00139<br>0.00155<br>0.00106<br>0.00445<br>0.12537<br>0.70711<br>P120<br>STDEV.S<br>0.00085<br>0.21072<br>0.00029<br>0.00069<br>0.00081<br>0.00283<br>0.00276<br>0.21326                        |
| F2-6_60日間浸漬         Contents         Total intrusion volume         Total pore area         Median pore diameter (volume) at 0.001 mL/         Median pore diameter (area) at 0.000 m²/g         Average pore diameter (4V/A)         Bulk density at 0.50 psia         Apparent (skeletal) density         Porosity:         Stem volume         F2-6_120日間浸漬         Contents         Total intrusion volume         Total pore area         Median pore diameter (volume) at 0.001 mL/         Median pore diameter (volume) at 0.001 mL/         Median pore diameter (volume) at 0.000 m²/g         Average pore diameter (4V/A)         Bulk density at 0.50 psia         Apparent (skeletal) density         Porosity:         Stem volume | Unit<br>mL/g<br>m²/g<br>µm<br>g/mL<br>g/mL<br>g/mL<br>%<br>0%                                                          | F2-6_<br>Value<br>0.0141<br>2.063<br>0.03572<br>0.01891<br>0.02732<br>2.4807<br>2.5707<br>3.498<br>7<br>F2-6_1<br>Value<br>0.0183<br>2.784<br>0.03536<br>0.01871<br>0.02631<br>2.4573<br>2.5731<br>4.5004 | P60-1<br>Pressure(psia)<br>29,992.31<br>5,062.99<br>9,563.08<br>-<br>0.50<br>29,992.31<br>-<br>-<br>29,992.31<br>-<br>-<br>29,992.31<br>-<br>-<br>29,992.15<br>5,114.20<br>9,668.41<br>-<br>0.50<br>29,992.15<br>-<br>-<br>0.50<br>29,992.15<br>-<br>-<br>0.50<br>29,992.15<br>-<br>-<br>0.50<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | F2-6_<br>Value<br>0.0134<br>1.815<br>0.03957<br>0.01694<br>0.02951<br>2.4792<br>2.5644<br>3.3207<br>6<br>F2-6_F<br>Value<br>0.0171<br>2.486<br>0.03212<br>0.01969<br>0.02745<br>2.4613<br>2.5692<br>4.1988 | P60-2 Pressure(psia) 29,993.12 29,993.12 4,570.94 10,674.23 - 0.50 29,993.12 - Pressure(psia) 29,992.34 29,992.34 5,630.16 9,183.78 - 0.50 29,992.34 - 0.50 29,992.34                                                                                        | F2-6<br>Average<br>0.01375<br>1.939<br>0.037645<br>0.017925<br>0.028415<br>2.47995<br>2.56755<br>3.40935<br>6.5<br>F2-6<br>Average<br>0.0177<br>2.635<br>0.03374<br>0.0192<br>0.02688<br>2.4593<br>2.57115<br>4.3496<br>7 5 | P60<br>STDEV.S<br>0.00049<br>0.17536<br>0.00272<br>0.00139<br>0.00155<br>0.00106<br>0.00445<br>0.12537<br>0.70711<br>P120<br>STDEV.S<br>0.00085<br>0.21072<br>0.00029<br>0.00069<br>0.00081<br>0.00283<br>0.00276<br>0.21326<br>0.21326<br>0.270711 |

## 表 1.9-7 F 2-6 のポロシメータ測定結果



図 1.9-6 F 2-6の間隙径分布 (a)・(b) 未浸漬、 (c)・(d) 30 日浸漬、 (e)・(f) 60 日浸漬、 (g)・(h) 120 日浸漬

| G1-3_浸漬前         G1-3_Pb-1         G1-3_Pb-2         G1-3_F           Contents         Unit         Value         Pressure(psia)         Value         Pressure(psia)         Average         S           Total intrusion volume         mL/g         0.0026         29,992.43         0.0034         29,992.41         0.003           Total pore area         m²/g         0.186         29,992.43         0.382         29,992.41         0.284           Median pore diameter (volume) at 0.001 mL/μm         5.3817         33.61         0.05014         3,607.08         2.71592                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 01.0                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                        |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Contents         Unit         Value         Pressure(psia)         Value         Pressure(psia)         Average         S           Total intrusion volume         mL/g         0.0026         29,992.43         0.0034         29,992.41         0.003           Total pore area         m²/g         0.186         29,992.43         0.382         29,992.41         0.284           Median pore diameter (volume) at 0.001 mL/         μm         5.3817         33.61         0.05014         3,607.08         2.71592                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | G1-3                                                                                                                                                                                                                                                      | _Pb-2                                                                                                                                                                                                                          | G1-3_                                                                                                                                                                                                                   | _Pb-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | G1-3                                                                                                                                                                                                                   |                                                                                                                                       | G1-3_浸漬前                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Total intrusion volume         mL/g         0.0026         29,992.43         0.0034         29,992.41         0.003           Total pore area         m²/g         0.186         29,992.43         0.382         29,992.41         0.284           Median pore diameter (volume) at 0.001 mL/         μm         5.3817         33.61         0.05014         3,607.08         2.71592                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | STDEV.S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Average                                                                                                                                                                                                                                                   | Pressure(psia)                                                                                                                                                                                                                 | Value                                                                                                                                                                                                                   | Pressure(psia)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Value                                                                                                                                                                                                                  | Unit                                                                                                                                  | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Total pore area         m²/g         0.186         29,992.43         0.382         29,992.41         0.284           Median pore diameter (volume) at 0.001 mL/μm         5.3817         33.61         0.05014         3,607.08         2.71592                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.003                                                                                                                                                                                                                                                     | 29,992.41                                                                                                                                                                                                                      | 0.0034                                                                                                                                                                                                                  | 29,992.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0026                                                                                                                                                                                                                 | mL/g                                                                                                                                  | Total intrusion volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Median pore diameter (volume) at 0.001 mL, μm 5.3817 33.61 0.05014 3,607.08 2.71592                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.13859                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.284                                                                                                                                                                                                                                                     | 29,992.41                                                                                                                                                                                                                      | 0.382                                                                                                                                                                                                                   | 29,992.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.186                                                                                                                                                                                                                  | m²/g                                                                                                                                  | Total pore area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.76998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.71592                                                                                                                                                                                                                                                   | 3,607.08                                                                                                                                                                                                                       | 0.05014                                                                                                                                                                                                                 | 33.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.3817                                                                                                                                                                                                                 | μm                                                                                                                                    | Median pore diameter (volume) at 0.001 mL/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Median pore diameter (area) at 0.000 m <sup>2</sup> /g μm 0.03066 5,899.35 0.02313 7,820.43 0.026895                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00532                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.026895                                                                                                                                                                                                                                                  | 7,820.43                                                                                                                                                                                                                       | 0.02313                                                                                                                                                                                                                 | 5,899.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.03066                                                                                                                                                                                                                | μm                                                                                                                                    | Median pore diameter (area) at 0.000 m²/g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Average pore diameter (4V/A) μm 0.05517 - 0.03561 - 0.04539 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.013831                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.04539                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                              | 0.03561                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.05517                                                                                                                                                                                                                | μm                                                                                                                                    | Average pore diameter (4V/A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Bulk density at 0.50 psia g/mL 2.6194 0.49 2.6143 0.49 2.61685                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00361                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.61685                                                                                                                                                                                                                                                   | 0.49                                                                                                                                                                                                                           | 2.6143                                                                                                                                                                                                                  | 0.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.6194                                                                                                                                                                                                                 | g/mL                                                                                                                                  | Bulk density at 0.50 psia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Apparent (skeletal) density g/mL 2.6371 29,992.43 2.6378 29,992.41 2.63745                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.63745                                                                                                                                                                                                                                                   | 29,992.41                                                                                                                                                                                                                      | 2.6378                                                                                                                                                                                                                  | 29,992.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.6371                                                                                                                                                                                                                 | g/mL                                                                                                                                  | Apparent (skeletal) density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Porosity: % 0.6721 - 0.8898 - 0.78095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.15394                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.78095                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                              | 0.8898                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.6721                                                                                                                                                                                                                 | %                                                                                                                                     | Porosity:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Stem volume % 1 - 2 - 1.5 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .7071068                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.5                                                                                                                                                                                                                                                       | _                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                      | %                                                                                                                                     | Stem volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                        |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| G1-3 30日間浸清 G1-3 P30-1 G1-3 P30-2 G1-3 P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <sup>2</sup> 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | G1-3                                                                                                                                                                                                                                                      | P30-2                                                                                                                                                                                                                          | G1-3                                                                                                                                                                                                                    | P30-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | G1-3                                                                                                                                                                                                                   |                                                                                                                                       | G1-3 30日間浸清                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Contents Unit Value Pressure(psia) Value Pressure(psia) Average S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STDEV.S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Average                                                                                                                                                                                                                                                   | Pressure(psia)                                                                                                                                                                                                                 | Value                                                                                                                                                                                                                   | Pressure(psia)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Value                                                                                                                                                                                                                  | Unit                                                                                                                                  | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Total intrusion volume ml /g 0.0105 29.991.72 0.0111 29.991.61 0.0108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0108                                                                                                                                                                                                                                                    | 29.991.61                                                                                                                                                                                                                      | 0.0111                                                                                                                                                                                                                  | 29.991.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0105                                                                                                                                                                                                                 | ml /g                                                                                                                                 | Total intrusion volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Total pore area         m²/g         1.025         29.991.72         1.083         29.991.61         1.054                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.04101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.054                                                                                                                                                                                                                                                     | 29,991.61                                                                                                                                                                                                                      | 1.083                                                                                                                                                                                                                   | 29,991,72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.025                                                                                                                                                                                                                  | m²/g                                                                                                                                  | Total pore area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Median pore diameter (volume) at 0.001 ml um 0.04452 4.062 52 0.04954 3.650.87 0.04703                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00355                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.04703                                                                                                                                                                                                                                                   | 3 650 87                                                                                                                                                                                                                       | 0.04954                                                                                                                                                                                                                 | 4 062 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.04452                                                                                                                                                                                                                | , 8                                                                                                                                   | Median pore diameter (volume) at 0.001 mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Median pore diameter (area) at 0.000 m <sup>2</sup> /g $\mu$ m 0.02696 6.709 31 0.02325 7.780 34 0.025105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.025105                                                                                                                                                                                                                                                  | 7 780 34                                                                                                                                                                                                                       | 0.01301                                                                                                                                                                                                                 | 6 709 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.02696                                                                                                                                                                                                                | um                                                                                                                                    | Median pore diameter (area) at 0.000 $m^2/\sigma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Average pore diameter (4V/A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.000202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.020100                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                              | 0.02025                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.02090                                                                                                                                                                                                                | μm                                                                                                                                    | Average nore diameter $(4V/A)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Bulk density at 0.50 psia         g/ml         2.4012         0.50         2.4893         0.50         2.40025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 / 9025                                                                                                                                                                                                                                                  | 0.50                                                                                                                                                                                                                           | 2 /893                                                                                                                                                                                                                  | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 /912                                                                                                                                                                                                                 | g/ml                                                                                                                                  | Bulk density at 0.50 psia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Apparent (skolotal) density g/ml 2,558 20,001 72 2,5508 20,001 61 2,5580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0010-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.43023                                                                                                                                                                                                                                                   | 20 001 61                                                                                                                                                                                                                      | 2.4055                                                                                                                                                                                                                  | 20 001 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.4512                                                                                                                                                                                                                 | g/mL                                                                                                                                  | Apparent (skolotal) density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| AUUdieu Skeleidu ueusuv 2/10 / 100 / 100 / 1000 / 1000 / 1000 / 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.0009                                                                                                                                                                                                                                                    | 29,991.01                                                                                                                                                                                                                      | 2.0090                                                                                                                                                                                                                  | 29,991.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.000                                                                                                                                                                                                                  | g/IIIL                                                                                                                                | Apparent (skeletal) density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 6022                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                | 2 7527                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 6107                                                                                                                                                                                                                 | 0/.                                                                                                                                   | Dorosity:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Porosity:         %         2.6107         -         2.7537         -         2.6822           Stam volume         %         4         5         4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.10112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.6822                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                              | 2.7537                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.6107                                                                                                                                                                                                                 | %                                                                                                                                     | Porosity:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Porosity:         %         2.6107         -         2.7537         -         2.6822         Stem volume         %         4         -         5         -         4.5         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.10112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.6822<br>4.5                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                              | 2.7537<br>5                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.6107                                                                                                                                                                                                                 | %                                                                                                                                     | Porosity:<br>Stem volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Porosity:         %         2.6107         -         2.7537         -         2.6822         Stem volume         %         4         -         5         -         4.5         G1-3 P60-1         G1-3 P60-2         G1-3 P60-2 <td>0.10112</td> <td>2.6822<br/>4.5</td> <td>-<br/>-<br/>P60-2</td> <td>2.7537<br/>5</td> <td>-<br/>-<br/>P60-1</td> <td>2.6107</td> <td>%</td> <td>Porosity:<br/>Stem volume</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.10112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.6822<br>4.5                                                                                                                                                                                                                                             | -<br>-<br>P60-2                                                                                                                                                                                                                | 2.7537<br>5                                                                                                                                                                                                             | -<br>-<br>P60-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.6107                                                                                                                                                                                                                 | %                                                                                                                                     | Porosity:<br>Stem volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Porosity:         %         2.6107         -         2.7537         -         2.6822         -           Stem volume         %         4         -         5         -         4.5         -         4.5           G1-3_60日間浸漬         G1-3_P60-1         G1-3_P60-2         G1-3_P         G1-3_P         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00127<br>0.10112<br>0.70711<br>260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.6822<br>4.5<br>G1-3                                                                                                                                                                                                                                     | -<br>-<br>P60-2<br>Pressure(psia)                                                                                                                                                                                              | 2.7537<br>5<br>G1-3_                                                                                                                                                                                                    | -<br>-<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.6107<br>4<br>G1-3_                                                                                                                                                                                                   | %                                                                                                                                     | Porosity:<br>Stem volume<br>G1-3_60日間浸漬                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Porosity:         %         2.6107         -         2.7537         -         2.6822         -           Stem volume         %         4         -         5         -         4.5         -         4.5         -         -         4.5         -         -         4.5         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <td>0.00127<br/>0.10112<br/>0.70711<br/>260<br/>3TDEV.S</td> <td>2.6822<br/>4.5<br/>G1-3<br/>Average</td> <td>-<br/>-<br/>P60-2<br/>Pressure(psia)</td> <td>2.7537<br/>5<br/>G1-3_<br/>Value</td> <td>-<br/>-<br/>P60-1<br/>Pressure(psia)</td> <td>2.6107<br/>4<br/>G1-3_<br/>Value</td> <td>%<br/>%<br/>Unit</td> <td>Porosity:<br/>Stem volume<br/>G1-3_60日間浸漬<br/>Contents<br/>Total intrusion volume</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00127<br>0.10112<br>0.70711<br>260<br>3TDEV.S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.6822<br>4.5<br>G1-3<br>Average                                                                                                                                                                                                                          | -<br>-<br>P60-2<br>Pressure(psia)                                                                                                                                                                                              | 2.7537<br>5<br>G1-3_<br>Value                                                                                                                                                                                           | -<br>-<br>P60-1<br>Pressure(psia)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.6107<br>4<br>G1-3_<br>Value                                                                                                                                                                                          | %<br>%<br>Unit                                                                                                                        | Porosity:<br>Stem volume<br>G1-3_60日間浸漬<br>Contents<br>Total intrusion volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Porosity:         %         2.6107         -         2.7537         -         2.6822         -           Stem volume         %         4         -         5         -         4.5         -         4.5         -         -         4.5         -         -         4.5         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <td>0.00127<br/>0.10112<br/>0.70711<br/>&gt;60<br/>\$TDEV.S<br/>0.00198</td> <td>2.6822<br/>4.5<br/>G1-3<br/>Average<br/>0.0126</td> <td>-<br/>-<br/>P60-2<br/>Pressure(psia)<br/>29,991.25<br/>29,991.25</td> <td>2.7537<br/>5<br/>G1-3_<br/>Value<br/>0.0112<br/>1 158</td> <td>-<br/>P60-1<br/>Pressure(psia)<br/>29,992.27</td> <td>2.6107<br/>4<br/>G1-3_<br/>Value<br/>0.014</td> <td>%<br/>%<br/>Unit<br/>mL/g<br/>m²/g</td> <td>Porosity:<br/>Stem volume<br/>G1-3_60日間浸漬<br/>Contents<br/>Total intrusion volume<br/>Total popo area</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00127<br>0.10112<br>0.70711<br>>60<br>\$TDEV.S<br>0.00198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.6822<br>4.5<br>G1-3<br>Average<br>0.0126                                                                                                                                                                                                                | -<br>-<br>P60-2<br>Pressure(psia)<br>29,991.25<br>29,991.25                                                                                                                                                                    | 2.7537<br>5<br>G1-3_<br>Value<br>0.0112<br>1 158                                                                                                                                                                        | -<br>P60-1<br>Pressure(psia)<br>29,992.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.6107<br>4<br>G1-3_<br>Value<br>0.014                                                                                                                                                                                 | %<br>%<br>Unit<br>mL/g<br>m²/g                                                                                                        | Porosity:<br>Stem volume<br>G1-3_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total popo area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Porosity:       %       2.6107       -       2.7537       -       2.6822         Stem volume       %       4       -       5       -       4.5         G1-3_60日間浸漬       G1-3_P60-1       G1-3_P60-2       G1-3_P         Contents       Unit       Value       Pressure(psia)       Value       Pressure(psia)       Average       S         Total intrusion volume       mL/g       0.014       29,992.27       0.0112       29,991.25       0.0126         Total pore area       m²/g       1.327       29,992.27       1.158       29,991.25       1.2425                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00127<br>0.10112<br>0.70711<br>>60<br>\$TDEV.S<br>0.00198<br>0.11950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.6822<br>4.5<br>G1-3<br>Average<br>0.0126<br>1.2425<br>0.055305                                                                                                                                                                                          | -<br>P60-2<br>Pressure(psia)<br>29,991.25<br>29,991.25<br>3 404 52                                                                                                                                                             | 2.7537<br>5<br>G1-3_<br>Value<br>0.0112<br>1.158                                                                                                                                                                        | -<br>P60-1<br>Pressure(psia)<br>29,992.27<br>29,992.27<br>3 146 08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.6107<br>4<br>G1-3_<br>Value<br>0.014<br>1.327                                                                                                                                                                        | %<br>%<br>Unit<br>mL/g<br>m²/g                                                                                                        | Porosity:<br>Stem volume<br>G1-3_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Medica pore diameter (volume) at 0.001 mL                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Porosity:       %       2.600       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000112       2.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00127<br>0.10112<br>0.70711<br>>60<br>\$TDEV.\$<br>0.00198<br>0.11950<br>0.00309                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.6822<br>4.5<br>G1-3<br>Average<br>0.0126<br>1.2425<br>0.055305                                                                                                                                                                                          | -<br>Pessure(psia)<br>29,991.25<br>29,991.25<br>3,404.52<br>6 612.52                                                                                                                                                           | 2.7537<br>5<br>G1-3_<br>Value<br>0.0112<br>1.158<br>0.05312<br>0.02725                                                                                                                                                  | -<br>P60-1<br>Pressure(psia)<br>29,992.27<br>29,992.27<br>3,146.08<br>7,442.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.6107<br>4<br>G1-3_<br>Value<br>0.014<br>1.327<br>0.05749                                                                                                                                                             | %<br>%<br>Unit<br>mL/g<br>m²/g<br>μm                                                                                                  | Porosity:<br>Stem volume<br>G1-3_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (volume) at 0.001 mL/                                                                                                                                                                                                                                                                                                                                                                                        |
| Porosity:         %         2.600         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00127<br>0.10112<br>0.70711<br>2260<br>3TDEV.S<br>0.00198<br>0.11950<br>0.00309<br>0.00216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.6822<br>4.5<br>G1-3<br>Average<br>0.0126<br>1.2425<br>0.055305<br>0.025825                                                                                                                                                                              | -<br>Pressure(psia)<br>29,991.25<br>29,991.25<br>3,404.52<br>6,613.53                                                                                                                                                          | 2.7537<br>5<br>G1-3_<br>Value<br>0.0112<br>1.158<br>0.05312<br>0.02735<br>0.02735                                                                                                                                       | -<br>P60-1<br>Pressure(psia)<br>29,992.27<br>29,992.27<br>3,146.08<br>7,443.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.6107<br>4<br>G1-3_<br>Value<br>0.014<br>1.327<br>0.05749<br>0.0243                                                                                                                                                   | %<br>%<br>Unit<br>mL/g<br>m²/g<br>μm<br>μm                                                                                            | Porosity:<br>Stem volume<br>G1-3_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g                                                                                                                                                                                                                                                                                                                                                                                         |
| Porosity:         %         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00127<br>0.10112<br>0.70711<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTOR<br>CONTRACTO | 2.6822<br>4.5<br>G1-3<br>Average<br>0.0126<br>1.2425<br>0.055305<br>0.025825<br>0.025825<br>0.04052                                                                                                                                                       | -<br>P60-2<br>Pressure(psia)<br>29,991.25<br>3,404.52<br>6,613.53<br>-                                                                                                                                                         | 2.7537<br>5<br>G1-3_<br>Value<br>0.0112<br>1.158<br>0.05312<br>0.02735<br>0.03878<br>2.4662                                                                                                                             | -<br>P60-1<br>Pressure(psia)<br>29,992.27<br>29,992.27<br>3,146.08<br>7,443.08<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.6107<br>4<br>G1-3_<br>Value<br>0.014<br>1.327<br>0.05749<br>0.0243<br>0.04226<br>2.4412                                                                                                                              | %<br>%<br>Unit<br>mL/g<br>μm<br>μm<br>μm                                                                                              | Porosity:<br>Stem volume<br>G1-3_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)                                                                                                                                                                                                                                                                                                                                                         |
| Porosity:         %         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.6000         2.600         2.600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00127<br>0.10112<br>0.70711<br>260<br>3TDEV.S<br>0.00198<br>0.11950<br>0.00309<br>0.00216<br>0.00246<br>0.00361                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.6822<br>4.5<br>G1-3<br>Average<br>0.0126<br>1.2425<br>0.055305<br>0.025825<br>0.025825<br>0.04052<br>2.46375                                                                                                                                            | -<br>P60-2<br>Pressure(psia)<br>29,991.25<br>3,404.52<br>6,613.53<br>-<br>0.50                                                                                                                                                 | 2.7537<br>5<br>G1-3_<br>Value<br>0.0112<br>1.158<br>0.05312<br>0.02735<br>0.03878<br>2.4663                                                                                                                             | -<br>P60-1<br>Pressure(psia)<br>29,992.27<br>29,992.27<br>3,146.08<br>7,443.08<br>-<br>0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.6107<br>4<br>G1-3_<br>Value<br>0.014<br>1.327<br>0.05749<br>0.0243<br>0.04226<br>2.4612                                                                                                                              | %<br>%<br>Unit<br>mL/g<br>m²/g<br>μm<br>μm<br>μm<br>g/mL                                                                              | Porosity:<br>Stem volume<br>G1-3_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia                                                                                                                                                                                                                                                                                                                            |
| Porosity:         %         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.6822         5         5         -         2.6822         5         -         4.5         5         -         4.5         5         -         4.5         5         -         4.5         5         -         4.5         5         -         4.5         5         -         4.5         5         -         4.5         5         -         4.5         5         -         4.5         5         -         4.5         5         -         4.5         5         -         4.5         5         -         4.5         5         -         4.5         5         -         4.5         5         -         4.5         5         -         4.5         5         -         4.5         5         -         4.5         5         -         4.5         5         -         4.5         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00127<br>0.10112<br>0.70711<br>2260<br>3TDEV.S<br>0.00198<br>0.00309<br>0.00246<br>0.00361<br>0.00246<br>0.00361                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.6822<br>4.5<br>G1-3<br>Average<br>0.0126<br>1.2425<br>0.055305<br>0.025825<br>0.04052<br>2.46375<br>2.54285                                                                                                                                             | -<br>P60-2<br>Pressure(psia)<br>29,991.25<br>3,404.52<br>6,613.53<br>-<br>0.50<br>29,991.25                                                                                                                                    | 2.7537<br>5<br>G1-3_<br>Value<br>0.0112<br>1.158<br>0.05312<br>0.02735<br>0.03878<br>2.4663<br>2.5366                                                                                                                   | -<br>P60-1<br>Pressure(psia)<br>29,992.27<br>29,992.27<br>3,146.08<br>7,443.08<br>-<br>0.50<br>29,992.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.6107<br>4<br>G1-3_<br>Value<br>0.014<br>1.327<br>0.05749<br>0.0243<br>0.04226<br>2.4612<br>2.5491                                                                                                                    | %<br>%<br>Unit<br>mL/g<br>μm <sup>2</sup> /g<br>μm<br>μm<br>g/mL<br>g/mL                                                              | Porosity:<br>Stem volume<br>G1-3_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density                                                                                                                                                                                                                                                                                             |
| Porosity:         %         2.600         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00127<br>0.10112<br>0.70711<br>2260<br>3TDEV.S<br>0.00198<br>0.11950<br>0.00309<br>0.00246<br>0.00361<br>0.00884<br>0.48161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.6822<br>4.5<br>G1-3<br>Average<br>0.0126<br>1.2425<br>0.055305<br>0.025825<br>0.04052<br>2.46375<br>2.54285<br>3.11095                                                                                                                                  | -<br>P60-2<br>Pressure(psia)<br>29,991.25<br>3,404.52<br>6,613.53<br>-<br>0.50<br>29,991.25<br>-                                                                                                                               | 2.7537<br>5<br>G1-3_<br>Value<br>0.0112<br>1.158<br>0.05312<br>0.02735<br>0.03878<br>2.4663<br>2.5366<br>2.7704                                                                                                         | -<br>P60-1<br>Pressure(psia)<br>29,992.27<br>3,146.08<br>7,443.08<br>-<br>0.50<br>29,992.27<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.6107<br>4<br>G1-3_<br>Value<br>0.014<br>1.327<br>0.05749<br>0.0243<br>0.04226<br>2.4612<br>2.5491<br>3.4515                                                                                                          | %<br>%<br>Unit<br>mL/g<br>μm<br>μm<br>g/mL<br>g/mL<br>g/mL                                                                            | Porosity:<br>Stem volume<br>G1-3_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:                                                                                                                                                                                                                                                                                |
| Porosity:         %         2.600         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         2.000         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00127<br>0.10112<br>0.70711<br>2260<br>3TDEV.S<br>0.00198<br>0.00198<br>0.00309<br>0.00216<br>0.00361<br>0.00361<br>0.00884<br>0.48161<br>0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.6822<br>4.5<br>G1-3<br>Average<br>0.0126<br>1.2425<br>0.055305<br>0.025825<br>0.04052<br>2.46375<br>2.54285<br>3.11095<br>5                                                                                                                             | -<br>Pressure(psia)<br>29,991.25<br>29,991.25<br>3,404.52<br>6,613.53<br>-<br>0.50<br>29,991.25<br>-<br>-                                                                                                                      | 2.7537<br>5<br>G1-3_<br>Value<br>0.0112<br>1.158<br>0.05312<br>0.02735<br>0.03878<br>2.4663<br>2.5366<br>2.7704<br>5                                                                                                    | -<br>P60-1<br>Pressure(psia)<br>29,992.27<br>29,992.27<br>3,146.08<br>7,443.08<br>-<br>0.50<br>29,992.27<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.6107<br>4<br>G1-3_<br>Value<br>0.014<br>1.327<br>0.05749<br>0.0243<br>0.04226<br>2.4612<br>2.5491<br>3.4515<br>5                                                                                                     | %<br>%<br>Unit<br>mL/g<br>μm<br>μm<br>μm<br>g/mL<br>g/mL<br>%<br>%                                                                    | Porosity:<br>Stem volume<br>G1-3_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume                                                                                                                                                                                                                                                                 |
| Porosity:         %         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         2.600         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00127<br>0.10112<br>0.70711<br>260<br>3TDEV.S<br>0.00198<br>0.11950<br>0.00309<br>0.00216<br>0.00304<br>0.00361<br>0.00884<br>0.48161<br>0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.6822<br>4.5<br>G1-3<br>Average<br>0.0126<br>1.2425<br>0.055305<br>0.025825<br>0.04052<br>2.46375<br>2.54285<br>3.11095<br>5                                                                                                                             | -<br>Pressure(psia)<br>29,991.25<br>29,991.25<br>3,404.52<br>6,613.53<br>-<br>0.50<br>29,991.25<br>-<br>-                                                                                                                      | 2.7537<br>5<br>G1-3_<br>Value<br>0.0112<br>1.158<br>0.05312<br>0.02735<br>0.03878<br>2.4663<br>2.5366<br>2.7704<br>5                                                                                                    | -<br>P60-1<br>Pressure(psia)<br>29,992.27<br>29,992.27<br>3,146.08<br>7,443.08<br>-<br>0.50<br>29,992.27<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.6107<br>4<br>G1-3_<br>Value<br>0.014<br>1.327<br>0.05749<br>0.0243<br>0.04226<br>2.4612<br>2.5491<br>3.4515<br>5                                                                                                     | %<br>%<br>Unit<br>mL/g<br>m²/g<br>μm<br>μm<br>g/mL<br>g/mL<br>%                                                                       | Porosity:<br>Stem volume<br>G1-3_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume                                                                                                                                                                                                                                                                 |
| Приот (norsta) солоту         В/т.с.         Слото         Сло                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00127<br>0.10112<br>0.70711<br>260<br>3TDEV.S<br>0.00198<br>0.11950<br>0.00309<br>0.00246<br>0.00361<br>0.00246<br>0.00361<br>0.00884<br>0.48161<br>0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.6822<br>4.5<br>G1-3<br>Average<br>0.0126<br>1.2425<br>0.055305<br>0.025825<br>0.04052<br>2.46375<br>2.54285<br>3.11095<br>5<br>5                                                                                                                        | -<br>Pressure(psia)<br>29,991.25<br>29,991.25<br>3,404.52<br>6,613.53<br>-<br>0.50<br>29,991.25<br>-<br>-<br>-<br>P120-2                                                                                                       | 2.7537<br>5<br>G1-3_<br>Value<br>0.0112<br>1.158<br>0.05312<br>0.02735<br>0.03878<br>2.4663<br>2.5366<br>2.7704<br>5<br>G1-3_F                                                                                          | -<br>P60-1<br>Pressure(psia)<br>29,992.27<br>29,992.27<br>3,146.08<br>7,443.08<br>-<br>0.50<br>29,992.27<br>-<br>-<br>-<br>P120-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.6107<br>4<br>G1-3_<br>Value<br>0.014<br>1.327<br>0.05749<br>0.0243<br>0.04226<br>2.4612<br>2.5491<br>3.4515<br>5<br>G1-3_                                                                                            | %<br>%<br>Unit<br>mL/g<br>m²/g<br>μm<br>μm<br>g/mL<br>g/mL<br>%<br>%                                                                  | Porosity:<br>Stem volume<br>G1-3_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>G1-3_120日間浸漬                                                                                                                                                                                                                                                 |
| Принят (stretch) систом)         влис         Полов         Пол                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00127<br>0.10112<br>0.70711<br>0.70711<br>0.70711<br>0.70711<br>0.70711<br>0.00198<br>0.0198<br>0.00198<br>0.00246<br>0.00309<br>0.00246<br>0.00361<br>0.00884<br>0.48161<br>0.00000<br>120<br>120<br>120<br>120<br>120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.6822<br>4.5<br>G1-3<br>Average<br>0.0126<br>1.2425<br>0.055305<br>0.025825<br>0.04052<br>2.46375<br>2.54285<br>3.11095<br>5<br>G1-3<br>Average                                                                                                          | -<br>Pressure(psia)<br>29,991.25<br>29,991.25<br>3,404.52<br>6,613.53<br>-<br>0.50<br>29,991.25<br>-<br>-<br>P120-2<br>Pressure(psia)                                                                                          | 2.7537<br>5<br>G1-3_<br>Value<br>0.0112<br>1.158<br>0.05312<br>0.02735<br>0.03878<br>2.4663<br>2.5366<br>2.7704<br>5<br>G1-3_f<br>Value                                                                                 | -<br>P60-1<br>Pressure(psia)<br>29,992.27<br>29,992.27<br>3,146.08<br>7,443.08<br>-<br>0.50<br>29,992.27<br>-<br>-<br>P120-1<br>Pressure(psia)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.6107<br>4<br>G1-3_<br>Value<br>0.014<br>1.327<br>0.05749<br>0.0243<br>0.04226<br>2.4612<br>2.5491<br>3.4515<br>5<br>G1-3_<br>Value                                                                                   | %<br>%<br>Unit<br>mL/g<br>m²/g<br>μm<br>μm<br>g/mL<br>g/mL<br>%<br>%                                                                  | Porosity:<br>Stem volume<br>G1-3_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>G1-3_120日間浸漬<br>Contents                                                                                                                                                                                                                                     |
| Проток (словая) солону         в.т.         Слова         Солона         Слова         Слов                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00127<br>0.10112<br>0.70711<br>0.70711<br>0.70711<br>0.70711<br>0.70711<br>0.00198<br>0.0198<br>0.00198<br>0.00246<br>0.00361<br>0.00246<br>0.00361<br>0.00246<br>0.00361<br>0.00361<br>0.00361<br>0.00361<br>0.00000<br>120<br>120<br>120<br>120<br>120<br>120<br>120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.6822<br>4.5<br>G1-3<br>Average<br>0.0126<br>1.2425<br>0.055305<br>0.025825<br>0.04052<br>2.46375<br>2.54285<br>3.11095<br>5<br>G1-3<br>Average<br>0.0131                                                                                                | -<br>Pressure(psia)<br>29,991.25<br>29,991.25<br>3,404.52<br>6,613.53<br>-<br>0.50<br>29,991.25<br>-<br>-<br>P120-2<br>Pressure(psia)<br>29,992.47                                                                             | 2.7537<br>5<br>G1-3_<br>Value<br>0.0112<br>1.158<br>0.05312<br>0.02735<br>0.03878<br>2.4663<br>2.5366<br>2.7704<br>5<br>G1-3_f<br>Value<br>0.0134                                                                       | -<br>P60-1<br>Pressure(psia)<br>29,992.27<br>29,992.27<br>3,146.08<br>7,443.08<br>-<br>0.50<br>29,992.27<br>-<br>-<br>P120-1<br>Pressure(psia)<br>29,992.00<br>20,902.00<br>20,902.00<br>20,902.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,002.00<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,000<br>20,00 | 2.6107<br>4<br>G1-3_<br>Value<br>0.014<br>1.327<br>0.05749<br>0.0243<br>0.04226<br>2.4612<br>2.5491<br>3.4515<br>5<br>G1-3_<br>Value<br>0.0128                                                                         | %<br>%<br>Unit<br>mL/g<br>μm<br>μm<br>g/mL<br>g/mL<br>g/mL<br>%<br>%                                                                  | Porosity:<br>Stem volume<br>G1-3_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>G1-3_120日間浸漬<br>Contents<br>Total intrusion volume                                                                                                                                                                                                           |
| Porosity:         %         2.6007         -         2.7537         -         2.6822           Stem volume         %         4         -         5         -         4.5           G1-3_60日間浸漬         G1-3_P60-1         G1-3_P60-2         G1-3_P         G1-3_P         G1-3_P           Total intrusion volume         mL/g         0.014         29,992.27         0.0112         29,991.25         0.0126           Total pore area         m2/g         1.327         29,992.27         1.158         29,991.25         0.0126           Median pore diameter (volume) at 0.001 mL/         µm         0.05749         3,146.08         0.05312         3,404.52         0.055305           Median pore diameter (area) at 0.000 m²/g         µm         0.04243         7,443.08         0.02735         6,613.53         0.02825           Average pore diameter (4V/A)         µm         0.04226         -         0.03878         -         0.04052           Bulk density at 0.50 psia         g/mL         2.5491         29,992.27         2.5366         29,991.25         2.54285           Porosity:         %         3.4515         -         2.7704         -         3.11095           Stem volume         %         5 <td< td=""><td>0.00127<br/>0.10112<br/>0.70711<br/>260<br/>5TDEV.S<br/>0.00198<br/>0.11950<br/>0.00309<br/>0.00246<br/>0.00361<br/>0.00361<br/>0.00361<br/>0.00364<br/>0.00361<br/>0.00000<br/>120<br/>5TDEV.S<br/>0.00042<br/>0.00042<br/>0.00042</td><td>2.6822<br/>4.5<br/>G1-3<br/>Average<br/>0.0126<br/>1.2425<br/>0.055305<br/>0.025825<br/>0.04052<br/>2.46375<br/>2.54285<br/>3.11095<br/>5<br/>G1-3<br/>Average<br/>0.0131<br/>1.2675</td><td>-<br/>P60-2<br/>Pressure(psia)<br/>29,991.25<br/>29,991.25<br/>3,404.52<br/>6,613.53<br/>-<br/>0.50<br/>29,991.25<br/>-<br/>-<br/>P120-2<br/>Pressure(psia)<br/>29,992.47<br/>29,992.47</td><td>2.7537<br/>5<br/>G1-3_<br/>Value<br/>0.0112<br/>1.158<br/>0.05312<br/>0.02735<br/>0.03878<br/>2.4663<br/>2.5366<br/>2.7704<br/>5<br/>G1-3_F<br/>Value<br/>0.0134<br/>1.232</td><td>-<br/>P60-1<br/>Pressure(psia)<br/>29,992.27<br/>29,992.27<br/>3,146.08<br/>7,443.08<br/>-<br/>0.50<br/>29,992.27<br/>-<br/>-<br/>P120-1<br/>Pressure(psia)<br/>29,992.09<br/>29,992.09<br/>29,992.09</td><td>2.6107<br/>4<br/>G1-3_<br/>Value<br/>0.014<br/>1.327<br/>0.05749<br/>0.0243<br/>0.04226<br/>2.4612<br/>2.5491<br/>3.4515<br/>5<br/>G1-3_<br/>Value<br/>0.0128<br/>1.303<br/>0.0212</td><td>%<br/>%<br/>Unit<br/>mL/g<br/>μm<br/>μm<br/>g/mL<br/>g/mL<br/>g/mL<br/>%<br/>%<br/>%<br/>Unit<br/>mL/g<br/>m²/g</td><td>Porosity:<br/>Stem volume<br/>G1-3_60日間浸漬<br/>Contents<br/>Total intrusion volume<br/>Total pore area<br/>Median pore diameter (volume) at 0.001 mL/<br/>Median pore diameter (area) at 0.000 m²/g<br/>Average pore diameter (4V/A)<br/>Bulk density at 0.50 psia<br/>Apparent (skeletal) density<br/>Porosity:<br/>Stem volume<br/>G1-3_120日間浸漬<br/>Contents<br/>Total intrusion volume<br/>Total pore area</td></td<> | 0.00127<br>0.10112<br>0.70711<br>260<br>5TDEV.S<br>0.00198<br>0.11950<br>0.00309<br>0.00246<br>0.00361<br>0.00361<br>0.00361<br>0.00364<br>0.00361<br>0.00000<br>120<br>5TDEV.S<br>0.00042<br>0.00042<br>0.00042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.6822<br>4.5<br>G1-3<br>Average<br>0.0126<br>1.2425<br>0.055305<br>0.025825<br>0.04052<br>2.46375<br>2.54285<br>3.11095<br>5<br>G1-3<br>Average<br>0.0131<br>1.2675                                                                                      | -<br>P60-2<br>Pressure(psia)<br>29,991.25<br>29,991.25<br>3,404.52<br>6,613.53<br>-<br>0.50<br>29,991.25<br>-<br>-<br>P120-2<br>Pressure(psia)<br>29,992.47<br>29,992.47                                                       | 2.7537<br>5<br>G1-3_<br>Value<br>0.0112<br>1.158<br>0.05312<br>0.02735<br>0.03878<br>2.4663<br>2.5366<br>2.7704<br>5<br>G1-3_F<br>Value<br>0.0134<br>1.232                                                              | -<br>P60-1<br>Pressure(psia)<br>29,992.27<br>29,992.27<br>3,146.08<br>7,443.08<br>-<br>0.50<br>29,992.27<br>-<br>-<br>P120-1<br>Pressure(psia)<br>29,992.09<br>29,992.09<br>29,992.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.6107<br>4<br>G1-3_<br>Value<br>0.014<br>1.327<br>0.05749<br>0.0243<br>0.04226<br>2.4612<br>2.5491<br>3.4515<br>5<br>G1-3_<br>Value<br>0.0128<br>1.303<br>0.0212                                                      | %<br>%<br>Unit<br>mL/g<br>μm<br>μm<br>g/mL<br>g/mL<br>g/mL<br>%<br>%<br>%<br>Unit<br>mL/g<br>m²/g                                     | Porosity:<br>Stem volume<br>G1-3_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>G1-3_120日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area                                                                                                                                                                                        |
| рогозіту:         %         2.6007         -         2.7537         -         2.6822           Stem volume         %         4         -         5         -         4.5           G1-3_60日間浸漬         G1-3_P60-1         G1-3_P60-2         G1-3_P         G1-3_P           G1-3_60日間浸漬         G1-3_P60-1         G1-3_P60-2         G1-3_P           G1 contents         Unit         Value         Pressure(psia)         Average         S           Total intrusion volume         mL/g         0.014         29,992.27         0.0112         29,991.25         0.0126           Total pore area         m²/g         1.327         29,992.27         1.158         29,991.25         1.2425           Median pore diameter (volume) at 0.001 mL         µm         0.0243         7,443.08         0.02735         6,613.53         0.025825           Average pore diameter (4V/A)         µm         0.04226         -         0.03878         -         0.04052           Bulk density at 0.50 psia         g/mL         2.4612         0.50         2.4663         0.50         2.46375           Apparent (skeletal) density         g/mL         2.5491         29,992.27         2.5366         29,991.25         2.54285                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00127<br>0.10112<br>0.70711<br>0.70711<br>0.70711<br>0.00198<br>0.00198<br>0.00246<br>0.00361<br>0.00246<br>0.00361<br>0.00884<br>0.48161<br>0.00000<br>120<br>TDEV.S<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042                                                                                                          | 2.6822<br>4.5<br>G1-3<br>Average<br>0.0126<br>1.2425<br>0.055305<br>0.025825<br>0.04052<br>2.46375<br>2.54285<br>3.11095<br>5<br>G1-3<br>Average<br>0.0131<br>1.2675<br>0.05642                                                                           | -<br>P60-2<br>Pressure(psia)<br>29,991.25<br>29,991.25<br>3,404.52<br>6,613.53<br>-<br>0.50<br>29,991.25<br>-<br>-<br>P120-2<br>Pressure(psia)<br>29,992.47<br>29,992.47<br>3,091.72                                           | 2.7537<br>5<br>G1-3_<br>Value<br>0.0112<br>1.158<br>0.05312<br>0.02735<br>0.03878<br>2.4663<br>2.5366<br>2.7704<br>5<br>G1-3_F<br>Value<br>0.0134<br>1.232<br>0.0585                                                    | -<br>P60-1<br>Pressure(psia)<br>29,992.27<br>29,992.27<br>3,146.08<br>7,443.08<br>-<br>0.50<br>29,992.27<br>-<br>-<br>P120-1<br>Pressure(psia)<br>29,992.09<br>29,992.09<br>3,328.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.6107<br>4<br>G1-3_<br>Value<br>0.014<br>1.327<br>0.05749<br>0.0243<br>0.04226<br>2.4612<br>2.5491<br>3.4515<br>5<br>G1-3_<br>Value<br>0.0128<br>1.303<br>0.05434                                                     | %<br>%<br>Unit<br>mL/g<br>μm<br>μm<br>g/mL<br>g/mL<br>g/mL<br>g/mL<br>%<br>%<br>%<br>Unit<br>mL/g<br>m²/g<br>μm                       | Porosity:<br>Stem volume<br>G1-3_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>G1-3_120日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/                                                                                                                                          |
| Prosity:         %         2.607         -         2.7537         -         2.6822           Stem volume         %         4         -         5         -         4.5           G1-3_60日間浸漬         G1-3_P60-1         G1-3_P60-2         G1-3_P         G1-3_P           G1-3_60日間浸漬         G1-3_P60-1         G1-3_P60-2         G1-3_P           Total intrusion volume         mL/g         0.014         29,992.27         0.0112         29,991.25         0.0126           Total pore area         m²/g         1.327         29,992.27         1.158         29,991.25         1.2425           Median pore diameter (volume) at 0.001 mL/         µm         0.05749         3,146.08         0.05312         3,404.52         0.055305           Median pore diameter (area) at 0.000 m²/g         µm         0.0243         7,443.08         0.02735         6,613.53         0.025825           Average pore diameter (4V/A)         µm         0.04226         -         0.03878         -         0.04052           Bulk density at 0.50 psia         g/mL         2.5491         29,992.27         2.5366         29,991.25         2.54285           Porosity:         %         3.4515         -         2.7704         -         3.11095<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00127<br>0.10112<br>0.70711<br>0.70711<br>0.70711<br>0.00198<br>0.00198<br>0.00198<br>0.00309<br>0.00246<br>0.00361<br>0.00844<br>0.48161<br>0.00000<br>120<br>TDEV.S<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042                                                                                                          | 2.6822<br>4.5<br>G1-3<br>Average<br>0.0126<br>1.2425<br>0.055305<br>0.025825<br>0.04052<br>2.46375<br>2.54285<br>3.11095<br>5<br>G1-3<br>Average<br>0.0131<br>1.2675<br>0.05642<br>0.028845                                                               | -<br>Peo-2<br>Pressure(psia)<br>29,991.25<br>29,991.25<br>3,404.52<br>6,613.53<br>-<br>0.50<br>29,991.25<br>-<br>-<br>Pressure(psia)<br>29,992.47<br>29,992.47<br>3,091.72<br>6,131.39                                         | 2.7537<br>5<br>G1-3_<br>Value<br>0.0112<br>1.158<br>0.05312<br>0.02735<br>0.03878<br>2.4663<br>2.5366<br>2.7704<br>5<br>G1-3_F<br>Value<br>0.0134<br>1.232<br>0.0585<br>0.0295                                          | -<br>P60-1<br>Pressure(psia)<br>29,992.27<br>29,992.27<br>3,146.08<br>7,443.08<br>-<br>0.50<br>29,992.27<br>-<br>-<br>P120-1<br>Pressure(psia)<br>29,992.09<br>29,992.09<br>3,328.07<br>6,416.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.6107<br>4<br>G1-3<br>Value<br>0.014<br>1.327<br>0.05749<br>0.0243<br>0.04226<br>2.4612<br>2.5491<br>3.4515<br>5<br>G1-3<br>Value<br>0.0128<br>1.303<br>0.05434<br>0.02819<br>0.02819                                 | %<br>%<br>Unit<br>mL/g<br>μm<br>μm<br>g/mL<br>g/mL<br>g/mL<br>g/mL<br>%<br>%<br>%<br>Unit<br>mL/g<br>m²/g<br>μm<br>μm                 | Porosity:<br>Stem volume<br>G1-3_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>G1-3_120日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g                                                                                             |
| руроват (словая) солоту         д. м.         слова         сло                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00127<br>0.10112<br>0.70711<br>0.70711<br>0.70711<br>0.00198<br>0.00198<br>0.00198<br>0.00309<br>0.00246<br>0.00361<br>0.00884<br>0.48161<br>0.00000<br>120<br>TDEV.S<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042                                                                                                          | 2.6822<br>4.5<br>G1-3<br>Average<br>0.0126<br>1.2425<br>0.055305<br>0.025825<br>0.04052<br>2.46375<br>2.54285<br>3.11095<br>5<br>G1-3<br>Average<br>0.0131<br>1.2675<br>0.05642<br>0.028845<br>0.041335                                                   | -<br>Peo-2<br>Pressure(psia)<br>29,991.25<br>29,991.25<br>3,404.52<br>6,613.53<br>-<br>0.50<br>29,991.25<br>-<br>-<br>Pressure(psia)<br>29,992.47<br>29,992.47<br>3,091.72<br>6,131.39<br>-                                    | 2.7537<br>5<br>G1-3_<br>Value<br>0.0112<br>1.158<br>0.05312<br>0.02735<br>0.03878<br>2.4663<br>2.5366<br>2.7704<br>5<br>G1-3_1<br>Value<br>0.0134<br>1.232<br>0.0295<br>0.0295<br>0.04345                               | -<br>P60-1<br>Pressure(psia)<br>29,992.27<br>29,992.27<br>3,146.08<br>7,443.08<br>-<br>0.50<br>29,992.27<br>-<br>0.50<br>29,992.27<br>-<br>-<br>P120-1<br>Pressure(psia)<br>29,992.09<br>29,992.09<br>29,992.09<br>3,328.07<br>6,416.26<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.6107<br>4<br>G1-3_<br>Value<br>0.014<br>1.327<br>0.05749<br>0.0243<br>0.04226<br>2.4612<br>2.5491<br>3.4515<br>5<br>G1-3_<br>Value<br>0.0128<br>1.303<br>0.05434<br>0.02819<br>0.03922                               | %<br>%<br>Unit<br>mL/g<br>µm<br>µm<br>g/mL<br>g/mL<br>g/mL<br>%<br>%<br>%<br>Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>µm<br>µm<br>µm<br>µm | Porosity:<br>Stem volume<br>G1-3_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>G1-3_120日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)                                                             |
| руроват (словат)         в.т.         слова                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00127<br>0.10112<br>0.70711<br>0.70711<br>0.70711<br>0.00198<br>0.0198<br>0.00198<br>0.00198<br>0.00309<br>0.00246<br>0.00361<br>0.00884<br>0.00361<br>0.00884<br>0.00062<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00042<br>0.00                                                                                                         | 2.6822<br>4.5<br>G1-3<br>Average<br>0.0126<br>1.2425<br>0.055305<br>0.025825<br>0.04052<br>2.46375<br>2.54285<br>3.11095<br>5<br>G1-3<br>Average<br>0.0131<br>1.2675<br>0.028845<br>0.028845<br>0.028845<br>0.041335<br>2.45025                           | -<br>Peo-2<br>Pressure(psia)<br>29,991.25<br>29,991.25<br>3,404.52<br>6,613.53<br>-<br>0.50<br>29,991.25<br>-<br>-<br>Pressure(psia)<br>29,992.47<br>29,992.47<br>3,091.72<br>6,131.39<br>-<br>0.49                            | 2.7537<br>5<br>G1-3_<br>Value<br>0.0112<br>1.158<br>0.05312<br>0.02735<br>0.03878<br>2.4663<br>2.5366<br>2.7704<br>5<br>G1-3_f<br>Value<br>0.0134<br>1.232<br>0.0585<br>0.0295<br>0.04345<br>2.4527                     | -<br>Pressure(psia)<br>29,992.27<br>29,992.27<br>3,146.08<br>7,443.08<br>-<br>0.50<br>29,992.27<br>-<br>-<br>P120-1<br>Pressure(psia)<br>29,992.09<br>29,992.09<br>3,328.07<br>6,416.26<br>-<br>0.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.6107<br>4<br>G1-3_<br>Value<br>0.014<br>1.327<br>0.05749<br>0.0243<br>0.04226<br>2.4612<br>2.5491<br>3.4515<br>5<br>G1-3_<br>Value<br>0.0128<br>1.303<br>0.05434<br>0.02819<br>0.03922<br>2.4478                     | %<br>%<br>Unit<br>mL/g<br>µm<br>µm<br>g/mL<br>g/mL<br>g/mL<br>%<br>%<br>Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>µm<br>цт<br>%             | Porosity:<br>Stem volume<br>G1-3_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>G1-3_120日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (4V/A)<br>Bulk density at 0.50 psia                                                                              |
| Implement (scherol)         Implement (scherol) <thimplement (scherol)<="" th="">         Implement (scherol)</thimplement>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00127<br>0.10112<br>0.70711<br>0.70711<br>0.70711<br>0.70711<br>0.00198<br>0.00198<br>0.00246<br>0.00309<br>0.00246<br>0.00361<br>0.00884<br>0.48161<br>0.00000<br>120<br>120<br>120<br>120<br>120<br>120<br>120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.6822<br>4.5<br>G1-3<br>Average<br>0.0126<br>1.2425<br>0.055305<br>0.025825<br>0.04052<br>2.46375<br>2.54285<br>3.11095<br>5<br>3.11095<br>5<br>G1-3<br>Average<br>0.0131<br>1.2675<br>0.05642<br>0.028845<br>0.028845<br>0.041335<br>2.45025<br>2.53135 | -<br>Pressure(psia)<br>29,991.25<br>29,991.25<br>3,404.52<br>6,613.53<br>-<br>0.50<br>29,991.25<br>-<br>-<br>Pressure(psia)<br>29,992.47<br>3,091.72<br>6,131.39<br>-<br>0.49<br>29,992.47                                     | 2.7537<br>5<br>G1-3_<br>Value<br>0.0112<br>1.158<br>0.05312<br>0.02735<br>0.03878<br>2.4663<br>2.5366<br>2.7704<br>5<br>G1-3_F<br>Value<br>0.0134<br>1.232<br>0.0585<br>0.0295<br>0.04345<br>2.4527<br>2.5359           | -<br>P60-1<br>Pressure(psia)<br>29,992.27<br>3,146.08<br>7,443.08<br>-<br>0.50<br>29,992.27<br>-<br>-<br>-<br>P120-1<br>Pressure(psia)<br>29,992.09<br>29,992.09<br>3,328.07<br>6,416.26<br>-<br>0.49<br>29,992.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.6107<br>4<br>G1-3_<br>Value<br>0.014<br>1.327<br>0.05749<br>0.0243<br>0.04226<br>2.4612<br>2.5491<br>3.4515<br>5<br>G1-3_<br>Value<br>0.0128<br>1.303<br>0.05434<br>0.02819<br>0.03922<br>2.4478<br>2.5268           | %<br>%<br>Unit<br>mL/g<br>μm<br>μm<br>g/mL<br>g/mL<br>g/mL<br>%<br>%<br>%<br>Unit<br>mL/g<br>m²/g<br>μm<br>μm<br>g/mL<br>g/mL<br>g/mL | Porosity:<br>Stem volume<br>G1-3_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>G1-3_120日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density |
| раков (1)         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00127<br>0.10112<br>0.70711<br>0.70711<br>0.70711<br>0.00198<br>0.01950<br>0.00246<br>0.00361<br>0.00246<br>0.00361<br>0.00246<br>0.00361<br>0.00361<br>0.00884<br>0.48161<br>0.00000<br>120<br>120<br>120<br>120<br>120<br>120<br>120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.6822<br>4.5<br>G1-3<br>Average<br>0.0126<br>1.2425<br>0.055305<br>0.025825<br>0.04052<br>2.46375<br>2.54285<br>3.11095<br>5<br>3.11095<br>5<br>G1-3<br>Average<br>0.0131<br>1.2675<br>0.05642<br>0.028845<br>0.041335<br>2.45025<br>2.53135<br>3.20485  | -<br>Pressure(psia)<br>29,991.25<br>29,991.25<br>3,404.52<br>6,613.53<br>-<br>0.50<br>29,991.25<br>-<br>-<br>P120-2<br>Pressure(psia)<br>29,992.47<br>29,992.47<br>3,091.72<br>6,131.39<br>-<br>0.49<br>29,992.47<br>-<br>0.49 | 2.7537<br>5<br>G1-3_<br>Value<br>0.0112<br>1.158<br>0.05312<br>0.02735<br>0.03878<br>2.4663<br>2.5366<br>2.7704<br>5<br>G1-3_f<br>Value<br>0.0134<br>1.232<br>0.0585<br>0.0295<br>0.04345<br>2.4527<br>2.5359<br>3.2829 | -<br>P60-1<br>Pressure(psia)<br>29,992.27<br>3,146.08<br>7,443.08<br>-<br>0.50<br>29,992.27<br>-<br>-<br>-<br>-<br>P120-1<br>Pressure(psia)<br>29,992.09<br>29,992.09<br>3,328.07<br>6,416.26<br>-<br>0.49<br>29,992.09<br>-<br>0.49<br>29,992.09<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.6107<br>4<br>G1-3_<br>Value<br>0.014<br>1.327<br>0.05749<br>0.0243<br>0.04226<br>2.4612<br>2.5491<br>3.4515<br>5<br>G1-3_<br>Value<br>0.0128<br>1.303<br>0.05434<br>0.02819<br>0.03922<br>2.4478<br>2.5268<br>3.1268 | %<br>%<br>Unit<br>mL/g<br>μm<br>μm<br>g/mL<br>g/mL<br>g/mL<br>g/mL<br>g/mL<br>g/mL<br>g/mL<br>g/m                                     | Porosity:<br>Stem volume<br>G1-3_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>G1-3_120日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:                                  |

# 表 1.9-8 G 1-3 のポロシメータ測定結果



図 1.9-7 G 1-3の間隙径分布 (a)・(b) 未浸漬、 (c)・(d) 30 日浸漬、 (e)・(f) 60 日浸漬、 (g)・(h) 120 日浸漬

| H4-1_浸漬前                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                           | H4-1_                                                                                                                                                                                                      | _Pb-1                                                                                                                                                                                                                     | H4-1_                                                                                                                                                                                                          | _Pb-2                                                                                                                                                                                              | H4-1                                                                                                                                                                                                           | l_Pb                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Unit                                                                                                                      | Value                                                                                                                                                                                                      | Pressure(psia)                                                                                                                                                                                                            | Value                                                                                                                                                                                                          | Pressure(psia)                                                                                                                                                                                     | Average                                                                                                                                                                                                        | STDEV.S                                                                                                                                                                                                                                                                                                   |
| Total intrusion volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mL/g                                                                                                                      | 0.0015                                                                                                                                                                                                     | 29,992.43                                                                                                                                                                                                                 | 0.004                                                                                                                                                                                                          | 29,991.92                                                                                                                                                                                          | 0.00275                                                                                                                                                                                                        | 0.00177                                                                                                                                                                                                                                                                                                   |
| Total pore area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | m²/g                                                                                                                      | 0.015                                                                                                                                                                                                      | 29,992.43                                                                                                                                                                                                                 | 0.114                                                                                                                                                                                                          | 29,991.92                                                                                                                                                                                          | 0.0645                                                                                                                                                                                                         | 0.07000                                                                                                                                                                                                                                                                                                   |
| Median pore diameter (volume) at 0.001 mL/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | μm                                                                                                                        | 19.48517                                                                                                                                                                                                   | 9.28                                                                                                                                                                                                                      | 158.5                                                                                                                                                                                                          | 1.14                                                                                                                                                                                               | 88.992585                                                                                                                                                                                                      | 98.29833                                                                                                                                                                                                                                                                                                  |
| Median pore diameter (area) at 0.000 $\rm m^2/g$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | μm                                                                                                                        | 0.06437                                                                                                                                                                                                    | 2,809.71                                                                                                                                                                                                                  | 0.02092                                                                                                                                                                                                        | 8,644.32                                                                                                                                                                                           | 0.042645                                                                                                                                                                                                       | 0.03072                                                                                                                                                                                                                                                                                                   |
| Average pore diameter (4V/A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | μm                                                                                                                        | 0.41579                                                                                                                                                                                                    | -                                                                                                                                                                                                                         | 0.14113                                                                                                                                                                                                        | -                                                                                                                                                                                                  | 0.27846                                                                                                                                                                                                        | 0.1942139                                                                                                                                                                                                                                                                                                 |
| Bulk density at 0.50 psia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | g/mL                                                                                                                      | 2.6448                                                                                                                                                                                                     | 0.50                                                                                                                                                                                                                      | 2.6183                                                                                                                                                                                                         | 0.50                                                                                                                                                                                               | 2.63155                                                                                                                                                                                                        | 0.01874                                                                                                                                                                                                                                                                                                   |
| Apparent (skeletal) density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | g/mL                                                                                                                      | 2.6557                                                                                                                                                                                                     | 29,992.43                                                                                                                                                                                                                 | 2.6462                                                                                                                                                                                                         | 29,991.92                                                                                                                                                                                          | 2.65095                                                                                                                                                                                                        | 0.00672                                                                                                                                                                                                                                                                                                   |
| Porosity:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | %                                                                                                                         | 0.4103                                                                                                                                                                                                     | -                                                                                                                                                                                                                         | 1.0532                                                                                                                                                                                                         | -                                                                                                                                                                                                  | 0.73175                                                                                                                                                                                                        | 0.45460                                                                                                                                                                                                                                                                                                   |
| Stem volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | %                                                                                                                         | 1                                                                                                                                                                                                          | -                                                                                                                                                                                                                         | 1                                                                                                                                                                                                              | -                                                                                                                                                                                                  | 1                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                         |
| 1-1 30日問浸清                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                           | H4-1 P30-1                                                                                                                                                                                                 |                                                                                                                                                                                                                           | H4-1 P30-2                                                                                                                                                                                                     |                                                                                                                                                                                                    | H4-1 P30                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                           |
| Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Unit                                                                                                                      | Value                                                                                                                                                                                                      | Pressure(nsia)                                                                                                                                                                                                            | Value                                                                                                                                                                                                          | Pressure(nsia)                                                                                                                                                                                     | Average                                                                                                                                                                                                        | STDEV S                                                                                                                                                                                                                                                                                                   |
| Total intrusion volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ml /g                                                                                                                     | 0.0137                                                                                                                                                                                                     | 29.991.48                                                                                                                                                                                                                 | 0.0098                                                                                                                                                                                                         | 29.992.28                                                                                                                                                                                          | 0.01175                                                                                                                                                                                                        | 0.00276                                                                                                                                                                                                                                                                                                   |
| Total pore area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | m²/g                                                                                                                      | 2.312                                                                                                                                                                                                      | 29,991.48                                                                                                                                                                                                                 | 3.331                                                                                                                                                                                                          | 29,992.28                                                                                                                                                                                          | 2.8215                                                                                                                                                                                                         | 0.72054                                                                                                                                                                                                                                                                                                   |
| Median pore diameter (volume) at 0.001 mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | μm                                                                                                                        | 0.02623                                                                                                                                                                                                    | 6,896.21                                                                                                                                                                                                                  | 0.01027                                                                                                                                                                                                        | 17,614.52                                                                                                                                                                                          | 0.01825                                                                                                                                                                                                        | 0.01129                                                                                                                                                                                                                                                                                                   |
| Median pore diameter (area) at 0.000 m <sup>2</sup> /g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | μm                                                                                                                        | 0.0152                                                                                                                                                                                                     | 11,897.01                                                                                                                                                                                                                 | 0.00913                                                                                                                                                                                                        | 19,802.29                                                                                                                                                                                          | 0.012165                                                                                                                                                                                                       | 0.00429                                                                                                                                                                                                                                                                                                   |
| Average pore diameter (4V/A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | μm                                                                                                                        | 0.02377                                                                                                                                                                                                    | -                                                                                                                                                                                                                         | 0.01171                                                                                                                                                                                                        | -                                                                                                                                                                                                  | 0.01774                                                                                                                                                                                                        | 0.00853                                                                                                                                                                                                                                                                                                   |
| Bulk density at 0.50 psia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | g/mL                                                                                                                      | 2.4853                                                                                                                                                                                                     | 0.50                                                                                                                                                                                                                      | 2.5107                                                                                                                                                                                                         | 0.50                                                                                                                                                                                               | 2.498                                                                                                                                                                                                          | 0.01796                                                                                                                                                                                                                                                                                                   |
| Apparent (skeletal) density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | g/mL                                                                                                                      | 2.5733                                                                                                                                                                                                     | 29,991.48                                                                                                                                                                                                                 | 2.5737                                                                                                                                                                                                         | 29,992.28                                                                                                                                                                                          | 2.5735                                                                                                                                                                                                         | 0.00028                                                                                                                                                                                                                                                                                                   |
| Porosity:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | %                                                                                                                         | 3.4176                                                                                                                                                                                                     | -                                                                                                                                                                                                                         | 2.4501                                                                                                                                                                                                         | -                                                                                                                                                                                                  | 2.93385                                                                                                                                                                                                        | 0.68413                                                                                                                                                                                                                                                                                                   |
| Stem volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | %                                                                                                                         | 6                                                                                                                                                                                                          | -                                                                                                                                                                                                                         | 5                                                                                                                                                                                                              | -                                                                                                                                                                                                  | 5.5                                                                                                                                                                                                            | 0.70711                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                           |                                                                                                                                                                                                            |                                                                                                                                                                                                                           |                                                                                                                                                                                                                |                                                                                                                                                                                                    |                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                           |                                                                                                                                                                                                            |                                                                                                                                                                                                                           |                                                                                                                                                                                                                |                                                                                                                                                                                                    |                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                           |
| H4-1_60日間浸漬                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                           | H4-1_                                                                                                                                                                                                      | P60-1                                                                                                                                                                                                                     | H4-1_                                                                                                                                                                                                          | P60-2                                                                                                                                                                                              | H4-1                                                                                                                                                                                                           | _P60                                                                                                                                                                                                                                                                                                      |
| H4-1_60日間浸漬<br>Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Unit                                                                                                                      | H4-1_<br>Value                                                                                                                                                                                             | P60-1<br>Pressure(psia)                                                                                                                                                                                                   | H4-1_<br>Value                                                                                                                                                                                                 | P60-2<br>Pressure(psia)                                                                                                                                                                            | H4-1<br>Average                                                                                                                                                                                                | _P60<br>STDEV.S                                                                                                                                                                                                                                                                                           |
| H4-1_60日間浸漬<br>Contents<br>Total intrusion volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Unit<br>mL/g                                                                                                              | H4-1_<br>Value<br>0.0094                                                                                                                                                                                   | .P60-1<br>Pressure(psia)<br>29,991.76                                                                                                                                                                                     | H4-1_<br>Value<br>0.0167                                                                                                                                                                                       | P60-2<br>Pressure(psia)<br>29,991.71                                                                                                                                                               | H4-1<br>Average<br>0.01305                                                                                                                                                                                     | _P60<br>STDEV.S<br>0.00516                                                                                                                                                                                                                                                                                |
| H4-1_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Unit<br>mL/g<br>m²/g                                                                                                      | H4-1_<br>Value<br>0.0094<br>3.759                                                                                                                                                                          | P60-1<br>Pressure(psia)<br>29,991.76<br>29,991.76                                                                                                                                                                         | H4-1_<br>Value<br>0.0167<br>3.941                                                                                                                                                                              | P60-2<br>Pressure(psia)<br>29,991.71<br>29,991.71                                                                                                                                                  | H4-1<br>Average<br>0.01305<br>3.85                                                                                                                                                                             | _P60<br>STDEV.S<br>0.00516<br>0.12869                                                                                                                                                                                                                                                                     |
| H4-1_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Unit<br>mL/g<br>m²/g<br>µm                                                                                                | H4-1_<br>Value<br>0.0094<br>3.759<br>0.00954                                                                                                                                                               | P60-1<br>Pressure(psia)<br>29,991.76<br>29,991.76<br>18,960.94                                                                                                                                                            | H4-1_<br>Value<br>0.0167<br>3.941<br>0.01688                                                                                                                                                                   | P60-2<br>Pressure(psia)<br>29,991.71<br>29,991.71<br>10,715.96                                                                                                                                     | H4-1<br>Average<br>0.01305<br>3.85<br>0.01321                                                                                                                                                                  | _P60<br>STDEV.S<br>0.00516<br>0.12869<br>0.00519                                                                                                                                                                                                                                                          |
| H4-1_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g                                                                                                                                                                                                                                                                                                                                                                                                      | Unit<br>mL/g<br>m²/g<br>µm<br>µm                                                                                          | H4-1_<br>Value<br>0.0094<br>3.759<br>0.00954<br>0.00825                                                                                                                                                    | P60-1<br>Pressure(psia)<br>29,991.76<br>29,991.76<br>18,960.94<br>21,924.67                                                                                                                                               | H4-1_<br>Value<br>0.0167<br>3.941<br>0.01688<br>0.01095                                                                                                                                                        | P60-2<br>Pressure(psia)<br>29,991.71<br>29,991.71<br>10,715.96<br>16,520.09                                                                                                                        | H4-1<br>Average<br>0.01305<br>3.85<br>0.01321<br>0.0096                                                                                                                                                        | _P60<br>STDEV.S<br>0.00516<br>0.12869<br>0.00519<br>0.00191                                                                                                                                                                                                                                               |
| H4-1_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m <sup>2</sup> /g<br>Average pore diameter (4V/A)                                                                                                                                                                                                                                                                                                                                                         | Unit<br>mL/g<br>m²/g<br>μm<br>μm                                                                                          | H4-1_<br>Value<br>0.0094<br>3.759<br>0.00954<br>0.00825<br>0.01002                                                                                                                                         | P60-1<br>Pressure(psia)<br>29,991.76<br>29,991.76<br>18,960.94<br>21,924.67<br>-                                                                                                                                          | H4-1_<br>Value<br>0.0167<br>3.941<br>0.01688<br>0.01095<br>0.01696                                                                                                                                             | P60-2<br>Pressure(psia)<br>29,991.71<br>29,991.71<br>10,715.96<br>16,520.09<br>-                                                                                                                   | H4-1<br>Average<br>0.01305<br>3.85<br>0.01321<br>0.0096<br>0.01349                                                                                                                                             | _P60<br>STDEV.S<br>0.00516<br>0.12869<br>0.00519<br>0.00191<br>0.00491                                                                                                                                                                                                                                    |
| H4-1_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia                                                                                                                                                                                                                                                                                                                                         | Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>µm<br>g/mL                                                                            | H4-1_<br>Value<br>0.0094<br>3.759<br>0.00954<br>0.00825<br>0.01002<br>2.5087                                                                                                                               | P60-1<br>Pressure(psia)<br>29,991.76<br>29,991.76<br>18,960.94<br>21,924.67<br>-<br>0.50                                                                                                                                  | H4-1_<br>Value<br>0.0167<br>3.941<br>0.01688<br>0.01095<br>0.01696<br>2.4543                                                                                                                                   | P60-2<br>Pressure(psia)<br>29,991.71<br>29,991.71<br>10,715.96<br>16,520.09<br>-<br>0.50                                                                                                           | H4-1<br>Average<br>0.01305<br>3.85<br>0.01321<br>0.0096<br>0.01349<br>2.4815                                                                                                                                   | _P60<br>STDEV.S<br>0.00516<br>0.12869<br>0.00519<br>0.00191<br>0.00491<br>0.03847                                                                                                                                                                                                                         |
| H4-1_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density                                                                                                                                                                                                                                                                                                          | Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>g/mL<br>g/mL                                                                          | H4-1_<br>Value<br>0.0094<br>3.759<br>0.00954<br>0.00825<br>0.01002<br>2.5087<br>2.5694                                                                                                                     | P60-1<br>Pressure(psia)<br>29,991.76<br>29,991.76<br>18,960.94<br>21,924.67<br>-<br>0.50<br>29,991.76                                                                                                                     | H4-1_<br>Value<br>0.0167<br>3.941<br>0.01688<br>0.01095<br>0.01696<br>2.4543<br>2.5592                                                                                                                         | P60-2<br>Pressure(psia)<br>29,991.71<br>29,991.71<br>10,715.96<br>16,520.09<br>-<br>0.50<br>29,991.71                                                                                              | H4-1<br>Average<br>0.01305<br>3.85<br>0.01321<br>0.0096<br>0.01349<br>2.4815<br>2.5643                                                                                                                         | _P60<br>STDEV.S<br>0.00516<br>0.12869<br>0.00519<br>0.00191<br>0.00491<br>0.03847<br>0.00721                                                                                                                                                                                                              |
| H4-1_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:                                                                                                                                                                                                                                                                                             | Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>g/mL<br>g/mL<br>g/mL                                                                  | H4-1_<br>Value<br>0.0094<br>3.759<br>0.00954<br>0.00825<br>0.01002<br>2.5087<br>2.5694<br>2.3642                                                                                                           | P60-1<br>Pressure(psia)<br>29,991.76<br>29,991.76<br>18,960.94<br>21,924.67<br>-<br>0.50<br>29,991.76<br>-                                                                                                                | H4-1_<br>Value<br>0.0167<br>3.941<br>0.01688<br>0.01095<br>0.01696<br>2.4543<br>2.5592<br>4.0997                                                                                                               | P60-2<br>Pressure(psia)<br>29,991.71<br>10,715.96<br>16,520.09<br>-<br>0.50<br>29,991.71<br>-                                                                                                      | H4-1<br>Average<br>0.01305<br>3.85<br>0.01321<br>0.0096<br>0.01349<br>2.4815<br>2.5643<br>3.23195                                                                                                              | _P60<br>STDEV.S<br>0.00516<br>0.12869<br>0.00519<br>0.00191<br>0.00491<br>0.03847<br>0.00721<br>1.22718                                                                                                                                                                                                   |
| H4-1_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume                                                                                                                                                                                                                                                                              | Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>g/mL<br>g/mL<br>g/mL<br>%                                                             | H4-1_<br>Value<br>0.0094<br>3.759<br>0.00954<br>0.00825<br>0.01002<br>2.5087<br>2.5694<br>2.3642<br>5                                                                                                      | P60-1<br>Pressure(psia)<br>29,991.76<br>29,991.76<br>18,960.94<br>21,924.67<br>-<br>0.50<br>29,991.76<br>-<br>-                                                                                                           | H4-1_<br>Value<br>0.0167<br>3.941<br>0.01688<br>0.01095<br>0.01696<br>2.4543<br>2.5592<br>4.0997<br>7                                                                                                          | P60-2<br>Pressure(psia)<br>29,991.71<br>10,715.96<br>16,520.09<br>-<br>0.50<br>29,991.71<br>-<br>-                                                                                                 | H4-1<br>Average<br>0.01305<br>3.85<br>0.01321<br>0.0096<br>0.01349<br>2.4815<br>2.5643<br>3.23195<br>6                                                                                                         | _P60<br>STDEV.S<br>0.00516<br>0.12869<br>0.00191<br>0.00491<br>0.03847<br>0.00721<br>1.22718<br>1.41421                                                                                                                                                                                                   |
| H4-1_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>H4-1_120日間浸漬                                                                                                                                                                                                                                                              | Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>g/mL<br>g/mL<br>g/mL<br>%                                                             | H4-1_<br>Value<br>0.0094<br>3.759<br>0.00954<br>0.00825<br>0.01002<br>2.5087<br>2.5694<br>2.3642<br>5<br>H4-1_1                                                                                            | P60-1<br>Pressure(psia)<br>29,991.76<br>29,991.76<br>18,960.94<br>21,924.67<br>-<br>0.50<br>29,991.76<br>-<br>-<br>P120-1                                                                                                 | H4-1_<br>Value<br>0.0167<br>3.941<br>0.01688<br>0.01095<br>0.01696<br>2.4543<br>2.5592<br>4.0997<br>7<br>H4-1_1                                                                                                | P60-2 Pressure(psia) 29,991.71 29,991.71 10,715.96 16,520.09 - 0.50 29,991.71                                                                                                                      | H4-1<br>Average<br>0.01305<br>3.85<br>0.01321<br>0.0096<br>0.01349<br>2.4815<br>2.5643<br>3.23195<br>6<br>H4-1                                                                                                 | _P60<br>STDEV.S<br>0.00516<br>0.12869<br>0.00519<br>0.00191<br>0.00491<br>0.03847<br>0.00721<br>1.22718<br>1.41421                                                                                                                                                                                        |
| H4-1_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>H4-1_120日間浸漬<br>Contents                                                                                                                                                                                                                                                  | Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>g/mL<br>g/mL<br>g/mL<br>%<br>%                                                        | H4-1_<br>Value<br>0.0094<br>3.759<br>0.00954<br>0.00825<br>0.01002<br>2.5087<br>2.5694<br>2.3642<br>5<br>H4-1_l<br>Value                                                                                   | P60-1<br>Pressure(psia)<br>29,991.76<br>29,991.76<br>18,960.94<br>21,924.67<br>-<br>0.50<br>29,991.76<br>-<br>P120-1<br>Pressure(psia)                                                                                    | H4-1_<br>Value<br>0.0167<br>3.941<br>0.01688<br>0.01095<br>0.01696<br>2.4543<br>2.5592<br>4.0997<br>7<br>7<br>H4-1_l<br>Value                                                                                  | P60-2 Pressure(psia) 29,991.71 10,715.96 16,520.09 - 0.50 29,991.71                                                                                                                                | H4-1<br>Average<br>0.01305<br>3.85<br>0.01321<br>0.0096<br>0.01349<br>2.4815<br>2.5643<br>3.23195<br>6<br>H4-1<br>Average                                                                                      | _P60<br>STDEV.S<br>0.00516<br>0.12869<br>0.00519<br>0.00191<br>0.00491<br>0.03847<br>0.00721<br>1.22718<br>1.41421<br>_P120<br>STDEV.S                                                                                                                                                                    |
| H4-1_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>H4-1_120日間浸漬<br>Contents<br>Total intrusion volume                                                                                                                                                                                                                        | Unit<br>mL/g<br>m²/g<br>µm<br>g/mL<br>g/mL<br>g/mL<br>g/mL<br>%<br>%<br>Unit<br>mL/g                                      | H4-1_<br>Value<br>0.0094<br>3.759<br>0.00954<br>0.00825<br>0.01002<br>2.5087<br>2.5694<br>2.3642<br>5<br>H4-1_1<br>Value<br>0.0138                                                                         | P60-1<br>Pressure(psia)<br>29,991.76<br>29,991.76<br>18,960.94<br>21,924.67<br>-<br>0.50<br>29,991.76<br>-<br>P120-1<br>Pressure(psia)<br>29,991.96                                                                       | H4-1_<br>Value<br>0.0167<br>3.941<br>0.01688<br>0.01095<br>0.01696<br>2.4543<br>2.5592<br>4.0997<br>7<br>H4-1_U<br>Value<br>0.0144                                                                             | P60-2 Pressure(psia) 29,991.71 29,991.71 10,715.96 16,520.09 - 0.50 29,991.71                                                                                                                      | H4-1<br>Average<br>0.01305<br>3.85<br>0.01321<br>0.0096<br>0.01349<br>2.4815<br>2.5643<br>3.23195<br>6<br>H4-1<br>Average<br>0.0141                                                                            | _P60<br>STDEV.S<br>0.00516<br>0.12869<br>0.00519<br>0.00191<br>0.00491<br>0.03847<br>0.00721<br>1.22718<br>1.41421<br>P120<br>STDEV.S<br>0.00042                                                                                                                                                          |
| H4-1_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>H4-1_120日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area                                                                                                                                                                                                     | Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>g/mL<br>g/mL<br>g/mL<br>%<br>%<br>Unit<br>mL/g<br>m²/g                                | H4-1_<br>Value<br>0.0094<br>3.759<br>0.00954<br>0.00825<br>0.01002<br>2.5087<br>2.5694<br>2.3642<br>5<br>H4-1_1<br>Value<br>0.0138<br>4.245                                                                | P60-1<br>Pressure(psia)<br>29,991.76<br>29,991.76<br>18,960.94<br>21,924.67<br>-<br>0.50<br>29,991.76<br>-<br>P120-1<br>Pressure(psia)<br>29,991.96<br>29,991.96                                                          | H4-1_<br>Value<br>0.0167<br>3.941<br>0.01688<br>0.01095<br>0.01696<br>2.4543<br>2.5592<br>4.0997<br>7<br>7<br>H4-1_1<br>Value<br>0.0144<br>3.269                                                               | P60-2 Pressure(psia) 29,991.71 29,991.71 10,715.96 16,520.09 - 0.50 29,991.71                                                                                                                      | H4-1<br>Average<br>0.01305<br>3.85<br>0.01321<br>0.0096<br>0.01349<br>2.4815<br>2.5643<br>3.23195<br>6<br>H4-1<br>Average<br>0.0141<br>3.757                                                                   | _P60<br>STDEV.S<br>0.00516<br>0.12869<br>0.00191<br>0.00491<br>0.03847<br>0.00721<br>1.22718<br>1.41421<br>_P120<br>STDEV.S<br>0.00042<br>0.69014                                                                                                                                                         |
| H4-1_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>H4-1_120日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/                                                                                                                                                       | Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>g/mL<br>g/mL<br>%<br>%<br>Unit<br>mL/g<br>m²/g<br>µm                                  | H4-1_<br>Value<br>0.0094<br>3.759<br>0.00954<br>0.00825<br>0.01002<br>2.5087<br>2.5694<br>2.3642<br>5<br>H4-1_1<br>Value<br>0.0138<br>4.245<br>0.01304                                                     | P60-1<br>Pressure(psia)<br>29,991.76<br>29,991.76<br>18,960.94<br>21,924.67<br>-<br>0.50<br>29,991.76<br>-<br>P120-1<br>Pressure(psia)<br>29,991.96<br>29,991.96<br>13,871.53                                             | H4-1_<br>Value<br>0.0167<br>3.941<br>0.01688<br>0.01095<br>0.01696<br>2.4543<br>2.5592<br>4.0997<br>7<br>7<br>H4-1_1<br>Value<br>0.0144<br>3.269<br>0.01693                                                    | P60-2<br>Pressure(psia)<br>29,991.71<br>29,991.71<br>10,715.96<br>16,520.09<br>-<br>0.50<br>29,991.71<br>-<br>-<br>29,991.71<br>-<br>Pressure(psia)<br>29,991.85<br>29,991.85<br>10,682.68         | H4-1<br>Average<br>0.01305<br>3.85<br>0.01321<br>0.0096<br>0.01349<br>2.4815<br>2.5643<br>3.23195<br>6<br>H4-1<br>Average<br>0.0141<br>3.757<br>0.014985                                                       | _P60<br>STDEV.S<br>0.00516<br>0.12869<br>0.00519<br>0.00191<br>0.03847<br>0.00721<br>1.22718<br>1.41421<br>P120<br>STDEV.S<br>0.00042<br>0.69014<br>0.00275                                                                                                                                               |
| H4-1_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>H4-1_120日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g                                                                                                          | Unit<br>mL/g<br>m²/g<br>µm<br>g/mL<br>g/mL<br>g/mL<br>%<br>%<br>%<br>Unit<br>mL/g<br>m²/g<br>µm<br>µm                     | H4-1_<br>Value<br>0.0094<br>3.759<br>0.00954<br>0.00825<br>0.01002<br>2.5087<br>2.5694<br>2.3642<br>5<br>H4-1_1<br>Value<br>0.0138<br>4.245<br>0.01304<br>0.00932                                          | P60-1<br>Pressure(psia)<br>29,991.76<br>29,991.76<br>18,960.94<br>21,924.67<br>-<br>0.50<br>29,991.76<br>-<br>P120-1<br>Pressure(psia)<br>29,991.96<br>13,871.53<br>19,399.60                                             | H4-1_<br>Value<br>0.0167<br>3.941<br>0.01688<br>0.01095<br>0.01696<br>2.4543<br>2.5592<br>4.0997<br>7<br>7<br>H4-1_1<br>Value<br>0.0144<br>3.269<br>0.01693<br>0.0114                                          | P60-2<br>Pressure(psia)<br>29,991.71<br>29,991.71<br>10,715.96<br>16,520.09<br>-<br>0.50<br>29,991.71<br>-<br>-<br>P120-2<br>Pressure(psia)<br>29,991.85<br>29,991.85<br>10,682.68<br>15,860.46    | H4-1<br>Average<br>0.01305<br>3.85<br>0.01321<br>0.0096<br>0.01349<br>2.4815<br>2.5643<br>3.23195<br>6<br>4<br>H4-1<br>Average<br>0.0141<br>3.757<br>0.014985<br>0.01036                                       | _P60<br>STDEV.S<br>0.00516<br>0.12869<br>0.00519<br>0.00191<br>0.00491<br>0.03847<br>0.00721<br>1.22718<br>1.41421<br>_P120<br>STDEV.S<br>0.00042<br>0.69014<br>0.00275<br>0.00147                                                                                                                        |
| H4-1_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>H4-1_120日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)                                                                          | Unit<br>mL/g<br>m²/g<br>µm<br>g/mL<br>g/mL<br>g/mL<br>g/mL<br>%<br>%<br>%<br>Unit<br>mL/g<br>m²/g<br>m²/g<br>µm<br>µm     | H4-1_<br>Value<br>0.0094<br>3.759<br>0.00954<br>0.00825<br>0.01002<br>2.5087<br>2.5694<br>2.3642<br>5<br>H4-1_1<br>Value<br>0.0138<br>4.245<br>0.01304<br>0.00932<br>0.01301                               | P60-1<br>Pressure(psia)<br>29,991.76<br>29,991.76<br>18,960.94<br>21,924.67<br>-<br>0.50<br>29,991.76<br>-<br>P120-1<br>Pressure(psia)<br>29,991.96<br>29,991.96<br>13,871.53<br>19,399.60                                | H4-1_<br>Value<br>0.0167<br>3.941<br>0.01688<br>0.01095<br>0.01696<br>2.4543<br>2.5592<br>4.0997<br>7<br>7<br>H4-1_1<br>Value<br>0.0144<br>3.269<br>0.01693<br>0.0114<br>0.01761                               | P60-2 Pressure(psia) 29,991.71 29,991.71 10,715.96 16,520.09 - 0.50 29,991.71                                                                                                                      | H4-1<br>Average<br>0.01305<br>3.85<br>0.01321<br>0.0096<br>0.01349<br>2.4815<br>2.5643<br>3.23195<br>6<br>4<br>H4-1<br>Average<br>0.0141<br>3.757<br>0.014985<br>0.01036<br>0.01531                            | _P60<br>STDEV.S<br>0.00516<br>0.12869<br>0.00519<br>0.00191<br>0.00491<br>0.03847<br>0.00721<br>1.22718<br>1.41421<br>_P120<br>STDEV.S<br>0.00042<br>0.69014<br>0.00275<br>0.00147<br>0.00325                                                                                                             |
| H4-1_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>H4-1_120日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia                                             | Unit<br>mL/g<br>m²/g<br>µm<br>g/mL<br>g/mL<br>g/mL<br>%<br>%<br>Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>µm<br>g/mL            | H4-1_<br>Value<br>0.0094<br>3.759<br>0.00954<br>0.00825<br>0.01002<br>2.5087<br>2.5694<br>2.3642<br>5<br>H4-1_I<br>Value<br>0.0138<br>4.245<br>0.01304<br>0.00932<br>0.01301<br>2.4763                     | P60-1<br>Pressure(psia)<br>29,991.76<br>29,991.76<br>18,960.94<br>21,924.67<br>-<br>0.50<br>29,991.76<br>-<br>P120-1<br>Pressure(psia)<br>29,991.96<br>29,991.96<br>13,871.53<br>19,399.60<br>-<br>0.50                   | H4-1_<br>Value<br>0.0167<br>3.941<br>0.01688<br>0.01095<br>0.01696<br>2.4543<br>2.5592<br>4.0997<br>7<br>H4-1_1<br>Value<br>0.0144<br>3.269<br>0.01693<br>0.0114<br>0.01761<br>2.4649                          | P60-2 Pressure(psia) 29,991.71 29,991.71 10,715.96 16,520.09 - 0.50 29,991.71                                                                                                                      | H4-1<br>Average<br>0.01305<br>3.85<br>0.01321<br>0.0096<br>0.01349<br>2.4815<br>2.5643<br>3.23195<br>6<br>H4-1<br>Average<br>0.0141<br>3.757<br>0.014985<br>0.01036<br>0.01531<br>2.4706                       | _P60<br>STDEV.S<br>0.00516<br>0.12869<br>0.00519<br>0.00191<br>0.00491<br>0.03847<br>0.00721<br>1.22718<br>1.41421<br>STDEV.S<br>0.00042<br>0.69014<br>0.00275<br>0.00147<br>0.00325<br>0.00806                                                                                                           |
| H4-1_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>H4-1_120日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density              | Unit<br>mL/g<br>m²/g<br>µm<br>g/mL<br>g/mL<br>g/mL<br>%<br>%<br>Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>µm<br>g/mL<br>g/mL    | H4-1_<br>Value<br>0.0094<br>3.759<br>0.00954<br>0.00825<br>0.01002<br>2.5087<br>2.5694<br>2.3642<br>5<br>H4-1_1<br>Value<br>0.0138<br>4.245<br>0.01304<br>0.00932<br>0.01301<br>2.4763<br>2.5639           | P60-1<br>Pressure(psia)<br>29,991.76<br>29,991.76<br>18,960.94<br>21,924.67<br>-<br>0.50<br>29,991.76<br>-<br>P120-1<br>Pressure(psia)<br>29,991.96<br>13,871.53<br>19,399.60<br>-<br>0.50<br>29,991.96                   | H4-1_<br>Value<br>0.0167<br>3.941<br>0.01688<br>0.01095<br>0.01696<br>2.4543<br>2.5592<br>4.0997<br>7<br>H4-1_0<br>Value<br>0.0144<br>3.269<br>0.01693<br>0.0114<br>0.01761<br>2.4649<br>2.5556                | P60-2 Pressure(psia) 29,991.71 29,991.71 10,715.96 16,520.09 0.50 29,991.71 20,50 29,991.71 20,50 29,991.71 20,50 29,991.71 20,50 29,991.85 29,991.85 29,991.85 10,682.68 15,860.46 0.49 29,991.85 | H4-1<br>Average<br>0.01305<br>3.85<br>0.01321<br>0.0096<br>0.01349<br>2.4815<br>2.5643<br>3.23195<br>6<br>H4-1<br>Average<br>0.0141<br>3.757<br>0.014985<br>0.01036<br>0.01531<br>2.4706<br>2.55975            | _P60<br>STDEV.S<br>0.00516<br>0.12869<br>0.00191<br>0.00491<br>0.03847<br>0.00721<br>1.22718<br>1.41421<br>P120<br>STDEV.S<br>0.00042<br>0.69014<br>0.00275<br>0.000147<br>0.00325<br>0.00806<br>0.00587                                                                                                  |
| H4-1_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>H4-1_120日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity: | Unit<br>mL/g<br>m²/g<br>µm<br>g/mL<br>g/mL<br>g/mL<br>%<br>Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>µm<br>g/mL<br>g/mL<br>g/mL | H4-1_<br>Value<br>0.0094<br>3.759<br>0.00954<br>0.00825<br>0.01002<br>2.5087<br>2.5694<br>2.3642<br>5<br>H4-1_1<br>Value<br>0.0138<br>4.245<br>0.01304<br>0.00932<br>0.01301<br>2.4763<br>2.5639<br>3.4179 | P60-1<br>Pressure(psia)<br>29,991.76<br>29,991.76<br>18,960.94<br>21,924.67<br>-<br>0.50<br>29,991.76<br>-<br>P120-1<br>Pressure(psia)<br>29,991.96<br>29,991.96<br>13,871.53<br>19,399.60<br>-<br>0.50<br>29,991.96<br>- | H4-1_<br>Value<br>0.0167<br>3.941<br>0.01688<br>0.01095<br>0.01696<br>2.4543<br>2.5592<br>4.0997<br>7<br>7<br>H4-1_1<br>Value<br>0.0144<br>3.269<br>0.01693<br>0.0114<br>0.01761<br>2.4649<br>2.5556<br>3.5486 | P60-2 Pressure(psia) 29,991.71 29,991.71 10,715.96 16,520.09 0.50 29,991.71 Pressure(psia) 29,991.85 29,991.85 10,682.68 15,860.46 0.49 29,991.85                                                  | H4-1<br>Average<br>0.01305<br>3.85<br>0.01321<br>0.0096<br>0.01349<br>2.4815<br>2.5643<br>3.23195<br>6<br>H4-1<br>Average<br>0.0141<br>3.757<br>0.014985<br>0.01036<br>0.01531<br>2.4706<br>2.55975<br>3.48325 | _P60<br>STDEV.S<br>0.00516<br>0.12869<br>0.00191<br>0.00491<br>0.03847<br>0.00721<br>1.22718<br>1.41421<br>P120<br>STDEV.S<br>0.00042<br>0.69014<br>0.00275<br>0.00042<br>0.69014<br>0.00275<br>0.00042<br>0.00042<br>0.00042<br>0.00047<br>0.0025<br>0.00047<br>0.00325<br>0.00806<br>0.00587<br>0.09242 |

## 表 1.9-9 H 4-1 のポロシメータ測定結果



図 1.9-8 H 4-1の間隙径分布 (a)・(b) 未浸漬、 (c)・(d) 30 日浸漬、 (e)・(f) 60 日浸漬、 (g)・(h) 120 日浸漬

| 14-3_浸漬前                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                   | 14-3_                                                                                                                                                                                                                                                                                                                                                 | Pb-1                                                                                                                                                                                                                       | 14-3_                                                                                                                                                                                                      | Pb-2                                                                                                                                                                                                                                                                                          | 14-3                                                                                                                                                                                                                                                                                    | _Pb                                                                                                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Unit                                                                                                              | Value                                                                                                                                                                                                                                                                                                                                                 | Pressure(psia)                                                                                                                                                                                                             | Value                                                                                                                                                                                                      | Pressure(psia)                                                                                                                                                                                                                                                                                | Average                                                                                                                                                                                                                                                                                 | STDEV.S                                                                                                                                                                                                          |
| Total intrusion volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mL/g                                                                                                              | 0.0151                                                                                                                                                                                                                                                                                                                                                | 29,991.49                                                                                                                                                                                                                  | 0.0163                                                                                                                                                                                                     | 29,991.92                                                                                                                                                                                                                                                                                     | 0.0157                                                                                                                                                                                                                                                                                  | 0.00085                                                                                                                                                                                                          |
| Total pore area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | m²/g                                                                                                              | 0.535                                                                                                                                                                                                                                                                                                                                                 | 29,991.49                                                                                                                                                                                                                  | 0.592                                                                                                                                                                                                      | 29,991.92                                                                                                                                                                                                                                                                                     | 0.5635                                                                                                                                                                                                                                                                                  | 0.04031                                                                                                                                                                                                          |
| Median pore diameter (volume) at 0.001 mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | μm                                                                                                                | 0.1301                                                                                                                                                                                                                                                                                                                                                | 1,390.20                                                                                                                                                                                                                   | 0.13441                                                                                                                                                                                                    | 1,345.62                                                                                                                                                                                                                                                                                      | 0.132255                                                                                                                                                                                                                                                                                | 0.00305                                                                                                                                                                                                          |
| Median pore diameter (area) at 0.000 m <sup>2</sup> /g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | um                                                                                                                | 0.10231                                                                                                                                                                                                                                                                                                                                               | 1.767.87                                                                                                                                                                                                                   | 0.09943                                                                                                                                                                                                    | 1.818.92                                                                                                                                                                                                                                                                                      | 0.10087                                                                                                                                                                                                                                                                                 | 0.00204                                                                                                                                                                                                          |
| Average pore diameter $(4V/A)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | um                                                                                                                | 0 11263                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                            | 0 10986                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                               | 0 111245                                                                                                                                                                                                                                                                                | 0 0019587                                                                                                                                                                                                        |
| Bulk donsity at 0.50 psia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | µm<br>م/ml                                                                                                        | 2 5/78                                                                                                                                                                                                                                                                                                                                                | 0.50                                                                                                                                                                                                                       | 2 5382                                                                                                                                                                                                     | 0.50                                                                                                                                                                                                                                                                                          | 2 5/13                                                                                                                                                                                                                                                                                  | 0.0013307                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | g/IIIL                                                                                                            | 2.5476                                                                                                                                                                                                                                                                                                                                                | 20.001.40                                                                                                                                                                                                                  | 2.5382                                                                                                                                                                                                     | 20.001.02                                                                                                                                                                                                                                                                                     | 2.343                                                                                                                                                                                                                                                                                   | 0.00073                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | g/IIIL                                                                                                            | 2.0495                                                                                                                                                                                                                                                                                                                                                | 29,991.49                                                                                                                                                                                                                  | 2.0473                                                                                                                                                                                                     | 29,991.92                                                                                                                                                                                                                                                                                     | 2.0460                                                                                                                                                                                                                                                                                  | 0.00141                                                                                                                                                                                                          |
| Porosity:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | %                                                                                                                 | 3.8399                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                          | 4.1287                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                             | 3.9843                                                                                                                                                                                                                                                                                  | 0.20421                                                                                                                                                                                                          |
| Stem volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | %                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                          | 8                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                             | 1.5                                                                                                                                                                                                                                                                                     | 0.7071068                                                                                                                                                                                                        |
| 14 2 20口用词注                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                   | 14.2                                                                                                                                                                                                                                                                                                                                                  | D20 1                                                                                                                                                                                                                      | 14.2                                                                                                                                                                                                       | D20 2                                                                                                                                                                                                                                                                                         | 14.2                                                                                                                                                                                                                                                                                    | D20                                                                                                                                                                                                              |
| 14-5_30口间皮俱                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.21                                                                                                             | 14-5_                                                                                                                                                                                                                                                                                                                                                 | F 30-1                                                                                                                                                                                                                     | 14-3_                                                                                                                                                                                                      | - 30-2                                                                                                                                                                                                                                                                                        | 14-5_                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                  |
| Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Unit                                                                                                              | Value                                                                                                                                                                                                                                                                                                                                                 | Pressure(psia)                                                                                                                                                                                                             | value                                                                                                                                                                                                      | Pressure(psia)                                                                                                                                                                                                                                                                                | Average                                                                                                                                                                                                                                                                                 | STDEV.S                                                                                                                                                                                                          |
| lotal intrusion volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mL/g                                                                                                              | 0.0237                                                                                                                                                                                                                                                                                                                                                | 29,992.03                                                                                                                                                                                                                  | 0.0264                                                                                                                                                                                                     | 29,991.64                                                                                                                                                                                                                                                                                     | 0.02505                                                                                                                                                                                                                                                                                 | 0.00191                                                                                                                                                                                                          |
| Total pore area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | m²/g                                                                                                              | 1.236                                                                                                                                                                                                                                                                                                                                                 | 29,992.03                                                                                                                                                                                                                  | 1.263                                                                                                                                                                                                      | 29,991.64                                                                                                                                                                                                                                                                                     | 1.2495                                                                                                                                                                                                                                                                                  | 0.01909                                                                                                                                                                                                          |
| Median pore diameter (volume) at 0.001 mL/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | μm                                                                                                                | 0.15437                                                                                                                                                                                                                                                                                                                                               | 1,171.65                                                                                                                                                                                                                   | 0.15918                                                                                                                                                                                                    | 1,136.20                                                                                                                                                                                                                                                                                      | 0.156775                                                                                                                                                                                                                                                                                | 0.00340                                                                                                                                                                                                          |
| Median pore diameter (area) at 0.000 $\rm m^2/g$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | μm                                                                                                                | 0.02904                                                                                                                                                                                                                                                                                                                                               | 6,227.65                                                                                                                                                                                                                   | 0.03769                                                                                                                                                                                                    | 4,799.05                                                                                                                                                                                                                                                                                      | 0.033365                                                                                                                                                                                                                                                                                | 0.00612                                                                                                                                                                                                          |
| Average pore diameter (4V/A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | μm                                                                                                                | 0.07657                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                          | 0.08361                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                             | 0.08009                                                                                                                                                                                                                                                                                 | 0.00498                                                                                                                                                                                                          |
| Bulk density at 0.50 psia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | g/mL                                                                                                              | 2.4261                                                                                                                                                                                                                                                                                                                                                | 0.50                                                                                                                                                                                                                       | 2.4                                                                                                                                                                                                        | 0.50                                                                                                                                                                                                                                                                                          | 2.41305                                                                                                                                                                                                                                                                                 | 0.01846                                                                                                                                                                                                          |
| Apparent (skeletal) density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | g/mL                                                                                                              | 2.5739                                                                                                                                                                                                                                                                                                                                                | 29,992.03                                                                                                                                                                                                                  | 2.5623                                                                                                                                                                                                     | 29,991.64                                                                                                                                                                                                                                                                                     | 2.5681                                                                                                                                                                                                                                                                                  | 0.00820                                                                                                                                                                                                          |
| Porosity:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | %                                                                                                                 | 5.742                                                                                                                                                                                                                                                                                                                                                 | _                                                                                                                                                                                                                          | 6.3376                                                                                                                                                                                                     | _                                                                                                                                                                                                                                                                                             | 6.0398                                                                                                                                                                                                                                                                                  | 0.42115                                                                                                                                                                                                          |
| Stem volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | %                                                                                                                 | 10                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                          | 11                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                             | 10.5                                                                                                                                                                                                                                                                                    | 0.70711                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                            |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                  |
| 14.2.000 田 河 法                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                            |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                  |
| 14-3 60日問浸清                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                   | 14-3                                                                                                                                                                                                                                                                                                                                                  | P60-1                                                                                                                                                                                                                      | 14-3                                                                                                                                                                                                       | P60-2                                                                                                                                                                                                                                                                                         | 14-3                                                                                                                                                                                                                                                                                    | P60                                                                                                                                                                                                              |
| I4-3_60日間浸漬                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Unit                                                                                                              | 14-3_                                                                                                                                                                                                                                                                                                                                                 | P60-1<br>Pressure(psia)                                                                                                                                                                                                    | 14-3_                                                                                                                                                                                                      | P60-2<br>Pressure(psia)                                                                                                                                                                                                                                                                       | 14-3_                                                                                                                                                                                                                                                                                   | _P60                                                                                                                                                                                                             |
| I4-3_60日間浸漬<br>Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Unit                                                                                                              | I4-3_<br>Value                                                                                                                                                                                                                                                                                                                                        | P60-1<br>Pressure(psia)<br>20 001 74                                                                                                                                                                                       | I4-3_<br>Value                                                                                                                                                                                             | P60-2<br>Pressure(psia)                                                                                                                                                                                                                                                                       | I4-3<br>Average                                                                                                                                                                                                                                                                         | _P60<br>STDEV.S                                                                                                                                                                                                  |
| I4-3_60日間浸漬<br>Contents<br>Total intrusion volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Unit<br>mL/g                                                                                                      | I4-3_<br>Value<br>0.0269                                                                                                                                                                                                                                                                                                                              | P60-1<br>Pressure(psia)<br>29,991.74                                                                                                                                                                                       | I4-3_<br>Value<br>0.0243                                                                                                                                                                                   | P60-2<br>Pressure(psia)<br>29,992.34                                                                                                                                                                                                                                                          | 14-3_<br>Average<br>0.0256                                                                                                                                                                                                                                                              | _P60<br>STDEV.S<br>0.00184                                                                                                                                                                                       |
| I4-3_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Unit<br>mL/g<br>m²/g                                                                                              | I4-3_<br>Value<br>0.0269<br>2.177                                                                                                                                                                                                                                                                                                                     | P60-1<br>Pressure(psia)<br>29,991.74<br>29,991.74                                                                                                                                                                          | I4-3_<br>Value<br>0.0243<br>2.171                                                                                                                                                                          | P60-2<br>Pressure(psia)<br>29,992.34<br>29,992.34                                                                                                                                                                                                                                             | 14-3<br>Average<br>0.0256<br>2.174                                                                                                                                                                                                                                                      | _P60<br>STDEV.S<br>0.00184<br>0.00424                                                                                                                                                                            |
| I4-3_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Unit<br>mL/g<br>m²/g<br>μm                                                                                        | I4-3_<br>Value<br>0.0269<br>2.177<br>0.15439                                                                                                                                                                                                                                                                                                          | P60-1<br>Pressure(psia)<br>29,991.74<br>29,991.74<br>1,171.51                                                                                                                                                              | I4-3_<br>Value<br>0.0243<br>2.171<br>0.14561                                                                                                                                                               | P60-2<br>Pressure(psia)<br>29,992.34<br>29,992.34<br>1,242.09                                                                                                                                                                                                                                 | I4-3_<br>Average<br>0.0256<br>2.174<br>0.15                                                                                                                                                                                                                                             | P60<br>STDEV.S<br>0.00184<br>0.00424<br>0.00621                                                                                                                                                                  |
| I4-3_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g                                                                                                                                                                                                                                                                                                                                                                                                      | Unit<br>mL/g<br>m²/g<br>µm<br>µm                                                                                  | I4-3_<br>Value<br>0.0269<br>2.177<br>0.15439<br>0.01488                                                                                                                                                                                                                                                                                               | P60-1<br>Pressure(psia)<br>29,991.74<br>29,991.74<br>1,171.51<br>12,152.71                                                                                                                                                 | I4-3_<br>Value<br>0.0243<br>2.171<br>0.14561<br>0.01413                                                                                                                                                    | P60-2<br>Pressure(psia)<br>29,992.34<br>29,992.34<br>1,242.09<br>12,801.57                                                                                                                                                                                                                    | I4-3<br>Average<br>0.0256<br>2.174<br>0.15<br>0.014505                                                                                                                                                                                                                                  | _P60<br>STDEV.S<br>0.00184<br>0.00424<br>0.00621<br>0.00053                                                                                                                                                      |
| I4-3_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)                                                                                                                                                                                                                                                                                                                                                                      | Unit<br>mL/g<br>m²/g<br>μm<br>μm<br>μm                                                                            | I4-3_<br>Value<br>0.0269<br>2.177<br>0.15439<br>0.01488<br>0.04938                                                                                                                                                                                                                                                                                    | P60-1<br>Pressure(psia)<br>29,991.74<br>29,991.74<br>1,171.51<br>12,152.71<br>-                                                                                                                                            | I4-3_<br>Value<br>0.0243<br>2.171<br>0.14561<br>0.01413<br>0.04477                                                                                                                                         | P60-2<br>Pressure(psia)<br>29,992.34<br>29,992.34<br>1,242.09<br>12,801.57<br>-                                                                                                                                                                                                               | 14-3<br>Average<br>0.0256<br>2.174<br>0.15<br>0.014505<br>0.047075                                                                                                                                                                                                                      | _P60<br>STDEV.S<br>0.00184<br>0.00424<br>0.00053<br>0.00053                                                                                                                                                      |
| I4-3_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia                                                                                                                                                                                                                                                                                                                                         | Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>µm<br>g/mL                                                                    | I4-3_<br>Value<br>0.0269<br>2.177<br>0.15439<br>0.01488<br>0.04938<br>2.3997                                                                                                                                                                                                                                                                          | P60-1<br>Pressure(psia)<br>29,991.74<br>29,991.74<br>1,171.51<br>12,152.71<br>-<br>0.50                                                                                                                                    | I4-3_<br>Value<br>0.0243<br>2.171<br>0.14561<br>0.01413<br>0.04477<br>2.4166                                                                                                                               | P60-2<br>Pressure(psia)<br>29,992.34<br>29,992.34<br>1,242.09<br>12,801.57<br>-<br>0.50                                                                                                                                                                                                       | 14-3<br>Average<br>0.0256<br>2.174<br>0.15<br>0.014505<br>0.047075<br>2.40815                                                                                                                                                                                                           | _P60<br>STDEV.S<br>0.00184<br>0.00424<br>0.00053<br>0.00053<br>0.00326<br>0.01195                                                                                                                                |
| I4-3_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density                                                                                                                                                                                                                                                                                                          | Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>g/mL<br>g/mL                                                                  | I4-3_           Value           0.0269           2.177           0.15439           0.01488           0.04938           2.3997           2.5652                                                                                                                                                                                                        | P60-1<br>Pressure(psia)<br>29,991.74<br>29,991.74<br>1,171.51<br>12,152.71<br>-<br>0.50<br>29,991.74                                                                                                                       | I4-3_<br>Value<br>0.0243<br>2.171<br>0.14561<br>0.01413<br>0.04477<br>2.4166<br>2.5674                                                                                                                     | P60-2<br>Pressure(psia)<br>29,992.34<br>29,992.34<br>1,242.09<br>12,801.57<br>-<br>0.50<br>29,992.34                                                                                                                                                                                          | 14-3<br>Average<br>0.0256<br>2.174<br>0.15<br>0.014505<br>0.047075<br>2.40815<br>2.5663                                                                                                                                                                                                 | P60<br>STDEV.S<br>0.00184<br>0.00621<br>0.00053<br>0.00326<br>0.01195<br>0.00156                                                                                                                                 |
| I4-3_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:                                                                                                                                                                                                                                                                                             | Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>g/mL<br>g/mL<br>%                                                             | I4-3_           Value           0.0269           2.177           0.15439           0.01488           0.04938           2.3997           2.5652           6.4507                                                                                                                                                                                       | P60-1<br>Pressure(psia)<br>29,991.74<br>29,991.74<br>1,171.51<br>12,152.71<br>-<br>0.50<br>29,991.74<br>-                                                                                                                  | I4-3_           Value           0.0243           2.171           0.14561           0.01413           0.04477           2.4166           2.5674           5.8737                                            | P60-2<br>Pressure(psia)<br>29,992.34<br>29,992.34<br>1,242.09<br>12,801.57<br>-<br>0.50<br>29,992.34<br>-                                                                                                                                                                                     | 14-3<br>Average<br>0.0256<br>2.174<br>0.15<br>0.014505<br>0.047075<br>2.40815<br>2.5663<br>6.1622                                                                                                                                                                                       | P60<br>STDEV.S<br>0.00184<br>0.00621<br>0.00053<br>0.00326<br>0.01195<br>0.00156<br>0.40800                                                                                                                      |
| I4-3_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume                                                                                                                                                                                                                                                                              | Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>g/mL<br>g/mL<br>g/mL<br>%                                                     | I4-3_           Value           0.0269           2.177           0.15439           0.01488           0.04938           2.3997           2.5652           6.4507           11                                                                                                                                                                          | P60-1<br>Pressure(psia)<br>29,991.74<br>29,991.74<br>1,171.51<br>12,152.71<br>-<br>0.50<br>29,991.74<br>-<br>-                                                                                                             | I4-3_           Value           0.0243           2.171           0.14561           0.01413           0.04477           2.4166           2.5674           5.8737           11                               | P60-2<br>Pressure(psia)<br>29,992.34<br>1,242.09<br>12,801.57<br>-<br>0.50<br>29,992.34<br>-<br>-                                                                                                                                                                                             | 14-3<br>Average<br>0.0256<br>2.174<br>0.15<br>0.014505<br>0.047075<br>2.40815<br>2.5663<br>6.1622<br>11                                                                                                                                                                                 | P60<br>STDEV.S<br>0.00184<br>0.00424<br>0.00053<br>0.00053<br>0.00126<br>0.00156<br>0.40800<br>0.00000                                                                                                           |
| I4-3_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume                                                                                                                                                                                                                                                                              | Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>g/mL<br>g/mL<br>%<br>%                                                        | I4-3_           Value           0.0269           2.177           0.15439           0.01488           0.04938           2.3997           2.5652           6.4507           11                                                                                                                                                                          | P60-1<br>Pressure(psia)<br>29,991.74<br>29,991.74<br>1,171.51<br>12,152.71<br>-<br>0.50<br>29,991.74<br>-<br>-                                                                                                             | I4-3_           Value           0.0243           2.171           0.14561           0.01413           0.04477           2.4166           2.5674           5.8737           11                               | P60-2<br>Pressure(psia)<br>29,992.34<br>1,242.09<br>12,801.57<br>-<br>0.50<br>29,992.34<br>-<br>-                                                                                                                                                                                             | 14-3<br>Average<br>0.0256<br>2.174<br>0.15<br>0.014505<br>0.047075<br>2.40815<br>2.5663<br>6.1622<br>11                                                                                                                                                                                 | P60<br>STDEV.S<br>0.00184<br>0.00621<br>0.00053<br>0.00326<br>0.01195<br>0.00156<br>0.40800<br>0.00000                                                                                                           |
| I4-3_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>I4-3_120日間浸漬                                                                                                                                                                                                                                                              | Unit<br>mL/g<br>m <sup>2</sup> /g<br>µm<br>µm<br>g/mL<br>g/mL<br>%                                                | I4-3_           Value           0.0269           2.177           0.15439           0.01488           0.04938           2.3997           2.5652           6.4507           11           I4-3_F                                                                                                                                                         | P60-1<br>Pressure(psia)<br>29,991.74<br>29,991.74<br>1,171.51<br>12,152.71<br>-<br>0.50<br>29,991.74<br>-<br>-<br>29,991.74<br>-<br>-<br>-                                                                                 | I4-3_<br>Value<br>0.0243<br>2.171<br>0.14561<br>0.01413<br>0.04477<br>2.4166<br>2.5674<br>5.8737<br>11<br>14-3_F                                                                                           | P60-2<br>Pressure(psia)<br>29,992.34<br>1,242.09<br>12,801.57<br>-<br>0.50<br>29,992.34<br>-<br>-<br>2120-2                                                                                                                                                                                   | 14-3<br>Average<br>0.0256<br>2.174<br>0.15<br>0.014505<br>0.047075<br>2.40815<br>2.5663<br>6.1622<br>11                                                                                                                                                                                 | P60<br>STDEV.S<br>0.00184<br>0.00424<br>0.00053<br>0.00053<br>0.00326<br>0.01195<br>0.00156<br>0.40800<br>0.00000                                                                                                |
| I4-3_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>I4-3_120日間浸漬<br>Contents                                                                                                                                                                                                                                                  | Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>g/mL<br>g/mL<br>%<br>%<br>Unit                                                | I4-3_           Value           0.0269           2.177           0.15439           0.01488           0.04938           2.3997           2.5652           6.4507           11           I4-3_F           Value                                                                                                                                         | P60-1<br>Pressure(psia)<br>29,991.74<br>29,991.74<br>1,171.51<br>12,152.71<br>-<br>0.50<br>29,991.74<br>-<br>-<br>29,991.74<br>-<br>-<br>2120-1<br>Pressure(psia)                                                          | I4-3_<br>Value<br>0.0243<br>2.171<br>0.14561<br>0.01413<br>0.04477<br>2.4166<br>2.5674<br>5.8737<br>11<br>I4-3_F<br>Value                                                                                  | P60-2<br>Pressure(psia)<br>29,992.34<br>1,242.09<br>12,801.57<br>-<br>0.50<br>29,992.34<br>-<br>-<br>2120-2<br>Pressure(psia)                                                                                                                                                                 | I4-3.           Average           0.0256           2.174           0.15           0.014505           0.047075           2.40815           2.5663           6.1622           11           I4-3_           Average                                                                        | P60<br>STDEV.S<br>0.00184<br>0.00621<br>0.00053<br>0.00326<br>0.01195<br>0.00156<br>0.40800<br>0.00000<br>P120<br>STDEV.S                                                                                        |
| I4-3_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>I4-3_120日間浸漬<br>Contents<br>Total intrusion volume                                                                                                                                                                                                                        | Unit<br>mL/g<br>m²/g<br>µm<br>g/mL<br>g/mL<br>g/mL<br>%<br>%<br>Unit<br>mL/g                                      | I4-3_           Value           0.0269           2.177           0.15439           0.01488           0.04938           2.3997           2.5652           6.4507           11           I4-3_F           Value           0.0266                                                                                                                        | P60-1<br>Pressure(psia)<br>29,991.74<br>29,991.74<br>1,171.51<br>12,152.71<br>-<br>0.50<br>29,991.74<br>-<br>-<br>29,991.74<br>-<br>P120-1<br>Pressure(psia)<br>29,992.27                                                  | I4-3_<br>Value<br>0.0243<br>2.171<br>0.14561<br>0.01413<br>0.04477<br>2.4166<br>2.5674<br>5.8737<br>11<br>I4-3_F<br>Value<br>0.0277                                                                        | P60-2<br>Pressure(psia)<br>29,992.34<br>1,242.09<br>12,801.57<br>-<br>0.50<br>29,992.34<br>-<br>-<br>2120-2<br>Pressure(psia)<br>29,991.62                                                                                                                                                    | I4-3.           Average           0.0256           2.174           0.15           0.014505           0.047075           2.40815           2.5663           6.1622           11           I4-3_           Average           0.02715                                                      | P60<br>STDEV.S<br>0.00184<br>0.00621<br>0.00053<br>0.00326<br>0.01195<br>0.00156<br>0.40800<br>0.000000<br>P120<br>STDEV.S<br>0.00078                                                                            |
| I4-3_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>I4-3_120日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area                                                                                                                                                                                                     | Unit<br>mL/g<br>m²/g<br>µm<br>g/mL<br>g/mL<br>g/mL<br>%<br>%<br>Unit<br>mL/g<br>m²/g                              | I4-3_           Value           0.0269           2.177           0.15439           0.01488           0.04938           2.3997           2.5652           6.4507           11           I4-3_F           Value           0.0266           3.095                                                                                                        | P60-1<br>Pressure(psia)<br>29,991.74<br>29,991.74<br>1,171.51<br>12,152.71<br>-<br>0.50<br>29,991.74<br>-<br>-<br>P120-1<br>Pressure(psia)<br>29,992.27<br>29,992.27                                                       | I4-3_<br>Value<br>0.0243<br>2.171<br>0.14561<br>0.01413<br>0.04477<br>2.4166<br>2.5674<br>5.8737<br>11<br>I4-3_F<br>Value<br>0.0277<br>2.96                                                                | P60-2<br>Pressure(psia)<br>29,992.34<br>1,242.09<br>12,801.57<br>-<br>0.50<br>29,992.34<br>-<br>-<br>2120-2<br>Pressure(psia)<br>29,991.62<br>29,991.62                                                                                                                                       | I4-3.           Average           0.0256           2.174           0.15           0.014505           0.047075           2.40815           2.5663           6.1622           11           I4-3_           Average           0.02715           3.0275                                     | P60<br>STDEV.S<br>0.00184<br>0.00424<br>0.00053<br>0.00326<br>0.01195<br>0.00156<br>0.40800<br>0.000000<br>P120<br>STDEV.S<br>0.00078<br>0.009546                                                                |
| I4-3_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>I4-3_120日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/                                                                                                                                                       | Unit<br>mL/g<br>m²/g<br>μm<br>g/mL<br>g/mL<br>g/mL<br>%<br>%<br>Unit<br>mL/g<br>m²/g<br>μm                        | I4-3_           Value           0.0269           2.177           0.15439           0.01488           0.04938           2.3997           2.5652           6.4507           11           I4-3_F           Value           0.0266           3.095           0.10833                                                                                      | P60-1<br>Pressure(psia)<br>29,991.74<br>29,991.74<br>1,171.51<br>12,152.71<br>-<br>0.50<br>29,991.74<br>-<br>-<br>Pressure(psia)<br>29,992.27<br>29,992.27<br>1,669.55                                                     | I4-3_<br>Value<br>0.0243<br>2.171<br>0.14561<br>0.01413<br>0.04477<br>2.4166<br>2.5674<br>5.8737<br>11<br>I4-3_F<br>Value<br>0.0277<br>2.96<br>0.10905                                                     | P60-2<br>Pressure(psia)<br>29,992.34<br>1,242.09<br>12,801.57<br>-<br>0.50<br>29,992.34<br>-<br>-<br>2120-2<br>Pressure(psia)<br>29,991.62<br>29,991.62<br>1,658.60                                                                                                                           | I4-3.           Average           0.0256           2.174           0.15           0.014505           0.047075           2.40815           2.5663           6.1622           11           I4-3_           Average           0.02715           3.0275           0.10869                   | P60<br>STDEV.S<br>0.00184<br>0.00621<br>0.00053<br>0.00326<br>0.01195<br>0.00156<br>0.40800<br>0.00000<br>P120<br>STDEV.S<br>0.00078<br>0.09546<br>0.00051                                                       |
| I4-3_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>I4-3_120日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g                                                                                                          | Unit<br>mL/g<br>m²/g<br>μm<br>g/mL<br>g/mL<br>g/mL<br>%<br>%<br>Unit<br>mL/g<br>m²/g<br>μm                        | I4-3_           Value           0.0269           2.177           0.15439           0.01488           0.04938           2.3997           2.5652           6.4507           11           I4-3_F           Value           0.0266           3.095           0.10833           0.01338                                                                    | P60-1<br>Pressure(psia)<br>29,991.74<br>29,991.74<br>1,171.51<br>12,152.71<br>-<br>0.50<br>29,991.74<br>-<br>-<br>2120-1<br>Pressure(psia)<br>29,992.27<br>29,992.27<br>1,669.55<br>13,513.41                              | I4-3_<br>Value<br>0.0243<br>2.171<br>0.14561<br>0.01413<br>0.04477<br>2.4166<br>2.5674<br>5.8737<br>11<br>I4-3_F<br>Value<br>0.0277<br>2.96<br>0.10905<br>0.01586                                          | P60-2<br>Pressure(psia)<br>29,992.34<br>1,242.09<br>12,801.57<br>-<br>0.50<br>29,992.34<br>-<br>29,992.34<br>-<br>29,992.34<br>-<br>Pressure(psia)<br>29,991.62<br>29,991.62<br>1,658.60<br>11,406.27                                                                                         | I4-3.           Average           0.0256           2.174           0.15           0.014505           0.047075           2.40815           2.5663           6.1622           11           I4-3_           Average           0.02715           3.0275           0.10869           0.01462 | P60<br>STDEV.S<br>0.00184<br>0.00424<br>0.00053<br>0.00326<br>0.01195<br>0.00156<br>0.40800<br>0.00000<br>P120<br>STDEV.S<br>0.00078<br>0.09546<br>0.00051<br>0.00175                                            |
| I4-3_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>I4-3_120日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)                                                                          | Unit<br>mL/g<br>m²/g<br>μm<br>g/mL<br>g/mL<br>g/mL<br>%<br>%<br>Unit<br>mL/g<br>m²/g<br>μm<br>μm                  | I4-3_           Value           0.0269           2.177           0.15439           0.01488           0.04938           2.3997           2.5652           6.4507           11           I4-3_F           Value           0.0266           3.095           0.10833           0.01338           0.03442                                                  | P60-1<br>Pressure(psia)<br>29,991.74<br>29,991.74<br>1,171.51<br>12,152.71<br>-<br>0.50<br>29,991.74<br>-<br>-<br>29,991.74<br>-<br>29,991.74<br>-<br>29,992.27<br>29,992.27<br>1,669.55<br>13,513.41<br>-                 | I4-3_<br>Value<br>0.0243<br>2.171<br>0.14561<br>0.01413<br>0.04477<br>2.4166<br>2.5674<br>5.8737<br>11<br>I4-3_F<br>Value<br>0.0277<br>2.96<br>0.10905<br>0.01586<br>0.03739                               | P60-2<br>Pressure(psia)<br>29,992.34<br>1,242.09<br>12,801.57<br>-<br>0.50<br>29,992.34<br>-<br>-<br>2120-2<br>Pressure(psia)<br>29,991.62<br>29,991.62<br>1,658.60<br>11,406.27<br>-                                                                                                         | 14-3<br>Average<br>0.0256<br>2.174<br>0.15<br>0.014505<br>0.047075<br>2.40815<br>2.5663<br>6.1622<br>11<br>14-3_<br>Average<br>0.02715<br>3.0275<br>0.10869<br>0.01462<br>0.035905                                                                                                      | P60<br>STDEV.S<br>0.00184<br>0.00621<br>0.00053<br>0.00326<br>0.01195<br>0.00156<br>0.40800<br>0.00000<br>P120<br>STDEV.S<br>0.00078<br>0.09546<br>0.00051<br>0.00015<br>0.00210                                 |
| I4-3_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>I4-3_120日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia                                             | Unit<br>mL/g<br>m²/g<br>μm<br>g/mL<br>g/mL<br>%<br>%<br>Unit<br>mL/g<br>m²/g<br>μm<br>μm<br>μm                    | I4-3_           Value           0.0269           2.177           0.15439           0.01488           0.04938           2.3997           2.5652           6.4507           11           I4-3_F           Value           0.0266           3.095           0.10833           0.01338           0.03442           2.3965                                 | P60-1<br>Pressure(psia)<br>29,991.74<br>29,991.74<br>1,171.51<br>12,152.71<br>-<br>0.50<br>29,991.74<br>-<br>-<br>Pressure(psia)<br>29,992.27<br>29,992.27<br>1,669.55<br>13,513.41<br>-<br>0.50                           | I4-3_<br>Value<br>0.0243<br>2.171<br>0.14561<br>0.01413<br>0.04477<br>2.4166<br>2.5674<br>5.8737<br>11<br>I4-3_F<br>Value<br>0.0277<br>2.96<br>0.10905<br>0.01586<br>0.03739<br>2.3973                     | P60-2<br>Pressure(psia)<br>29,992.34<br>29,992.34<br>1,242.09<br>12,801.57<br>-<br>0.50<br>29,992.34<br>-<br>-<br>2120-2<br>Pressure(psia)<br>29,991.62<br>29,991.62<br>1,658.60<br>11,406.27<br>-<br>0.50                                                                                    | 14-3<br>Average<br>0.0256<br>2.174<br>0.15<br>0.014505<br>0.047075<br>2.40815<br>2.5663<br>6.1622<br>11<br>14-3_<br>Average<br>0.02715<br>3.0275<br>0.10869<br>0.01462<br>0.035905<br>2.3969                                                                                            | P60<br>STDEV.S<br>0.00184<br>0.00424<br>0.00053<br>0.00053<br>0.00156<br>0.40800<br>0.00000<br>P120<br>STDEV.S<br>0.00078<br>0.009546<br>0.00051<br>0.00175<br>0.000210<br>0.00057                               |
| I4-3_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>I4-3_120日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density              | Unit<br>mL/g<br>m²/g<br>μm<br>g/mL<br>g/mL<br>%<br>%<br>Unit<br>mL/g<br>m²/g<br>μm<br>μm<br>μm<br>g/mL            | I4-3_           Value           0.0269           2.177           0.15439           0.01488           0.04938           2.3997           2.5652           6.4507           11           I4-3_F           Value           0.0266           3.095           0.10833           0.01338           0.03442           2.3965           2.56                  | P60-1<br>Pressure(psia)<br>29,991.74<br>29,991.74<br>1,171.51<br>12,152.71<br>-<br>0.50<br>29,991.74<br>-<br>-<br>P120-1<br>Pressure(psia)<br>29,992.27<br>1,669.55<br>13,513.41<br>-<br>0.50<br>29,992.27                 | I4-3_<br>Value<br>0.0243<br>2.171<br>0.14561<br>0.01413<br>0.04477<br>2.4166<br>2.5674<br>5.8737<br>11<br>I4-3_F<br>Value<br>0.0277<br>2.96<br>0.10905<br>0.01586<br>0.03739<br>2.3973<br>2.5675           | P60-2<br>Pressure(psia)<br>29,992.34<br>29,992.34<br>1,242.09<br>12,801.57<br>-<br>0.50<br>29,992.34<br>-<br>29,992.34<br>-<br>29,992.34<br>-<br>29,992.34<br>-<br>29,992.34<br>-<br>29,992.34<br>-<br>29,992.34<br>-<br>1,658.60<br>11,406.27<br>-<br>0.50<br>29,991.62<br>0.50<br>29,991.62 | 14-3<br>Average<br>0.0256<br>2.174<br>0.15<br>0.014505<br>0.047075<br>2.40815<br>2.5663<br>6.1622<br>11<br>14-3_<br>Average<br>0.02715<br>3.0275<br>0.10869<br>0.01462<br>0.035905<br>2.3969<br>2.56375                                                                                 | P60<br>STDEV.S<br>0.00184<br>0.00424<br>0.00053<br>0.00326<br>0.01195<br>0.00156<br>0.40800<br>0.00000<br>P120<br>STDEV.S<br>0.00078<br>0.009546<br>0.00051<br>0.00057<br>0.00530                                |
| I4-3_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>I4-3_120日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity: | Unit<br>mL/g<br>m²/g<br>µm<br>g/mL<br>g/mL<br>g/mL<br>%<br>Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>µm<br>g/mL<br>g/mL | I4-3_           Value           0.0269           2.177           0.15439           0.01488           0.04938           2.3997           2.5652           6.4507           11           I4-3_F           Value           0.0266           3.095           0.10833           0.01338           0.03442           2.3965           2.56           6.3853 | P60-1<br>Pressure(psia)<br>29,991.74<br>29,991.74<br>1,171.51<br>12,152.71<br>-<br>0.50<br>29,991.74<br>-<br>Pressure(psia)<br>29,992.27<br>29,992.27<br>1,669.55<br>13,513.41<br>-<br>0.50<br>29,992.27<br>-              | I4-3_<br>Value<br>0.0243<br>2.171<br>0.14561<br>0.01413<br>0.04477<br>2.4166<br>2.5674<br>5.8737<br>11<br>I4-3_F<br>Value<br>0.0277<br>2.96<br>0.10905<br>0.01586<br>0.03739<br>2.3973<br>2.5675<br>6.6311 | P60-2<br>Pressure(psia)<br>29,992.34<br>1,242.09<br>12,801.57<br>-<br>0.50<br>29,992.34<br>-<br>Pressure(psia)<br>29,991.62<br>29,991.62<br>1,658.60<br>11,406.27<br>-<br>0.50<br>29,991.62                                                                                                   | 14-3<br>Average<br>0.0256<br>2.174<br>0.15<br>0.014505<br>0.047075<br>2.40815<br>2.5663<br>6.1622<br>11<br>14-3_<br>Average<br>0.02715<br>3.0275<br>0.10869<br>0.01462<br>0.035905<br>2.3969<br>2.56375<br>6 5082                                                                       | P60<br>STDEV.S<br>0.00184<br>0.00424<br>0.00053<br>0.00326<br>0.01195<br>0.00156<br>0.40800<br>0.00000<br>P120<br>STDEV.S<br>0.00078<br>0.009546<br>0.00051<br>0.00210<br>0.00057<br>0.00530<br>0.17381          |
| I4-3_60日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>I4-3_120日間浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity: | Unit<br>mL/g<br>µm<br>µm<br>g/mL<br>g/mL<br>g/mL<br>%<br>Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>g/mL<br>g/mL<br>g/mL | I4-3_           Value           0.0269           2.177           0.15439           0.01488           0.04938           2.3997           2.5652           6.4507           11           I4-3_F           Value           0.0266           3.095           0.10833           0.01338           0.03442           2.3965           2.56           6.3853 | P60-1<br>Pressure(psia)<br>29,991.74<br>29,991.74<br>1,171.51<br>12,152.71<br>-<br>0.50<br>29,991.74<br>-<br>Pressure(psia)<br>29,992.27<br>1,669.55<br>13,513.41<br>-<br>0.50<br>29,992.27<br>-<br>0.50<br>29,992.27<br>- | I4-3_<br>Value<br>0.0243<br>2.171<br>0.14561<br>0.01413<br>0.04477<br>2.4166<br>2.5674<br>5.8737<br>11<br>I4-3_F<br>Value<br>0.0277<br>2.96<br>0.10905<br>0.01586<br>0.03739<br>2.3973<br>2.5675<br>6.6311 | P60-2<br>Pressure(psia)<br>29,992.34<br>1,242.09<br>12,801.57<br>-<br>0.50<br>29,992.34<br>-<br>Pressure(psia)<br>29,991.62<br>29,991.62<br>29,991.62<br>1,658.60<br>11,406.27<br>-<br>0.50<br>29,991.62<br>-                                                                                 | 14-3<br>Average<br>0.0256<br>2.174<br>0.15<br>0.014505<br>0.047075<br>2.40815<br>2.5663<br>6.1622<br>11<br>14-3<br>4verage<br>0.02715<br>3.0275<br>0.10869<br>0.01462<br>0.035905<br>2.3969<br>2.56375<br>6.5082                                                                        | P60<br>STDEV.S<br>0.00184<br>0.00424<br>0.00053<br>0.00326<br>0.01195<br>0.00156<br>0.40800<br>0.00000<br>P120<br>STDEV.S<br>0.00078<br>0.0051<br>0.00210<br>0.00057<br>0.00057<br>0.00530<br>0.17381<br>0.70711 |

#### 表 1.9-10 | 4-3 のポロシメータ測定結果


図 1.9-9 I 4-3の間隙径分布 (a)・(b) 未浸漬、 (c)・(d) 30 日浸漬、 (e)・(f) 60 日浸漬、 (g)・(h) 120 日浸漬

| J2-5_浸漬前                                                                             |                         | J2-5_                                      | Pb-1                             | J2-5_                                      | _Pb-2                            | J2-5_Pb                          |                                          |
|--------------------------------------------------------------------------------------|-------------------------|--------------------------------------------|----------------------------------|--------------------------------------------|----------------------------------|----------------------------------|------------------------------------------|
| Contents                                                                             | Unit                    | Value                                      | Pressure(psia)                   | Value                                      | Pressure(psia)                   | Average                          | STDEV.S                                  |
| Total intrusion volume                                                               | mL/g                    | 0.002                                      | 29,992.13                        | 0.0021                                     | 29,991.37                        | 0.00205                          | 0.00007                                  |
| Total pore area                                                                      | m²/g                    | 0.002                                      | 29,992.13                        | 0                                          | 29,991.37                        | 0.001                            | 0.00141                                  |
| Median pore diameter (volume) at 0.001 mL                                            | μm                      | 130.45121                                  | 1.39                             | 161.73742                                  | 1.12                             | 146.09432                        | 22.12269                                 |
| Median pore diameter (area) at 0.000 m²/g                                            | μm                      | 0.4072                                     | 444.16                           | 1.58704                                    | 113.96                           | 0.99712                          | 0.83427                                  |
| Average pore diameter (4V/A)                                                         | μm                      | 3.28626                                    | -                                | 0                                          | -                                | 1.64313                          | 2.3237367                                |
| Bulk density at 0.50 psia                                                            | g/mL                    | 2.7553                                     | 0.49                             | 2.7101                                     | 0.49                             | 2.7327                           | 0.03196                                  |
| Apparent (skeletal) density                                                          | g/mL                    | 2.7704                                     | 29,992.13                        | 2.7253                                     | 29,991.37                        | 2.74785                          | 0.03189                                  |
| Porosity:                                                                            | %                       | 0.5463                                     | -                                | 0.5566                                     | -                                | 0.55145                          | 0.00728                                  |
| Stem volume                                                                          | %                       | 1                                          | -                                | 1                                          | -                                | 1                                | 0                                        |
|                                                                                      |                         |                                            |                                  |                                            |                                  |                                  |                                          |
| J2-5_硝酸浸漬                                                                            |                         | J2-5_N                                     | _P60-1                           | J2-5_N                                     | _P60-2                           | J2-5_N                           | N_P60                                    |
| Contents                                                                             | Unit                    | Value                                      | Pressure(psia)                   | Value                                      | Pressure(psia)                   | Average                          | STDEV.S                                  |
| Total intrusion volume                                                               | mL/g                    | 0.0027                                     | 29,991.75                        | 0.0019                                     | 29,992.23                        | 0.0023                           | 0.00057                                  |
| Total pore area                                                                      | m²/g                    | 0.077                                      | 29,991.75                        | 0.018                                      | 29,992.23                        | 0.0475                           | 0.04172                                  |
| Median pore diameter (volume) at 0.001 mL/                                           | μm                      | 157.24544                                  | 1.15                             | 107.57101                                  | 1.68                             | 132.40823                        | 35.12513                                 |
| Median pore diameter (area) at 0.000 m²/g                                            | μm                      | 0.05263                                    | 3,436.77                         | 0.0617                                     | 2,931.48                         | 0.057165                         | 0.00641                                  |
| Average pore diameter (4V/A)                                                         | μm                      | 0.1396                                     | -                                | 0.42807                                    | -                                | 0.283835                         | 0.20398                                  |
| Bulk density at 0.50 psia                                                            | g/mL                    | 2.5583                                     | 0.50                             | 2.6051                                     | 0.50                             | 2.5817                           | 0.03309                                  |
| Apparent (skeletal) density                                                          | g/mL                    | 2.5761                                     | 29,991.75                        | 2.6182                                     | 29,992.23                        | 2.59715                          | 0.02977                                  |
| Porosity:                                                                            | %                       | 0.6913                                     | -                                | 0.4992                                     | -                                | 0.59525                          | 0.13584                                  |
| Stem volume                                                                          | %                       | 1                                          | -                                | 1                                          | -                                | 1                                | 0.00000                                  |
| ·                                                                                    |                         |                                            |                                  |                                            |                                  |                                  |                                          |
| J2-5_塩酸浸漬                                                                            |                         | J2-5_C                                     | _P60-1                           | J2-5_C                                     | _P60-2                           | J2-5_(                           | C_P60                                    |
| Contents                                                                             | Unit                    | Value                                      | Pressure(psia)                   | Value                                      | Pressure(psia)                   | Average                          | STDEV.S                                  |
| Total intrusion volume                                                               | mL/g                    | 0.1456                                     | 29,992.28                        | 0.3066                                     | 29,991.64                        | 0.2261                           | 0.11384                                  |
| Total pore area                                                                      | m²/g                    | 2.192                                      | 29,992.28                        | 3.786                                      | 29,991.64                        | 2.989                            | 1.12713                                  |
| Median pore diameter (volume) at 0.001 mL/                                           | μm                      | 5.28423                                    | 34.23                            | 9.09856                                    | 19.88                            | 7.191395                         | 2.69714                                  |
| Median pore diameter (area) at 0.000 m²/g                                            | μm                      | 0.03461                                    | 5,226.45                         | 0.02563                                    | 7,056.03                         | 0.03012                          | 0.00635                                  |
| Average pore diameter (4V/A)                                                         | μm                      | 0.26566                                    | -                                | 0.32394                                    | -                                | 0.2948                           | 0.04121                                  |
| Bulk density at 0.50 psia                                                            | g/mL                    | 1.8461                                     | 0.50                             | 1.4001                                     | 0.50                             | 1.6231                           | 0.31537                                  |
| Apparent (skeletal) density                                                          | g/mL                    | 2.5248                                     | 29,992.28                        | 2.4535                                     | 29,991.64                        | 2.48915                          | 0.05042                                  |
| Porosity:                                                                            | %                       | 26.8815                                    | -                                | 42.9322                                    | -                                | 34.90685                         | 11.34956                                 |
| Stem volume                                                                          | %                       | 15                                         | -                                | 22                                         | -                                | 18.5                             | 4.94975                                  |
|                                                                                      |                         |                                            |                                  |                                            |                                  |                                  |                                          |
| J2-5_硫酸浸漬                                                                            |                         | J2-5_S                                     | _P60-1                           | J2-5_S                                     | _P60-2                           | J2-5_9                           | S_P60                                    |
| Contents                                                                             | Unit                    | Value                                      | Pressure(psia)                   | Value                                      | Pressure(psia)                   | Average                          | STDEV.S                                  |
| Total intrusion volume                                                               | mL/g                    | 0.0081                                     | 29,991.86                        | 0.0078                                     | 29,991.98                        | 0.00795                          | 0.00021                                  |
| Total pore area                                                                      | m²/g                    | 0.507                                      | 29,991.86                        | 0.487                                      | 29,991.98                        | 0.497                            | 0.01414                                  |
| Median pore diameter (volume) at 0.001 mL/                                           | μm                      | 0.07631                                    | 2,370.11                         | 0.07521                                    | 2,404.91                         | 0.07576                          | 0.00078                                  |
| Median pore diameter (area) at 0.000 m²/g                                            | μm                      | 0.03998                                    | 4,523.55                         | 0.03506                                    | 5,158.88                         | 0.03752                          | 0.00348                                  |
| Average pore diameter (4V/A)                                                         |                         |                                            |                                  | 0.00075                                    |                                  | 0.06402                          | 0.00040                                  |
| 91                                                                                   | μm                      | 0.06431                                    | -                                | 0.06375                                    | -                                | 0.06403                          | 0.00040                                  |
| Bulk density at 0.50 psia                                                            | µm<br>g/mL              | 0.06431<br>2.6254                          | - 0.49                           | 2.6506                                     | - 0.49                           | 2.638                            | 0.00040                                  |
| Bulk density at 0.50 psia<br>Apparent (skeletal) density                             | µm<br>g/mL<br>g/mL      | 0.06431<br>2.6254<br>2.6828                | -<br>0.49<br>29,991.86           | 0.06375<br>2.6506<br>2.7064                | -<br>0.49<br>29,991.98           | 2.638<br>2.6946                  | 0.01782                                  |
| Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:                | µm<br>g/mL<br>g/mL      | 0.06431<br>2.6254<br>2.6828<br>2.1383      | -<br>0.49<br>29,991.86<br>-      | 2.6506<br>2.7064<br>2.0583                 | -<br>0.49<br>29,991.98<br>-      | 2.638<br>2.6946<br>2.0983        | 0.01782<br>0.01669<br>0.05657            |
| Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume | µm<br>g/mL<br>g/mL<br>% | 0.06431<br>2.6254<br>2.6828<br>2.1383<br>3 | -<br>0.49<br>29,991.86<br>-<br>- | 0.06375<br>2.6506<br>2.7064<br>2.0583<br>4 | -<br>0.49<br>29,991.98<br>-<br>- | 2.638<br>2.6946<br>2.0983<br>3.5 | 0.01782<br>0.01669<br>0.05657<br>0.70711 |

#### 表 1.9-11 J 2-5 のポロシメータ測定結果



図 1.9-10 J 2-5の間隙径分布 (a)・(b) 未浸漬、(c)・(d) 硝酸 60 日浸漬、(e)・(f)塩酸 60 日浸漬、(g)・(h) 硫酸 60 日浸漬

| K4-2_浸漬前                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | K4-2_Pb-1                                                                                                                        |                                                                                                                                                                                                               | K4-2_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _Pb-2                                                                                                                                                                                                                                                                                                                                                     | K4-2_Pb                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Unit                                                                                                                             | Value                                                                                                                                                                                                         | Pressure(psia)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Value                                                                                                                                                                                                                                                                                                                                                     | Pressure(psia)                                                                                                                                                                                                             | Average                                                                                                                                                                                                                                                                                                                                                                      | STDEV.S                                                                                                                                                                                                                                    |
| Total intrusion volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mL/g                                                                                                                             | 0.0082                                                                                                                                                                                                        | 29,992.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0044                                                                                                                                                                                                                                                                                                                                                    | 29,991.59                                                                                                                                                                                                                  | 0.0063                                                                                                                                                                                                                                                                                                                                                                       | 0.00269                                                                                                                                                                                                                                    |
| Total pore area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | m²/g                                                                                                                             | 0.149                                                                                                                                                                                                         | 29,992.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.037                                                                                                                                                                                                                                                                                                                                                     | 29,991.59                                                                                                                                                                                                                  | 0.093                                                                                                                                                                                                                                                                                                                                                                        | 0.07920                                                                                                                                                                                                                                    |
| Median pore diameter (volume) at 0.001 mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | μm                                                                                                                               | 16.37584                                                                                                                                                                                                      | 11.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8.81583                                                                                                                                                                                                                                                                                                                                                   | 20.52                                                                                                                                                                                                                      | 12.595835                                                                                                                                                                                                                                                                                                                                                                    | 5.34573                                                                                                                                                                                                                                    |
| Median pore diameter (area) at 0.000 m²/g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | μm                                                                                                                               | 0.04288                                                                                                                                                                                                       | 4,218.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.11196                                                                                                                                                                                                                                                                                                                                                   | 1,615.49                                                                                                                                                                                                                   | 0.07742                                                                                                                                                                                                                                                                                                                                                                      | 0.04885                                                                                                                                                                                                                                    |
| Average pore diameter (4V/A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | μm                                                                                                                               | 0.21958                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.48106                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                          | 0.35032                                                                                                                                                                                                                                                                                                                                                                      | 0.1848943                                                                                                                                                                                                                                  |
| Bulk density at 0.50 psia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | g/mL                                                                                                                             | 2.6312                                                                                                                                                                                                        | 0.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.677                                                                                                                                                                                                                                                                                                                                                     | 0.49                                                                                                                                                                                                                       | 2.6541                                                                                                                                                                                                                                                                                                                                                                       | 0.03239                                                                                                                                                                                                                                    |
| Apparent (skeletal) density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | g/mL                                                                                                                             | 2.6892                                                                                                                                                                                                        | 29,992.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.7091                                                                                                                                                                                                                                                                                                                                                    | 29,991.59                                                                                                                                                                                                                  | 2.69915                                                                                                                                                                                                                                                                                                                                                                      | 0.01407                                                                                                                                                                                                                                    |
| Porosity:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | %                                                                                                                                | 2.1569                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.1868                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                          | 1.67185                                                                                                                                                                                                                                                                                                                                                                      | 0.68596                                                                                                                                                                                                                                    |
| Stem volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | %                                                                                                                                | 3                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                          | 2.5                                                                                                                                                                                                                                                                                                                                                                          | 0.7071068                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                  |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                            |
| K4-2_硝酸浸漬                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                  | K4-2_N                                                                                                                                                                                                        | L_P60-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | K4-2_N                                                                                                                                                                                                                                                                                                                                                    | _P60-2                                                                                                                                                                                                                     | K4-2_                                                                                                                                                                                                                                                                                                                                                                        | N_P60                                                                                                                                                                                                                                      |
| Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Unit                                                                                                                             | Value                                                                                                                                                                                                         | Pressure(psia)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Value                                                                                                                                                                                                                                                                                                                                                     | Pressure(psia)                                                                                                                                                                                                             | Average                                                                                                                                                                                                                                                                                                                                                                      | STDEV.S                                                                                                                                                                                                                                    |
| Total intrusion volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mL/g                                                                                                                             | 0.0194                                                                                                                                                                                                        | 29,992.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0238                                                                                                                                                                                                                                                                                                                                                    | 29,992.43                                                                                                                                                                                                                  | 0.0216                                                                                                                                                                                                                                                                                                                                                                       | 0.00311                                                                                                                                                                                                                                    |
| Total pore area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | m²/g                                                                                                                             | 1.427                                                                                                                                                                                                         | 29,992.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.018                                                                                                                                                                                                                                                                                                                                                     | 29,992.43                                                                                                                                                                                                                  | 1.7225                                                                                                                                                                                                                                                                                                                                                                       | 0.41790                                                                                                                                                                                                                                    |
| Median pore diameter (volume) at 0.001 mL/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | μm                                                                                                                               | 0.21323                                                                                                                                                                                                       | 848.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.16072                                                                                                                                                                                                                                                                                                                                                   | 1,125.30                                                                                                                                                                                                                   | 0.186975                                                                                                                                                                                                                                                                                                                                                                     | 0.03713                                                                                                                                                                                                                                    |
| Median pore diameter (area) at 0.000 m²/g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | μm                                                                                                                               | 0.01887                                                                                                                                                                                                       | 9,582.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.01655                                                                                                                                                                                                                                                                                                                                                   | 10,927.15                                                                                                                                                                                                                  | 0.01771                                                                                                                                                                                                                                                                                                                                                                      | 0.00164                                                                                                                                                                                                                                    |
| Average pore diameter (4V/A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | μm                                                                                                                               | 0.05439                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.04712                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                          | 0.050755                                                                                                                                                                                                                                                                                                                                                                     | 0.00514                                                                                                                                                                                                                                    |
| Bulk density at 0.50 psia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | g/mL                                                                                                                             | 2.4335                                                                                                                                                                                                        | 0.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.405                                                                                                                                                                                                                                                                                                                                                     | 0.49                                                                                                                                                                                                                       | 2.41925                                                                                                                                                                                                                                                                                                                                                                      | 0.02015                                                                                                                                                                                                                                    |
| Apparent (skeletal) density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | g/mL                                                                                                                             | 2.5541                                                                                                                                                                                                        | 29,992.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.5508                                                                                                                                                                                                                                                                                                                                                    | 29,992.43                                                                                                                                                                                                                  | 2.55245                                                                                                                                                                                                                                                                                                                                                                      | 0.00233                                                                                                                                                                                                                                    |
| Porosity:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | %                                                                                                                                | 4.7227                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.7181                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                          | 5.2204                                                                                                                                                                                                                                                                                                                                                                       | 0.70385                                                                                                                                                                                                                                    |
| Stem volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | %                                                                                                                                | 6                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                          | 7                                                                                                                                                                                                                                                                                                                                                                            | 1.41421                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                  |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                  |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                            |
| K4-2_塩酸浸漬                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                  | K4-2_C                                                                                                                                                                                                        | C_P60-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | K4-2_C                                                                                                                                                                                                                                                                                                                                                    | _P60-2                                                                                                                                                                                                                     | K4-2_                                                                                                                                                                                                                                                                                                                                                                        | C_P60                                                                                                                                                                                                                                      |
| K4-2_塩酸浸漬<br>Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unit                                                                                                                             | K4-2_C<br>Value                                                                                                                                                                                               | C_P60-1<br>Pressure(psia)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | K4-2_C<br>Value                                                                                                                                                                                                                                                                                                                                           | 2_P60-2<br>Pressure(psia)                                                                                                                                                                                                  | K4-2_<br>Average                                                                                                                                                                                                                                                                                                                                                             | C_P60<br>STDEV.S                                                                                                                                                                                                                           |
| K4-2_塩酸浸漬<br>Contents<br>Total intrusion volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Unit<br>mL/g                                                                                                                     | K4-2_C<br>Value<br>0.1652                                                                                                                                                                                     | 2_P60-1<br>Pressure(psia)<br>29,992.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | K4-2_C<br>Value<br>0.1298                                                                                                                                                                                                                                                                                                                                 | P60-2<br>Pressure(psia)<br>29,991.91                                                                                                                                                                                       | K4-2_<br>Average<br>0.1475                                                                                                                                                                                                                                                                                                                                                   | C_P60<br>STDEV.S<br>0.02503                                                                                                                                                                                                                |
| K4-2_塩酸浸漬<br>Contents<br>Total intrusion volume<br>Total pore area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Unit<br>mL/g<br>m²/g                                                                                                             | K4-2_C<br>Value<br>0.1652<br>0.775                                                                                                                                                                            | 2_P60-1<br>Pressure(psia)<br>29,992.65<br>29,992.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | K4-2_C<br>Value<br>0.1298<br>0.676                                                                                                                                                                                                                                                                                                                        | P60-2<br>Pressure(psia)<br>29,991.91<br>29,991.91                                                                                                                                                                          | K4-2_<br>Average<br>0.1475<br>0.7255                                                                                                                                                                                                                                                                                                                                         | C_P60<br>STDEV.S<br>0.02503<br>0.07000                                                                                                                                                                                                     |
| K4-2_塩酸浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Unit<br>mL/g<br>m²/g<br>µm                                                                                                       | K4-2_C<br>Value<br>0.1652<br>0.775<br>14.10712                                                                                                                                                                | 2_P60-1<br>Pressure(psia)<br>29,992.65<br>29,992.65<br>12.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | K4-2_C<br>Value<br>0.1298<br>0.676<br>14.74402                                                                                                                                                                                                                                                                                                            | 2_P60-2<br>Pressure(psia)<br>29,991.91<br>29,991.91<br>12.27                                                                                                                                                               | K4-2_<br>Average<br>0.1475<br>0.7255<br>14.42557                                                                                                                                                                                                                                                                                                                             | C_P60<br>STDEV.S<br>0.02503<br>0.07000<br>0.45036                                                                                                                                                                                          |
| K4-2_塩酸浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Unit<br>mL/g<br>m²/g<br>μm<br>μm                                                                                                 | K4-2_C<br>Value<br>0.1652<br>0.775<br>14.10712<br>0.09905                                                                                                                                                     | 2_P60-1<br>Pressure(psia)<br>29,992.65<br>29,992.65<br>12.82<br>1,825.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | K4-2_C<br>Value<br>0.1298<br>0.676<br>14.74402<br>0.09093                                                                                                                                                                                                                                                                                                 | P60-2<br>Pressure(psia)<br>29,991.91<br>29,991.91<br>12.27<br>1,989.00                                                                                                                                                     | K4-2_<br>Average<br>0.1475<br>0.7255<br>14.42557<br>0.09499                                                                                                                                                                                                                                                                                                                  | C_P60<br>STDEV.S<br>0.02503<br>0.07000<br>0.45036<br>0.00574                                                                                                                                                                               |
| K4-2_塩酸浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Unit<br>mL/g<br>m²/g<br>µm<br>µm                                                                                                 | K4-2_C<br>Value<br>0.1652<br>0.775<br>14.10712<br>0.09905<br>0.85268                                                                                                                                          | 2_P60-1<br>Pressure(psia)<br>29,992.65<br>29,992.65<br>12.82<br>1,825.89<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | K4-2_C<br>Value<br>0.1298<br>0.676<br>14.74402<br>0.09093<br>0.76793                                                                                                                                                                                                                                                                                      | P60-2<br>Pressure(psia)<br>29,991.91<br>29,991.91<br>12.27<br>1,989.00<br>-                                                                                                                                                | K4-2_<br>Average<br>0.1475<br>0.7255<br>14.42557<br>0.09499<br>0.810305                                                                                                                                                                                                                                                                                                      | C_P60<br>STDEV.S<br>0.02503<br>0.07000<br>0.45036<br>0.00574<br>0.05993                                                                                                                                                                    |
| K4-2_塩酸浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>g/mL                                                                                         | K4-2_C<br>Value<br>0.1652<br>0.775<br>14.10712<br>0.09905<br>0.85268<br>1.8135                                                                                                                                | 2_P60-1<br>Pressure(psia)<br>29,992.65<br>29,992.65<br>12.82<br>1,825.89<br>-<br>0.49<br>20.002.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | K4-2_C<br>Value<br>0.1298<br>0.676<br>14.74402<br>0.09093<br>0.76793<br>1.8851                                                                                                                                                                                                                                                                            | P60-2<br>Pressure(psia)<br>29,991.91<br>29,991.91<br>12.27<br>1,989.00<br>-<br>0.49                                                                                                                                        | K4-2_<br>Average<br>0.1475<br>0.7255<br>14.42557<br>0.09499<br>0.810305<br>1.8493<br>2.5427                                                                                                                                                                                                                                                                                  | C_P60<br>STDEV.S<br>0.02503<br>0.07000<br>0.45036<br>0.00574<br>0.05993<br>0.05063                                                                                                                                                         |
| K4-2_塩酸浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density                                                                                                                                                                                                                                                                                                                                                                                                                                            | Unit<br>mL/g<br>m <sup>2</sup> /g<br>µm<br>µm<br>g/mL<br>g/mL                                                                    | K4-2_C<br>Value<br>0.1652<br>0.775<br>14.10712<br>0.09905<br>0.85268<br>1.8135<br>2.5895                                                                                                                      | 2_P60-1<br>Pressure(psia)<br>29,992.65<br>29,992.65<br>12.82<br>1,825.89<br>-<br>0.49<br>29,992.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | K4-2_C<br>Value<br>0.1298<br>0.676<br>14.74402<br>0.09093<br>0.76793<br>1.8851<br>2.4959                                                                                                                                                                                                                                                                  | P60-2<br>Pressure(psia)<br>29,991.91<br>22,991.91<br>12.27<br>1,989.00<br>-<br>0.49<br>29,991.91                                                                                                                           | K4-2_<br>Average<br>0.1475<br>0.7255<br>14.42557<br>0.09499<br>0.810305<br>1.8493<br>2.5427                                                                                                                                                                                                                                                                                  | C_P60<br>STDEV.S<br>0.02503<br>0.07000<br>0.45036<br>0.00574<br>0.05993<br>0.05063<br>0.06619                                                                                                                                              |
| K4-2_塩酸浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Chara undures                                                                                                                                                                                                                                                                                                                                                                                                              | Unit<br>mL/g<br>m²/g<br>μm<br>μm<br>g/mL<br>g/mL<br>g/mL                                                                         | K4-2_C<br>Value<br>0.1652<br>0.775<br>14.10712<br>0.09905<br>0.85268<br>1.8135<br>2.5895<br>29.9663                                                                                                           | E_P60-1<br>Pressure(psia)<br>29,992.65<br>29,992.65<br>12.82<br>1,825.89<br>-<br>0.49<br>29,992.65<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | K4-2_C<br>Value<br>0.1298<br>0.676<br>14.74402<br>0.09093<br>0.76793<br>1.8851<br>2.4959<br>24.4713                                                                                                                                                                                                                                                       | P60-2<br>Pressure(psia)<br>29,991.91<br>29,991.91<br>12.27<br>1,989.00<br>-<br>0.49<br>29,991.91<br>-                                                                                                                      | K4-2_<br>Average<br>0.1475<br>0.7255<br>14.42557<br>0.09499<br>0.810305<br>1.8493<br>2.5427<br>27.2188                                                                                                                                                                                                                                                                       | C_P60<br>STDEV.S<br>0.02503<br>0.07000<br>0.45036<br>0.00574<br>0.05993<br>0.05063<br>0.06619<br>3.88555                                                                                                                                   |
| K4-2_塩酸浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume                                                                                                                                                                                                                                                                                                                                                                                                                | Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>g/mL<br>g/mL<br>%                                                                            | K4-2_C<br>Value<br>0.1652<br>0.775<br>14.10712<br>0.09905<br>0.85268<br>1.8135<br>2.5895<br>29.9663<br>5                                                                                                      | P60-1<br>Pressure(psia)<br>29,992.65<br>29,992.65<br>12.82<br>1,825.89<br>-<br>0.49<br>29,992.65<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | K4-2_C<br>Value<br>0.1298<br>0.676<br>14.74402<br>0.09093<br>0.76793<br>1.8851<br>2.4959<br>24.4713<br>3                                                                                                                                                                                                                                                  | P60-2<br>Pressure(psia)<br>29,991.91<br>29,991.91<br>12.27<br>1,989.00<br>-<br>0.49<br>29,991.91<br>-<br>-                                                                                                                 | K4-2_           Average           0.1475           0.7255           14.42557           0.09499           0.810305           1.8493           2.5427           27.2188           4                                                                                                                                                                                            | C_P60<br>STDEV.S<br>0.02503<br>0.07000<br>0.45036<br>0.00574<br>0.05993<br>0.05063<br>0.06619<br>3.88555<br>1.41421                                                                                                                        |
| K4-2_塩酸浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>K4-2 硫酸浸渍                                                                                                                                                                                                                                                                                                                                                                                                   | Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>g/mL<br>g/mL<br>%                                                                            | K4-2_C<br>Value<br>0.1652<br>0.775<br>14.10712<br>0.09905<br>0.85268<br>1.8135<br>2.5895<br>29.9663<br>5                                                                                                      | 2_P60-1<br>Pressure(psia)<br>29,992.65<br>12.82<br>1,825.89<br>-<br>0.49<br>29,992.65<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | K4-2_C<br>Value<br>0.1298<br>0.676<br>14.74402<br>0.09093<br>0.76793<br>1.8851<br>2.4959<br>24.4713<br>3                                                                                                                                                                                                                                                  | P60-2<br>Pressure(psia)<br>29,991.91<br>29,991.91<br>12.27<br>1,989.00<br>-<br>0.49<br>29,991.91<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                   | K4-2_<br>Average<br>0.1475<br>0.7255<br>14.42557<br>0.09499<br>0.810305<br>1.8493<br>2.5427<br>27.2188<br>4                                                                                                                                                                                                                                                                  | C_P60<br>STDEV.S<br>0.02503<br>0.07000<br>0.45036<br>0.00574<br>0.05993<br>0.05063<br>0.06619<br>3.88555<br>1.41421                                                                                                                        |
| K4-2_塩酸浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>K4-2_硫酸浸漬<br>Contents                                                                                                                                                                                                                                                                                                                                                                                       | Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>g/mL<br>g/mL<br>%<br>%                                                                       | K4-2_C<br>Value<br>0.1652<br>0.775<br>14.10712<br>0.09905<br>0.85268<br>1.8135<br>2.5895<br>29.9663<br>5<br>K4-2_S<br>K4-2_S                                                                                  | 2_P60-1<br>Pressure(psia)<br>29,992.65<br>12.82<br>1,825.89<br>-<br>0.49<br>29,992.65<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | K4-2_C<br>Value<br>0.1298<br>0.676<br>14.74402<br>0.09093<br>0.76793<br>1.8851<br>2.4959<br>24.4713<br>3<br>K4-2_S                                                                                                                                                                                                                                        | P60-2<br>Pressure(psia)<br>29,991.91<br>29,991.91<br>12.27<br>1,989.00<br>-<br>0.49<br>29,991.91<br>-<br>-<br>-<br>-<br>-P60-2<br>Pressure(psia)                                                                           | K4-2_<br>Average<br>0.1475<br>0.7255<br>14.42557<br>0.09499<br>0.810305<br>1.8493<br>2.5427<br>27.2188<br>4<br>K4-2_<br>Average                                                                                                                                                                                                                                              | C_P60<br>STDEV.S<br>0.02503<br>0.07000<br>0.45036<br>0.00574<br>0.05993<br>0.05063<br>0.06619<br>3.88555<br>1.41421<br>S_P60<br>STDEV.S                                                                                                    |
| K4-2_塩酸浸漬<br>Contents<br>Total intrusion volume<br>Total pore area<br>Median pore diameter (volume) at 0.001 mL/<br>Median pore diameter (area) at 0.000 m²/g<br>Average pore diameter (4V/A)<br>Bulk density at 0.50 psia<br>Apparent (skeletal) density<br>Porosity:<br>Stem volume<br>K4-2_硫酸浸漬<br>Contents<br>Total intrusion volume                                                                                                                                                                                                                                                                                                                                                             | Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>g/mL<br>g/mL<br>g/mL<br>%<br>%<br>Unit                                                       | K4-2_C<br>Value<br>0.1652<br>0.775<br>14.10712<br>0.09905<br>0.85268<br>1.8135<br>2.5895<br>29.9663<br>5<br>K4-2_S<br>Value<br>0.0212                                                                         | 2-P60-1          Pressure(psia)         29,992.65         29,992.65         12.82         1,825.89         -         0.49         29,992.65         -         0.49         29,992.65         -         0.49         29,992.65         -         -         -         29,992.65         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - | K4-2_C<br>Value<br>0.1298<br>0.676<br>14.74402<br>0.09093<br>0.76793<br>1.8851<br>2.4959<br>24.4713<br>3<br>K4-2_S<br>Value<br>0.0208                                                                                                                                                                                                                     | P60-2<br>Pressure(psia)<br>29,991.91<br>12.27<br>1,989.00<br>-<br>0.49<br>29,991.91<br>-<br>-<br>-<br>-<br>P60-2<br>Pressure(psia)<br>29.992.95                                                                            | K4-2_<br>Average<br>0.1475<br>0.7255<br>14.42557<br>0.09499<br>0.810305<br>1.8493<br>2.5427<br>27.2188<br>4<br>K4-2_<br>Average<br>0.021                                                                                                                                                                                                                                     | C_P60<br>STDEV.S<br>0.02503<br>0.07000<br>0.45036<br>0.00574<br>0.05993<br>0.05063<br>0.06619<br>3.88555<br>1.41421<br>S_P60<br>STDEV.S<br>0.00028                                                                                         |
| K4-2_塩酸浸漬         Contents         Total intrusion volume         Total pore area         Median pore diameter (volume) at 0.001 mL/         Median pore diameter (area) at 0.000 m²/g         Average pore diameter (area) at 0.000 m²/g         Average pore diameter (4V/A)         Bulk density at 0.50 psia         Apparent (skeletal) density         Porosity:         Stem volume         K4-2_硫酸浸漬         Contents         Total intrusion volume         Total pore area                                                                                                                                                                                                                 | Unit<br>mL/g<br>m²/g<br>µm<br>g/mL<br>g/mL<br>g/mL<br>%<br>%<br>0<br>%                                                           | K4-2_C<br>Value<br>0.1652<br>0.775<br>14.10712<br>0.09905<br>0.85268<br>1.8135<br>2.5895<br>29.9663<br>5<br>K4-2_S<br>Value<br>0.0212<br>0.554                                                                | 2-P60-1          Pressure(psia)         29,992.65         29,992.65         12.82         1,825.89         -         0.49         29,992.65         -         0.49         29,992.65         -         -         0.49         29,992.65         -         -         -         -         -         -         -         -         -         29,992.46         29,992.46         29,992.46                                                                                                                                                                                                                                                               | K4-2_C<br>Value<br>0.1298<br>0.676<br>14.74402<br>0.09093<br>0.76793<br>1.8851<br>2.4959<br>24.4713<br>3<br>K4-2_S<br>Value<br>0.0208<br>0.659                                                                                                                                                                                                            | P60-2<br>Pressure(psia)<br>29,991.91<br>29,991.91<br>12.27<br>1,989.00<br>-<br>0.49<br>29,991.91<br>-<br>-<br>-<br>P60-2<br>Pressure(psia)<br>29,992.95<br>29,992.95<br>29,992.95                                          | K4-2_<br>Average<br>0.1475<br>0.7255<br>14.42557<br>0.09499<br>0.810305<br>1.8493<br>2.5427<br>27.2188<br>4<br>K4-2_<br>Average<br>0.021<br>0.6065                                                                                                                                                                                                                           | C_P60<br>STDEV.S<br>0.02503<br>0.07000<br>0.45036<br>0.00574<br>0.05993<br>0.05063<br>0.06619<br>3.88555<br>1.41421<br>S_P60<br>STDEV.S<br>0.00028<br>0.07425                                                                              |
| K4-2_塩酸浸漬         Contents         Total intrusion volume         Total pore area         Median pore diameter (volume) at 0.001 mL/         Median pore diameter (area) at 0.000 m²/g         Average pore diameter (area) at 0.000 m²/g         Average pore diameter (4V/A)         Bulk density at 0.50 psia         Apparent (skeletal) density         Porosity:         Stem volume         K4-2_硫酸浸漬         Contents         Total intrusion volume         Total pore area         Median pore diameter (volume) at 0.001 mL/                                                                                                                                                              | Unit<br>mL/g<br>m²/g<br>µm<br>g/mL<br>g/mL<br>g/mL<br>g/mL<br>%<br>%<br>Unit<br>mL/g<br>m²/g<br>um                               | K4-2_C<br>Value<br>0.1652<br>0.775<br>14.10712<br>0.09905<br>0.85268<br>1.8135<br>2.5895<br>29.9663<br>5<br>K4-2_S<br>Value<br>0.0212<br>0.554<br>2.49351                                                     | E_P60-1<br>Pressure(psia)<br>29,992.65<br>29,992.65<br>12.82<br>1,825.89<br>-<br>0.49<br>29,992.65<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | K4-2_C<br>Value<br>0.1298<br>0.676<br>14.74402<br>0.09093<br>0.76793<br>1.8851<br>2.4959<br>24.4713<br>3<br>K4-2_S<br>Value<br>0.0208<br>0.659<br>1.42485                                                                                                                                                                                                 | P60-2<br>Pressure(psia)<br>29,991.91<br>12.27<br>1,989.00<br>-<br>0.49<br>29,991.91<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                       | K4-2_           Average           0.1475           0.7255           14.42557           0.09499           0.810305           1.8493           2.5427           27.2188           4           K4-2_           Average           0.021           0.6065           1.95918                                                                                                       | C_P60<br>STDEV.S<br>0.02503<br>0.07000<br>0.45036<br>0.00574<br>0.05993<br>0.05063<br>0.06619<br>3.88555<br>1.41421<br>S_P60<br>STDEV.S<br>0.00028<br>0.07425<br>0.75566                                                                   |
| K4-2_塩酸浸漬         Contents         Total intrusion volume         Total pore area         Median pore diameter (volume) at 0.001 mL/         Median pore diameter (area) at 0.000 m²/g         Average pore diameter (4V/A)         Bulk density at 0.50 psia         Apparent (skeletal) density         Porosity:         Stem volume         K4-2_硫酸浸漬         Contents         Total intrusion volume         Total pore area         Median pore diameter (volume) at 0.001 mL/         Median pore diameter (volume) at 0.001 mL/                                                                                                                                                              | Unit<br>mL/g<br>m²/g<br>µm<br>g/mL<br>g/mL<br>g/mL<br>%<br>%<br>Unit<br>mL/g<br>m²/g<br>µm<br>um                                 | K4-2_C<br>Value<br>0.1652<br>0.775<br>14.10712<br>0.09905<br>0.85268<br>1.8135<br>2.5895<br>29.9663<br>5<br>K4-2_S<br>Value<br>0.0212<br>0.554<br>2.49351<br>0.03294                                          | <ul> <li>P60-1</li> <li>Pressure(psia)</li> <li>29,992.65</li> <li>29,992.65</li> <li>12.82</li> <li>1,825.89</li> <li>-</li> <li>0.49</li> <li>29,992.65</li> <li>-</li> <li>-</li> <li>P60-1</li> <li>Pressure(psia)</li> <li>29,992.46</li> <li>29,992.46</li> <li>29,992.46</li> <li>72.53</li> <li>5.490.44</li> </ul>                                                                                                                                                                                                                                                                                                                           | K4-2_C<br>Value<br>0.1298<br>0.676<br>14.74402<br>0.09093<br>0.76793<br>1.8851<br>2.4959<br>24.4713<br>3<br>K4-2_S<br>Value<br>0.0208<br>0.659<br>1.42485<br>0.03088                                                                                                                                                                                      | P60-2<br>Pressure(psia)<br>29,991.91<br>29,991.91<br>12.27<br>1,989.00<br>-<br>0.49<br>29,991.91<br>-<br>-<br>-<br>P60-2<br>Pressure(psia)<br>29,992.95<br>29,992.95<br>126.93<br>5.856.54                                 | K4-2_<br>Average<br>0.1475<br>0.7255<br>14.42557<br>0.09499<br>0.810305<br>1.8493<br>2.5427<br>27.2188<br>4<br>K4-2_<br>Average<br>0.021<br>0.6065<br>1.95918<br>0.03191                                                                                                                                                                                                     | C_P60<br>STDEV.S<br>0.02503<br>0.07000<br>0.45036<br>0.00574<br>0.05993<br>0.05063<br>0.06619<br>3.88555<br>1.41421<br>S_P60<br>STDEV.S<br>0.00028<br>0.07425<br>0.75566<br>0.00146                                                        |
| K4-2_塩酸浸漬         Contents         Total intrusion volume         Total pore area         Median pore diameter (volume) at 0.001 mL/         Median pore diameter (area) at 0.000 m²/g         Average pore diameter (area) at 0.000 m²/g         Average pore diameter (4V/A)         Bulk density at 0.50 psia         Apparent (skeletal) density         Porosity:         Stem volume         K4-2_硫酸浸漬         Contents         Total intrusion volume         Total pore area         Median pore diameter (volume) at 0.001 mL/         Median pore diameter (area) at 0.000 m²/g         Average pore diameter (4V/A)                                                                       | Unit<br>mL/g<br>m²/g<br>µm<br>g/mL<br>g/mL<br>g/mL<br>%<br>%<br>Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>um                           | K4-2_C<br>Value<br>0.1652<br>0.775<br>14.10712<br>0.09905<br>0.85268<br>1.8135<br>2.5895<br>29.9663<br>5<br>K4-2_S<br>Value<br>0.0212<br>0.554<br>2.49351<br>0.03294<br>0.15337                               | <ul> <li>P60-1</li> <li>Pressure(psia)</li> <li>29,992.65</li> <li>29,992.65</li> <li>12.82</li> <li>1,825.89</li> <li>-</li> <li>0.49</li> <li>29,992.65</li> <li>-</li> <li>-</li> <li>P60-1</li> <li>Pressure(psia)</li> <li>29,992.46</li> <li>29,992.46</li> <li>29,992.46</li> <li>72.53</li> <li>5,490.44</li> <li>-</li> </ul>                                                                                                                                                                                                                                                                                                                | K4-2_C<br>Value<br>0.1298<br>0.676<br>14.74402<br>0.09093<br>0.76793<br>1.8851<br>2.4959<br>24.4713<br>3<br>K4-2_S<br>Value<br>0.0208<br>0.659<br>1.42485<br>0.03088<br>0.12598                                                                                                                                                                           | P60-2<br>Pressure(psia)<br>29,991.91<br>29,991.91<br>12.27<br>1,989.00<br>-<br>0.49<br>29,991.91<br>-<br>-<br>-<br>-<br>-<br>Pf60-2<br>Pressure(psia)<br>29,992.95<br>29,992.95<br>29,992.95<br>126.93<br>5,856.54         | K4-2_<br>Average<br>0.1475<br>0.7255<br>14.42557<br>0.09499<br>0.810305<br>1.8493<br>2.5427<br>27.2188<br>4<br>K4-2_<br>Average<br>0.021<br>0.6065<br>1.95918<br>0.03191<br>0.139675                                                                                                                                                                                         | C_P60<br>STDEV.S<br>0.02503<br>0.07000<br>0.45036<br>0.00574<br>0.05993<br>0.05063<br>0.06619<br>3.88555<br>1.41421<br>S_P60<br>STDEV.S<br>0.00028<br>0.07425<br>0.75566<br>0.00146<br>0.01937                                             |
| K4-2_塩酸浸漬         Contents         Total intrusion volume         Total pore area         Median pore diameter (volume) at 0.001 mL/         Median pore diameter (area) at 0.000 m²/g         Average pore diameter (area) at 0.000 m²/g         Average pore diameter (4V/A)         Bulk density at 0.50 psia         Apparent (skeletal) density         Porosity:         Stem volume         K4-2_硫酸浸漬         Contents         Total intrusion volume         Total pore area         Median pore diameter (volume) at 0.001 mL/         Median pore diameter (area) at 0.000 m²/g         Average pore diameter (4V/A)         Bulk density at 0.50 psia                                     | Unit<br>mL/g<br>m²/g<br>µm<br>g/mL<br>g/mL<br>g/mL<br>%<br>%<br>Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>µm<br>g/mL                   | K4-2_C<br>Value<br>0.1652<br>0.775<br>14.10712<br>0.09905<br>0.85268<br>1.8135<br>2.5895<br>29.9663<br>5<br>K4-2_S<br>Value<br>0.0212<br>0.554<br>2.49351<br>0.03294<br>0.15337<br>2.4859                     | P60-1 Pressure(psia) 29,992.65 29,992.65 12.82 1,825.89 - 0.49 29,992.65 29,992.65 P60-1 Pressure(psia) 29,992.46 29,992.46 29,992.46 5,490.44 - 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | K4-2_C<br>Value<br>0.1298<br>0.676<br>14.74402<br>0.09093<br>0.76793<br>1.8851<br>2.4959<br>24.4713<br>3<br>K4-2_S<br>Value<br>0.0208<br>0.659<br>1.42485<br>0.03088<br>0.12598<br>2.4871                                                                                                                                                                 | P60-2<br>Pressure(psia)<br>29,991.91<br>29,991.91<br>12.27<br>1,989.00<br>-<br>0.49<br>29,991.91<br>-<br>-<br>-<br>Pf60-2<br>Pressure(psia)<br>29,992.95<br>29,992.95<br>126.93<br>5,856.54<br>-<br>0.50                   | K4-2_<br>Average<br>0.1475<br>0.7255<br>14.42557<br>0.09499<br>0.810305<br>1.8493<br>2.5427<br>27.2188<br>4<br>K4-2_<br>Average<br>0.021<br>0.6065<br>1.95918<br>0.03191<br>0.139675<br>2.4865                                                                                                                                                                               | C_P60<br>STDEV.S<br>0.02503<br>0.07000<br>0.45036<br>0.00574<br>0.05993<br>0.05063<br>0.06619<br>3.88555<br>1.41421<br>S_P60<br>STDEV.S<br>0.00028<br>0.07425<br>0.75566<br>0.00146<br>0.01937<br>0.00085                                  |
| K4-2_塩酸浸漬         Contents         Total intrusion volume         Total pore area         Median pore diameter (volume) at 0.001 mL/         Median pore diameter (area) at 0.000 m²/g         Average pore diameter (area) at 0.000 m²/g         Average pore diameter (4V/A)         Bulk density at 0.50 psia         Apparent (skeletal) density         Porosity:         Stem volume         K4-2_硫酸浸漬         Contents         Total intrusion volume         Total pore area         Median pore diameter (volume) at 0.001 mL/         Median pore diameter (area) at 0.000 m²/g         Average pore diameter (4V/A)         Bulk density at 0.50 psia         Apparent (skeletal) density | Unit<br>mL/g<br>m²/g<br>µm<br>g/mL<br>g/mL<br>g/mL<br>%<br>%<br>0<br>%<br>Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>µm<br>g/mL<br>g/mL | K4-2_C<br>Value<br>0.1652<br>0.775<br>14.10712<br>0.09905<br>0.85268<br>1.8135<br>2.5895<br>29.9663<br>5<br>K4-2_S<br>Value<br>0.0212<br>0.554<br>2.49351<br>0.03294<br>0.15337<br>2.4859<br>2.6244           | 2-P60-1 Pressure(psia) 29,992.65 29,992.65 12.82 1,825.89 - 0.49 29,992.65 29,992.65 29,992.65 29,992.65 5,490.44 - 0,50 29,992.46 0,50 29,992.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | K4-2_C           Value           0.1298           0.676           14.74402           0.09093           0.76793           1.8851           2.4959           24.4713           3           K4-2_S           Value           0.0208           0.659           1.42485           0.03088           0.12598           2.4871           2.6225                  | P60-2<br>Pressure(psia)<br>29,991.91<br>29,991.91<br>12.27<br>1,989.00<br>-<br>0.49<br>29,991.91<br>-<br>-<br>-<br>P60-2<br>Pressure(psia)<br>29,992.95<br>29,992.95<br>126.93<br>5,856.54<br>-<br>0.50<br>29.992.95       | K4-2_           Average           0.1475           0.7255           14.42557           0.09499           0.810305           1.8493           2.5427           27.2188           4           K4-2_           Average           0.021           0.6065           1.95918           0.03191           0.139675           2.4865           2.62345                               | C_P60<br>STDEV.S<br>0.02503<br>0.07000<br>0.45036<br>0.00574<br>0.05993<br>0.05063<br>0.06619<br>3.88555<br>1.41421<br>S_P60<br>STDEV.S<br>0.00028<br>0.07425<br>0.75566<br>0.00146<br>0.01937<br>0.00085<br>0.00134                       |
| K4-2_塩酸浸漬         Contents         Total intrusion volume         Total pore area         Median pore diameter (volume) at 0.001 mL/         Median pore diameter (area) at 0.000 m²/g         Average pore diameter (4V/A)         Bulk density at 0.50 psia         Apparent (skeletal) density         Porosity:         Stem volume         K4-2_硫酸浸漬         Contents         Total intrusion volume         Total pore area         Median pore diameter (volume) at 0.001 mL/         Median pore diameter (area) at 0.000 m²/g         Average pore diameter (4V/A)         Bulk density at 0.50 psia         Apparent (skeletal) density         Porosity:                                  | Unit<br>mL/g<br>m²/g<br>µm<br>g/mL<br>g/mL<br>g/mL<br>%<br>%<br>Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>µm<br>g/mL<br>g/mL<br>g/mL   | K4-2_C<br>Value<br>0.1652<br>0.775<br>14.10712<br>0.09905<br>0.85268<br>1.8135<br>2.5895<br>29.9663<br>5<br>K4-2_S<br>Value<br>0.0212<br>0.554<br>2.49351<br>0.03294<br>0.15337<br>2.4859<br>2.6244<br>5.2785 | C_P60-1          Pressure(psia)         29,992.65         29,992.65         12.82         1,825.89         -         0.49         29,992.65         -         0.49         29,992.65         -         -         29,992.65         -         -         -         29,992.65         -         -         29,992.65         -         29,992.46         29,992.46         72.53         5,490.44         -         0.50         29,992.46                                                                                                                                                                                                                | K4-2_C           Value           0.1298           0.676           14.74402           0.09093           0.76793           1.8851           2.4959           24.4713           3           K4-2_S           Value           0.0208           0.659           1.42485           0.03088           0.12598           2.4871           2.6225           5.1635 | P60-2<br>Pressure(psia)<br>29,991.91<br>29,991.91<br>12.27<br>1,989.00<br>-<br>0.49<br>29,991.91<br>-<br>-<br>-<br>Pe60-2<br>Pressure(psia)<br>29,992.95<br>29,992.95<br>126.93<br>5,856.54<br>-<br>0.50<br>29,992.95      | K4-2_           Average           0.1475           0.7255           14.42557           0.09499           0.810305           1.8493           2.5427           27.2188           4           K4-2_           Average           0.021           0.6065           1.95918           0.03191           0.139675           2.4865           2.62345           5.221               | C_P60<br>STDEV.S<br>0.02503<br>0.07000<br>0.45036<br>0.00574<br>0.05993<br>0.05063<br>0.06619<br>3.88555<br>1.41421<br>S_P60<br>STDEV.S<br>0.00028<br>0.07425<br>0.75566<br>0.00146<br>0.01937<br>0.00085<br>0.00134<br>0.08132            |
| K4-2_塩酸浸漬         Contents         Total intrusion volume         Total pore area         Median pore diameter (volume) at 0.001 mL/         Median pore diameter (area) at 0.000 m²/g         Average pore diameter (4V/A)         Bulk density at 0.50 psia         Apparent (skeletal) density         Porosity:         Stem volume         K4-2_硫酸浸漬         Contents         Total intrusion volume         Total pore area         Median pore diameter (volume) at 0.001 mL/         Median pore diameter (area) at 0.000 m²/g         Average pore diameter (4V/A)         Bulk density at 0.50 psia         Apparent (skeletal) density         Porosity:         Stem volume              | Unit<br>mL/g<br>m²/g<br>µm<br>g/mL<br>g/mL<br>g/mL<br>%<br>Unit<br>mL/g<br>m²/g<br>µm<br>µm<br>g/mL<br>g/mL<br>g/mL<br>g/mL      | K4-2_C<br>Value<br>0.1652<br>0.775<br>14.10712<br>0.09905<br>0.85268<br>1.8135<br>2.5895<br>29.9663<br>5<br>K4-2_S<br>Value<br>0.0212<br>0.554<br>2.49351<br>0.03294<br>0.15337<br>2.4859<br>2.6244<br>5.2785 | E-P60-1          Pressure(psia)         29,992.65         29,992.65         12.82         1,825.89         -         0.49         29,992.65         -         0.49         29,992.65         -         -         0.49         29,992.65         -         -         29,992.65         -         -         29,992.65         -         -         29,992.65         -         -         29,992.46         72.53         5,490.44         -         0.50         29,992.46         -         0.50         29,992.46                                                                                                                                      | K4-2_C           Value           0.1298           0.676           14.74402           0.09093           0.76793           1.8851           2.4959           24.4713           3           K4-2_S           Value           0.0208           0.659           1.42485           0.03088           0.12598           2.4871           2.6225           5.1635 | P60-2<br>Pressure(psia)<br>29,991.91<br>29,991.91<br>12.27<br>1,989.00<br>-<br>0.49<br>29,991.91<br>-<br>-<br>-<br>Pf60-2<br>Pressure(psia)<br>29,992.95<br>29,992.95<br>126.93<br>5,856.54<br>-<br>0.50<br>29,992.95<br>- | K4-2_           Average           0.1475           0.7255           14.42557           0.09499           0.810305           1.8493           2.5427           27.2188           4           K4-2_           Average           0.021           0.6065           1.95918           0.03191           0.139675           2.4865           2.62345           5.221           6.5 | C_P60<br>STDEV.S<br>0.02503<br>0.07000<br>0.45036<br>0.00574<br>0.05993<br>0.05063<br>0.06619<br>3.88555<br>1.41421<br>S_P60<br>STDEV.S<br>0.00028<br>0.07425<br>0.75566<br>0.00146<br>0.01937<br>0.00085<br>0.00134<br>0.08132<br>2.12132 |

#### 表 1.9-12 K 4-2 のポロシメータ測定結果

【付録12】



図 1.9-11 K 4-2の間隙径分布 (a)・(b) 未浸漬、(c)・(d) 硝酸 60 日浸漬、(e)・(f)塩酸 60 日浸漬、(g)・(h) 硫酸 60 日浸漬

#### 1.10 溶液の ICP-OES および ICP-MS 分析

酸溶液への浸漬によって試料から溶け出した元素を定量的に評価することを目的として、岩石試料浸漬後の硝酸・塩酸・硫酸溶液について、ICP-OES(Agilent 社、Agilent 5100)及び ICP-MS (Agilent 社、7500Ce)を用いた分析を実施した。分析にあたっては、JIS K0102 工場排水試験方 法および JIS M8206 鉄鉱石—ICP 発光分光分析方法を参考に、試料の前処理を行い測定した。測定 結果を表 1.10-1 に示す。

# 表 1.10-1 ICP-OES, ICP-MS による定量分析結果

|                      | Al ma/l | Ca    | Fe      | K<br>ma/l | Mg        | Mn<br>ma/l | Na<br>ma/l | Ti<br>ma/l | Ba<br>ma/l | Cr<br>ma/l | Cu<br>ma/l | Ga<br>ma/l | Li<br>ma/l | Ni<br>ma/l | Pb       | Rb     | Sr ma/l | V ma/l | Zn<br>ma/l | Si<br>ma/l | Co<br>ma/l | As ma/l  | Se<br>ma/l | Cs<br>ma/l | Sc<br>ma/l | Y mg/l | La<br>ma/l | Ce<br>ma/l | Pr<br>ma/l | Sm<br>ma/l | Eu<br>ma/l | Gd      | Tb<br>ma/l | Dy<br>ma/l | Ho<br>ma/l | Tm<br>ma/l | Yb     |
|----------------------|---------|-------|---------|-----------|-----------|------------|------------|------------|------------|------------|------------|------------|------------|------------|----------|--------|---------|--------|------------|------------|------------|----------|------------|------------|------------|--------|------------|------------|------------|------------|------------|---------|------------|------------|------------|------------|--------|
| A-120-1              | 2081    | 2877  | 5598    | 474       | 1608      | 88         | 119/1      | 0.43       | 13         | 3.2        | 2.3        | 1.3        | 7.2        | 5.2        | 3.8      | 4.0    | 14      | 2.3    | 14         | <1         | 2.5        | 1.3      | 0.05       | 1.0        | 0.55       | 1.2    | 1.0        | 2.6        | 0.35       | 0.47       | 0.12       | 0.48    | 0.066      | 0.31       | 0.050      | 0.013      | 0.073  |
| A-120-2              | 974     | 477   | 1133    | 444       | 341       | 14         | 7.2        | 0.19       | 11         | 1.3        | 0.51       | 0.44       | 1.5        | 1.0        | 0.80     | 2.8    | 3.1     | 1.3    | 2.9        | <1         | 0.50       | 0.30     | 0.02       | 0.36       | 0.23       | 0.46   | 3.7        | 7.1        | 0.82       | 0.50       | 0.10       | 0.46    | 0.044      | 0.15       | 0.020      | 0.004      | 0.024  |
| A-120-3              | 834     | 49    | 268     | 437       | 104       | 1.9        | 5.5        | 0.19       | 10         | 0.91       | 0.12       | 0.53       | 0.73       | 0.21       | 0.19     | 2.6    | 0.51    | 1.2    | 0.60       | <1         | 0.11       | 0.13     | < 0.01     | 0.14       | 0.15       | 0.26   | 3.3        | 6.5        | 0.76       | 0.43       | 0.072      | 0.33    | 0.030      | 0.10       | 0.011      | 0.002      | 0.011  |
| A-120-4              | 854     | 2.5   | 132     | 398       | 80        | 0.42       | 5.8        | 0.29       | 10         | 0.92       | 0.03       | 0.58       | 0.54       | 0.08       | 0.05     | 2.1    | 0.14    | 1.2    | 0.18       | <1         | 0.03       | 0.06     | <0.01      | 0.07       | 0.13       | 0.14   | 1.6        | 3.4        | 0.38       | 0.22       | 0.034      | 0.16    | 0.015      | 0.048      | 0.006      | 0.001      | 0.007  |
| A-30                 | 2119    | 2948  | 5777    | 493       | 1619      | 0.42       | 15         | 0.42       | 13         | 3.2        | 2.5        | 1.1        | 7.2        | 5.6        | 4.0      | 4.0    | 15      | 2.4    | 15         | <1         | 2.69       | 1.27     | 0.05       | 0.99       | 0.59       | 1.2    | 1.0        | 2.5        | 0.34       | 0.47       | 0.12       | 0.48    | 0.066      | 0.31       | 0.051      | 0.013      | 0.073  |
| A-60-1               | 2151    | 2838  | 5822    | 524       | 1636      | 86         | 1/         | 0.42       | 16         | 3.3        | 3.1        | 1.1        | 1.3        | 6.1        | 5.5      | 4.6    | 14      | 2.4    | 15         | <1         | 3.02       | 1.70     | 0.05       | 1.13       | 0.59       | 1.2    | 1.1        | 2.5        | 0.33       | 0.45       | 0.12       | 0.46    | 0.062      | 0.30       | 0.048      | 0.012      | 0.070  |
| B-120-1              | 1628    | 955   | 4166    | 380       | 886       | 31         | 12         | 0.36       | 12         | 2.7        | 1.1        | 0.81       | 4.3        | 4.1        | 3.0      | 2.8    | 4.6     | 2.0    | 11         | <1         | 1.94       | 0.61     | 0.01       | 0.54       | 0.37       | 1.4    | 2.5        | 5.2        | 0.65       | 0.61       | 0.15       | 0.60    | 0.074      | 0.32       | 0.020      | 0.011      | 0.023  |
| B-120-2              | 779     | 195   | 902     | 346       | 213       | 6.1        | 5.4        | 0.19       | 8.2        | 1.1        | 0.26       | 0.43       | 1.0        | 0.95       | 0.88     | 2.2    | 1.2     | 1.1    | 2.4        | <1         | 0.44       | 0.17     | 0.01       | 0.20       | 0.18       | 0.49   | 3.0        | 5.7        | 0.68       | 0.44       | 0.093      | 0.40    | 0.038      | 0.13       | 0.019      | 0.004      | 0.019  |
| B-120-3              | 677     | 15    | 196     | 361       | 81        | 0.70       | 3.9        | 0.22       | 7.7        | 0.78       | 0.04       | 0.45       | 0.59       | 0.14       | 0.08     | 2.4    | 0.22    | 0.91   | 0.42       | <1         | 0.06       | 0.06     | < 0.01     | 0.09       | 0.13       | 0.19   | 2.3        | 4.3        | 0.50       | 0.29       | 0.046      | 0.23    | 0.020      | 0.063      | 0.008      | 0.001      | 0.007  |
| B-120-4              | 542     | 0.63  | 95      | 275       | 56        | 0.20       | 3.2        | 0.30       | 5.9        | 0.58       | <0.01      | 0.39       | 0.45       | 0.06       | 0.02     | 1.5    | 0.06    | 0.85   | 0.14       | <1         | 0.02       | 0.02     | <0.01      | 0.04       | 0.093      | 0.070  | 0.59       | 1.2        | 0.14       | 0.086      | 0.011      | 0.066   | 0.006      | 0.021      | 0.003      | <0.001     | 0.003  |
| B-30                 | 1633    | 932   | 4260    | 389       | 902       | 39         | 13         | 0.35       | 13         | 2.7        | 1.2        | 1.0        | 4.4        | 4.1        | 3.2      | 3.4    | 4.0     | 2.1    | 11         | <1         | 1.97       | 0.67     | 0.03       | 0.56       | 0.38       | 1.3    | 2.7        | 5.1        | 0.64       | 0.58       | 0.14       | 0.58    | 0.069      | 0.31       | 0.048      | 0.010      | 0.056  |
| B-60-1               | 1557    | 1002  | 3970    | 375       | 872       | 30         | 12         | 0.32       | 11         | 2.5        | 1.0        | 0.81       | 4.1        | 3.8        | 2.9      | 2.5    | 4.3     | 1.9    | 10         | <1         | 1.84       | 0.63     | 0.03       | 0.54       | 0.36       | 1.3    | 2.4        | 4.7        | 0.59       | 0.54       | 0.13       | 0.53    | 0.064      | 0.28       | 0.044      | 0.010      | 0.053  |
| B-60-2               | 6/8     | 6920  | 887     | 304       | 210       | 3.3        | 5.2        | 0.13       | 7.2        | 1.0        | 0.39       | 0.42       | 1.3        | 0.84       | 0.80     | 1.5    | 1.3     | 0.91   | 2.4        | <1         | 0.40       | 0.15     | < 0.01     | 0.21       | 0.15       | 0.40   | 2./        | 5.1        | 0.60       | 0.3/       | 0.08       | 0.31    | 0.031      | 0.11       | 0.015      | 0.003      | 0.01/  |
| C-120-1<br>C-120-2   | 980     | 1455  | 1397    | 341       | 435       | 28         | 5.4        | 3.0        | 5.5        | 1.6        | 0.20       | 0.41       | 1.6        | 1.0        | 0.77     | 2.3    | 13      | 1.7    | 2.6        | <1         | 0.50       | 0.19     | 0.04       | 0.37       | 0.25       | 0.55   | 2.7        | 5.2        | 0.62       | 0.39       | 0.081      | 0.36    | 0.037      | 0.15       | 0.022      | 0.006      | 0.035  |
| C-120-3              | 714     | 403   | 480     | 331       | 166       | 8.4        | 4.0        | 4.2        | 5.1        | 1.0        | 0.07       | 0.27       | 1.0        | 0.31       | 0.30     | 2.1    | 4.5     | 1.3    | 0.95       | <1         | 0.16       | 0.09     | < 0.01     | 0.17       | 0.17       | 0      | 2.7        | 5.1        | 0.58       | 0.31       | 0.048      | 0.26    | 0.024      | 0.090      | 0.013      | 0.003      | 0.017  |
| C-120-4              | 599     | 37    | 146     | 299       | 73        | 1.3        | 3.4        | 6.3        | 4.7        | 0.80       | 0.02       | 0.36       | 0.56       | 0.09       | 0.08     | 1.6    | 1.2     | 1.1    | 0.27       | <1         | 0.04       | 0.06     | <0.01      | 0.08       | 0.13       | 0.21   | 2.0        | 4.0        | 0.43       | 0.23       | 0.030      | 0.18    | 0.016      | 0.061      | 0.008      | 0.002      | 0.010  |
| C-30                 | 2510    | 6603  | 5664    | 445       | 1661      | 137        | 12         | 4.7        | 8.7        | 4.6        | 0.79       | 1.5        | 6.3        | 4.6        | 3.3      | 4.2    | 44      | 3.5    | 11         | <1         | 2.02       | 0.61     | 0.04       | 1.05       | 0.51       | 1.7    | 2.5        | 5.0        | 0.63       | 0.63       | 0.17       | 0.62    | 0.078      | 0.38       | 0.063      | 0.018      | 0.11   |
| C-60-1               | 2343    | 6281  | 5228    | 415       | 1560      | 126        | 12         | 4.4        | 8.1        | 4.4        | 0.73       | 1.3        | 5.9        | 4.2        | 3.2      | 3.9    | 43      | 3.2    | 10         | <1         | 1.86       | 0.55     | 0.05       | 0.99       | 0.48       | 1.5    | 2.2        | 4.6        | 0.56       | 0.56       | 0.16       | 0.55    | 0.070      | 0.33       | 0.055      | 0.016      | 0.10   |
| C-60-2               | 1805    | 13/2  | 1323    | 303       | 407       | 26         | 5.0        | 2.7        | 5.0        | 1.5        | 0.17       | 0.69       | 1.8        | 0.93       | 0.80     | 1./    | 5.2     | 1.4    | 2.4        | <1         | 0.45       | 0.15     | < 0.01     | 0.35       | 0.21       | 0.50   | 2.5        | 4.8        | 0.56       | 0.35       | 0.072      | 0.30    | 0.032      | 0.13       | 0.021      | 0.005      | 0.032  |
| D-120-1<br>D-120-2   | 737     | 539   | 1651    | 175       | 317       | 29         | 6.9        | 10         | 3.0        | 0.65       | 0.39       | 0.42       | 1.7        | 0.47       | 1.0      | 1.2    | 1.7     | 1.7    | 3.7        | <1         | 0.50       | 0.38     | 0.02       | 0.20       | 0.22       | 0.44   | 0.90       | 1.8        | 0.23       | 0.19       | 0.003      | 0.19    | 0.042      | 0.11       | 0.018      | 0.003      | 0.023  |
| D-120-3              | 544     | 284   | 918     | 170       | 175       | 17         | 5.4        | 14         | 3.3        | 0.45       | 0.24       | 0.42       | 1.4        | 0.27       | 0.45     | 1.3    | 1.0     | 1.3    | 2.1        | <1         | 0.27       | 0.20     | < 0.01     | 0.12       | 0.19       | 0.35   | 1.06       | 2.0        | 0.24       | 0.17       | 0.036      | 0.16    | 0.020      | 0.094      | 0.014      | 0.003      | 0.016  |
| D-120-4              | 453     | 145   | 521     | 184       | 102       | 10         | 4.3        | 19         | 3.7        | 0.35       | 0.16       | 0.37       | 0.89       | 0.16       | 0.31     | 0.94   | 0.57    | 1.2    | 1.1        | <1         | 0.16       | 0.14     | < 0.01     | 0.08       | 0.18       | 0.29   | 1.2        | 2.4        | 0.27       | 0.18       | 0.036      | 0.16    | 0.019      | 0.085      | 0.012      | 0.002      | 0.013  |
| D-30                 | 1788    | 1681  | 4828    | 253       | 930       | 86         | 13         | 12         | 3.2        | 1.6        | 1.2        | 1.3        | 5.1        | 1.3        | 2.5      | 2.7    | 5.2     | 3.7    | 10         | <1         | 1.32       | 0.92     | 0.03       | 0.49       | 0.39       | 0.88   | 0.83       | 2.0        | 0.27       | 0.30       | 0.066      | 0.29    | 0.039      | 0.20       | 0.033      | 0.009      | 0.048  |
| D-60-1               | 1808    | 1755  | 4762    | 260       | 937       | 87         | 14         | 13         | 3.4        | 1.6        | 1.1        | 1.2        | 5.0        | 1.2        | 2.3      | 2.9    | 5.4     | 3.7    | 10         | <1         | 1.28       | 0.91     | 0.04       | 0.49       | 0.42       | 0.89   | 0.89       | 2.1        | 0.28       | 0.29       | 0.066      | 0.30    | 0.040      | 0.20       | 0.034      | 0.009      | 0.049  |
| D-60-2               | 725     | 503   | 1659    | 1/1       | 315       | 2/         | 6.5        | 10         | 2.9        | 0.61       | 0.41       | 0.28       | 2.0        | 0.40       | 0.83     | 1.0    | 1.7     | 1./    | 3.7        | <1         | 0.4/       | 0.33     | < 0.01     | 0.20       | 0.21       | 0.43   | 0.89       | 1.8        | 0.23       | 0.18       | 0.040      | 0.18    | 0.023      | 0.11       | 0.017      | 0.004      | 0.022  |
| E-120-1<br>E-120-2   | 734     | 354   | 1410    | 90        | 528       | 25         | 9.2        | 105        | 1.6        | 1.5        | 0.34       | 0.57       | 2.1        | 0.70       | 0.56     | 0.63   | 1.7     | 2.6    | 3.0        | <1         | 0.50       | 0.12     | 0.03       | 0.05       | 0.30       | 0.58   | 0.92       | 1.7        | 0.27       | 0.26       | 0.060      | 0.28    | 0.023      | 0.21       | 0.040      | 0.008      | 0.048  |
| E-120-3              | 475     | 289   | 720     | 89        | 255       | 13         | 4.4        | 84         | 1.9        | 0.90       | 0.25       | 0.33       | 1.4        | 0.39       | 0.36     | 0.43   | 1.6     | 1.9    | 1.4        | <1         | 0.27       | 0.06     | < 0.01     | 0.04       | 0.38       | 0.49   | 1.1        | 2.0        | 0.23       | 0.16       | 0.040      | 0.15    | 0.019      | 0.10       | 0.019      | 0.006      | 0.039  |
| E-120-4              | 318     | 213   | 336     | 91        | 120       | 5.9        | 4.5        | 70         | 2.0        | 0.56       | 0.13       | 0.24       | 0.77       | 0.21       | 0.18     | 0.45   | 1.5     | 1.3    | 0.60       | <1         | 0.13       | 0.04     | 0.01       | 0.03       | 0.31       | 0.40   | 1.0        | 1.9        | 0.22       | 0.14       | 0.036      | 0.13    | 0.016      | 0.085      | 0.015      | 0.005      | 0.033  |
| E-30                 | 2554    | 725   | 5925    | 165       | 2151      | 105        | 9.2        | 188        | 2.8        | 6.1        | 1.6        | 1.9        | 9.3        | 3.0        | 2.3      | 1.2    | 1.7     | 6.7    | 13         | <1         | 1.93       | 0.77     | 0.03       | 0.14       | 0.51       | 1.1    | 1.1        | 2.3        | 0.29       | 0.27       | 0.059      | 0.27    | 0.039      | 0.22       | 0.041      | 0.014      | 0.083  |
| E-60-1               | 2577    | 749   | 5937    | 166       | 2160      | 104        | 10         | 201        | 2.9        | 6.0        | 2.0        | 1.8        | 9.2        | 3.0        | 2.3      | 0.76   | 1.8     | 6.8    | 12         | <1         | 1.85       | 0.68     | 0.03       | 0.14       | 0.54       | 1.1    | 1.0        | 2.1        | 0.28       | 0.26       | 0.061      | 0.27    | 0.039      | 0.22       | 0.042      | 0.014      | 0.085  |
| E-60-2               | /51     | 368   | 1442    | 97        | 1202      | 23         | 4.2        | 120        | 1.8        | 1.6        | 0.32       | 0.72       | 2.4        | 0.80       | 0.53     | 0.45   | 1.5     | 2./    | 2.9        | <1         | 0.50       | 0.13     | < 0.01     | 0.05       | 0.40       | 0.59   | 0.88       | 1./        | 0.21       | 0.1/       | 0.043      | 0.16    | 0.022      | 0.12       | 0.023      | 0.008      | 0.050  |
| F=120=1<br>F=120=2   | 2556    | 11    | 363     | 298       | 97        | 3.5        | 4.8        | 0.48       | 6.6        | 4.2        | 0.10       | 0.30       | 0.44       | 4.0        | 0.05     | 1.6    | 0.26    | 1.0    | 0.64       | <1         | 0.10       | 0.19     | 0.03       | 0.08       | 0.15       | 0.30   | 4.8        | 9.0        | 1.1        | 0.58       | 0.15       | 0.39    | 0.075      | 0.33       | 0.038      | 0.003      | 0.086  |
| F-120-3              | 472     | 0.70  | 66      | 224       | 42        | 0.66       | 2.9        | 0.39       | 5.2        | 0.56       | < 0.01     | 0.34       | 0.47       | < 0.05     | 0.03     | 1.4    | 0.07    | 0.91   | 0.09       | <1         | 0.01       | 0.05     | < 0.01     | 0.04       | 0.12       | 0.14   | 1.5        | 2.7        | 0.31       | 0.17       | 0.020      | 0.14    | 0.012      | 0.040      | 0.005      | 0.001      | 0.008  |
| F-120-4              | 443     | 0.58  | 55      | 220       | 39        | 0.58       | 2.7        | 0.59       | 4.7        | 0.53       | <0.01      | 0.38       | 0.45       | < 0.05     | 0.01     | 1.1    | 0.06    | 0.80   | 0.11       | <1         | < 0.01     | 0.02     | <0.01      | 0.03       | 0.11       | 0.08   | 0.30       | 0.59       | 0.07       | 0.040      | 0.006      | 0.033   | 0.004      | 0.016      | 0.003      | < 0.001    | 0.005  |
| F-30                 | 2696    | 370   | 6821    | 338       | 1495      | 92         | 21         | 0.50       | 15         | 4.5        | 1.9        | 1.4        | 7.1        | 5.1        | 5.8      | 2.8    | 2.6     | 3.2    | 13         | <1         | 2.33       | 1.83     | 0.06       | 0.37       | 0.29       | 1.5    | 3.0        | 5.6        | 0.75       | 0.64       | 0.17       | 0.64    | 0.080      | 0.38       | 0.063      | 0.016      | 0.092  |
| F-60-1               | 2568    | 349   | 6448    | 313       | 1432      | 85         | 20         | 0.45       | 16         | 4.2        | 1.7        | 1.5        | 6.7        | 5.2        | 5.9      | 2.2    | 2.6     | 3.0    | 12         | <1         | 2.20       | 1.66     | 0.06       | 0.33       | 0.27       | 1.4    | 2.7        | 5.2        | 0.67       | 0.57       | 0.15       | 0.57    | 0.070      | 0.33       | 0.055      | 0.014      | 0.079  |
| F-60-2               | 2026    | 26    | 632     | 230       | 146       | 4.4        | 5.4        | 0.20       | 7.6        | 0.79       | 0.18       | 0.48       | 7.2        | 2.45       | 0.30     | 1.6    | 0.48    | 6.5    | 1.3        | <1         | 1.72       | 0.24     | 0.01       | 0.10       | 0.12       | 0.33   | 4.2        | 7.8        | 0.92       | 0.52       | 0.094      | 0.40    | 0.034      | 0.11       | 0.014      | 0.003      | 0.017  |
| G-120-1<br>G-120-2   | 1108    | 275   | 1057    | 330       | 297       | 6.8        | 103        | 39         | 3.6        | 1.6        | 0.11       | 0.49       | 1.9        | 0.75       | 0.35     | 3.2    | 3.4     | 1.8    | 2.0        | <1         | 0.31       | 0.06     | < 0.05     | 0.19       | 0.19       | 0.67   | 2.1        | 4.0        | 0.31       | 0.30       | 0.054      | 0.20    | 0.033      | 0.16       | 0.027      | 0.007      | 0.039  |
| G-120-3              | 421     | 122   | 267     | 95        | 63        | 2.1        | 53         | 27         | 1.2        | 0.40       | 0.03       | 0.16       | 0.84       | 0.19       | 0.11     | 1.3    | 1.7     | 0.63   | 0.51       | <1         | 0.07       | 0.05     | < 0.01     | 0.05       | 0.069      | 0.62   | 2.5        | 4.9        | 0.55       | 0.33       | 0.050      | 0.29    | 0.033      | 0.15       | 0.024      | 0.006      | 0.030  |
| G-120-4              | 150     | 43    | 41      | 38        | 4.1       | 1.3        | 19         | 21         | 0.6        | 0.11       | <0.01      | 0.06       | 0.41       | < 0.05     | 0.03     | 0.27   | 0.65    | 0.19   | 0.10       | <1         | <0.01      | 0.04     | <0.01      | 0.01       | 0.033      | 0.45   | 1.9        | 3.7        | 0.41       | 0.25       | 0.036      | 0.21    | 0.023      | 0.11       | 0.017      | 0.004      | 0.022  |
| G-30                 | 3038    | 544   | 4155    | 1224      | 1228      | 28         | 136        | 93         | 13         | 6.4        | 0.48       | 1.6        | 7.4        | 3.0        | 0.72     | 16     | 5.2     | 6.7    | 7.8        | <1         | 1.22       | 0.21     | 0.02       | 0.67       | 0.62       | 0.95   | 1.2        | 2.6        | 0.29       | 0.26       | 0.058      | 0.27    | 0.037      | 0.19       | 0.036      | 0.012      | 0.067  |
| G-60-1               | 3044    | 560   | 4079    | 1265      | 1232      | 28         | 147        | 93         | 12         | 6.3        | 0.40       | 1.4        | 7.2        | 3.1        | 1.0      | 17     | 5.5     | 6.6    | 7.6        | <1         | 1.18       | 0.18     | 0.03       | 0.71       | 0.64       | 1.0    | 1.3        | 2.5        | 0.30       | 0.26       | 0.058      | 0.28    | 0.037      | 0.19       | 0.036      | 0.012      | 0.067  |
| H-120-1              | 2095    | 848   | 4493    | 85        | 1514      | 84         | 7.6        | 1.1        | 2.5        | 3.7        | 1.0        | 1.0        | 7.5        | 2.9        | 1.8      | 0.73   | 1.4     | 3.1    | 10         | <1         | 0.90       | 0.82     | 0.02       | 0.22       | 0.20       | 0.73   | 1.2        | 2.5        | 0.30       | 0.33       | 0.061      | 0.29    | 0.037      | 0.16       | 0.020      | 0.007      | 0.042  |
| H-120-2              | 667     | 245   | 1306    | 68        | 444       | 22         | 3.3        | 1.3        | 1.5        | 1.1        | 0.26       | 0.28       | 2.1        | 0.81       | 0.45     | 0.51   | 0.48    | 1.1    | 2.7        | <1         | 0.26       | 0.23     | 0.01       | 0.08       | 0.094      | 0.28   | 1.6        | 2.9        | 0.33       | 0.21       | 0.037      | 0.19    | 0.019      | 0.074      | 0.011      | 0.003      | 0.016  |
| H-120-3              | 404     | 114   | 609     | 82        | 198       | 8.7        | 2.4        | 2.7        | 1.9        | 0.69       | 0.12       | 0.36       | 1.4        | 0.37       | 0.23     | 0.50   | 0.33    | 0.74   | 1.3        | <1         | 0.11       | 0.12     | <0.01      | 0.06       | 0.073      | 0.17   | 1.8        | 3.3        | 0.36       | 0.20       | 0.030      | 0.15    | 0.014      | 0.052      | 0.007      | 0.001      | 0.009  |
| H-120-4              | 256     | 34    | 184     | 95        | 62        | 2.4        | 2.0        | 5.1        | 2.1        | 0.40       | 0.03       | 0.17       | 0.63       | 0.10       | 0.07     | 0.58   | 0.19    | 0.58   | 0.36       | <1         | 0.03       | 0.07     | <0.01      | 0.03       | 0.069      | 0.11   | 1.8        | 3.3        | 0.37       | 0.19       | 0.029      | 0.14    | 0.011      | 0.039      | 0.005      | <0.001     | 0.004  |
| H-30                 | 2194    | 1184  | 4650    | 84        | 1597      | 86         | 7.5        | 1.3        | 2.2        | 4.0        | 0.75       | 1.1        | 8.2        | 3.2        | 1.7      | 0.69   | 2.2     | 3.3    | 10         | <1         | 0.95       | 0.95     | 0.02       | 0.19       | 0.25       | 0.71   | 1.4        | 2.7        | 0.30       | 0.27       | 0.062      | 0.28    | 0.035      | 0.16       | 0.027      | 0.008      | 0.048  |
| H=60=2               | 2097    | 982   | 1348    | 72        | 461       | 18         | 7.6        | 1.0        | 2.1        | 3.8        | 0.89       | 0.63       | 7.6        | 0.81       | 0.54     | 0.82   | 0.50    | 3.0    | 2.9        | <1         | 0.79       | 0.79     | <0.02      | 0.22       | 0.23       | 0.73   | 1.4        | 2.5        | 0.30       | 0.28       | 0.061      | 0.29    | 0.034      | 0.16       | 0.027      | 0.007      | 0.045  |
| I-120-1              | 2926    | 208   | 5456    | 556       | 1265      | 81         | 18         | 1.3        | 1.5        | 3.5        | 1.0        | 1.1        | 5.0        | 4.6        | 4.5      | 6.1    | 2.2     | 2.8    | 11         | <1         | 2.21       | 0.86     | 0.05       | 0.73       | 0.50       | 2.1    | 5.4        | 11         | 1.4        | 1.2        | 0.28       | 1.1     | 0.13       | 0.52       | 0.081      | 0.020      | 0.12   |
| I-120-2              | 679     | 2.1   | 170     | 348       | 67        | 1.5        | 5.1        | 0.88       | 8.6        | 0.68       | 0.05       | 0.34       | 0.32       | 0.14       | 0.43     | 2.4    | 0.31    | 1.0    | 0.66       | <1         | 0.06       | 0.12     | < 0.01     | 0.09       | 0.15       | 0.33   | 4.3        | 7.8        | 0.89       | 0.45       | 0.067      | 0.39    | 0.032      | 0.11       | 0.014      | 0.003      | 0.017  |
| I-120-3              | 581     | 0.45  | 82      | 259       | 51        | 0.64       | 3.8        | 1.5        | 7.0        | 0.58       | 0.01       | 0.42       | 0.52       | <0.05      | 0.16     | 1.8    | 0.16    | 0.92   | 0.35       | <1         | 0.02       | 0.03     | <0.01      | 0.04       | 0.11       | 0.12   | 0.56       | 1.0        | 0.12       | 0.076      | 0.012      | 0.06    | 0.007      | 0.028      | 0.004      | 0.001      | 0.008  |
| I-120-4              | 542     | 0.40  | 74      | 255       | 50        | 0.55       | 3.5        | 2.2        | 5.9        | 0.54       | <0.01      | 0.41       | 0.45       | <0.05      | 0.06     | 1.4    | 0.12    | 0.88   | 0.26       | <1         | 0.01       | <0.01    | < 0.01     | 0.03       | 0.094      | 0.079  | 0.11       | 0.17       | 0.025      | 0.019      | 0.005      | 0.018   | 0.003      | 0.016      | 0.003      | <0.001     | 0.005  |
| I-30                 | 2878    | 203   | 5411    | 552       | 1261      | 99         | 17         | 1.6        | 18         | 3.6        | 1.0        | 1.4        | 5.0        | 4.6        | 4.3      | 6.2    | 2.2     | 2.9    | 11         | <1         | 2.2        | 0.77     | 0.05       | 0.65       | 0.62       | 2.1    | 5.8        | 10.2       | 1.4        | 1.1        | 0.28       | 1.1     | 0.12       | 0.52       | 0.080      | 0.020      | 0.12   |
| I-60-1<br>I-60-2     | 726     | 2.8   | 194     | 363       | 74        | 2.3        | 5.6        | 1.5        | 9.3        | 0.72       | 0.04       | 0.33       | 0.70       | 0.16       | 4.0      | 2.4    | 0.37    | 1.1    | 0.72       | <1         | 0.07       | 0.81     | < 0.08     | 0.09       | 0.62       | 0.36   | 4.8        | 8.7        | 1.0        | 0.50       | 0.074      | 0.38    | 0.033      | 0.51       | 0.081      | 0.020      | 0.017  |
| ]-硝酸-1               | 2825    | 121   | 4312    | 1253      | 1810      | 80         | 24         | 76         | 6.3        | 3.2        | 3.0        | 1.2        | 6.5        | 4.3        | 0.53     | 15     | 1.1     | 4.2    | 12         | <1         | 1.7        | 1.0      | < 0.01     | 1.6        | 0.37       | 0.37   | 0.77       | 1.7        | 0.20       | 0.19       | 0.034      | 0.19    | 0.024      | 0.11       | 0.016      | 0.004      | 0.020  |
| ]-硝酸-2               | 1704    | 57    | 2303    | 751       | 1006      | 48         | 18         | 53         | 3.8        | 1.8        | 1.4        | 0.61       | 4.3        | 2.3        | 0.23     | 8.3    | 0.59    | 2.4    | 6.3        | <1         | 1.0        | 0.65     | < 0.01     | 0.90       | 0.22       | 0.32   | 1.7        | 3.7        | 0.38       | 0.29       | 0.04       | 0.26    | 0.030      | 0.12       | 0.014      | 0.002      | 0.013  |
| ]-塩酸-1               | 9196    | 498   | 18963   | 5773      | 7727      | 510        | 423        | 1049       | 29         | 12         | 22         | 5.0        | 30         | 16         | 2.5      | 85     | 11      | 18     | 48         | <1         | 4.4        | 0.28     | 0.13       | 6.75       | 1.5        | 2.3    | 13         | 31         | 3.4        | 2.2        | 0.36       | 2.0     | 0.23       | 0.90       | 0.11       | 0.018      | 0.094  |
| ]-塩酸-2               | 1607    | 103   | 2924    | 1229      | 1192      | 78         | 195        | 300        | 8.5        | 2.5        | 3.3        | 0.84       | 4.8        | 2.7        | 0.59     | 14     | 3.2     | 3.4    | 7.6        | <1         | 1.0        | 0.57     | 0.09       | 1.09       | 0.38       | 0.86   | 3.5        | 7.6        | 0.82       | 0.58       | 0.09       | 0.51    | 0.063      | 0.27       | 0.038      | 0.008      | 0.047  |
| J-6院目録-1             | 1822    | 26    | 2040    | /97       | 991       | 66         | 21         | 1/5        | 0.94       | 1.7        | 0.30       | 0.60       | 4.0        | 2.2        | 0.08     | /.7    | 0.47    | 2.5    | 5.0        | <1         | 0.62       | 0.07     | <0.01      | 0.90       | 0.22       | 0.11   | 0.19       | 0.46       | 0.06       | 0.06       | 0.010      | 0.057   | 0.007      | 0.032      | 0.005      | 0.001      | 0.007  |
| J=1航音级=2<br>K=3時音音=1 | 2790    | 1980  | 7394    | 596       | 1496      | 132        | 20         | 223        | 1.0        | 1.1        | 3.2        | 1.6        | 4.8        | 1.2        | 4.9      | 5.1    | 6.2     | 4.1    | 3.2        | <1         | 2.7        | 1.7      | 0.01       | 0.51       | 0.19       | 1.9    | 2.1        | 4.1        | 0.15       | 0.12       | 0.02       | 0.11    | 0.014      | 0.057      | 0.007      | 0.002      | 0.009  |
| K-硝酸-2               | 736     | 658   | 892     | 387       | 177       | 15         | 8.2        | 226        | 11         | 0.37       | 0.36       | 0.64       | 0.93       | 0.25       | 0.51     | 2.8    | 4.4     | 1.8    | 1.5        | <1         | 0.22       | 0.14     | 0.02       | 0.11       | 0.70       | 1.3    | 2.1        | 4.1        | 0.47       | 0.36       | 0.10       | 0.35    | 0.049      | 0.27       | 0.050      | 0.016      | 0.087  |
| K-塩酸-1               | 3512    | 3508  | 9519    | 340       | 2020      | 172        | 87         | 799        | 10         | 2.1        | 1.8        | 2.8        | 6.6        | 1.8        | 4.5      | 2.3    | 21      | 9.2    | 18         | <1         | 2.0        | 0.82     | 0.13       | 0.22       | 1.80       | 4.1    | 5.8        | 12         | 1.5        | 1.1        | 0.31       | 1.1     | 0.15       | 0.86       | 0.16       | 0.051      | 0.28   |
| K-塩酸-2               | 1383    | 597   | 1458    | 373       | 341       | 26         | 33         | 143        | 11         | 0.75       | 0.31       | 0.78       | 1.3        | 0.29       | 0.70     | 2.3    | 5.7     | 2.9    | 2.7        | <1         | 0.31       | 0.14     | 0.09       | 0.09       | 0.53       | 0.84   | 1.8        | 3.4        | 0.39       | 0.24       | 0.066      | 0.24    | 0.031      | 0.17       | 0.032      | 0.010      | 0.056  |
| K-硫酸-1               | 948     | 50    | 1538    | 147       | 402       | 26         | 6.0        | 130        | 1.2        | 0.48       | 0.47       | 0.46       | 1.4        | 0.39       | 0.19     | 0.63   | 0.93    | 1.7    | 3.6        | <1         | 0.53       | 0.56     | 0.01       | 0.07       | 0.30       | 0.37   | 0.59       | 1.2        | 0.14       | 0.10       | 0.025      | 0.10    | 0.013      | 0.073      | 0.014      | 0.005      | 0.026  |
| K-皖殿-2<br>BL LINO    | 870     | 46    | 899     | 316       | 221       | 16         | 5.2        | 94         | 1.4        | 0.45       | 0.17       | U.37       | 1.0        | 0.19       | 0.04     | 2.5    | 1.1     | 1.9    | 1.9        | <1         | U.24       | U.19     | U.01       | 0.06       | 0.28       | 0.30   | 0.48       | 1.0        | U.14       | U.086      | U.022      | U.084   | U.011      | U.060      | 0.011      | 0.004      | 0.021  |
| BL-HCI               | 2.2     | <0.25 | <1      | <1        | <1        | <0.25      | <1         | < 0.05     | <0.25      | <0.25      | 0.02       | <0.01      | <0.25      | <0.05      | <0.01    | < 0.01 | <0.01   | <0.25  | <0.1       | <1         | <0.01      | < 0.01   | 0.09       | <0.01      | 0.003      | <0.001 | < 0.001    | <0.001     | <0.001     | < 0.001    | < 0.001    | < 0.001 | < 0.001    | < 0.001    | <0.001     | < 0.001    | <0.001 |
| BL-H2SO4             | 2.2     | <0.25 | <1      | <1        | <1        | < 0.25     | <1         | < 0.05     | <0.25      | <0.25      | < 0.01     | <0.01      | <0.25      | < 0.05     | < 0.01   | < 0.01 | <0.01   | <0.25  | <0.1       | <1         | <0.01      | < 0.01   | <0.01      | <0.01      | 0.001      | <0.001 | <0.001     | < 0.001    | <0.001     | <0.001     | <0.001     | <0.001  | <0.001     | < 0.001    | <0.001     | <0.001     | <0.001 |
| 定量下限值                | 1       | 0.25  | 1       | 1         | 1         | 0.25       | 1          | 0.05       | 0.25       | 0.25       | 0.01       | 0.01       | 0.25       | 0.05       | 0.01     | 0.01   | 0.01    | 0.25   | 0.1        | 1          | 0.01       | 0.01     | 0.01       | 0.01       |            |        |            |            |            |            | 0.001      |         |            |            |            |            |        |
| 測定条件                 |         | XSTC- | 22,XSTC | -331:ICP- | OES or XS | 5TC-622:I  | ICP-MS     |            |            |            |            | XSTC-3     | 31:ICP-0   | ES or XST  | C-622:10 | CP-MS  |         |        | Т          |            | XSTC       | -622:ICP | P-MS       |            |            |        |            |            |            | XST        | C-1:ICP-   | DES     |            |            |            |            | Г      |

#### 1.11 天然の風化礫に対する EPMA 元素マッピング

室内実験結果と天然環境下での化学的風化との差異を検討するため、実験試料と同じ宮崎平野 で採取した砂岩礫を対象として EPMA を用いた元素マッピングを実施した。

対象としたサンプルは、宮崎平野の現河床と段丘露頭で採取した砂岩礫のうち、断面を目視観 察した結果風化が進んでいると判定されたもの5つである。

断面上の礫表面から深さ約 3cm の範囲で薄片を作成(ダイヤモンドペースト仕上げ)し、真 空蒸着装置 JEE-4X(日本電子株式会社)を用いて炭素蒸着を施した後、JXA-8230(日本電子 株式会社)を用いて元素マッピングを実施した。マッピングの実施範囲は各試料の薄片全体写真 上に示す。対象とした元素は Na, Mg, Al, Si, P, S, K, Ca, Ti, Cr, Mn, Fe 及び Sr の 13 種であ る。

各サンプルの断面写真、薄片写真、及び元素マッピング結果を図 1.11-1~図 1.11-15 に示 す。

#### (1) 1-2b (河床礫)



図 1.11-1 1-2b (河床礫)の断面および薄片写真

(A) 礫断面および薄片作成範囲 (B) 薄片全体画像(非偏光)および元素マッピングの対象範囲 (C) 薄片全体画 像(直交ニコル)



図 1.11-2 1-2b(河床礫)の元素マッピング結果 (1) (A) COMPO 画像 (B) Na (C) Mg (D) Al (E) Si (F) P (G) S (H) K



(I) Ca (J) Ti (K) Cr (L) Mn (M) Fe (N) Sr

### (2) 2-4a(河床礫)



図 1.11-4 2-4a (河床礫)の断面および薄片写真 (A) 礫断面および薄片作成範囲 (B) 薄片全体画像(非偏光)および元素マッピングの対象範囲 (C) 薄片全体画像(直交ニコル)







(I) Ca (J) Ti (K) Cr (L) Mn (M) Fe (N) Sr



図 1.11-7 3-4a (河床礫)の断面および薄片写真 (A) 礫断面および薄片作成範囲 (B) 薄片全体画像(非偏光)および元素マッピングの対象範囲 (C) 薄片全体画像(直交ニコル)







# 【 付録 12 】

### (4) 4-5b(河床礫)



図 1.11-10 4-5b (河床礫)の断面および薄片写真

(A) 礫断面および薄片作成範囲 (B) 薄片全体画像(非偏光)および元素マッピングの対象範囲 (C) 薄片全体画像(直交ニコル)









付 12-215

### (5) 5-3a(段丘礫)





(A) 礫断面および薄片作成範囲 (B) 薄片全体画像(非偏光)および元素マッピングの対象範囲

(C) 薄片全体画像(直交ニコル)







(I) Ca (J) Ti (K) Cr (L) Mn (M) Fe (N) Sr

# 段丘の対比・編年の高精度化に関わる文献調査

# 収集文献一覧

一般財団法人 電力中央研究所

「5.5 段丘対比・編年技術の高精度化に関する検討」では、わが国における高位段丘、中位段丘、低位段丘などといった段丘群ごとの風化の様式、性状といった特徴の把握を目的に、既往文献を対象に、段丘の被覆層、段丘堆積物(特に礫層)、基盤に関する柱状図を収集・整理した。既往文献の収集にあたっては、濱田・幡谷(2011)で実施された段丘の分布に関わる文献調査で引用した文献を中心に実施した。なお、平成31年度事業では、収集・整理する文献の対象を、関東平野―新潟平野―佐渡ヶ島より西側の西日本とした。

収集した文献の一覧を表 1~表 14 に、文献から柱状図等の情報を抽出した図郭と段丘情報の一覧を表 15~表 23 に示す。

| No | 著者                                                                                           | 発行年  | タイトル                                                                              | 誌名·書籍名                                          | 巻                  | 号  | ページ              |
|----|----------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------|-------------------------------------------------|--------------------|----|------------------|
| 1  | 国立研究開発法人産業技術総合研究<br>所・国立研究開発法人日本原子力研<br>究開発機構・公益財団法人原子力環<br>境整備促進・資金管理センター・一<br>般財団法人電力中央研究所 | 2019 | 沿岸部処分システム高度化開発 報告書および<br>Appendix                                                 | 平成 30 年度 高レベル<br>放射性廃棄物等の地層<br>処分に関する技術開発<br>事業 | _                  | _  | 356pp.           |
| 2  | 北陸電力株式会社                                                                                     | 2017 | 志賀原子力発電所2号炉 敷地の地質・地質<br>構造について【コメント回答】(敷地周辺の<br>地形,地質・地質構造):資料1,机上配布<br>資料1(データ集) | 第531回原子力発電所<br>の新規制基準適合性に<br>係る審査会合配布資料         | 資料1<br>机上配布<br>資料1 | _  | 122pp.<br>216pp. |
| 3  | 加藤茂弘・谷川晃一郎・川島真季・<br>石村大輔・岡田篤正                                                                | 2016 | 山崎断層帯土万断層の完新世後期の活動履歴                                                              | 人と自然                                            | 27                 | _  | 13-26            |
| 4  | 堤浩之・吉岡敏和・向井理史・堀川<br>滋雄・村田和則                                                                  | 2016 | 西山断層帯嘉麻峠区間の変位地形と第四紀後<br>期の活動性                                                     | 活断層研究                                           | _                  | 45 | 21-35            |
| 5  | 丸山 正・遠田晋次・小俣雅志・郡<br>谷順英・森 良樹                                                                 | 2015 | 糸魚川·静岡構造線活断層系松本盆地東縁断層<br>の完新世後半の活動履歴-長野県池田町花見北<br>地点のトレンチ調査-                      | 活断層研究                                           | _                  | 43 | 35-52            |
| 6  | 杉戸信彦・廣内大助・塩野敏昭                                                                               | 2015 | 長野盆地西縁の変動地形と活断層                                                                   | 地質学雑誌                                           | 121                | 7  | 217 - 232        |

表1 収集した文献一覧(その1)

| No. | 著者                                         | 発行年   | タイトル                                                                              | 誌名·書籍名                                           | 巻                        | 号    | ページ     |
|-----|--------------------------------------------|-------|-----------------------------------------------------------------------------------|--------------------------------------------------|--------------------------|------|---------|
| 7   | 杉戸信彦・近藤久雄                                  | 2015  | 上町断層帯の最新活動と河内平野の地<br>形環境変化                                                        | 地学雑誌                                             | 124                      | 4    | 607-631 |
| 8   | 池田倫治・堤 浩之・後藤<br>秀昭・西坂直樹・大野裕<br>記・柳田 誠      | 2014  | 四国西部の中央構造線断層帯川上断層<br>の東部における完新世後期の活動履歴                                            | 活断層研究                                            | 2014                     | 40   | 1-18    |
| 9   | 丸山 正・齋藤 勝                                  | 2014  | 富山県南砺市法林寺地区のボーリング<br>コアにおける火山ガラスを含む大山倉<br>吉テフラ(DKP)の認定とその北陸地<br>域の活断層の活動性評価における意義 | 地質調査研究報告                                         | 65                       | 1-2  | 1-9     |
| 10  | 長岡信治・西山賢一                                  | 2014  | テフロクロノロジーに基づく宮崎平野<br>の形成プロセス                                                      | 月刊地球                                             | 36                       | 7    | 210-218 |
| 11  | 西村勝広・可児幸彦・奥田<br>昌男・中根洋治・早川 清               | 2014  | 各務原台地下部層の堆積物からみた地<br>盤形成の特徴                                                       | 中部地盤工学シンポ<br>ジウム論文集                              | 第26回 中部地盤工学<br>シンポジウム論文集 | _    | 109-116 |
| 12  | 植木岳雪                                       | 2014c | 三重県中部、片上川の高位段丘堆積物                                                                 | 地質調査研究報告                                         | 65                       | 9-10 | 105-111 |
| 13  | 独立行政法人日本原子力研<br>究開発機構                      | 2013  | 高速増殖原型炉もんじゅ敷地内破砕帯<br>の追加地質調査 敷地周辺の段丘面構成<br>層等のご案内地点                               | 第1回高速増殖原型<br>炉もんじゅ敷地内破<br>砕帯の調査に関する<br>有識者会合配布資料 | もんじゅ・現調 2 <b>-3</b>      | _    | 27pp.   |
| 14  | 脇田浩二・竹内圭史・水野<br>清秀・小松原琢・中野聰<br>志・竹村恵二・田口雄作 | 2013  | 京都東南部地域の地質 地域地質研究<br>報告 (5 万分の 1 地質図幅)                                            | 地質調査総合センタ<br>ー                                   | _                        | _    | 124p    |

表 2 収集した文献一覧(その2)

|--|

| No. | 著者                                      | 発行年   | タイトル                                               | 誌名·書籍名              | 巻   | 号 | ページ       |
|-----|-----------------------------------------|-------|----------------------------------------------------|---------------------|-----|---|-----------|
| 15  | 池田倫治・後藤秀昭・堤 浩之・露口耕<br>治・大野裕記・西坂直樹・小林 修二 | 2012  | 四国北西部の中央構造線活断層系伊予断層の完新世活<br>動履歴                    | 地質学雑誌               | 118 | 4 | 220-235   |
| 16  | 苅谷愛彦・佐藤 剛・小森次郎                          | 2012  | 白馬岳東麓、長走沢・金山沢の地すべり地形と堆積物                           | 地学雑誌                | 121 | 2 | 384-401   |
| 17  | 竹本仁美・奥村晃史                               | 2012  | 長野県神城盆地の局地的な地形変化に対する完新世の<br>花粉化石群集の応答              | 第四紀研究               | 51  | 1 | 21-33     |
| 18  | 加田平賢史・森脇洋・吉川周作・新矢将<br>尚・北野雅昭            | 2011  | 大阪市域におけるボーリングコアの酸溶解性成分の鉛<br>同位体比                   | 地学雑誌                | 120 | 4 | 599-614   |
| 19  | 田力正好・安江健一・柳田 誠・古澤<br>明・田中義文・守田益宗・須貝俊彦   | 2011  | 土岐川(庄内川)流域の河成段丘と更新世中期以降の<br>地形発達                   | 地理学評論<br>Series A   | 84  | 2 | 118-130   |
| 20  | 安江健一・田力正好・谷川晋一・須貝俊<br>彦・山田浩二・梅田浩司       | 2011  | 第四紀後期における内陸部の隆起量の推定手法: 鏑川<br>流域および土岐川流域を例に         | 原子力バッ<br>クエンド研<br>究 | 18  | 2 | 51-61     |
| 21  | 坂野靖行・水野清秀・宮崎一博                          | 2010  | 大洲地域の地質 地域地質研究報告 (5 万分の 1 地質<br>図幅)                | 地質調査総<br>合センター      | _   |   | 58p       |
| 22  | 石村大輔                                    | 2010  | 関ヶ原周辺における段丘編年と活断層の活動性                              | 第四紀研究               | 49  | 5 | 255 - 270 |
| 23  | 長森英明・竹内 誠・古川竜太・中澤<br>努・中野 俊             | 2010  | 小滝地域の地質 地域地質研究報告 (5 万分の 1 地質<br>図幅)                | 地質調査総<br>合センター      | _   |   | 130p      |
| 24  | 長岡信治・新井房夫・檀原 徹                          | 2010a | 宮崎平野に分布するテフラから推定される過去60万<br>年間の霧島火山の爆発的噴火史         | 地学雑誌                | 119 | 1 | 121-152   |
| 25  | 長岡信治・西山賢一・井上 弦                          | 2010c | 過去200万年間における宮崎平野の地層形成と陸化プ<br>ロセスー海面変化とテクトニクスに関連して- | 地学雑誌                | 119 | 4 | 632-667   |

| No. | 著者                                     | 発行年  | タイトル                                     | 誌名·書籍名     | 巻    | 号          | ページ         |
|-----|----------------------------------------|------|------------------------------------------|------------|------|------------|-------------|
| 26  | 中島 礼・堀 常東・宮崎一博・西岡<br>芳晴                | 2010 | 伊良湖岬地域の地質 地域地質研究報告<br>(5 万分の1地質図幅)       | 地質調査総合センター | _    | _          | 69p         |
| 27  | 岡田篤正・加藤茂弘・石村大輔・斎藤<br>真                 | 2010 | 福井県、三方湖および中山低地の地下地<br>質と三方断層帯の活動解明       | 地学雑誌       | 119  | 5          | 878-<br>891 |
| 28  | 田村糸子・山崎晴雄・中村洋介                         | 2010 | 富山積成盆地,北陸層群の広域テフラと<br>第四紀テクトニクス          | 地質学雑誌      | 116  | Supplement | 1-20        |
| 29  | 藤山 敦・金折裕司                              | 2009 | 山口県南東部伊陸盆地における河川争奪<br>のプロセスとネオテクトニクス     | 応用地質       | 50   | 4          | 202-<br>215 |
| 30  | 山内靖喜・沢田順弘・高須 晃・小室<br>裕明・村上 久・小林伸治・田山良一 | 2009 | 西郷地域の地質 地域地質研究報告 (5<br>万分の 1 地質図幅)       | 地質調査総合センター | _    | _          | 121p        |
| 31  | 道家涼介・佐藤善輝・安江健一・廣内<br>大助                | 2008 | 阿寺断層帯中部,加子母地区における変位<br>地形と平均変位速度         | 活断層研究      | 2008 | 29         | 79-86       |
| 32  | 苅谷愛彦・佐藤 剛・小森次郎                         | 2008 | 飛騨山脈・白馬岳東麓,北股入流域で新<br>たに得られた未固結堆積物の14C年代 | 地学雑誌       | 117  | 3          | 650-<br>660 |
| 33  | 中島 礼・水野清秀・古澤 明                         | 2008 | テフラ対比に基づく中部更新統渥美層群<br>の堆積年代              | 地質学雑誌      | 114  | 2          | 70-79       |
| 34  | 中島 礼・堀 常東・宮崎一博・西岡<br>芳晴                | 2008 | 豊橋及び田原地域の地質 地域地質研究<br>報告 (5 万分の 1 地質図幅)  | 地質調査総合センター | _    | —          | 113p        |
| 35  | 佐川厚志・相山光太郎・金折裕司・田<br>中竹延               | 2008 | 山口県中東部,徳佐・地福断層と迫田・生雲<br>断層の性状および活動性      | 応用地質       | 49   | 2          | 78-93       |

表 4 収集した文献一覧(その4)

表 5 収集した文献一覧(その5)

| No. | 著者                                                                 | 発行年   | タイトル                                       | 誌名·書籍名                       | 巻    | 号  | ページ         |
|-----|--------------------------------------------------------------------|-------|--------------------------------------------|------------------------------|------|----|-------------|
| 36  | 下山正一・磯 望・千田 昇・岡村 眞・松<br>岡裕美・池田安隆・松田時彦・竹中博士・石<br>村大輔・松末和之・松山尚典・山盛邦生 | 2008  | 福岡平野東縁部に位置する宇美断層の特<br>徴について                | 活断層研究                        | 2008 | 29 | 59-70       |
| 37  | 関西地質調査業協会地盤情報データベース作<br>成委員会・小松原 琢                                 | 2007  | 39. 近江盆地の地下地質                              | 日本応用地質学会平成19<br>年度研究発表会講演論文集 | _    | _  | 32-35       |
| 38  | 服部泰久・小松原 琢・岡田篤正                                                    | 2007  | 伊那谷断層帯,三州街道断層におけるトレ<br>ンチ調査                | 活断層研究                        | 2007 | 27 | 211-<br>218 |
| 39  | 廣内大助・安江健一・内田主税・平松孝晋・<br>谷口 薫・杉戸信彦・金田平太郎                            | 2007  | 完新世における阿寺断層帯湯ヶ峰断層の<br>活動                   | 活断層研究                        | 2007 | 27 | 201-<br>209 |
| 40  | 加藤茂弘・田中義文・大嶋秀明・林 成多                                                | 2007  | 近畿地方北部、福知山盆地における中部<br>更新統・福知山層上部層堆積期の古環境   | 人と自然                         | 17   | _  | 19-34       |
| 41  | 小滝篤夫・木谷幹一・牧野州明                                                     | 2007  | 近畿地方に分布する大山最下部火山灰層<br>hpm1                 | 第四紀研究                        | 46   | 4  | 355-<br>361 |
| 42  | 森岡達也・佐川厚志・金折裕司・田中竹延                                                | 2007  | 山口県中央部, 徳佐・地福断層南西部と木<br>戸山西方断層北東端の性状および活動性 | 応用地質                         | 48   | 1  | 35-47       |
| 43  | 加藤茂弘・山下 透・檀原 徹                                                     | 2006b | 近畿地方北部の中部更新統・福知山層の<br>テフラの対比               | 人と自然                         | 16   | _  | 35-42       |
| 44  | 牧野内 猛・岩野英樹・檀原 徹                                                    | 2006  | P-217 知多半島武豊層の FT 年代                       | 日本地質学会第 113 年学術<br>大会講演要旨    | _    |    | 275-<br>275 |
| 45  | 中村洋介・宮谷淳史・岡田篤正                                                     | 2006  | 森本-富樫断層における平均上下変位速度<br>分布                  | 活断層研究                        | 2006 | 26 | 151-<br>162 |
| 46  | 尾崎正紀・今岡照害・井川寿之                                                     | 2006  | 仙崎地域の地質 地域地質研究報告 (5<br>万分の1地質図幅)           | 地質調査総合センター                   | _    | _  | 127p        |

| No. | 著者                          | 発行年   | タイトル                                                      | 誌名·書籍名     | 巻   | 号  | ページ       |
|-----|-----------------------------|-------|-----------------------------------------------------------|------------|-----|----|-----------|
| 47  | 山下大輔・吉川周作・塚腰<br>実・長岡信治・熊原康博 | 2006  | 愛媛県大洲・内子盆地に分布する下部 - 中部更新統の<br>層序と編年                       | 第四紀研究      | 45  | 6  | 463-477   |
| 48  | 中村洋介                        | 2005  | 富山平野東縁,魚津断層の第四紀後期における平均上<br>下変位速度                         | 第四紀研究      | 44  | _  | 353-370   |
| 49  | 吉田英嗣・須貝俊彦・坂口 一              | 2005  | 利根川・吾妻川合流点付近の河川地形発達に及ぼす前<br>橋泥流イベントの影響                    | 地理学評論      | 78  |    | 649-660   |
| 50  | 牧本 博・宮田隆夫・水野清<br>秀・寒川 旭     | 2004  | 粉河地域の地質 地域地質研究報告 (5 万分の 1 地質<br>図幅)                       | 地質調査総合センター | _   | _  | 89p       |
| 51  | 中村洋介・金 幸隆                   | 2004b | ローム層のボーリング掘削に基づく富山県魚津断層南<br>部の第四紀後期における上下変位速度の算出          | 地理学評論      | 77  | 1  | 40-52     |
| 52  | 吉田英嗣                        | 2004  | 浅間火山を起源とする泥流堆積物とその関東平野北西<br>部の地形発達に与えた影響                  | 地理学評論      | 77  | _  | 544-562   |
| 53  | 中村洋介・岡田篤正・竹村恵二              | 2003  | 富山平野西縁の河成段丘とその変形                                          | 地学雑誌       | 112 | —  | 544 - 562 |
| 54  | 尾崎正紀・原山智                    | 2003  | 高砂地域の地質 地域地質研究報告 (5 万分の 1 地質<br>図幅)                       | 地質調査総合センター |     |    | 87p       |
| 55  | 山内一彦                        | 2003  | 中国山地西部、徳佐盆地周縁における河川争奪                                     | 立命館地理学     | _   | 15 | 31-47     |
| 56  | 狩野謙一・丸山 正・林 愛明              | 2002  | 飛騨山地南部,境峠断層の後期更新世-完新世における<br>活動                           | 地質学雑誌      | 108 | 5  | 291-305   |
| 57  | 木村佳織                        | 2002  | 金沢南方の段丘面編年と変動地形                                           | 国土地理院時報    |     | 99 | 67-75     |
| 58  | 小滝篤夫・古山勝彦・井上陽一              | 2002  | 京都府北部,福知山・綾部地域の高位段丘層中の含カ<br>ミングトン閃石火山灰層と大山最下部火山灰層との対<br>比 | 地球科学       | 56  | _  | 35-48     |

表 6 収集した文献一覧(その6)

| No. | 著者                                         | 発行年   | タイトル                                       | 誌名·書籍名                               | 巻  | 号     | ページ         |
|-----|--------------------------------------------|-------|--------------------------------------------|--------------------------------------|----|-------|-------------|
| 59  | 中村洋介                                       | 2002  | 富山県砺波平野,高清水断層および法林時断<br>層の第四紀後期における活動性     | 第四紀研究                                | 41 | 5     | 389-<br>402 |
| 60  | 田力正好                                       | 2002  | 糸魚川-静岡構造線活断層系南部, 白州-韮<br>崎付近の活構造と第四紀の活動史   | 活断層研究                                | _  | 21    | 33-49       |
| 61  | 宮地良典・田結庄良昭・寒<br>川 旭                        | 2001  | 大阪東北部地域の地質 地域地質研究報告 (5<br>万分の1地質図幅)        | 地質調査所                                | _  | _     | 131p        |
| 62  | 森江孝志・小沢大成・奥村<br>清                          | 2001  | 徳島県阿讃山地南麓の段丘堆積物中から見出<br>された長手テフラとその対比      | 第四紀研究                                | 40 | _     | 331-<br>336 |
| 63  | 西岡芳晴・尾崎正紀・寒川<br>旭・山元孝広・宮地良典                | 2001  | 桜井地域の地質 地域地質研究報告 (5 万分の<br>1 地質図幅)         | 地質調査所                                | _  | _     | 141p        |
| 64  | 植村善博                                       | 2001  | 第V章 丹波地域の段丘編年と地殻変動                         | 比較変動地形論-プレート境界域の<br>地形と第四紀地殻変動(古今書院) | _  | _     | 112-<br>129 |
| 65  | 浜崎修司・満塩大洸                                  | 2000  | 徳島県東部の園瀬川流域の第四系                            | 高知大学学術研究報告 自然科学                      | _  | 49    | 41-49       |
| 66  | 満塩大洸・浜崎修司                                  | 2000a | 徳島県東南部,桑野川福井川流域の第四紀に<br>おける環境変化            | 高知大学学術研究報告 自然科学                      | _  | 49    | 25-40       |
| 67  | 満塩大洸・山下大輔                                  | 2000  | 淡路島中西部,鳥飼川付近の第四系                           | 高知大学学術研究報告 自然科学                      | _  | 49    | 51-66       |
| 68  | 太田陽子・大村明雄                                  | 2000  | 南西諸島,喜界島のサンゴ礁段丘の研究小史<br>と問題点-シンポジウムの序論として- | 第四紀研究                                | 39 | 45-53 | 45-53       |
| 69  | 尾崎正紀・寒川 旭・宮崎<br>一博・西岡芳晴・宮地良<br>典・竹内圭史・田口雄作 | 2000  | 奈良地域の地質 地域地質研究報告 (5 万分<br>の 1 地質図幅)        | 地質調査所                                | _  | _     | 162p        |
| 70  | 栗本史雄・内藤一樹・杉山<br>雄一・中江 訓                    | 1999  | 教賀地域の地質 地域地質研究報告 (5 万分の1地質図幅)              | 地質調査所                                | _  | _     | 73p         |

表 7 収集した文献一覧(その7)

表 8 収集した文献一覧(その8)

| No. | 著者                                                                                 | 発行年  | タイトル                                                                                                    | 誌名·書籍名                                                  | 巻  | 号  | ページ         |
|-----|------------------------------------------------------------------------------------|------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----|----|-------------|
| 71  | 満塩大洸・橋本浩志                                                                          | 1999 | 四国吉野川中流域北岸,土柱地域の第四<br>系                                                                                 | 高知大学学術研究報告 自然科学                                         |    | 48 | 87-99       |
| 72  | MITUSIO Taikou,SASAKI Kimihiro                                                     | 1999 | Quaternary Geology along the<br>Katsuura-gawa river, East Tokushima<br>Prefecture, East Shikoku         | Research Reports of Kochi<br>University,Natural Science | _  | 48 | 45-64       |
| 73  | 銭 祥富                                                                               | 1999 | 大阪平野南部,石川流域に分布する段丘<br>層の層序と編年                                                                           | 第四紀(第四紀総合研究会)                                           | _  | 31 | 31-41       |
| 74  | Shozo Yokoyama                                                                     | 1999 | Rapid formation of river terraces in<br>non-welded ignimbrite along the<br>Hishida River, Kyushu, Japan | Geomorphology                                           | 30 | _  | 291-<br>304 |
| 75  | 小松原 琢・水野清秀・寒川 旭・七山<br>太・木下博久・松木宏彰・新見 健・吉<br>村辰朗・井上 基・居川信之・葛原秀<br>雄・中村美重・図司高志・横井川博之 | 1998 | 琵琶湖西岸活断層系北部, 饗庭野断層の<br>第四紀後期の活動                                                                         | 地質調査所月報                                                 | 49 | 9  | 447-<br>460 |
| 76  | 熊原康博                                                                               | 1998 | 四国北西部肱川流域の段丘地形と地殻変<br>動                                                                                 | 第四紀研究                                                   | 37 | 5  | 397-<br>409 |
| 77  | 松島信幸・寺平 宏・小泉明裕・村松<br>武・寺岡義治                                                        | 1998 | 飯田市川路,花御所の埋没林ー最終氷期<br>最盛期の伊那谷と段丘の編年にふれてー                                                                | 飯田市美術博物館研究紀要(飯田<br>市美術博物館)                              | _  | 8  | 107-<br>118 |
| 78  | 満塩大洸・池野孝夫                                                                          | 1998 | 徳島県東部鮎喰川中流域の第四系                                                                                         | 高知大学学術研究報告 自然科学                                         | —  | 47 | 59-69       |
| 79  | 岡島尚司・山本博文・中川登美雄・新井<br>房夫・西田史朗                                                      | 1998 | 福井県丹生山地から見出された加久藤テ<br>フラ(Kkt)とその意義                                                                      | 地球科学                                                    | 52 | _  | 225-<br>228 |
| 80  | 長田敏明                                                                               | 1998 | 牧ノ原台地の地形と地質                                                                                             | 地団研専報                                                   | —  | 46 | 1-78        |

表 9 収集した文献一覧(その9)

| No. | 著者                                    | 発行<br>年   | タイトル                                                  | 誌名・書籍名                        | 巻   | 号  | ページ     |
|-----|---------------------------------------|-----------|-------------------------------------------------------|-------------------------------|-----|----|---------|
| 81  | 植木岳雪・満塩大洸                             | 1998      | 阿讃山地の隆起過程:鮮新~更新統三豊層群を指標に<br>して                        | 地質学雑誌                         | 104 |    | 247-267 |
| 82  | 片岡香子・吉川周作                             | 1997      | 三重県鈴鹿川流域の段丘構成層の層序・編年-火山灰<br>稀産地域での段丘編年の試み-            | 第四紀研究                         | 36  | 4  | 263-276 |
| 83  | 満塩大洸・栗林知史                             | 1997      | 徳島県那賀川流域の第四系                                          | 高知大学学術研究報告 自然科学               | —   | 46 | 65-78   |
| 84  | 満塩大洸・五十嵐光雲・<br>鹿島愛彦                   | 1996<br>а | 四国西部の環境地質学的研究,その12-愛媛県今治市<br>蒼社川流域付近の第四紀の環境変遷-        | 高知大学学術研究報告 自然科学               | _   | 44 | 119-128 |
| 85  | 満塩大洸・五十嵐高雲・<br>鹿島愛彦                   | 1996<br>b | 四国西部の環境地質学的研究,その13-愛媛県朝倉村<br>頓田川流域付近の第四紀の環境変遷-        | 高知大学学術研究報告,自然科学               | _   | 45 | 47-57   |
| 86  | 鹿島愛彦・岡本健太・満<br>塩大洸                    | 1995      | 四国西部の環境地質学的研究 その 11 -愛媛県肱川<br>中流域、黒瀬川流域付近の第四紀における環境変化 | 愛媛大学教養部紀要                     | _   | 28 | 17-29   |
| 87  | 水野清秀・服部 仁・寒<br>川 旭・高橋 浩               | 1995      | 明石地域の地質地域地質研究報告 (5万分の1地質図<br>幅)                       | 地質調査所                         | _   | _  | 90p     |
| 88  | 中川登美雄・山本博文・<br>新井房夫・岡島尚司              | 1995      | 福井県丹生山地の段丘堆積物から見いだされた姶良T<br>n火山灰層および大山倉吉軽石層とその意義      | 第四紀研究                         | 34  | 1  | 49-53   |
| 89  | 渡辺一徳・高田英樹・岡<br>部良子・西田晃代               | 1995      | 熊本県白川中流域の河成段丘堆積物と広域テフラとの<br>層序関係                      | 熊本大学教育学部紀要,自然科学<br>(熊本大学教育学部) | _   | 44 | 15-22   |
| 90  | 満塩大洸・野田耕一郎                            | 1994      | 高知県土佐市の第四紀における環境変遷-土佐市高岡<br>平野・波介川流域の第四紀層-            | 高知大学学術研究報告,自然科学               | _   | 43 | 101-114 |
| 91  | 下山正一・渡辺一徳・西<br>田民雄・原田大介・鶴田<br>浩二・小松 譲 | 1994      | Aso-4 火砕流に焼かれた巨木-佐賀県上峰町で出土した<br>後期更新世樹木群-             | 第四紀研究                         | 33  | 2  | 107-112 |

表 10 収集した文献一覧(その10)

| No. | 著者                                                       | 発行<br>年   | タイトル                                       | 誌名・書籍名                              | 巻  | 号  | ページ     |
|-----|----------------------------------------------------------|-----------|--------------------------------------------|-------------------------------------|----|----|---------|
| 92  | 長木百合子                                                    | 1993      | 宇佐平野の地形発達                                  | 大分地理                                | _  | 7  | 9-16    |
| 93  | 鹿島愛彦・高橋 和・満塩大洸                                           | 1993      | 四国南部の環境地質学的研究 その7 -愛媛県南<br>予地方瀬戸町付近の第四系-   | 愛媛大学教養部紀要                           | _  | 26 | 35-46   |
| 94  | 満塩大洸・嶋 将志                                                | 1993<br>b | 四国吉野川上・中流域の第四系                             | 高知大学学術研究報告,自然<br>科学                 | _  | 42 | 87-104  |
| 95  | 宮田隆夫・牧本 博・寒川 旭・<br>市川浩一郎                                 | 1993      | 和歌山及び尾崎地域の地質地域地質研究報告 (5万<br>分の1地質図幅)       | 地質調査所                               | _  | _  | 68p     |
| 96  | <ul><li>佃 栄吉・栗山泰夫・山崎晴雄・</li><li>杉山雄一・下川浩一・水野清秀</li></ul> | 1993      | 阿寺断層系ストリットマップ説明書                           | 地質調査所 構造図 7                         | _  | _  | 1-35    |
| 97  | 松添澄代                                                     | 1992      | 大野川中流域の地形発達                                | 大分地理                                | 6  | _  | 51-58   |
| 98  | 中村俊夫・藤井登美夫・鹿野勘<br>次・木曽谷第四紀巡検会                            | 1992      | 岐阜県八百津町の木曽川泥流堆積物から採取された<br>埋没樹木の加速器 14C 年代 | 第四紀研究                               | 31 | _  | 29-36   |
| 99  | 高橋 浩・寒川 旭 ・水野清秀・<br>服部 仁                                 | 1992      | 洲本地域の地質 地域地質研究報告 (5 万分の 1 地<br>質図幅)        | 地質調査所                               | _  | _  | 107p    |
| 100 | 海野芳聖・大井信三・黒木貴一・<br>坂井尚登                                  | 1992      | 群馬県南西部,神流川流域における火山灰層序につ<br>いて              | 地理調査部研究報告(国土地<br>理院技術資料 D・1-No.308) | _  | 8  | 196-204 |
| 101 | 満塩大洸・竹田善博・嶋 将志                                           | 1991      | 四国吉野川上流域の第四系                               | 高知大学学術研究報告,自然<br>科学                 | _  | 40 | 243-253 |
| 102 | 山内一彦                                                     | 1990      | 山口県佐波川上流部における河川争奪                          | 立命館地理学                              |    | 2  | 65-82   |
| 103 | 井本伸広・清水大吉郎・武蔵野<br>実・石田志郎                                 | 1989      | 京都西北部地域の地質 地域地質研究報告 (5 万分の1地質図幅)           | 地質調査所                               | _  | _  | 80p     |

表 11 収集した文献一覧(その11)

| No. | 著者                         | 発行年  | タイトル                                                                                                                                            | 誌名・書籍名                          | 巻  | 号  | ページ     |
|-----|----------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----|----|---------|
| 104 | 木村克己・牧本<br>博・吉岡敏和          | 1989 | 綾部地域の地質 地域地質研究報告 (5 万分の 1 地質図幅)                                                                                                                 | 地質調査所                           |    | _  | 101p    |
| 105 | 能生地すべり団体研<br>究グループ         | 1989 | 糸魚川市北部の段丘について                                                                                                                                   | 新潟県地学教育研究会誌(新潟<br>県地学教育研究会)     | _  | 23 | 38-51   |
| 106 | 角 靖夫・野沢<br>保・井上正昭          | 1989 | 石動地域の地質 地域地質研究報告 (5 万分の 1 地質図幅)                                                                                                                 | 地質調査所                           |    | _  | 118p    |
| 107 | 小口高                        | 1988 | 松本盆地および周辺山地における最終氷期以降の地形発達史                                                                                                                     | 第四紀研究                           | 27 | 2  | 101-124 |
| 108 | 佐藤英司                       | 1988 | 駅館川流域の地形発達·安心院盆地を中心として・                                                                                                                         | 大分地理                            | 2  | -  | 51 - 56 |
| 109 | 杉山雄一・寒川<br>旭・下川浩一・水野<br>清秀 | 1988 | 御前崎地域の地質 地域地質研究報告 (5 万分の1 地質図幅)                                                                                                                 | 地質調査所                           | _  | _  | 141p    |
| 110 | Hiroshi YAGI               | 1988 | Geomorphic Differentiation Inside The Plio-Pleistocene<br>Sedimentary Basins in and around the Kinki Triangle,<br>Inner Zone of Southwest Japan | 東北地理                            | 38 | 1  | 32-61   |
| 111 | 平林 潔                       | 1987 | 長野県南安曇郡、奈川流域の段丘形成史                                                                                                                              | 駒沢大学大学院地理学研究(駒<br>沢大学大学院地理学研究会) | _  | 17 | 15-31   |
| 112 | 梶川裕之                       | 1987 | 番匠川流域の地形発達について                                                                                                                                  | 大分地理                            | _  | 1  | 3-10    |
| 113 | 近藤善教・木村一朗                  | 1987 | 師崎地域の地質 地域地質研究報告 (5 万分の 1 地質図幅)                                                                                                                 | 地質調査所                           | _  | -  | 94p     |
| 114 | 武藤鉄司                       | 1987 | 天竜川下流地方,三方が原・磐田原台地の地質・現在の開析扇<br>状地からの解釈・                                                                                                        | 地質学雑誌                           | 93 | 4  | 259-273 |
| 115 | 野尻卓宏                       | 1987 | 大分県玖珠盆地の地形発達                                                                                                                                    | 大分地理                            | —  | 1  | 17-22   |
| 116 | 財津辰也                       | 1987 | 大分県日田盆地の地形発達                                                                                                                                    | 大分地理                            | —  | 1  | 33-42   |

表 12 収集した文献一覧(その12)

| No. | 著者                                | 発行年  | タイトル                                | 誌名・書籍名                     | 巻  | 号  | ページ     |
|-----|-----------------------------------|------|-------------------------------------|----------------------------|----|----|---------|
| 117 | 遠藤秀典・鈴木祐一郎                        | 1986 | 妻及び高鍋地域の地質 地域地質研究報告 (5<br>万分の1地質図幅) | 地質調査所                      |    |    | 105p    |
| 118 | 福間敏夫・藤田和夫                         | 1986 | 福知山盆地の更新統                           | 第四紀研究                      | 24 | 4  | 26-281  |
| 119 | 市原 実・市川浩一郎・山田直利                   | 1986 | 岸和田地域の地質 地域地質研究報告 (5 万<br>分の1地質図幅)  | 地質調査所                      | _  | _  | 148p    |
| 120 | 水野清秀・南木暁彦                         | 1986 | 広島県西条盆地南部の第四系の層序                    | 地質調査所月報                    | 37 | 4  | 183-200 |
| 121 | 百瀬 貢・竹本弘幸・水野秀明・<br>小島 弘・平林 潔・朝原尚仁 | 1986 | 松本盆地西縁、乳川流域の段丘形成史                   | 駒沢大学大学院地理学研究               | _  | 16 | 5-20    |
| 122 | 長岡信治                              | 1986 | 後期更新世における宮崎平野の地形発達                  | 第四紀研究                      | 25 | 3  | 139-163 |
| 123 | 木村一朗・中尾宣民・鈴木義典                    | 1985 | 愛知県渥美半島の更新統の14C年代と関連す<br>る層位学的問題    | 愛知教育大学研究報告(自然科学)           | _  | 34 | 131-141 |
| 124 | 寒川 旭・衣笠善博・奥村晃史・<br>八木浩司           | 1985 | 奈良盆地東縁地域の活構造                        | 第四紀研究                      | 24 | _  | 85-97   |
| 125 | 伊藤真人・正木智幸                         | 1984 | 北アルプス,乳川流域における更新世の岩屑<br>供給期         | 地理学評論                      | 57 | 4  | 282-292 |
| 126 | 下山正一・亀山徳彦・宮田雄一<br>郎・田代雄二          | 1984 | 福岡県糸島平野の第四系                         | 北九州大学文紀要(B)                | _  | 17 | 39-58   |
| 127 | 吉田 史郎                             | 1984 | 四日市地域の地質 地域地質研究報告 (5 万<br>分の1地質図幅)  | 地質調査所                      | _  | _  | 81p     |
| 128 | 千田 昇                              | 1983 | 国東半島の地形                             | 国東半島-自然・社会・教育,大<br>分大学教育学部 | _  | _  | 17-28   |
表 13 収集した文献一覧(その13)

| No. | 著者                          | 発行年  | タイトル                                        | 誌名·書籍名                | 巻            | 号            | ページ     |
|-----|-----------------------------|------|---------------------------------------------|-----------------------|--------------|--------------|---------|
| 129 | 伊藤真人                        | 1983 | 北アルプス南東部蝶ヶ岳付近の氷河地形と堆積段丘                     | 地理学評論                 | 56           | 1            | 35-49   |
| 130 | 木村一朗・細野隆男・中尾<br>宣民・新井房夫     | 1983 | 伊勢湾西岸地域および渥美半島における姶良 Tn 火<br>山灰と段丘の層位関係(予報) | 愛知教育大学研究報告(自<br>然科学)  | _            | 32           | 175-186 |
| 131 | 佐藤正典                        | 1983 | 狩野川の河岸段丘                                    | 静岡地学(静岡県地学会)          | _            | 48           | 8-11    |
| 132 | 八木浩司                        | 1983 | 播磨灘北東岸地域における段丘面の時代対比                        | 56                    | 5            | 324-344      |         |
| 133 | 木村一朗・荒巻敏夫・大沢<br>正吾・池田芳雄     | 1982 | 豊川中流および下流の段丘と更新統(その2,段丘<br>堆積物)             | 愛知教育大学研究報告(自<br>然科学)  | _            | 31           | 195-210 |
| 134 | 磯 望·山川克巳・米澤<br>宏・松原敏子       | 1980 | 岐阜県高原川流域における土石流による岩屑供給と<br>沖積錐の成長速度         | 地理学評論                 | 53           | _            | 699-720 |
| 135 | 木村一朗                        | 1979 | 宮川中流および下流の河岸段丘                              | 愛知教育大学研究報告(自然<br>科学編) | _            | 28           | 119-132 |
| 136 | 野上道男・大内俊二・森脇<br>広・初見祐一・野口 真 | 1979 | 宮川流域の段丘地形                                   | 日本地理学会予稿集             | _            | 16           | 46-47   |
| 137 | 植村善博                        | 1979 | 湖東丘陵の古地理と地形発達史                              | 立命館文学                 | _            | 410 •<br>411 | 143-174 |
| 138 | 小池一之                        | 1978 | 高原川・神通川にみられる段丘の分布とその形成過<br>程                | 駒沢地理                  | _            | 14           | 29-53   |
| 139 | 大橋健                         | 1978 | 琵琶湖南岸地域の発達史                                 | 立命館文学                 | 394 •<br>395 | _            | 280-302 |
| 140 | 角靖夫                         | 1978 | 津幡地域の地質 地域地質研究報告 (5 万分の 1 地<br>質図幅)         | 地質調査所                 |              | _            | 55p     |

表 14 収集した文献一覧(その14)

| No. | 著者                          | 発行年  | タイトル                                                                          | 誌名·書籍名                                     | 巻     | 号  | ページ         |
|-----|-----------------------------|------|-------------------------------------------------------------------------------|--------------------------------------------|-------|----|-------------|
| 141 | 松本盆地団体研究グループ                | 1977 | 松本盆地の第四紀地質-松本盆地の形成過程に関する<br>研究(3) -                                           | 地質学論集                                      | _     | 14 | 93-102      |
| 142 | 藤井登美夫                       | 1976 | 御岳火山木曽川泥流堆積物の産状とその流下・堆積様<br>式                                                 | 愛知教育大学地理学報告                                | _     | 45 | 114-119     |
| 143 | 池田芳雄                        | 1974 | 豊川流域の第四系と 14C 年代                                                              | 地球科学                                       | 28    |    | 47-48       |
| 144 | 成瀬 洋                        | 1974 | 西南日本太平洋岸地域の海岸段丘に関する2・3の考<br>察                                                 |                                            | _     | 99 | 89-126      |
| 145 | 磯野朝雄                        | 1971 | 伊那谷の段丘地形                                                                      | 愛知教育大学地理学報告                                | 36/37 | _  | 123-127     |
| 146 | 関根 清・大川幹雄・渋谷<br>義之・小鷹兼博     | 1970 | 砥川の地形                                                                         | 地域研究(立正地理学会)                               | 13    | _  | 21-30       |
| 147 | 服部豊                         | 1969 | 西三川平野に発達する高位段丘                                                                | 名古屋地学(名古屋地学会)                              | _     | 25 | 2-13        |
| 148 | 山陰第四紀研究グループ                 | 1969 | 山陰海岸地域の第四系                                                                    | 日本の第四系,地団研専報                               | _     | 15 | 355-374     |
| 149 | 島田安太郎                       | 1969 | 木曽川中流の高位段丘と礫層                                                                 | 第四紀研究                                      | 8     | -  | 111-118     |
| 150 | 岡田篤正                        | 1968 | 阿波池田付近の中央構造線の新期断層運動                                                           | 第四紀研究                                      | 7     | 1  | 15-26       |
| 151 | 木曾谷第四紀研究グループ                | 1967 | 木曾川上流部の第四紀地質I                                                                 | 地球科学                                       | _     | 21 | 1-10        |
| 152 | 郷原保真・新堀友行・鈴木<br>康司・野村哲・小森長生 | 1964 | 北九州の第四紀層に関する諸問題                                                               | 資源研究所彙報                                    | _     | 62 | 83-108      |
| 153 | Kobayashi, K.               | 1963 | Epitome of Quaternary history of Hamamatsu and its environs in central Japan. | J. Fac. Lib. Arts & Sci.,<br>Shinshu Univ. | _     | 13 | 21-46       |
| 154 | 町田 貞・大倉陽子                   | 1960 | 豊川中・下流の段丘地形                                                                   | 地理学評論                                      | 23    | 11 | 55<br>1-563 |
| 155 | 川田三郎                        | 1942 | 神通川の河岸段丘                                                                      | 地理学評論                                      | -     | 18 | 802-813     |

表 15 柱状図等の情報を抽出した図郭と段丘情報(その1)

|     | 20 万分の 1 |    |       |          | 海成段丘        | 5 万分の         | 柱状図等の段丘情報の有無 |      |      |                 |  |  |
|-----|----------|----|-------|----------|-------------|---------------|--------------|------|------|-----------------|--|--|
| No. | <br>义    | 廓  | 5 万分0 | D1図郭     | アトラス<br>の有無 | 1 地質図<br>幅の有無 | 低位段丘         | 中位段丘 | 高位段丘 | その他(年代<br>不詳の段丘 |  |  |
| 1   | 5637     | 輪島 | 10-6  | 宝立山      | 0           | 0             | _            | 0    | _    | _               |  |  |
| 2   | 5636     | 輪島 | 10-5  | 輪島       | 0           | _             | _            | 0    |      | _               |  |  |
| 3   | 5537     | 富山 | 10-19 | 小滝       | 0           | 0             | 0            | 0    | 0    | _               |  |  |
| 4   | 5537     | 富山 | 10-17 | 三日市      | 0           | 0             | 0            | 0    |      | _               |  |  |
| 5   | 5537     | 富山 | 10-25 | 白馬岳      | _           | 0             | 0            | _    |      | _               |  |  |
| 6   | 5537     | 富山 | 10-22 | 富山       | 0           | 0             | 0            | 0    | _    | _               |  |  |
| 7   | 5537     | 富山 | 10-23 | 魚津       | 0           | 0             | 0            | 0    | _    | _               |  |  |
| 8   | 5537     | 富山 | 10-14 | 糸魚川      | 0           | 0             | 0            | 0    | 0    | _               |  |  |
| 9   | 5536     | 七尾 | 10-11 | 富来       | 0           | _             | 0            | 0    | 0    | _               |  |  |
| 10  | 5536     | 七尾 | 10-20 | 津幡       | 0           | 0             | 0            | 0    | _    | _               |  |  |
| 11  | 5536     | 七尾 | 10-21 | 石動       | 0           | 0             | 0            | 0    | _    | _               |  |  |
| 12  | 5536     | 七尾 | 10-12 | 七尾       | 0           | _             | 0            | 0    | 0    | _               |  |  |
| 13  | 5536     | 七尾 | 10-8  | 剱地       | 0           | _             | _            | 0    | _    | _               |  |  |
| 14  | 5438     | 長野 | 8-12  | 和田       | _           | _             | 0            | 0    | _    | _               |  |  |
| 13  | 5536     | 七尾 | 10-8  | 剱地       | 0           | _             | _            | 0    | _    | _               |  |  |
| 14  | 5438     | 長野 | 8-12  | 和田       | _           | _             | 0            | 0    | —    | _               |  |  |
| 15  | 5438     | 長野 | 8-23  | 諏訪       | _           | 0             | 0            | _    | _    | _               |  |  |
| 16  | 5437     | 高山 | 10-37 | 槍ヶ岳      | _           | 0             | 0            | _    | _    | _               |  |  |
| 17  | 5437     | 高山 | 10-28 | 八尾       | _           | 0             | 0            | 0    | _    | 0               |  |  |
| 18  | 5437     | 高山 | 10-46 | 松本       | _           | 0             | 0            | 0    | 0    | _               |  |  |
| 19  | 5437     | 高山 | 10-44 | 船津       | _           | 0             | 0            | _    | _    | 0               |  |  |
| 20  | 5437     | 高山 | 10-53 | 乗鞍岳      | _           | 0             | 0            | 0    | _    | _               |  |  |
| 21  | 5437     | 高山 | 10-35 | 白木峰      | _           | 0             | 0            | _    | _    | _               |  |  |
| 22  | 5437     | 高山 | 10-38 | 信濃<br>池田 |             | 0             | 0            | 0    | _    | _               |  |  |

表 16 柱状図等の情報を抽出した図郭と段丘情報(その2)

|     | 20万  | ትወ 1 |       |          | 海成段丘        | 5 万分の         |      | 柱状図等の段丘情報の有無 |   |                 |  |  |  |  |
|-----|------|------|-------|----------|-------------|---------------|------|--------------|---|-----------------|--|--|--|--|
| No. |      | 郭    | 5 万分0 | 01図郭     | アトラス<br>の有無 | 1 地質図<br>幅の有無 | 低位段丘 | 低位段丘中位段丘     |   | その他(年代<br>不詳の段丘 |  |  |  |  |
| 23  | 5437 | 高山   | 10-54 | 塩尻       | _           | 0             | 0    | _            | _ | _               |  |  |  |  |
| 24  | 5437 | 高山   | 10-45 | 上高地      | _           | 0             | 0    | _            | _ | _               |  |  |  |  |
| 25  | 5437 | 高山   | 10-31 | 大町       | _           | 0             | 0    | _            | _ | _               |  |  |  |  |
| 26  | 5437 | 高山   | 10-36 | 有峰湖      | _           | 0             | 0    | _            | _ | _               |  |  |  |  |
| 27  | 5436 | 金沢   | 10-27 | 城端       | _           | 0             | 0    | 0            | 0 | _               |  |  |  |  |
| 28  | 5436 | 金沢   | 10-34 | 下梨       | _           | _             | 0    | _            | _ | _               |  |  |  |  |
| 29  | 5436 | 金沢   | 10-26 | 金沢       | 0           | 0             | 0    | 0            | _ | _               |  |  |  |  |
| 30  | 5433 | 西郷   | 12-1  | 西郷       | _           | 0             | _    | 0            | 0 | _               |  |  |  |  |
| 31  | 5337 | 飯田   | 10-85 | 妻籠       | _           | 0             | 0    | 0            | 0 | _               |  |  |  |  |
| 32  | 5337 | 飯田   | 10-84 | 付知       | _           | 0             | 0    | -            | 0 | _               |  |  |  |  |
| 33  | 5337 | 飯田   | 10-62 | 木曽<br>福島 | _           | 0             | 0    | 0            | 0 | _               |  |  |  |  |
| 34  | 5337 | 飯田   | 10-72 | 加子母      | _           | 0             | 0    | _            | _ | _               |  |  |  |  |
| 35  | 5337 | 飯田   | 10-73 | 上松       | _           | 0             | _    | _            | 0 | _               |  |  |  |  |
| 36  | 5337 | 飯田   | 10-63 | 伊那       | _           | 0             | 0    | 0            | _ | _               |  |  |  |  |
| 37  | 5337 | 飯田   | 10-86 | 飯田       | _           | 0             | _    | 0            | 0 | _               |  |  |  |  |
| 38  | 5337 | 飯田   | 10-74 | 赤穂       | -           | 0             | 0    | 0            | _ | _               |  |  |  |  |
| 39  | 5336 | 岐阜   | 10-79 | 敦賀       | 0           | 0             | 0    | _            | _ | _               |  |  |  |  |
| 40  | 5336 | 岐阜   | 11-6  | 長浜       | _           | 0             | 0    | 0            | _ | _               |  |  |  |  |
| 41  | 5336 | 岐阜   | 10-56 | 鯖江       | 0           | _             | 0    | _            | 0 | _               |  |  |  |  |
| 42  | 5335 | 宮津   | 10-78 | 西津       | 0           | 0             | _    | _            | 0 | _               |  |  |  |  |
| 43  | 5335 | 宮津   | 10-66 | 竹波       | 0           | 0             | 0    | 0            | _ | _               |  |  |  |  |
| 44  | 5334 | 鳥取   | 12-11 | 鳥取<br>北部 | 0           | 0             | _    | 0            | _ | _               |  |  |  |  |
| 45  | 5333 | 松江   | 12-9  | 赤碕       | 0           | 0             | 0    | -            | 0 | _               |  |  |  |  |
| 46  | 5333 | 松江   | 12-17 | 松江       | 0           | 0             | _    | 0            | 0 | _               |  |  |  |  |

| 表 17 | 柱状図等の情報を抽出した図郭と段丘情報 | (その3) |
|------|---------------------|-------|
|------|---------------------|-------|

|     | 20万分 |         |       |          | 海成段丘        | 5 万分の         | 柱状図等の段丘情報の有無 |      |      |                 |  |  |  |
|-----|------|---------|-------|----------|-------------|---------------|--------------|------|------|-----------------|--|--|--|
| No. |      | 」<br>『郭 | 5 万分0 | D1図郭     | アトラス<br>の有無 | 1 地質図<br>幅の有無 | 低位段丘         | 中位段丘 | 高位段丘 | その他(年代<br>不詳の段丘 |  |  |  |
| 47  | 5333 | 松江      | 12-18 | 米子       | 0           | 0             | 0            | _    | 0    | _               |  |  |  |
| 48  | 5333 | 松江      | 12-20 | 倉吉       | 0           | 0             | _            | 0    | 0    | _               |  |  |  |
| 49  | 5333 | 松江      | 12-19 | 大山       | 0           | 0             | _            | _    | 0    | _               |  |  |  |
| 50  | 5332 | 大社      | 12-16 | 今市       | 0           | 0             | _            | 0    | 0    | _               |  |  |  |
| 51  | 5238 | 静岡      | 8-91  | 沼津       | 0           | -             | 0            | _    | _    | _               |  |  |  |
| 52  | 5238 | 静岡      | 8-100 | 修善寺      | 0           | 0             | 0            | _    | _    | _               |  |  |  |
| 53  | 5238 | 静岡      | 8-108 | 御前崎      | _           | 0             | _            | 0    | _    | _               |  |  |  |
| 54  | 5238 | 静岡      | 8-103 | 掛川       | 0           | _             | _            | 0    | _    | _               |  |  |  |
| 55  | 5237 | 豊橋      | 11-58 | 豊橋       | 0           | 0             | 0            | 0    | 0    | _               |  |  |  |
| 56  | 5237 | 豊橋      | 11-9  | 美濃加<br>茂 | _           | _             | 0            | 0    | 0    | _               |  |  |  |
| 57  | 5237 | 豊橋      | 11-47 | 三河大<br>野 | _           | 0             | 0            | 0    | 0    | _               |  |  |  |
| 58  | 5237 | 豊橋      | 11-59 | 浜松       | 0           | 0             | 0            | 0    | 0    | _               |  |  |  |
| 59  | 5237 | 豊橋      | 11-11 | 中津川      | _           | _             | 0            | _    | _    | _               |  |  |  |
| 60  | 5237 | 豊橋      | 11-33 | 豊田       | _           | -             | _            | -    | 0    | _               |  |  |  |
| 61  | 5237 | 豊橋      | 11-12 | 時又       | _           | _             | 0            | 0    | _    | _               |  |  |  |
| 62  | 5237 | 豊橋      | 11-48 | 天竜       | _           | 0             | 0            | 0    | _    | _               |  |  |  |
| 63  | 5237 | 豊橋      | 11-70 | 田原       | 0           | 0             | _            | 0    | 0    | _               |  |  |  |
| 64  | 5237 | 豊橋      | 11-57 | 蒲郡       | 0           | _             | _            | 0    | _    | _               |  |  |  |
| 65  | 5237 | 豊橋      | 11-46 | 御油       | _           | 0             | 0            | 0    | _    | _               |  |  |  |
| 66  | 5237 | 豊橋      | 11-10 | 恵那       | _           | _             | 0            | _    | 0    | _               |  |  |  |
| 67  | 5237 | 豊橋      | 11-60 | 磐田       | 0           | 0             | 0            | 0    | _    | _               |  |  |  |
| 68  | 5236 | 名古屋     | 11-5  | 竹生島      | _           | 0             | 0            | _    | _    | _               |  |  |  |
| 69  | 5236 | 名古<br>屋 | 11-56 | 師崎       | 0           | 0             | _            | 0    | 0    | _               |  |  |  |

| 表 18 柱状図等 | の情報を抽出した図郭と段丘情報( | (その4) |
|-----------|------------------|-------|
|-----------|------------------|-------|

|     | 20 五 | ረጉ 1    |       |          | 海成段丘        | 5 万分の         | 柱状図等の段丘情報の有無 |          |   |                 |  |  |  |
|-----|------|---------|-------|----------|-------------|---------------|--------------|----------|---|-----------------|--|--|--|
| No. | 2075 | 郭       | 5 万分0 | D1図郭     | アトラス<br>の有無 | 1 地質図<br>幅の有無 | 低位段丘         | 低位段丘中位段丘 |   | その他(年代<br>不詳の段丘 |  |  |  |
| 47  | 5333 | 松江      | 12-18 | 米子       | 0           | 0             | 0            | -        | 0 | _               |  |  |  |
| 48  | 5333 | 松江      | 12-20 | 倉吉       | 0           | 0             | _            | 0        | 0 | _               |  |  |  |
| 49  | 5333 | 松江      | 12-19 | 大山       | 0           | 0             | _            | _        | 0 | _               |  |  |  |
| 50  | 5332 | 大社      | 12-16 | 今市       | 0           | 0             | _            | 0        | 0 | _               |  |  |  |
| 51  | 5238 | 静岡      | 8-91  | 沼津       | 0           | -             | 0            | _        |   | _               |  |  |  |
| 52  | 5238 | 静岡      | 8-100 | 修善寺      | 0           | 0             | 0            | _        | _ | _               |  |  |  |
| 53  | 5238 | 静岡      | 8-108 | 御前崎      | _           | 0             | _            | 0        | _ | _               |  |  |  |
| 54  | 5238 | 静岡      | 8-103 | 掛川       | 0           | _             | _            | 0        | _ | _               |  |  |  |
| 55  | 5237 | 豊橋      | 11-58 | 豊橋       | 0           | 0             | 0            | 0        | 0 | _               |  |  |  |
| 56  | 5237 | 豊橋      | 11-9  | 美濃加<br>茂 | _           | _             | 0            | 0        | 0 | _               |  |  |  |
| 57  | 5237 | 豊橋      | 11-47 | 三河大<br>野 | _           | 0             | 0            | 0        | 0 | _               |  |  |  |
| 58  | 5237 | 豊橋      | 11-59 | 浜松       | 0           | 0             | 0            | 0        | 0 | _               |  |  |  |
| 59  | 5237 | 豊橋      | 11-11 | 中津川      | _           | _             | 0            | _        | _ | _               |  |  |  |
| 60  | 5237 | 豊橋      | 11-33 | 豊田       | _           | _             | _            | -        | 0 | _               |  |  |  |
| 61  | 5237 | 豊橋      | 11-12 | 時又       | _           | _             | 0            | 0        | _ | _               |  |  |  |
| 62  | 5237 | 豊橋      | 11-48 | 天竜       | _           | 0             | 0            | 0        | _ | _               |  |  |  |
| 63  | 5237 | 豊橋      | 11-70 | 田原       | 0           | 0             | _            | 0        | 0 | _               |  |  |  |
| 64  | 5237 | 豊橋      | 11-57 | 蒲郡       | 0           | _             | _            | 0        | _ | _               |  |  |  |
| 65  | 5237 | 豊橋      | 11-46 | 御油       | _           | 0             | 0            | 0        | — | _               |  |  |  |
| 66  | 5237 | 豊橋      | 11-10 | 恵那       | _           | _             | 0            | -        | 0 | _               |  |  |  |
| 67  | 5237 | 豊橋      | 11-60 | 磐田       | 0           | 0             | 0            | 0        | _ | _               |  |  |  |
| 68  | 5236 | 名古<br>屋 | 11-5  | 竹生島      | _           | 0             | 0            | _        | _ | _               |  |  |  |
| 69  | 5236 | 名古<br>屋 | 11-56 | 師崎       | 0           | 0             | _            | 0        | 0 | _               |  |  |  |

表 19 柱状図等の情報を抽出した図郭と段丘情報(その5)

|     | 20 万 | 20 万分の 1   |       |       |             | 5 万分の         | 柱状図等の段丘情報の有無 |      |      |                 |  |  |
|-----|------|------------|-------|-------|-------------|---------------|--------------|------|------|-----------------|--|--|
| No. | B    | <b>刘</b> 郭 | 5 万分  | }の1図郭 | アトラス<br>の有無 | 1 地質図<br>幅の有無 | 低位段丘         | 中位段丘 | 高位段丘 | その他(年代<br>不詳の段丘 |  |  |
| 70  | 5236 | 名古屋        | 11-43 | 四日市   | 0           | 0             | 0            | 0    | 0    | _               |  |  |
| 71  | 5236 | 名古屋        | 11-42 | 亀山    | _           | 0             | 0            | 0    | 0    |                 |  |  |
| 72  | 5236 | 名古屋        | 11-41 | 水口    | _           | 0             | _            | 0    | 0    | _               |  |  |
| 73  | 5236 | 名古屋        | 11-44 | 半田    | 0           | 0             | _            | _    | 0    | _               |  |  |
| 74  | 5236 | 名古屋        | 11-8  | 岐阜    | _           | 0             | 0            | 0    | _    |                 |  |  |
| 75  | 5236 | 名古屋        | 11-7  | 大垣    | _           | 0             | 0            | 0    | _    | _               |  |  |
| 76  | 5236 | 名古屋        | 11-29 | 近江 八幡 | _           | 0             | 0            | _    | _    | _               |  |  |
| 77  | 5235 | 京都及<br>び大阪 | 11-13 | 福知山   | _           | 0             | _            | 0    | 0    | _               |  |  |
| 78  | 5235 | 京都及<br>び大阪 | 11-15 | 四ツ谷   | _           | 0             | _            | _    | 0    | _               |  |  |
| 79  | 5235 | 京都及<br>び大阪 | 11-37 | 三田    | _           | 0             | _            | _    | 0    | _               |  |  |
| 80  | 5235 | 京都及<br>び大阪 | 11-52 | 奈良    | _           | 0             | 0            | 0    | 0    | _               |  |  |
| 81  | 5235 | 京都及<br>び大阪 | 11-26 | 園部    | _           | 0             | _            | _    | 0    | _               |  |  |
| 82  | 5235 | 京都及<br>び大阪 | 11-49 | 神戸    | 0           | 0             | _            | 0    | 0    | _               |  |  |
| 83  | 5235 | 京都及<br>び大阪 | 11-28 | 京都東北部 | _           | 0             | 0            | _    | _    | _               |  |  |
| 84  | 5235 | 京都及<br>び大阪 | 11-40 | 京都東南部 | _           | 0             | _            | 0    | 0    | _               |  |  |
| 85  | 5235 | 京都及<br>び大阪 | 11-27 | 京都西北部 | _           | 0             | _            | _    | 0    | _               |  |  |
| 86  | 5235 | 京都及<br>び大阪 | 11-51 | 大阪東北部 | 0           | 0             | 0            | 0    | 0    | _               |  |  |
| 87  | 5235 | 京都及<br>び大阪 | 11-50 | 大阪西北部 | 0           | 0             | 0            | _    | _    | _               |  |  |
| 88  | 5235 | 京都及<br>び大阪 | 11-1  | 大江山   | 0           | 0             | _            | _    | 0    | _               |  |  |
| 89  | 5235 | 京都及<br>び大阪 | 11-14 | 綾部    |             | 0             | _            | 0    | 0    | _               |  |  |

|     | 20 万分の 1 |     |       |       | 海成段丘        | 5 万分の         | 柱状図等の段丘情報の有無 |      |      |                 |  |  |
|-----|----------|-----|-------|-------|-------------|---------------|--------------|------|------|-----------------|--|--|
| No. |          | 図郭  | 5 万分  | の1図郭  | アトラス<br>の有無 | 1 地質図<br>幅の有無 | 低位段丘         | 中位段丘 | 高位段丘 | その他(年代<br>不詳の段丘 |  |  |
| 90  | 5234     | 姫路  | 12-83 | 明石    | 0           | 0             | _            | 0    | _    | _               |  |  |
| 91  | 5234     | 姫路  | 12-71 | 高砂    | 0           | 0             | _            | _    | 0    | _               |  |  |
| 92  | 5234     | 姫路  | 12-59 | 北条    | 0           | 0             | _            | _    | 0    | _               |  |  |
| 93  | 5234     | 姫路  | 12-45 | 佐用    | _           | 0             | 0            | _    | _    | _               |  |  |
| 94  | 5233     | 高粱  | 12-30 | 湯本    | 0           | _             | 0            | _    | _    | _               |  |  |
| 95  | 5232     | 浜田  | 12-27 | 木次    | _           | 0             | _            | _    | 0    | _               |  |  |
| 96  | 5232     | 浜田  | 12-26 | 石見大田  | 0           | 0             | _            | 0    | _    | _               |  |  |
| 97  | 5136     | 伊勢  | 11-87 | 波切    | 0           | _             | 0            | 0    | _    | _               |  |  |
| 98  | 5136     | 伊勢  | 11-85 | 長島    | 0           | _             | _            | _    | 0    | _               |  |  |
| 99  | 5136     | 伊勢  | 11-79 | 鳥羽    | 0           | 0             | 0            | 0    | 0    | _               |  |  |
| 100 | 5136     | 伊勢  | 11-77 | 丹生    | _           | _             | 0            | _    | 0    | 0               |  |  |
| 101 | 5136     | 伊勢  | 11-69 | 伊良湖岬  | 0           | 0             | 0            | 0    | 0    | _               |  |  |
| 102 | 5136     | 伊勢  | 11-78 | 伊勢    | 0           | _             | 0            | 0    | 0    | 0               |  |  |
| 103 | 5135     | 和歌山 | 11-81 | 粉河    | _           | 0             | 0            | 0    | 0    | _               |  |  |
| 104 | 5135     | 和歌山 | 11-73 | 岸和田   | 0           | 0             | 0            | _    | _    | _               |  |  |
| 105 | 5135     | 和歌山 | 11-80 | 和歌山   | 0           | 0             | 0            | _    | _    | _               |  |  |
| 106 | 5135     | 和歌山 | 11-61 | 須磨    | 0           | 0             | _            | 0    | _    | _               |  |  |
| 107 | 5135     | 和歌山 | 11-64 | 桜井    | _           | 0             | 0            | 0    | 0    | _               |  |  |
| 108 | 5135     | 和歌山 | 11-74 | 五條    | _           | _             | 0            | _    | 0    | _               |  |  |
| 109 | 5135     | 和歌山 | 11-72 | 尾崎    | 0           | 0             | 0            | 0    | _    | _               |  |  |
| 110 | 5135     | 和歌山 | 11-63 | 大阪東南部 | 0           | 0             | 0            | 0    | _    | _               |  |  |
| 111 | 5135     | 和歌山 | 11-62 | 大阪西南部 | 0           | 0             | 0            | _    | _    | _               |  |  |
| 112 | 5134     | 徳島  | 13-34 | 徳島    | 0           | _             | 0            | 0    | 0    | _               |  |  |
| 113 | 5134     | 徳島  | 13-11 | 洲本    | 0           | 0             | 0            | 0    | 0    | _               |  |  |

|     | 20 万分の 1<br>図郭 |    | 5 万分の 1 図郭 |           | 海成段丘<br>アト <del>ラ</del> ス<br>の有無 | 5 万分の<br>1 地質図<br>幅の有無 | 柱状図等の段丘情報の有無 |      |      |                 |
|-----|----------------|----|------------|-----------|----------------------------------|------------------------|--------------|------|------|-----------------|
| No. |                |    |            |           |                                  |                        | 低位段丘         | 中位段丘 | 高位段丘 | その他(年代<br>不詳の段丘 |
| 114 | 5134           | 徳島 | 13-33      | 川島        | _                                | _                      | 0            | 0    | 0    | _               |
| 115 | 5131           | 山口 | 14-23      | 長門峡       | _                                | _                      | 0            | _    | _    | _               |
| 116 | 5131           | 山口 | 14-17      | 徳佐中       | _                                | _                      | 0            | _    | _    | _               |
| 117 | 5036           | 木本 | 11-104     | 阿田和       | 0                                | 0                      | _            | 0    | 0    | _               |
| 118 | 5035           | 田辺 | 11-97      | 十津川       | _                                | _                      | _            | 0    | _    | _               |
| 119 | 5035           | 田辺 | 11-101     | 田辺        | 0                                | _                      | _            | 0    | 0    | _               |
| 120 | 5035           | 田辺 | 11-103     | 新宮        | 0                                | 0                      | _            | 0    | 0    | _               |
| 121 | 5035           | 田辺 | 11-95      | 川原河       | _                                | _                      | _            | 0    | 0    | _               |
| 122 | 5035           | 田辺 | 11-100     | 印南        | 0                                | _                      | _            | 0    | 0    | _               |
| 123 | 5034           | 剣山 | 13-81      | 室戸岬       | 0                                | _                      | _            | 0    | 0    | _               |
| 124 | 5034           | 剣山 | 13-57      | 日和佐       | 0                                | _                      | 0            | 0    | 0    | _               |
| 125 | 5034           | 剣山 | 13-75      | 奈半利       | 0                                | _                      | 0            | 0    | 0    | _               |
| 126 | 5034           | 剣山 | 13-56      | 桜谷        | 0                                | _                      | 0            | 0    | 0    | _               |
| 127 | 5034           | 剣山 | 13-44      | 雲早山       | _                                | _                      | 0            | 0    | _    | _               |
| 128 | 5034           | 剣山 | 13-55      | 北川        | _                                | 0                      | _            | 0    | 0    | _               |
| 129 | 5034           | 剣山 | 13-45      | 阿波 富<br>岡 | 0                                | _                      | 0            | 0    | 0    | _               |
| 130 | 5031           | 中津 | 14-66      | 豊後 杵<br>築 | 0                                | 0                      | _            | 0    | _    | _               |
| 131 | 5031           | 中津 | 14-65      | 豊岡        | 0                                | 0                      | 0            | 0    | _    | _               |
| 132 | 5031           | 中津 | 14-56      | 鶴川        | 0                                | _                      | _            | 0    | _    | _               |
| 133 | 5031           | 中津 | 14-55      | 宇佐        | 0                                | _                      | _            | 0    | 0    | _               |
| 134 | 5030           | 福岡 | 14-63      | 吉井        | _                                | _                      | 0            | _    | _    | _               |
| 135 | 5030           | 福岡 | 14-50      | 前原        | 0                                | _                      | _            | 0    | 0    | _               |
| 136 | 5030           | 福岡 | 14-52      | 大宰府       | _                                | _                      | 0            | 0    | 0    | _               |
| 137 | 5030           | 福岡 | 14-61      | 背振山       | _                                | _                      | 0            | _    | _    | _               |

| 表 22 柱状 | 図等の情報を抽出した図郭と段丘情報(その8) |
|---------|------------------------|
|---------|------------------------|

| No. | 20 万分の 1<br>図郭 |     | 5 万分の 1 図郭 |            | 海成段丘<br>アトラス<br>の有無 | 5 万分の<br>1 地質図<br>幅の有無 | 柱状図等の段丘情報の有無 |      |      |                 |
|-----|----------------|-----|------------|------------|---------------------|------------------------|--------------|------|------|-----------------|
|     |                |     |            |            |                     |                        | 低位段丘         | 中位段丘 | 高位段丘 | その他(年代<br>不詳の段丘 |
| 138 | 5030           | 福岡  | 14-62      | 甘木         | _                   | _                      | _            | 0    | _    | _               |
| 139 | 4932           | 宇和島 | 13-92      | 土佐清水       | 0                   | _                      | _            | 0    | 0    | _               |
| 140 | 4931           | 大分  | 14-74      | 森          | _                   | _                      | 0            | _    | _    | _               |
| 141 | 4931           | 大分  | 15-24      | 三重町        | _                   | 0                      | _            | 0    | _    | _               |
| 142 | 4931           | 大分  | 15-25      | 佐伯         | 0                   | 0                      | 0            | 0    | _    | _               |
| 143 | 4931           | 大分  | 14-88      | 臼杵         | _                   | 0                      | 0            | _    | _    | _               |
| 144 | 4931           | 大分  | 14-87      | 犬飼         | _                   | 0                      | 0            | _    | _    | _               |
| 145 | 4930           | 熊本  | 14-73      | 日田         | _                   | _                      | 0            | _    | _    | _               |
| 146 | 4930           | 熊本  | 14-72      | 久留米        | _                   | _                      | _            | 0    | 0    | _               |
| 147 | 4930           | 熊本  | 15-30      | 熊本         | 0                   | _                      | 0            | _    | _    | _               |
| 148 | 4930           | 熊本  | 15-21      | 菊池         | _                   | _                      | 0            | _    | _    | _               |
| 149 | 4930           | 熊本  | 15-31      | 御船         | _                   | _                      | 0            | _    | _    | _               |
| 150 | 4930           | 熊本  | 15-19      | 荒尾         | 0                   | _                      | _            | 0    | _    | _               |
| 151 | 4831           | 延岡  | 15-68      | 妻          | 0                   | 0                      | 0            | 0    | 0    | _               |
| 152 | 4831           | 延岡  | 15-61      | 都農         | 0                   | 0                      | 0            | 0    | 0    | _               |
| 153 | 4831           | 延岡  | 15-69      | 高鍋         | 0                   | 0                      | _            | 0    | 0    | _               |
| 154 | 4831           | 延岡  | 15-67      | 須木         | _                   | _                      | _            | _    | 0    | _               |
| 155 | 4831           | 延岡  | 15-60      | 尾鈴山        | 0                   | 0                      | _            | 0    | 0    | _               |
| 156 | 4731           | 宮崎  | 15-76      | 宮崎         | 0                   | 0                      | 0            | 0    | _    | _               |
| 157 | 4731           | 宮崎  | 15-84      | 日向青島       | 0                   | 0                      | _            | 0    | _    | _               |
| 158 | 4731           | 宮崎  | 15-53      | 日向(富<br>高) | 0                   | 0                      | 0            | 0    | _    | _               |
| 159 | 4731           | 宮崎  | 15-75      | 野尻         | _                   | 0                      | _            | _    | 0    | _               |
| 160 | 4731           | 宮崎  | 15-90      | 末吉         | 0                   | 0                      | 0            | _    | _    | _               |
| 161 | 4731           | 宮崎  | 15-96      | 志布志        | 0                   | 0                      | 0            | _    | _    | _               |

| No. | 20 万分の 1<br>図郭 |          | 5 万分の 1 図郭 |            | 海成段丘    | 5 万分の<br>1 地質図<br>幅の有無 | 柱状図等の段丘情報の有無 |      |      |                 |
|-----|----------------|----------|------------|------------|---------|------------------------|--------------|------|------|-----------------|
|     |                |          |            |            | アトラスの有無 |                        | 低位段丘         | 中位段丘 | 高位段丘 | その他(年代<br>不詳の段丘 |
| 162 | 4730           | 鹿児島      | 15-89      | 岩川         | 0       | _                      | 0            | _    | _    | _               |
| 163 | 4530           | 屋久島      | 16-7       | 屋久島東<br>北部 | 0       | _                      | 0            | 0    | 0    | _               |
| 164 | 4530           | 屋久島      | 16-8       | 種子島南<br>部  | 0       | _                      | 0            | 0    | 0    | _               |
| 165 | 4229           | 奄美大<br>島 | 17-4       | 喜界島        | 0       | _                      | 0            | 0    | _    | _               |

表 23 柱状図等の情報を抽出した図郭と段丘情報(その9)

#### 参考文献

濱田崇臣, 幡谷竜太, 河成段丘を用いた内陸部隆起量評価手法の適用性の検討~経験的指標を重視 したアプローチ~(本編及び別冊付録), 電力中央研究所報告(研究報告), N10050, 2011