付録

付録 1 風化状態の復元に関する共同研究
付録 2 断層岩を用いた断層発達史の解明手法に関する共同研究
付録 3 石英粒子を用いた後背地解析技術に関する共同研究
付録 4 EPMA による微小領域鉱物の分析技術における干渉補正等に関する研究
付録 5 レーザーアブレーション付き誘導結合プラズマ質量分析計を用いた炭酸塩鉱物の分析手法の開発
付録 6 炭酸塩鉱物の微小領域分析手法の開発
付録 7 「地質環境長期安定性評価確認技術開発委員会」の開催実績
風化状態の復元に関する共同研究

平成 27 年度共同研究報告書

平成 28 年 1 月

国立大学法人信州大学

国立研究開発法人日本原子力研究開発機構
目次

1. 概要 ... 1
 1.1 共同研究件名 .. 1
 1.2 研究目的 ... 1
 1.3 実施期間 ... 1

2. 研究方法 .. 2
 2.1 地質試料の分析 ... 2
 2.1.1 X線回折分析 ... 2
 2.1.2 全岩化学分析 .. 4
 2.1.3 粒度分布測定 .. 6
 2.2 風化状態を推定する方法論の検討 ... 6

3. 研究成果 ... 7
 3.1 地質試料の分析 ... 7
 3.1.1 試料採取地点の地質と産状 ... 7
 3.1.2 X線回折分析 .. 11
 3.1.3 全岩化学組成 ... 12
 3.1.4 粒度分布測定 ... 12
 3.2 風化状態を推定する方法論の検討 ... 16
 3.2.1 予察的な風化条件の検討 ... 17
 3.3 他地域の陶土層に関する予察分析 ... 23

4. まとめ ... 27

引用文献 ... 27
図 目 次

図 3.1-1 東濃地域における試料採取地点 8
図 3.1-2 鉱山 C に分布する土岐口陶土層の地質柱状図 8
図 3.1-3 鉱山 C でのガエロメ粘土の露頭写真 9
図 3.1-4 鉱山 C での礫層の露頭写真 .. 9
図 3.1-5(1) ガエロメ粘土の薄片写真 10
図 3.1-6 岩質毎の代表的な試料の粒度の頻度分布・積算分布 13
図 3.1-7 粒度分布測定と X 線回折との比較 15
図 3.1-8 化学組成と X 線回折との比較 16
図 3.2-1 野外で認識した粒度毎の石英反射強度と Al2O3/SiO2 比 19
図 3.2-2 全試料のコンドライト規格化 REE 存在度パターン 20
図 3.2-3 粒度別に示したコンドライトで規格化した REE 存在度パターン 21
図 3.2-4 石英反射強度と CIA、CIW の関係 22
図 3.3-1 分析に用いた瀬戸陶土層と基盤岩（領家花崗岩）の地質柱状図 23
図 3.3-2 風化花崗岩の薄片写真 ... 24
図 3.3-3 ガエロメ粘土中の花崗岩片の薄片写真 25

表 目 次

表 2.1-1 X 線回折の測定条件 ... 3
表 2.1-2 蛍光 X 線全岩分析における主要元素の誤差 5
表 2.1-3 粒度分布の測定条件 .. 6
表 3.1-1 粒度毎の代表的な試料の鉱物構成 11
表 3.1-2 代表的な試料の全岩化学組成 12
表 3.1-3 岩質毎の代表的な試料のレーザー回折／散乱式 粒子径分布測定結果 14
表 3.1-4 主要元素の相関行列 ... 15
表 3.2-1 代表的な試料の化学分析及び鉱物分析結果 18
1. 概要

1.1 共同研究件名
風化状態の復元に関する共同研究

1.2 研究目的
高レベル放射性廃棄物等の地層処分は、人工バリアと天然の地層を適切に組み合わせたシステムによって、数万年以上にも及ぶ極めて長い時間スケールの安全を確保しようとするものである。日本列島は変動帯に位置していることから、諸外国に比べて地殻変動や火成活動などが活発であるため、地層処分事業においては将来的の自然現象に伴う地質環境の変動スケールや復元性を把握しておくことが特に重要となる。今後、地層処分の技術的信頼性を更に高めていく上でも、実際の地質環境を構成する様々な要素についての過去の変動の履歴や現象プロセスなどを把握するための調査技術を整備するとともに、これらの科学的知見を統合しつつ、三次元的に表現できる数値モデルを開発することは極めて有効となる。このため、国立研究開発法人日本原子力研究開発機構（以下、原子力機構）が、経済産業省から受託して実施する「地質環境長期安定性評価確証技術開発」では、将来の自然現象に伴う数万年を超える超長期の地質環境の変動を把握するため、過去から現在までの地質環境の長期的な変化を表現できる三次元地質環境長期変動モデルの開発を進めている。この技術開発の一環として本共同研究では、百万年以上の時間スケールの地形・地質モデル及び地表環境モデルの構築において重要となる、過去の気候の変動幅を把握するために必要な情報となる岩石の風化について、様々な風化生成物が広く分布する東濃地域を事例として、地質学的なデータに基づいて岩石の風化状態の復元・推定手法を検討する。東濃地域周辺に分布する土岐花崗岩では、現地形において巨大な風化核が造る特徴的な地形が分布するだけでなく、マサと呼ばれる花崗岩が風化した砂状の物質や、過去に強風化を受けた際に生成された陶土層も認められるから、これらを系統的に研究することによって、過去の風化状態の復元・推定手法の検討に必要なデータが得られることが期待される。

東濃地域周辺に分布する陶土層の地質学的及び堆積学的研究を精力的に行っており、その研究実績や研究に関連するノウハウを有している。さらに、これまで地層中の微量元素含有量と風化状態の関係に関する研究実績を多く有しており、岩石の風化状態の復元に必要な情報や調査経験が豊富である。原子力機構は、地質試料の地球化学・物理化学的な特徴を把握するための複数の分析装置と分析技術を所有しているとともに、花崗岩の風化状態を解明するための基礎データとなる東濃地域の地形・地質に関する研究実績を有している。そのため、本共同研究を行うことにより、両機関が保有している技術やノウハウを統合することで、岩石の風化状態の復元・推定手法に関する検討を効果的に進めることができる。

このような背景のもと、本共同研究では、百万年以上の時間スケールの地形・地質モデル、及び地表環境モデルの構築において重要となる、過去の気候の変動幅を把握するために必要な情報となる岩石の風化について、様々な風化生成物が広く分布する東濃地域を事例として、地質学的なデータに基づいて検討することとした。平成27年度は、研究初年度の昨年度に検討した化学分析手法に基づいて、陶土層及び花崗岩などの研磨片・薄片などの作成・観察、化学分析などを実施し、その結果に基づいて、花崗岩の風化状態を推定する方法論を検討した。合わせて、これまでの分析試料とは別の陶土層から既存の地質試料を用いて、予察的な分析を実施した。

1.3 実施期間
平成27年7月1日〜平成28年1月29日
2. 研究方法

本共同研究では、花崗岩の風化状態を明らかにするために、東濃地域周辺に分布する花崗岩体及び陶土層を事例に、地形・地質データと化学分析データを用いて研究を進めると。平成 26 度報告書（日本原子力研究開発機構、2015）で詳述したように、陶土層については、カオリン質資源の出現要因や粘土化時期の特定のために粘土鉱物学的研究が数多く行われてきた。しかし、これら粘土鉱物学的研究では、後者地解析や堆積機構の検討が十分になされていない。化学風化の進行に伴う粘土化には、母材質質と堆積環境の違いが強く反映される。そこで、研究初年度である平成 26 度年度には既存情報を総合し、調査対象とする陶土層の分布域を抽出し、調査対象地域での現地調査を実施し、陶土層の堆積様式を明らかにした。また、風化状態を解明するための化学分析の実施に先立って、適切な方法を検討するとともに、前処理方法の検討を実施した。

平成 27 度年度は、平成 26 度年度の実施内容を踏まえ、過去の風化条件を具体的に検討するため、堆積物の顕微鏡観察、粒度分析、X 線回折分析及び全岩化学分析を行い、その結果に基づいて堆積物形成時の風化度の評価を効果的に進めることに必要な手法について検討した。これまでの分析試料とは別の陶土層から既存の地質試料を用いて、予察的な分析を実施した。これらの結果に基づいて、風化条件の復元について効果的な方法論を検討した。

2.1 地質試料の分析

岩石の風化は過去の気候の変動を把握する手段として有用である。特に、地質学的手法における過去の岩石風化の状況については、風化生成物の鉱物組合せや粒度組成、全岩化学組成の多角的なアプローチによって、より具体的なデータを得られる可能性がある。

堆積岩からなる地質試料の場合、粒度によって鉱物構成が大きく変化することが知られている（例えば Ingersoll, 1984）。特に、粘土成分を大量に含む試料と砂質成分を含む試料では、起源となる岩石が同じであっても粒度特性によって堆積鉱物が大きく異なることは経験的によく知られている。しかし、実際の堆積物を構成する粒子の種類や粒度は非常に多様であり、基質質や粒子の淘汰・選別の程度も試料によって異なるため、鉱物構成はその都度、何らかの方法で検討される必要がある。

そこで、本項目では東濃地域に分布する花崗岩類を起源とする堆積物の顕微鏡観察、X 線回折分析による鉱物組合せ、全岩化学組成と粒度分析による風化残流元素の濃縮状態の測定、といった検討を行った。以下、今年度実施した X 線回折分析、蛍光 X 線全岩化学分析ならびに粒度分析の方法について記載する。

2.1.1 X 線回折分析

測定試料としては、約 1 mm 以下の粒径の粗粉砕した後、微粉砕したものを用いた。なお、定方位試料は、以下の手法を用いて粘土分（<2 μm）を回収した。

粉碎した試料約 15 g と適量の水をビーカーに入れよく掻拌し、超音波振蕩器で約 3 分間粘土粒子を分散させる。分散させた試料、水 1000 ml、分散剤（耳かき一杯程度）をシンリンダーにいれ、ストークスの法則（t=0.3 nηh/g(ρ−r)pD）で求められた放置時間（8 時間）の間静置した後、水面下 10 cm の懸濁液をすべてサイフォンで回収する。なお、分散剤にはニリン酸ナトリウム + 水和物を用いる。回収した試料を遠心分離器にかけ、上澄みを捨て、沈殿した粘土粒子を回収する。
ガラススライド法を用いて、回収した試料から定方位試料を作成し、乾燥させた後に分析を行った。

X線回折に際して使用した測定条件は以下の通りである。定方位試料の分析には信州大学理学部設置の粉末X線回折分析装置（株式会社 RIGAKU 製、Ultima IV X-ray Diffractometer）を、不定方位試料の分析には日本原子力研究開発機構東濃地科学センター設置の粉末X線回折分析装置（株式会社 RIGAKU 製、Ultima IV X-ray Diffractometer）を用いた。特性X線には、Cu-Kα線（波長：1.5418 Å）を使用し、面間隔（d）への変換は、ブラッグの式（2d・sinθ＝nλ）を用いて行った。測定条件は表2.1-1に示すとおりである。

表2.1-1 X線回折の測定条件

<table>
<thead>
<tr>
<th></th>
<th>定方位</th>
<th>不定方位</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>Cu</td>
<td>Cu</td>
</tr>
<tr>
<td>tube voltage</td>
<td>40 kv</td>
<td>40 kv</td>
</tr>
<tr>
<td>tube current</td>
<td>40 mA</td>
<td>30 mA</td>
</tr>
<tr>
<td>scan field</td>
<td>2θ＝3〜40°</td>
<td>2θ＝3〜70°</td>
</tr>
<tr>
<td>scan rate</td>
<td>1°/min</td>
<td>8°/min</td>
</tr>
<tr>
<td>sampling angle</td>
<td>0.02°</td>
<td>0.02°</td>
</tr>
</tbody>
</table>

測定データにおける強度は、バックグラウンドの除去を行ったものを用いた。

不定方位試料における各鉱物の同定は、次のように判断した。
1. 石英：3.35 Å付近に強い一次反射を示す。
2. アルバイト：3.26 Åと3.00 Åに特徴的な反射を示す。
3. 雲母類：10 Å付近に面外反射を示す。
4. カオリナイト：7 Åに強い一次反射を示す。
5. 膨潤性粘土鉱物：14〜15 Åに幅広い一次反射を示す。

また、定方位試料における各粘土鉱物の同定は、下田（1985）に従い次のように判断した。

- スメクタイト：15.0〜15.5 Åに強い一次反射を示し、幅広い面外反射をもつ。エチレングリコール処理によって17.0 Åに膨潤する。300 ℃の加熱処理によって、10 Å付近に収縮し、500 ℃の加熱処理によって9.5 Å付近にさらに収縮する。塩化カリウム処理によって一次反射は12.5 Å付近に移動する。
- バーミキュライト：14.3 Åの面外反射を示し、エチレングリコール処理によって移動しない。ただし、バーミキュライトの中には、エチレングリコール処理を施しても、その層電荷によってスメクタイトと同様な変化を示すものがある。そのため、塩化カリウム処理を行い10 Åに収縮するものをバーミキュライトとする。また、塩化カリウム処理による14〜15 Åグループのうち、塩酸処理によって変化がみられないものをAlバーミキュライトとし、ピククが消失するものをバーミキュライトとする。スメクタイトと同様に、300 ℃の加熱処理によって10 Å付近に収縮し、600 ℃の加熱処理によって9.5 Å付近にさらに収縮する。
- 緑泥石：14〜15 Åと7 Åの面外反射を示す。塩化カリウム処理と300 ℃までの加熱処理による変化はなく、600 ℃の加熱処理によって14 Åの回折線の強度が増す。また、塩酸処理によって回折線が消失したものは、FeやMgを主成分とすることから酸によって溶解しやすい3八面体型緑泥石とし、容易に溶解せず回折線が変化しないものを2八面体型緑泥石とする。
雲母粘土鉱物（イライト）：10 Å付近に底面反射を示す。また、エチレングリコール処理、加熱処理で変化しないことにより、ハロイサイトなどと区別される。
カオリナイト：7 Åに強い一次反射を示し、600 ℃の加熱処理によってこれらの回折線が消失する。また、塩酸処理によって変化しない。
石英：3.35 Å付近に強い一次反射を示し、各処理による変化はない。

2.1.2 全岩化学分析
蛍光X線法による化学組成の測定は、堆積物全体の主要元素と微量元素について全般的な性質を把握することに最適な方法である。数gの試料を使用するため、堆積物の粒子単位での微量な変動の影響を最小限に抑えることができ、主要な元素構成を定量化することが可能といえる。
一方、例えばREEなどの極めて微量な元素の検討には、その測定下限が数十 ppmと高いことから、やや不向きと言える。このため、本検討では、主要成分の分析に蛍光X線分析装置と、微量元素の分析に誘導結合プラズマ質量分析計（ICP-MS）を用いた。

(1) 蛍光X線全岩分析
蛍光X線分析には、信州大学理学部設置の蛍光X線分析装置フィリップス社製PW2400を使用した。分析試料の作成は三宅ほか(1996)4)に従い、四ホウ酸リチウム3倍希釈法を用いた。また、蛍光X線分析に使用するビードの作成方法は、三宅ほか(1996)4)に従った。その詳細を以下に示す。
粉砕した試料をマッフル炉で12時間灼熱させた後、2.0000 ± 0.0002 gを秤量する。量り取った試料と四ホウ酸リチウム4.0000 ± 0.0002 gをめのう製乳鉢を用いて磨りつぶし、ビードサンプラー（日本フィリップス社製NP1234）を用いてガラスビードを作成する。なお、試料の燃焼過程で失われる有機炭素、H₂O、硫黄酸化物（SOX）及び炭酸塩鉱物といった元素の量を表す灼熱減量（LOI: loss on ignition）は、以下の式で求められる。

LOI（%） = （灼熱処理前重量（g）－灼熱処理後重量（g））／灼熱処理前重量（g）×100

分析値の定義には検量線法を用いた。なお、X線強度と元素含有量との相関関係のばらつきであらわされるマトリックス効果の補正は、PHILIPS社製のソフトWINX40J ver.1.5aを使用した。主要元素についての補正には、各元素同士の吸収と励起効果から求めたファンダメンタルパラメーターを用いて、標準試料の検量線の切片と勾配を補正しながら求められる。なお、主要元素の検量線は、すべて産業技術総合研究所地質調査総合センターの岩石標準試料を用いて検量線が作成されている。分析条件と誤差は三宅ほか（1996）4)に詳しく、標準試料13試料を5回ずつ分析し、繰り返し測定することによって得られる偶然誤差を、含有量に対する標準偏差の割合で計算すると表2.1-2のとおりである。
なお、主要元素については、LOIの試料間の差によって生じる測定値の増減を考慮するために、各酸化物にLOIを足したTotalが、各酸化物のみのTotalと同じになるように再計算した。
微量元素については新潟大学理学部設置の ICP-MS を使用し、希土類元素について測定した。以下にその概略を示す。

(2) ICP-MS 微量元素測定

本研究では、新潟大学理学部設置の ICP-MS（Agilent Technologies 社製 HP7500a）を使用し、希土類元素について測定した。

ICP-MS 用の試料の分解にはアルカリ溶融法を用いた。溶融手順は Roser et al. (2000) に従い、融剤として炭酸ナトリウムを使用した。700 ℃以上の電気炉で 30 分間燃焼させた粉末試料 (0.1000±0.0005 g) を白金るつぼへ入れ、マイクロピペットを用いて H2O (0.5 ml) を投入し、静かに振動し試料粉末を湿らせた。次に EL (Electronics) HF (1 ml) を投入し、150 ℃のホットプレート上で 1-2 時間放置し乾固させた。乾固物が覆われるように炭酸ナトリウム (0.5000±0.0005 g) を投入し、950 ℃以上の電気炉で 15 分間加熱分解した。加熱したるつぼに EL HNO3 (5 ml)、H2O (10 ml)、EL HF を数滴加え、150 ℃のホットプレート上で 20 分間加熱し、溶融生成物を分解した後、マイクロピペットを用いて、るつぼ内の上澄みをポリボトルに移した。この溶液化、加熱分解、回収を 2 回行い、最終的には H2O を順次滴下し 1000 倍希釈溶液とした。最後に、1000 倍希釈溶液 (0.2 ml)、5％硝酸溶液 (9.7 ml)、内標準溶液 (Bi, In, Re: 0.1 ml) を混ぜ、5 万倍希釈溶液をつくり、これを最終希釈溶液として測定に用いた。

測定値の補正計算は、宮下 (2007) と同様の方法で行った。元素検出感度の低下（ドリフト）による影響を排除するために、内部標準物質として未知試料に In, Re, Bi を添加し、内標準補正を行った。また、白金るつぼからの元素の混入による影響を排除するために、試料を投じずに同様に溶融した希釈溶液（プランク）を 7 試料に一度測定し、この値を未知試料のバックグラウンドとみなして差し引いた。ICP-MS では、イオン化の際の酸化物の生成により、質量数の低い元素が質量数の高い元素の波長に干渉を起こすことから、干渉補正を行う必要があるので、干渉補正は、Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, U について行い、未知試料測定前に干渉を引き起こす元素を滴下した溶液を測定し、それらの生成比を求めることで補正を行った。

表 2.1-2 蛍光 X 線全岩分析における主要元素の誤差

<table>
<thead>
<tr>
<th>物質名</th>
<th>誤差</th>
<th>含有量 0.5 %以下の場合の誤差</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>0.17 %以下</td>
<td></td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.4 %以下</td>
<td></td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>0.2 %以下</td>
<td>12 %以下</td>
</tr>
<tr>
<td>FeO⁺</td>
<td>0.2 %以下</td>
<td>0.1 %以下</td>
</tr>
<tr>
<td>MnO</td>
<td>1.2 %以上</td>
<td>0.06 %以上</td>
</tr>
<tr>
<td>MgO</td>
<td>1.2 %以上</td>
<td>0.6 %以上</td>
</tr>
<tr>
<td>CaO</td>
<td>0.6 %以下</td>
<td>0.5 %以上</td>
</tr>
<tr>
<td>Na₂O</td>
<td>1 %以上</td>
<td>1.4 %以上</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.3 %以下</td>
<td>0.3 %以上</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>2 %以下</td>
<td>0.05 %以上</td>
</tr>
</tbody>
</table>
各元素の定量は、USGS の標準試料 BHVO-2（ハワイ島玄武岩: Eggins et al., 1997）を未知試料と同様に溶融・分析することで得られた検量線により行った。

2.1.3 粒度分布測定

X 線回折実験によって鉱物構成が判明した試料について、その粒度分布を確認するために、レーザー回折／散乱式粒子径分布測定装置 Partica LA-950 を使用して粒径分布を測定した。測定条件を表 2.1-3 に示す。

<table>
<thead>
<tr>
<th>堆積物前処理</th>
<th>ステンレス鉢にて手動粉砕した試料（十分に粉砕された細粒分）</th>
</tr>
</thead>
<tbody>
<tr>
<td>超音波分散時間</td>
<td>8 分間</td>
</tr>
<tr>
<td>粒子径基準（個数 or 体積）</td>
<td>体積</td>
</tr>
<tr>
<td>屈折率 (R)：レーザー波長 650 nm</td>
<td>石英 [石英 (1.450 - 0.000i), 水 (1.333)]</td>
</tr>
<tr>
<td>屈折率 (B)：LED 波長 405 nm</td>
<td>石英 [石英 (1.450 - 0.000i), 水 (1.333)]</td>
</tr>
<tr>
<td>溶媒</td>
<td>イオン交換水</td>
</tr>
<tr>
<td>分散剤</td>
<td>なし</td>
</tr>
<tr>
<td>測定範囲</td>
<td>0.01-3000 μ m</td>
</tr>
<tr>
<td>各試料の測定回数 (n)</td>
<td>1</td>
</tr>
</tbody>
</table>

2.2 風化状態を推定する方法論の検討

2.1 で得られた結果に基づいて、花崗岩の風化状態を推定する方法論を検討する。あわせて、提示した方法論の適用性を確認するため、これまでの分析試料とは別の陶土層から既存の地質試料を採取し用いて、予察的な分析を実施する。
3. 研究成果

3.1 地質試料の分析

また、従来なされた粘土鉱物からの検討から、その成因として花崗岩の風化生成物であるマサ（真砂）が流れて淘汰・分別された結果であるといった考え方が多かった（例えば、窯業原料協議会, 1949）。これに対して、北崎・荒木（1952）は、その粘土が堆積後の風化現象によって生産されたことを、母材が凝灰岩を含むことを示した。一方、土岐口陶土層中に含まれる多様な粘土層に着目し、その成因が母材の岩質やその混合割合によって粘土層の性質が変わることを野沢（1953, 1955）が示した。その後、粘土層の種類を決定する要因として、母岩の岩質、母岩の粒度とその量比、堆積環境のそれぞれの影響があることが示された（藤井・大森, 1968）。このことは、源岩の推定と風化変質の記載、堆積に至るまでのプロセスの解明によって、過去の気候変動を把握することが可能である事を示唆している。

土岐口陶土層の母材となっているのは種々の岩石であることがこれまで解明されたが、そのなかでも大きな量比を占めるものは花崗岩と考えられている（Fujii, 1968）。特に“ガエロメ粘土”粘土と呼ばれる堆積物はその起源のほとんどが花崗岩に求められる（Fujii, 1968）。また、“木節粘土”と呼ばれる粘土層は美濃帯中生界からの寄与が高いとされるが、花崗岩の風化物の混入も無視できないとされる（Fujii, 1968）。従って、土岐口陶土層には花崗岩類を代表とする基盤岩類の古風化プロセスが記録されている可能性が高いといえる。

3.1.1 試料採取地点の地質と産状
(1) 地質概説
東海層群は伊勢湾周辺の丘陵地に広く分布する地層で、主に半固結の礫層、砂層、泥層からなり、火山灰層、亜炭層などを挟む、陸水成の中新-更新統である。このうち、東濃地域には、窯業原料として利用されてきた陶土層からなる土岐口陶土層と、その上位に分布する砂礫層からなる土岐砂礫層が分布する（赤嶺, 1954；陶土団体研究グループ, 1999）。

平成27年度の検討に使用した試料は、平成26年度の調査等において岐阜県東濃地方西部の窯業原料及び珪砂を採掘する鉱山 A、鉱山 B、鉱山 C で採取されたものである。試料採取地点を図3.1-1に示す。

(2) 野外での産状
東濃地域に分布する土岐口陶土層の例として鉱山 C の地質柱状図を図3.1-2 に示す。この地域では最下部に粗粒な花崗岩粒子を多数含むガエロメ粘土が分布する（図3.1-3）。この粘土に含まれる花崗岩粒子にはほとんど斜長石が含まれず、粘土化が進んだ状態といえる。また、中部では円礫層が挟まれる（図3.1-4）。この礫層は礫支持で、主に塊状であるが、部分的に成層構造を示す。礫は平均礫径约为4 cm、最大長径约为7 cm で、亜円礫〜円礫が卓越する。また、単層厚は50〜100 cm であるが、それぞれの単層の層厚は頻繁に変化する。また、下方向に凸で上に平坦なレンズ状の砂質シルト層や平板状斜交層理中粒砂層をはさむ。また、立木や炭質物に富む地層や粘土層が上部では挟まれる。とくに粘土層は“木節粘土”と呼ばれる炭質物の多い灰色の粘土層である。これらの中新統は鮮新統と考えられる土岐砂礫層に不整合関係を持って覆われる。
図 3.1-1 東濃地域における試料採取地点
（陶土団体研究グループ（1999）19を編集）

図 3.1-2 鉱山Cに分布する土岐口陶土層の地質柱状図
図 3.1-3 鉱山 C でのガエロメ粘土の露頭写真

図 3.1-4 鉱山 C での礫層の露頭写真

(3) 鏡下記載

以下に野外で採集した“ガエロメ粘土”の鏡下観察の結果について述べる（図 3.1-5）。
観察した堆積物は、粘土鉱物を主体とする基質中に極粗粒～粗粒砂サイズの花崗岩片を含むもので、基質量はおよそ 60 %程度である。岩片のほとんどは花崗岩片であり、ごく少量のチャート岩片が含まれる。花崗岩片にはほとんど斜長石は含まれず、わずかにカリ長石や黒雲母が付随する程度であり、大部分の岩片は複数の石英結晶からなる。
基質には非常に細粒な粘土鉱物（カオリナイト）や明色の干渉色を示す非晶質な粘土鉱物が空隙を埋める様が観察される。
・石英：粒径 0.1-1.7 mm、円磨されていない。新鮮であるが、裂開が発達するものがある。
・カリ長石：粒径 0.1-1.2 mm、円磨されていない。非常に少量である。やや汚濁しているが新鮮である。裂開に沿って粘土鉱物が生じている。
・斜長石：粒径 0.1 mm 以下、著しく汚濁、粘土化しており、双晶などの内部構造は観察できない。非常に希である。

付 1-9
黒雲母：粒径 0.2-1.2 mm、すべて粘土化している。スメクタイトやバーミキュライトによって置換されている。変質に伴い、不透明鉱物が生じることが多く、一見すると不透明鉱物に置換されているように見える。
基質：顕下では濃褐色を呈する不透明鉱物と粘土鉱物に富む部分が網状に分布する。この部分は粒子間の空隙を埋めた赤褐色や暗灰色の自生粘土鉱物からなる“cavity filling”組織あるいは“clay infilling”組織と呼ばれるものである。また、それ以外の部分も炭質物破片や碎屑性の粘土鉱物によって構成されている。

図 3.1-5(1) ガエロメ粘土の薄片写真
カリ長石と石英は残存するが、斜長石は認められない。堆積物中には自生の粘土鉱物によって埋められた孔隙が認められる。Q: 石英、K: カリ長石。長辺は 3 mm

図 3.1-5(2) ガエロメ粘土の薄片写真
カリ長石と石英からなる粒子と粒子間の基質。基質部には暗灰色や赤褐色の粘土鉱物によって埋められた孔隙が網状に分布する。
Q: 石英、K: カリ長石、C: 粘土で埋められた孔隙。長辺は 3 mm
3.1.2 X線回折分析

(1) 堆積物における鉱物構成の特徴

分析に供した試料の採取地点は図 3.1-1 の通りである。また、これらの試料の内訳は中新統土岐口陶土層から 26 試料である。

1) 土岐口陶土層

土岐口陶土層は、粘土から砂質粘土、粘土質砂、砂と多様な粒度の堆積物から構成される。26 試料のうち代表的な 9 試料について、それぞれの堆積物の鉱物構成を表 3.1-1 に示した。なお、試料の岩質は野外で観察した粒度に基づく。

表 3.1-1 粒度毎の代表的な試料の鉱物構成

<table>
<thead>
<tr>
<th>岩質</th>
<th>試料名</th>
<th>XRD (不定方位分析)</th>
<th>XRD (方位分析)</th>
</tr>
</thead>
<tbody>
<tr>
<td>粘土</td>
<td>Na93</td>
<td>A C *</td>
<td>R M</td>
</tr>
<tr>
<td>砂質粘土</td>
<td>Y39 34</td>
<td>C C</td>
<td>A</td>
</tr>
<tr>
<td>粘土質砂</td>
<td>Y21 41</td>
<td>R A</td>
<td>A</td>
</tr>
<tr>
<td>砂</td>
<td>Y22</td>
<td>R M</td>
<td>R M</td>
</tr>
</tbody>
</table>

(1) 粘土 (試料 Hi 135、Na 91、Na92、Na 93、Na94、Na98、Na56、Na52、Na53、Na54、Na106、Y 20、Y 29、Y 30、Y 31、Y 32、Y 34、Y38) ; 定方位試料において、ほとんどの試料がカオリナイト族粘土鉱物を主体とする。石英、スメクタイト、バーミキュライト、雲母粘土鉱物が普遍的に含まれる。不定方位試料において、多くが石英を主体とし、正長石をわずかに含む試料もある。不定方位試料では、スメクタイト、バーミキュライトを検出できないが、カオリナイト族粘土鉱物を明瞭に認識できる。

(2) 砂質粘土 (試料 Y 39、Y41) ; 定方位試料において、カオリナイト族粘土鉱物を主体とするが、石英を非常に多く含む。スメクタイト、バーミキュライト、雲母粘土鉱物がわずかに含まれる。不定方位試料では、スメクタイト、バーミキュライトを検出できないが、カオリナイト族粘土鉱物をわずかに認識できる。

(3) 粘土質砂 (試料 Hi 136、Y 21、Y40) ; 定方位試料において、大量の石英を含む、普遍的にカオリナイト族粘土鉱物、スメクタイトを含む、また、微量の緑泥石、バーミキュライトを含む場合もある。不定方位試料のうち、カオリナイト族粘土鉱物が試料 Y40 に多く含まれるが、それ以外の試料のカオリナイト族粘土鉱物含有量は極微量である。また、不定方位試料では、スメクタイト、バーミキュライトを検出できない。

(4) 砂 (試料 Y22、Na105) ; 定方位試料において、大量の石英を含む。カオリナイト族粘土鉱物を普遍的に含むが、スメクタイト、バーミキュライトは極微量である。不定方位試料においては、ほとんどの石英を主体とし、他の粘土鉱物をわずかに含む。また、不定方位試料では、スメクタイト、バーミキュライトを検出できない。
これらの検討結果から、粒度に関わらず、石英とカリ長石を普遍的に含むことから花崗岩類が源岩と判断される。一方、細粒成分である粘土鉱物にはカオリナイト族粘土鉱物が普遍的に認められ、スメクタイトやバーミキュライトが副次的に含まれる。カオリナイト族鉱物は細粒堆積物に濃集し、粗粒堆積物にはわずかに含まれるに過ぎない。従って、堆積物の粒度に関わらず鉱物組合せは類似するものの、粒度の違いによって鉱物それぞれの量比は大きく異なることが予想される。

3.1.3 全岩化学組成

2.1.2 で述べた手法によって得られた化学分析値のうち、代表的なものについて表 3.1-2 にまとめた。

表 3.1-2 代表的な試料の全岩化学組成

<table>
<thead>
<tr>
<th>岩質（野外）</th>
<th>粘土</th>
<th>砂質粘土</th>
<th>粘土質砂</th>
<th>砂</th>
</tr>
</thead>
<tbody>
<tr>
<td>試料名</td>
<td>Na93</td>
<td>Y34</td>
<td>Y39</td>
<td>Y41</td>
</tr>
<tr>
<td>SiO2</td>
<td>61.99</td>
<td>67.87</td>
<td>78.55</td>
<td>72.13</td>
</tr>
<tr>
<td>TiO2</td>
<td>1.66</td>
<td>1.03</td>
<td>1.25</td>
<td>1.36</td>
</tr>
<tr>
<td>Al2O3</td>
<td>33.04</td>
<td>26.37</td>
<td>17.29</td>
<td>22.74</td>
</tr>
<tr>
<td>Fe2O3</td>
<td>1.18</td>
<td>1.60</td>
<td>0.98</td>
<td>1.29</td>
</tr>
<tr>
<td>MnO</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>MgO</td>
<td>0.27</td>
<td>0.78</td>
<td>0.45</td>
<td>0.62</td>
</tr>
<tr>
<td>CaO</td>
<td>0.33</td>
<td>0.55</td>
<td>0.26</td>
<td>0.40</td>
</tr>
<tr>
<td>Na2O</td>
<td>0.11</td>
<td>0.10</td>
<td>0.11</td>
<td>0.11</td>
</tr>
<tr>
<td>K2O</td>
<td>1.35</td>
<td>1.65</td>
<td>1.06</td>
<td>1.29</td>
</tr>
<tr>
<td>P2O5</td>
<td>0.06</td>
<td>0.04</td>
<td>0.03</td>
<td>0.04</td>
</tr>
</tbody>
</table>

今回取り扱った試料は、一般に Na2O、K2O、CaO、MgO、MnO に著しく乏しく、Al2O3 と SiO2 に富む組成を示す。K を除くアルカリ金属、アルカリ土類金属は 1 重量%未満であり、一般的な海成泥質岩（例えば PAAS: Post-Archean Australian Shale: Taylor and McLennan, 198520）に比べて非常に乏しい。一方、Al2O3 は泥質堆積物で 20 重量%を超えており、ラテライト質と呼ぶこともできる。砂質堆積物は SiO2 に富み、80 重量%を超えるものもある。これらのアルカリ金属・アルカリ土類金属に乏しく、アルミナやシリカに富む組成は風化残留堆積物の特徴を示すといえる。

REE 組成については 3.3 で議論する。

3.1.4 粒度分布測定

代表的な試料の積算分布図を図 3.1-6 に、測定結果を表 3.1-3 に示す。ここでは野外の観察に基づいて粒度を判定し、岩質を分類した。なお、本報告では、20 μm 以下の粒子量をもとに浮遊物質含有率を算出した。また、粒度構成のうち最も細粒な成分の最頻値を第 1 モード、次に細粒な成分の最頻値を第 2 モードと呼ぶ。
図 3.1-6 岩質毎の代表的な試料の粒度の頻度分布・積算分布
表 3.1-3 岩質毎の代表的な試料のレーザー回折/散乱式 粒径分布測定結果

<table>
<thead>
<tr>
<th>岩質(野外)</th>
<th>試料名</th>
<th>Median</th>
<th>浮遊物質含有量</th>
<th>第1モード</th>
<th>第2モード</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(μm)</td>
<td>(%)</td>
<td>(μm)</td>
<td>(%)</td>
</tr>
<tr>
<td>粘土</td>
<td>Na93</td>
<td>0.30</td>
<td>94.55</td>
<td>0.23</td>
<td>7.41</td>
</tr>
<tr>
<td></td>
<td>Y34</td>
<td>0.40</td>
<td>90.56</td>
<td>0.26</td>
<td>6.24</td>
</tr>
<tr>
<td>砂質粘土</td>
<td>Y39</td>
<td>0.52</td>
<td>92.78</td>
<td>0.34</td>
<td>7.48</td>
</tr>
<tr>
<td></td>
<td>Y41</td>
<td>1.07</td>
<td>92.96</td>
<td>0.51</td>
<td>6.49</td>
</tr>
<tr>
<td>粘土質砂</td>
<td>Y21</td>
<td>4.14</td>
<td>92.12</td>
<td>0.39</td>
<td>4.22</td>
</tr>
<tr>
<td></td>
<td>Y40</td>
<td>0.72</td>
<td>91.07</td>
<td>0.34</td>
<td>6.78</td>
</tr>
<tr>
<td></td>
<td>Hi136</td>
<td>3.24</td>
<td>87.62</td>
<td>0.39</td>
<td>4.11</td>
</tr>
<tr>
<td>砂</td>
<td>Y22</td>
<td>3.21</td>
<td>91.88</td>
<td>0.39</td>
<td>3.64</td>
</tr>
<tr>
<td></td>
<td>Na105</td>
<td>2.92</td>
<td>95.72</td>
<td>0.34</td>
<td>4.33</td>
</tr>
</tbody>
</table>

以上の分析結果では、ほとんどの堆積物の粒度構成は、双峰性、あるいは多峰性を示すことがわかる。細粒なピークをなす粒度成分は基質部に含まれるシルト～粘土サイズの粒子に相当するが、粗粒なピークをなす粒度成分は細粒砂から粗粒砂サイズに及ぶ。

しかし、試料 Hi135, Y33, Y38 のように、野外で認識される岩質（粒度）と粒度分析によって得られた粒度が著しく異なる場合がある。これらの試料はサンプルオーダーにおいても粘土や細粒イリトに相当するが、粒度分析結果は細粒砂以上を13～17 %含む粒子構成を示す。この粒度の不一致は、粒度分析の過程で十分に粒度の分散がなされず、粒子の凝集が生じた可能性を示唆している。また、弱い続成作用によって既に耕されていた部分が残存して十分に分解・分散せず、見かけ上、砂サイズの粗粒な粒子として挙動した可能性もあげられる。

この点を検証するために、粒度と X 線回折実験における石英の反射強度及び全岩化学組成値のうち SiO₂と K₂O重量%と X 線回折実験における石英の反射強度の比較を行った。

粒度構成のうち最も細粒な成分の最頻値（第 1 モード）と石英/カリオリサイトの強度比を 2 軸ダイアグラムとして示したもののが図 3.1-7（左）である。この図では両成分の関係として負の相関（相関係数: -0.56）が認められる。第 1 モードは主に粘土サイズの粒子から構成されているので、細粒な堆積物ほど石英粒子を含まないと仮定すれば、負の相関となることは妥当といえる。

一方、図 3.1-7（右）には粘土成分の頻度積算値（%）と X 線回折実験における石英の反射強度（cps）は不鮮明な負の相関（相関係数: -0.42）を示し、これも粘土成分量と石英比率が相補的な関係にあることをある程度示している。しかし、石英量といった最も典型的な粒子構成を表現する量と粒度構成は必ずしも鮮明な相関関係を示さないことには問題が残る。
図 3.1-7 粒度分布測定と X 線回折との比較
（左）第 1 モードと石英/カオリナイトの強度比、（右）粘土成分の頻度積算値（％）と X 線回折による石英反射の強度 (cps) の関係

次に、前述した蛍光 X 線全岩化学組成の検討で得られた SiO2 と Al2O3 重量％（重量％）を用いて、X 線回折実験での石英ピーク強度との相関を検討した。主要 10 元素での相関行列を表 3.1-4 に示す。この中では SiO2 と Al2O3 は極めて明瞭な負の相関を示し (r = -1.00)、SiO2 量は石英総量と、Al2O3 量は粘土鉱物の総量と明確に関連する。

表 3.1-4 主要元素の相関行列

<table>
<thead>
<tr>
<th></th>
<th>SiO2</th>
<th>TiO2</th>
<th>Al2O3</th>
<th>Fe2O3</th>
<th>MnO</th>
<th>MgO</th>
<th>CaO</th>
<th>Na2O</th>
<th>K2O</th>
<th>P2O5</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO2</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TiO2</td>
<td>-0.56</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al2O3</td>
<td>0.99</td>
<td>0.61</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe2O3</td>
<td>0.64</td>
<td>0.08</td>
<td>0.54</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MnO</td>
<td>0.12</td>
<td>-0.42</td>
<td>-0.17</td>
<td>0.17</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>-0.48</td>
<td>-0.12</td>
<td>0.35</td>
<td>0.87</td>
<td>0.05</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td>-0.51</td>
<td>0.33</td>
<td>0.55</td>
<td>0.15</td>
<td>-0.31</td>
<td>0.11</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na2O</td>
<td>-0.48</td>
<td>0.43</td>
<td>0.48</td>
<td>0.03</td>
<td>-0.41</td>
<td>0.11</td>
<td>0.49</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K2O</td>
<td>-0.50</td>
<td>-0.12</td>
<td>0.37</td>
<td>0.61</td>
<td>0.30</td>
<td>0.71</td>
<td>-0.07</td>
<td>0.32</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>P2O5</td>
<td>0.72</td>
<td>0.53</td>
<td>0.73</td>
<td>0.41</td>
<td>0.23</td>
<td>0.06</td>
<td>0.21</td>
<td>0.27</td>
<td>0.28</td>
<td>1.00</td>
</tr>
</tbody>
</table>

一方、Al2O3/SiO2 比と X 線回折実験における石英の反射強度の関係を図 3.1-8（左）に、SiO2 （重量％）と石英の反射強度の関係を図 3.1-8（右）に示す。

Al2O3/SiO2 比は、粘土鉱物量の石英量に対する比率を示すと考えられ、この成分は石英の反射強度と高い正の相関（相関係数：-0.86）の関係にある。同様に、SiO2（重量％）も石英の反射強度と高い正の相関（相関係数：0.87）の関係にある。従って、X 線回折実験における石英強度は石英粒子の相対的量比を表すと考えられる。

これらの結果から、化学組成と X 線回折による鉱物の含有量は明確に関相するといえる。一方、今回得られた粒度分布は必ずしも鉱物の粒径分布を反映するものではないと推定される。
図 3.1-8 化学組成と X 線回折との比較
（左）Al2O3/SiO2 比と X 線回折実験における石英反射強度（cps）、SiO2（重量%）と石英反射強度（cps）の関係

3.2 風化状態を推定する方法論の検討

地質時代の風化状態を推測する検討において、従来から鉱物組成や全岩化学組成を用いた検討がなされてきた（例えば Hamer et al., 200721）。鉱物組成を利用した風化状態の検討においては、もっともポピュラーに使われてきた手法として、粘土鉱物組合せによる風化条件の推定が例える（例えば Chamley, 198922）。粘土鉱物組合せは、古風化を受けた長さ、古風化を受けた斜面の状態、岩石と水との反応の強さ、地下水の化学特性に関連している（Chamley, 198922; Nesbitt and Young, 198923; Nesbit et al., 199724）。そのため、粘土鉱物組合せは様々な反応の積分値として形成され、古風化状態の推定には適している。

一方、堆積物は様々な起源を持つ成分からなり、粒子の粒度構成も多様である。源岩の化学組成や鉱物構成は風化の結果として生じる粘土鉱物組合せに影響を与えるため、源岩を異にする粒子集団からなる堆積物の場合、多様な粘土鉱物構成が生じる可能性がある。また、粒子の運搬・堆積の過程において、粒度による分別が行われ、特定の粒度からなる粒子集団が形成され得る。そのため、現実的な風化条件の評価には源岩の推定と粒度分別の強度の両者を共に議論する必要がある。

また、風化強度を定量的に推定する試みとして、全岩化学組成を利用した風化指標が提案されてきた。よく知られているものとして、CIA（Chemical Index of Alternation: Nesbitt and Young, 198225）や CIW（Chemical Index of Weathering: Harnois, 198826）があげられる。それぞれの指標は以下の式から与えられる。

\[
[CIA] = [(Al_2O_3) / (Al_2O_3 + CaO* + Na_2O + K_2O)] \times 100
\]
\[
[CIW] = [Al_2O_3 / (Al_2O_3 + CaO* + Na_2O)] \times 100
\]

（CaO*: ケイ酸塩鉱物に含まれる CaO）

これらの風化指標は風化に際して主に Al2O3の残存度を定量化したものといえる。しかし、細粒岩では粘土鉱物に富み、砂粒子に富むと含まれる長石成分に乏しいため、その化学組成は Al2O3に富み CaO、Na2O、K2O に乏しいものとなる。結果として、細粒岩ほど采かの Al2O3濃度が高いものとなるので、これらの風化指標は粒度分別の効果を反映しやすいといえる。

本報告では、土岐口陶土層のようややや固結の進んだ中部中新統では効果的な粒度分析が困難である可能性を示した。しかし、X 線回折における石英の反射強度や全岩化学組成における
SiO₂（重量％）と Al₂O₃（重量％）は石英量とよい相関を示し、これらを粒度指標として扱うことが可能であることを示している。また、風化条件の推定に際しては、供給源岩の推定に全岩化学組成や微量元素の利用が効果的と考えられる。そのため、これらの粒度指標を基に粒度別の効果を判定し、全岩化学組成によって単元的な源岩構成が想定される場合において、粘土鉱物組合せと全岩化学組成を利用した風化状態の推定が可能となるといえる。

3.2.1 予察的な風化条件の検討

前項で指摘した粒度指標に基づいて、全岩化学組成、粘土鉱物組合せを用いて、風化条件の検討を行った（表 3.2-1）。以下に粒度毎に観察される源岩構成と風化指標の差違について述べる。
表 3.2-1 代表的な試料の化学分析及び鉱物分析結果

<table>
<thead>
<tr>
<th>試料名</th>
<th>Na93</th>
<th>Y34</th>
<th>Y39</th>
<th>Y41</th>
<th>Y21</th>
<th>Y40</th>
<th>H1136</th>
<th>Y22</th>
<th>Na105</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>61.99</td>
<td>67.87</td>
<td>78.55</td>
<td>72.13</td>
<td>76.26</td>
<td>75.66</td>
<td>82.46</td>
<td>86.47</td>
<td>71.49</td>
</tr>
<tr>
<td>TiO₂</td>
<td>1.66</td>
<td>1.03</td>
<td>1.25</td>
<td>1.36</td>
<td>1.21</td>
<td>1.21</td>
<td>0.80</td>
<td>1.18</td>
<td>1.12</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>33.04</td>
<td>26.37</td>
<td>17.29</td>
<td>22.74</td>
<td>18.70</td>
<td>19.92</td>
<td>14.06</td>
<td>10.59</td>
<td>22.64</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>1.18</td>
<td>1.60</td>
<td>0.98</td>
<td>1.29</td>
<td>1.34</td>
<td>1.12</td>
<td>0.93</td>
<td>0.69</td>
<td>1.72</td>
</tr>
<tr>
<td>MnO</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>MgO</td>
<td>0.27</td>
<td>0.78</td>
<td>0.45</td>
<td>0.62</td>
<td>0.58</td>
<td>0.52</td>
<td>0.35</td>
<td>0.27</td>
<td>0.59</td>
</tr>
<tr>
<td>CaO</td>
<td>0.33</td>
<td>0.55</td>
<td>0.26</td>
<td>0.40</td>
<td>0.16</td>
<td>0.33</td>
<td>0.10</td>
<td>0.10</td>
<td>0.41</td>
</tr>
<tr>
<td>NaO</td>
<td>0.11</td>
<td>0.10</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.10</td>
<td>0.05</td>
<td>0.07</td>
<td>0.09</td>
</tr>
<tr>
<td>K₂O</td>
<td>1.35</td>
<td>1.65</td>
<td>1.06</td>
<td>1.29</td>
<td>1.59</td>
<td>1.10</td>
<td>1.19</td>
<td>0.59</td>
<td>1.87</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.06</td>
<td>0.04</td>
<td>0.03</td>
<td>0.04</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.02</td>
<td>0.05</td>
</tr>
</tbody>
</table>

主 要 元 素 組 成

<table>
<thead>
<tr>
<th>元素</th>
<th>La</th>
<th>Ce</th>
<th>Pr</th>
<th>Nd</th>
<th>Sm</th>
<th>Eu</th>
<th>Gd</th>
<th>Tb</th>
<th>Dy</th>
<th>Ho</th>
<th>Er</th>
<th>Tm</th>
<th>Yb</th>
<th>Lu</th>
<th>ΣREE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>38</td>
<td>49</td>
<td>6</td>
<td>23</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>133</td>
</tr>
<tr>
<td>SiO₂</td>
<td>61.99</td>
<td>67.87</td>
<td>78.55</td>
<td>72.13</td>
<td>76.26</td>
<td>75.66</td>
<td>82.46</td>
<td>86.47</td>
<td>71.49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TiO₂</td>
<td>1.66</td>
<td>1.03</td>
<td>1.25</td>
<td>1.36</td>
<td>1.21</td>
<td>1.21</td>
<td>0.80</td>
<td>1.18</td>
<td>1.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>33.04</td>
<td>26.37</td>
<td>17.29</td>
<td>22.74</td>
<td>18.70</td>
<td>19.92</td>
<td>14.06</td>
<td>10.59</td>
<td>22.64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>1.18</td>
<td>1.60</td>
<td>0.98</td>
<td>1.29</td>
<td>1.34</td>
<td>1.12</td>
<td>0.93</td>
<td>0.69</td>
<td>1.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MnO</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>0.27</td>
<td>0.78</td>
<td>0.45</td>
<td>0.62</td>
<td>0.58</td>
<td>0.52</td>
<td>0.35</td>
<td>0.27</td>
<td>0.59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td>0.33</td>
<td>0.55</td>
<td>0.26</td>
<td>0.40</td>
<td>0.16</td>
<td>0.33</td>
<td>0.10</td>
<td>0.10</td>
<td>0.41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NaO</td>
<td>0.11</td>
<td>0.10</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.10</td>
<td>0.05</td>
<td>0.07</td>
<td>0.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K₂O</td>
<td>1.35</td>
<td>1.65</td>
<td>1.06</td>
<td>1.29</td>
<td>1.59</td>
<td>1.10</td>
<td>1.19</td>
<td>0.59</td>
<td>1.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.06</td>
<td>0.04</td>
<td>0.03</td>
<td>0.04</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.02</td>
<td>0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

シオ新たな分析結果

Kln>>Vrm>III>Sm Kln>>Sm>III>Sm Kln>Sm>III>Sm Kln>Sm>III>Sm Kln>>Vrm>III>Sm>Chl Kln>>Sm>Vrm Kln>>Vrm=Chl Kln>>Ill>Vrm>Sm Kln>>Ill>Vrm>Sm

記号鍶鉄、及びSiO₂、及Biの

CIW 97.9 96.5 98.7 98.0 97.8 98.6 98.3 97.6 96.4

SiO₂/SiO₂

CIA 86.8 86.6 87.3 87.8 85.0 88.2 85.5 88.9 84.3

CIA/CW 97.9 95.9 96.7 96.4 97.8 96.6 98.3 97.6 96.4
(1) 粒度構成の判別
各試料における粒度構成を判別するために、野外で認識した粒度毎に石英反射強度（cps）と Al₂O₃/SiO₂ 比を示した（図 3.2-1）。それぞれの試料は負の相関を持ち、おおよそ石英反射強度の高い堆積物ほど Al₂O₃/SiO₂ 比が低い傾向が明らかである。しかし、砂質粘土、粘土質砂、砂では石英反射強度と Al₂O₃/SiO₂ 比で重複する部分が多く、野外での粒度認識との齟齬がある。従って、野外で認識できる粒度にこだわらず、Al₂O₃/SiO₂ 比や石英反射強度を粒度指標として源岩の判定と古風化度について議論することが必要である。

(2) REE を用いた源岩判別
コンドライトにて規格化した希土類元素（REE）存在度パターンは、強風化を被った岩石や堆積物であっても源岩判別に有効である。以下に、代表的試料のコンドライト規格化 REE 存在度パターンを示す（図 3.2-2）。この図では、すべての試料が著しい Eu 負異常とやや軽微な Ce 負異常を示す。また、軽希土類に富むことも特徴的である。Ce 負異常は還元的な環境での Ce の選択的溶脱に起因すると考えられる (Taylor and McLennan, 1985)。一方、著しい Eu 負異常は分化の進んだマグマを起源とする火成岩に普遍的に見られるもので、Eu が含まれる斜長石が結晶分別時に選択的に分離されることによって説明されている (Taylor and McLennan, 1985)。今回の検討で扱った試料は共通した上記の特徴を持つので、非常に似通った岩石タイプから由来し、かつそれらは珪長質のマグマを起源とすると考えられる。
一方、石英反射強度をもとに粒度を区分し、それぞれの試料のREE存在度パターンを比較する。ここでは便宜的に、石英反射強度（Qi）を

\[
Qi > 10,000 \text{ (cps)}
\]

\[
10,000 \text{ (cps)} > Qi > 5000 \text{ (cps)}
\]

\[
5,000 \text{ (cps)} > Qi
\]

の3つの粒度に分け、図3.2-3に示す。これらの粒度に分けた際、すべてのグラフで重希土類に富むもの（Y34, Y22, Y21）と乏しい試料（Na93, Y39, Y41, Y40, Na105, Hi136）が判別される。重希土類に富むものは重希土類に富むジルコンが堆積時に相対的に高濃度で濃集している可能性がある。一方、重希土類に乏しいもの（軽希土類に富むもの）は雲母鉱物の濃集によって説明される。しかし、いずれの場合も堆積物全体の組成を大きく改変するものではなく、源岩のREE存在度パターンが引き継がれている。
図 3.2-3 粒度別に示したコンドライトで規格化した REE 存在度パターン
（Qi：石英反射強度）
(3) 古風化度
この検討では、粒度毎に風化インデックスを用いて風化強度を見積もった。下図に石英反射強度と CIA（Chemical Index of Alternation）、CIW（Chemical Index of Weathering）の関係を示す（図 3.2-4）。

これらのグラフでは粒度にかかわらず CIA=85〜90 程度を示す（図 3.2-4 上）。一方、CIWはややばらつきがあるものの CIW=96〜98 程度を示す（図 3.2-4 下）。顕生代の標準的な泥岩として扱われる PAAS が CIA=70〜75、CIW=75〜80 を示すことを考慮すれば、これらの試料は著しい風化作用を被っていると判断される。
3.3 他地域の陶土層に関する予察分析

瀬戸地域には土岐口陶土層と同時代に堆積したと考えられている陶土層が分布している（中山，199127）。この地域に分布する瀬戸層群は下位の粘土を主体とする瀬戸陶土層と、上位の砂礫を主体とする矢田川累層に分けられる（松沢，196028）。そこで、比較のために信州大学が保有していた愛知県瀬戸市の粘土鉱山で採取された試料の分析を行った。同鉱山では、領家花崗岩類と中新統瑞浪層群が基盤岩類として分布する（中山，199127）

同鉱山の地質柱状図を図 3.3-1 に示す。ここでは見かけ上、厚さ約 5 m の花崗岩の露出があり、その上位に不整合関係で瀬戸陶土層が重なる。花崗岩中では、長石が白濁し、黒雲母も粘土化が進んだ状態である。節理面は識別できるが、数 mm 幅の粘土化が認められる。部分的に苦鉄質鉱物が粘土化し、赤色を呈する。

瀬戸陶土層はほぼ水平であり、厚さは約 9 m である。主に四つの岩相、ガエロメ粘土、砂質泥層相、礫質砂層相（珪砂）、斜交層理砂質礫層相からなる。ここでは基盤岩である風化花崗岩とガエロメ粘土を取り上げ、薄片の顕微鏡観察を行った。以下にその結果について述べる。
以下に風化花崗岩とガエロメ粘土の鏡下観察の結果について述べる。

①風化花崗岩
観察した花崗岩は狭義の花崗岩に属するが、斜長石は完全に粘土鉱物化しているため、本来の構成を推定することは困難である（図3.3-2）。

・石英：粒径0.3～1.9 mm、他形で、新鮮である。ただし、粘土鉱物によって充填された裂開が発達し、一部は「ジグソーパズル」構造をなす。
・カリ長石：粒径0.7～3.5 mm、半自形～他形である。やや汚濁しているが、双晶や離溶ラメラは残存している。割れ目が生じて破片化が著しい。
・斜長石：粒径0.1～1.3 mm、自形～半自形である。著しく変質し、粘土鉱物によって置換されている。
・黒雲母：粒径0.3～3.5 mm、自形である。著しく変質し、スメクタイトやバーミキュライトなどの粘土鉱物によって置換されている。

図3.3-2 風化花崗岩の薄片写真
カリ長石と石英は残存するが、斜長石や黒雲母は完全に粘土化している。カリ長石は破片化が著しく、割れ目は粘土鉱物によって埋められている。Q：石英、K：カリ長石、(P)：粘土化した斜長石、(B)：粘土化した黒雲母。長辺は3 mm。

②ガエロメ粘土
観察した試料は、細粒砂から極粗粒砂サイズの花崗岩片を粘土基質中に含む、不淘汰かつ基質の多い砂岩である。露頭では細礫を含む部分もあり、礫・岩片の含有量は一定しない。
観察下では石英とカリ長石の結晶片、花崗岩片を多数含む。斜長石はきわめてまれであり、セリサイト化が著しい。基質は非常に細粒な粘土鉱物（カオリナイト）からなる（図3.3-3）。

・石英：粒径0.3～2.1 mm、円磨されていない。新鮮であるが、裂開が発達するものがある。
・カリ長石：粒径0.4～2.2 mm、円磨されていない。やや汚濁しているが新鮮である。斜長石を包有するものでは、斜長石のみが完全に粘土化している。裂開が発達する場合があり、裂開に沿って粘土鉱物が生じている。

付 1-24
・斜長石：粒径 0.1 mm、著しく汚濁、粘土化しており、双晶などの内部構造は観察できない。
・黒雲母：粒径 0.5~2.3 mm、すべて粘土化している。スメクライトやバーミキュライトによって置換されている。変質に伴って不透明鉱物が生じることが多く、一見すると不透明鉱物に置換されているように見える。試料によって生じている鉱物に差違があり、バーミキュライトによる交代を主体とする試料もある。
・基質：鏡下では淡黄色〜濃黄土色を呈する粘土鉱物と、中粒砂〜シルトサイズの石英・カリ長石・黒雲母（粘土化）の結晶片からなる。一部には粘土鉱物で埋められた孔隙構造を示す試料もある。また、一部の試料では基質部に粘土鉱物の自形結晶が生じている場合がある。

図 3.3-3 ガエロメ粘土中の花崗岩片の薄片写真
基質はカオリナイトを主体とする粘土鉱物より再細粒な石英・カリ長石・黒雲母の結晶片からなる。カリ長石・石英は残存しているが、斜長石は完全に粘土化している。Q：石英、K：カリ長石、(P)：粘土化した斜長石。長辺は 3 mm。

ガエロメ粘土は、鏡下では著しく粘土鉱物基質に富む砂質あるいは礫質な堆積物であるといえる。その構成物は、新鮮な斜長石を欠き、石英やカリ長石粒子が卓越する。東濃地域と瀬戸地域の両地域にあっても、この堆積物構成は大きく変化しないことから、この堆積物が風化した花崗岩を起源とする堆積物であることを見出す。また、基質部に観察される孔隙を埋めた粘土鉱物からなる組織（cavity filling）は、この堆積物の形成に際して土壌形成のようなさらなる変質があったことを示している。

また、チャートや火山岩片などの花崗岩以外の岩片に乏しいことも特徴である。基盤岩が美濃帯の中生界である土岐地域では少量のチャート岩片を認めることができるが、大部分のガエロメ粘土が花崗岩を起源とする風化物を材料としていることが示唆される。この特徴は 3.1.2 で述べた X 線回折より得られた鉱物組合せの結果とよく一致している。

瀬戸地域の風化花崗岩では、特に斜長石と黒雲母の変質が著しく進行している。中でも斜長石の変質は著しく、ほぼすべての斜長石が何らかの形で変質し、その大多数は粘土化している。黒雲母は鉱物粒子としての外形を保っているものの、鉱物そのものはほぼ完全に粘土鉱物によ
って置換されている。一方、カリ長石では汚濁が著しいものの、顕著な粘土化は認められない。これらの風化花崗岩における斜長石の変質と減少は、ガエロメ粘土の斜長石に乏しい鉱物構成と調和的である。

また、風化花崗岩内部では石英、カリ長石、黒雲母には裂開が発達する場合がある。黒雲母では劈開が裂開の起点になり、破片化が進行している。これらは斜長石や黒雲母の粘土化の結果生じた粘土鉱物の体積膨張や収縮が起因となって生じた可能性がある。鉱物化学的に安定である石英においてもジグソーパズル状の裂開が認められる。このような裂開の形成に伴う反応面積の増大は、有色鉱物のさらなる変質を招く要因となったと考えられる。一方、ガエロメ粘土中に含まれる鉱物粒子のそれぞれは、様々な程度で破片化しており、上述の花崗岩中の破片化や運搬時の摂拌による破片化に原因が求められるかも知れない。

風化花崗岩とガエロメ粘土を比較すれば、鏡下での鉱物構成には大きな差違は認められない。しかし、瀬戸地域のガエロメ粘土の一部では、新たにカオリナイトが結晶化している。そのため、続成過程において生成したカオリナイトが付加されている可能性がある。従って、風化した花崗岩由来の物質の濃集と、運搬過程での岩片・鉱物の破片化や分解、続成作用でのさらなる粘土鉱物の付加といった複雑なプロセスが陶土層の形成には関係していると考えられる。そのため、その形成プロセスの解明には粘土鉱物のみならず、集水域の推定や、運搬・堆積機構の復元が必要であるといえる。
4. まとめ

本検討の結果は以下のようにまとめられる。

1. 東濃地域に分布する風化花崗岩、ガエロメ粘土の薄片観察によって変質状況の記載を行った。これらの岩石、堆積物では石英・カリ長石が残存するのに対し、斜長石・黒雲母がほとんど残存せず著しく粘土化していることが判明した。

2. 東濃地域に分布する中新統土岐口陶土層について、粒度分布測定、X線回折、全岩化学分析を行った。土岐口陶土層の堆積物は、続成作用などの影響によって強く固結しているため、粒度を評価する手法としてX線回折における石英反射強度や化学分析によるSiO2濃度、SiO2/Al2O3比が有効であることがわかった。

3. 予察的に東濃地域の土岐口陶土層の古風化度を検討するために、粒度指標として石英反射強度を、源岩評価に希土類元素の濃度パターンを利用した。希土類元素による評価では、これらの堆積物は共通する岩石種から由来したことが判明した。

4. 土岐口陶土層の堆積物について、粒度と源岩種の多様性を認識した上で、化学組成に基づく風化指標を用いて古風化度を評価した。検討した試料では粒度にかかわらず、非常に高い古風化度を示した。今回取り上げた手法を利用することによって、古風化度の現実的な評価が可能となると考えられる。

引用文献

1) 日本原子力研究開発機構、平成26年度 地層処分技術調査等事業 地質環境長期安定性評価確認技術開発報告書、2015, 229p.
3) 下田右、試料の調整と粘土鉱物の同定、粘土鉱物研究法、創造社、1985, pp.89-115.
4) 三宅康幸、津金哲郎、池倉晃彦、珪酸塩岩石試料の主成分の蛍光X線分析－低希釈率ガラスビードの作成と迅速分析の精度、信州大学理学部紀要、vol.31, 1996, pp.105-117.
6) 宮下純夫、足立佳子、田中真二、中川光弘、木村純一、ポロシリオフィオライトの生成場：微量成分組成からの検討、地質学雑誌、vol.113, 2007, pp.212-221.
8) 橫山次郎、日本地方地質誌4：中部地方、朝倉書店、1950, 233p.
9) 赤嶺秀雄、瀬戸市を中心とする陶土地帯の地質、特に陶土および亜炭を含む地層の堆積状態、資源科学研究所彙報、no.34, 1964, pp.25-39.
10) 藤井紀之、日本のカオリン質粘土資源、粘土科学、vol.18, 1978, pp.90-100.
11) 吉田史郎、中山勝博、塚原徹、瀬戸層群下部のフィッション・トラック年代、地球惑星科学関
13) 窯業原料協議会編, 窯業原料 第2集, 学術図書出版社, 1949, 324p.
14) 北崎 梅香, 荒木 春視, 愛知・岐阜県下の窯業資源の研究(その1)－白土と木節粘土－, 資源科学研究所彙報, no.34, 1952, pp.80-91.
15) 野沢 和久, 愛知・岐阜県下の窯業資源の研究(第5報)－神明峠および苗木地方のいわゆるカオリンについて－, 資源科学化学研究所彙報, no.32, 1953, pp.31-41.
28) 松沢 勲, 嘉藤良次郎, 桑原 徹, 木村敏雄, 根村 武, 都築芳朗, 猿投山南西部地域の地質－特に陶器原料粘土の地質－, 愛知県知多古窯祉群附編, 1960, pp.1-35.
断層岩を用いた断層発達史の解明手法に関する共同研究

平成 27 年度共同研究報告書

平成 28 年 1 月

国立大学法人新潟大学
国立研究開発法人日本原子力研究開発機構
目次

1. 概要 ...1
 1.1 共同研究件名 ...1
 1.2 研究目的 ...1
 1.3 実施期間 ...1
2. 研究内容 ...2
 2.1 地形・地質情報の拡充 ..2
 2.2 岩石試料の解析・分析 ..2
 2.2.1 研磨片・薄片の作成・観察2
 2.2.2 XGT 分析 ..2
 2.2.3 EPMA-WDS 分析 ...3
 2.2.4 帯磁率異方性の測定 ..3
 2.3 断層発達史の検討 ...3
3. 研究結果 ...4
 3.1 地形・地質情報の拡充 ..4
 3.1.1 地形情報の拡充 ...4
 3.1.2 地質情報の拡充 ...6
 3.2 岩石試料の解析・分析 ..10
 3.2.1 研磨片・薄片の作成・観察10
 3.2.2 XGT 分析 ..14
 3.2.3 EPMA-WDS 分析 ...17
 3.2.4 帯磁率異方性の測定 ..21
 3.3 断層発達史の検討 ...24
4. まとめ ...25

謝辞 ...25
引用文献 ...25
図 目 次
図 3.1-1 屏風山断層周辺の地形の高度分布 ... 5
図 3.1-2 屏風山断層周辺の地形の傾斜分布 ... 5
図 3.1-3 東濃地域における主な断層の分布 .. 7
図 3.1-4 露頭写真、シュミットネット下半球投影及び X 線回折分析に基づく鉱物組成...8
図 3.1-5 断層岩の薄片及び SEM 写真 ... 9
図 3.1-6 屏風山断層の変形・変質履歴 .. 10
図 3.2-1 研磨片・薄片作成位置 .. 11
図 3.2-2 研磨片 I のスキャン画像 ... 12
図 3.2-3 研磨片 II のスキャン画像 ... 12
図 3.2-4 薄片 I ・ II 写真 .. 13
図 3.2-5 研磨片 I の XGT 分析結果 ... 15
図 3.2-6 研磨片 II の XGT 分析結果 ... 16
図 3.2-7 研磨片 I の EPMA-WDS 面分析結果 ... 18
図 3.2-8 研磨片 II の EPMA-WDS 面分析結果 ... 19
図 3.2-9 研磨片 II の EPMA-WDS 面分析結果 ... 20
図 3.2-10 帯磁率異方性測定試料を採取した断層露頭 .. 21
図 3.2-11 全岩帯磁率 ... 22
図 3.2-12 帯磁率異方性のオリエンテーション .. 23
図 3.2-13 P'-T ダイヤグラム ... 23

表 目 次
表 3.2-1 帯磁率異方性的測定値 ... 22
1. 概要

1.1 共同研究件名
「断層岩を用いた断層発達史の解明手法に関する共同研究」

1.2 研究目的
日本列島は変動帯に位置し、諸外国に比べて地殻変動や火成活動等が活発であるため、地層処分事業において将来の自然現象に伴う地質環境の変動スケールや復元性を把握しておくことが特に重要となる。地層処分の技術的信頼性を更に高めていく上では、実際の地質環境を構成する様々な要素についての過去の変動の履歴や現象プロセス等を把握するための調査技術を整備するとともに、これらの科学的知見を統合しつつ、三次元的に表現できる数値モデルを開発することが極めて有効となる。このため、国立研究開発法人日本原子力研究開発機構（以下、原子力機構）が、経済産業省から受託して実施する「地球環境長期安定性評価確認技術開発」では、将来の自然現象に伴う超長期の地質環境の変動を把握するため、過去から現在までの地質環境の長期的な変化を表現できる三次元地質環境長期変動モデルの開発を進めている。

この技術開発の一環として本共同研究では、百万年以上の時間スケールの地形・地質モデルの構築において重要となる断層の発達史を解明する手法について、活断層が多く分布する東濃地域とその周辺を事例として、断層岩を用いた地球科学的なデータに基づいて検討する。平成26年度の共同研究では、東濃地域の屏風山断層を事例とした断層岩の記載および分析により、変位センサの変化を伴う複数ステージの断層活動が記録されている可能性が高いことを見出した。平成27年度は、後述する分析・解析により、断層の発達史に関するデータの更なる拡充を行うとともに、三次元地質環境長期変動モデルへの反映方法について検討する。

新潟大学は、断層岩を用いた構造地質学的研究を精力的に行っており、その研究実績や研究に関連するノウハウを有している。さらに、以前から東濃地域とその周辺の断層に関する研究を多く行っており、断層の発達史の解明に必要な情報や調査経験が豊富である。原子力機構は、地質試料の地球化学・物理化学等の特徴を把握する複数の分析装置と分析技術を所有しているとともに、断層の発達史の解明研究の基礎データとなる東濃地域とその周辺の地形・地質に関する研究実績を有している。そのため、本共同研究を行うことにより、断層の発達史の解明手法に関する検討を効果的に進めることができる。

1.3 実施期間
平成27年7月2日～平成28年1月29日
2. 研究内容

本研究では、平成26年度共同研究報告書にて記載した屏風山断層露頭（白亜紀花崗岩と新第三紀瀬戸層群を接する境界断層）で採取した断層岩を研究対象に設定し、地球化学的研究手法の実施を試みた。断層岩を構成する鉱物の化学的挙動は、断層活動時の様々な現象を記録している。すなわち、これら化学的検討は、断層発達史を解明する有効な手法であると考えられる。以下に、研究内容を記述する。

2.1 地形・地質情報の拡充

数値標高モデル（以下、「DEM」という）と地理情報システム（以下、「GIS」という）の機能を利用して傾斜分布図を作成し、傾斜の空間分布に着目した屏風山断層の周辺の地形学的特徴について整理した。DEMについては、国土地理院公開の基盤地図情報10mメッシュ（標高）を用いた。

また、屏風山断層の変形ステージについて、最新の地質情報に基づいて整理した。

2.2 岩石試料の解析・分析

断層露頭から断層発達史を検討するため、平成26年度共同研究にて採取した試料の研磨片・薄片を作成し、偏光顕微鏡・SEM観察、XGT・EPMA-WDS分析、帯磁率異方性の測定を実施した。

2.2.1 研磨片・薄片の作成・観察

断層運動に伴い形成される断層岩は、その断層の剪断センスや形成環境といった情報を記録しているため、断層の規模や運動履歴を検討する上で最も重要、かつ直接的な研究対象となる。本研究では、野外にて採取した断層岩試料の研磨片・薄片を作成し、偏光顕微鏡及びSEMを用いて観察を行った。研磨片・薄片は、構造解析に最も適したXZ面（断層面に垂直、線構造に平行な面）で作成した。観察では特に、断層運動に伴い晶出した鉱物の産状、破砕岩片と基質の量比、複合面構造を記載した。

本研究で対象とする断層岩試料の多くは、多量の膨潤性粘土鉱物を含む。このような岩石は大変脆弱であり、通常の水を用いた研磨では膨潤し、剥離・脱落してしまう。そのため、野外にて試料を採取した後、室内にて樹脂（スペシフィクス-20）を用いた固化を行った。研磨の際は、膨潤性粘土鉱物の膨潤を防ぐため油研磨を行った。試料の採取、固化及び切断・研磨は、高木・小林（1996）1と大橋ほか（2008）2を参考に行った。

2.2.2 XGT分析

断層活動に伴う元素移動は、断層岩を構成する各種鉱物の化学的挙動に起因する。本研究の対象である断層露頭では、厚さ数cmの色調が異なる断層岩を複数識別することができる。また、目視できる大きさの破砕岩片が、流動的な変形を示す構造も頻繁に観察することができる。これらのことより本研究では、数cmオーダーの元素分布を把握するため、XGT（X線分析顕微鏡）分析を行った。以下に詳細な試料調整法と測定方法を記す。

測定試料は、断層岩試料の研磨片を用いた。

XGT分析は原子力機構東濃地科学センター土岐地球年代学研究所所有のXGT-5000（HORIBA製）を用いて行った。設定は、解像度512×512pic、管電圧30kV、管電流1.0mA、ビーム径10μm、積算回数6回、9600秒回、測定元素はAl、Si、K、Ca、Ti、Mn及びFeとした。
2.2.3 EPMA-WDS 分析

上述した通り、断層岩試料内の元素分布は、断層活動に伴う元素移動を明らかにする有効な指標である。本研究の対象である断層岩を構成する破砕岩片は、数 mm〜数 10 μm と微細なものを多く含む。本研究では、微細な破砕岩片スケールでの化学的挙動を観察するため、EPMA-WDS 分析を行った。以下に詳細な試料調整法と測定方法を記す。

測定試料は、断層岩試料の薄片を用いた。真空状態での分析中に、試料表面で帯電することを防ぐため薄片に炭素蒸着を施した。

EPMA-WDS 分析は原子力機構東濃地科学センター土岐地球年代学研究所所有の JXA-8530F FE-EPMA（JEOL 製）を用いて行った。設定は、ビーム径 2 μm、解像度 100×100 μm、測定時間 200 ms/1 point、加速電圧 15 kV、照射電流 200nA、測定元素 Na、Mg、Al、Si、P、K、Ca、Ti、Mn 及び Fe とした。

2.2.4 帯磁率異方性の測定

断層活動により形成された断層岩中の鉱物粒子の配列パターンについての基礎データを得る目的で、平成 26 年度に断層ガウジ帯から採取したキューブ試料の帯磁率異方性の測定を行った。用いた帯磁率異方性測定装置は、Agico 社製 MFK1-FA である。

帯磁率異方性とは、磁性鉱物の形状・配列に対応する三次元的な帯磁率強度の偏りであり、その結果を近似椭円体に見立てることが可能である。つまり試料の帯磁率異方性から、その試料中の鉱物粒子が示すファブリック（粒子の空間的配列）について議論が可能である(Byrne et al., 1993)。

2.3 断層発達史の検討

2.2 で検討した結果から、屏風山断層の活動に伴う諸現象の展歴を検討する。その検討結果を水理・地質モデルへと反映する方法を水理・地質モデルへと反映する方法と、本研究において実施した手法の問題点や課題を抽出する。
3. 研究結果

3.1 地形・地質情報の拡充

3.1.1 地形情報の拡充

屏風山断層は、辻村(1948)4)の屏風山・夕立山地塊崖に相当し、有井(1958)5)によって屏風山断層崖と記載された。崖の両側には小起伏面が分布しており、北西側は美濃高原、南東側は三河高原である。このように、屏風山断層は古くから崖に着目した大局的な地形として認識されていた。

近年では、DEMの整備とGISの普及により数値地形解析が容易にできるようになったことに加え、詳細な活断層の認定も進んでいる。このような状況を活用して、本研究では、国土地理院発行10m DEMとGISの機能を利用して屏風山断層周辺の高度分布と傾斜分布図を作成し、最新の活断層図である1:25,000岐阜県活断層図(鈴木・杉戸編, 2010)6)と比較することで、地形的特徴を整理する。

標高分布を図3.1-1に、傾斜分布を図3.1-2に示す。傾斜分布図は、赤色が濃いほど傾斜が急である。図3.1-2の東部の急傾斜は恵那山周辺であり、北西部の急傾斜は木曽川の谷壁である。北東から南西に続く急傾斜は屏風山断層崖に相当する。その南側には、恵那山断層が分布するが、屏風山断層崖の方が急傾斜の部分が明瞭である。また、断層崖の両側には比較的平坦な面が分布しており、屏風山断層崖が北側の美濃高原と南側の三河高原の境界に位置していることがわかる。

屏風山断層崖と活断層位置を比較すると、活断層が分布する部分では傾斜が比較的急であり、そうでない部分では比較的緩い。崖の傾斜が比較的緩い部分に本研究の断層露頭が分布している。また、崖の傾斜が比較的緩い部分の南側の山地は周辺に比べて低い。これらのことから、断層露頭が分布する辺りは、かつては断層運動で南側を高くなる変位をしていたが、その後活動が停止したため、標高は高くならず、さらに侵食で崖地形が緩くなり不明瞭になったものと考えられる。

屏風山断層ではないが、図3.1-2の北部に分布する赤河断層を境にして、木曽川の谷壁の傾斜が遙っており、断層の西側ではより傾斜が急な峡谷となっている。これは、木曽川が赤河断層の活動以前からこの部分を流れており、断層の上下変位に伴う西側の隆起域では木曽川の先行河川として貢献しているためと考えられる。
図 3.1-1 屏風山断層周辺の地形の高度分布
黄色丸は断層露頭の位置を示す。
黒線は 1:25,000 岐阜県活断層図（鈴木・杉戸編, 2010）にもとづく活断層を示す。

図 3.1-2 屏風山断層周辺の地形の傾斜分布
黄色丸は断層露頭の位置を示す。
黒線は、1:25,000 岐阜県活断層図（鈴木・杉戸編, 2010）にもとづく活断層を示す。
3.1.2 地質情報の拡充

屏風山断層は岐阜県南東部、東濃地域に位置し、長さ 32 km、確実度 I、活動度 B 級の活断層である（活断層研究会編, 1991）。この断層は三河高原の北限を画す活構造であり、周辺に分布する瀬戸層群土岐砂礫層（新第三紀鮮新世〜更新世）に約 300〜500 m の垂直隔離を与えている（陶土団体研究グループ, 1994）。

日本原子力研究開発機構（2015）や香取ほか（2015）では、岐阜県瑞浪市論栃周辺の沢沿いに露出する、基盤岩の花崗岩（白亜紀後期）と被覆層の瀬戸層群土岐砂礫層が断層関係で接する境界断層露頭（図 3.1-3、図 3.1-4）を、屏風山断層の主断層と判断し、詳細な解析・分析結果を報告している。それらによると、屏風山断層は少なくとも以下四つの変形ステージを経験している（図 3.1-4〜図 3.1-6）。

＜ステージ I＞ 基盤岩が圧密破砕を受け、弱破砕岩が形成される。石英中の中にはフィロケイ酸塩鉱物が充填し、斜長石はセリサイトに置換される。

＜ステージ II＞ 左横ずれを伴う運動により、基盤岩中にカタクレーサイト（一部面状カタクレーサイト）が形成される。断層面の姿勢と剪断センスから、当時の応力場は南北圧縮東西引張であったと考えられる。石英や長石は細粒化しており、黒雲母は雲母フィッシュやキンクバンディングを伴う底面滑り変形を被る。沸石類が非常に豊富であることから、還元的な熱水の流入が考えられる。

＜ステージ III＞ 応力場が東西圧縮南北引張へと変わり、右横ずれ運動を開始する。断層角礫や断層ガウジを形成し、土岐砂礫層堆積後のステージだと考えられる。基質にはイライトが豊富に含まれる。

＜ステージ IV＞ 右横ずれ運動から逆断層運動へと剪断センスを連続的に変化させ、積極的に山地を上昇させる。赤褐色を呈する断層ガウジを形成し、基質にはスメクタイトが豊富に含まれる。
図 3.1-3 東濃地域における主な断層の分布
（日本原子力研究開発機構, 2015）

図 3.1-4 露頭写真、シュミットネット下半球投影図及びX線回折分析に基づく鉱物組成
(Katori and Kobayashi, 2015) 13)

左図：Z2〜Z8 で測定した断層面の面構造と条線の線構造のシュミットネット下半球投影図。中央図：本研究で対象とした境界断層露頭の写真。右図：Z2〜Z8 で採取した断層岩の鉱物定量組成。X線回折分析結果に RockJock (Eberl, 2003) 14) を用いて定量組成を計算。本露頭では、写真上部で花崗岩（後期白亜紀）が、下部で土岐砂礫層（新第三紀鮮新統〜更新統）が分布し、断層関係で接する。また、境界部では幅広い破砕帯を観察することができることから、屏風山断層の主断層であると考えられる。破砕様式及び色調の変化などから計 11 ゾーンに区分を行い、それぞれ記載及び解析結果を報告している。その結果、Z2〜Z8 において、見かけ上部に向かって左横ずれ運動から逆断層運動へと連続的に変化し、各鉱物組成も変化することを指摘している。

Z1：土岐砂礫層起源の断層角礫帯、Z2〜Z4、Z6〜Z8：花崗岩及び土岐砂礫層起源の断層ガウジ帯、Z5：花崗岩レンズ、Z9：花崗岩起源の面状カタクリーサイト帯、Z10：花崗岩起源のカタクリーサイト帯、Z11：花崗岩起源の弱破砕岩帯。
Z11：花崗岩起源の弱変質岩。鉱物の破砕に伴う細粒化は認められず、石英中の雁行裂かを充填するフィロケイ酸塩と斜長石を置換するセリサイトによって特徴づけられる。Z10：花崗岩起源のカタクレーサイト。鉱物の破砕が認められ、開口裂かを充填するカルサイト脈によって特徴づけられる。Z9：花崗岩起源の面状カタクレーサイト。鉱物の細粒化と黒雲母の底面(001)スリップ、それに伴う雲母フィッシュや微褶曲構造が認められる。Z8：赤褐色断層ガウジ。鉱物は著しい細粒化を受け、微小な断層岩片としてみられる。基質は粘土鉱物により充填され、断層岩片と基質の割合は、約3：7である。Z2：明褐色断層ガウジ。フィロケイ酸塩による充填→カルサイト脈による充填→細粒化の履歴を記録する断層岩片がみられることから、本露頭の花崗岩は、弱変質岩→カタクレーサイト→断層ガウジと、異なる変形・変質履歴を経たことが分かる。薄片は全てクロスニコルで観察。

Qtz：石英、Pl：長石、Bt：黒雲母、Cal：カルサイト、Ser：セリサイト、Ps：フィロ珪酸塩鉱物
図3.1-6 屏風山断層の変形・変質履歴
（Katori and Kobayashi, 2015）
本研究で対象としている断層露頭の記載、構造解析、組織観察及びX線回折分析結果から、屏風山断層の変形・変質履歴を報告している。この報告では、カタクレーサイト帯において左横ずれを伴う変形が、断層ガウジ帯において右横ずれを伴う変形が認められることから、応力場の変化を指摘している。また、変形様式において異なる組織が観察されている。特にStage3-2（Z6・Z7に相当）では、比較的多くの流体影響が示唆されている。X線回折分析を用いた鉱物組成の検討では、カタクレーサイト帯において沸石類が、断層ガウジ帯においてスメクタイト及びイライトが豊富に認められることから、変質環境の変化を指摘している。

3.2 岩石試料の解析・分析
3.2.1 研磨片・薄片の作成・観察

断層岩の組織や鉱物の産状を観察するため、研磨片・薄片の作成及び観察を行った。研磨片・薄片の作成面は、構造解析に適したXZ面（断層面に垂直、線構造に平行な面）を採用した。XZ研磨片・薄片の作成箇所を図3.2-1に示す。研磨片Iと薄片IはZone7にそれぞれ相当し、研磨片IIと薄片IIはZone6にそれぞれ相当する。以上、計2個の研磨片と2枚の薄片を作成し、鉱物の観察及び構造解析を行った。

＜研磨片I＞ 土岐砂礫層及び花岡岩起源の灰褐色断層ガウジは、数mm〜1cm程度のフラグメントと細粒なマトリックスからなる。フラグメントとマトリックスの量比は、およそ3:7である。土岐砂礫層起源のチャートやホルンフェルスからなるフラグメントは、亜角礫状を呈し、白色的花崗岩起源フラグメントは、剪断に伴う非対称構造を呈している。特に研磨片下部の拡大範囲では、花岡岩起源フラグメントがδ型のポーフィロクラストを形成しており、右横ずれセンスを示している（図3.2-2）。

＜研磨片II＞ 土岐砂礫層及び花岡岩起源の茶褐色断層ガウジは、流動変形を著しく被るフラグメントと細粒なマトリックスからなる。特に研磨片上部の拡大範囲では、流動的に変形した花崗岩起源フラグメントとホルンフェルスフラグメントがみられる。フラグメントとマトリックスの量比は、およそ4:6である。研磨片の下半分の優白色部は、Zone5に相当する（図3.2-3）。

＜薄片I＞ 8型ポーフィロクラストは、粒径300μm前後の珪長質鉱物集合体からなり、一般に円磨度の高いものが多い。長石類の一部にはセリサイトによる置換がみられる。

<table>
<thead>
<tr>
<th>Deformation</th>
<th>Kinematics</th>
<th>Stage</th>
<th>Mineral Assemblages</th>
<th>Alteration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fragmentation</td>
<td>Dip-slip</td>
<td>3-3 (Z8)</td>
<td>Smectite</td>
<td>Neutral -150°C</td>
</tr>
<tr>
<td>Porphyroclast, Kink banding</td>
<td>Strike-slip (Dex)</td>
<td>3-2 (Z6-Z7)</td>
<td>Illite, Chlorite</td>
<td>Neutral 250°C</td>
</tr>
<tr>
<td>Fragmentation</td>
<td></td>
<td>3-1 (Z1-Z4)</td>
<td>Smectite</td>
<td>Neutral -150°C</td>
</tr>
<tr>
<td>Dilatancy</td>
<td>Sin</td>
<td>2-2 (Z9)</td>
<td>Calcite</td>
<td>?</td>
</tr>
<tr>
<td>Mica, Fish, Kink banding</td>
<td></td>
<td>2-1 (Z10)</td>
<td>Stibnite</td>
<td>Recrystalline -150°C</td>
</tr>
<tr>
<td>Substitution reaction</td>
<td></td>
<td>1 (Z11)</td>
<td>Sericite, Phyllosilicate</td>
<td>Neutral -150°C</td>
</tr>
</tbody>
</table>
テール部は、粒径 50〜300 μm 程度の珪長質鉱物とシーム状に充填する粘土鉱物からなる。珪長質鉱物としては、花崗岩の組成と同じく石英、斜長石、カリ長石を含み、有色鉱物として黒雲母を含む。粘土鉱物は、鏡下で黑色脈として観察され、web structure(Cowan, 1982)を示す。クラスト部と比べ円磨度は低い（図 3.2-4）。

流動変形を受けるフラグメントの縁辺部では、1 mm 程度の薄層を狭在する場合が多く、鏡下において黒色で観察される。黒色層は、粒径 100〜500 μm 程度の珪長質鉱物を断層岩片として含み、周囲を黒雲母、緑泥石により囲まれている。比較的大きな珪長質鉱物の集合体は、σ型ポーフィロクラストを形成している場合があり、縁辺部では白雲母が観察される。粘土鉱物と粒状鉱物の境界部では、しばしば注入組織が観察される（図 3.2-4）。

図 3.2-1 研磨片・薄片作成位置
図 3.2-2 研磨片Ⅰのスキャン画像
灰白色断層ガウジ（Z7）の XZ 研磨片写真。土岐砂礫層起源のチャートやホルンフェルス、花崗岩起源のフラグメントを含み、基質は粘土鉱物から構成される。花崗岩起源のフラグメントでは一部流動変形組織が認められ、拡大範囲ではδ型ボーフィロクラストが観察される。

図 3.2-3 研磨片Ⅱのスキャン画像
褐色断層ガウジ（Z6、写真上半分）と優白色花崗岩レンズ（Z5、写真半分）の XZ 研磨片写真。褐色断層ガウジでは、土岐砂礫層起源のホルンフェルス、花崗岩起源のフラグメントを含み、基質は粘土鉱物から構成される。写真上部では、ホルンフェルス及び花崗岩起源のフラグメントが著しく流動変形を被る組織が認められる。
図 3.2-4 薄片 I・II 写真

（1）・（2）薄片 I、（3）〜（6）薄片 II。奇数番号はクロスニコル、偶数番号はオープンニコルで観察。 （1）・（2）: Z7 灰白色断層ガウジ。写真は右端にポーフィロクラスト部、中央右上から左下方向にみえる黒色シームがテーブ部（プレッシャーシャドー）にあたる。フラグメントとしてふるまう鉱物は、石英・斜長石・カリ長石・黒雲母であり、花崗岩の組成と同一である。（3）〜（6）: Z6 褐色断層ガウジ。（3）・（4）は、流動変形を被る花崗岩フラグメント直上の黒色層、（5）・（6）はイライトの注入組織である。黒色層内部では、珪長質鉱物がクラスト部を、黒雲母及び緑泥石がテーブ部を構成するポーフィロクラストが認められる。（1）〜（4）の各種鉱物分布については、「3.2.3 EPMA-WDS 分析」にて後述する。
3.2.2 XGT 分析

断層岩における数 cm オーダーの元素分布を把握するため、XGT 面分析を行った。測定試料は、「3.2.1 研磨片・薄片の作成・観察」で使用した研磨片 I・II を用いた。測定元素は、Al, Si, K, Ca, Ti, Mn 及び Fe とした。

＜研磨片 I＞ 研磨片 I では、研磨片観察で認められた S 型ポーフィロクラストを含む範囲で XGT 分析を行った。ポーフィロクラスト及びテール部では、相対的に K・Ca を多く含み、Ti・Fe は少ない結果が得られた。一方、灰白色的基質部では、Fe に富む結果が得られた。これら XGT 分析結果は、ポーフィロクラストが珪長質鉱物から構成され、基質部は粘土鉱物から構成される鏡下観察結果と整合的である。ポーフィロクラストの形態に注目してみると、粒径 4 〜 6 mm 程度の珪長質鉱物がクラストとなり、細粒化した粒径 1 mm 以下のフラグメント集合体がテール部を形成している。このような組織は K と Fe の分析結果で顕著に認められ、測定範囲上部に見られるような、理想的なポーフィロクラストを形成せず、流動的な変形を示すレンズも見られる（図 3.2-5）。

＜研磨片 II＞ 研磨片 II では、研磨片観察で認められた流動変形が顕著な範囲で XGT 分析を行った。灰色を呈す基質部では、相対的に Si・Ca・Ti・Mn・Fe に富む。茶色を呈すホルンフェルスでは、相対的に Ti・Fe に富み、K・Ca に乏しい。流動変形を被る花崗岩起源レンズ部では、相対的に K に富み、Ti・Mn・Fe に乏しい。研磨片下半部の優白色層（Z5 に相当）では、相対的に Si・K・Ca に富み、Ti・Mn・Fe に乏しい。これら XGT 分析結果は、鏡下で確認した花崗岩起源及びホルンフェルスレンズ、粘土鉱物の分布と整合的である。

灰色基質部に注目すると、基質部中に K・Ti・Fe に富む微細なレンズが複数認められる。K に富む分布は、花崗岩起源のフラグメントを示す。Ti・Fe に富む分布は重なる場合が多い（図 3.2-6）。
図 3.2-5 研磨片 I の XGT 分析結果
研磨片 I の XGT 分析結果と測定範囲（右下図）。研磨片観察で認められた δ 型ポーフィロクラストを含む範囲で測定を実施した。
図 3.2-6 研磨片Ⅱの XGT 分析結果
研磨片Ⅱの XGT 分析結果と測定範囲（右下図）。研磨片観察で認められた流動変形の著しい範囲で測定を実施した。
3.2.3 EPMA-WDS 分析

破砕岩片スケールでの化学的挙動を観察するため、EPMA-WDS を用いた面分析を行った。測定試料は「3.2.1 研磨片・薄片の作成・観察」で使用した薄片 I・II を用いた。測定元素は、Fe、Mg、K、Mn、Ti、Na、Si、Al、Ca 及び P とした。

＜薄片 I＞ 薄片 I では、薄片観察で認められたポーフィロクラストのテール部において EPMA-WDS 面分析を行った。測定範囲では、フラグメントを構成する珪長質礦物の石英・斜長石・カリ長石を含む。また、細粒化したフラグメントと粘土礦物が共存することから、断層運動時の各礦物挙動を検討する上で必要である。分析結果では、Si に富む石英、Na に富む斜長石、K に富むカリ長石を識別することができる。石英及びカリ長石では、基質部と接している箇所において粒界が明瞭であり、粒子内部においてもほとんど変質が認められない。一方、斜長石では、Na 成分において虫食い状の溶脱が認められる（図 3.2-7）。

＜薄片 II＞ 薄片 II では、薄片観察で認められたポーフィロクラストのテール部において EPMA-WDS 面分析を行った。測定範囲では、石英・黒雲母・緑泥石・白雲母を含む。分析結果では、Si に富む石英、Mg に富み Ca に乏しい黒雲母、Ca 及び Fe に富む緑泥石、Al 及び K に富む白雲母を識別することができる。石英は粒界が明瞭であり、細粒化が認められる。テール部では、細粒化した石英の定向配列がみられる。緑泥石は粒子の縁がいびつな形態をなしており、Mg や Ca において元素分布の濃淡がみられる。白雲母はその他の礦物を取り囲むように分布し、Al や K において元素分布の濃淡がみられる。緑泥石と白雲母の境界は、一部相交関係である。（図 3.2-8、図 3.2-9）。

図 3.2-7 研磨片 I の EPMA-WDS 面分析結果
図 3.2-8 研磨片Ⅱの EPMA-WDS 面分析結果
図 3.2-9 研磨片Ⅱの EPMA-WDS 面分析結果
3.2.4 帯磁率異方性の測定
（1）方法
日本原子力研究開発機構（2015）に示された断層露頭の断層ガウジ帯のZ5とZ7（図3.2-10）からプラスチックキューブ（夏原技研製、容積7cc）を用いて定方位試料を採取した。採取した定方位試料については、Agico社製Multi-Function Kappabridge（MFK1-FA）を用いて帯磁率異方性の測定を行ない、磁化容易軸（K_{max}）、中間軸（K_{int}）、磁化困難軸（K_{min}）の各強度を得た（磁場の強さは、200A/mに設定）。試料の帯磁率異方性は、これら三軸によって構成される近似楕円体として表すことができる（Tarling and Hrouda, 1993）。また、三軸の強度を用いて定義される2つの指標（P’、T）から、近似楕円体の形状と異方性の程度を定量化して示すことができる（Tarling and Hrouda, 1993）。

\[\eta = \frac{1}{3}(\ln K_{max} + \ln K_{int} + \ln K_{min}) \] としたとき

P’（corrected anisotropy degree）=exp\[2(ln K_{max} - \eta) + 2(ln K_{int} - \eta) + 2(ln K_{min} - \eta)\]1/2（異方性の大きさ）

T（shape parameter）=(2ln K_{int} - ln K_{max} - ln K_{min})/ln K_{max} - ln K_{min}（異方性のかたち）

P’（>1）については、その値が大きくなるほど異方度が大きいことを示す。Tは、-1<T<1の値をとり、T>0ならば扁平形状（oblate shape）、T<0ならば扁長形状（prolate shape）であることを示す。

図3.2-10 帯磁率異方性測定試料を採取した断層露頭
赤と青の四角がキューブ試料の採取箇所を示す。破線は断層ガウジ帯における色調の境界を示す。1~8の試料は白色の断層ガウジ（Z5）から、9~14の試料は灰褐色の断層ガウジ（Z7）から採取した。
(2) 測定結果

表3.2-1に測定結果の一覧を示す。図3.2-11に各試料の帯磁率を、図3.2-12に帯磁率異方性をシュミットネット（下半球投影）にプロットしたものを、図3.2-13に異方度の大きさとかたちをプロットしたダイアグラムをそれぞれ示す。

帯磁率については、Z5から得られた試料の値（約2.4×10^{-5} SI）に比べ、Z7から得られた試料の値（約10.4×10^{-5} SI）の方が有意に高い（図3.2-11）。Z5の帯磁率がZ7よりも低い理由としては、Z5が花崗岩起源のレンズであるため、晶出した粘土鉱物量がZ7に比較して少ないことが考えられる（図3.1-4）。

帯磁率異方性については、Z5, Z7ともに断層面に対して、帯磁率異方性の長軸が走向に、短軸が傾斜に調和的に配列する（図3.2-12）。特に帯磁率が高いZ7から得られた試料については、短軸の集中度合いが多い。帯磁率異方性の形態は、全体的にoblate状である（図3.2-13）。

以上、本研究では、断層岩の帯磁率異方性を測定し、そのオリエンテーションについての基礎的なデータを得た。現時点では、このデータを断層活動史に反映させることはできない。しかし、今後、断層ガウジ帯のレイヤー毎に帯磁率異方性を測定するなどして、測定事例を増やし、そのファブリック・パターンにレイヤー毎の違いを見出すことができれば、帯磁率異方性から断層活動史を議論することも可能になると考えられる。

表3.2-1 帯磁率異方性の測定値

<table>
<thead>
<tr>
<th>Zone</th>
<th>Sample ID</th>
<th>Km</th>
<th>Kmax (×10^{-5} SI)</th>
<th>Kint</th>
<th>Kmin</th>
<th>P</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-1</td>
<td>34.89</td>
<td>1.0016</td>
<td>0.99322</td>
<td>1.00518</td>
<td>88.6</td>
<td>308</td>
<td>1.4</td>
</tr>
<tr>
<td>B-2</td>
<td>25.83</td>
<td>0.99156</td>
<td>1.0167</td>
<td>0.99175</td>
<td>162.7</td>
<td>341.8</td>
<td>32.6</td>
</tr>
<tr>
<td>B-3</td>
<td>26.97</td>
<td>1.00353</td>
<td>1.00091</td>
<td>0.99556</td>
<td>156</td>
<td>291</td>
<td>47.7</td>
</tr>
<tr>
<td>B-4</td>
<td>23.96</td>
<td>1.00573</td>
<td>0.99205</td>
<td>1.00222</td>
<td>169.4</td>
<td>296.2</td>
<td>21.3</td>
</tr>
<tr>
<td>B-5</td>
<td>24.64</td>
<td>1.00489</td>
<td>0.99675</td>
<td>0.99836</td>
<td>141.3</td>
<td>302.4</td>
<td>25.8</td>
</tr>
<tr>
<td>B-6</td>
<td>22.04</td>
<td>1.00498</td>
<td>0.99645</td>
<td>0.99858</td>
<td>163.4</td>
<td>288.6</td>
<td>39.1</td>
</tr>
<tr>
<td>B-7</td>
<td>31.72</td>
<td>1.00561</td>
<td>0.99165</td>
<td>1.00273</td>
<td>171.1</td>
<td>292.7</td>
<td>18</td>
</tr>
<tr>
<td>B-8</td>
<td>26.18</td>
<td>1.00302</td>
<td>0.99927</td>
<td>0.99771</td>
<td>149.6</td>
<td>304.8</td>
<td>35.8</td>
</tr>
<tr>
<td>B-9</td>
<td>116.45</td>
<td>1.00253</td>
<td>0.99667</td>
<td>1.0018</td>
<td>173.2</td>
<td>297.4</td>
<td>19.2</td>
</tr>
<tr>
<td>B-10</td>
<td>124.90</td>
<td>1.00233</td>
<td>0.99683</td>
<td>1.00184</td>
<td>170.4</td>
<td>299.1</td>
<td>11.9</td>
</tr>
<tr>
<td>B-11</td>
<td>104.19</td>
<td>1.00014</td>
<td>0.99679</td>
<td>1.00307</td>
<td>196</td>
<td>306.2</td>
<td>26.4</td>
</tr>
<tr>
<td>B-12</td>
<td>90.62</td>
<td>0.99667</td>
<td>0.9946</td>
<td>1.00486</td>
<td>200.1</td>
<td>305.7</td>
<td>18.1</td>
</tr>
<tr>
<td>B-13</td>
<td>88.94</td>
<td>1.00221</td>
<td>0.99343</td>
<td>1.00436</td>
<td>186.2</td>
<td>300</td>
<td>18.4</td>
</tr>
<tr>
<td>B-14</td>
<td>100.24</td>
<td>0.999</td>
<td>0.99485</td>
<td>1.00616</td>
<td>207.6</td>
<td>307.5</td>
<td>10.1</td>
</tr>
</tbody>
</table>

図3.2-11 全岩帯磁率
図 3.2-12 帯磁率異方性のオリエンテーション
（シュミットネット、下半球投影）
黒線は断層面を示す。

図 3.2-13 P'-T ダイアグラム
P'は異方度の大きさ、Tは異方性のかたち。$P' (>1)$については、その値が大きくなるほど異方度が大きいことを示す。Tは、$-1 < T < 1$の値をとり、$T > 0$ならば扁平形状、$T < 0$ならば扁長形状を示す。
3.3 断層発達史の検討

本研究では、屏風山断層を代表する境界断層露頭において、様々なスケールの組織及び元素分布の検討を行った。これらは断層活動時の諸現象を記録しており、断層発達史を詳細に検討する上で重要な手法であると考える。

本研究で対象とした断層露頭では、幅広い破砕帯を観察することができる。特に断層ガウジ帯において、色調の違いから複数の薄層が認められ、変形様式、剪断センス及び構成する粘土鉱物の割合が変化することが指摘されている（Katori and Kobayashi, 2015）。本研究で解析を行ったZone6及びZone7では、他の薄層と比べ流動変形を被るフラグメントが多数認められ、ポーフィロクラストを形成する場合も観察された。このような変形組織の形成には、流体の影響が大きく関与することもあり、その場合は変形組織に対応した化学組成の変化が検知できる可能性がある。本研究で用いたXGT分析は、cmオーダーの流動変形を観察する上で有効な手法であるといえる。

Zone7でみられるポーフィロクラストのテール部は、一般に粒状鉱物の細粒化と粘土鉱物で特徴づけられるが、斜長石の一部ではNa成分の虫食い状溶脱を観察することができる。このような組織は、断層運動に伴う粒状鉱物の細粒化の他に、反応軟化作用も起こったことを示す。

Zone6でみられる花崗岩起源及びホルンフェルスのフラグメントは、他の薄層で観察されるフラグメントと比較し、著しく流動変形を被る。これら流動変形を被るフラグメントの縁辺では、1mm程度の黒色層を伴う組織が認められる。黒色層内部では、珪長質鉱物のポーフィロクラストと黒雲母、緑泥石及び白雲母から構成されるテール部が観察される。これら黒雲母、緑泥石及び白雲母はホルンフェルス中に観察されるため、砕屑性の鉱物であると考えられる。このような層状珪酸塩鉱物を主体とする薄層の存在は、全岩の有効応力を低下させていることが予想される。本研究で認められた流動変形を被るフラグメントにおいても、このような作用が働いたと考えられる。

本研究で行った解析では、屏風山断層の断層ガウジ帯内部において複数の異なる変形・変質作用があったことを明らかにした。特にZone6及びZone7では、組織観察及び元素分布の解析結果から、流体の影響が顕著に認められるゾーンであることが予想される。この結果は、屏風山断層の活動史において、流体の供給量が変化していたことを示唆する。断層面沿いに認められる流体の供給源としては、主に地下水と天水が挙げられるが、Zone6及びZone7においてイライト量が増えること（Katori and Kobayashi, 2015）を考慮すると、比較的高温の地下水が多量に流入してきた可能性が高い。この結果は、東濃地域における流体移動の時間変化に起因すると考えられる。
4. まとめ

本研究では、屏風山断層の断層ガウジ形成時期に、流体の流入量が均一ではなかったことを示した。一般に地下流体の移動は、断層（水みち）分布に関連していると考えられている。これらのことから、東濃地域の流体移動を四次元的に考えると、流体通路（水みち）及びその量が一定ではなかったことが予想される。このような断層岩を対象とした詳細な解析は、地形学的及び測地学的知見では検出し難い精度の運動史を解明できる可能性がある。

今後、断層岩を用いた絶対年代の測定（例えば、フィッション・トラック年代法や希ガス年代法など）を実施することで、屏風山断層の活動年代や活動間隔を検討できる可能性がある。また、本研究で認められた、断層運動時に晶出した変質鉱物の組成値を定量的に測定することで、変質環境をより詳細に検討することも可能であると考える。

謝辞

本研究を進めるにあたり、新潟大学自然科学研究科の豊島剛志教授には、貴重な御助言を賜った。日本原子力研究開発機構の柴田健二氏、清水麻由子氏には、EPMA分析法について御助言を賜った。新潟大学自然科学研究科の中村佳博氏には、SEM分析法について御助言を賜った。以上の方々に、厚く御礼申し上げます。

引用文献

4) 辻村太郎, 断層地形論考, 古今書院, 1948, 397p.
9) 日本原子力研究開発機構, 平成 26年度 地層処分技術調査等事業 地質環境長期安定性評価確認技術開発 報告書, 2015, pp.229.
10) 香取拓馬, 小林健太, 安江健一, 丹羽正和, 小松哲也, 細矢卓志, 笹尾英嗣, 岐阜県三河東部に位置する屏風山断層の破砕・変質履歴. 日本地球惑星科学連合 2015年大会, 2015, S-SS29-P06.
13) Katori, T. and Kobayashi, K., Kinematic vicissitudes and the spatial distribution of the alteration zone related to the Byobuyama fault, central Japan (Implication: Influence of
another faults), American Geophysical Union 2015 Fall Meeting, 2015, T31A-2846.

石英粒子を用いた後背地解析技術に関する共同研究

平成 27 年度共同研究報告書

平成 28 年 1 月

国立大学法人東京大学
国立研究開発法人日本原子力研究開発機構
目 次

1. 概要 .. 1
 1.1 共同研究件名 ... 1
 1.2 研究目的 ... 1
 1.3 実施期間 ... 1

2. 研究方法 .. 2
 2.1 ESR・OSL・TL 測定 .. 2
 2.2 石英粒子の表面形態観察 .. 2
 2.3 堆積物の対比と堆積時期の検討 ... 3
 2.4 技術検討 .. 4

3. 研究成果 .. 5
 3.1 ESR・OSL・TL 測定 ... 5
 3.2 石英粒子の表面形態観察 .. 11
 3.3 堆積物の対比と堆積時期の検討 ... 16
 3.4 技術検討 .. 20

4. まとめ ... 22
引用文献 ... 22
図 目 次

図 3.1-1 分析試料の位置図5
図 3.1-2 KNG コア柱状図6
図 3.1-3 KNG コアの未照射試料の ESR 信号強度 (Al 及び Ti-Li 中心信号) 8
図 3.1-4 KNG コアの未照射試料の ESR 信号強度 (E1’中心信号) 9
図 3.1-5 KNG コアの OSL 信号10
図 3.1-6 KNG コアの TL 信号11
図 3.2-1 KNG-4 の通常 SEM 画像12
図 3.2-2 KNG-15 の通常 SEM 画像13
図 3.2-3 KNG-21 の通常 SEM 画像13
図 3.2-4 KNG-4 の SEM 写真14
図 3.2-5 KNG-15 の SEM 写真15
図 3.2-6 KNG-21 の SEM 写真16
図 3.3-1 木曽谷層中の軽石の火山ガラス化学組成散布図 ..18
図 3.3-2 河成段丘堆積物の減衰曲線20
図 3.3-3 OSL 年代測定結果20
図 3.4-1 石英粒子等を用いた後背地解析の研究フロー 21

表 目 次

表 3.1-1 KNG コアの試料深度と分析状況7
表 3.3-1 御岳山起源のテフラ及び木曽谷層の記載岩石学的特徴 17
表 3.3-2 木曽谷層中の軽石の火山ガラス化学分析値 18
表 3.3-3 OSL 測定手順 ..19
表 3.3-4 河成段丘堆積物の年間線量 19
表 3.3-5 ドーズリカバリー、リサイクリングレイショー、R0/Rn レイショー 19
1. 概要

1.1 共同研究件名
石英粒子を用いた後背地解析技術に関する共同研究

1.2 研究目的
高レベル放射性廃棄物などの地層処分は、人工バリアと天然の地層を適切に組み合わせたシステムによって、数万年以降に及ぶ極めて長い時間スケールの安全を確保しようとするものである。日本列島は変動帯に位置していることから、諸外国に比べて地殻変動や火成活動などが活発であるため、地層処分事業においては将来の自然現象に伴う地質環境の変動スケールや復元性を把握しておくことが特に重要となる。今後、地層処分の技術的信頼性をさらに高めていくうえでも、実際の地質環境を構成する様々な要素についての過去の変動の履歴や現象プロセスなどを把握するための調査技術を整備するとともに、科学的知見を統合しつつ、三次元的に表現できる数値モデルを開発することは極めて有効となる。このため、国立研究開発法人日本原子力研究開発機構（以下、「原子力機構」という）が、経済産業省から受託して実施する「地質環境長期安定性評価確証技術開発」では、将来の自然現象に伴う超長期の地質環境の変動を考慮できる数値モデル及びその解析・評価に必要な調査技術の研究開発を進めている。この調査技術においては、超長期の自然現象の一つである山地の形成過程に関する情報を取得するための「後背地解析技術」の研究開発を進めている。

この研究開発の一環として、平野や盆地に分布する未固結堆積物中の砕屑粒子（岩石や鉱物）の地球化学的・物理化学的特徴を把握するための分析技術に関する研究を平成26年度から開始し、後背地解析に有効な手法の構築を進めている。平成26年度は、「ボーリング試料を用いた分析技術に関する共同研究」（以下、「平成26年度共同研究」という）において、関連する分野の最近の研究成果などの情報を収集し、その特徴を整理するとともに、既存のボーリング試料を用いて粒度分析、蛍光X線元素（X-ray Fluorescence：以下「XRF」という）分析、電子スピン共鳴（Electron Spin Resonance：以下、「ESR」という）測定、光学発光（Optically Stimulated Luminescence：以下、「OSL」という）測定、熱発光（Thermoluminescence：以下、「TL」という）測定の適用性を検討した。その結果、各分析・測定において深度方向での特徴の違いが認められたものの、石英粒子のESR・OSL・TL分析については分析数を増やして、手法の有効性を確認することが課題であった。そこで、平成27年度は、平成26年度共同研究と同じボーリング試料を用いて深度方向にESR・OSL・TL測定数を増やした。さらに、テフラ分析とOSL年代測定による堆積物の対比と堆積時期の検討を行った。それらの情報に平成26年度共同研究の成果も加えて、後背地解析手法としての有効性について検討した。

1.3 実施期間
平成27年7月1日～平成28年1月29日
2. 研究方法

本共同研究では、平野や盆地に分布する未固結堆積物を用いた後背地解析技術の構築に必要な分析技術の検討を行う。平成27年度は、平成26年度共同研究と同じポーリング試料について、異なる深度の試料を用いてESR・OSL・TL測定数を増やす。さらに、石英粒子の表面形態に着目した走査型電子顕微鏡(Scanning Electron Microscope:以下、「SEM」という)観察を行う。これらの結果と平成26年度に測定した粒度分析とXRF分析の結果を用いるとともに、テフラ分析とOSL年代測定による堆積物の対比と堆積時期に関する情報も加えて、後背地解析手法としての有効性を検討する。

2.1 ESR・OSL・TL測定

堆積物試料から石英を抽出し、その石英のESR・OSL・TL分析を行う。測定する石英試料は石英中に生成される放射線損傷を飽和させて特徴を捉える必要があることから、人工放射線照射を行う。

2.1.1 ESR測定

装置名：日本電子製JES-X320

ESR法は、物質中にある不対電子の磁気的な性質を利用しており、ESRは磁場の加わった状態で不対電子がマイクロ波を吸収することにより発生する。不対電子は、鉱物等に当たった放射線により電離して生成され、結晶中の不純物などに捕獲されて安定化する。このことから、ESRでは不対電子の量や電子状態、運動性、周辺の構造に関する情報を得ることができる。本共同研究においては、堆積物中に普遍的に存在し、風化に強い石英を測定試料として用いる。

2.1.2 OSL測定

装置名：Risø製TL/OSL DA-20

OSLとは、石英や長石などの鉱物に蓄積される不対電子が、太陽光などの光により励起されて蛍光を発する現象である。鉱物からの蛍光はOSL信号として検出され、このOSLには光励起に対して急速に反応して発光する成分（fast成分）とfast成分よりも反応の遅い成分（medium及びslow成分）がある。これらのOSL成分は、励起光の出力を一定速度で上げながら測定するLinear modulated (LM)-OSL信号によって調べることができる。本共同研究においては、ESR測定と同様に堆積物中に普遍的に存在し、風化に強い石英のLM-OSL信号を測定する。

2.1.3 TL測定

装置名：Risø製TL/OSL DA-20

TL法はOSL法と類似の原理であり、石英や長石などの鉱物に蓄積された不対電子が熱により励起されて蛍光を発する現象を利用している。本共同研究においては、ESR測定やOSL測定と同様に石英を測定試料として用いる。

2.2 石英粒子の表面形態観察

2.1を踏まえて、既存試料から抽出された石英粒子を用いたSEM、FE-EPMA等による表面形態の特徴の観察を行う。その結果と各分析結果との比較から試料ごとの特徴の違いを整理する。
2.2.1 SEM 観察
装置名：日本電子製走査型電子顕微鏡（JSM-6610LV）
電子線を照射し、試料の表面形状を観察する装置である。JSM-6610LV はタングステンフィラメント電子銃を搭載しているため、次に述べる FE-EPMA と比べて、プローブ径が大きく、輝度が低いため、分解能は相対的に低くなる。しかし、10000 倍程度まではシャープな画像を得やすい。また、比較的簡単に試料調製でき、装置の操作も容易なので、多くの粒子の表面形態を観察するのに適している。

2.2.2 FE-EPMA による SEM 観察
装置名：日本電子製（JXA-8530F FE-EPMA）
EPMA は電子線を試料に照射することで発生する元素固有の特性 X 線を利用して、電子線が照射されている微小領域の構成元素の同定やその元素比率（濃度）を分析する装置である。JXA-8530F FE-EPMA は電界放出形（フィールドエミッション）電子銃を搭載しており、従来の熱電子放出形の EPMA と比較するとプローブ径を 1/2 から 1/10 に絞ることができ、従来より高い分解能を備えている。これにより、高倍率においても明瞭な二次電子像を得ることができる。

2.3 堆積物の対比と堆積時期の検討
本共同研究で用いたコア試料には、後述のとおり、深度 14.36 〜 16.24 m に軽石層と細砂層の互層が堆積し、軽石は御岳山起源の On-Pm1（約 10 万年前）に対比されている（丹羽ほか, 20081）。この軽石がどのように供給されたかは不明であるが、木曽川が運んだ可能性が高い。そこで、木曽川流域に分布する段丘堆積物中の軽石と KNG コアの軽石の比較に必要なテフラ分析を行う。また、このような場合、河川性の堆積物の堆積時期が重要となることから、河成段丘堆積物の堆積時期を把握する技術として、OSL 法の適用を検討する。

2.3.1 テフラ分析
堆積物試料から軽石を抽出し、洗浄、乾燥した後、実体顕微鏡を用いて鉱物組成や火山ガラスの形態を観察し、記載を行った。また、火山ガラス、斜方輝石、普通角閃石の屈折率測定及び、テフラ対比に有効な火山ガラスの主成分化学組成分析を行った。屈折率測定は、京都大学東京の温度変化型屈折率測定装置（京都フィッショントラック製 RIMS2000）を用いた。1 試料につき、40 カウント以上の測定値を得るようにした。測定精度は、±1 〜 2 × 10^{-4} である（壇原, 19912）。火山ガラスの化学分析は、株式会社古澤地質において分析装置 EDX : HORIBA EMAX Evolution EX-270 を用いて行った。EDS により主成分である Si, Ti, Al, Fe, Mn, Mg, Ca, Na 及び K の 9 元素を測定した。分析における前処理方法は古澤 (2003)3）に従った。

2.3.2 OSL 年代測定
装置名：Riso 製 TL/OSL DA-20
OSL 年代測定法は、鉱物中の不対電子が自然放射線の被ばく量（時間）に応じて増加することを利用した方法である。試料に蓄積された被ばく線量（蓄積線量）は、試料に人工放射線を照射して放射線応答曲線を求めることで得られる。OSL 年代は、この蓄積線量を別途化学分析から求まる単位時間当たりの放射線量（年間線量）で除すことにより求められる。鉱物粒子の OSL 信号は、運搬時に太陽光によってリセットされた後、堆積して別の堆積物に被覆されることで太陽光から遮断されると、再び不対電子を蓄積し始める。このような原理から、OSL 年代測定法は粒子の堆積年代を直接求めることができる手法である。
2.4 技術検討

ESR・OSL・TL 測定及び表面形態観察から得られた結果から石英粒子を用いた後背地解析技術について検討する。その際、テフラ分析や OSL 年代測定、平成 26 年度共同研究において実施した粒度分析と XRF 分析の結果も考慮しながら進める。また、本共同研究において実施した作業のフロー図の作成やノウハウなどの整理を行う。
3. 研究成果

3.1 ESR・OSL・TL 測定
測定試料は、平成26年度共同研究で用いた既存のKNGコアであり（図3.1-1）、平成26年度共同研究において測定した深度を踏まえて、測定間隔が密になるような深度の試料を測定した（表3.1-1）。
KNGコアは、主に砂と砂礫層から構成される長さ25.1 mのコアである（図3.1-2）。地表付近から深度約10 mまでは、主に中〜細砂の層が分布し、2 m以浅では一部に腐植質の粘土を含む。深度約10 mより深部では主に砂礫層が分布し、所々に中〜細砂の層が分布する。深度14.36～16.24 mは火山灰質の中砂〜シルトであり、軽石層と細砂層の互層を挟む。

図3.1-1 分析試料の位置図
陰影図については、ASTER Global Digital Elevation Model（ASTER GDEM）version 2を元データとし、ArcGISを用いて作成した。
図 3.1-2 KNG コア柱状図
表 3.1-1 KNG コアの試料深度と分析状況
粒度分析とXRFは平成26年度共同研究において分析

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample</td>
<td>depth(m)</td>
<td>粒度分析</td>
<td>XRF</td>
<td>ESR</td>
<td>TL</td>
</tr>
<tr>
<td>KNG-1</td>
<td>0.76 ~ 0.81</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNG-2</td>
<td>0.95 ~ 1.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNG-3</td>
<td>1.55 ~ 1.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNG-4</td>
<td>2.45 ~ 2.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNG-5</td>
<td>2.55 ~ 2.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNG-6</td>
<td>3.30 ~ 3.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNG-7</td>
<td>3.50 ~ 3.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNG-8</td>
<td>3.80 ~ 3.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNG-9</td>
<td>4.10 ~ 4.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNG-10</td>
<td>4.45 ~ 4.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNG-11</td>
<td>5.20 ~ 5.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNG-12</td>
<td>5.55 ~ 5.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNG-13</td>
<td>6.50 ~ 6.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNG-14</td>
<td>6.65 ~ 6.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNG-15</td>
<td>7.20 ~ 7.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNG-16</td>
<td>7.50 ~ 7.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNG-17</td>
<td>7.90 ~ 7.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNG-18</td>
<td>8.50 ~ 8.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNG-19</td>
<td>8.57 ~ 8.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNG-20</td>
<td>8.90 ~ 8.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNG-21</td>
<td>9.20 ~ 9.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNG-22</td>
<td>9.45 ~ 9.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNG-23</td>
<td>9.50 ~ 9.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNG-24</td>
<td>9.85 ~ 9.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNG-25</td>
<td>10.10 ~ 10.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNG-26</td>
<td>10.63 ~ 10.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNG-27</td>
<td>11.70 ~ 11.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNG-28</td>
<td>12.45 ~ 12.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNG-29</td>
<td>13.48 ~ 13.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNG-30</td>
<td>14.45 ~ 14.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNG-31</td>
<td>14.65 ~ 14.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNG-32</td>
<td>15.45 ~ 15.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNG-33</td>
<td>15.50 ~ 15.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNG-34</td>
<td>16.30 ~ 16.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNG-35</td>
<td>16.45 ~ 16.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNG-36</td>
<td>16.50 ~ 16.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNG-37</td>
<td>17.38 ~ 17.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNG-38</td>
<td>18.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNG-39</td>
<td>18.47 ~ 18.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNG-40</td>
<td>19.37 ~ 19.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNG-41</td>
<td>20.43 ~ 20.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNG-42</td>
<td>21.40 ~ 21.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNG-43</td>
<td>22.45 ~ 22.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNG-44</td>
<td>22.70 ~ 22.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNG-45</td>
<td>22.80 ~ 22.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNG-46</td>
<td>23.35 ~ 23.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNG-47</td>
<td>23.53 ~ 23.58</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNG-48</td>
<td>23.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNG-49</td>
<td>23.65 ~ 23.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNG-50</td>
<td>23.85 ~ 23.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNG-51</td>
<td>24.50 ~ 24.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNG-52</td>
<td>24.75 ~ 24.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.1.1 ESR 測定

(1) 試料調製

ESR 測定試料として石英を用いることから、幡谷・白井（2003）を参考にして堆積物から石英粒子を抽出した（詳細は、平成26年度報告書を参照）。

(2) 測定結果

KNG コアを用いて、それぞれの試料で未照射試料と照射試料の両方を測定した。照射試料については、試料調製後、高崎量子応用研究所のコバルト 60 線源を用いて、試料に 2.5 kGy のガンマ線を照射した。ESR 測定は、先述の ESR 装置を用いて、Shimada et al. (2013) に従って行った。磁場変調周波数は 100 kHz、磁場変調幅は 0.1 mT である。Al 中心信号及び Ti-Li 中心信号は、液体窒素温度（77 K）で、マイクロ波出力を 5 mW に設定して測定した。また、E1中心信号は、室温でマイクロ波出力を 0.01 mW に設定して測定した。測定結果を図 3.1-3 及び図 3.1-4 に示す。

測定の結果、KNG-13、15 及び 16（深度約 12〜16 m）の Al 中心信号と E1中心信号が他の測定試料に比べて有意に弱い強度を示した。また、測定試料の番号はほぼ深度に対応しており、その点を踏まえて測定結果を見ると、同程度の深度（近い番号）の試料で比較的集中した値を示した。特に、深度約 12〜16 m を境に違いが認められ、下部より上位の方は、Al 中心信号の強度が弱く、E1中心信号の強度が強い。

(3) 後背地解析に関する検討

深度に伴って ESR 信号強度が異なることに加え、同程度の深度の試料で比較的集中した値を示すことから、ESR 信号特性が供給源の変化を示している可能性がある。位置的に本試料は主に庄内川が供給した堆積物と考えられるが、その中でも御岳山起源の軽石を含み、木曽川が運んだ可能性がある堆積物（深度約 12〜16 m）は、ESR 信号強度が他の深度と異なり、有意に弱い値を示すことから、供給源が異なる石英が含まれている可能性が高いと考えられる。

図 3.1-3 KNG コアの未照射試料の ESR 信号強度（Al 及び Ti-Li 中心信号）
（左：未照射試料、右：照射試料）
試料番号が大きいほど深い。
図 3.1-4 KNG コアの未照射試料の ESR 信号強度（E1'中心信号）
（左：未照射試料、右：照射試料）
試料番号が大きい（右側）ほど深い。

3.1.2 OSL 測定
(1) 試料調製
OSL 測定で用いた堆積物中の石英粒子は、上記の ESR 測定における試料調製と同じ手順で抽出した。なお、OSL 信号は光によって減衰するため、堆積物の年代測定を行う場合は、試料を光曝さないように試料採取、調製、測定を行う必要がある。しかし、本共同研究では石英試料の OSL 信号特性を調べることが目的であり、測定の際には既存の OSL 信号を加熱処理で消去することから、光に曝された試料を用い、通常の光の環境で試料調製を行った。

(2) 測定結果
OSL 測定では、500 ℃・10 秒で加熱処理を行い、装置の B 線源で 50 Gy を照射し、240 ℃・10 秒で加熱処理を行った後、励起光の出力を 0～90 %まで一定速度で上げながら OSL 信号を 1,000 秒間測定した。測定結果を図 3.1-5 に示す。図 3.1-5 の挿入図は、KNG6 と KNG16 以外の試料の OSL 信号を示したものである。KNG10, 16 は比較的ピークが早く現れる。特に KNG16 はカウント数が大きく、明瞭なピークを示した。KNG2, 4, 6, 8, 11, 17, 18, 23 では、ピーク位置が KNG10, 16 よりも遅く、ピークが明瞭でないものが多い。

(3) 後背地解析に関する検討
現時点では石英の OSL 信号特性だけでは後背地の変化を捉えることは困難であると考えられる。OSL 測定では、どこに捕獲された不対電子に由来する信号なのかを明確にできないことから、原理的には ESR 信号特性を用いる方法が後背地解析を行う上で適していると考えられる。
3.1.3 TL 測定

（1）試料調製

TL 測定で用いた堆積物中の石英粒子は、ESR 測定及び OSL 測定における試料調製と同じ手順で抽出した。なお、TL 測定は年代測定ではなく、その信号特性を調べることを目的としていることから、光曝については特に配慮せず、光に曝された試料を用い、通常の光の環境で試料調製を行った。

（2）測定結果

図 3.1-6 は、室温から 5 ℃/秒で 500 ℃まで加熱したときの TL 信号を示している。ピーク位置に注目すると、KNG2, 4, 6, 8, 10, 11 は 330 ℃付近, KNG16 は 380 ℃付近, KNG17, 18, 23 は 310 ℃付近にそれぞれピークが見られた。

（3）後背地解析に関する検討

TL 信号は、深度方向と関連があるようにみえるが、現時点では TL 信号特性だけで後背地の変化を捉えることは困難であると考えられる。TL 信号は OSL 信号よりもトラップに関する情報を取得しやすいが、原理的には ESR 信号特性を用いる方法が後背地解析を行う上で適していると考えられる。
3.2 石英粒子の表面形態観察

3.1 を踏まえて、既存試料から抽出した石英粒子を用いて、SEM、FE-EPMA等での石英粒子の表面形態の特徴を観察した。

3.2.1 SEM観察
(1) 試料調製
前処理は、板宮ほか(2015)に従い、以下のように実施した。まず、風乾した2gの土砂試料に過酸化水素水を加え、80℃、30分の条件で有機物の分解を行った。次に、0.2mmの篩で湿式篩別した。その後、粒径0.2mm以上の画分にクエン酸ナトリウムおよびハイドロソルファイトナトリウム溶液を加えて脱鉄し、水で洗浄した。風乾させたのちに、粒径0.2mm〜1mmの石英を観察に用いた。試料台に貼ったカーボンテープの上に石英粒子を載せ、30秒×2回金蒸着を行った。

(2) 分析結果
加速電圧25kVの高真空モードで観察を行った。ESR信号強度の特徴を踏まえて、特にAl中心信号強度の違いからKNG-4, 15, 21の石英粒子（0.2〜1mm）を3000倍程度で観察した（図3.2-1〜図3.2-3）。

粒子ごとに多様な形態を示す。粒子全体の円摩度に注目すると、KGN-4とKNG-21は、円摩度が低いものを主とし、やや丸いものも含んでいる。KNG-4、KNG-21と比べて、KNG-15の円摩度はやや高く、エッジが丸みを帯びて鈍った形状を示す点に特徴がある。
つぎに粒子表面の肌理（滑らかさや表面微細形態）に着目すると、KGN-4とKNG-21は、表面は総じて平滑であるが、部分的に貝殻状の痕が認められる。また、粒子表面に、溝状またはクレーター状をなす極微細凹地が観察される。KNG-15の表面はややざらついており、斑（ムラ）のような模様が認められる。1μmにも満たない、やや球形に近い粒子（紛体）状の微細構造が表面を覆うように分布する様子が認められる場合もある。
(3) 後背地解析に関する検討

KNG-4、KNG-15、KNG-21 ともに円摩度が低く、粒子の表面には、運搬過程で物理的作用によって生じた衝突痕と考えられる傷がしばしば認められることから、これらは、河川運搬タイプの石英形態の特徴を有しているといえる。KNG-4 と KNG-21 は類似点が多いが、前者はエッジが鋭く、表面の新鮮度も高い。前者は最近数百年の間で堆積した可能性が高いのに対し、後者は10万年以上前に堆積したと推定され、後者のエッジは堆積後に長時間を経て若干丸みが増した可能性もある。KNG-15 の表面は、KNG-21 よりもさらに丸みをもち、成因の異なる石英起源の堆積物粒子である可能性を示唆する。

図 3.2-1 KNG-4 の通常 SEM 画像
（上：×130〜160、下：×1600〜8500）
図 3.2-2 KNG-15 の通常 SEM 画像
（左下：×5500，他：×140～200）

図 3.2-3 KNG-21 の通常 SEM 画像
（下左・中：×1400～2000，他：×100～170）
3.2.2 FE-EPMA による SEM 観察

(1) 試料調製
観察対象である石英粒子を取り出すため、パンニング及び重液分離を行った。まず、パンニングで水よりも比重の軽い鉱物を取り除き、水よりも比重の重い鉱物を回収した。パンニングで回収した鉱物の粒径をそろえるために#30（目開き 0.5 mm）の篩でふるい分けを行い、粗大な粒子は取り除いた。
重液分離は、2段階で行った。1段階目は比重 2.63 g/cm³ を用いて石英（比重 2.7 g/cm³）より軽い鉱物を浮かせて分離した。この時、石英は下に沈んだ重鉱物に含まれることになる。2段階目に比重 2.70 g/cm³ の重液を用いて、重鉱物を沈殿させて取り除いた。重液表層の石英を含む鉱物を回収し、超純水で洗浄・乾燥後、実体顕微鏡を用いて石英粒子を目視により取り出した。最後にスライドガラスの上に貼ったカーボンテープの上に石英を載せ、炭素蒸着を行い観察試料とした。

(2) 分析結果
観察の結果、KNG-15 以外は比較的似た形態を示す粒子が多く、不規則な割れ方をしている（図 3.2-4～図 3.2-6）。それらの表面を拡大すると平滑な面または小規模な凹凸が認められる。一方、KNG-21 の表面はややざらついているように見える。一方、KNG-15 は、湾曲した平滑な面や線状の模様が認められる（図 3.2-5）。
なお、本共同研究で観察した倍率では通常の SEM 画像と FE-SEM 画像に大きな違いはなく、どちらでも堆積物粒子の形態や表面の状態を十分観察できた。

図 3.2-4 KNG-4 の SEM 写真
（上：×100、下：×1000）
図 3.2-5 KNG-15 の SEM 写真
（上：×100、下：×1000）
(3) 後背地解析に関する検討

FE-EPMA による SEM 観察の結果、KNG-15 の粒子は KNG-4 と KNG-21 の粒子と比べて異なる割れ方や表面の状態が認められた。これは、成因の異なる石英起源の堆積粒子である可能性を示唆する。KNG-15 付近の堆積物は、御岳山起源のテフラを含むことから、主に木曽川が運んできた堆積物と考えられ、木曽川流域に分布する岩体から採取した石英と比較することが望まれる。また、この KNG-15 の粒子が純粋な石英粒子であるかどうか含めて、粒子の特徴を詳細に把握することが重要である。

3.3 堆積物の対比と堆積時期の検討

以上の結果において、KNG コアは深度によって供給源が異なる可能性があり、その時期については、堆積時期を考慮して検討することが重要である。KNG コアの一部は木曽川が運んだ可能性が高いことから、既存の段丘堆積物試料を用いて、木曽川流域に分布する軽石と KNG コアの軽石の比較に必要なテフラ分析を行う。また、このような堆積時期を把握する技術として、OSL 年代測定法の適用を検討する。

3.3.1 試料及び前処理方法

分析試料は、木曽川の中流域に分布する段丘堆積物とそれに含まれる軽石である（図 3.1-1 の SG 及び TD）。

地点 28 では、露頭の上部の砂層、中部の軽石層、下部の砂層をテフラ分析用試料として用いた。試料に対し、2.3.1 に記した前処理を行った。

OSL 年代測定用試料には、SG では段丘堆積物砂層上部の 2 試料（試料名：SG-1、SG-2）、中部の 1 試料（試料名：SG-3）を用いた。TD では、段丘堆積物上部の 1 試料（TDU）、下部の 1 試料（TDB）を用いた。試料は、塩化ビニル製のパイプに保管するなど、光曝しないように十分注意した。パイプの両端の試料（パイプの端から約 5 cm の部分）は光曝している可能性がある。
ため、前処理の際に取り除き、含水比及び年間線量を求めるために用いて、パイプの中央部分の試料だけを蓄積線量の測定に用いた。蓄積線量測定用の試料は3.1.1(1)に記した工程で処理し、73-250 μmの石英粒子を抽出した。

3.3.2 テフラ分析
砂層から抽出された軽石（SG1～SG6、TDU1～3）について、洗浄・乾燥後、実体顕微鏡下で鉱物組成、火山ガラスの形態を観察し記載した。SG7及びSG8は、軽石粒子が細粒で抽出が困難であったため、砂粒子も含めて記載した。SG1～SG6の軽石の斑晶鉱物は普通角閃石を主体とし、少量の斜方輝石を共通して含み、SG3とSG4以外は、少量の黒雲母が含まれる。火山ガラスの屈折率は、大部分が1.500-1.504のレンジであったが、SG4のみ1.500-1.501とやや低い値を示した。斜方輝石、普通角閃石の屈折率もほぼ同じレンジであった（表3.3-1）。火山ガラスの化学組成では、SG2及びSG5は、公表されているOn-Pm1の火山ガラスの分析値と良く一致した。またSG4は、On-Pm1やSG2、SG5と、Al2O3やCaO等の値が明瞭に異なっていた（表3.3-2及び図3.3-1）。TDU1及びTDU2は斜方輝石、角閃石、黒雲母を含むが、TDU2では黒雲母は少量であった。TDU3は主に斜方輝石を含む。火山ガラスの屈折率は、TDU1及びTDU3で1.500-1.504のレンジであった。斜方輝石、普通角閃石の屈折率もほぼ同じレンジを示した（表3.3-1）。

これらの結果から、木曽川流域の段丘堆積物には、On-Pm1に対比される軽石が含まれており、今まで得られているKNGコアの一部と対比できることが分かった。さらに、On-Pm1とは異なる軽石も存在しており、この軽石が御岳山起源のどの軽石に対比できるかは、今後の課題である。

表 3.3-1 御岳山起源のテフラ及び木曽谷層の記載岩石学的特徴

<table>
<thead>
<tr>
<th>試料番号</th>
<th>採取地</th>
<th>層相</th>
<th>層厚(cm)</th>
<th>その他</th>
<th>主な鉱物*</th>
<th>火山ガラスの形態**</th>
<th>屈折率(gl:n)</th>
<th>屈折率(opx:γ)</th>
<th>屈折率(ho:2n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>150324 SG1</td>
<td>中津川市坂下</td>
<td>pumice</td>
<td>ho>>+bio</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>150324 SG2</td>
<td>中津川市坂下</td>
<td>pumice</td>
<td>glass EPMA</td>
<td>ho>>opx, +bio</td>
<td>pm</td>
<td>1.501-1.504</td>
<td>-</td>
<td>1.680-1.686</td>
</tr>
<tr>
<td>3</td>
<td>150324 SG3</td>
<td>中津川市坂下</td>
<td>pumice</td>
<td>ho>>+opx</td>
<td>pm</td>
<td>1.501-1.504</td>
<td>(1.498-1.499)</td>
<td>-</td>
<td>1.681-1.686</td>
</tr>
<tr>
<td>4</td>
<td>150324 SG4</td>
<td>中津川市坂下</td>
<td>pumice</td>
<td>glass EPMA</td>
<td>ho>>+opx</td>
<td>(very fine)</td>
<td>1.500-1.501</td>
<td>-</td>
<td>1.682-1.685</td>
</tr>
<tr>
<td>5</td>
<td>150324 SG5</td>
<td>中津川市坂下</td>
<td>pumice</td>
<td>glass EPMA</td>
<td>ho>>opx, bio</td>
<td>pm</td>
<td>1.500-1.503</td>
<td>-</td>
<td>1.682-1.687</td>
</tr>
<tr>
<td>6</td>
<td>150324 SG6</td>
<td>中津川市坂下</td>
<td>pumice</td>
<td>ho>>opx, +bio</td>
<td>(very fine)</td>
<td>1.501-1.504</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>150324 SG7</td>
<td>中津川市坂下</td>
<td>sand</td>
<td>木曽谷層</td>
<td>bio, ho,opx</td>
<td>fib</td>
<td>1.501-1.504</td>
<td>1.701-1.705</td>
<td>1.683-1.689</td>
</tr>
<tr>
<td>8</td>
<td>150324 SG8</td>
<td>中津川市坂下</td>
<td>sand</td>
<td>木曽谷層</td>
<td>bio, ho, pox</td>
<td>fib</td>
<td>1.501-1.504</td>
<td>1.701-1.707</td>
<td>1.679-1.683</td>
</tr>
<tr>
<td>9</td>
<td>150324 TD1</td>
<td>中津川市津戸</td>
<td>sand</td>
<td>木曽谷層</td>
<td>opx>ho, bio</td>
<td>pm</td>
<td>1.500-1.503</td>
<td>1.711-1.714</td>
<td>1.688-1.691</td>
</tr>
<tr>
<td>10</td>
<td>150324 TD2</td>
<td>中津川市津戸</td>
<td>pumice</td>
<td>opx=ho, +bio</td>
<td>-</td>
<td>-</td>
<td>1.711-1.715</td>
<td>1.686-1.690</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>150324 TD3</td>
<td>中津川市津戸</td>
<td>sand</td>
<td>木曽谷層</td>
<td>opx</td>
<td>pm, ab</td>
<td>1.501-1.504</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

3.3.3 OSL 年代測定
2.3.2 の装置を用いて堆積物中の石英粒子の蓄積線量を Single aliquot regenerative dose (SAR) 法（Murray and Wintle, 2000）により測定した。励起光は青色発光ダイオード（470 nm）である。測定手順を表 3.3-3 に示す。ブレオートは 240 ℃・10 秒、カットヒートは 200 ℃・10 秒で行った。また、試料に混入した長石粒子からの OSL を避けるため、青色発光ダイオードで励起する前に、赤外光を試料に当てた。年間線量は、堆積物試料を乳鉢ですりつぶした後、U、Th、K、Rb の含有量を ICP-MS または原子吸光法で測定し、Guérin et al (2011) の変換係数を
用いて算出した。宇宙線については、Prescott and Hutton (1994)9)に従って評価を行った。粒径に応じたβ線の寄与については、Aitken (1985)10)に従って評価した。年間線量についてまとめたものを表 3.3-4に示す。

天然の蓄積線量が適切に測定できているかを確認するため、ドーズリカバリーテストを行った。9～15アリコット（石英試料を直径1 cmの試料皿に載せたもので、Freiberg社製のアリコット作成キットを使用して作成）を用いて測定した結果、全試料で良好な値（1.0±0.1）を示した（表3.3-5）。また、リサイクリングレイショーについても1.0±0.1の範囲にあることから、テストドーズによる感度補正が機能していると考えられる（表3.3-5）。

表 3.3-3 OSL 測定手順

<table>
<thead>
<tr>
<th>Step</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Give dose (0 Gy if natural)</td>
</tr>
<tr>
<td>2</td>
<td>Preheat at 240 °C for 10 s</td>
</tr>
<tr>
<td>3</td>
<td>OSL measurement at 125 °C for 40 s</td>
</tr>
<tr>
<td>4</td>
<td>Give test dose</td>
</tr>
<tr>
<td>5</td>
<td>Cut-heat at 200 °C for 10 s</td>
</tr>
<tr>
<td>6</td>
<td>IR stimulation at 60 °C for 100 s</td>
</tr>
<tr>
<td>7</td>
<td>OSL measurement at 125 °C for 40 s</td>
</tr>
<tr>
<td>8</td>
<td>Hot bleach at 280 °C for 40 s</td>
</tr>
<tr>
<td>9</td>
<td>Repeat from step 1 to 8</td>
</tr>
</tbody>
</table>

表 3.3-4 河成段丘堆積物の年間線量

<table>
<thead>
<tr>
<th>Sample</th>
<th>K (ppm)</th>
<th>Rb (ppm)</th>
<th>Th (ppm)</th>
<th>U (ppm)</th>
<th>mean φ</th>
<th>Wcn (%)</th>
<th>Dnβ</th>
<th>Dnγ</th>
<th>Wcs (%)</th>
<th>Dsβ</th>
<th>Dsγ</th>
<th>Cosmic</th>
<th>Dn</th>
<th>Ds</th>
</tr>
</thead>
<tbody>
<tr>
<td>SG-1</td>
<td>1.2</td>
<td>47</td>
<td>14.9</td>
<td>2.1</td>
<td>161.5</td>
<td>22.5</td>
<td>1.22</td>
<td>1.03</td>
<td>39.7</td>
<td>1.05</td>
<td>0.90</td>
<td>0.18</td>
<td>2.43</td>
<td>2.13</td>
</tr>
<tr>
<td>SG-2</td>
<td>1.6</td>
<td>98</td>
<td>29.1</td>
<td>2.3</td>
<td>161.5</td>
<td>12.5</td>
<td>1.93</td>
<td>1.83</td>
<td>30.3</td>
<td>1.62</td>
<td>1.58</td>
<td>0.18</td>
<td>3.93</td>
<td>3.38</td>
</tr>
<tr>
<td>SG-3</td>
<td>1.8</td>
<td>112</td>
<td>10.8</td>
<td>1.8</td>
<td>161.5</td>
<td>21.0</td>
<td>1.48</td>
<td>0.95</td>
<td>30.4</td>
<td>1.35</td>
<td>0.88</td>
<td>0.18</td>
<td>2.61</td>
<td>2.41</td>
</tr>
<tr>
<td>TDU</td>
<td>1.2</td>
<td>41</td>
<td>13.3</td>
<td>1.9</td>
<td>161.5</td>
<td>83.6</td>
<td>0.70</td>
<td>0.62</td>
<td>89.7</td>
<td>0.68</td>
<td>0.60</td>
<td>0.20</td>
<td>1.52</td>
<td>1.48</td>
</tr>
<tr>
<td>TDB</td>
<td>1.1</td>
<td>42</td>
<td>20.9</td>
<td>3.2</td>
<td>161.5</td>
<td>28.8</td>
<td>1.25</td>
<td>1.26</td>
<td>60.5</td>
<td>0.97</td>
<td>1.01</td>
<td>0.15</td>
<td>2.65</td>
<td>2.12</td>
</tr>
</tbody>
</table>

Wcn:自然含水比、Dn:Wcnを用いた年間線量、Wcs:飽和含水比、Ds:Wcsを用いた年間線量

表 3.3-5 ドーズリカバリーテスト、リサイクリングレイショー、R0/Rn レイショー

<table>
<thead>
<tr>
<th>Sample</th>
<th>Dose recovery</th>
<th>Recycling ratio</th>
<th>R0/Rn ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>SG-1</td>
<td>0.95±0.02</td>
<td>0.99±0.04</td>
<td>0.01</td>
</tr>
<tr>
<td>SG-2</td>
<td>1.00±0.02</td>
<td>1.08±0.04</td>
<td>0.02</td>
</tr>
<tr>
<td>SG-3</td>
<td>1.04±0.02</td>
<td>1.02±0.05</td>
<td>0.01</td>
</tr>
<tr>
<td>TDU</td>
<td>1.02±0.05</td>
<td>1.04±0.05</td>
<td>-0.0004</td>
</tr>
<tr>
<td>TDB</td>
<td>0.90±0.03</td>
<td>0.98±0.01</td>
<td>0.02</td>
</tr>
</tbody>
</table>

各試料の減衰曲線を図3.3-2に示す。また、OSL年代測定結果を図3.3-3に示す。SG-1、SG-3、TDUは年代誤差を含めておよそ40-50 kaの年代を示した。SG-2はこれらよりも若い20-30 kaの年代を示した。TDUはおよそ80 kaの年代を示したが、これは含水比が高いことが原因である可能性がある（表3.3-4）。また、測定した石英試料のOSL信号には、光に対する反応速度が比較的遅い成分からの信号（medium、slow成分）が含まれているため、年代値が小さく見積もられている可能性がある。そのため、反応速度の遅い成分（fast成分）からの信号だけを用いて
年代測定を試み、既往研究の段丘編年、テフラ対比、二次堆積などを考慮して堆積時期を検討する必要がある。

図 3.3-2 河成段丘堆積物の減衰曲線

図 3.3-3 OSL 年代測定結果

3.4 技術検討

本共同研究において、石英の OSL 信号特性と TL 信号特性については、現時点で後背地の変化を捉えることは困難であると考えられる。一方、ESR 信号特性は、堆積物の供給源の変化を示している可能性がある測定結果が得られた。OSL 信号や TL 信号では、どこに捕獲された不対電子に由来する信号なのかを明確にできないが、ESR 信号ではそれを明らかにすることができ、後背地解析を行う上で適していると考えられる。

このことから、ここでは ESR 信号特性の結果とその他の分析・観察の結果を比較して検討する。ESR 測定の結果、特に深度 12〜16 m 付近の堆積物は有意に弱い信号強度を示した。この深度の石英粒子の形態や表面の状態は、他の深度の粒子と異なる特徴をもつ。この深度の堆積物に含まれるテフラは御岳山起源（約 10 万年前）であり、これに対比されるテフラは木曽川沿いの段で

付 3-20
丘堆積物中にも分布する。これらの特徴から、約 10 万年前にこの付近には木曽川によって堆積物が供給されていた可能性が考えられる。

また、深度 12 〜 16 m 付近を境に、下部より上位の方が ESR 信号は、Al 中心信号の強度が弱く、E1'中心信号の強度が強い。平成 26 年度共同研究の結果では、この変化と調和的に、深度 16 m 付近を境に、下部より上位の方が CaO の含有率が大きい。また、深度 10 m 付近から 2 m 付近にかけて、上方粗粒化傾向と淘汰傾向が明確であり、XRF による硫黄含有率から海成層と判断されている。さらに、コア深度 10 〜 14 m の粗粒な砂礫層は低海水準期の堆積物で、谷口から距離を踏まえると、土岐川(庄内川)の供給物を主とする可能性が高いと考えられている。

このように複数の手法を組み合わせることで、供給源の変化を考察することが可能であると考えられる。今後は、堆積物を共有したと考えられる河川の流域に分布する岩体との関係を検討することが望まれる。山地の形成過程に関する情報を取得するための後背地解析に用いる堆積物は、主に河川によって運ばれる岩から、河川性の堆積物の堆積時期の決定が重要となる。その点で、OSL 年代測定法は風化に強い石英を用いて、粒子の堆積年代を直接求めることができる手法として有効と考えられ、ポーリングコアや段丘堆積物の露頭から採取される河川性の堆積物の年代測定法として技術開発が望まれる。

本共同研究で適用した手法について、平成 26 年度共同研究において検討したフローを改訂すると図 3.4-1 になる。まず、採取した試料は、OSL 年代測定用に用いるものと、それ以外の試料に分ける。OSL 年代測定用の試料は、採取時から測定まで光に曝さないように行う。それ以外の試料は、そのまま粒度分析を行った後、XRF 分析用、SEM 観察用、テフラ分析用に分ける。XRF 分析用は、粉砕・プレスして測定を行う。SEM 観察用は重液分離により石英を抽出して観察し、残りは薬品処理によって石英の純度を高めて ESR 測定に用いる。ESR 分析の後に参考として OSL 測定と TL 測定に用いることも可能である。テフラ分析用は、試料調製を行い、検鏡・屈折率・化学分析等を行い、OSL 年代測定の結果と比較・検討する。

図 3.4-1 石英粒子等を用いた後背地解析の研究フロー

付 3-21
4．まとめ

平野や盆地に分布する未固結堆積物を用いた後背地解析技術の構築に必要な分析技術の検討を行った。平成27年度は、平成26年度共同研究と同じボーリング試料について、異なる深度の試料を用いてESR・OSL・TL測定数を増やした。その結果、石英のOSL信号特性とTL信号特性については、現時点で後背地の変化を捉えることは困難であると考えられるが、ESR信号特性は、堆積物の供給源の変化を示している可能性がある測定結果が得られた。

ESR測定において、有意に弱い信号強度を示した深度12〜16m付近の堆積物の石英と考えられる多くの粒子の表面は、他の深度の粒子と異なる形態や表面の状態が観察された。また、この深度の堆積物に含まれるテフラは御岳山起源（約10万年前）であり、これに対比されるテフラは木曽川沿いの段丘堆積物中にも分布する。これらの結果と平成26年度に測定した粒度分析とXRF分析の結果を用いることで、供給源の変化を考察することが可能と考えられる。

最後に、本共同研究において実施した分析と今後の課題も踏まえて、作業フロー図の改訂を行った。

引用文献

1) 丹羽雄一、田力正好、安江健一、大上隆史、須貝俊彦、ボーリングコア解析に基づく後期更新世以降の濃尾平野西部の地形形成、日本地理学会2008年春季学術大会、2008, p.158.
6) 板宮裕美、杉田律子、須貝俊彦、石英の表面形態を用いた後背地推定のための基礎的検討、日本地質学会第122年学術大会講演要旨、2015, p.255.
EPMA による微小領域鉱物の分析技術における干渉補正等に関する研究

平成 27 年度共同研究報告書

平成 28 年 1 月

国立大学法人名古屋大学
国立研究開発法人日本原子力研究開発機構
目 次

1. 概要 .. 1
 1.1 共同研究名 .. 1
 1.2 研究目的 .. 1
 1.3 実施期間 .. 1

2. 研究方法 .. 2
 2.1 希土類元素のエックス線干渉補正方法の評価 ... 2
 2.2 顕微ラマン分光法の適用性の検討 .. 5

3. 研究成果 .. 6
 3.1 希土類元素の干渉補正 .. 6
 3.1.1 標準物質の安定性 .. 6
 3.1.2 干渉補正方法の評価 .. 11
 3.2 顕微ラマン分光法を用いたメタミクト化検出の検討 .. 11
 3.2.1 点分析（point analysis） ... 13
 3.2.2 マッピング（Raman mapping） .. 17

4. まとめ .. 19

引用文献 .. 19

図 目 次

図 3.1-1 電子線照射に対する安定性 .. 7
図 3.2-1 メタミクト化に伴うジルコンラマンスペクトルの変化 .. 12
図 3.2-2 ラマン分光分析に用いたジルコン粒子 .. 12
図 3.2-3 分析に用いたジルコン粒子のラマン分光分析結果（点分析） 13
図 3.2-4 ジルコンのラマンマッピング図 .. 18
図 3.2-5 ジルコン粒子の BSE 像と CL 像 .. 18

表 目 次

表 2.1-1 エックス線の干渉の例 .. 3
表 3.1-1 LaF₃ の電流照射によるエックス線強度の変化 ... 8
表 3.1-2 La₅P₃O₁₄ の電流照射によるエックス線強度の変化 .. 9
表 3.1-3 La₅Si₅O₁₄ の電流照射によるエックス線強度の変化 ... 10
表 3.1-4 Gd Lα 線に対する La の干渉補正係数 .. 11
表 3.2-1 core と rim3 の 950-1050 cm⁻¹ 領域におけるラマンスペクトルデータ 14

付 4・i
1. 概要

1.1 共同研究名

EPMA による微小領域鉱物の分析技術における干渉補正等に関する研究

1.2 研究目的

高レベル放射性廃棄物などの地層処分は、人工バリアと天然の地層を適切に組み合わせたシステムによって、数万年以上にも及び極めて長い時間スケールの安全を確保しようとするものである。日本列島は地殻構造に位置していることから、諸外国に比べて地殻変動や火成活動などが活発であるため、地層処分事業においては将来の自然現象に伴う地質環境の変動スケールや復元性を把握しておくことが特に重要となる。今後、地層処分の技術的信頼性を更に高めていく上でも、実際の地質環境を構成する様々な要素についての過去の変動の履歴や現象プロセスなどを把握するための調査技術を整備するとともに、これらの科学的知見を統合しつつ、二次元的に表現できる数値モデルを開発することは極めて有効となる。このため、国立研究開発法人日本原子力研究開発機構（以下、「原子力機構」という）が、経済産業省から受託して実施する「地質環境長期安定性評価確認技術開発」では、将来の自然現象に伴う超長期の地質環境の変動を考慮できる数値モデル及びその解析評価に必要な調査技術の研究開発を進めている。この調査技術においては、超長期の自然現象の一つである山地の形成過程に関する情報を取得するための後背地解析技術に関する研究開発を進めている。

この研究開発では、高精度な岩石分類や火山灰対比のための鉱物の化学組成分析技術が必要となる。電子線マイクロアナライザ（Electron Probe Micro Analyzer；以下、「EPMA」という）は、鉱物中の数 μm 〜十数 μm という微小領域の化学組成を精度良く分析できることから、これまで困難であった高精度な岩石分類や火山灰対比が可能であり、山地の形成過程における堆積物の供給源の解明や堆積時期の決定に寄与することができる。

国立大学法人名古屋大学 年代測定総合研究センター（以下、「名古屋大学」という）は、EPMA に関する高度な技術と知識を有しており、かつこれまでに EPMA を用いた分析法の開発実績がある。原子力機構は、微小領域の鉱物の化学組成の分析が可能な FE-EPMA（FE: Field Emission）を所有している。そのため、本共同研究を行うことで、名古屋大学は原子力機構の FE-EPMA を使うことにより、これまでに得ることができなかったより微小な領域を対象とした分析技術を活用した分析法の開発が可能になるとともに、原子力機構は、EPMA を活用した微小領域の分析技術に基づく後背地解析技術に関する研究開発を効果的かつ効率的に実施することができる。

1.3 実施期間

平成 27 年 9 月 1 日〜平成 28 年 1 月 29 日

付 4-1
2. 研究方法

本研究では、後背地解析技術に関する研究開発に必要な岩石分類や火山灰対比を高精度に行うためのEPMA分析技術において、鉱物の微小領域の分析に着目しながら、希土類元素のエックス線干渉補正方法の評価および、ジルコンやモナズ石の状態分析のための顕微ラマン分析法の適用性的検討等、最新の知見を踏まえた評価や分析を試行し、得られた成果を整理する。

2.1 希土類元素のエックス線干渉補正方法の評価

鉱物粒子の微小領域に含まれる元素を定量して粒子各部分の形成年代を測定するサブグレイン年代測定で対象鉱物として広く用いられているジルコンやモナズ石には、一般的に希土類元素が含まれている。この希土類元素の存在度は、鉱物が形成された環境を反映していると考えられる。したがって、これらの鉱物のサブグレイン年代測定に加えて希土類元素存在度を測定することにより、形成年代と形成環境を同時に知ることができ、より精密な地質情報を得ることが可能になると考えられる。

EPMAを用いた分析は、加速した電子を試料に照射し、照射部位から発生する特性エックス線の強度を用いて微小領域の化学組成を測定するものである。そのため、正確な化学組成を得るためには、特性エックス線の強度を正確に測定することが重要であるが、測定対象の元素の近傍に他の元素の特性エックス線等が存在する場合、エックス線の干渉が生じ、見かけ上両者の和の強度を測定することになる。エックス線の干渉がある場合は、測定対象ではない元素のエックス線の影響を補正（干渉補正）する必要がある。CHIME年代測定（Suzuki and Adachi, 1991a）; Suzuki and Adachi, 1991b; Suzuki and Kato, 2008）及び希土類元素の分析では、表2.1-1のようなエックス線の干渉を考慮しなければならない。一次線と高次線の干渉であれば波高分析器により影響を低減することが可能であるが、一次線同士の干渉の場合は必ず補正を行わなければならない。エックス線の干渉を補正する方法としては、エックス線强度を補正する方法とマトリクス補正後の化学組成を用いる二つの方法がある。

エックス線強度で補正する場合は、妨害元素の主要なピーク（Kα線など妨害元素の定量分析に用いるピーク）位置と、妨害される元素のピーク位置の強度比を用いて、次の式（Åmli and Griffin, 1975）を用いて補正する。

\[
I_{\text{true}} = I_{\text{observed}} - f \cdot I_{\text{interfering}}
\]

ここで、

- \(I_{\text{true}}\)：妨害される元素の真のエックス線強度
- \(I_{\text{observed}}\)：妨害される元素の見かけのエックス線強度
- \(f\)：妨害元素の強度比（干渉補正係数）
- \(I_{\text{interfering}}\)：妨害元素の主要ピークの強度

を示している。

Åmli and Griffin (1975) は、妨害される元素を含まない標準物質を用いて実験的に干渉補正係数を求め、希土類元素の測定に応用した。また、Exley (1980) や Roeder (1985) はピーク形状を数学的に記述して干渉補正係数を求めることを試みた。この手法はエックス線強度の測定のみによって精度及び正確さが決まるため、妨害される元素が含まれていないことさえ確認できれば
ば化学組成未知でもかまわないという利点がある。
ところが、妨害元素の強度比には物質依存性がある。まず、試料から発生するエックス線のエネルギー（E.I.）は、

$$E.I. \propto \int \phi(\rho z) \exp(-\mu \text{cosec} \psi \rho z) d(\rho z)$$

となる。ここで、

\(\rho z\)	質量深さ
\(\phi(\rho z)\)	発生関数
\(\mu\)	質量吸収係数
\(\psi\)	エックス線取り出し角

である。したがって、干渉補正係数は、

$$f \propto \frac{\int \phi(\rho z) \text{interfered} \exp(-\mu \text{interfered} \text{cosec} \psi \rho z) d(\rho z)}{\int \phi(\rho z) \text{interfering} \exp(-\mu \text{interfering} \text{cosec} \psi \rho z) d(\rho z)}$$

と表すことができる。ここで、\(\mu \text{interfered}\) 及び\(\mu \text{interfering}\) は、それぞれ妨害される元素のピーク位置と妨害元素の主要なピーク位置での質量吸収計数である。質量吸収係数は化学組成に依存するため、物質がことなるならばこれらの値が変化する。また、発生関数も化学組成に依存する。したがって、発生関数が同一で、試料内部で発生するエックス線強度にまったく違いがなかったと仮定しても、化学組成が異なれば干渉補正係数は異なるものになる。実際には発生関数も化学組成に依存するため、物質依存性を完全に排除することはできない。測定対象の化学組成が干渉補正係数を求めるために用いた標準物質に類似しているならば干渉補正係数はほぼ同じになるが、後背地解析のためにさまざまな鉱物を測定する場合には、測定対象鉱物と似た化学組成の標準物質で干渉補正係数を決定するのは困難である。

Donovan et al. (1993)は、より物質依存性の少ない干渉補正を実現するため、エックス線強度ではなく補正計算後の化学組成を用いて干渉補正を行う方法を提唱し

<table>
<thead>
<tr>
<th>表 2.1-1 エックス線の干渉の例</th>
</tr>
</thead>
<tbody>
<tr>
<td>測定元素</td>
</tr>
<tr>
<td>U</td>
</tr>
<tr>
<td>Pb</td>
</tr>
<tr>
<td>Pb</td>
</tr>
<tr>
<td>La</td>
</tr>
<tr>
<td>Ce</td>
</tr>
<tr>
<td>Pr</td>
</tr>
<tr>
<td>Sm</td>
</tr>
<tr>
<td>Eu</td>
</tr>
<tr>
<td>Gd</td>
</tr>
<tr>
<td>Tb</td>
</tr>
<tr>
<td>Dy</td>
</tr>
<tr>
<td>Ho</td>
</tr>
<tr>
<td>Er</td>
</tr>
<tr>
<td>Tm</td>
</tr>
<tr>
<td>Yb</td>
</tr>
<tr>
<td>Lu</td>
</tr>
</tbody>
</table>

付 4-3
た。ZAF法によるマトリクス補正では、未知試料の化学組成は以下の式で求められ、

\[C_{\text{unknown}} = \frac{C_{A}^{\text{standard}}}{[\text{ZAF}]_{A}^{\text{standard}}} \cdot [\text{ZAF}]_{A}^{\text{unknown}} \cdot \frac{I_{A}^{\text{unknown}}(\lambda_{A})}{I_{A}^{\text{standard}}(\lambda_{A})} \]

それぞれ、

- \(C_{\text{unknown}} \) 未知試料の化学組成
- \(C_{A}^{\text{standard}} \) 標準物質の化学組成
- \([\text{ZAF}]_{A}^{\text{standard}}\) 波長\(\lambda_{A} \)における標準物質の補正係数
- \([\text{ZAF}]_{A}^{\text{unknown}}\) 波長\(\lambda_{A} \)における未知試料の補正係数
- \(I_{A}^{\text{unknown}}(\lambda_{A}) \) 波長\(\lambda_{A} \)における未知試料のエックス線強度
- \(I_{A}^{\text{standard}}(\lambda_{A}) \) 波長\(\lambda_{A} \)における標準物質のエックス線強度

を示している。また、エックス線強度での干渉補正は、

\[I_{A}^{\text{unknown}}(\lambda_{A}) = I_{A}^{\text{unknown}}(\lambda_{A}) - I_{B}^{\text{unknown}}(\lambda_{A}) \]

と表すことができる。ここで、\(I_{B}^{\text{unknown}}(\lambda_{A}) \)は、妨害元素Bの波長\(\lambda_{A} \)におけるエックス線強度である。したがって、原理的には、

\[C_{B}^{\text{unknown}} = \frac{C_{B}^{\text{standard}}}{[\text{ZAF}]_{A}^{\text{standard}}} \cdot [\text{ZAF}]_{A}^{\text{unknown}} \cdot \frac{I_{B}^{\text{unknown}}(\lambda_{A})}{I_{B}^{\text{standard}}(\lambda_{A})} \]

となる。ここで、\(C_{B}^{\text{standard}} \)は、妨害元素Bを含み、妨害される元素Aを含まない標準物質を表す。したがって、

\[I_{B}^{\text{unknown}}(\lambda_{A}) = \frac{[\text{ZAF}]_{A}^{\text{standard}}}{C_{B}^{\text{standard}}} \cdot C_{B}^{\text{unknown}} \cdot [\text{ZAF}]_{A}^{\text{unknown}} \cdot I_{B}^{\text{standard}}(\lambda_{A}) \]

となる。また、妨害元素Bの濃度は通常の分析で求められるため、

\[C_{B}^{\text{unknown}} = \frac{C_{B}^{\text{standard}}}{[\text{ZAF}]_{A}^{\text{standard}}} \cdot [\text{ZAF}]_{B}^{\text{unknown}} \cdot \frac{I_{B}^{\text{unknown}}(\lambda_{B})}{I_{B}^{\text{standard}}(\lambda_{B})} \]

と表される。これらを用いて干渉補正を行うことが可能になるが、エックス線強度の項があるため、マトリクス補正の繰り返し計算の中で行う必要がある。しかし、干渉の程度がそれほど大きくない場合は、近似的に、

\[C_{A}^{\text{true}} = C_{A}^{\text{observed}} - kC_{B} \]
とし、エックス線の干渉がないものとしてマトリクス補正を行った後に得られた化学組成を用いて干渉補正を行うことができる Reed and Buckley (1998)8)。ここで、kは化学組成で干渉補正を行う場合の干渉補正係数である。Donovan et al. (1993)7) はエックス線の強度で補正するよりも彼らの提唱した補正を用いた方がより正確な化学組成が得られることを示した。

この方法による補正係数を求めるためには、妨害元素の化学組成を正確に求める必要がある。したがって、補正計算モデルや用いられるパラメーターが適切でなければならない。これは、妨害元素の濃度が既知の標準物質を用いる場合でも同様である。また、理論的には組成既知であれば妨害される元素を含む標準物質を用いることが可能であるが、減算における誤差伝播を考慮すると、エックス線強度による干渉補正係数と同様、妨害される元素を含まない標準物質を用いることが望ましい。

これらのことから、名古屋大学が保有する日本電子株式会社製 EPMA（JCXA-733）を用いて二つの補正方法の比較を行うとともに、装置依存性の有無についても検討した。また、希土類元素の定量分析に適切な標準物質に関する検討も実施した。

2.2 顕微ラマン分光法の適用性の検討

EPMA による CHIME 年代測定に限らず、二次イオン質量分析計（SIMS）やレーザーアブレーション誘導結合プラズマ質量分析計（LA-ICP-MS）を用いたサブグレイン年代測定では、地質学的な熱イベントの時以外は鉱物の微小領域が閉鎖系であったことを仮定するのが一般的である。したがって、熱イベント以外の要因で閉鎖系の仮定が成り立たず物質の移動が生じると正確な年代が得られなくなることがある。しかし、鉱物中のウランやトリウムによる放射線の影響により結合の格子が破壊（メタミクト化）されてしまい、閉鎖系の仮定が成立しない場合がある。この問題は古くから指摘されていたが (Tilton et al., 1957; Scárer and Allègre, 1982; Suzuki, 1987), Kusiak et al. (2013) が SIMS を用いたマッピングによる詳細を明らかにし、熱イベントによる拡散では説明のつかない鉛の不均質があることが示された。そのため、サブグレイン年代測定に先立ち、あらかじめメタミクト化された部位を明らかにしておくことで、より正確な年代が得られると考えられる。そこで、ジルコンやモナズ石のメタミクト化されている部位の検出方法として、結晶状態の把握に有効な顕微ラマン分光法の適用性について検討した。
3. 研究成果

3.1 希土類元素の干渉補正

希土類元素の干渉補正について、エックス線強度で補正する方法と化学組成で補正する方法を比較するため、LaF₃、La₃P₅O₁₄及びLa-ケイ酸塩ガラスの三種類の標準物質の測定を行った。測定は、名古屋大学の現有装置（日本電子株式会社製 JCXA-733）を用いて、加速電圧 15 kV で行った。

3.1.1 標準物質の安定性

CHIME 年代測定では微量の鉛を測定する必要があるため、大電流かつ長時間測定が必要になる。したがって、希土類元素の標準物質が電子線照射によりダメージを受けやすいと正しい化学組成が得られなくなる。そこで、様々な電流の電子線を標準物質に照射し、エックス線強度が時間とともにどのように変化するか測定した（図 3.1-1 及び表 3.1-1～表 3.1-3）。LaF₃及びLa-ケイ酸塩ガラスは200 nAの電流でも100秒間エックス線強度が変化せず、大電流照射でも安定であることが明らかになった。一方、La₃P₅O₁₄は、10 nA の電流でも強度の低下がみられ、50 nA以上の電流では完全に損傷する結果が得られた。したがって、La₃P₅O₁₄を大電流での分析における標準物質とするのは不適切であると考えられる。エックス線強度が単調減少している領域であれば、試料の損傷による強度低下を補正する手法（Nielsen and Sigurdsson, 198113; Walker and Howitt, 198914; Stormer et al., 199315; Piccoli and Candela, 199416; Spray and Rae, 199517; Morgan and London, 199618）が適用できる可能性も考えられる。しかし、100 nAや200 nAの電流ではきわめて短時間しか測定できないことや、LaF₃やLa-ケイ酸塩ガラスのような安定な物質が存在することを考えると、La₃P₅O₁₄を積極的に用いる必然性はないと考えられる。

名古屋大学ではLa-ケイ酸塩ガラスを、日本原子力研究開発機構東濃地科学センターではフッ化物及び純元素を希土類元素の標準物質として使用しているため、大電流分析における標準物質の損傷の問題は発生しない。しかし、他の研究機関等ではLa₃P₅O₁₄などのリン酸塩を標準物質に使用している可能性もあるため、他機関の分析値を参照する場合は標準物質及びその測定精度について注意する必要がある。
図 3.1-1 電子線照射に対する安定性
LaF₃、La₅PO₁₄ 及び La-ケイ酸塩ガラスに 5 nA、10 nA、50 nA、100 nA 及び 200 nA の電流を照射したときのエックス線強度の時間変化。ビーム径は 20 μm。エックス線強度は電流 1 nA あたりの cps。
<table>
<thead>
<tr>
<th>時間 / 秒</th>
<th>強度 / cps nA^{-1}</th>
<th>時間 / 秒</th>
<th>強度 / cps nA^{-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5 nA</td>
<td>10 nA</td>
<td>50 nA</td>
</tr>
<tr>
<td>1</td>
<td>32.40</td>
<td>28.60</td>
<td>29.58</td>
</tr>
<tr>
<td>2</td>
<td>29.80</td>
<td>30.40</td>
<td>30.14</td>
</tr>
<tr>
<td>3</td>
<td>32.40</td>
<td>28.80</td>
<td>29.10</td>
</tr>
<tr>
<td>4</td>
<td>30.00</td>
<td>29.10</td>
<td>30.24</td>
</tr>
<tr>
<td>5</td>
<td>29.60</td>
<td>28.10</td>
<td>30.10</td>
</tr>
<tr>
<td>6</td>
<td>30.20</td>
<td>24.80</td>
<td>30.04</td>
</tr>
<tr>
<td>7</td>
<td>31.80</td>
<td>29.70</td>
<td>28.78</td>
</tr>
<tr>
<td>8</td>
<td>33.00</td>
<td>29.70</td>
<td>30.00</td>
</tr>
<tr>
<td>9</td>
<td>27.00</td>
<td>31.10</td>
<td>31.10</td>
</tr>
<tr>
<td>10</td>
<td>29.20</td>
<td>30.70</td>
<td>28.96</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>31.20</td>
<td>29.00</td>
<td>28.50</td>
</tr>
<tr>
<td>12</td>
<td>28.40</td>
<td>30.60</td>
<td>30.54</td>
</tr>
<tr>
<td>13</td>
<td>30.60</td>
<td>30.50</td>
<td>28.14</td>
</tr>
<tr>
<td>14</td>
<td>31.20</td>
<td>28.30</td>
<td>28.84</td>
</tr>
<tr>
<td>15</td>
<td>32.60</td>
<td>30.20</td>
<td>29.32</td>
</tr>
<tr>
<td>16</td>
<td>27.20</td>
<td>29.40</td>
<td>29.16</td>
</tr>
<tr>
<td>17</td>
<td>26.60</td>
<td>29.80</td>
<td>29.10</td>
</tr>
<tr>
<td>18</td>
<td>27.00</td>
<td>30.30</td>
<td>29.56</td>
</tr>
<tr>
<td>19</td>
<td>26.60</td>
<td>31.70</td>
<td>29.44</td>
</tr>
<tr>
<td>20</td>
<td>30.40</td>
<td>28.30</td>
<td>29.74</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>27.40</td>
<td>32.00</td>
<td>28.92</td>
</tr>
<tr>
<td>22</td>
<td>29.80</td>
<td>30.30</td>
<td>29.58</td>
</tr>
<tr>
<td>23</td>
<td>29.40</td>
<td>26.60</td>
<td>30.04</td>
</tr>
<tr>
<td>24</td>
<td>25.80</td>
<td>32.00</td>
<td>27.90</td>
</tr>
<tr>
<td>25</td>
<td>26.00</td>
<td>27.60</td>
<td>28.92</td>
</tr>
<tr>
<td>26</td>
<td>30.00</td>
<td>27.70</td>
<td>28.54</td>
</tr>
<tr>
<td>27</td>
<td>30.40</td>
<td>31.60</td>
<td>29.44</td>
</tr>
<tr>
<td>28</td>
<td>31.80</td>
<td>29.00</td>
<td>27.82</td>
</tr>
<tr>
<td>29</td>
<td>28.20</td>
<td>30.60</td>
<td>29.26</td>
</tr>
<tr>
<td>30</td>
<td>27.60</td>
<td>32.70</td>
<td>29.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>33.20</td>
<td>25.30</td>
<td>30.16</td>
</tr>
<tr>
<td>32</td>
<td>29.40</td>
<td>29.10</td>
<td>30.28</td>
</tr>
<tr>
<td>33</td>
<td>30.00</td>
<td>28.40</td>
<td>28.20</td>
</tr>
<tr>
<td>34</td>
<td>33.60</td>
<td>31.40</td>
<td>29.46</td>
</tr>
<tr>
<td>35</td>
<td>33.20</td>
<td>31.80</td>
<td>29.00</td>
</tr>
<tr>
<td>36</td>
<td>34.00</td>
<td>27.80</td>
<td>27.50</td>
</tr>
<tr>
<td>37</td>
<td>35.20</td>
<td>29.50</td>
<td>29.18</td>
</tr>
<tr>
<td>38</td>
<td>29.80</td>
<td>31.10</td>
<td>30.08</td>
</tr>
<tr>
<td>39</td>
<td>33.60</td>
<td>29.80</td>
<td>28.22</td>
</tr>
<tr>
<td>40</td>
<td>28.80</td>
<td>28.30</td>
<td>30.48</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>31.40</td>
<td>30.90</td>
<td>28.16</td>
</tr>
<tr>
<td>42</td>
<td>27.40</td>
<td>29.70</td>
<td>30.34</td>
</tr>
<tr>
<td>43</td>
<td>29.40</td>
<td>28.00</td>
<td>29.24</td>
</tr>
<tr>
<td>44</td>
<td>32.00</td>
<td>28.50</td>
<td>29.02</td>
</tr>
<tr>
<td>45</td>
<td>31.40</td>
<td>27.30</td>
<td>29.66</td>
</tr>
<tr>
<td>46</td>
<td>32.00</td>
<td>31.00</td>
<td>27.14</td>
</tr>
<tr>
<td>47</td>
<td>35.00</td>
<td>29.60</td>
<td>29.24</td>
</tr>
<tr>
<td>48</td>
<td>31.20</td>
<td>30.70</td>
<td>29.76</td>
</tr>
<tr>
<td>49</td>
<td>30.40</td>
<td>30.50</td>
<td>28.56</td>
</tr>
<tr>
<td>50</td>
<td>31.00</td>
<td>30.20</td>
<td>29.50</td>
</tr>
</tbody>
</table>
表 3.1-2 LaP$_2$O$_{14}$の電流照射によるエックス線強度の変化

<table>
<thead>
<tr>
<th>時間 /秒</th>
<th>照射電流 / 5 nA</th>
<th>10 nA</th>
<th>50 nA</th>
<th>100 nA</th>
<th>200 nA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.80</td>
<td>7.40</td>
<td>8.13</td>
<td>7.88</td>
<td>8.54</td>
</tr>
<tr>
<td>2</td>
<td>9.60</td>
<td>7.30</td>
<td>8.19</td>
<td>8.40</td>
<td>8.10</td>
</tr>
<tr>
<td>3</td>
<td>9.80</td>
<td>9.40</td>
<td>8.08</td>
<td>8.30</td>
<td>8.01</td>
</tr>
<tr>
<td>4</td>
<td>8.00</td>
<td>7.50</td>
<td>8.39</td>
<td>7.70</td>
<td>7.40</td>
</tr>
<tr>
<td>5</td>
<td>9.60</td>
<td>10.40</td>
<td>8.27</td>
<td>7.90</td>
<td>7.57</td>
</tr>
<tr>
<td>6</td>
<td>9.20</td>
<td>8.00</td>
<td>8.06</td>
<td>7.12</td>
<td>7.43</td>
</tr>
<tr>
<td>7</td>
<td>8.00</td>
<td>8.30</td>
<td>7.75</td>
<td>7.42</td>
<td>6.61</td>
</tr>
<tr>
<td>8</td>
<td>10.40</td>
<td>9.00</td>
<td>7.81</td>
<td>6.70</td>
<td>5.48</td>
</tr>
<tr>
<td>9</td>
<td>8.40</td>
<td>7.80</td>
<td>8.57</td>
<td>5.64</td>
<td>4.88</td>
</tr>
<tr>
<td>10</td>
<td>10.60</td>
<td>8.50</td>
<td>7.95</td>
<td>6.10</td>
<td>3.75</td>
</tr>
<tr>
<td>11</td>
<td>6.20</td>
<td>7.30</td>
<td>7.99</td>
<td>5.74</td>
<td>3.57</td>
</tr>
<tr>
<td>12</td>
<td>10.60</td>
<td>7.70</td>
<td>7.46</td>
<td>5.94</td>
<td>3.21</td>
</tr>
<tr>
<td>13</td>
<td>11.80</td>
<td>9.50</td>
<td>8.01</td>
<td>6.64</td>
<td>2.93</td>
</tr>
<tr>
<td>14</td>
<td>7.40</td>
<td>7.20</td>
<td>7.62</td>
<td>4.06</td>
<td>2.83</td>
</tr>
<tr>
<td>15</td>
<td>8.80</td>
<td>6.90</td>
<td>7.48</td>
<td>4.54</td>
<td>3.08</td>
</tr>
<tr>
<td>16</td>
<td>7.80</td>
<td>8.10</td>
<td>6.84</td>
<td>4.74</td>
<td>3.06</td>
</tr>
<tr>
<td>17</td>
<td>9.00</td>
<td>8.20</td>
<td>6.57</td>
<td>4.52</td>
<td>2.70</td>
</tr>
<tr>
<td>18</td>
<td>10.00</td>
<td>8.80</td>
<td>6.35</td>
<td>4.66</td>
<td>2.59</td>
</tr>
<tr>
<td>19</td>
<td>9.40</td>
<td>7.20</td>
<td>6.33</td>
<td>5.17</td>
<td>2.72</td>
</tr>
<tr>
<td>20</td>
<td>7.20</td>
<td>8.00</td>
<td>5.33</td>
<td>4.34</td>
<td>2.93</td>
</tr>
<tr>
<td>21</td>
<td>7.20</td>
<td>10.10</td>
<td>5.23</td>
<td>4.74</td>
<td>2.80</td>
</tr>
<tr>
<td>22</td>
<td>7.20</td>
<td>9.20</td>
<td>4.45</td>
<td>4.06</td>
<td>2.88</td>
</tr>
<tr>
<td>23</td>
<td>8.00</td>
<td>8.20</td>
<td>3.68</td>
<td>4.76</td>
<td>2.67</td>
</tr>
<tr>
<td>24</td>
<td>7.20</td>
<td>8.40</td>
<td>3.87</td>
<td>4.60</td>
<td>2.70</td>
</tr>
<tr>
<td>25</td>
<td>13.20</td>
<td>8.40</td>
<td>3.54</td>
<td>5.52</td>
<td>2.67</td>
</tr>
<tr>
<td>26</td>
<td>8.20</td>
<td>7.50</td>
<td>3.29</td>
<td>4.98</td>
<td>2.77</td>
</tr>
<tr>
<td>27</td>
<td>9.40</td>
<td>7.40</td>
<td>2.98</td>
<td>5.22</td>
<td>2.85</td>
</tr>
<tr>
<td>28</td>
<td>9.60</td>
<td>8.50</td>
<td>3.11</td>
<td>3.98</td>
<td>2.69</td>
</tr>
<tr>
<td>29</td>
<td>7.80</td>
<td>8.10</td>
<td>2.82</td>
<td>4.40</td>
<td>2.80</td>
</tr>
<tr>
<td>30</td>
<td>7.60</td>
<td>7.30</td>
<td>2.98</td>
<td>4.58</td>
<td>2.73</td>
</tr>
<tr>
<td>31</td>
<td>10.60</td>
<td>6.10</td>
<td>3.32</td>
<td>4.44</td>
<td>2.36</td>
</tr>
<tr>
<td>32</td>
<td>8.20</td>
<td>8.70</td>
<td>3.08</td>
<td>4.54</td>
<td>2.84</td>
</tr>
<tr>
<td>33</td>
<td>5.20</td>
<td>8.10</td>
<td>2.59</td>
<td>4.56</td>
<td>3.00</td>
</tr>
<tr>
<td>34</td>
<td>7.00</td>
<td>7.80</td>
<td>2.87</td>
<td>4.40</td>
<td>2.78</td>
</tr>
<tr>
<td>35</td>
<td>7.00</td>
<td>9.40</td>
<td>2.83</td>
<td>4.62</td>
<td>2.75</td>
</tr>
<tr>
<td>36</td>
<td>7.60</td>
<td>8.70</td>
<td>2.80</td>
<td>4.02</td>
<td>2.92</td>
</tr>
<tr>
<td>37</td>
<td>8.80</td>
<td>8.70</td>
<td>2.71</td>
<td>4.38</td>
<td>2.96</td>
</tr>
<tr>
<td>38</td>
<td>6.20</td>
<td>7.20</td>
<td>2.61</td>
<td>4.34</td>
<td>3.17</td>
</tr>
<tr>
<td>39</td>
<td>10.80</td>
<td>8.90</td>
<td>3.01</td>
<td>4.22</td>
<td>2.81</td>
</tr>
<tr>
<td>40</td>
<td>7.60</td>
<td>6.50</td>
<td>2.76</td>
<td>4.24</td>
<td>2.99</td>
</tr>
<tr>
<td>41</td>
<td>7.60</td>
<td>7.60</td>
<td>2.81</td>
<td>4.24</td>
<td>2.56</td>
</tr>
<tr>
<td>42</td>
<td>6.00</td>
<td>8.50</td>
<td>2.82</td>
<td>3.82</td>
<td>2.66</td>
</tr>
<tr>
<td>43</td>
<td>7.60</td>
<td>7.10</td>
<td>2.80</td>
<td>4.60</td>
<td>2.88</td>
</tr>
<tr>
<td>44</td>
<td>11.20</td>
<td>8.70</td>
<td>3.00</td>
<td>4.34</td>
<td>2.94</td>
</tr>
<tr>
<td>45</td>
<td>10.40</td>
<td>9.80</td>
<td>2.76</td>
<td>4.34</td>
<td>2.78</td>
</tr>
<tr>
<td>46</td>
<td>7.20</td>
<td>7.40</td>
<td>2.78</td>
<td>4.04</td>
<td>2.87</td>
</tr>
<tr>
<td>47</td>
<td>8.40</td>
<td>8.40</td>
<td>2.92</td>
<td>4.12</td>
<td>2.65</td>
</tr>
<tr>
<td>48</td>
<td>7.80</td>
<td>8.20</td>
<td>2.85</td>
<td>3.92</td>
<td>3.17</td>
</tr>
<tr>
<td>49</td>
<td>9.20</td>
<td>8.50</td>
<td>3.08</td>
<td>4.18</td>
<td>3.07</td>
</tr>
<tr>
<td>50</td>
<td>8.60</td>
<td>7.60</td>
<td>2.93</td>
<td>4.12</td>
<td>2.87</td>
</tr>
</tbody>
</table>
表 3.1-3 La-ケイ酸塩ガラスの電流照射によるエックス線強度の変化

<table>
<thead>
<tr>
<th>時間 / 秒</th>
<th>照射電流 / 5 nA</th>
<th>照射電流 / 10 nA</th>
<th>照射電流 / 50 nA</th>
<th>照射電流 / 100 nA</th>
<th>照射電流 / 200 nA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.80</td>
<td>2.10</td>
<td>2.96</td>
<td>2.89</td>
<td>2.73</td>
</tr>
<tr>
<td>2</td>
<td>2.00</td>
<td>3.50</td>
<td>2.46</td>
<td>2.90</td>
<td>2.94</td>
</tr>
<tr>
<td>3</td>
<td>2.40</td>
<td>3.10</td>
<td>2.52</td>
<td>2.88</td>
<td>2.86</td>
</tr>
<tr>
<td>4</td>
<td>3.60</td>
<td>3.50</td>
<td>3.22</td>
<td>2.78</td>
<td>2.96</td>
</tr>
<tr>
<td>5</td>
<td>3.60</td>
<td>3.40</td>
<td>2.88</td>
<td>2.76</td>
<td>2.95</td>
</tr>
<tr>
<td>6</td>
<td>3.20</td>
<td>3.20</td>
<td>2.70</td>
<td>2.65</td>
<td>2.88</td>
</tr>
<tr>
<td>7</td>
<td>4.80</td>
<td>4.20</td>
<td>2.80</td>
<td>2.68</td>
<td>2.84</td>
</tr>
<tr>
<td>8</td>
<td>1.00</td>
<td>2.50</td>
<td>2.64</td>
<td>3.17</td>
<td>2.87</td>
</tr>
<tr>
<td>9</td>
<td>3.20</td>
<td>4.00</td>
<td>2.88</td>
<td>2.83</td>
<td>2.92</td>
</tr>
<tr>
<td>10</td>
<td>2.20</td>
<td>4.10</td>
<td>2.92</td>
<td>3.06</td>
<td>2.87</td>
</tr>
<tr>
<td>11</td>
<td>2.40</td>
<td>3.10</td>
<td>2.62</td>
<td>2.97</td>
<td>3.06</td>
</tr>
<tr>
<td>12</td>
<td>3.60</td>
<td>2.30</td>
<td>2.66</td>
<td>2.87</td>
<td>2.85</td>
</tr>
<tr>
<td>13</td>
<td>3.00</td>
<td>3.10</td>
<td>3.16</td>
<td>3.02</td>
<td>2.96</td>
</tr>
<tr>
<td>14</td>
<td>3.80</td>
<td>2.50</td>
<td>2.92</td>
<td>2.62</td>
<td>2.85</td>
</tr>
<tr>
<td>15</td>
<td>3.00</td>
<td>2.80</td>
<td>3.24</td>
<td>2.93</td>
<td>3.18</td>
</tr>
<tr>
<td>16</td>
<td>3.20</td>
<td>3.40</td>
<td>2.76</td>
<td>2.89</td>
<td>2.80</td>
</tr>
<tr>
<td>17</td>
<td>3.60</td>
<td>1.90</td>
<td>2.84</td>
<td>3.00</td>
<td>3.04</td>
</tr>
<tr>
<td>18</td>
<td>1.80</td>
<td>3.20</td>
<td>2.66</td>
<td>2.96</td>
<td>2.83</td>
</tr>
<tr>
<td>19</td>
<td>3.00</td>
<td>3.00</td>
<td>3.16</td>
<td>2.84</td>
<td>2.74</td>
</tr>
<tr>
<td>20</td>
<td>4.00</td>
<td>4.00</td>
<td>2.60</td>
<td>2.54</td>
<td>2.96</td>
</tr>
<tr>
<td>21</td>
<td>3.00</td>
<td>2.40</td>
<td>3.18</td>
<td>2.45</td>
<td>3.02</td>
</tr>
<tr>
<td>22</td>
<td>3.60</td>
<td>3.00</td>
<td>2.82</td>
<td>2.73</td>
<td>2.95</td>
</tr>
<tr>
<td>23</td>
<td>2.80</td>
<td>2.30</td>
<td>2.60</td>
<td>2.69</td>
<td>2.86</td>
</tr>
<tr>
<td>24</td>
<td>2.80</td>
<td>2.70</td>
<td>3.02</td>
<td>2.85</td>
<td>2.69</td>
</tr>
<tr>
<td>25</td>
<td>1.80</td>
<td>2.80</td>
<td>2.80</td>
<td>2.73</td>
<td>2.82</td>
</tr>
<tr>
<td>26</td>
<td>2.20</td>
<td>3.40</td>
<td>2.68</td>
<td>2.84</td>
<td>3.01</td>
</tr>
<tr>
<td>27</td>
<td>2.20</td>
<td>2.20</td>
<td>2.86</td>
<td>2.89</td>
<td>3.08</td>
</tr>
<tr>
<td>28</td>
<td>3.00</td>
<td>2.40</td>
<td>2.86</td>
<td>3.04</td>
<td>2.70</td>
</tr>
<tr>
<td>29</td>
<td>3.40</td>
<td>3.50</td>
<td>2.80</td>
<td>2.68</td>
<td>3.13</td>
</tr>
<tr>
<td>30</td>
<td>2.80</td>
<td>2.60</td>
<td>2.44</td>
<td>2.96</td>
<td>3.01</td>
</tr>
<tr>
<td>31</td>
<td>4.60</td>
<td>2.40</td>
<td>2.86</td>
<td>2.80</td>
<td>2.75</td>
</tr>
<tr>
<td>32</td>
<td>5.00</td>
<td>2.40</td>
<td>2.54</td>
<td>3.08</td>
<td>2.98</td>
</tr>
<tr>
<td>33</td>
<td>2.20</td>
<td>3.40</td>
<td>2.74</td>
<td>2.88</td>
<td>2.93</td>
</tr>
<tr>
<td>34</td>
<td>2.80</td>
<td>2.80</td>
<td>2.88</td>
<td>2.81</td>
<td>3.03</td>
</tr>
<tr>
<td>35</td>
<td>2.80</td>
<td>2.90</td>
<td>2.56</td>
<td>3.01</td>
<td>2.73</td>
</tr>
<tr>
<td>36</td>
<td>3.20</td>
<td>2.50</td>
<td>3.06</td>
<td>2.70</td>
<td>2.90</td>
</tr>
<tr>
<td>37</td>
<td>3.40</td>
<td>2.20</td>
<td>2.70</td>
<td>2.64</td>
<td>2.90</td>
</tr>
<tr>
<td>38</td>
<td>1.60</td>
<td>2.70</td>
<td>2.84</td>
<td>3.24</td>
<td>2.85</td>
</tr>
<tr>
<td>39</td>
<td>1.80</td>
<td>2.80</td>
<td>2.52</td>
<td>2.89</td>
<td>2.90</td>
</tr>
<tr>
<td>40</td>
<td>2.40</td>
<td>3.30</td>
<td>3.16</td>
<td>3.00</td>
<td>2.96</td>
</tr>
<tr>
<td>41</td>
<td>3.80</td>
<td>4.20</td>
<td>2.66</td>
<td>2.69</td>
<td>2.96</td>
</tr>
<tr>
<td>42</td>
<td>3.20</td>
<td>3.00</td>
<td>2.94</td>
<td>2.62</td>
<td>3.02</td>
</tr>
<tr>
<td>43</td>
<td>2.80</td>
<td>2.80</td>
<td>2.82</td>
<td>3.03</td>
<td>2.83</td>
</tr>
<tr>
<td>44</td>
<td>4.80</td>
<td>3.50</td>
<td>2.46</td>
<td>3.00</td>
<td>2.89</td>
</tr>
<tr>
<td>45</td>
<td>1.80</td>
<td>2.70</td>
<td>3.10</td>
<td>2.88</td>
<td>2.99</td>
</tr>
<tr>
<td>46</td>
<td>2.40</td>
<td>2.40</td>
<td>2.76</td>
<td>3.00</td>
<td>2.85</td>
</tr>
<tr>
<td>47</td>
<td>2.40</td>
<td>2.90</td>
<td>3.00</td>
<td>3.04</td>
<td>2.81</td>
</tr>
<tr>
<td>48</td>
<td>1.60</td>
<td>2.40</td>
<td>2.72</td>
<td>2.86</td>
<td>3.11</td>
</tr>
<tr>
<td>49</td>
<td>2.40</td>
<td>2.80</td>
<td>2.82</td>
<td>2.61</td>
<td>2.91</td>
</tr>
<tr>
<td>50</td>
<td>3.40</td>
<td>2.30</td>
<td>2.98</td>
<td>2.90</td>
<td>2.91</td>
</tr>
</tbody>
</table>

付 4-10
3.1.2 干渉補正方法の評価

La-ケイ酸塩ガラス及びLaF₃を用い、LaのGd Lα線に対する干渉補正係数について評価した。名古屋大学のJCXA-733を用い、加速電圧15 kV、照射電流50 nA、ビーム径20 μmの条件で、スリットをopenにしてピーク及びバックグラウンドをそれぞれ75秒測定した。50回測定した結果の平均値を表3.1-4に示す。エックス線強度を用いる場合、LaF₃とLa-ケイ酸塩ガラスでは干渉補正係数に5.6%の差が生じる。一方、化学組成を用いた場合、差は1.4%にとどまる。したがって、化学組成で干渉補正を行う方法が、エックス線強度で干渉補正を行う方法よりも物質依存性が小さいと考えられる。

化学組成を用いて干渉補正を行うためには、補正計算に使用するソフトウェアが対応している必要がある。EPMAのメーカーが提供しているソフトウェアはエックス線強度を用いて干渉補正を行うため、オンライン分析で化学組成を用いた干渉補正を行うためにはProbe Software社のProbe for EPMAのようなサードパーティ製ソフトウェアを使用する必要がある。しかし、エックス線の干渉の影響が大きくない場合は補正計算後に一回だけ干渉補正を行っても誤差は小さいため（Read and Buckley, 1998）、測定後に表計算ソフトウェアで修正を行う方法も可能である。

Read & Buckley (1998)はCAMECAのEPMAをシミュレートするソフトウェアを用い、Gd La線に対するLaの干渉補正係数を0.0056とした。この値は、今回得られた0.0147及び0.0149よりも小さい。これは、干渉補正係数の分光器依存性を示していると考えられる。すなわち、干渉補正係数は使用する装置ごとに設定しなければならないことを意味する。

日本電子製のEPMAでは、ローランデ円の半径が140 mmの分光器と100 mmの分光器がある。スリットにより波長分解能を変えることが可能である。したがって、測定対象元素と干渉する元素の測定にもちいる分光器を変更した場合や、スリットの設定を変更した場合には干渉補正係数を測定しなおさなければならない。また、分光器の特性は経年変化するため、定期的に干渉補正係数を測定する必要があると考えられる。

表3.1-4 Gd La線に対するLaの干渉補正係数

<table>
<thead>
<tr>
<th>標準物質</th>
<th>エックス線強度 (cps nA⁻¹)</th>
<th>補正係数</th>
<th>濃度 / % m/m</th>
<th>補正係数 (化学組成)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gd La</td>
<td>La La</td>
<td>Gd</td>
<td>La</td>
</tr>
<tr>
<td>La-ケイ酸塩ガラス</td>
<td>1.03</td>
<td>32.1</td>
<td>0.0321</td>
<td>0.14</td>
</tr>
<tr>
<td>LaF₃</td>
<td>10.40</td>
<td>342.4</td>
<td>0.0304</td>
<td>1.12</td>
</tr>
</tbody>
</table>

3.2 显微ラマン分光法を用いたメタミクト化検出の検討

ジルコンは、UやThの放射線変に伴って放出される放射線（主にα線）によって、結晶格子が破壊され、メタミクト化が起きることが知られている。ジルコン粒子を用いた年代測定において、閉鎖系である事が前提されているが、メタミクト化したジルコンは閉鎖系の仮定が成立していないために、得られた年代データは意味のないものになってしまう可能性が懸念される。ジルコンのラマンスペクトルは、1000 cm⁻¹付近にSiO₄結晶格子の非対称伸長振動[v₃(SiO₄)]に関連した特徴的な強いピークを示す。このv₃(SiO₄)ピークは、ジルコン粒子のメタミクト化の度合いに伴ってシャープな形からプロードな形へと変化し、それに伴って半値全幅（Full width at half
maximum; FWHM）が増加する事が報告されている（Nasdala et al., 2001）（図 3.2-1）。ただし、ジルコンは成長後に高温下にさらされるとヒーリングを起こしてメタミクト化が回復するため、複雑な歴史を持つジルコンのメタミクト化を評価するためには、更なる検討が必要であるとされている。

ラマン分光分析は、名古屋大学大学院環境学研究科地球環境科学専攻岩石学研究室に設置されている Thermo Scientific 社製の Nicolet Almega XR を用いた。分析に用いたジルコンは、武節花崗岩から分離された粒子を用いた（図 3.2-2）。測定に用いたジルコン粒子は、長軸方向に長さ 300 μm 程度で、測定時に干渉する包有物が比較的少なく、透明度の高いものを選んだ。

図 3.2-1 メタミクト化に伴うジルコンラマンスペクトルの変化
（左図）メタミクト化に伴うジルコンのラマンスペクトル。上にいくほど、メタミクト化の度合が大きくなり、ν_3(SiO$_4$)ピークはシャープな形からブロードな形へと変化する。（右図）ν_3(SiO$_4$)ピーク半値全幅（FWHM）とメタミクト化の度合（α-fluence）との相関。A: Zircons from the Saxonian rhyolites, B: Lunar zircon, C: rims of monzonite zircons from the Meissen Massif, D: zircons from the Frankenstein gabbro. Nasdala et al. (2001)より転載。

図 3.2-2 ラマン分光分析に用いたジルコン粒子
（左図）透過顕微鏡写真（右図）反射顕微鏡写真

付 4-12
3.2.1 点分析 (point analysis)

選んだジルコン粒子の中心部 1 点 (core) と縁部 3 点 (rim1, rim2, rim3) をラマン分光分析した際のラマンスペクトルを図 3.2-3 に示す。主なピークは、1000 cm⁻¹ 付近の ν_3 (SiO₄) ピークに加えて、200, 222, 355, 437 cm⁻¹ 付近にジルコンに特徴的なピークが確認された。820 cm⁻¹ 付近とその他の小さなピークは、ジルコン粒子周辺の接着剤や微量元素などに起因する可能性があるが詳細は不明である。1000 cm⁻¹ 付近について拡大した図において、ν_3 (SiO₄) ピークを比較すると、core と rim1, rim2 は、ほぼ同じピーク位置を示すのに対して、rim3 は低波数側にシフトしている様子が観察された。この結果より、同一ジルコン粒子中において、ラマンスペクトルの形状が場所によって異なる事が示された。（表 3.2-1 に core と rim3 の詳細な結果を示した。）
表 3.2-1 core と rim3 の 950-1050 cm⁻¹ 領域におけるラマンスペクトルデータ

<table>
<thead>
<tr>
<th>Raman shift core cm⁻¹</th>
<th>Intensity Raman shift core</th>
<th>Raman shift rim3 cm⁻¹</th>
<th>Intensity Raman shift rim3</th>
</tr>
</thead>
<tbody>
<tr>
<td>950.9067</td>
<td>7.531941</td>
<td>18.63366</td>
<td>969.2271</td>
</tr>
<tr>
<td>951.3888</td>
<td>7.54765</td>
<td>18.76609</td>
<td>969.7092</td>
</tr>
<tr>
<td>951.8709</td>
<td>7.555899</td>
<td>18.74354</td>
<td>970.1913</td>
</tr>
<tr>
<td>952.353</td>
<td>7.556969</td>
<td>18.57148</td>
<td>970.6735</td>
</tr>
<tr>
<td>952.8351</td>
<td>7.558811</td>
<td>18.47875</td>
<td>971.1556</td>
</tr>
<tr>
<td>953.3173</td>
<td>7.562549</td>
<td>18.46874</td>
<td>971.6375</td>
</tr>
<tr>
<td>953.7994</td>
<td>7.585805</td>
<td>18.50103</td>
<td>972.1198</td>
</tr>
<tr>
<td>954.2815</td>
<td>7.66146</td>
<td>18.58474</td>
<td>972.6019</td>
</tr>
<tr>
<td>954.7636</td>
<td>7.741</td>
<td>18.66564</td>
<td>973.0849</td>
</tr>
<tr>
<td>955.2457</td>
<td>7.793805</td>
<td>18.70718</td>
<td>973.5662</td>
</tr>
<tr>
<td>955.7278</td>
<td>7.819886</td>
<td>18.7124</td>
<td>974.0483</td>
</tr>
<tr>
<td>956.21</td>
<td>7.818986</td>
<td>18.68552</td>
<td>974.5304</td>
</tr>
<tr>
<td>956.6921</td>
<td>7.771533</td>
<td>18.59588</td>
<td>975.0125</td>
</tr>
<tr>
<td>957.1742</td>
<td>7.737197</td>
<td>18.54071</td>
<td>975.4946</td>
</tr>
<tr>
<td>957.6563</td>
<td>7.716479</td>
<td>18.52798</td>
<td>975.9767</td>
</tr>
<tr>
<td>958.1384</td>
<td>7.71042</td>
<td>18.53307</td>
<td>976.4589</td>
</tr>
<tr>
<td>958.6205</td>
<td>7.736511</td>
<td>18.5389</td>
<td>976.941</td>
</tr>
<tr>
<td>959.1027</td>
<td>7.774248</td>
<td>18.5478</td>
<td>977.4231</td>
</tr>
<tr>
<td>959.5848</td>
<td>7.730508</td>
<td>18.55624</td>
<td>977.9052</td>
</tr>
<tr>
<td>960.0669</td>
<td>7.639536</td>
<td>18.5722</td>
<td>978.3873</td>
</tr>
<tr>
<td>960.549</td>
<td>7.64121</td>
<td>18.62147</td>
<td>978.8694</td>
</tr>
<tr>
<td>961.0311</td>
<td>7.774239</td>
<td>18.69968</td>
<td>979.3516</td>
</tr>
<tr>
<td>961.5132</td>
<td>7.923584</td>
<td>18.8358</td>
<td>979.8337</td>
</tr>
<tr>
<td>961.9954</td>
<td>7.975179</td>
<td>19.07258</td>
<td>980.3158</td>
</tr>
<tr>
<td>962.4775</td>
<td>8.00027</td>
<td>19.35282</td>
<td>980.7979</td>
</tr>
<tr>
<td>962.9596</td>
<td>8.073724</td>
<td>19.61554</td>
<td>981.2812</td>
</tr>
<tr>
<td>963.4417</td>
<td>8.205698</td>
<td>19.85312</td>
<td>981.7621</td>
</tr>
<tr>
<td>963.9238</td>
<td>8.241534</td>
<td>20.14872</td>
<td>982.2443</td>
</tr>
<tr>
<td>964.4059</td>
<td>8.175951</td>
<td>20.50037</td>
<td>982.7264</td>
</tr>
<tr>
<td>964.8881</td>
<td>8.155671</td>
<td>20.89319</td>
<td>983.2085</td>
</tr>
<tr>
<td>965.3702</td>
<td>8.289571</td>
<td>21.29974</td>
<td>983.6906</td>
</tr>
<tr>
<td>965.8523</td>
<td>8.478682</td>
<td>21.76566</td>
<td>984.1727</td>
</tr>
<tr>
<td>966.3344</td>
<td>8.590267</td>
<td>22.36069</td>
<td>984.6548</td>
</tr>
<tr>
<td>966.8165</td>
<td>8.681634</td>
<td>23.05081</td>
<td>985.137</td>
</tr>
<tr>
<td>967.2986</td>
<td>8.850013</td>
<td>23.8196</td>
<td>985.6191</td>
</tr>
<tr>
<td>967.7808</td>
<td>9.141812</td>
<td>24.7551</td>
<td>986.1012</td>
</tr>
<tr>
<td>968.2629</td>
<td>9.444951</td>
<td>25.53508</td>
<td>986.5833</td>
</tr>
<tr>
<td>968.745</td>
<td>9.688527</td>
<td>26.16805</td>
<td>987.0654</td>
</tr>
</tbody>
</table>
表 3.2-1 core と rim3 の 950-1050 cm⁻¹ 領域におけるラマンスペクトルデータ（続き）

<table>
<thead>
<tr>
<th>Raman shift cm⁻¹</th>
<th>Intensity core</th>
</tr>
</thead>
<tbody>
<tr>
<td>1005.868</td>
<td>68.35343</td>
<td>1024.188</td>
<td>8.536549</td>
<td>1042.509</td>
<td>7.952451</td>
<td>15.21795</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1006.35</td>
<td>68.69145</td>
<td>1024.671</td>
<td>8.490105</td>
<td>1042.991</td>
<td>7.959888</td>
<td>15.04865</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1007.314</td>
<td>61.01665</td>
<td>1025.635</td>
<td>8.415419</td>
<td>1043.955</td>
<td>7.854525</td>
<td>14.93609</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1007.796</td>
<td>54.06842</td>
<td>1026.117</td>
<td>8.344409</td>
<td>1044.437</td>
<td>7.816514</td>
<td>14.86164</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1008.279</td>
<td>47.5147</td>
<td>1026.599</td>
<td>8.277663</td>
<td>1044.919</td>
<td>7.80388</td>
<td>14.73907</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1008.761</td>
<td>41.34639</td>
<td>1027.081</td>
<td>8.248004</td>
<td>1045.401</td>
<td>7.815176</td>
<td>14.76678</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1009.243</td>
<td>36.23738</td>
<td>1027.563</td>
<td>8.231079</td>
<td>1045.884</td>
<td>7.859932</td>
<td>14.98618</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1009.725</td>
<td>32.18544</td>
<td>1028.045</td>
<td>8.204527</td>
<td>1046.366</td>
<td>7.869521</td>
<td>15.11969</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1010.207</td>
<td>28.7274</td>
<td>1028.527</td>
<td>8.170261</td>
<td>1046.848</td>
<td>7.808417</td>
<td>15.06173</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1010.689</td>
<td>25.67365</td>
<td>1029.01</td>
<td>8.144206</td>
<td>1047.33</td>
<td>7.741068</td>
<td>14.91879</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1011.171</td>
<td>22.97325</td>
<td>1029.492</td>
<td>8.132133</td>
<td>1047.812</td>
<td>7.75341</td>
<td>14.76563</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1011.653</td>
<td>20.62747</td>
<td>1029.974</td>
<td>8.112725</td>
<td>1048.294</td>
<td>7.813681</td>
<td>14.65265</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1012.135</td>
<td>18.59851</td>
<td>1030.456</td>
<td>8.079666</td>
<td>1048.776</td>
<td>7.892934</td>
<td>14.69029</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1012.618</td>
<td>16.91854</td>
<td>1030.938</td>
<td>8.053818</td>
<td>1049.258</td>
<td>7.986896</td>
<td>14.88938</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1013.1</td>
<td>15.60547</td>
<td>1031.42</td>
<td>8.083</td>
<td>1049.74</td>
<td>8.041258</td>
<td>14.97031</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1013.582</td>
<td>14.50829</td>
<td>1031.902</td>
<td>8.121308</td>
<td>1050.223</td>
<td>8.045525</td>
<td>14.85926</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1014.064</td>
<td>13.65244</td>
<td>1032.384</td>
<td>8.068831</td>
<td>105.70483</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1014.546</td>
<td>12.91439</td>
<td>1032.866</td>
<td>7.949068</td>
<td>105.64056</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1015.028</td>
<td>12.24039</td>
<td>1033.349</td>
<td>7.857059</td>
<td>105.58599</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1015.51</td>
<td>11.65943</td>
<td>1033.831</td>
<td>7.84941</td>
<td>105.54941</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1015.992</td>
<td>11.23086</td>
<td>1034.313</td>
<td>7.841595</td>
<td>105.52873</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1016.474</td>
<td>10.91279</td>
<td>1034.795</td>
<td>7.820441</td>
<td>105.53216</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1016.957</td>
<td>10.64075</td>
<td>1035.277</td>
<td>7.799753</td>
<td>105.53617</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1017.439</td>
<td>10.40702</td>
<td>1035.759</td>
<td>7.788834</td>
<td>105.53096</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1017.921</td>
<td>10.18646</td>
<td>1036.241</td>
<td>7.789134</td>
<td>105.50856</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1018.403</td>
<td>9.964799</td>
<td>1036.723</td>
<td>7.814434</td>
<td>105.37657</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1018.885</td>
<td>9.763569</td>
<td>1037.205</td>
<td>7.860037</td>
<td>105.17211</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1019.367</td>
<td>9.594234</td>
<td>1037.688</td>
<td>7.902842</td>
<td>105.08905</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1019.849</td>
<td>9.450448</td>
<td>1038.17</td>
<td>7.963216</td>
<td>105.35265</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1020.331</td>
<td>9.324947</td>
<td>1038.652</td>
<td>7.973302</td>
<td>105.55386</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1020.814</td>
<td>9.212711</td>
<td>1039.134</td>
<td>7.845633</td>
<td>105.45748</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1021.296</td>
<td>9.089613</td>
<td>1039.616</td>
<td>7.701428</td>
<td>105.26834</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1021.778</td>
<td>8.947978</td>
<td>1040.098</td>
<td>7.641859</td>
<td>105.14925</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1022.26</td>
<td>8.820944</td>
<td>1040.58</td>
<td>7.669502</td>
<td>105.09942</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1022.742</td>
<td>8.735449</td>
<td>1041.062</td>
<td>7.729525</td>
<td>105.14995</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1023.224</td>
<td>8.666088</td>
<td>1041.545</td>
<td>7.829991</td>
<td>105.2927</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1023.706</td>
<td>8.599257</td>
<td>1042.027</td>
<td>7.911347</td>
<td>105.35099</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.2.2 マッピング（Raman mapping）

ジルコンのラマン分光分析において、100 μm×80 μm の領域を 5 μm ステップでマップ分析した。それぞれのポイントにおけるラマンスペクトルの ν₃(SiO₄) ピークをガウス関数で用いて解析し、ピーク強度（Intensity）、ピーク位置（Center）、ピーク半値全幅（FWHM）を求めた。得られた結果は、カラーマップとして図 3.2-4 に示した。

ラマンマッピングの結果、メタミクト化と相関があるとされているジルコンの ν₃(SiO₄) ピークの半値全幅値は、中心部において 3 cm⁻¹ 程度と小さくシャープであるのに対し、縁部に近い部分は 5 cm⁻¹ 程度とやや大きくなりブロードになる結果となった。また、最縁部は中心部に比べると 9 cm⁻¹ 程度の大きな値を示すが、縁部付近はジルコン粒子周囲の接着剤の影響を受けてピーク強度が弱くなったり、半値全幅の正しい値が得られていない可能性もある。また、分析エリアの右端に相当する領域において、半値全幅が 4～5 cm⁻¹ 程度とややブロードになる領域が見られるが、これは、ジルコン中に包有されている鉱物（図 3.2-2 の透過写真を参照）の影響により、ジルコンのピーク強度が弱くなっている領域と一致している。また、ピーク強度と半値全幅のマップ図は全体的に強弱の分布が一致しているように見えるが、半値全幅はメタミクト化の影響のみを反映するだけでなく、ジルコンのピーク強度とも相関がある可能性を示唆している。ジルコンの ν₃(SiO₄) ピークの中心位置は、中心部において 1008 cm⁻¹ 程度の高波数値を示し、縁に向かって 1003 cm⁻¹ 程度の低波数値になる。大まかな変化の傾向は、半値全幅と同じであるが、半値全幅のようにジルコン内部での細かい変化はあまり確認されなかった。

ラマンマッピングしたジルコン粒子の反射電子線（BSE）像とカソードルミネセンス（CL）像を撮影し、ラマン分光分析の結果と比較した（図 3.2-5）。図 3.2-4 の ν₃(SiO₄) ピークの半値全幅値マッピングと、図 3.2-5 の CL 像の明暗のパターンが良く一致しているように見られる。ジルコンの CL 像は、ジルコン結晶中の格子欠陥と相関があるとされている一方で、希土類元素濃度や水の量と相関があるとも言われており、CL 像の明暗が一概にジルコン中の何に起因しているかを特定するのは、現段階では困難である。今回、ジルコン粒子のメタミクト化を直接定量化するデータがないため、測定に用いたジルコン粒子は、ラマンマッピングでメタミクト化が評価可能であるかの特定には至らなかった。

今回分析したジルコンは 1 粒子のみであるため、汎用性のある結論とは言い難い。今後は、分析試料数を増やすとともに、様々な環境下で形成されたジルコンを比較する必要がある。
図 3.2-4 ジルコンのラマンマッピング図

$\nu_3(SiO_4)$ピークの強度（Intensity）、中心位置（Center）、半値全幅（FWHM）のマッピング図。

ラマンマッピングは、5 μm ステップで、横100 μm × 縦80 μm の320点を分析した。

図 3.2-5 ジルコン粒子のBSE像とCL像

（赤い四角はラマンマッピングした領域）
4. まとめ

EPMA を用いて CHIME 年代測定と同時に希土類元素を非破壊で正確に分析することを目指し、測定法の検証を行った。標準物質としてフツ化物またはケイ酸塩ガラスを用いた場合は電子線照射による損傷は問題にならず、大電流による測定が可能である。一方、リン酸塩は電子線照射による損傷が著しく、数十 nA の電流でも正確な測定困難であることが明らかになった。エッセ線の干渉補正方法について、エックス線強度で補正する方法と化学組成で補正する方法を比較したところ、化学組成で比較した方が補正係数の物質依存性が小さくなることが示された。

ジルコンのサブグレイン年代測定の高精度化のため、メタミクト化等の損傷を非破壊で検出す手法として顕微ラマン分光分析が適用できるか検証した。しかし、先行研究で示されているような ν₃(SiO₄) ピークの半値幅を用いる単純な方法では、反射電子像やカソードルミネッセンス像との大きな違いが見いだせず、必ずしも ν₃(SiO₄) のピークの半値幅が損傷の程度の指標になるとはいえないことが明らかになった。

引用文献

レーザーアブレーション付き誘導結合プラズマ
質量分析計を用いた炭酸塩鉱物の分析手法の開発

平成27年度共同研究報告書

平成28年1月

国立大学法人京都大学
株式会社京都フィッショング・トラック
国立研究開発法人海洋研究開発機構
国立研究開発法人日本原子力研究開発機構
目 次

1. 概要 ... 1
 1.1 共同研究件名 .. 1
 1.2 研究目的 .. 1
 1.3 実施期間 .. 1
2. 研究内容 .. 2
 2.1 研究概要 .. 2
 2.2 共同研究内容 .. 3
3. 研究成果 ... 4
 3.1 炭酸塩鉱物から成るウラン・鉛年代測定に有用な標準試料候補の選定 4
 3.1.1 選定した標準試料候補 .. 4
 3.1.2 標準試料候補の主要元素及び微量元素の定量分析 4
 3.2 標準試料候補の微量元素（鉛、トリウム、ウラン）の定量と鉛同位体分析 8
 3.2.1 測定方法及び測定結果 .. 8
 3.2.2 測定結果から見た標準物質の均一性 13
 3.3 LA-ICP 質量分析法を用いた天然炭酸塩試料の均一性評価手法の検討 14
 3.3.1 同位体イメージング .. 14
 3.3.2 イメージング分析結果と議論 16
4. まとめ ... 18
引用文献 ... 19

図 目 次

図 3.1-1 JCp-1 及び JCt-1 の元素存在度の認証値との比較 ... 8
図 3.2-1 JCp-1 及び JCt-1 の樹脂包埋試料の光学顕微鏡写真（反射像） 10
図 3.2-2 JCp-1 及び JCt-1 の湿式分析と LA-ICP 質量分析法による Pb 同位体分析値の比較 . 14
図 3.3-1 同位体二次元分布図 ... 17

表 目 次

表 3.1-1 選定・入手した標準試料候補 ... 4
表 3.1-2 主要成分及び微量成分分析の測定条件 ... 6
表 3.1-3 標準試料候補の LA-ICP 質量分析法による主要元素及び微量元素定量分析結果 7
表 3.2-1 JCp-1 及び JCt-1 の Pb、Th、U 定量分析結果 .. 11
表 3.2-2 溶液 MC-ICP 質量分析法による JCp-1 及び JCt-1 の Pb 同位体分析結果 11
表 3.2-3 DUVFs-LA-MFC-ICP 質量分析法による JCp-1 及び JCt-1 の鉛同位体分析結果 12
表 3.3-1 同位体イメージング分析の測定条件 .. 15
1. 概要

1.1 共同研究件名
レーザーアブレーション付き誘導結合プラズマ質量分析計を用いた炭酸塩鉱物の分析手法の開発

1.2 研究目的
わたが国の高レベル放射性廃棄物の地層処分計画を円滑に進めていくためには、処分事業や安全規制の基盤となる技術を整備・強化していくための研究開発を着実に行っていく必要がある。具体的には、地層処分システムの長期的な変化をモデル計算によって予測・評価しつつ、その結果に基づいてシステムの性能や安全性の判断を行うことになるが、モデルを構築していく上で、モデルの作成に必要となる情報やモデルの検証に用いるデータを取得するための革新的な要素技術の開発として、炭酸塩鉱物の放射年代測定技術及び酸化還元電位推定技術の開発を進めていく。分析対象となる割れ目や断層を充填している炭酸塩鉱物は、脈状や網状であることが多く、さらに帯状構造を形成していることもある。このことから、本技術を開発するためには非常に微小な領域を分析する必要がある。この課題を解決するため、本共同研究では、レーザーアブレーション付き誘導結合プラズマ質量分析計（以下、「LA-ICP質量分析計」という）を用いた、炭酸塩鉱物の微小領域の同位体比測定及び元素分析手法を開発する。LA-ICP質量分析計を用いることで、数十μm以下の試料領域の分析が期待できる。

対象とする試料をレーザーで融解分離（アブレーション）する場合、鉱物物性の違いや元素の揮発性などに起因してアブレーション効率が著しく異なるため、未知試料の分析を行う際には、その未知試料と同じ鉱物を標準試料として選定することが求められる。しかし、国際的に認められた炭酸塩鉱物の標準試料は未だ報告されていないため、手法の開発のためには標準試料の選定が最優先の課題である。

国立大学法人京都大学（以下、「京都大学」という）は、鉱物のウラン（U）・鉛（Pb）年代測定に特化したLA-ICP質量分析計を所有し、年代測定技術開発を行っている。また主要元素、微量元素の二次元情報が得られる高速元素マッピング測定に関する技術開発を進めており、この技術は酸化還元電位推定技術開発に必要な元素存在度を把握するものとして期待できる。

株式会社京都フィッション・トラック（以下、「京都FT」という）は、特に同位体比測定で必须となる標準試料に関する研究実績を有する。国立研究開発法人海洋研究開発機構（以下、「海洋研究開発機構」という）は、LA-ICP質量分析計を用いた鉱物の各種年代測定や高精度同位体比測定を行っており、これらに関する知識、経験を有している。また国立研究開発法人日本原子力研究開発機構（以下、「原子力機構」という）に導入した誘導結合プラズマ質量分析計（以下、「ICP質量分析計」という）と同じ機種を所有しているため、測定条件の検討や装置の改良などについて双方に効率的かつ有益な情報交換が可能となる。

原子力機構は、鉱物の放射年代測定法の開発や炭酸塩鉱物を利用した地下水の地球化学特性の推定などの研究実績を有し、測定試料の前処理を行うための機器や試料の主要元素組成及び結晶構造などを把握するための装置を所有しているため、年代測定に必要な同位体比測定だけでなく、対象試料の化学的特徴を総合的に把握することが可能である。

以上の研究機関と本共同研究を行うことにより、LA-ICP質量分析計を用いた炭酸塩鉱物の放射年代測定及び酸化還元電位推定技術の開発を効果的に行えることになる。

1.3 実施期間
平成27年7月17日～平成28年1月29日

付 5-1
2. 研究内容

2.1 研究概要

炭酸塩鉱物は段階的に成長することで内部に累帯構造を形成する。異なる化学組成をもつ地下水から沈殿した場合、各累帯に含有される微量元素の組成に差があり、累帯構造内のレイヤーごとに、形成場所や生成環境などの「地質学的な意味合い」が異なる。よって、レイヤーごとの微小領域における精密な分析手法の確立が課題となる。局所領域の分析を可能とするレーザー・アブレーション装置を試料導入部として用いる質量分析（以下、「LA-ICP質量分析法」という）においては、質量分析計のイオン源（誘導結合プラズマ（以下、「ICP」という））の不安定性やイオン源での元素のイオン化効率の経時的な変化に伴う測定値の変化を補正するため、同位体組成や元素存在度が既知である試料（標準試料）を鋼製器皿等で測定した結果に基づき、測定値を補正する方法（以下、「ブラケティング法」という）が慣例的に採用されている。また、試料のアブレーションへの応答（アブレーション効率）は、鉱物種や分析対象とする元素及び照射の表面状態などにより異なる。そのため、標準試料には特定の鉱物を対象とする標準試料結晶及びその周囲を取り試料のアブレーションへの応答（アブレーション効率）は、鉱物種や分析対象とする元素及び照射の表面状態などにより異なる。そのため、標準試料には特定の鉱物を対象とする標準試料結晶及びその周囲を取りうる標準試料を用いることにより、標準試料法によるU-Pb年代測定が可能である。

平成26年度の地層処分技術調査等事業（地質環境長期安定性評価確証技術開発）報告書（日本原子力研究開発機構, 2014）の中で炭酸塩鉱物の年代測定技術開発においては、三段階のアプローチを経ることを述べた。第一段階では、「炭酸塩からなる海生化石」を標準試料として採用する。第二段階では、「海生化石からなる海生化石」を標準試料として採用する。
3.1 共同研究内容
本共同研究では、レーザーアブレーション付き誘導結合プラズマ質量分析計を用いた炭酸塩鉱物の分析手法の開発を目的として実施した。また、特に炭酸塩鉱物の U-Pb 年代測定において喫緊の課題となっている、「炭酸塩鉱物から成る標準試料の選定」に重点を絞り、試料の入手（1）試料の調達・調整）、分析条件の検討（2）分析手法の開発）、標準試料の有用性の評価（3）標準試料の選定）を実施した。「炭酸塩鉱物から成る標準試料の選定」に際して、以下の重要課題を有すると考える。

＜A. 炭酸塩鉱物の U-Pb 年代測定法の開発の重要課題＞

A-1. 標準試料候補の選択
A-2. 標準試料候補の高精度同位体比及び元素存在度に関する基礎データ取得
A-3. 標準試料候補の均質性の評価

本共同研究では、A-1 に対して、国際的な研究機関が標準試料としてデータを公表している炭酸塩鉱物の試料の中から、U-Pb 年代測定の標準試料として有用であると考えられる試料を選択した。A-2 のデータ取得では、U 及び Pb 存在度の低い炭酸塩鉱物の測定に対応するため、ICP 質量分析計の検出器構成として 10^{12} Ω 及び 10^{13} Ω 抵抗アンプを組み合わせたマルチファラデーカップ（以下、「MFC」という）での Pb 同位体比測定を行った。A-3 の均質性の評価では、天然炭酸塩鉱物を用いて元素分布情報を取得するために同位体イメージング分析を実施し、手法の有効性を示した。
3. 研究成果

3.1 炭酸塩鉱物から成るウラン・鉛年代測定に有用な標準試料候補の選定

既述の炭酸塩鉱物の年代測定技術の開発における第一段階及び第二段階に対応して、炭酸塩からなる海生化石及び炭酸塩岩を調査対象とした標準試料候補の選定を行った。今回の選定では、特にU、Pb、トリウム(Th)の元素存在度が公表されているものを、Govindaraju (1994)15)、Imai et al. (1996)16)及び国立研究開発法人産業技術総合研究所（以下、「産総研」という）の地質調査総合センターが公表しているデータベース「地球化学標準試料」を参照して抽出し、購入価格、試料の総量、データの信頼性などを考慮して標準試料候補の選定・入手を行った。

3.1.1 選定した標準試料候補

本共同研究で選定・入手した標準試料候補のリストを表3.1-1に示す。入手した試料は、JCp-1、J Ct-1、J Ls-1、J Do-1、GYP-A、CACB-1の6種類である。これらの試料の原岩は入手できず、いずれの試料も粉体である。

<table>
<thead>
<tr>
<th>試料名</th>
<th>入手先</th>
<th>物質名・産状</th>
<th>主成分と結晶構造</th>
<th>篩別方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>JCp-1</td>
<td>産総研</td>
<td>サンゴ</td>
<td>CaCO₃(Aragonite:斜方晶系)</td>
<td>>120メッシュ(φ>125 µm)</td>
</tr>
<tr>
<td>JCt-1</td>
<td>産総研</td>
<td>シャコガイ</td>
<td>CaCO₃(Aragonite:斜方晶系)</td>
<td>>120メッシュ(φ>125 µm)</td>
</tr>
<tr>
<td>JLs-1</td>
<td>産総研</td>
<td>石灰岩</td>
<td>主成分はCaCO₃ (結晶構造は不明)</td>
<td>>250メッシュ(φ>63 µm)</td>
</tr>
<tr>
<td>J Do-1</td>
<td>産総研</td>
<td>ドロマイト岩</td>
<td>主成分はCa(Mg, Fe, Mn)(CO₃)₂ (Dolomite:単斜晶系)</td>
<td>>250メッシュ(φ>63 µm)</td>
</tr>
<tr>
<td>GYP-A</td>
<td>Domtar Inc.</td>
<td>石膏</td>
<td>CaSO₄・2H₂O (Gypsum:単斜晶系)</td>
<td>未実施</td>
</tr>
<tr>
<td>CACB-1</td>
<td>カナダ国立研究機構(NRC・CNRC)</td>
<td>炭酸カルシウム</td>
<td>主成分はCaCO₃(Calcite:三方晶系)</td>
<td>未実施</td>
</tr>
</tbody>
</table>

3.1.2 標準試料候補の主要元素及び微量元素の定量分析

入手した標準試料候補のうち、産総研配布試料の4試料（JCp-1、JCt-1、J Ls-1、J Do-1）について、LA-ICP質量分析法に適した試料を調整するため、それぞれの粉体試料から粗粒なものを篩別し（表3.1-1）、主要元素及び微量元素定量分析をLA-ICP質量分析法により実施した。分析は、京都大学に設置のiCAP Qc四重極ICP質量分析計（Thermo Scientific）とNWR193ArFエキシマレーザーアブレーションシステム（ESI）を組み合わせて行った。ICP質量分析計の分析条件及びレーザーアブレーションの条件を表3.1-2に示す。検出される元素イオンのシグナルの安定性を保持するために、レーザーアブレーション装置のICP質量分析計による定量的分析を実施した。質量分析により得られた各同位体のシグナルを積算し、天然の同位体存在度から各元素のシグナル強度に換算した後、いずれの試料においても最も存在度の高いカルシウム(Ca)を内部標準（認証値の値）として、標準ガラス（NIST SRM 610及びNIST SRM 612: Jochum et al. (2011)17); USGS BHVO-2G及びUSGS BCR-2G: the GeoREM database18)の測定結果を基
に試料の各元素存在度を求めた。また、各元素存在度の平均値は全ての測点データのうち ICP 質量分析計の検出限界を有意に上回るデータのみを用いた。測定した点数は、JCp-1 及び JCt-1 のそれぞれ 8 粒子（直径：数百 µm）について各粒子中で 5 測点（それぞれ計 40 測点）、JLs-1 については 15 粒子（直径：約百 µm）について各粒子中で 1-5 測点（計 41 測点）、JDo-1 については 24 粒子（直径：約百 µm）について各粒子中で 1-5 測点（計 42 測点）である。認証値はおもに産総研の地質調査総合センターが公表しているデータベース「地球化学標準試料」の値を用い、ストロンチウム、U 及び Pb については岡井ほか (2008)19)を参照した。主要元素及び微量元素定量分析結果を表 3.1-3 に示し、比較的信頼性が高く複数の元素存在度についてデータの公開されている JCp-1 及び JCt-1 の元素存在度については認証値との比較を図 3.1-1 に示す。

本共同研究で得られた JCp-1 及び JCt-1 の元素存在度について、認証値と一致しない元素が多々認められた。この元素存在度の不一致は、紛体試料を篩別したことにより試料の代表性が損なわれ、均質性が失われたことに起因している可能性が考えられる。一方で、U 及び Pb の元素存在度に関しては、測定値と認証値が比較的良好一致を示している。したがって、JCp-1 及び JCt-1 は、U-Th-Pb 系については均質である可能性も示唆される。今後は、局所領域分析の実現に向けて、粒子ごと及び粒子内での均質性をより詳細に明らかにする必要がある。
Thermo Fisher Scientific iCAP Qc ICP-MS Operating Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation mode</td>
<td>Standard mode (no collision gas was used)</td>
</tr>
<tr>
<td>RF power</td>
<td>1475 W</td>
</tr>
<tr>
<td>Sampling depth</td>
<td>5.0 mm</td>
</tr>
<tr>
<td>Cool gas (Ar)</td>
<td>14 L/min</td>
</tr>
<tr>
<td>Auxiliary gas (Ar)</td>
<td>0.8 L/min</td>
</tr>
<tr>
<td>Carrier gas through sample chamber (He)</td>
<td>0.51 L/min</td>
</tr>
<tr>
<td>Conditioning gas mixed to carrier gas (Ar)</td>
<td>0.85 L/min</td>
</tr>
<tr>
<td>ThO⁺/Th⁺ (oxide ratio)</td>
<td>< 1.0 %</td>
</tr>
<tr>
<td>Analyzed isotopes</td>
<td></td>
</tr>
<tr>
<td>⁷Li, ⁹Be, ¹¹B, ²³Na, ²⁴Mg, ²⁷Al, ²⁹Si, ³¹P, ³⁸K, ⁴⁵Ca, ⁴⁶Sc, ⁴⁹Ti, ⁵¹V, ⁵²Cr, ⁵⁵Mn, ⁵⁷Fe, ⁵⁸Co, ⁶⁰Ni, ⁶³Cu, ⁶⁶Zn, ⁷¹Ga, ⁷³Ge, ⁷⁵As, ⁸¹Rb, ⁸⁸Sr, ⁸⁹Y, ⁹⁰Zr, ⁹³Nb, ⁹⁵Mo, ¹⁰⁷Ag, ¹¹¹Cd, ¹¹⁵In, ¹¹⁶Sn, ¹²¹Sb, ¹³³Cs, ¹³⁷Ba, ¹⁴⁰La, ¹⁴⁴Ce, ¹⁴⁷Pr, ¹⁴⁸Nd, ¹⁴⁷Sm, ¹⁵³Eu, ¹⁵⁷Gd, ¹⁵⁹Tb, ¹⁶⁰Dy, ¹⁵⁶Ho, ¹⁶⁶Er, ¹⁶⁸Tm, ¹⁷⁵Yb, ¹⁷⁸Lu, ¹⁷⁸Hf, ¹⁸¹Ta, ¹⁸⁳W, ²⁰⁵Tl, ²⁰⁶Pb, ²⁰⁹Bi, ²³⁵Th, ²³⁸U</td>
<td></td>
</tr>
<tr>
<td>Analysis mode</td>
<td>TRA (time resolved analysis) mode</td>
</tr>
<tr>
<td>Dwell time</td>
<td>0.01 - 0.15 seconds/element, 2 seconds/time slice</td>
</tr>
</tbody>
</table>

ESI NWR·193 Excimer laser-ablation system Operating Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength</td>
<td>193 nm</td>
</tr>
<tr>
<td>Pulse width</td>
<td>20 nano-seconds</td>
</tr>
<tr>
<td>Fluence</td>
<td>3.1 J/cm²</td>
</tr>
<tr>
<td>Repetition rate</td>
<td>5 Hz</td>
</tr>
<tr>
<td>Beam diameter</td>
<td>15 µm</td>
</tr>
<tr>
<td>Duration of laser ablation</td>
<td>20 seconds/pit</td>
</tr>
<tr>
<td>Duration of washout after laser ablation</td>
<td>70 seconds</td>
</tr>
<tr>
<td>Duration of warm-up before laser ablation</td>
<td>8 seconds</td>
</tr>
</tbody>
</table>

Quantification

<p>| Method of quantification | Internal standard method |
| Internal standard | Calcium |
| Reference glass materials | NIST SRM 610 and 612 (for calibration of all elements of JCP-1, JCe-1, JLS-1 and JDo-1) |
| Reference glass materials | USGS BHVO-2G and BCR-2G (for calibration of all elements of JDo-1, in addition to two NIST reference glasses) |
| Preferred values of reference glass materials | NIST SRM glasses: Jochum et al. (2011) ¹⁷ |
| Preferred values of reference glass materials | USGS glasses: the GeoREM database (http://georem.mpch-mainz.gwdg.de) ¹⁸ |</p>
<table>
<thead>
<tr>
<th>元素</th>
<th>3Cp-1</th>
<th>3Ct-1</th>
<th>3La-1</th>
<th>3Do-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sr</td>
<td>1485.73</td>
<td>322.03</td>
<td>21.7</td>
<td>398.78</td>
</tr>
<tr>
<td>Nd</td>
<td>0.32</td>
<td>0.49</td>
<td>54.3</td>
<td>0.38</td>
</tr>
<tr>
<td>Mo</td>
<td>0.65</td>
<td>0.34</td>
<td>52.6</td>
<td>0.12</td>
</tr>
<tr>
<td>Ag</td>
<td>0.15</td>
<td>0.07</td>
<td>47.9</td>
<td>0.17</td>
</tr>
<tr>
<td>Cd</td>
<td>0.25</td>
<td>0.10</td>
<td>38.3</td>
<td>0.48</td>
</tr>
<tr>
<td>In</td>
<td>0.09</td>
<td>0.02</td>
<td>26.8</td>
<td>0.12</td>
</tr>
<tr>
<td>Ge</td>
<td>0.74</td>
<td>0.43</td>
<td>57.7</td>
<td>0.97</td>
</tr>
<tr>
<td>As</td>
<td>0.26</td>
<td>0.52</td>
<td>19.4</td>
<td>0.09</td>
</tr>
<tr>
<td>Ga</td>
<td>0.29</td>
<td>0.15</td>
<td>23.2</td>
<td>0.22</td>
</tr>
<tr>
<td>Sc</td>
<td>3.32</td>
<td>0.98</td>
<td>29.5</td>
<td>3.51</td>
</tr>
<tr>
<td>Ti</td>
<td>12.95</td>
<td>7.18</td>
<td>55.5</td>
<td>10.41</td>
</tr>
<tr>
<td>P</td>
<td>56.82</td>
<td>18.31</td>
<td>32.2</td>
<td>47.34</td>
</tr>
<tr>
<td>K</td>
<td>232.82</td>
<td>983.29</td>
<td>422.3</td>
<td>37.72</td>
</tr>
<tr>
<td>Ca</td>
<td>3.61</td>
<td>3.96</td>
<td>41.1</td>
<td>1.35</td>
</tr>
<tr>
<td>Na</td>
<td>3.61</td>
<td>3.96</td>
<td>41.1</td>
<td>1.35</td>
</tr>
<tr>
<td>Mg</td>
<td>3.61</td>
<td>3.96</td>
<td>41.1</td>
<td>1.35</td>
</tr>
<tr>
<td>Al</td>
<td>3.61</td>
<td>3.96</td>
<td>41.1</td>
<td>1.35</td>
</tr>
<tr>
<td>Si</td>
<td>517.09</td>
<td>273.11</td>
<td>52.8</td>
<td>801.89</td>
</tr>
<tr>
<td>K</td>
<td>232.82</td>
<td>983.29</td>
<td>422.3</td>
<td>37.72</td>
</tr>
<tr>
<td>Ca</td>
<td>3.61</td>
<td>3.96</td>
<td>41.1</td>
<td>1.35</td>
</tr>
<tr>
<td>Na</td>
<td>3.61</td>
<td>3.96</td>
<td>41.1</td>
<td>1.35</td>
</tr>
<tr>
<td>Mg</td>
<td>3.61</td>
<td>3.96</td>
<td>41.1</td>
<td>1.35</td>
</tr>
<tr>
<td>Al</td>
<td>3.61</td>
<td>3.96</td>
<td>41.1</td>
<td>1.35</td>
</tr>
<tr>
<td>Si</td>
<td>517.09</td>
<td>273.11</td>
<td>52.8</td>
<td>801.89</td>
</tr>
<tr>
<td>K</td>
<td>232.82</td>
<td>983.29</td>
<td>422.3</td>
<td>37.72</td>
</tr>
<tr>
<td>Ca</td>
<td>3.61</td>
<td>3.96</td>
<td>41.1</td>
<td>1.35</td>
</tr>
<tr>
<td>Na</td>
<td>3.61</td>
<td>3.96</td>
<td>41.1</td>
<td>1.35</td>
</tr>
<tr>
<td>Mg</td>
<td>3.61</td>
<td>3.96</td>
<td>41.1</td>
<td>1.35</td>
</tr>
<tr>
<td>Al</td>
<td>3.61</td>
<td>3.96</td>
<td>41.1</td>
<td>1.35</td>
</tr>
<tr>
<td>Si</td>
<td>517.09</td>
<td>273.11</td>
<td>52.8</td>
<td>801.89</td>
</tr>
<tr>
<td>K</td>
<td>232.82</td>
<td>983.29</td>
<td>422.3</td>
<td>37.72</td>
</tr>
<tr>
<td>Ca</td>
<td>3.61</td>
<td>3.96</td>
<td>41.1</td>
<td>1.35</td>
</tr>
<tr>
<td>Na</td>
<td>3.61</td>
<td>3.96</td>
<td>41.1</td>
<td>1.35</td>
</tr>
<tr>
<td>Mg</td>
<td>3.61</td>
<td>3.96</td>
<td>41.1</td>
<td>1.35</td>
</tr>
<tr>
<td>Al</td>
<td>3.61</td>
<td>3.96</td>
<td>41.1</td>
<td>1.35</td>
</tr>
<tr>
<td>Si</td>
<td>517.09</td>
<td>273.11</td>
<td>52.8</td>
<td>801.89</td>
</tr>
<tr>
<td>K</td>
<td>232.82</td>
<td>983.29</td>
<td>422.3</td>
<td>37.72</td>
</tr>
<tr>
<td>Ca</td>
<td>3.61</td>
<td>3.96</td>
<td>41.1</td>
<td>1.35</td>
</tr>
<tr>
<td>Na</td>
<td>3.61</td>
<td>3.96</td>
<td>41.1</td>
<td>1.35</td>
</tr>
<tr>
<td>Mg</td>
<td>3.61</td>
<td>3.96</td>
<td>41.1</td>
<td>1.35</td>
</tr>
<tr>
<td>Al</td>
<td>3.61</td>
<td>3.96</td>
<td>41.1</td>
<td>1.35</td>
</tr>
<tr>
<td>Si</td>
<td>517.09</td>
<td>273.11</td>
<td>52.8</td>
<td>801.89</td>
</tr>
<tr>
<td>K</td>
<td>232.82</td>
<td>983.29</td>
<td>422.3</td>
<td>37.72</td>
</tr>
<tr>
<td>Ca</td>
<td>3.61</td>
<td>3.96</td>
<td>41.1</td>
<td>1.35</td>
</tr>
<tr>
<td>Na</td>
<td>3.61</td>
<td>3.96</td>
<td>41.1</td>
<td>1.35</td>
</tr>
<tr>
<td>Mg</td>
<td>3.61</td>
<td>3.96</td>
<td>41.1</td>
<td>1.35</td>
</tr>
<tr>
<td>Al</td>
<td>3.61</td>
<td>3.96</td>
<td>41.1</td>
<td>1.35</td>
</tr>
<tr>
<td>Si</td>
<td>517.09</td>
<td>273.11</td>
<td>52.8</td>
<td>801.89</td>
</tr>
<tr>
<td>K</td>
<td>232.82</td>
<td>983.29</td>
<td>422.3</td>
<td>37.72</td>
</tr>
<tr>
<td>Ca</td>
<td>3.61</td>
<td>3.96</td>
<td>41.1</td>
<td>1.35</td>
</tr>
<tr>
<td>Na</td>
<td>3.61</td>
<td>3.96</td>
<td>41.1</td>
<td>1.35</td>
</tr>
<tr>
<td>Mg</td>
<td>3.61</td>
<td>3.96</td>
<td>41.1</td>
<td>1.35</td>
</tr>
<tr>
<td>Al</td>
<td>3.61</td>
<td>3.96</td>
<td>41.1</td>
<td>1.35</td>
</tr>
<tr>
<td>Si</td>
<td>517.09</td>
<td>273.11</td>
<td>52.8</td>
<td>801.89</td>
</tr>
</tbody>
</table>
図 3.1-1 JCp-1 及び JCt-1 の元素存在度の認証値との比較
縦軸は JCp-1 及び JCt-1 の元素存在度をそれぞれの認証値（産総研データベース）で規格化した値を示す。エラーバーは 1σの信頼区間を示す。

3.2 標準試料候補の微量元素（鉛、トリウム、ウラン）の定量と鉛同位体分析
3.2.1 測定方法及び測定結果

標準試料候補 JCp-1 及び JCt-1 の Pb、Th、U 濃度を定量するため、四重極型 ICP 質量分析計を用いた溶液法で測定を実施した。試料の分解はテフロンビーカーを使ったフッ酸-過塩素酸による酸分解法を採用した。分解後の試料は、2,000 倍希釈 5%硝酸溶液に調整し、検量線法によって測定を行った (Senda et al., 201420)。測定には海洋研究開発機構の iCAP-Q 四重極型 ICP 質量分析計を用いた。測定結果及び報告値との比較を表 3.2-1 に示す。

次に、JCp-1 及び JCt-1 の Pb 同位体比測定を実施した。JCp-1 及び JCt-1 の粉体試料を酸分解し、マルチプルコレクター（以下、「MC」という。）ICP 質量分析計によって全岩 Pb 同位体分析を行った。また、JCp-1 及び JCt-1 の各粒子について、紫外フェムト秒レーザー（以下、「UVFsLA」という）での局所サンプリングとマルチプルファラデーカップ（以下、「MFC」という）ICP 質量分析計を組み合わせた UVFsLA-MFC-ICP 質量分析計によって局所 Pb 同位体比測定を実施した。

溶液 MC-ICP 質量分析法は、粉末試料およそ 0.1 ～ 0.2 g を秤量の後、濃硝酸 - 濃フッ酸の 4:1 混酸にて加熱分解した後乾固する操作を 2 回繰り返し、乾固物を濃シュウ酸にて加熱分解 - 乾固を 2 回繰り返した後、0.5 M シュウ酸にて溶解し (Miyazaki et al., 200921)，残留を遠心分離した後、元素自動分離装置（Miyazaki et al., 201222）を用いて Pb の分離を行った（実験 1）。
この際、残渣が多く残ったことから、実験1の試料とは別に粉末試料を分取し、残渣が全て溶解するよう試料を調製した（実験2）。実験2では、硝酸と超純水を加えて試料粉末を分解し、遠心分離を行って残渣を分離した。次に、溶液を7 M硝酸溶液で加熱分解-乾燥した後、濃シュウ酸を用いた加熱分解を行った。残渣は濃硝酸-濃フッ酸で加熱分解-乾燥した後、濃シュウ酸で加熱分解を行った。これら溶液と残渣の分解物を合わせて乾燥した後、濃シュウ酸で加熱乾固したものを0.5 Mシュウ酸溶液に融解し、再度遠心分離を行った後、自動分離装置で分離を行った。

実験1及び2で使用した試薬はすべてTAMA Pure AA100（多摩化学工業）を用い、超純水は2ボトル低温蒸留を行ったものを用いた。溶液はトリウム（Tl）スパイクを含む3%硝酸溶液で10 ppb濃度に希釈し、Neptune MC-ICP質量分析計（Thermo Scientific）にて測定を行った。分析はTl同位体を外標準として用いたスパイク法（Thirlwall, 200123）に合わせ、NIST SRM 981標準溶液を用いたプラケティング法で同位体分別を補正した（Kimura et al., 2015a24）。プラケティング補正にはダブルスパイク法によって決定されたSRM 981の組成（Baker et al., 200425）（表3.2-2）を用いた。なお、測定結果の比較のため、地質標準試料JB-2（玄武岩）の分析も合わせて行った。測定には海洋研究開発機構のNeptune MC-ICP質量分析計とAridus II（CETAC）脱溶媒ネブライザーを用いた。分析結果並びに作業ブランクを表3.2-2に示す。

UVFsLA-MFC-ICP質量分析計によるPb同位体局所分析には、JCp-1及びJCT-1の粉末試料から粗粒（直径125 µm以上）画分を篩い分けた後、エポキシ樹脂に包埋して片面を鏡面研磨したものを使った（図3.2-1）。測定は海洋研究開発機構のOKFs-2000K UVFsLA装置（OK Laboratory）及びNeptune MC-ICP質量分析計を用いた。LA装置の波長は266 nm、レーザーパルスレートは5 Hz、レーザークレーター径×深さは50 µm×50 µmのサンプリング条件で測定を行った。MFC-ICP質量分析計は206-207-208Pb同位体を増幅率の1013Ωファラデーアンプを用いて計測し、207Pb/206Pb、208Pb/206Pb比を測定した（Kimura et al., 2015b26）。一点の同位体比測定には、60秒のガスブランク測定の後スキャン時間0.5秒で34スキャン測定（実質測定時間：約18秒）し、測定値の平均値（AVG）と標準誤差（2SE）を求めた（表3.2-3）。測定はNIST SRM 612標準ガラス試料を用いて、標準試料と未知試料を交互に測定するプラケティング法によって同位体分別補正を行い、補正にはSRM 612の推奨値（Baker et al., 200425; Kent, 200827）（表3.2-3）を用いた。UFsLA-MFC-ICP質量分析法によるJCp-1及びJCt-1のクレーターゴとの平均値、2標準誤差及び10点の分析の平均値と中間精度（2SD：2標準偏差）を表3.2-3に示す。SRM 612の測定中の平均値と2標準偏差も併せて示す。また、JCp-1及びJCt-1試料の平均値は溶液法との比較のため表3.2-2にも示す。なお、参考のため、原子力機構が実施している独立行政法人国立科学博物館との共同研究「化石試料の放射年代測定による古環境変動の復元」において提供された小笠原村母島御幸之浜産の貨幣石（ヌムライト）化石（NMT）の測定も実施したので、結果を表3.2-3に併せて示す。
図 3.2-1 JCP-1 及び JCT-1 の樹脂包埋試料の光学顕微鏡写真（反射像）
(a) JCP-1、(b) JCT-1 共に、右に示すのはそれぞれの左写真中赤枠部の拡大写真である。矢印は各粒子に認められるコントラストの異なる部分を示す。各粒子中央の径 50 µm の円状に見えるものは、レーザー照射痕である。
表 3.2-1 JCp-1 及び Jct-1 の Pb、Th、U 定量分析結果

<table>
<thead>
<tr>
<th>ppm</th>
<th>Pb</th>
<th>SD(%)</th>
<th>Th</th>
<th>SD(%)</th>
<th>U</th>
<th>SD(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>JCp-1</td>
<td>0.215</td>
<td>3.1</td>
<td>0.0478</td>
<td>2.8</td>
<td>2.337</td>
<td>3.2</td>
</tr>
<tr>
<td>Jct-1</td>
<td>0.0593</td>
<td>2.8</td>
<td>0.0131</td>
<td>2.2</td>
<td>0.0307</td>
<td>4.0</td>
</tr>
</tbody>
</table>

Comparison to reference values

<table>
<thead>
<tr>
<th>ppm</th>
<th>Pb</th>
<th>SD(%)</th>
<th>Th</th>
<th>SD(%)</th>
<th>U</th>
<th>SD(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>JCp-1</td>
<td>0.22</td>
<td>-</td>
<td>0.05</td>
<td>-</td>
<td>2.34</td>
<td>-</td>
</tr>
<tr>
<td>Jct-1</td>
<td>0.18</td>
<td>-</td>
<td>0.01</td>
<td>-</td>
<td>2.91</td>
<td>-</td>
</tr>
</tbody>
</table>

表 3.2-2 溶液 MC-ICP 質量分析法による JCp-1 及び Jct-1 の Pb 同位体分析結果

<table>
<thead>
<tr>
<th>Sample</th>
<th>Status</th>
<th>206Pb/204Pb</th>
<th>2SE</th>
<th>207Pb/204Pb</th>
<th>2SE</th>
<th>208Pb/204Pb</th>
<th>2SE</th>
<th>208Pb/206Pb</th>
<th>2SE/2SD</th>
<th>207Pb/206Pb</th>
<th>2SE/2SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>JCp-1-1</td>
<td>Solution_1 (fluoride separation)</td>
<td>18.3431</td>
<td>0.0011</td>
<td>15.6261</td>
<td>0.0009</td>
<td>38.3078</td>
<td>0.0024</td>
<td>2.08833</td>
<td>0.00004</td>
<td>0.851849</td>
<td>0.000011</td>
</tr>
<tr>
<td>JCp-1-2</td>
<td>Solution_2 (total digestion)</td>
<td>18.3716</td>
<td>0.0014</td>
<td>15.6354</td>
<td>0.0013</td>
<td>38.4082</td>
<td>0.0038</td>
<td>2.09055</td>
<td>0.00006</td>
<td>0.851043</td>
<td>0.000014</td>
</tr>
<tr>
<td>JCp-1</td>
<td>Solid in-situ 266nm/50um/50umRR/33S</td>
<td>2.079</td>
<td>0.017</td>
<td>0.86</td>
<td>0.007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jct-1-1</td>
<td>Solution_1 (fluoride separation)</td>
<td>18.4058</td>
<td>0.0015</td>
<td>15.6378</td>
<td>0.0013</td>
<td>38.5920</td>
<td>0.0040</td>
<td>2.09664</td>
<td>0.00006</td>
<td>0.849599</td>
<td>0.000013</td>
</tr>
<tr>
<td>Jct-1-2</td>
<td>Solution_2 (total digestion)</td>
<td>18.3736</td>
<td>0.0012</td>
<td>15.6287</td>
<td>0.0010</td>
<td>38.5455</td>
<td>0.0027</td>
<td>2.09785</td>
<td>0.00004</td>
<td>0.850591</td>
<td>0.000012</td>
</tr>
<tr>
<td>Jct-1</td>
<td>Solid in-situ 266nm/50um/50umRR/33S</td>
<td>2.089</td>
<td>0.028</td>
<td>0.86</td>
<td>0.019</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JB-2</td>
<td>Solution (new digestion)</td>
<td>18.3455</td>
<td>0.0033</td>
<td>15.5656</td>
<td>0.0030</td>
<td>38.2904</td>
<td>0.0096</td>
<td>2.08710</td>
<td>0.00016</td>
<td>0.848445</td>
<td>0.000015</td>
</tr>
<tr>
<td>JB-2</td>
<td>Solution (control standard)</td>
<td>18.3445</td>
<td>0.0010</td>
<td>15.5651</td>
<td>0.0008</td>
<td>38.2870</td>
<td>0.0024</td>
<td>2.08703</td>
<td>0.00004</td>
<td>0.848455</td>
<td>0.000011</td>
</tr>
<tr>
<td>Bracketing standard SRM 981 (2SD, n = 7)</td>
<td>16.9254</td>
<td>0.0069</td>
<td>15.4778</td>
<td>0.0073</td>
<td>36.6560</td>
<td>0.0231</td>
<td>2.16574</td>
<td>0.00046</td>
<td>0.914474</td>
<td>0.000069</td>
<td></td>
</tr>
<tr>
<td>Normalization</td>
<td></td>
<td>16.9416</td>
<td></td>
<td>15.5000</td>
<td></td>
<td>36.7262</td>
<td></td>
<td>2.16775</td>
<td></td>
<td>0.914890</td>
<td></td>
</tr>
</tbody>
</table>

Procedural blanks in solution analyses

<table>
<thead>
<tr>
<th>Sample</th>
<th>Status</th>
<th>7</th>
<th>pg</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK-1 (Solution_1)</td>
<td></td>
<td>7</td>
<td>pg</td>
</tr>
<tr>
<td>BK-2 (Solution_2)</td>
<td></td>
<td>18</td>
<td>pg</td>
</tr>
<tr>
<td>Column blank</td>
<td></td>
<td>10</td>
<td>pg</td>
</tr>
</tbody>
</table>
表 3.2-3 DUVFs-LA-MFC-ICP 質量分析法による JCp-1 及び JCT-1 の鉛同位体分析結果

<table>
<thead>
<tr>
<th>RUN</th>
<th>LA settings</th>
<th>Hz</th>
<th>Sample</th>
<th>208Pb(V)</th>
<th>208Pb/206Pb</th>
<th>2SE</th>
<th>207Pb/206Pb</th>
<th>2SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run23</td>
<td>266nm/50um/50umRR/33S</td>
<td>5</td>
<td>JCp-1_11</td>
<td>0.0100</td>
<td>2.0762</td>
<td>0.0047</td>
<td>0.8535</td>
<td>0.0022</td>
</tr>
<tr>
<td>Run25</td>
<td>266nm/50um/50umRR/33S</td>
<td>5</td>
<td>JCp-1_12</td>
<td>0.0039</td>
<td>2.0849</td>
<td>0.0071</td>
<td>0.8593</td>
<td>0.0047</td>
</tr>
<tr>
<td>Run27</td>
<td>266nm/50um/50umRR/33S</td>
<td>5</td>
<td>JCp-1_13</td>
<td>0.0045</td>
<td>2.0864</td>
<td>0.0056</td>
<td>0.8588</td>
<td>0.0041</td>
</tr>
<tr>
<td>Run29</td>
<td>266nm/50um/50umRR/33S</td>
<td>5</td>
<td>JCp-1_14</td>
<td>0.0112</td>
<td>2.0810</td>
<td>0.0022</td>
<td>0.8577</td>
<td>0.0026</td>
</tr>
<tr>
<td>Run31</td>
<td>266nm/50um/50umRR/33S</td>
<td>5</td>
<td>JCp-1_15</td>
<td>0.0043</td>
<td>2.0876</td>
<td>0.0068</td>
<td>0.8621</td>
<td>0.0044</td>
</tr>
<tr>
<td>Run33</td>
<td>266nm/50um/50umRR/33S</td>
<td>5</td>
<td>JCp-1_16</td>
<td>0.0024</td>
<td>2.0589</td>
<td>0.0153</td>
<td>0.8672</td>
<td>0.0065</td>
</tr>
<tr>
<td>Run35</td>
<td>266nm/50um/50umRR/33S</td>
<td>5</td>
<td>JCp-1_17</td>
<td>0.0039</td>
<td>2.0781</td>
<td>0.0080</td>
<td>0.8615</td>
<td>0.0045</td>
</tr>
<tr>
<td>Run37</td>
<td>266nm/50um/50umRR/33S</td>
<td>5</td>
<td>JCp-1_18</td>
<td>0.0034</td>
<td>2.0844</td>
<td>0.0087</td>
<td>0.8599</td>
<td>0.0068</td>
</tr>
<tr>
<td>Run39</td>
<td>266nm/50um/50umRR/33S</td>
<td>5</td>
<td>JCp-1_19</td>
<td>0.0037</td>
<td>2.0828</td>
<td>0.0066</td>
<td>0.8624</td>
<td>0.0037</td>
</tr>
<tr>
<td>Run41</td>
<td>266nm/50um/50umRR/33S</td>
<td>5</td>
<td>JCp-1_20</td>
<td>0.0115</td>
<td>2.0728</td>
<td>0.0038</td>
<td>0.8595</td>
<td>0.0029</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RUN</th>
<th>LA settings</th>
<th>Hz</th>
<th>Sample</th>
<th>208Pb(V)</th>
<th>208Pb/206Pb</th>
<th>2SE</th>
<th>207Pb/206Pb</th>
<th>2SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run23</td>
<td>266nm/50um/50umRR/33S</td>
<td>5</td>
<td>JCT-1_1</td>
<td>0.0014</td>
<td>2.0957</td>
<td>0.0158</td>
<td>0.8549</td>
<td>0.0085</td>
</tr>
<tr>
<td>Run25</td>
<td>266nm/50um/50umRR/33S</td>
<td>5</td>
<td>JCT-1_2</td>
<td>0.0033</td>
<td>2.0990</td>
<td>0.0098</td>
<td>0.8616</td>
<td>0.0082</td>
</tr>
<tr>
<td>Run27</td>
<td>266nm/50um/50umRR/33S</td>
<td>5</td>
<td>JCT-1_3</td>
<td>0.0027</td>
<td>2.0726</td>
<td>0.0205</td>
<td>0.8467</td>
<td>0.0077</td>
</tr>
<tr>
<td>Run29</td>
<td>266nm/50um/50umRR/33S</td>
<td>5</td>
<td>JCT-1_4</td>
<td>0.0024</td>
<td>2.0795</td>
<td>0.0207</td>
<td>0.8619</td>
<td>0.0082</td>
</tr>
<tr>
<td>Run31</td>
<td>266nm/50um/50umRR/33S</td>
<td>5</td>
<td>JCT-1_5</td>
<td>0.0024</td>
<td>2.1065</td>
<td>0.0111</td>
<td>0.8515</td>
<td>0.0061</td>
</tr>
<tr>
<td>Run33</td>
<td>266nm/50um/50umRR/33S</td>
<td>5</td>
<td>JCT-1_6</td>
<td>0.0020</td>
<td>2.0853</td>
<td>0.0140</td>
<td>0.8530</td>
<td>0.0085</td>
</tr>
<tr>
<td>Run35</td>
<td>266nm/50um/50umRR/33S</td>
<td>5</td>
<td>JCT-1_7</td>
<td>0.0012</td>
<td>2.0982</td>
<td>0.0209</td>
<td>0.8592</td>
<td>0.0138</td>
</tr>
<tr>
<td>Run37</td>
<td>266nm/50um/50umRR/33S</td>
<td>5</td>
<td>JCT-1_8</td>
<td>0.0033</td>
<td>2.1092</td>
<td>0.0126</td>
<td>0.8746</td>
<td>0.0073</td>
</tr>
<tr>
<td>Run39</td>
<td>266nm/50um/50umRR/33S</td>
<td>5</td>
<td>JCT-1_9</td>
<td>0.0037</td>
<td>2.0722</td>
<td>0.0120</td>
<td>0.8751</td>
<td>0.0065</td>
</tr>
<tr>
<td>Run41</td>
<td>266nm/50um/50umRR/33S</td>
<td>5</td>
<td>JCT-1_10</td>
<td>0.0018</td>
<td>2.0828</td>
<td>0.0147</td>
<td>0.8597</td>
<td>0.0084</td>
</tr>
</tbody>
</table>

Standard

N = 33 266nm/50um/50umRR/33S 5 SRM 612 0.1177 2.1890 0.0020 0.9120 0.0009
Normalization value
2.16450 0.90745
3.2.2 測定結果から見た標準物質の均質性

JCp-1のPb, Th, U濃度の定量分析結果(表3.2-1)は、それぞれ0.22, 0.15, 2.34 ppmで、
認証値のPb = 0.18, Th = 未報告)と比較的良い一致を示す。しかしながら、JCp-1のPb/U比は0.094（本共同研究）と0.062（報告値）と50％以上の差を示しており、それぞれの値が正しいとすれば、U-Pb放射変換系列においてはかなり大きな親-娘比のばらつきがある。

JCt-1のPb, Th, U濃度の測定結果は、それぞれ0.06, 0.01, 0.03 ppmで、JCp-1に比較して著しく濃度が低い。JCt-1の認証値のPb = 0.10, Th = 未報告)と比較的良い一致を示す。

JCp-1のPb/U比は0.094（本共同研究）と0.062（報告値）と50％以上の差を示しており、それぞれの値が正しいとすれば、U-Pb放射壊変系列においてはかなり大きな親-娘比のばらつきがある。

溶溶液MC-ICP質量分析法によるによるPb同位体比の測定結果(表3.2-3)は、204PbベースのPb同位体比を見ると、実験1と実験2の間において、JCp-1で59〜2.62‰、JCt-1で0.59〜2.62‰の測定誤差を超えた有意の不均質性が認められ、206PbベースのPb同位体比でもJCp-1で-0.95〜1.06‰、JCt-1で-1.17‰の有意な不均質性が認められた。これら測定の差異と、実験1と実験2の試料間、すなわち分取試料間の同位体比の違いは認められない。したがって、それぞれの実験（1と2）に用いた分取試料間の同位体比の違いと判断される。全岩Pb同位体組成では有意な誤差は認められるものの、206PbベースのPb同位体比での偏差は1.2‰以下と小さく、レーザーを用いた年代測定のための炭酸塩標準試料としての有用性が認められた。

U及びPb濃度の比較的高いJCp-1の測定結果から、U-Pb年代測定に用いる207Pb/206Pb比の不均質性は、おおよそ全岩で0.2%以内、局所分析で1%内外の再現性が得られて良好である。しかし、JCp-1におけるPb/U比の再現性については、本共同研究のPb/U比が0.094、報告値が0.062と50%以上の差を示しており、元素比の均質性は未だ確認できていない。また、JCp-1及びJCt-1の粒子には、反射顕微鏡下でのコントラストの異なる部分が認められ（図3.2-1）、粒子を構成する物質の不均質性も示唆される。今後、LA分析を用いたU-Pb比測定の再現性の検討が必要である。

なお、参考のためにLA分析した貨幣石（ヌムライト）試料の207Pb/206Pb比は、3〜8%と著しい不均質性を示している。貨幣石試料のU含有量の測定は実施していないものの、U-Pb標準物質としては不向きである可能性が高い。
図3.2-2 JCP-1及びJCT-1の湿式分析とLA-ICP質量分析法によるPb同位体分析値の比較
左は$^{208}\text{Pb}/^{206}\text{Pb}$比、右$^{207}\text{Pb}/^{206}\text{Pb}$比の分析値を示す。点線は湿式分析における各2点ずつの平均を示す。エラーパーは2標準偏差 [2SD]。図中の RD は LA 分析平均値の溶液分析平均値からの偏差を示す。

3.3 LA-ICP質量分析法を用いた天然炭酸塩試料の均質性評価手法の検討

LA-ICP質量分析法などの局所領域を測定する分析手法では、異なった分析点を選択しても元素存在度の比及び同位体組成に変化のない（もしくは少ない）“均質な”標準試料の選定が必要となる。天然の炭酸塩鉱物に完全な均質性を求めることは極めて難しいと予測されるが、少なくとも均質性の評価は年代測定を行う前に必要不可欠であり、その評価手法の構築も同時に必要である。

カルシウム（Ca）とPbのイオン半径は比較的近い値を持つため、Caを主成分とする炭酸塩鉱物の生成時には一般に周囲のPbが分配される（Rimstidt et al., 199828）。実際に炭酸塩鉱物のU-Pb年代測定を行う際には、この非放射性変異起源鉛の影響を考慮しなければならない。さらに、炭酸塩鉱物が成長する際には周囲の碎屑物を取り込むため、混入している碎屑物を避けて分析する必要がある。二次元分布分析（以下、「イメージング分析」という）は、元素組成や同位体組成分布を視覚的に捉えることが可能であり、均質性の評価だけでなく、非放射性変異起源Pbの混入の程度や、碎屑物の分布情報を把握できる。

本共同研究で選定した産総研配布の炭酸塩標準試料（JCP-1、JCT-1、JLS-1、JDo-1）などの候補試料について均質性を評価するため、その前段階として天然の炭酸塩試料について、イメージング分析を実施し、分析手法の均質性の評価に対する有用性を確認した。用いた試料は、南部シベリアのGorny Altai山地のKurai付加帯中に見られる石灰岩層より採取された炭酸塩試料KR Loc.3-6である（Nohda et al., 201329）。また、分析には、京都大学に設置されているLA-ICP質量分析計を用いた。炭酸塩試料KR Loc.3-6が採取された石灰岩層中の炭酸塩については、既に同位体希釈表面電離型質量分析法（ID-TIMS）によるPb同位体分析が行われており、Pb-Pbアイソクロン年代は約600Maであると報告されている（Nohda et al., 200330）。

3.3.1同位体イメージング

KR Loc.3-6は、石灰岩層中に挟在する泥質岩中に数mmから1cm程度の炭酸塩塊として存在している炭酸塩試料である。本共同研究では、KR Loc.3-6からLA分析用に大きさ5×5mm程度の部分を切り出し、アクリル樹脂で用いて直径2cm、高さ5mmの円柱状マウントに包埋し
た。その後、試料マウント表面を粒径1μmのダイヤモンドペーストを用いて鏡面まで研磨を行った。

イメージング分析には京都大学に設置のiCAP Qc四重極ICP質量分析計(Thermo Scientific)と NWR193 ArFエキシマレーザーアブレーションシステム(ESI)を組み合わせて行った。本分析ではラインラスター分析を繰り返し行い、得られた合計60本のライン分析結果をイメージング用データ解析ソフトiQuant2（鈴木敏弘博士、東京工業大学により開発）を用いて可視化した。詳細な実験条件については表3.3-1に記載する。

<table>
<thead>
<tr>
<th>表 3.3-1 同位体イメージング分析の測定条件</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermo Fisher Scientific iCAP Qc ICP-MS Operating Conditions</td>
</tr>
<tr>
<td>RF power</td>
</tr>
<tr>
<td>Carrier gas through sample chamber (He)</td>
</tr>
<tr>
<td>Conditioning gas mixed to carrier gas (Ar)</td>
</tr>
<tr>
<td>Integration time per peak</td>
</tr>
<tr>
<td>Total integration time per reading</td>
</tr>
<tr>
<td>Analysis mode</td>
</tr>
<tr>
<td>Detection mode</td>
</tr>
<tr>
<td>ESI NWR-193 Excimer laser-ablation system Operating Conditions</td>
</tr>
<tr>
<td>Wavelength</td>
</tr>
<tr>
<td>Pulse width</td>
</tr>
<tr>
<td>Fluence</td>
</tr>
<tr>
<td>Repetition rate</td>
</tr>
<tr>
<td>Ablation pit size</td>
</tr>
<tr>
<td>Sampling mode</td>
</tr>
<tr>
<td>Pre-cleaning</td>
</tr>
<tr>
<td>Carrier gas</td>
</tr>
<tr>
<td>Signal smoothing device</td>
</tr>
<tr>
<td>Operational settings for imaging analysis and data processing</td>
</tr>
<tr>
<td>Speed of line scan</td>
</tr>
<tr>
<td>Number of lines</td>
</tr>
<tr>
<td>Line spacing</td>
</tr>
<tr>
<td>Interval of each line</td>
</tr>
<tr>
<td>Gas blank</td>
</tr>
<tr>
<td>Software used for data processing</td>
</tr>
</tbody>
</table>
3.3.2 イメージング分析結果と議論

炭酸塩試料 KR Loc.3-6 の同位体イメージング結果を図 3.3-1 に示す。砕屑物が多く含まれている箇所は、例えばアルミニウムの分布（図 3.3-1 (c)）を見ることで容易に判定することができる。イメージング分析により、このような砕屑物の影響が大きいアルミニウムのホットスポットなど、分析を避けるべき箇所を視覚的に把握できた。また、KR Loc.3-6 の Pb 同位体の分布（図 3.3-1 (d) (e) (f)）は不均質で、存在度の高い箇所が筋状に存在することが確認された。一方で、親核種の濃集部に娘（子孫）核種が濃集しているような親 - 娘の相関は明確ではない（例えば、238U-206Pb [図 3.3-1 (h)と(d)の比較]）。また、Pb 同位体分布は天然の Pb 同位体存在度に依存していると判断できるため、KR Loc.3-6 の Pb の分布は非放射壊変起源 Pb の寄与が高いと考えられる。これらの炭酸塩鉱物のイメージング分析結果から、試料の均質性を視覚的に把握すると共に、非放射壊変起源 Pb と砕屑物の混入の度合いを評価できることが示された。

また、KR Loc.3-6 中には、ほとんど 232Th が含まれていない（図 3.3-1 (g)）ことが確認できた。質量数 208 の Pb は質量数 232 の Th の放射壊変により生成するため、232Th が含まれていないことは試料中に含まれる 208Pb がほぼ全て非放射壊変起源であることを意味する。すなわち、208Pb は炭酸塩鉱物は生成する際に初生的に取り込まれた、或いは鉱物生成後に二次的に取り込まれたものだと解釈できる。このことは、炭酸塩鉱物にアイソクロン法を用いて年代を算出する際に非常に大きなメリットとなる。一般に、U-Pb 或いは Pb-Pb アイソクロン法では放射壊変に関与する核種を放射壊変に関与しない核種で規格化する必要があり、質量数 204 の Pb を規格化のための核種として利用する。しかし、204Pb は Pb の安定同位体の中でも最も存在度が小さく（天然の全 Pb の 204Pb の存在度は 1.4%）、その実測には比較的大きな分析誤差が付随する。さらに、LA-ICP 質量分析法を用いた測定ではイオン源に使用しているアルゴンガス中に含まれる質量数 204 の水銀が 204Pb に対して同位体干渉を引き起こすため、204Pb の測定誤差は他の Pb 安定同位体分析と比べて非常に大きなものとなる。それに対し、KR Loc.3-6 では 208Pb も放射壊変にほぼ関与しない核種であることがわかったため、この 208Pb をアイソクロン法における規格化に使用可能である。この 208Pb と比べて同位体存在度が 35 倍以上大きい上に、204Pb の測定は同じ同位体干渉も存在しない。そのため、炭酸塩鉱物を対象とした U-Pb 同位体分析の前段として Th の分布をイメージングにより把握し、Th の存在度が充分に低いことが確認できれば、208Pb を規格化に用いたアイソクロン法を適用することによって、年代精度の向上に期待できる。
図 3.3-1 同位体二次元分布図
炭酸塩試料 KR Loc.3-6 の元素・同位体イメージングを行った。砕屑物は Al や Th の分布より判別可能であると考えられる。試料のほぼ全域において Th がほとんど含有されていないことが特徴で、このことから 208Pb はほぼ非放射壊変起源であると推測される。
4. まとめ

共同研究において、炭酸塩鉱物の標準試料候補の選定と選定された試料の高精度同位体分析及び均質性評価のためのイメージング分析手法の有用性を提示した。

標準試料候補の選定においては、既に主要元素組成などの認証値が示されている JCp-1（産総研）、JCT-1（産総研）、JLS-1（産総研）、JDw-1（産総研）、GYP-A（Domtar）、CACB-1（NRC・CNRC）の6試料を選定し、そのうち産総研配布の4試料について、LA-ICP質量分析法による主要及び微量元素の定量分析を行った。定量分析結果のうち、JCp-1及びJCT-1について公表されている認証値と比較した結果、元素存在度の不一致が認められた。この不一致はLA法に対応して粒度の大きな試料を細別したことに起因する可能性が示唆された。一方で、U及びPbの存在度については認証値と比較的一致しており、細別の有無を問わず、U及びPb存在度はJCp-1、JCT-1共に均質で、年代測定の標準試料に適している可能性がある。

JCp-1及びJCT-1について、溶液法による高精度同位体分析を行った結果、U及びPbの存在度は認証値と比較的良好一致した。また、全岩Pb同位体組成において、有意な不均質性は認められる（206Pbベースの同位体比で1.2‰以下）ものの、局所領域分析においてその不均質性は十分に小さいため、LA-ICP質量分析法による年代測定の標準試料としてのJCp-1及びJCT-1の適合性が確認された。

天然の炭酸塩鉱物であるKR Loc.3-6についてイメージングを行った結果、非放射起源Pbと放射起源Pbが視覚的に判断できたことから、イメージングがU-Th-Pb系の均質性と閉鎖系の評価において有用であることが確認された。また、炭酸塩鉱物へ取り込まれる碎屑物の識別も可能となり、避けるべき分析点もイメージングにより把握できることを確認した。KR Loc.3-6においては、イメージング分析からThがほとんど含まれていないことが判明し、したがって208Pbは非放射殻変起源のPbであると判断できた。Thを含まない試料においては、通常の204Pbベースの同位体比を用いたアイソクロノグラフではなく、208Pbを非放射起源Pbとした208Pbベースの同位体比を用いるアイソクロノグラフを適用することで、年代測定の精度向上に期待できる。

JCp-1のPb/U比については測定値と認証値との間で50%以上の差異があった。今後はLA-ICP質量分析法によるPb/U比の多点測定から、その再現性を確認する必要がある。また、JCp-1及びJCT-1のいくつかの粒子について、同位体イメージング分析を実施し、両者の元素・同位体分布を可視化して、更なる均質性の評価を行う必要がある。
引文文献

6) 横田秀晴, 吉田英一, 堆積岩中の物質移動経路となり得る割れ目の構造とその特徴 -幌延深地層研究所における事例- , 日本地球惑星科学連合 2013 年大会予稿集, 2013, S-CG60-03.

11) Vargas, G., Palacios, C., Reich, M., Luo, S., Shen, C.-C., González, G. and Wu, Y.-C., U-series dating of co-seismic gypsum and submarine paleoseismology of active faults in Northern Chile (23°S), Tectonophysics, vol.497, 2011, pp.34-44.

18) USGS glasses the GeoREM database (http://georem.mpch-mainz.gwdg.de/) (2015.9)

20) Senda, R., Kimura, J.-I. and Chang, Q., Evaluation of a rapid, effective sample digestion

炭酸塩鉱物の微小領域分析手法の開発

平成 27 年度共同研究報告書

平成 28 年 3 月

国立大学法人山形大学
国立大学法人熊本大学
国立研究開発法人日本原子力研究開発機構
目次

1. 概要 .. 1
 1.1 共同研究件名 .. 1
 1.2 研究目的 ... 1
 1.3 実施期間 ... 1

2. 研究内容 .. 2
 2.1 研究概要 ... 2
 2.2 共同研究内容 .. 3

3. 研究手法 .. 5
 3.1 試料選定 ... 5
 3.1.1 有孔虫（貨幣石） .. 5
 3.1.2 鍾乳石 ... 5
 3.1.3 花崗岩中の割れ目に介在する炭酸塩鉱物 ... 6
 3.2 試料の調製と分析手順 ... 9
 3.3 分析装置 ... 12
 3.3.1 ルミノスコープ .. 12
 3.3.2 SEM-CL 装置 .. 12
 3.3.3 EPMA-EDS 装置 .. 12

4. 研究成果 .. 13
 4.1 ルミノスコープを用いた Optical-CL 像観察 .. 13
 4.1.1 有孔虫（貨幣石） .. 13
 4.1.2 鍾乳石 ... 13
 4.1.3 花崗岩中の割れ目に介在する炭酸塩鉱物 ... 13
 4.2 SEM-CL 装置を用いた SEM-CL 像観察 ... 19
 4.3 EPMA-EDS 装置を用いた元素マッピング ... 29
 4.4 微小領域分析手法の構築 .. 33

5. まとめ ... 35

引用文献 .. 36
図 目 次

図 2.1-1 炭酸塩鉱物の CL の累帯構造と分析点の概略図 ... 2
図 2.2-1 「放射年代測定法の開発」及び「酸化還元電位測定技術の構築」における重要課題 .. 4
図 3.1-1 「放射年代測定法の開発」のための標準試料分析から未知試料分析へのアプローチ ... 6
図 3.1-2 貨幣石の試料写真 ... 6
図 3.1-3 貨幣石（AK-1）の採取地点（A）、試料写真及びライン分析点（B）、ウラン、トリウム、鉛のラインプロファイル（C） ... 7
図 3.1-4 土岐花崗岩体中で実施された広域地下水流動研究のためのボーリング調査位置図 7
図 3.1-5 土岐花崗岩体の DH-15 号孔深度 996.2-996.5 m 地点から採取した割れ目中に介在する炭酸塩鉱物 .. 8
図 3.2-1 有孔虫（貨幣石）の切断方向と薄片試料写真 .. 10
図 3.2-2 有孔虫（貨幣石）試料の落射偏光顕微鏡像 .. 11
図 3.2-3 ルミノスコープの写真 .. 12
図 4.1-1 有孔虫（貨幣石）試料の落射偏光顕微鏡像 .. 14
図 4.1-2 円盤面に対して垂直な有孔虫（貨幣石）試料の落射偏光顕微鏡像及び Optical-CL 像 .. 15
図 4.1-3 円盤面に対して水平な有孔虫（貨幣石）試料の落射偏光顕微鏡像及び Optical-CL 像 .. 16
図 4.1-4 鍾乳石試料（AK-1）の落射偏光顕微鏡像 .. 16
図 4.1-5 鍾乳石試料（AK-1）の落射偏光顕微鏡像の Optical-CL 像 .. 17
図 4.1-6 花崗岩体中の割れ目に介在する炭酸塩鉱物の落射偏光顕微鏡像 ... 17
図 4.1-7 花崗岩体中の割れ目に介在する炭酸塩鉱物の落射偏光顕微鏡像及び Optical-CL 像...18
図 4.2-1 SEM-CL 装置で取得した有孔虫（貨幣石）試料の SEM-CL 像 .. 20
図 4.2-2 SEM-CL 装置で取得した鍾乳石試料（AK-1）の SEM-CL 像 .. 20
図 4.2-3 SEM-CL 装置で取得した割れ目に介在する炭酸塩鉱物試料（A）の SEM-CL 像21
図 4.2-4 SEM-CL 装置で取得した割れ目に介在する炭酸塩鉱物試料（B）の SEM-CL 像 21
図 4.2-5 長時間のスキャンを行った有孔虫試料の SEM-CL 像（1） .. 22
図 4.2-6 長時間のスキャンを行った有孔虫試料の SEM-CL 像（2） .. 23
図 4.2-7 長時間のスキャンを行った鍾乳石試料の SEM-CL 像（1） .. 24
図 4.2-8 長時間のスキャンを行った鍾乳石試料の SEM-CL 像（2） .. 25
図 4.2-9 長時間のスキャンを行った割れ目に介在する炭酸塩鉱物試料（A）の SEM-CL 像26
図 4.2-10 長時間のスキャンを行った割れ目に介在する炭酸塩鉱物試料（B）の SEM-CL 像27
図 4.2-11 長時間のスキャンを行った割れ目に介在する炭酸塩鉱物試料（B）の SEM-CL 像 28
二次元分布...31
図 4.3-4 EPMA-EDS で取得した割れ目に介在する炭酸塩鉱物試料(B)の化学組成の二次
元分布 ..32
図 4.4-1 炭酸塩鉱物の微小領域分析における地質学的背景を明らかにするための分析フロ
ーチャート ...34

表 目 次

表 2.2-1 山形大学、熊本大学及び原子力機構の三者の研究実施分担...4
表 3.1-1 本研究で対象とする各段階の炭酸塩鉱物...8
1. 概要

1.1 共同研究件名
「炭酸塩鉱物の微小領域分析手法の開発」

1.2 研究目的
わが国の高レベル放射性廃棄物の地層処分計画を円滑に進めるためには、処分事業や安全規制の基盤となる技術を整備・強化するための研究開発を着実に行っていく必要がある。具体的には、地層処分システムの長期的な変化をモデル計算によって予測・評価しつつ、その結果に基づいてシステムの性能や安全性の判断を行うことになる。このため、日本原子力研究開発機構（以下、「原子力機構」という）が、経済産業省から受託して実施した「地質環境長期安定性評価確認技術開発」では、モデル作成に必要となる情報や検証に用いるデータを取得するための革新的な要素技術の開発として、炭酸塩鉱物を対象とした地球科学特性や年代値などの測定技術の開発を進めている。

地下深部の亀裂を充填する炭酸塩鉱物は地下水の“化石”と呼べるものであり、過去から現在までの地下水の流れや水質などに関する情報を保持しており、炭酸塩鉱物が沈殿した際の地下水の地球化学特性及び放射年代値を測定し把握することは、地形・地質モデルや水理モデル及び統合数値モデルの信頼性の向上に寄与するものと考えられる。

炭酸塩鉱物は、組成異常構造やカソードルミネッセンス（以下、「CL」という）で観察される縞状構造を有することが報告されている（Milodowski et al., 2005）。これは鉱物成長を反映しており、鉱物中の位置ごとに地質学的な意味合い（形成順序や生成環境など）が異なることを示す。それゆえ、炭酸塩鉱物中の微小領域において地球化学的特性や放射年代を取得するための分析点を選定するためには、分析点ごとの地質学的な意味合いを事前に評価する必要がある。本共同研究は、炭酸塩鉱物の微小領域ごとの地質学的背景を明らかにする分析手法の開発を目的として実施する。

山形大学は、炭酸塩鉱物を対象とした研究実績や地質学及び岩石学的な研究に関連するノウハウを有しており、熊本大学は炭酸塩鉱物を対象とした研究実績を有することに加えて試料の元素組成や CL で観察される縞状構造などを把握するための分析装置を所有している。原子力機構は、本研究に資する炭酸塩鉱物試料を所有しているほか、試料の元素組成や CL で観察される縞状構造などを把握するための分析装置を所有しており、鉱物の放射年代測定法の開発や炭酸塩鉱物を利用した地下水の地球化学特性の推定などの研究実績を有している。

本共同研究により、地質学的背景を考慮した炭酸塩鉱物の分析点の選定に資する微小領域分析手法の開発を実施する。

1.3 実施期間
平成27年7月1日～平成28年3月31日
2. 研究内容

2.1 研究概要

平成27年度地層処分技術調査等事業「地質環境長期安定性評価確認技術開発」では、「革新的要素技術開発」の一項目として「炭酸塩鉱物測定技術開発」を行っている。炭酸塩鉱物は様々な岩盤中に一般的に産出する鉱物である（西本ほか, 2008; Nishimoto and Yoshida, 2010; Iwatsuki and Yoshida, 1999; Yoshida et al., 2000; 吉田, 2012; 横田・吉田, 2013）。炭酸塩鉱物から得られる情報に基づき、現在は直接的に確認することができない過去の地質環境特性の履歴を推測することで、長期的な地質環境変動モデルの構築に、汎用的な古環境指標物質として利用できると推測される。

「炭酸塩鉱物測定技術開発」では、割れ目や断層における炭酸塩鉱物の生成年代の推定、及び炭酸塩鉱物が形成される際の地下水の化学的特徴の推定を行うため、炭酸塩鉱物を対象とした革新的な放射年代測定法の開発及び酸化還元電位測定技術の構築を目指す。割れ目や断層を充填する炭酸塩鉱物の生成年代が推定できれば、割れ目や断層の形成・発達に関する時間-温度履歴が定量的に議論できる。また同一の炭酸塩鉱物中的累帯構造などを指標として鉱物成長方向を決定し、成長領域ごとに年代と化学的データを取得することで、炭酸塩鉱物の形成をもたらす地下水の地球化学的環境の長期的な変遷を議論することが可能となる（図2.1-1）。

図2.1-1 炭酸塩鉱物のCLの累帯構造と分析点の概略図
（Milodowski et al., 2005を改定）
2.2 共同研究内容

平成26年度地層処分技術調査等事業「地質環境長期安定性評価確証技術開発」報告書では、炭酸塩鉱物測定技術に関わる放射年代測定法の開発及び酸化還元電位測定技術の構築における重要課題として、「微小領域での分析手法の構築」を挙げた（図2.2-1：日本原子力研究開発機構, 2015a）。

この重要課題「微小領域での分析手法の構築」には、レーザーアブレーション誘導結合プラズマ質量分析計（以下、「LA-ICP質量分析計」という）などを用いた技術の開発のみならず、炭酸塩鉱物中でどのような場所を分析点として選定するかという点にも含まれる。分析点の選定には、定量下限以下となる領域を避けるだけでなく、分析点の地質学的意味を図る必要がある。炭酸塩鉱物は、組成累帯構造やCLで観察される縞状構造を有することが知られている。これは炭酸塩鉱物の成長様式を反映した構造であり、鉱物中の位置ごとに地質学的な意味合い（形成順序や生成環境など）が異なることを示す。このため炭酸塩鉱物中の微小領域において地球化学的特性や放射年代を取得するための分析点選定には、分析点ごとの地質学的な意味合いを事前に評価する必要がある。

そこで炭酸塩鉱物の微小領域ごとの地質学的背景を明らかにする分析手法の開発を目的とし、山形大学、熊本大学及び原子力機構の三者間での本共同研究を実施した。具体的には、原子力機構が保有する炭酸塩鉱物に対して、縞状構造などを把握するため、顕微鏡を用いた観察や、ルミノスコープや電子顕微鏡（以下、「SEM」）に付属するCL観察装置を用いてCL像の観察を行った。次にその位置における含有成分分布を把握するため、電子プローブマイクロアナライザ（以下、「EPMA」という）による主要元素の分析（元素マッピング）を実施した。以上の検討を通じた最終段階として、炭酸塩鉱物内の位置ごとの地質学的意味の評価手法構築のために、必要なデータ、そのデータの取得方法について取りまとめた。

平成27年度の研究内容及び手順を以下に示す。また山形大学、熊本大学及び原子力機構の三者が担うそれぞれの役割を表2.2-1に示す。

(1) 計画立案・情報整理

本研究の計画立案にともない、取得済みの炭酸塩鉱物を対象とした化学組成やCLで観察される縞状構造などの測定手法に関する既往情報を取りまとめ、分析を行う試料の選定基準や数値を決定する。

(2) 試料選定

(1)で決定した選定基準をもとに分析対象とする炭酸塩鉱物試料を選定する。

(3) 鉱物試料の分析

(2)で選定した炭酸塩鉱物を研磨片・薄片などに成形し試料調製を行った後、化学組成やCLで観察される縞状構造などを把握するため、EPMAやルミノスコープなどを用いた分析を行う。

(4) 取りまとめ

(1)−(3)で得られた結果を報告書として取りまとめる。
図 2.2-1 「放射年代測定法の開発」及び「酸化還元電位測定技術の構築」における重要課題

表 2.2-1 山形大学、熊本大学及び原子力機構の三者の研究実施分担

<table>
<thead>
<tr>
<th>項目</th>
<th>山形大学</th>
<th>熊本大学</th>
<th>原子力機構</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) 計画立案・情報整理</td>
<td>○</td>
<td>○</td>
<td>◎</td>
</tr>
<tr>
<td>(2) 試料選定</td>
<td>◎</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>(3) 鉱物試料の分析</td>
<td>○</td>
<td>－</td>
<td>◎</td>
</tr>
<tr>
<td>・試料の調製</td>
<td>◎</td>
<td>◎</td>
<td>○</td>
</tr>
<tr>
<td>・試料の分析</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>(4) 取りまとめ</td>
<td>○</td>
<td>○</td>
<td>◎</td>
</tr>
</tbody>
</table>

（◎：主担当）
3. 研究手法

3.1 試料選定

本研究の目的は、炭酸塩鉱物中での微小領域における地球化学的特性や放射年代を取得するための分析点選定に際して、分析点ごとの地質学的な意味合いを事前に評価するための手法を構築することである。この目標の達成のためには、複数種類の炭酸塩鉱物に対して、顕微鏡観察やCL像観察から得られる構造や化学組成分布を明らかにし、それらから地質学的な意味合い（形成順序や生成環境など）を推定する必要がある。

また、どのような炭酸塩鉱物を研究対象として選定するのかが重要となる。平成26年度地層処分技術調査等事業「地質環境長期安定性評価確証技術開発」報告書の中で、三段階のアプローチを経て炭酸塩鉱物の年代測定技術の確立を行うことを述べた（図3.1-1: 日本原子力研究開発機構, 2015）。その第一段階とは「炭酸塩からなる海生化石」を標準試料として用いることである。海生化石は層序から年代が既知であるものが多（例えば有孔虫など）、示準化石のように比較的年代幅に制限があり、明確に年代指標となる種もあることから、体系的な年代測定技術の構築の第一歩と捉えられている。第二段階として、試料評価方法のさらなる向上を図るため「炭酸塩岩（鍾乳石、蒸発岩、海成の炭酸塩鉱物である石灰岩やドロマイトなど）」を標準試料として活用する。これらの標準試料への年代測定法の適用性の確認を経て、測定技術が確立されたと判断できれば、第三段階として「割れ目及び断層に介在する炭酸塩鉱物の年代測定」を実施する。

本研究では、それぞれの段階の炭酸塩鉱物である有孔虫、鍾乳石、割れ目に介在する炭酸塩鉱物の三種類（表3.1-1）をデータ取扱の対象とした。

3.1.1 有孔虫（貨幣石）

原子力機構が実施している独立行政法人国立科学博物館との共同研究「化石試料の放射年代測定による古環境変動の復元」において提供された試料であり、小笠原諸島に位置する母島の御幸之浜（砂岩層）より採取された貨幣石（Nummulites）を研究対象とした。貨幣石は、新生代の始新世・漸新世に生息した円盤状の有孔虫（図3.1-2）であり（図3.1-2）、殻は炭酸塩からなる。殻には肉眼で観察できる成長構造が認められるため、本研究対象として最適である。

3.1.2 鍾乳石

鍾乳石は、平成26年度に実施した美弥市立秋吉台科学博物館、山口大学及び原子力機構の三者間での共同研究「炭酸塩鉱物の微小領域における化学組成測定手法の開発」において山口県美弥市・秋吉台の北山背の横穴より採取した試料のうち、縞状構造が最も顕著な鍾乳石（AK-1）を用いる（図3.1-3）。日本原子力研究開発機構（2015）により報告されたAK-1の岩石学的な特徴について概説する。LA-ICP質量分析計を用いてAK-1に含まれるウラン、トリウム、鉛の含有量を、成長方向に向かってライン分析（22地点）を実施した結果、これらの含有量が鍾乳石の成長に対して不均質であることが明らかになった（ウラン含有量は0.008 ppm - 0.032 ppm、平均値: 0.019 ppm; 検出下限値: 0.001 ppm: 図3.1-3C）。含有量が高くなる地点は、縞状構造の橙色を呈する箇所と概ね一致する。肉眼で観察できる鍾乳石の縞状構造は滴下水の供給速度や水質組成に依存し、炭酸塩鉱物の結晶形、空隙構造の発達の程度、有機酸の含有量などの差異が原因で形成されることが報告されている（例えば、Tan et al., 2006; Kurisaki and Yoshimura, 2008）。つまりAK-1は、生成時の洞内の化学的環境の違いを縞状構造（成長構造）として記録した炭酸塩鉱物と判別される。それゆえAK-1を本研究として選定した。
3.1.3 花崗岩中の割れ目に介在する炭酸塩鉱物

中部日本の東濃地域に位置する土岐花崗岩体では、原子力機構が実施した広域地下水流動研究（動力炉・核燃料開発事業団, 1997）によって、15 本のポーリング調査が行われた（図 3.1-4）。このポーリング調査により、全長 500 m から 1,000 m の花崗岩岩石試料が得られており、その中には割れ目や割れ目に介在する鉱物も含まれる。本研究対象とする割れ目に介在する炭酸塩鉱物として、DH-15 孔の深度 996.2 ～ 996.5 m 地点より採取した炭酸塩鉱物を用いた。採取した試料は、割れ目中で母岩である花崗岩と固着しており、かつ自形から半自形の結晶である（図 3.1-5）。つまり、この炭酸塩鉱物は成長方向を限定できるという利点を持つ。

図 3.1-1 「放射年代測定法の開発」のための標準試料分析から未知試料分析へのアプローチ（日本原子力研究開発機構, 2015）

図 3.1-2 貨幣石の試料写真
図 3.1-3 鍾乳石（AK-1）の採取地点（A）、試料写真及びライン分析点（B）、ウラン、トリウム、鉛のラインプロファイル（C）
（定量下限値以下の値を除く、Location No.はB中の数字に対応）

図 3.1-4 土岐花崗岩体中で実施された広域地下水流動研究のためのポーリング調査位置図
（地質図は糸魚川（1980）⑩を一部改編）
図 3.1-5 土岐花崗岩体の DH-15 号孔深度 996.2-996.5 m 地点から採取した割れ目に介在する炭酸塩鉱物

表 3.1-1 本研究で対象とする各段階の炭酸塩鉱物

<table>
<thead>
<tr>
<th>段階</th>
<th>炭酸塩鉱物</th>
<th>産状</th>
</tr>
</thead>
<tbody>
<tr>
<td>第一段階</td>
<td>有孔虫（貨幣石）</td>
<td>小笠原諸島に位置する母島の御幸之浜</td>
</tr>
<tr>
<td>第二段階</td>
<td>鍾乳石</td>
<td>山口県美弥市に位置する秋吉台の「北山北の横穴」より採取（AK-1）</td>
</tr>
<tr>
<td>第三段階</td>
<td>花崗岩中の割れ目に介在する炭酸塩鉱物</td>
<td>岐阜県に分布する土岐花崗岩地域において掘削された DH-15 号孔の深度 996.2-996.5m 地点より採取</td>
</tr>
</tbody>
</table>
3.2 試料の調製と分析手順

分析を実施する前に、各段階の炭酸塩鉱物に対して成長構造を把握できる面を取得するため、試料の調製を行った。第一段階の炭酸塩鉱物試料である有孔虫（貨幣石）は円盤状の形状を呈する（図3.1-2）。円盤面に対して垂直方向と平行方向に対して切断し、それぞれの面に対する観察を実施した（図3.2-2）。具体的な手法としては、試料を樹脂に埋め、観察面と平行にカッターで切断を行った。その後凹凸の少ない観察面を得るためにアルミナペーストでの研磨、ダイヤモンドペーストでの琢磨を実施した。

第二段階の試料は、前述した通り山口県美祢市秋吉台の鍾乳石のうち、縞状構造が最も顕著な鍾乳石であるAK-1の薄片試料を観察対象とした（図3.1-3B）。この薄片試料は、鍾乳石の伸長方向に対する垂直断面を示しており、鍾乳石の成長に伴う成長構造（鍾乳石の中心であるストローから最縁部まで）を連続的に観察できる。さらに「3.1 試料選定」に示したように、この薄片試料は炭酸塩鉱物中の化学的分布のデータ（成長方向に向かってライン分析）がすでに得られている。これは本研究を実施するに際して有益な基礎情報となる。なお試料の観察面は、アルミナベーストでの研磨処理、ダイヤモンドベーストでの琢磨処理が為されている。

第三段階の試料である花崗岩中の割れ目に介在する炭酸塩鉱物の試料調製に際しては、結晶の成長方向（母岩側と空隙側）に留意しながら作業を行った（図3.2-1）。まず結晶を破壊しないように割れ目から剥がし、結晶を樹脂に埋め、観察面と平行にカッターで樹脂ごと切断した。次に凹凸の少ない観察面を得るためにアルミナペーストとダイヤモンドペーストでの研磨・琢磨を行った。

本研究での分析手順を図3.2-3に示す。まず薄片試料を落射偏光顕微鏡を用いて観察面の凹凸を確認し、ルミノスコープで観察を行った。次にSEMに付属するCL装置（以下、「SEM-CL装置」という）を用いて試料の観察を行った。ルミノスコープとSEM-CL装置はともに試料のCL像を観察するための装置である。ルミノスコープは光学顕微鏡により像を収集するため、炭素を蒸着せずに試料を観察することができるが、SEM-CLと比べて観察できる倍率は低くなる。それに対して、SEM-CL装置の像の取集は電子顕微鏡によるため、試料表面の帯電を防ぐために炭素蒸着を必要とするが、高倍率での観察が可能である。本研究ではさらに、EPMAを用いて炭酸塩鉱物中の主成分の分布を明らかにした。炭酸塩鉱物中に含有する主成分のマッピングのために、エネルギー分散型X線分析装置（以下、「EDS」という）を用いた。本検討で用いたEPMAは、これ以降「EPMA-EDS装置」と呼称する。
図 3.2-1 土岐花崗岩体中の割れ目に介在する炭酸塩鉱物の試料調製

図 3.2-2 有孔虫（貨幣石）の切断方向と薄片試料写真
（A：円盤面に対して垂直方向の試料、B：円盤面に対して平行な試料）
＜分析手順＞

試料準備(試料調整)

→

落射偏光顕微鏡観察
観察面の図形確認

→

ルミノスコープ観察
カソードダルミネッセンス（CL）像
（低倍率）

→

炭素蒸着処理

→

電子顕微鏡に属するCL装置
(SEM-CL)観察
CL像(高倍率)

→

電子プローブマイクロアナライザ（EPMA）
分析による元素マッピング
主要成分：エネルギー分散型X線分析（EDS）

図 3.2-3 本研究の分析手順
3.3 分析装置

本研究に用いた分析装置であるルミノスコープ、SEM-CL装置及びEPMA-EDS装置の測定条件について以下に示す。

3.3.1 ルミノスコープ

ルミノスコープは、偏光顕微鏡（Nikon社製 Eclipse LV100N POL）とCL装置（Cambridge Image Technology社製 CL8200 MK5-2）からなる装置である（図 3.3-1）。原子力機構の東濃地科学センター、土岐地球年代学研究所に設置したルミノスコープ装置を用いた（日本原子力研究開発機構, 2015）。試料室中に薄片試料を置き、真空条件下 (< 0.003 mbar) で薄片試料に電子線を照射しCL像を観察した（測定条件：カソード電圧 15 kV、電流値 200 μA）。ルミノスコープは光学的な顕微鏡で像を収集するため、Optical-CL装置とも称される。本研究では、ルミノスコープを用いて観察したCL像をOptical-CL像と呼ぶ。

3.3.2 SEM-CL装置

ルミノスコープによるOptical-CL像の取得に加え、熊本大学理学部西山研究室に設置されたSEM-CL装置を用い、CL観察を実施した。このSEM-CL装置は、電界放出形走査型電子顕微鏡（JEOL社製 JSM7001F）とCL装置（Gatan社製mini-CL detector）から構成される。測定条件として、加速電圧5〜12 kV、ビーム電流は12 nAで観察を行った。本研究では、SEM-CL装置を用いて観察したCL像をSEM-CL像と呼ぶ。

3.3.3 EPMA-EDS装置

炭酸塩鉱物中に含有する主要成分の元素マッピングには、3.3.2に記した熊本大学に設置されたSEMに付属するEDS（Oxford社製 INCA X-Max EDS）を用いた。測定条件は、加速電圧12 kV、ビーム電流は12 nAである。このEDS装置は大口径のX線検出器（20 mm²）とスペクトル分離プログラムを備えており、各元素を精度よく検出することができる。

![図 3.3-1 ルミノスコープの写真](image)
4. 研究結果

4.1 ルミノスコープを用いた Optical-CL 像観察

4.1.1 有孔虫（貨幣石）

落射偏光顕微鏡像において、円盤面に対して垂直方向の試料及び円盤面に対して平行な試料の両方で成長構造が確認できる（図 4.1-1）。これは成長層ごとに数 μm 以下の凹みを有することに起因する。

ルミノスコープを用いた Optical-CL 像を図 4.1-2 及び図 4.1-3 に示す。円盤面に対して垂直方向の試料は、欠損域の少なく落射偏光顕微鏡像で成長構造が確認できる部分を中心に Optical-CL 像を取得した（図 4.1-2）。一方、円盤面に対して平行方向の試料は、試料縁辺部の成長構造が明瞭ではない個所から Optical-CL 像を取得した（図 4.1-3）。その結果、試料内に Optical-CL 像でしか観察できない成長構造を確認した。この成長構造とは、落射偏光顕微鏡による試料表面の凹みによる成長構造の間に、分布する細密な成長線である。この成長線は弧状をなし、試料表面の凹みによる成長構造と平行に分布することを確認した。また成長線と垂直に帯状（図 4.1-2）あるいは紡錘状（図 4.1-3）の構造が観察される。ここでは成長線が成長方向の外側に湾曲している。これにより成長の何らかの成長様式の相違を示唆する構造であることが推察される。

4.1.2 鍾乳石

鍾乳石は薄片の肉眼観察でも、橙色を呈する箇所と白色を呈する個所の帯状構造（成長構造）が観察でき（図 3.1-3B）、落射偏光顕微鏡において、中心部に位置するストローから縁辺部に向けて帯状した成長構造が確認できる（図 4.1-4）。これは成長層ごとに数 μm 以下の凹みを有することに起因する。またこの成長層とは別にストローから放射状にクラックが生じており、凹凸が観察される。

ルミノスコープを用いた Optical-CL 像を図 4.1-5 に示す。有孔虫（貨幣石）の Optical-CL 像は橙色の輝度の変化で表されたのに対し、鍾乳石の Optical-CL 像は主に青色の輝度の変化で表される。放射状の凹凸の影響を受け、成長構造とは異なる方向で青色の輝度の高低が観察される（図 4.1-5：A-C）。このことは、明瞭な成長構造を観察するためには、試料調製の際に鏡面に近い平坦な分析面を取得することに起因すると考えられる。また、この研究においては別にストローから放射状にクラックが生じており、凹凸が観察される。

4.1.3 花崗岩中の割れ目に介在する炭酸塩鉱物

花崗岩中の割れ目に介在する炭酸塩鉱物は、肉眼観察及び落射偏光顕微鏡観察から明瞭な成長構造を観察することはできない（図 4.1-6）。また落射偏光顕微鏡観察から観察面には多くの凹凸が発達することを確認した。

ルミノスコープを用いた Optical-CL 像を図 4.1-7 に示す。割れ目に介在する炭酸塩鉱物の Optical-CL 像は橙色の輝度の変化で表される。試料表面の凹凸が顕著な領域で輝度が高くなる。
この凹凸に起因する輝度の変化だけでなく、母岩（花崗岩）側から空隙（割れ目の中心部）側へと伸びる線構造が観察される。これは図4.1-7のAとBに示された粒子の両方で、数μmの間隔で累重的に観察される。その間隔幅は一様でなく、規則性は認められない。

一般的に花崗岩中の割れ目に介在する炭酸塩鉱物は母岩側から空隙側への成長が予想される。しかし、Optical-CL像で観察される線構造の分布は、母岩と空隙の間に位置する割れ目面と垂直に炭酸塩鉱物が成長したことを示唆する。このことは、母岩側に近接していれば古い時代に形成され、空隙側に近ければ若い年代を表すはずであるという固定概念を崩す結果である。つまり、花崗岩中の割れ目に介在する炭酸塩鉱物の年代測定地点を選定する際に、CL観察が不可欠であることを強く示唆するものである。

以上のように、各々の段階で用いる炭酸塩鉱物のOptical-CL像観察を行った結果、それぞれの炭酸塩鉱物から成長構造（成長線）を観察することができた。また、分析面の試料の亀裂や剥がれなどの成長構造とは無関係な凹凸がOptical-CL像観察に大きな障害を与えることを把握した。

図4.1-1 有孔虫（貨幣石）試料の落射偏光顕微鏡像
（A：円盤面に対して垂直方向の試料、B：円盤面に対して平行な試料）
図 4.1-2 円盤面に対して垂直な有孔虫（貨幣石）試料の落射偏光顕微鏡像及び Optical-CL 像
図 4.1-3 円盤面に対して水平な有孔虫（貨幣石）試料の落射偏光顕微鏡像及び Optical-CL 像

図 4.1-4 鍾乳石試料（AK-1）の落射偏光顕微鏡像
図 4.1-5 鍾乳石試料（AK-1）の落射偏光顕微鏡像の Optical-CL 像

図 4.1-6 花崗岩体中の割れ目に介在する炭酸塩鉱物の落射偏光顕微鏡像
図 4.1-7 花崗岩体中の割れ目に介在する炭酸塩鉱物の落射偏光顕微鏡像及び Optical-CL 像
（CL 像の A と B の粒子は図 4.1-6 中に記された番号の粒子と対応）
4.2 SEM-CL装置を用いたSEM-CL像観察

ルミノスコープのOptical-CL像は光学顕微鏡によって収集されるのに対して、SEM-CL装置のSEM-CL像の取得は電子顕微鏡によって行われる。今日までのSEM-CL装置を用いたジルコンや石英のCL観察を行った研究事例は非常に多く報告されている（例えば、Tsutsumi et al., 2011）。しかしながら、SEM-CL装置はルミノスコープよりも高倍率（高分解能）での観察が可能であるのにも関わらず、炭酸塩鉱物に対するCL観察の報告例は少ない（例えばLee et al., 2005; Reed and Milliken, 2003; Bouch, 2006）。それは、炭酸塩鉱物のCL観察を行う際に生じる「ゴースト(ghost)」や「ストリーク(streak)」と呼ばれる現象（Bouch, 2006）に起因する。

ゴーストとはSEM-CL像の全体や一部で靄がかかったように見える現象であり、ストリークとは走査線の方向と平行に帯状の高輝度（白色）領域が分布する現象である。その原因として、スキャンの際の電子ビームにより炭酸塩が励起され、走査線が動いた後も発光し続けるためと考えられている（Bouch, 2006）。

SEM-CL装置を用いて取得した有孔虫（貨幣石）、錠乳石（AK-1）、花崗岩の割れ目に介在する炭酸塩鉱物のSEM-CL像を図4.2-1～図4.2-4にそれぞれ示す。SEM-CL像に加えて、化学組成の違いを反映する組成像、表面の凹凸を反映する二次電子像も併せて示す。これらのSEM-CL像は、倍率を約500倍、解像度を1,280×960ピクセル、スキャンタイムを1分52秒にそれぞれ設定して取得した。その結果、有孔虫、錠乳石、花崗岩の割れ目に介在する炭酸塩鉱物のいずれのSEM-CL像でも、ゴーストやストリークの現象が現れ、明瞭な成長構造を観察することはできない。

また、組成像及び二次電子像において観察される凹部は、落射偏光顕微鏡像で観察される成長構造に対応する（図4.1-1A、図4.1-4、図4.1-6）。SEM-CL像でもこの凹部が高輝度で観察される。この手法により、ゴーストやストリークの現象が解消された。いずれの試料においても、28分48秒のスキャンタイムが有孔虫および花崗岩の割れ目に介在する炭酸塩鉱物のCLパターンを示す。
もあることから、成長速度が一様でないことが示唆された。また、Optical-CL 像で線構造が認められなかった領域では、SEM-CL 像でも線構造が観察されない（図 4.2-11）。このことによって SEM-CL 観察と Optical-CL 観察の相互の信頼性を確認した。

一方、鍾乳石試料の SEM-CL 像は明瞭な CL パターンが認められない（図 4.2-7、図 4.2-8）。鍾乳石試料の Optical-CL 観察において確認できる成長線の分布間隔は、他の試料と比較して広い。このことが SEM-CL 像で明瞭な CL パターンが取得できない主な要因であると推察される。一方で、鍾乳石試料の二次電子像では、三角形の凹み（ピット）が観察される（図 4.2-12）。一般的にピットの一辺（鈍角）が成長方向を示すことから、CL パターンが明瞭でない試料に対しては、成長構造を判断するために二次電子像を用いたピットの観察も有益であると考えられる。

以上のことから、炭酸塩鉱物を対象とした CL 像の観察に際して、全体の傾向を把握する際にはルミノスコピーが秀でており、SEM-CL 装置では高倍率の観察が可能であることが明らかとなった。それぞれの装置を必要に応じて使い分けることが、効率的なデータの収集に有益となる。

図 4.2-1 SEM-CL 装置で取得した有孔虫（貨幣石）試料の SEM-CL 像

図 4.2-2 SEM-CL 装置で取得した鍾乳石試料（AK-1）の SEM-CL 像
図 4.2-3 SEM-CL 装置で取得した割れ目に介在する炭酸塩鉱物試料（A）の SEM-CL 像
（炭酸塩鉱物試料 A は図 4.1-7 の番号に対応）

図 4.2-4 SEM-CL 装置で取得した割れ目に介在する炭酸塩鉱物試料（B）の SEM-CL 像
（炭酸塩鉱物試料 B は図 4.1-7 の番号に対応）
図 4.2-5 長時間のスキャンを行った有孔虫試料の SEM-CL 像（1）
図 4.2-6 長時間のスキャンを行った有孔虫試料の SEM-CL 像（2）
図 4.2-7 長時間のスキャンを行った鍾乳石試料の SEM-CL 像（1）
図 4.2-8 長時間のスキャンを行った鍾乳石試料の SEM-CL 像 (2)
図 4.2-9 長時間のスキャンを行った割れ目に介在する炭酸塩鉱物試料（A）の SEM-CL 像
図 4.2-10 長時間のスキャンを行った割れ目に介在する炭酸塩鉱物試料（B）の SEM-CL 像
図 4.2-11 長時間のスキャンを行った割れ目に介在する炭酸塩鉱物試料（B）の SEM-CL 像

図 4.2-12 鍾乳石試料の二次電子像と組成像
4.3 EPMA-EDS 装置を用いた元素マッピング

EPMA-EDS 装置を用いて、炭酸塩鉱物中に含まれる主要成分のマッピングを実施した。その結果、有孔虫（貨幣石）試料では、カルシウムとマグネシウムが検出された（図 4.3-1）。それ以外の成分として、検出限界以下ではあるがウランと鉛と思われるスペクトルも認められた。有孔虫（貨幣石）中のカルシウムとマグネシウムの分布は均質であり、CL 観察で認められた成長構造に対して変化はしない（図 4.3-1）。これは、有孔虫殻の成長に際して、主要成分は化学的に変化しないことを示す。

鍾乳石試料では、主にカルシウムが検出された。それ以外の成分として、検出限界以下ではあるがウランと鉛と思われるスペクトルも認められた。鍾乳石中のカルシウムの分布も、CL 観察で認められた成長構造に対して変化はせず、均質である（図 4.3-2）。これは、主要成分が鍾乳石の成長に際して化学的に変化しないことを示す。

花崗岩体中の割れ目に介在する炭酸塩鉱物では、カルシウムを主として、フッ素と珪素が検出された（図 4.3-3、図 4.3-4）。フッ素は鉱物断面の全体で検出されており、その領域はカルシウムの検出された領域と重なるのが、このことから、炭酸塩鉱物中に蛍石やアパタイトなどのフッ素含有鉱物が存在している可能性は低い。つまり、炭酸塩鉱物中にフッ素が含まれていると判断される。一方、珪素が検出された領域では、カルシウムが検出されていない。したがってこの領域は、珪酸塩鉱物が炭酸塩鉱物中に包有物として存在していることを示す。これらの元素の分布傾向を見ると、カルシウムの分布は均質であり、CL 観察で認められた成長構造に対して変化しない（図 4.3-3、図 4.3-4）。フッ素は鉱物断面の全体に分布しているが、鉱物の縁辺部に若干濃集する傾向がある。しかしながら、CL 像で観察された成長線（成長構造）と明瞭な関係性は認められない。

以上のように、本年度の研究では、三種類の炭酸塩鉱物に対する CL 像による成長構造と EPMA-EDS 装置による主要成分の二次元分布との関連性は認められなかった。CL 像で観察できる成長構造がどのような要因で生じているかを捉えることは、その形成メカニズムを解明するために重要である。さらに前述した通り、炭酸塩鉱物の形成メカニズムを捉えることは、地質学的背景の把握につながることから、微小領域分析には不可欠となる。したがって、例えば波長分散型 X 線分析（WDS）装置を用いた微量含有成分のマッピングや、ラマン分光装置を用いた結晶構造の相違などを解明し、これらと CL 像による成長構造との比較検討を行い、CL 像で観察できる成長構造が示す地質学的意味を把握することが、今後の課題として残される。
図 4.3-1 EPMA-EDS 装置で取得した有孔虫（貨幣石）の化学組成の二次元分布（A は図 4.2-1C 同地点）

図 4.3-2 EPMA-EDS 装置で取得した鍾乳石（AK-1）の化学組成の二次元分布（図 4.2-2B 同地点）
図 4.3-3 EPMA-EDS 装置で取得した割れ目に介在する炭酸塩鉱物試料（A）の化学組成の二次元分布
（「炭酸塩鉱物試料 A」は図 4.1-7 の番号に対応。分析領域は図 4.2-3 の②に対応。）
図 4.3-4 EPMA-EDS で取得した割れ目に介在する炭酸塩鉱物試料（B）の化学組成の二次元分布（「炭酸塩鉱物試料 B」は図 4.1-7 の番号に対応。分析領域は図 4.2-4 の①と②に対応。）
4.4 微小領域分析手法の構築

本研究で実施した各段階の CL 像の取得及び観察の結果、Optical-CL 像は低倍率観察に限定されるが、炭素蒸着も不要で、簡便に炭酸塩鉱物内成長構造を観察可能であった。SEM-CL 観察は高倍率における成長の観察を可能にする。一方で SEM-CL 観察には炭素蒸着を必要とするため、SEM-CL 像観察後に炭素蒸着が必要な分析手法を用いた分析を行う際は、試料表面の炭素を除去する必要がある。例えば、LA-ICP 質量分析計を用いた年代測定を行う際には、一度レーザーで短時間照射することによって試料表面の炭素を除去する（one-shot cleaning：例えば、横山ほか, 20118）などの作業が必要となる。

また、これらの CL 像の観察結果、炭酸塩鉱物の成長線の間隔は不規則であり、成長線も高倍率観察では直線でなく、一種の速度で成長しないことを認識した。また花崗岩体中の割れ目に介在する炭酸塩鉱物の CL 像からは、割れ目面と垂直な成長線が観察された。一般的に、割れ目に介在する炭酸塩鉱物は割れ目面と平行に成長すると推察される。しかし CL 観察の結果は、この炭酸塩鉱物が割れ目面と垂直に成長したことを示唆する。このように、炭酸塩鉱物の個別の成長現象を把握するためには、CL 像観察が非常に有効である。

上記の成果を踏まえ、炭酸塩鉱物の微小領域分析における地質学的背景を明らかにする分析手法の合理的な手順を図 4.4-1 に示す。まず試料準備・調製し、落射偏光顕微鏡観察によって試料の分析面の状態を確認する。この際、分析面に亀裂などの凹凸が大きければ再調整を行う。次にルミノスコープを用いた Optical-CL 像を取得する。ここで得られる低倍率での Optical-CL 像が、炭酸塩鉱物の成長構造や成長線、伸長方向や始点・終点が明確に観察できるなどの地質学的背景を議論できる十分な分解能を持つ場合、炭酸塩鉱物の微小領域における地球化学的特性や放射年代を取得するための分析へ移行する。一方、取得した Optical-CL 像が地質学的背景を議論できる十分な分解能を持たない場合、試料に炭素蒸着処理を行い、高倍率観察が可能な SEM-CL 観察を実施する。SEM-CL 像の観察を実施した場合は、微小領域における地球化学的特性や放射年代を取得するための分析へ移行する際に、分析表面の炭素蒸着の影響を十分に考慮する必要がある。
図 4.4-1 炭酸塩鉱物の微小領域分析における地質学的背景を明らかにするための分析フローチャート

試料準備（試料調製）

落射偏光顕微鏡観察

ルミノスコープ（Optical-CL）観察

低倍率

地質学的背景を議論できる十分な分解能

NG

炭素蒸着処理

OK

SEM-CL観察 高倍率

地質学的背景を議論できる十分な分解能

OK

炭酸塩鉱物中の微小領域における地球化学的特性や放射年代を取得するための分析へ

- LA-ICP-MS
- マイクロドリル⇒ICP-MS
- EPMA

図 4.4-1 炭酸塩鉱物の微小領域分析における地質学的背景を明らかにするための分析フローチャート
5. まとめ

炭酸塩鉱物中の微小領域において地球化学的特性や放射年代を取得するための分析点選定には、定量下限以下となる領域を避けるだけでなく、分析点ごとの地質学的な意味合いを事前に評価する必要がある。

本共同研究では有孔虫（貨幣石）、鍾乳石及び花崗岩の割れ目に介在する炭酸塩鉱物に対して、成長構造を把握するため、ルミノスコープを用いた Optical-CL 像の観察や、電子顕微鏡に付属した CL 装置を用いた SEM-CL 像の観察を行った。Optical-CL 像は低倍率観察において秀でており、SEM-CL 像は高倍率における成長構造の観察を可能にする。その両方で炭酸塩鉱物中の成長構造を観察可能であることを確認した。Optical-CL 像の観察は比較的簡便なのでに対して、SEM-CL 像の観察には試料の炭素蒸着を必要とする。地質学的な意味合いを評価するために必要な分解能に応じて、Optical-CL 像の観察と SEM-CL 像の観察を段階的に用いること（図 4.4-1）が効率的である。

次に成長構造と対応する含有化学組成の変化を明らかにするため EPMA-EDS 装置を用いた主成分元素のマッピングを実施した。三種類の炭酸塩鉱物に対する CL 像の成長構造と主成分元素の濃度マッピングに明確な関連性は認められなかった。CL 像の成長構造がどのような要因で生じているかを捉えることは、その形成メカニズムを解明するために重要である。したがって、CL 観察で認められる成長構造が何に起因しているのかを明らかにする必要がある。波長分散型 X 線分析（WDS）装置を用いた微量含有成分のマッピングや、ラマン分光装置を用いた結晶構造の相違などを把握し、これらと CL の成長構造との比較検討などが今後の課題となる。

平成 27 年度の共同研究を通じて、微小領域分析における地質学的背景を明らかにするための分析手法の合理的な手順を構築するとともに、今後の課題について明らかにした。
引用文献

2) 西本昌司, 鵜飼恵美, 天野健治, 吉田英一, 地下深部花崗岩の変質プロセス解析：土岐花崗岩を例にして, 応用地質, vol.49, 2008, pp.94-104.

7) 横田秀晴, 吉田英一, 堆積岩中の物質移動経路となり得る割れ目の構造とその特徴 - 幌延深地層研究所における事例 - 日本地球惑星科学連合 2013年大会予稿集, 2013, S-CG60-03.

8) 日本原子力研究開発機構, 平成26年度 地層処分技術調査等事業 地質環境長期安定性評価確証技術開発報告書, 2015, 229p.

9) 日本原子力研究開発機構, 平成26年度 地層処分技術調査等事業 地質環境長期安定性評価確証技術開発報告書 付録7, 2015, 15p.

付録7
「地質環境長期安定性評価確認技術開発委員会」の開催実績

A. 第1回委員会開催実績
B. 第2回委員会開催実績
付録7-A 第1回委員会開催実績

<table>
<thead>
<tr>
<th>日時</th>
<th>平成27年8月28日（金） 13時30分～17時30分</th>
</tr>
</thead>
<tbody>
<tr>
<td>場所</td>
<td>経済産業省別館1階 114各省庁共用会議室</td>
</tr>
</tbody>
</table>

審議事項
平成27年度の計画の概要について報告し、実施内容とアプローチの適切性の観点から審議・検討を行っていただく。

主なコメント

<table>
<thead>
<tr>
<th>研究開発の全体概要</th>
<th>アウトプットの一つに「次世代型サイト特性調査情報統合システム」へ知見や方法論を統合するとある。サイト特性調査のどのステージに反映されるのかを明確にすること。</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>地層処分技術ワーキングで提示されたような日本のサイト選定における積み残された課題と、この事業との関連や整合性を示すこと。</td>
</tr>
<tr>
<td></td>
<td>研究的かつ技術的な観点での評価に基づく課題の選定方法を示せば、この事業での研究意義がより明確になると考えられる</td>
</tr>
<tr>
<td></td>
<td>原子力機構が実施しているその他の研究テーマも含めて、長期安定性評価に必要な技術開発が進められていることを示すことが大事である。</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>日時</th>
<th>平成27年8月28日（金） 13時30分～17時30分</th>
</tr>
</thead>
<tbody>
<tr>
<td>場所</td>
<td>経済産業省別館1階 114各省庁共用会議室</td>
</tr>
</tbody>
</table>

主なコメント

<table>
<thead>
<tr>
<th>研究開発の全体概要</th>
<th>100万年前のモデルは、決して10万年前のモデルを単に10倍変化させたモデルではない。時間が古くなればなるほど情報が少なくなったり、気候変化の影響など周期的な変化が加わったりする。そのような点をどのように考慮しているのかを明確にする必要がある。</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>どの程度の不確実性があるのかにより、モデルの信頼性や適用性が判断される。100万年オーダーの地質学的な地層の厚さや地下水の年代などの判断できるデータとのクロスチェックを行うことで、モデルの現在のフレームや考え方等の程度適用されるのかを示すと良い。</td>
</tr>
<tr>
<td></td>
<td>「どれくらい合うか」ではなく「どれくらい合わないか」という方が、モデルの不確実性から見たときの説明としてはわかりやすいと思う。</td>
</tr>
<tr>
<td></td>
<td>10万年前のモデルが本当に出来ているのかという検証も積極的にやって欲しい。</td>
</tr>
<tr>
<td></td>
<td>複数モデルによる感度解析テストを行う意義は、不確実性の議論に対してモデル側から一つの答えを導くためである。モデル開発の目的を再確認すべき。</td>
</tr>
<tr>
<td></td>
<td>単純にパラメータを振るだけではなく、目的を明らかにしてパラメータを振ったかということを示していくとよい。</td>
</tr>
<tr>
<td></td>
<td>一つの統合化されたモデルにするよりは、それぞれの分野間の整合性が示されたモデルを並べる方が分かり易い。</td>
</tr>
<tr>
<td></td>
<td>涵養量推定技術の適用範囲を検討する必要があるとともに、最終的には知識化してまとめる必要がある。</td>
</tr>
<tr>
<td></td>
<td>古地形の復元については、堆積層の厚さを反映すると、より水理モデルに役に立つと考えられる。また、加積層に基づく堆積は、ほぼ安定している状態での河床勾配や地形を示しているが、河道勾配が変わる時も考慮できると考えられる。</td>
</tr>
</tbody>
</table>

付 7-1
地質環境長期変動モデルの開発

サイトキャラクタライゼーションであれば、文献調査、概要調査、精密調査というステージがあることから、統合モデルが出来ないと次のステップには行けないと誤解を与えてはいけない。

調査の段階によって、モデルの精度は異なる。文献調査、概要調査の段階において、どの程度の精度の統合モデルができるのかを一緒に示した方が良い。また、これまで取り組んできた地質環境の長期安定性に関する研究の中で統合モデルの限界を示すことができると考えられる。

本モデルで扱うスケールから2km四方をどれくらいの精度で示せるかは、ポーリング調査を行うためのベースの情報となるので重要な技術となる。特に、文献調査や概要調査の段階の統合モデルのイメージと限界、必要となるポーリング、統合化の進展など、処分事業において使える技術となる。

主なコメント（つづき）

石英やジルコン、長石など用いて10万年程度の地形発達や断層運動の解明ができると良い。

石英を用いたESR信号による後背地推定に関しての手法自体は良い。しかし、今回の場合だけで断層の横ずれやインバージョンなどの議論は難しいと考えられる。この点については、より多くのデータに基づいて解釈する必要があることがわかる必要である。

広域テフラの同定・識別においては、化学成分も合わせて行う必要がある。

分離手法に関しては、職人の技術が必要である。ノウハウや暗黙知を含めたマニュアル化を期待する。

炭酸塩の酸化還元電位について、炭酸塩を作ってみる実験をしてみた方が良いか。

大気に触れていけることでもいいので、実際の測定結果と計算結果が合うかどうかを確認する方が、理論式を検証できるのではないか。

200万年以降、還元状態が維持されているかどうかは、200万年間、例えば炭酸塩鉱物が成長し続けている試料を見ない限りは言えないのではないか。

水みち中の炭酸塩鉱物を見るのはよいと思うが、200万年前の古い炭酸塩鉱物は存在しなくかもしれない。

2~3万年の14Cで数値年代が出せるような炭酸塩鉱物が、沈殿した時から還元状態であることがいえば、還元状態が数万年程度は持続している、ということは言える。

花崗岩よりも瑞浪層群中の貝化石などの炭酸塩が沈殿しているところを分析してみる方がよいのではないか。瑞浪層群は有機物が多く分布しており、還元状態だったという地質的な情報がサポートされているので、瑞浪層群の炭酸塩を用いた方が、説得力があるかもしれない。

理論式の適用可能性に関する議論が十分ではないということだが、どの部分の議論が十分でないのか。
<p>| 革新的要素技術の開発 | パラメータの計算式で、地下水中の CO2 だけが東濃地域の経験式になっているが、仮に別の地域でこの手法を使うとした際は、どの程度調査が進んでいれば経験式が出来上がるのが。 |
| 革新的要素技術の開発 | 既存の研究によるアスペリティのマップは、基本的に GPS や測地のデータを基に作成されたものであるため、地震予知において非常に意味があると考えるが、活断層のデータからは、海溝沿いのバックスリップマップは作れないと思う。また、日本海側はプレート境界からかなり距離があるので、海溝型地震の影響を直接受けるわけではない。測地の話と地質の話が混在していて、論理が矛盾していると思われる。 |
| 革新的要素技術の開発 | インバージョンでなくフォワード解析によって、今あるプレートのカップリング状態で押したら内陸はどう変形するかであれば良いと思うが、地質のデータを使ってアンノウンなプレート境界の状態を推定するというのは無理だと思われる。 |
| 主なコメント（つづき） | なぜ海岸段丘が日本全国に 2～30m くらいあるのかという理由を何かで説明して欲しい。プレートの動きで説明しようとすると、東北の地震では隆起せずに沈降したとか、なぜ日本列島にこういった段丘があるのか説明して欲しいというユーザーとしての希望があるので、その答えに近づくようなものを出して欲しい。 |
| 主なコメント（つづき） | 過去類似した話は時々聞くが、計算コストが膨大で処理できず、またバリデーションが難しいことから、全部失敗している。研究目的を含めて研究の見通しがあいまいのではないか。 |
| 主なコメント（つづき） | 南九州はプレートのカップリング状態が違い、ロールバックしているところなので、陸地が東に定常的に動いている。地質構造についても、北薩の屈曲のところで四万十帯が曲がっているので、一様継続性が成立していないとは言えないのではないか。 |
| 主なコメント（つづき） | 東北地方太平洋沖地震後の大きな余効変動が、余効滑りでは全部説明できない。粘弾性変形を考慮しなければならないし、それがどういう時定数で割合が変わっていくかというのは、ちょうど議論されているところである。 |
| 総合討論 | 個別要素モデルは、地質環境モデルにダイレクトに反映できなくても仕方がないと思う。地下水の検証においては、炭酸塩鉱物以外にはほとんど証拠がないため、炭酸塩鉱物がいさかかが言えるようになるように技術的な開発を進めて欲しい。それをやらなければ、地殻変動予測においてデータを取得しても、そこから先へは進めないと思う。このようなことを強く主張すべきである。 |</p>
<table>
<thead>
<tr>
<th>日時</th>
<th>平成28年2月17日（水） 13時30分～17時30分</th>
</tr>
</thead>
<tbody>
<tr>
<td>場所</td>
<td>経済産業省別館1階 104各省庁共用会議室</td>
</tr>
<tr>
<td>審議事項</td>
<td>平成27年度の実施内容の概要について報告し、その適切性の観点から審議・検討を行っていた。</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>主なコメント</th>
<th>地質環境長期変動モデルの開発</th>
</tr>
</thead>
<tbody>
<tr>
<td>影響因子による影響分析では、パーティクルの配置の仕方により、それが主原因になるかが変わってくる。全体的にパーティクルを配置すれば、地形変化が主原因となり、気象変動や断層はローカルな現象であるため、感度に引っかからないことに留意して解析結果の分析が必要である。</td>
<td></td>
</tr>
<tr>
<td>解析で対象とした気候変動の内容を具体的に記載した方が良い。</td>
<td></td>
</tr>
<tr>
<td>不連続永久凍土の影響が小さいとした解析の妥当性について追及すべきである。</td>
<td></td>
</tr>
</tbody>
</table>

| 不連続永久凍土の影響が小さいとした解析の妥当性について追及すべきである。 | モデルパフォーマンスの評価法を検討する必要がある。地震の確率を示したりするような統計予測の際には、ポアソンモデルなどのリファレンスモデルを提示する。またその段階ではないかもしれないが、モデルをひとつ作った時に、それの比較相手がないとどれだけパフォーマンスが良くなったのかを評価できない。例えば、シンプルなモデルと、複雑なモデルとでは、良くなっていると示せないようにしないといけないと思う。 |

<p>| モデルパフォーマンスの評価法を検討する必要がある。地震の確率を示したりするような統計予測の際には、ポアソンモデルなどのリファレンスモデルを提示する。またその段階ではないかもしれないが、モデルをひとつ作った時に、それの比較相手がないと、どれだけパフォーマンスが良くなったかの評価ができない。例えば、シンプルなモデルと、複雑なモデルとでは、良くなっていると示せないようにしないといけないと思う。 |</p>
<table>
<thead>
<tr>
<th>主なコメント（つづき）</th>
<th>革新的要素技術の開発</th>
</tr>
</thead>
<tbody>
<tr>
<td>可視化の成果が十分に出ていないと思う。アウトリーチとして、可視化のコンテンツを出していける段階だと思う。アウトリーチに相応しい、わかりやすい可視化に取り組んでいただきたい。</td>
<td>ESR 信号特性が岩体によって違いが出る原因の説明があるとよい。</td>
</tr>
<tr>
<td>地球化学特性と地下水流速の比較で、還元状態が長期的に維持されているとのことだが、海水面が上昇しても、この還元状態が維持されるかは、十分に検討しなければならない。</td>
<td>AMS は加速器と混同するので、「帯磁率異方性」を表現した方が良い。</td>
</tr>
<tr>
<td>地形変化が地下水流動解析に影響を与えたということから、地形モデルの妥当性をどのように判断するのかをより明確にする必要がある。</td>
<td>総合的に後背地を解析するというのは評価できる。帯磁率異方性の測定を粒子の粗い砂ではなく、シルトで行っている理由の説明が必要である。</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>福島浜通りの結果について、深部が逆断層で、浅部は正断層ということをモデルで再現できたことは非常に興味深い。しかし、この条件を考えると、地殻深部に部分溶融域が存在する脊梁山地で起きてもおかしくはない。地下構造の観点では、福島浜通りとの条件はほとんど同じなのに、なぜ脊梁山地では正断層型の地震が起きないのか検討するとよい。</td>
<td>ジルコンの測定に関しては、どのように後背地解析に適用するかを整理するとよい。</td>
</tr>
<tr>
<td>革新的要素技術の開発</td>
<td>東北地方に 30m の海岸段丘がなぜ存在するのかを深部流体を仮定したシミュレーションで説明できるとよい。</td>
</tr>
<tr>
<td>ルミノスコープで取得した光学 CL 像の画像を見ると、「空隙側」と示した場所が非常に直線的になっているが、この部分は空隙ではなく、母岩と接しているのではないか。さらに、光学 CL 像で結晶中に織模様が認められない部分は、ブロック状に成長して割れ目をスタックした可能性もある。そうだとすると、炭酸塩鉱物によって割れ目が閉塞するので、結晶はスタックした部分から成長する。薄片で見て、それが一つの板状結晶なのかどうか確認すべきである。</td>
<td>個別分野でのデータや成果は出てきている。これらを集めて総合的に解析し、なるべく早く結論を出していくという方向で進めていただきたい。</td>
</tr>
<tr>
<td>総合討論</td>
<td>個別のモデルが対象としている時間スケールや空間スケールが違っているように見えることから、最終的にどのように情報を統合するのか、それに向けてどのような情報が整理できるかを、今後 2 年間で示せるよう期待する。</td>
</tr>
</tbody>
</table>

付 7-5