第3章 緩衝材の化学変質を伴う力学挙動に関する試験とモデル化

第3章では、HMC連成解析手法に関わる、ベントナイト系材料の化学変質挙動を考慮した力 学挙動モデルの検討を行った。平成24年度までに検討したモンモリロナイトの溶解を考慮した 水理挙動及び力学挙動モデル[1]を、平成25年度からは二次鉱物の生成を考慮したモデルへの拡 張、圧密膨潤の力学挙動に加えせん断挙動のモデル化を実施した[2][3]。さらにセメントの影響を 考慮したベントナイト中のモンモリロナイトの溶解、Ca型化及び液相のイオン強度の力学挙動へ の影響に関して、長期試験による検討を行なった。

平成 27 年度は、これまでの試験結果に基づいてモデル化を進めてきた、ベントナイトの化学変 質(溶解と二次鉱物生成)を伴う力学挙動のモデルを高度化し信頼性を向上させた。圧密挙動を表 す完全飽和線のモデルについて、これまで試験が難しかった低応力部分に関する検討をした。加 えて、これまで平衡膨潤量と完全飽和線は一致するとしたモデル化について、モンモリロナイト 含有量が減少する程一致しない点に関する検討をした。さらに、せん断挙動に関して等体積一面 せん断試験に基づきモデル化に関する検討を行った(以上 3.1 項にて検討)。

これまで継続してきた化学・力学連成モデル試験(長期試験)について、平成27年度は、平成26 年度に実施した Ca型化の変質ケースの検討と同様に、Na型モンモリロナイトの溶解ケースに関 して化学的挙動を連成した長期力学挙動データを取得、試験体を解体して変質状況の分析を行い、 長期挙動評価に係わる化学変質と力学挙動の関連に関する知見をまとめた(3.2 項及び3.3 項にて 検討)。

3.1 力学挙動に関する試験とモデル化

3.1.1 概要

本検討では、平成 20 年度~24 年度にかけて、ベントナイトの力学モデルの妥当性確認のための試験、及び化学的な変質がベントナイトの力学挙動、物質移行(とくに水理挙動)に及ぼす影響を考慮するための試験を実施した。ここで検討対象としている化学的な変質とは、モンモリロナイトの Ca 型化と溶解・非膨潤性鉱物化である。

その中で、力学材料としてのベントナイトをスメクタイト(モンモリロナイト)と非膨潤性鉱物(石英)の混合材料として考え、モンモリロナイトのモデル化を検討した。これは、これまでの地盤力学で研究対象としていた自然堆積粘土と図 3.1.1-1 に示すベントナイトの鉱物組成を比較すると、著しい膨潤性や遮水性などのベントナイトの特徴とも言える力学挙動がモンモリロナイトに起因すると考えられるからである。このモンモリロナイトの力学挙動のモデル化に当たって、小林ら[4]に倣い、モンモリロナイトを力学的には、「吸水膨潤するだけで土骨格構造を形成している 2 次粒子が崩壊し応力履歴を忘れる材料」であるという概念で捉えている。さらに水理的には、モンモリロナイトとは、「吸水するだけで土骨格構造を形成している 2 次粒子が膨潤するために比表面積が増大する材料」であるという概念で捉えている(図 3.1.1-2 参照)。すなわち、ベ

ントナイト系材料の化学的な変質を考慮した力学モデルと水理モデルは、どちらも、吸水による モンモリロナイトの2次粒子の膨潤崩壊(分散)状況に依存することが骨子となっている。

図 3.1.1-1 クニゲル V1 の鉱物組成[5]

図 3.1.1-2 ベントナイトの膨潤による"応力履歴の亡失"と"比表面積の増大"のイメージ図

前フェーズ(平成 19 年度~平成 24 年度)では、この考えに従って、Na 型モンモリロナイトに非 膨潤性鉱物としてケイ砂を混入した人工ベントナイト、及びベントナイト(クニゲル V1)の力学・ 水理特性を取得した。両者の比較により、モンモリロナイト含有率がベントナイトの力学・水理 特性(「吸水による応力履歴の亡失」と「吸水による比表面積の増大」)に対して支配的であるこ とを確認した。

平成 27 年度の研究では、モンモリロナイト含有率がベントナイトの力学・水理特性(「吸水に よる応力履歴の亡失」と「吸水による比表面積の増大」)に支配的であるという前フェーズの結果 を基本として、図 3.1.1-3 に示すように、変質シナリオに応じて、モンモリロナイトと微粉砕ケ イ砂にモンモリロナイトの溶解・沈殿によって生じる二次鉱物の割合、種類を変化させて混合さ せて、多様な変質シナリオに対しても本研究成果が適用可能であることを確認する。図 3.1.1-3 に は本フェーズ(平成 25 年度~平成 29 年度)の全体計画のイメージを示す。別途実施している地球 化学解析から想定されるモンモリロナイトの溶解・沈殿によって生じる二次鉱物の種類が本フェ ーズのパラメータである。

図 3.1.1-3 本フェーズの全体計画のイメージ

前フェーズで検討した変質シナリオは、モンモリロナイトが、モンモリロナイト(土粒子密度 2.75Mg/m³程度)と比較的土粒子密度の近い非膨潤性鉱物に変質した場合を取り上げて、この非膨 潤性鉱物として微粉砕ケイ砂(土粒子密度 2.65Mg/m³程度)で模擬した。これにより、変質による モンモリロナイト含有率の低下に伴う膨潤性能の変化を調べた。しかしながら、放射性廃棄物処 分場の緩衝材のような体積変化の余地がない境界条件下で土粒子密度が大きく変化する化学変質 が発生した場合、膨潤性能の変化だけでなく有効応力が大きく変化する可能性があり、前フェー ズでは考慮していない土粒子密度が大きく変化する化学変質を考慮することは重要である。そこ で本フェーズからは、変質シナリオとして、モンモリロナイトが低土粒子密度の非膨潤性の鉱物 に変質する場合を想定し、モンモリロナイトのアナルサイム化(土粒子密度 2.2Mg/m³程度)に対す る影響の検討を開始した。

本フェーズにおいて、平成26年度までは、アナルサイム化に伴うモンモリロナイトの低土粒子 密度化をモデル化すべく、アナルサイムの割合を変化させた力学試験を実施した。この検討にお けるモデル化では、前フェーズで構築したモデルをベースとしているが、この検討を通じて、前 フェーズで構築したモデルの高度化に繋がる知見が得られた。そこで、平成27年度は、前フェー ズで構築したモデルの高度化に資する検討を実施することとした。そのため、平成27年度はアナ ルサイムを使用しないこととした。なお、本フェーズで検討対象とするベントナイトの化学的変 質は、前述のモンモリロナイトの溶解による非膨潤性二次鉱物化(含有率の低下)と前フェーズ と同様に、Ca型化である。この際、化学的変質は、水理/力学的変化に比べ平衡状態にあると考 え、化学的変質を速度論的には取り扱わないものとする。

さらに、本フェーズから、ベントナイトの力学挙動評価においてせん断挙動に関する検討も開

始した。これまでの研究フェーズでは、図 3.1.1-4 に示すように圧密挙動と膨潤挙動を中心に検 討を行ってきた。これまでの研究フェーズで実施してきた力学試験は、モンモリロナイトの圧密 (圧縮・膨潤)変形のモデル化に資するものである。すなわち、図 3.1.1-4 に示すように、モンモ リロナイトの圧密変形は間隙比と圧密圧力の関係としてまとめられる。ここで、間隙比は体積ひ ずみと一意的な関係にあるので、この間隙比と圧密圧力の関係は、体積変化に関する応力ひずみ 関係である。この間隙比と圧密圧力の関係で、完全飽和線は、正規圧密線に相当し、降伏後の応 力ひずみ関係である。また、圧密試験の除荷時の膨潤線は、弾性域の応力ひずみ関係であり、こ の両者の差から塑性体積ひずみを取得することができる。この塑性体積ひずみは、地盤材料の降 伏曲面 (弾性限界)の大きさを規定するパラメータ(硬化パラメータ)であり、この塑性体積ひ ずみを実験によって取得することは、力学構成モデルの降伏曲面の大きさ、形状を規定すること を意味する。しかしながら、図 3.1.1-5 に示すように、自然堆積粘性土の力学モデルでは、粘土の 変形は、圧密変形とせん断変形の線形和で表されるとされており、ベントナイトの力学モデルを 構築する場合でも、せん断挙動のモデル化が不可欠である。

図 3.1.1-5 には、力学モデル、及び水理モデルの構築における本検討の位置付けも併せて示す。 本研究では、ベントナイト水理モデルを Kozeny-Carman 則に基づいて構築している。Kozeny-Carman 則に必要なベントナイトの比表面積は、XRD から取得したベントナイトの2層膨潤状態 の含水比(2層膨潤含水比)から算出できることを示し、さらに、2層膨潤含水比と比表面積の 関係から透水係数を取得可能であることを示している。ただし、平成26年度の研究においては、 前述のベントナイトがアナルサイム化した材料の透水係数に関する研究事例がなかったために、 従来の透水試験方法による透水係数の取得を実施した。

平成 27 年度は、Kozeny-Carman 則に基づくベントナイトの水理モデルにおける内間隙と外間隙について、考察を深める。

図 3.1.1-4 力学試験のモデルへの反映イメージ

図 3.1.1-5 モデルの構築における本検討の位置付け

3.1.2 使用材料

モンモリロナイトのアナルサイム化(土粒子密度 2.2Mg/m³程度)に関する検討では、アナルサイ ムの割合を変化させた力学試験を実施した。この検討におけるモデル化では、前フェーズで構築 したモデルをベースとしているが、この検討を通じて、前フェーズで構築したモデルの高度化に 繋がる知見が得られた。そこで、平成 27 年度は、前フェーズで構築したモデルの高度化に資する 検討を実施することとした。そのため、平成 27 年度はアナルサイムを使用しないこととした。 本検討で使用する材料は、以下の通りである。

(1) モンモリロナイト

本試験で使用したモンモリロナイトは、クニゲル V1 を精製したクニピア F とした。ただし、 後述する一面せん断試験で使用するモンモリロナイトは、クニピア F とクニピア F をジェット ミルで微粉砕したものを使用した。表 3.1.2-1 に前フェーズで取得したクニピア F の土粒子密 度を示す。

表 3.1.2-1 クニピア Fの土粒子密度(2013年度成果)

	試 料						クニピア F	١		
土	粒	子	\mathcal{O}	密	度	ρs	Mg/m^3	2.766	2.781	2.779
平		力	匀		値	ρs	Mg/m ³		2.776	

(2) ケイ砂

本試験で使用するケイ砂は、3号ケイ砂(愛知県産三河砂)と5号ケイ砂(オーストラリア 産のアルバニー砂)を1:1の乾燥質量割合で混合したものとした。さらに、ケイ砂を疑似随 伴鉱物として使用する場合は、上述のケイ砂をボールミルで微粉砕したもののうち、75 μ mの 篩を通過したものを使用した。これは、図 3.1.1-2 に示したように、クニゲル V1 の随伴鉱物の ほとんどの鉱物組成が SiO₂ であるためである。表 3.1.2-2 に前フェーズで取得したケイ砂の土 粒子密度を示す。

表 3.1.2-2 ケイ砂の土粒子密度(2013年度成果)

試 料				粉砕ケイ砂			粉砕前ケイ砂						
土	土 粒 子 の 密 度 ps Mg/m ³			2.756	2.759	2.753	2.646	2.642	2.654				
平		ţ	匀		値	ρs	Mg/m ³		2.638			2.647	

(3) 変質前人工ベントナイト

平成 27 年度の検討では、前フェーズで構築したモデルの高度化に資する検討を実施するた めに、モンモリロナイト含有率 80wt%の変質前人工ベントナイト(高モンモリロナイト含有率 ケース)とモンモリロナイト含有率 20wt%の変質後人工ベントナイト(低モンモリロナイト含 有率ケース)を使用した。表 3.1.2-3 に、人工ベントナイト系材料の鉱物組成の変質前後のイ メージを示す。表 3.1.2-3 には、平成 27 年度の検討内容の位置付けが俯瞰的に見えるようにす るために、平成 27 年度の検討では使用しないが、これまでの検討で使用した変質後人工ベント ナイト(モンモリロナイトと微粉砕ケイ砂とアナルサイムの混合土)に関しても記載した。

表 3.1.2-3 人工ベントナイト系材料の鉱物組成の変質前後のイメージ

	wt%	10	20	30	40	50	60	70	80	90	100	備考
		モンモリロナ仆:59%微粉砕ケイ砂:41%							1%	H27		
	変質前		モンモリロナイト:80% 微粉砕ケイ砂: 20%									H27
人工 ベントナイト		モンモリロ 20	ታイト : %			微料	%砕ケ~	イ砂:80	0%			H27
			29.5%		アナルサ	14 : 29	.5%		41	%		済
	変質後	20)%		39	%			41	%		済
		40%				19	%	41%		済		

3.1.3 物理試験

ベントナイトの物理性状のうち、土粒子密度試験について以下に示す。土粒子密度は、地盤材料の水理・力学試験を行う上で基本、かつ必須の物理量である。前フェーズでは、表 3.1.3-1 に示すように Na 型ベントナイト (クニゲル V1、MX80)、Ca 型化ベントナイト (Ca 型化クニゲル V1)、Na 型モンモリロナイト (クニピア F、水簸した MX80 のモンモリロナイト、微粉砕ケイ砂) 微粉砕アナルサイムについて土粒子密度を求めてきた。土粒子密度試験は、【JGS0111-2000:地 盤工学会基準 土の粒度試験方法】に則り実施した。

平成27年度使用する、変質前人工ベントナイトは、前フェーズで用いたモンモリロナイトと微

粉砕ケイ砂からなるため、平成27年度は試験を実施せず、過去の試験結果を用いて土粒子密度を 算出した。

年度	材料
H20	Na 型モンモリロナイト
H21	Ca 型化モンモリロナイト
H22	ケイ砂含有 Na 型モンモリロナイト(人工ベントナイト) ケイ砂 微粉砕ケイ砂(アルミナ乳鉢) クニゲル V1(天然ベントナイト)
H23	微粉砕ケイ砂(陶器ボールによるボールミル) MX80 クニゲル V1 随伴鉱物 MX80 随伴鉱物
H25 H26	微粉砕アナルサイム

表 3.1.3-1 これまでに実施した土粒子密度試験一覧

平成 27 年度の検討で使用する変質前人工ベントナイトはモンモリロナイト含有率 80wt%の変 質前人工ベントナイト(高モンモリロナイト含有率ケース)とモンモリロナイト含有率 20wt%の 変質前人工ベントナイト(低モンモリロナイト含有率ケース)の2 種類である。変質前人工ベン トナイトは、特段の断りがない限り、モンモリロナイト、微粉砕ケイ砂の混合土である。表 3.1.3-2 に前フェーズで取得した変質前人工ベントナイトの土粒子密度試験結果、及びこの試験結果を用 いて平成 27 年度使用する変質前人工ベントナイトの土粒子密度を算出した結果を示す。

材料	モンモリロナイト 含有率 (×100wt%)	ケイ砂 含有率 (×100wt%)	アナルサイム 含有率 (×100wt%)	バルクの 土粒子密度 (Mg/m ³)	備考
クニヒ゜アF	1	0	0	2.776	
Ca型化クニピア	1	0	0	2.735	
クニケ゛ル V 1	0.59	-	0	2.758	
クニゲル V1 随伴鉱物	0	-	0	2.636	
微粉砕ケイ砂	0	1	0	2.637	
変質前人工ベントナイト	0.59	0.41	0	2.763	過去の武甲
MX80	0.714*(0.861)	-	0	2.798	迥云の成木
MX80 随伴鉱物	0	-	0	2.767	
微粉砕アナルサイム	0	0	1	2.288	
変質後人工ベントナイト	0.295	0.41	0.295	2.556	
変質後人工ベントナイト	0.2	0.41	0.39	2.527	
変質後人工ベントナイト	0.4	0.41	0.19	2.622	
変質前人工ベントナイト	0.8	0.2	0	2.747	平成 27 年度 使用
変質前人工ベントナイト	0.2	0.8	0	2.664	平成 27 年度 使用

表 3.1.3-2 変質前人工ベントナイトの土粒子密度

※クニピアFのメチレンブルー吸着量を1とした場合の換算値

3.1.4 力学試験

- (1) 排気一次元圧縮試験
 - 1) 試験概要

ベントナイトの力学モデルを構築する際に、圧密・膨潤特性は重要な特性である。そこで、 二次鉱物が生成したことを模擬した試料を用いて、排気一次元圧縮試験を行った。ベントナ イト系人工バリア材料の排気一次元圧縮試験を行えば、ベントナイト系人工バリアの正規圧 密線、等飽和度線、等含水比線などの力学特性、平衡膨潤圧と平衡膨潤量の関係などの膨潤 特性が得られるため、ベントナイト系人工バリア力学モデルの妥当性を検証し、変質に伴う 力学挙動の変化を考慮させるためには重要な試験である。

これまでの検討で、表 3.1.3-1 に示すように、Na型モンモリロナイト(クニピアF)、Ca 型化モンモリロナイト、クニミネ工業製のクニピアFにケイ砂を混合させた人工ベントナイ トとベントナイト(クニゲルV1、MX80など)の一次元圧縮試験を行い、完全飽和線を取得し た。この結果、モンモリロナイト含有率の違いによって完全飽和線が平行移動すること、モ ンモリロナイトの産地の違いにより、完全飽和線の傾きが異なることなどが明らかとなった。 さらに、本フェーズでは、モンモリロナイトがある割合でアナルサイム化した変質後人工ベ ントナイトの完全飽和線を取得して、モンモリロナイトが低土粒子密度の非膨潤性の鉱物に 変質する化学変質が完全飽和線に及ぼす影響を定量評価した。

年度	材料	液種	含水比
H20	クニピア	蒸留水	3
H21	Ca 型化モンモリロナイト	蒸留水	3
H22	ケイ砂含有 Na 型モンモリロナイト(人工ベントナイト) クニゲル V1(天然ベントナイト)	蒸留水	各3
H23	ケイ砂含有率 80%の Na 型モンモリロナイト (人工ベントナイト) MX80	蒸留水	2
H25	変質後人工ベントナイト(M29.5、A29.5)	蒸留水	5
H26	変質後人工ベントナイト (M40、A19.5)、(M20、A39.5)	蒸留水	各3

表 3.1.4-1 これまでの一次元排気圧縮試験一覧

試験手順は次の通りである。

- 前述の土粒子密度試験より土粒子密度が既知となった各試料を用いて初期含水比を パラメータとして調整した材料を作製する。
- 各試料を締固めモールドにセットし、静的に一定速度で一次元圧縮する。
- その際の載荷圧と湿潤密度を記録する。

湿潤密度と初期含水比から乾燥密度 を算出し乾燥密度と静的締固め圧力 の関係としてまとめる。

以上の手順を図示すると、図 3.1.4-1 のようになる。

図 3.1.4-1 一次元排気圧縮試験の模式図

これまでの検討の中で、一次元排気圧縮試験によってベントナイト系人工バリア材料の完 全飽和線を取得するには、速やかに排気がなされる程度の低含水比側でしか試験を実施でき なかった。高含水比側では排気がなされる前に空隙が間隙水によって連通しなくなる、低含 水比側に比べて一次元圧縮速度を十分に下げなければ、間隙水の粘性や過剰間隙水圧の影響 で完全飽和線を高めに見積もることになる。現状では、このような高含水比側の完全飽和線 は、完全飽和線が乾燥密度と応力の片対数平面において直線であるという仮定のもとに外挿 して取得している(図 3.1.4・2参照)。その一方で、この高含水比領域の完全飽和線は、高間 隙比領域、あるいは低乾燥密度領域のベントナイトの膨潤挙動を記述するものであり、膨潤 性能が期待されるベントナイト系人工バリアにおいては重要な領域と言える。しかしながら、 これまでの荷重制御膨潤量試験による検討などにおいて、この高含水比領域における試験結 果と完全飽和線が整合しないという結果が散見された。そこで平成 26 年度は、高含水比領域 で完全飽和線の勾配が変化するモデル化を検討し、そのために追加されたパラメータの同定 のために、試験結果のフィッティングを実施した。

図 3.1.4-2 一次元排気圧縮試験結果の模式図

平成27年度は、完全飽和線の関数形を確定させるために、これまで取得したベントナイト 系人工バリア材料の完全飽和線のうち、高含水比領域(低密度領域)の飽和点を実験によっ て取得する。従来の試験方法では、高含水比側では排気がなされる前に空隙が間隙水によっ て連通しなくなる、低含水比側に比べて一次元圧縮速度を十分に下げなければ、間隙水の粘 性や過剰間隙水圧の影響で完全飽和線を高めに見積もることになることから、以下のような 試験手順で実施する。

- 前述の土粒子密度試験より土粒子密度が既知となった各試料を用いて初期含水比を パラメータとして調整した材料を作製する。
- ② 各試料を締固めモールドにセットし、CO2をパージする。
- ③ 静的に一定、かつ十分に遅い軸変位速度で一次元圧縮する。
- ④ その際の載荷圧と湿潤密度を記録する。
- ⑤ 湿潤密度と初期含水比から乾燥密度を算出し乾燥密度と静的締固め圧力の関係とし てまとめる。

②の CO₂パージは、一次元圧縮中に空隙がトラップされても周囲の間隙水に溶け込みやす くするための方策である。また、③の静的に一定、かつ十分に遅い軸変位速度は、過剰間隙 水圧や間隙水の粘性の影響を除去できる速度であり、一次元排気圧縮中の応力変化によって 判断可能である。一次元圧縮装置としては、CO₂ でパージする必要があるため、軸ひずみや 体積変化が高精度で制御可能な三軸圧縮試験装置(スマート三軸試験装置)を用いることと した。三軸試験装置であれば、三軸セル内に CO₂をパージしながら一次元圧縮することが可 能である。

スマート三軸試験装置は図 3.1.4-3 に示す通り、圧縮装置と一体化した三軸セル、供試体 に側圧や間隙水圧を載荷するポンプ、これらを制御するコントローラ及び付帯装置のデガッ サ、ならびに制御計測用ソフトウエアーから構成される。スマート三軸試験装置は、一般の 試験装置のようにバルブや配管をパネルに集約しておらず、そのほとんどが図 3.1.4-4 に示 すように三軸セルの周囲に配置されている。これにより、供試体からの給排水や圧力の載荷 機構を容易に操作することが出来る。圧縮装置は三軸セルの下部に設置されており、三軸セ ルと一体型となっている。モーター、減速機、ボールねじによりジャッキが構成され、ペデ スタルを昇降し供試体を圧縮・伸張する仕組みになっている。圧縮装置に用いられるモータ ーは、外部から入力されるパルスに比例して回転するサーボモーターであり、減速機やボー ルねじとの組み合せで 1224 万パルス/5mm、すなわち 4.085×10⁻⁴ µ m/パルスの理論分解能 を有する。圧縮能力は最大 20kN、最大速度は 0.2mm/sec である (図 3.1.4-4 参照)。

図 3.1.4-3 スマート三軸試験装置の全景

図 3.1.4-4 圧縮用アクチュエータの仕組み

表 3.1.4-2 にスマート三軸試験装置の概略仕様を示す。表に示すように、軸変位の分解能 が 4.085×10⁻⁷mm と非常に高性能であり、三軸セル内を CO₂パージした後に、本試験装置で 一次元排気圧縮を十分にゆっくりとした速度で実施すれば、間隙水の粘性や過剰間隙水圧の 影響を除去することが可能となる。図 3.1.4-5 にスマート三軸試験装置による CO₂パージー 次元排気圧縮試験状況を示す。

	諸元
供試体寸法	最大直径: 50mm
	最大高さ: 100mm
軸荷重	最大圧縮荷重: 20kN
	最大変位: 30mm
	分解能: 4.085×10 ⁻⁷ mm/pulse
	最大圧縮速度: 0.2mm/sec
セル圧	最大圧力: 3.0MPa
背圧	最大排水量: 100cc
	分解能: 1.767×10 ⁻⁶ cc/pulse
	最大排水速度: 0.884cc/sec
実施可能試験	圧密試験: 等方、異方、K ₀
	排水条件: 非排水、排水
	動的試験: Sin波、ランダム波

表 3.1.4-2 装置の概略仕様

(a) 全景

(b) セル

(c) 試験後供試体

図 3.1.4-5 CO2パージー次元排気圧縮試験状況

試験数量を表 3.1.4-3 に示す。試験はモンモリロナイト(クニピア)、ベントナイト(クニゲ ル V1)、Ca 型化ベントナイト(Ca 型化クニゲル V1)であり、ベントナイトに関しては、CO2 パージによって間隙水の pH が下がる影響を調べるために、従来の方法で CO2パージを行わ ないケースも実施する。表 3.1.4-4 には、CO2パージ有のケースの試験条件を示す。

材料	液種	CO_2 パージ	高含水比	試験数	位置付け
ベントナイト (クニゲル V1)	蒸留水	×	1	1	CO₂パージの影響調査 従来速度
ベントナイト (クニゲル V1)	蒸留水	×	1	1	CO ₂ パージの影響調査 緩速
モンモリロナイト (クニピア)	蒸留水	0	1	1	_
ベントナイト (クニゲル V1)	蒸留水	0	1	1	_
Ca型化ベントナイト (Ca型化クニゲルV1)	蒸留水	0	1	1	

表 3.1.4-3 一次元圧縮試験数量

材料 クニゲル Ca クニゲル V1 クニピア F 試験条件 V1 土粒子密度 (Mg/m^3) 2.7332.7352.776試料含水比 (%) 46.70 46.7747.31直径 (cm) 5.0005.0005.000断面積 (cm^2) 19.635 19.635 19.6352.000初期高さ (cm)2.0002.800湿潤質量 (g) 34.5834.5834.58乾燥質量 (g) 23.5723.5623.47圧縮速度 (mm/min) 0.1500.1500.150

表 3.1.4-4 CO2パージ有のケースの試験条件

図 3.1.4-6 に一次元圧縮試験から得られる結果の反映先と理論展開フローを示す。図中の 赤字が材料毎に異なるパラメータである。様々な材料で一次元圧縮試験を実施し、フローに 従って結果の整理を行うと、最終的には材料毎の完全飽和線が得られることになる。材料毎 の完全飽和線の変化を化学的変質として平衡論的にまとめると最終的には力学モデルに化学 変質を考慮できる。

前述のように、前フェーズにおいて実施したベントナイト系材料の力学的挙動の検討[6]で 導入したベントナイト系人工バリアの力学概念では、このようにして得られる完全飽和線は 正規圧密曲線、ゼロ空隙曲線、平衡膨潤圧・膨潤量線であることが示されている。よって本 検討で得られた完全飽和線から得られる正規圧密曲線、ゼロ空隙曲線、平衡膨潤圧・膨潤量 線などの妥当性に関しても検討を行う(図 3.1.4-7 参照)。

図 3.1.4-6 一次元圧縮試験の反映先と理論展開

図 3.1.4-7 一次元圧縮試験のモデル構築への反映イメージ

2) モデル化検討の経緯

図 3.1.4-8 に変質後(アナルサイム化、低土粒子密度化)人工ベントナイトの一次元圧縮 試験結果を示す。これまでの試験結果から、変質後人工ベントナイトの完全飽和線が、

$$\rho_d / \rho_w = 0.156 \ln \sigma'_v + \bar{\rho} \qquad (\vec{\mathfrak{x}} \ 3.1\text{-}1)$$

として得られた。ただし、ここで、 ρ は基準乾燥密度であり、あるベントナイトの膨潤圧が 1MPa となるときの乾燥密度 ρ_{d}^{*} と水の単位体積質量 ρ_{w} を用いて、

$$\overline{\rho} = \frac{\rho_d^*}{\rho_w}$$

として定義した。基準乾燥密度は変質(アナルサイム化、低土粒子密度化)の度合いが増す 毎に増加して、低変質の場合は1.43、中変質の場合は1.39、高変質の場合は1.37であった。 なお、高変質のケースにおける完全飽和線の決定では、高含水比の試料の飽和点を無視した。 これは、高含水比の試料を排気圧縮中に得られる等含水比線の勾配が他の2ケースと比べて 大きく異なっているためである。一次元排気圧縮試験は、間隙水よりも間隙空気が先に排出 されることが前提となっているため、高含水比の場合試験を非常にゆっくりと行う必要があ るなど、その実施が難しくなる。高含水比のケースの再現性を確認するとともに、含水比を 更に変化させたケースを追加して試験を行う必要がある。

さらに、図 3.1.4-9 には、変質後人工ベントナイトの等飽和度線と前フェーズで取得した、 モンモリロナイト含有率が 100%のクニピア F、59%クニゲル V1、20%の人工ベントナイト の完全飽和線の比較を示している。

図から、各材料の完全飽和線は、互いに平行であり、(式 3.1-2)で与えられることが分かった。

$$\rho_d / \rho_w = C_a \ln \sigma'_{\mu} + \bar{\rho} \qquad (\vec{z} 3.1-2)$$

クニピア系のモンモリロナイトを含む材料のこれらのパラメータを表 3.1.4-5 に示す。表 3.1.4-5 には、(式 3.1-3) で定義したモンモリロナイト変質率 β_{mn} も示した。

$$\beta_{mnt} = \frac{W_{anl}}{W_{mnt0}} \tag{$\frac{1}{3}$.1-3}}$$

ただし、Wanl はアナルサイムの乾燥質量、Wmn10 は変質前のモンモリロナイトの乾燥質量で

ある。また、 $\sigma'vmax$ は乾燥密度が土粒子密度と一致する、すなわち間隙比がゼロとなる圧力 である。

⁽c) 高変質人工ベントナイト

図 3.1.4-8 変質後人工ベントナイトの一次元圧縮試験結果

図 3.1.4-9 変質後人工ベントナイトの完全飽和線と既往の結果の比較

材料	モンモリロナイト 含有率 a _{mnt} (%)	モンモリロナイト 変質率 β _{mnt} (%)	<i>C_a</i> (自然対数)	基準乾燥密度 <i>p</i>	σ' _{vmax} (MPa)
クニヒ゜アF	100	0		1.35	9330
クニケ゛ル V 1	59	0		1.45	3730
人工ベントナイト	20	0	0.156	1.77	331
	29.5	50	0.150	1.39	1762
変質後人工ベントナイト	20	66.1		1.37	1831
	40	32.2		1.43	1663

表 3.1.4-5 各材料の完全飽和線のパラメータ

ここで、モンモリロナイト変質率 β_{mt} と基準乾燥密度 $\bar{\rho}$ の関係を図 3.1.4-10に示す。

図 3.1.4-10 モンモリロナイト変質率と基準乾燥密度の関係

図では、初期のモンモリロナイト含有率が 0.59 の場合の結果から、モンモリロナイト変質 率 β_{mm} と基準乾燥密度 $\bar{\rho}$ の関係を、

$$\bar{\rho} = -0.12\beta_{mut} + \bar{\rho}_0 \qquad (\vec{\mathfrak{t}} \ 3.1-4)$$

とした。ここで、^戸0は、変質前の基準乾燥密度である。(式 3.1-4)では、変質前のモンモリ ロナイトに依らず、モンモリロナイトの変化率に対する基準乾燥密度の変化割合が-0.12で一 定であると仮定した。

さらに、この変質前の基準乾燥密度 $\overline{\rho}_0$ とモンモリロナイト含有率 α_{mnt} の関係は、図 3.1.4-11のようになる。

図 3.1.4-11 変質前の基準乾燥密度とモンモリロナイト含有率の関係

よって、(式 3.1-4) は、

$$\bar{\rho} = -0.12\beta_{mnt} + \frac{1.35}{\alpha_{mnt0}^{0.17}}$$
 (式 3.1-5)

として表される。

ここで、モンモリロナイト含有率毎のベントナイトの土粒子密度 ρ_{s-ben} は、随伴鉱物の土粒子密度を ρ_{s-max} 、モンモリロナイトの土粒子密度を ρ_{s-max} とすると、

$$\frac{\rho_{s-ben}}{\rho_w} = (1 - \alpha_{mnt0}) \frac{\rho_{s-acc}}{\rho_w} + \alpha_{mnt0} \frac{\rho_{s-mnt}}{\rho_w}$$
(£ 3.1-6)

で表される。(式 3.1-6) も図 3.1.4-11 に併せて示す。(式 3.1-5) と(式 3.1-6)の交点は、 ベントナイトを土粒子密度まで締固めないと基準膨潤圧 1MPa を発揮できないモンモリロナ イト含有率を示しており、交点よりもモンモリロナイト含有率が下がると、土粒子密度以上 にベントナイトを締固めなければ基準膨潤圧 1MPa を発揮できないことになる。このため、 モデル上の下限値 α_{mnt}^{min} と考えても実用上差し支えない。よって本モデルの場合、 α_{mnt0} の取り うる範囲は、

$$0.02 \le \alpha_{mnt0} \le 1$$
 (式 3.1-7)

とした。なお、この下限値は、基準膨潤圧を低減させたり、図 3.1.4-11 の近似式を変更した りすることによって変化するが、現実的なモンモリロナイト含有率の範囲をカバーしている ことや、モデルが複雑化することを避けるためにこれ以上の議論は避ける。

ここで、変質によりある割合がアナルサイム化したモンモリロナイト含有率 α_{mnt} は、アナルサイム以外の随伴鉱物の乾燥質量を W_{acc} 、変質後のモンモリロナイトの乾燥質量 W_{mnt} として

$$\alpha_{nnt} = \frac{W_{nnt}}{W_{acc} + W_{nnt} + W_{anl}} \tag{π 3.1-8}$$

で表され、さらに、変質後のモンモリロナイトの乾燥質量W_{mm}は、

$$W_{nnut} = W_{nnut0} - W_{anl} = W_{nnut0} - \beta_{nnut} W_{nnut0} = (1 - \beta_{nnut}) W_{nnut0}$$
 (式 3.1-9)

で表されるため、変質によりある割合がアナルサイム化したモンモリロナイト含有率 ann は、

$$\alpha_{mnt} = \frac{(1 - \beta_{mnt})W_{mnt0}}{W_{acc} + (1 - \beta_{mnt})W_{mnt0} + \beta_{mnt}W_{mnt0}} = \frac{(1 - \beta_{mnt})W_{mnt0}}{W_{acc} + W_{mnt0}} = (1 - \beta_{mnt})\alpha_{mnt0} \quad (\vec{\pi}, 3.1-10)$$

となる。ここで、*α_{mnt0}*は変質前のモンモリロナイト含有率であり、本検討で使用しているク ニゲル V1 では 0.59 である。

3) モデルの一般化

これまでの議論では、初期モンモリロナイト含有率とモンモリロナイトのアナルサイム化 を個別に考えてきた。初期モンモリロナイト含有率は、ケイ砂含有率や随伴鉱物の量によっ て変化するが、概ねケイ砂と同等と考えても良い。このケイ砂含有率が増加することとアナ ルサイム化する(アナルサイム含有率が増加する)ことは、どちらもモンモリロナイト含有 率の低下という意味では同じである。しかしながら、ケイ砂は土粒子密度が2.65Mg/m³程度 であるのに対してアナルサイムは2.2Mg/m³程度であるため、モンモリロナイトが溶解後に 二次鉱物として沈殿した際の土粒子密度が、ケイ砂のようにモンモリロナイトの土粒子密度 2.8 Mg/m³程度に近い鉱物の場合は間隙体積があまり変化しないが、アナルサイムのように モンモリロナイトの土粒子密度よりも小さい鉱物として沈殿した場合は、間隙体積を大きく 減少させることになる。間隙体積の減少は、土粒子骨格同士の接触点数の増加に繋がる為、 有効応力が増加する。そのため、図3.1.4-12に示すように、高土粒子密度の随伴鉱物の増加 に伴うモンモリロナイト含有率の低下では1MPaを発揮するのに必要な乾燥密度(基準乾燥 密度)は増加し、低土粒子密度の随伴鉱物の増加に伴うモンモリロナイト含有率の低下では 1MPaを発揮するのに必要な乾燥密度(基準乾燥密度)は低下する。

図 3.1.4-12 変質前の基準乾燥密度とモンモリロナイト含有率の関係

このような考え方を踏まえて、あるベントナイトの出発物質をモンモリロナイト単体として、そこから χ_{mut} だけ変質して現在の状態に至っていると考えてもモデル上は差し支えない (χ_{mut} は非モンモリロナイト鉱物含有率)。この場合のモンモリロナイト含有率は、(式 3.1-10)を用いて、

$$\alpha_{nnt0} = (1 - \chi_{nnt}) \cdot 1 \qquad (\vec{\mathfrak{T}} \ 3.1 - 11)$$

で表される。よって、(式 3.1-5)

$$\bar{\rho} = -0.12\beta_{mnt} + \frac{1.35}{(1-\chi_{mnt})^{0.17}} \qquad (\vec{\mathfrak{R}} \ 3.1-12)$$

と表される。クニゲル V1 の場合、初期のモンモリロナイト含有率 a_{mn10} が 0.59 であるため、

$$\chi_{mnt}$$
は 0.41 で一定である。

ここで、間隙比がゼロとなる(乾燥密度が土粒子密度と一致する)圧力 $\sigma'vmax$ は、(式 3.1-2)から、

$$\sigma'_{v \max} = \exp\left(\frac{\overline{\rho}_{s} / \rho_{w} - \overline{\rho}}{C_{a}}\right) = \exp\left(\frac{\overline{G}_{s} - \overline{\rho}}{C_{a}}\right)$$

で与えられるから、(式 3.1-12)を用いて、

$$\sigma'_{v\max} = \exp\left(\frac{\bar{G}_s - \bar{\rho}}{C_a}\right) = \exp\left(\frac{\bar{G}_s + 0.12\beta_{mm} - \frac{1.35}{(1 - \chi_{mm})^{0.17}}}{C_a}\right)$$
(\$\pi\$\zeta\$ 3.1-13)

と表される。ただし、 $\bar{\rho}_s$:変質後のバルクの土粒子密度、 \bar{G}_s :変質後のバルクの土粒子比重である。(式 3.1-2)を変形すれば、変質後人工ベントナイトの $e \sim \ln p'$ 関係が(式 3.1-14)で与えられる。

$$e = \frac{C_a \ln \frac{\sigma'_{v \max}}{\sigma'_{v}}}{\bar{G}_{s} - C_a \ln \frac{\sigma'_{v \max}}{\sigma'_{v}}}$$
(\$\vec{\mathbf{x}}\$ 3.1-14)

ここで、変質後のバルクの土粒子密度 $\bar{\rho}_{s}$ は、

$$\overline{\rho}_{S} = a\rho_{s-acc} + b\rho_{s-mnt} + c\rho_{s-anl}$$

で表され、各係数は、

$$a = \frac{W_{s-acc}}{W}$$
g

となる。ここで、

$$W = W_{s-acc} + W_{s-mnt} + W_{s-an}$$

である。さらに、定義から、

$$a = \frac{W_{s-acc}}{W} = 1 - \alpha_{mnt0} = \chi_{mnt}$$

$$b = \frac{W_{s-mnt}}{W} = \alpha_{mnt} = \alpha_{mnt0} \left(1 - \beta_{mnt}\right) = \left(1 - \chi_{mnt}\right) \left(1 - \beta_{mnt}\right)$$

$$c = \frac{W_{s-anl}}{W} = \frac{W_{s-mnt0}}{W} \frac{W_{s-anl}}{W_{s-mnt0}} = \alpha_{mnt0} \beta_{mnt} = \left(1 - \chi_{mnt}\right) \beta_{mnt}$$

であるから、変質後のバルクの土粒子比重 G.は、

$$\bar{G}_{s} = \frac{\bar{\rho}_{s}}{\rho_{w}} = \chi_{mnt} \frac{\rho_{s-acc}}{\rho_{w}} + (1 - \chi_{mnt})(1 - \beta_{mnt})\frac{\rho_{s-mnt}}{\rho_{w}} + (1 - \chi_{mnt})\beta_{mnt}\frac{\rho_{s-anl}}{\rho_{w}}$$
(\vec{x} 3.1-15)

で与えられる。ただし、 ρ_{s-acc} はアナルサイム以外の随伴鉱物の土粒子密度、 ρ_{s-anl} はアナルサイムの土粒子密度である。また、モンモリロナイトのアナルサイム化以外の鉱物化を考えない場合は、 $(1-\chi_{mat})=\alpha_{mat0}=0.59$ としてもよい。

(式 3.1-13)、(式 3.1-15)を(式 3.1-14)に代入して得られる *e*~ln *p*'関係を図示すると 図 3.1.4-13 のようになる。図には、前フェーズで取得した、モンモリロナイト含有率が 100% のクニピア F、59%のクニゲル V1、20%の人工ベントナイトの*e*~ln *p*'関係も併せて示して いる。

図から、一次元圧縮試験から得られた変質後の人工ベントナイトのe~lnp'関係は、変質前の人工ベントナイト(クニゲルV1)とほぼ同等であった。両者のe~lnp'関係を比較すると、モンモリロナイト含有率が変質によって低減しているのにもかかわらず、e~lnp'関係はあまり変化していない。モンモリロナイト含有率が20%の変質前人工ベントナイトと変質率70%の変質後人工ベントナイトは、モンモリロナイト含有率がほぼ同等であるが、変質率70%の変質後人工ベントナイトの方が、e~lnp'関係が上側に存在している。このことからも、モンモリロナイトの減少に伴う膨潤圧の減少を、土粒子密度の低下(土粒子体積の増加)に伴う間隙体積の減少による土粒子骨格の形成、土粒子同士の接触点の増加などが補っているものと考えられる。

図 3.1.4-13 変質後人工ベントナイトの e~ln p' 関係

4) 完全飽和線の高度化案その1

これまで用いてきた完全飽和線は、一次元排気圧縮試験結果に基づいて次式で表される。 $\rho_d / \rho_w = C_a \ln \sigma'_v + \bar{\rho}$ (式 3.1-16)

しかしながら、後述する荷重制御膨潤量試験結果の内、低応力レベルの結果と完全飽和線 との差異が大きいことが分かってきた。本検討で実施している一次元排気圧縮試験で低応力 レベルの飽和点(高間隙比での平衡膨潤圧と膨潤量の点)を直接求めるためには、高含水比 に調整した材料の一次元排気圧縮試験を行う必要があるが、過剰間隙水圧が発生し易いため に試験が難しい。さらに、低応力レベルでは摩擦の影響が大きいために、試験結果の解釈も 難しくなる。このような理由により、一次元排気圧縮試験から、高応力レベルから低応力レ ベルの完全飽和線が乾燥密度と圧縮応力の対数軸の平面において直線であるかどうかを確か めることが困難なのが現状である(図 3.1.4-8)。

この荷重制御膨潤量試験結果と一次元排気圧縮試験結果の差異には、幾つかの理由が考え られるものの、モデルとして多様な膨潤挙動を表現できるように高度化することは重要であ る。そこで、新たなパラメータを導入して、完全飽和線の表現能力を高めることとした。 (式 3.1-17) に新しいパラメータσ', min を導入した完全飽和線を示す。

$$\rho_d / \rho_w = C_a \ln \left(\sigma'_v - \sigma'_{v\min} \right) + \overline{\rho} \qquad (\vec{\mathfrak{x}} \ 3.1\text{-}17)$$

図 3.1.4-14 に σ'_{vmin} を導入した完全飽和線を示す。図に示す通り、 σ'_{vmin} を導入した完全飽 和線は、応力が $P = \sigma'_{vmin}$ の直線に漸近するに従って乾燥密度が急激に低下する。また、この σ'_{vmin} の導入では、これまで実験結果と整合が取れていた応力レベルの完全飽和線はほとんど 変化しないことも分かる。

図 3.1.4-14 新しいパラメータを導入した完全飽和線

(式 3.1-17)を従来の完全飽和線と同じ手順で e-logP 関係に書き換えると(式 3.1-18)のようになる。

$$e = \frac{C_{\alpha} \ln \frac{\left(\sigma'_{vmax} - \sigma'_{vmin}\right)}{\left(\sigma'_{v} - \sigma'_{vmin}\right)}}{Gs - C_{\alpha} \ln \frac{\left(\sigma'_{vmax} - \sigma'_{vmin}\right)}{\left(\sigma'_{v} - \sigma'_{vmin}\right)}}$$
(₹ 3.1-18)

図から、 σ'_{vmin} を導入したことにより、低応力レベルの完全飽和線が σ'_{vmin} の値に応じて高 間隙比に推移しているのが分かる。この σ'_{vmin} を用いて、前フェーズで実施したクニピア F と クニゲル V1 の荷重制御膨潤量試験結果に完全飽和線が整合するように σ'_{vmin} を決定すると、 図 3.1.4-16 に示すように、どちらの材料の場合も $\sigma'_{vmin} = 0.04 MPa$ となった。

以上の結果から、σ'_{vmin}の導入によって完全飽和線は、従来から整合していた応力レベルの 膨潤挙動は変化することなく、完全飽和線とは整合しなかった応力レベルの膨潤挙動を上手 く表すことができる高度化であると言える。また、定式化などはほとんど変わらないため、 解析への導入も容易である。

図 3.1.4-15 新しいパラメータを導入した e-logP 関係

図 3.1.4-16 新しいパラメータの効果

5) 完全飽和線の高度化案その2

図 3.1.4-14 に示した新しいパラメータを導入した完全飽和線は、実際の膨潤量試験の結果 と完全飽和線が整合するようにすることが容易であることを示した。その一方で、非常に低 密度でも有意な膨潤圧が存在するような不合理さを兼ね備えている。例えば、クニゲル V1の 液性限界である含水比 500%程度やブリーディングが発生する限界の含水比 1050%程度に相 当する乾燥密度 0.186Mg/m³ や 0.092Mg/m³のベントナイトが吸水膨潤することはほとんど ないものと考えられる。完全飽和線がこのような乾燥密度に漸近するように修正するために は、(式 3.1-17) に示した式を(式 3.1-19)のようにしなければならない。

$$\rho_d / \rho_w = C_a \ln \left(\sigma'_v + \sigma'_{v\min} \right) + \bar{\rho} \qquad (\vec{\mathfrak{x}} \ 3.1\text{-}19)$$

図 3.1.4-14 に σ'_{vmin} を導入した完全飽和線を示す。図に示す通り、 σ'_{vmin} を導入した完全飽 和線は、応力が低下するに従って乾燥密度 $_{P_d}/\rho_w$ が $_{C_a}\ln(\sigma'_{vmin})+\bar{\rho}$ 漸近することが分かる。ただ し、この σ'_{vmin} の導入によって、低応力レベルにおける乾燥密度が大きめに見積もられること になる。

図 3.1.4-17 新しいパラメータを導入した完全飽和線

(式 3.1-19) を従来の完全飽和線と同じ手順で e-logP 関係に書き換えると(式 3.1-20) のようになる。(式 3.1-20) を図示すると図 3.1.4-18 のようになる。図に示すように、膨潤 量が所定の間隙比に漸近するように変化していることが分かる。

$$e = \frac{C_{\alpha} \ln \frac{(\sigma'_{vmax} + \sigma'_{vmin})}{(\sigma'_{\nu} + \sigma'_{vmin})}}{Gs - C_{\alpha} \ln \frac{(\sigma'_{vmax} + \sigma'_{vmin})}{(\sigma'_{\nu} + \sigma'_{vmin})}}$$
(\Refs 3.1-20)

図 3.1.4-18 新しいパラメータを導入した完全飽和線 e-logP 関係

図 3.1.4-19 には、前フェーズで実施したクニピア F とクニゲル V1 の荷重制御膨潤量試験 結果に、完全飽和線が整合するように C_a 、 σ'_{vmax} 、 σ'_{vmax} を決定した結果を示している。クニゲ ル V1 に関しては、材料分離が発生する含水比に相当する間隙比に漸近するように各パラメ ータを調整した。クニピア F に関してはクニゲル V1 のパラメータを参考にして試験結果と 整合するように決定した。

図に示すように、試験結果に完全飽和線を整合させるようにパラメータを決定すると、物理的な意味が曖昧になってしまうことが分かる。例えば、間隙比がゼロとなる応力 σ'_{νmax}が100~200MPa と非常に小さい応力レベルであったり、完全飽和線の傾き C_aが試験から得られ

る値である 0.156 よりも非常に大きな 0.25 であったりしている。

図 3.1.4-19 新しいパラメータの効果

6) モデルの高度化まとめ

完全飽和線に基づくベントナイトの膨潤挙動のモデル化に関して高度化案を示した。両案 の得失をまとめると表 3.1.4-6 のようになる。いずれも一長一短があるが、実用的な応力レ ベルにおいては案1の方が更なる検討に値すると考えられる。

定式化上は、両者の違いは σ', min の符号のみであり、どちらも並行して検討可能である。

表 3.1.4-6 修正完全飽和緑の物	寺 徴
---------------------	------------

案	完全飽和線	長所	短所
1	$\rho_d / \rho_w = C_a \ln \left(\sigma'_v - \sigma'_{v \min} \right) + \bar{\rho}$	パラメータの物理的意味が明確で ある。	液性限界や材料分離が生じる含水 比でも有意な膨潤圧が発生(膨潤圧 に下限が存在)
2	$\rho_d / \rho_w = C_\alpha \ln\left(\sigma'_v + \sigma'_{v\min}\right) + \overline{\rho}$	液性限界や材料分離が生じる含水 比では膨潤しない(膨潤量の上限を 設定可能)	パラメータの物理的意味が曖昧に なる

7) 試験結果

図 3.1.4-20 にベントナイト(クニゲル V1)の高含水比領域(含水比 46.7%)の一次元排気圧縮 試験結果を示す。図には CO₂パージを行った場合と CO₂パージを行わなかった場合の結果を 併せて示している。圧縮速度は 0.15mm/min であり、CO₂パージを行わなかった場合につい ては圧縮速度を 0.007mm/min とした場合も示している。

図から、CO₂パージがない場合でも、圧縮試験装置を高精度化することにより、これまで に実施した含水比の上限が35%であったのに対して、約45%程度という高含水比であっても、 ある程度の精度で一次元排気圧縮試験が実施可能であることが分かる。さらに、CO₂パージ をすることによって滑らかな等含水比線が得られ、等含水比線と飽和点が共に左側(低応力 側)にシフトしていることが分かる。CO₂パージを行った場合で圧縮速度は0.15mm/minの 結果は、CO₂パージを行わなかった場合で圧縮速度が 0.007mm/min の場合と同程度であっ た。このことから、CO2パージによって供試体内にトラップされた CO2が速やかに間隙水に 溶け込んで、過剰空隙圧の発生を抑制していることが推察された。この際に得られた飽和点 は、図 3.1.4-16 に示しベントナイト(クニゲル V1)の荷重制御膨潤量試験結果から得られる 完全飽和線、

$$\rho_d / \rho_w = C_a \ln(\sigma_v - 0.04) + \overline{\rho} \qquad (\vec{\mathfrak{R}} \ 3.1-21)$$

とも整合する結果となった。なお、CO₂パージによる間隙水の pH の低下が膨潤性能に及 ぼす影響については別途検討する必要がある。

図 3.1.4-20 高含水比領域の一次元排気圧縮試験結果に対する CO²パージの影響 (ベントナイト: クニゲル V1)

図 3.1.4・21 には、ベントナイト(クニゲル V1)、Ca 型化ベントナイト(Ca 型化クニゲル V1)、 Na モンモリロナイト(クニピア F)の結果を示す。図から、高含水比における飽和点は、従来 の完全飽和線から乖離しており、この点を通過するように修正完全飽和線のパラメータ*σ_{min}* の値を決定すると表 3.1.4・7 のようになる。表には、従来の完全飽和線にも用いられてきた パラメータも示している。

従来の、ベントナイト(クニゲル V1)と Ca 型化ベントナイト(Ca 型化クニゲル V1)の完全 飽和線は一致していたが、新しいパラメータの違いによって高含水比領域においては両者が 異なるという結果となった。Ca型化ベントナイトは乾燥密度 1.6Mg/m³以上の高密度の場合、 膨潤圧が Na 型ベントナイトに比べ大きくなるが、膨潤量は小さいという特徴がある。これ は、Ca 型化ベントナイトは密度変化による膨潤性能の変化量が大きいことを意味しており、 Ca型化ベントナイトの Caの値が Na型ベントナイトに比べ大きいことを示唆している。

さらに、Morodome.S[7]によれば、Ca型化ベントナイトはNa型ベントナイトに比べて吸 着水能が高い。そのため、Na型ベントナイトとCa型化ベントナイトで同じ含水比で比較す ると、一次元排気圧縮時の挙動に対してCa型化ベントナイトの方が自由水が少なく、吸着 水が多い可能性が高い。吸着水は非常にゆっくりと圧縮しなければ移動しないと考えられる ため、従来の一次元排気圧縮方法では、間隙水は移動せずに過剰間隙水圧が発現されている 可能性も否めない。

CO₂パージという新たな一次元排気圧縮の方法の有効性に鑑みて、Ca型化モンモリロナイトや Ca型化ベントナイトの CO₂パージ有りの一次元排気圧縮試験を行い、過剰間隙水圧の影響を除去した完全飽和線を取得して、これまでに取得した完全飽和線の妥当性を確認することも必要である。

図 3.1.4-21 高含水比領域の一次元排気圧縮試験結果(CO₂パージあり)

表 3.1.4-7 修正完全飽和線のパラメータ

材料 試験条件	ベントナイト (クニゲル V1)	Ca 型化クニゲル V1 (Ca クニゲル V1)	Na 型門ンモリロ ライト (クニピア F)
σ _{min}	0.04	0.24	0.50
Cα (常用対数)	0.36	0.36	0.36
ρ	1.45	1.45	1.35

- (2) 膨潤挙動取得試験(荷重制御膨潤量試験)
 - 1) これまでの成果

本検討では、ベントナイトの膨潤を弾塑性力学の観点から、「ベントナイトは、吸水するだ

- けで応力履歴を忘れてしまう弾塑性材料」と見なし、この概念を試験によって検証してきた。 試験手順は次の通りである。
 - ① クニピア F とケイ砂及びアナルサイムを所定の重量比で混合したものを準備する。
 - ② 各試料を締固めモールドにセットし、乾燥密度 1.6Mg/m³になるように締固める。
 - 体積一定条件で膨潤圧試験を行う。
 - ④ 平衡膨潤圧に達したことを確認したら、0.1、0.2、0.5、1.0MPa 程度の荷重一定条件 で膨潤量試験を行う。
 - ⑤ 上記の試験ケースの内、0.2MPaのケースに関しては、平衡状態に達したことが確認 されたら 0.1MPa に上載圧力を低下させる。

この試験のメリットは、様々なモンモリロナイト含有率の膨潤線を同時並行で取得できる 点である。なお、モンモリロナイト含有率などの配合が変化することで、見かけの土粒子密 度が変化するため、乾燥密度を 1.6Mg/m³ にそろえて試験した場合、その乾燥密度に相当す る間隙比が若干変化することになる。

これまでに実施した試験ケースを表 3.1.4-8 にまとめて示す。これらの試験から得られた 平衡時の膨潤圧と間隙比が、各材料を用いて実施された前述の一次元排気圧縮試験から得ら れる完全飽和線に到達するかどうかを判断することで、ベントナイト系人工バリア材料が、 膨潤によって応力履歴を忘れ、正規化するという概念の確からしさを示すことができる。

年度	材料	初期乾 燥密度 Mg/m ³	モンモリロナイト 含有率 wt%	試験ケース
H22	ケイ砂含有 Na 型モンモリロナイト (人工ベントナイト)	1.6	30,59,100	各1セット
	クニゲル V1(天然ベントナイト)		59	1セット
H23	変質前人工ベントナイト	1.6	20	1セット
	MX80(天然ベントナイト)		天然鉱物	1セット
H24	MX80(天然ベントナイト)	1.6	天然鉱物	0.1MPa、0.25 MPa、1.5 MPa
H25	変質後ベントナイト(変質率:0.5)	1.6	29.5	0.1MPa、0.2⇒0.1MPa、0.5MPa、1.0 MPa
H26	変質前人工ベントナイト	1.6	20,40,60,80	0.1MPa

表 3.1.4-8 既往の荷重制御膨潤量試験数量

※1 セットにつき、1.5、1.0、0.5、0.25、0.1MPaの死荷重を付与

図 3.1.4・22 に、試験結果として膨潤量の経時変化を示す。図から、上載圧力が一定の場合 はモンモリロナイト含有率がほぼ同じである変質後の人工ベントナイト(モンモリロナイト 含有率 29.5%)と平成 22 年度に実施した人工ベントナイト(モンモリロナイト含有率 30%) は同等の挙動を示している。このことから、二次鉱物が膨潤挙動に及ぼす影響は小さく、膨 潤挙動はモンモリロナイト含有率が支配的であることが分かった。

図 3.1.4・22 の結果の内、変質後人工ベントナイト、ベントナイト(クニゲル V1)、人工ベントナイト(人工クニゲル V1)、Na 型モンモリロナイト(クニピア F)の結果を e-logP 平面に示すと図 3.1.4・23 のようになる。図に示す通り、モンモリロナイト含有率が同等なクニゲル V1 と人工ベントナイト(モンモリロナイト含有率 59%)では大きな相違がないことが分かった。

また、モンモリロナイト含有率が小さいほど、荷重制御膨潤量試験の平衡値と完全飽和線と の乖離が激しいことが分かった。

図 3.1.4-22 モンモリロナイト含有率毎の膨潤量試験結果

図 3.1.4-23 e-logP 平面における膨潤量試験結果

これまでに実施した試験結果をまとめると図 3.1.4-24 になる。図 3.1.4-24 では、各モン モリロナイト含有率のベントナイトの平衡膨潤量を e-logP 平面に示している。この各モンモ リロナイト含有率のベントナイトの平衡膨潤量から算出された間隙比 *e* を連ねた線は通常の 地盤材料であれば膨潤線に相当する。しかしながら、図から、高モンモリロナイト含有率の 材料ほど膨潤線は完全飽和線まで至っており、完全飽和線が正規圧密曲線と一致するという 実験事実に照らせば、モンモリロナイトは膨潤によって塑性化すると解釈できる。

さらに、モンモリロナイト含有率が低下すると平衡膨潤量は完全飽和線から乖離する傾向 がある。その大小関係は、随伴鉱物の土粒子密度の大きさに依存し、微粉砕ケイ砂のように 土粒子密度がモンモリロナイトと同程度の随伴鉱物の場合、平衡膨潤量は完全飽和線よりも 大きくなり、アナルサイムのように、土粒子密度がモンモリロナイトよりも小さい場合、平 衡膨潤量は完全飽和線よりも小さくなる。これは、モンモリロナイトの膨潤に対して、非膨 潤性随伴鉱物の土骨格構造の応力履歴が影響しているためと考えられる。

図 3.1.4-24 e-logP 平面における膨潤量試験結果と完全飽和線

これまでの試験結果から、

- 高モンモリロナイト含有率の材料ほど膨潤線は完全飽和線まで至っており、モンモリ ロナイトは膨潤によって塑性化すると解釈できる。
- 低応力レベルでは、モンモリロナイト含有率が低下すると平衡膨潤量は完全飽和線から小さく、逆にモンモリロナイト含有率が高いと平衡膨潤量は完全飽和線から大きくなる傾向がある。
- ・ 微粉砕ケイ砂のように土粒子密度がモンモリロナイトと同程度の随伴鉱物の場合、平 ・ 衡膨潤量は完全飽和線よりも大きくなり、アナルサイムのように、土粒子密度がモン モリロナイトよりも小さい場合、平衡膨潤量は完全飽和線よりも小さくなる。

という傾向が分かったため、モンモリロナイトの膨潤に対して、非膨潤性随伴鉱物の土骨格 構造の応力履歴が影響しているとの推論が得られた。完全飽和線は、粉体状態から飽和まで 単調圧縮した場合の応力と乾燥密度(間隙比)の関係であるため、完全飽和線上では正規状 態と考えられる。ただし、モンモリロナイト含有率が小さくて、随伴鉱物の土粒子密度が大 きい場合と随伴鉱物の土粒子密度が小さい場合を比較すると、後者の方が土粒子径が大きい ために骨格構造が形成されやすい。このため、随伴鉱物の土粒子密度の大きさと含有率によって完全飽和線と平衡膨潤量の関係が変化するものと考えられる(図 3.1.4-25 参照)。

図 3.1.4-25 随伴鉱物の土骨格構造と膨潤性鉱物の分離のイメージ

随伴鉱物の骨格構造がモンモリロナイトの膨潤時に及ぼす影響としては、随伴鉱物とモン モリロナイトの分離や随伴鉱物の骨格構造によるモンモリロナイトの膨潤の阻害などが考え られる。そこで、先ず平成 26 年度の検討では、表 3.1.4-8 に示すような条件で、膨潤時の随 伴鉱物とモンモリロナイトの分離の影響について下記の手法で調べた。表 3.1.4-8 に示した 人工ベントナイトについて、荷重制御膨潤量試験を行い、試験前後にメチレンブルー吸着量 試験を実施する。モンモリロナイト含有率の均一性の変化を図 3.1.4-26 に示す方法で取得す る。手順を以下に列挙する。

- ① 人工ベントナイトを乾燥密度 1.6Mg/m³に締固めた供試体を図 3.1.4-27 に示すスラ イサーでスライスする。
- ② ①で得られたスライスした各供試体に対してメチレンブルー吸着量試験を行い、モン モリロナイト含有率の均一性を確認する。
- ③ ①と同様に作成した供試体を死荷重 0.1MPa とした荷重制御膨潤量試験に供し、定常 状態に達したら、②と同様にスライスする。
- ④ ③で得られたスライスした各供試体に対してメチレンブルー吸着量試験を行い、モン モリロナイト含有率の均一性が変化していないかどうかを確認する。

図 3.1.4-26 試験後のモンモリロナイト含有率の計測方法

図 3.1.4-27 解体用スライサー

これらの結果を図示すると図 3.1.4-28 のようになる。試験前の供試体では、供試体上下面 近傍の乾燥密度が小さいものの、モンモリロナイト含有率は概ね均一であることが分かる。 これは、モンモリロナイト含有率が質量割合であるため、バルクの乾燥密度に無関係に鉱物 の質量割合のみで決まるためである。

一方、膨潤量試験後では、モンモリロナイト含有率 20wt%のケースでは、密度分布に大き な変化はなく、40wt%になると給水側のみが乾燥密度が小さく、モンモリロナイト含有率が 高い 60wt%や 80wt%では、膨潤によって全体的に乾燥密度が低下しながらも、給水側の方が 排水側よりも乾燥密度の低下割合が大きい傾向を示している。

モンモリロナイト含有率は、膨潤前後の乾燥密度の変化に比べて、ほとんど変化しない結 果となった。このことは、モンモリロナイトの膨潤に伴って随伴鉱物も一体となって移動し ていることを意味している。言い換えれば、随伴鉱物が骨格構造を有している場合、モンモ リロナイトの膨潤を妨げる要因になっている可能性がある。このために、完全飽和線(正規 圧密線)と膨潤線が、図 3.1.4-29 に示すようにモンモリロナイト含有率に応じてズレると考 えることが自然である。この膨潤線と完全飽和線はクニゲル V1 程度のモンモリロナイト含 有率ではほぼ一致していることから、両者のズレは、モンモリロナイト含有率に対して線形 ではなく、非線形であることが予想される。すなわち、

$\kappa = C_{\alpha} \cdot f(\alpha_{mnt})$

としてモデル化できる。ただし、 κ は膨潤指数、 $f(\alpha_{mnt})$ はモンモリロナイト含有率に よる膨潤指数への影響の関数である。この $f(\alpha_{mnt})$ の具体的な関数は、これまでに実施して きた完全飽和線と荷重制御膨潤量試験の結果をまとめ直すことによって取得することが可能 となるが、さらなるデータの蓄積が必要である。

一般の地盤材料において、正規圧密曲線と膨潤線のズレは非可逆比というパラメータで表 される。非可逆比は、図 3.1.4-30 に示すように、圧縮指数と膨潤指数の比の関数で表され、 0であれば圧縮指数と膨潤指数は一致し、1であれば、膨潤指数が0を意味する。ただし、 一般的な地盤材料では、非可逆比が0や1となることはなく、概ね0.4~0.8 程度である。

図 3.1.4-28 膨潤量試験前後の供試体の乾燥密度とモンモリロナイト含有率の分布

図 3.1.4-29 随伴鉱物の影響のイメージ

図 3.1.4-30 地盤材料の非可逆比(飯塚[8]に加筆)

図 3.1.4-31 に非可逆比を用いた随伴鉱物の影響のモデル化のイメージを示す。本検討では、 完全飽和線が正規圧密曲線と一致するという実験事実に基づいて、非可逆比を完全飽和線の 勾配と飽和度 100%の膨潤線の勾配の比として定義している。

図 3.1.4-31 非可逆比を用いた随伴鉱物の影響のモデル化のイメージ

2) 平成 27 年度の試験のねらい

これまでの検討を受けて、平成27年度では、随伴鉱物の骨格構造がモンモリロナイトの膨 潤に及ぼす影響を調べる目的で、表3.1.4-9に示す人工ベントナイトについて荷重制御膨潤 量試験を行った。モンモリロナイト含有率の違いによる膨潤挙動の違いを計測する。図 3.1.4-32に試験結果のイメージを示す。

表 3.1.4-9 荷重制御膨潤量試験数量

モンモリロナイト 含有率 wt%	微粉砕ケイ砂 含有率 wt%	含水比 %	荷重条件
80	20	15, 25	各含水比で飽和点が得られるまで 載英し 除菇時の勾配が得られるよ
20	80	15, 25	戦何し、际何時の勾配が得られるように除荷する

図 3.1.4-32 随伴鉱物による骨格構造の形成とモンモリロナイトの膨潤のイメージ

この試験から得られるパラメータは、完全飽和線の勾配 C α、等含水比線の勾配 Cw、膨潤 時の勾配 C κ である。これらをまとめると表 3.1.4-10 に示めすような成果が得られる。この 結果を様々なモンモリロナイト含有率で実施すれば、膨潤指数とモンモリロナイト含有率の 関係(応力履歴の亡失とモンモリロナイト含有率の関係)が得られる。これらの結果を非可 逆比としてまとめて示すと図 3.1.4-33 のようになる。平成 27 年度は、モンモリロナイト含 有率が 20wt%と 80wt%の場合の結果が得られるため、それぞれのモンモリロナイト含有率 での非可逆比を得られる。

パラメータ	モンモリロナイト含有率 wt%		備考	
	80	20		
$C \alpha$	0	0	既往の研究から、産地が同じで あれば同じ勾配となる	
Cw	\bigtriangleup	▼	既往の研究から、モンモリロナ	
Ск	\diamond		異なることが予想される	

表 3.1.4-10 荷重制御膨潤量試験結果イメージ

図 3.1.4-33 随伴鉱物の影響のモデル化のイメージ

3) 試験結果

図 3.1.4-34 に一次元排気圧縮~吸水除荷(膨潤)試験時の乾燥密度-logP 関係を示す。各 試験ケースともに飽和乾燥密度付近まで一次元排気圧縮した後に段階的に吸水除荷をさせた。 吸水除荷は2段階として、各段階で荷重一定とした。

図から、モンモリロナイト含有率 80%のケースの除荷時の勾配 C κ は、0.353 と 0.356 で あり、完全飽和線の勾配 C α 0.36 (自然対数軸で 0.156) とほぼ同等であるのに対して、モン モリロナイト含有率が 20%のケースでは、除荷時の勾配 C κ が 0.184 と 0.095 であった。こ の結果から、吸水除荷(膨潤)時の経路がモンモリロナイト含有率の影響を受けることが分 かった。なお、図 3.1.4-35 に示す段階除荷時の膨潤量の経時変化から、各ケース共に、概ね 定常状態に至っていることを確認している。これらの結果をまとめると表 3.1.4-11 のように なる。表には、一次元排気圧縮中の等含水比線の勾配 Cw も示している。表に示すように、 モンモリロナイト含有率に依らず、完全飽和線の勾配 Caは 0.36 程度と見なせる。また、等 含水比線の勾配 Cw と膨潤線の勾配 C κ はモンモリロナイト含有率毎に概ね一定と見なせる ことが分かる。

図 3.1.4-36 には、C κ とモンモリロナイト含有率の関係を示す。図に示すように、モンモ リロナイト含有率がある程度の大きさになると、完全飽和線の勾配 C α である 0.36 に漸近す ることが分かる。本試験結果のみでは関数形を決定することができないが、クニゲル V1 の モンモリロナイト含有率 59wt%であっても、正規圧密曲線と膨潤線の勾配が概ね同等である という実験事実から推測すると、C κ は、少なくともモンモリロナイト含有率 60wt%付近ま では C α と同等であり、それ以下になると急激に小さくなり、最終的には随伴鉱物の C κ に 漸近するものと考えられる。

図 3.1.4·34 一次元排気圧縮~吸水除荷(膨潤)試験時の乾燥密度-logP関係

図 3.1.4-35 段階除荷時の膨潤量の経時変化

パラメータ	含水比	モンモリロナイト含有率 wt%		備考	
	%	80	20		
今今約和約の方町で。	15	0.36	0.36	既往の研究から、産地が同じで	
元主砲和脉の勾配しな	25	0.36	0.36	あれば同じ勾配となる	
笙今水比線の勾配 Cw	15	0.853	0.495	照分の研究から エンエリョナ	
寺古小山旅の均比しw	25	0.616	0.495	成任の研究から、モンモリロ)	
時期始のの	15	0.353	0.184	1 ト 百 有 平 が 共 な いは、 勾 能 か 思 かることが 予相 さわる	
膨偶廠の C κ	25	0.356	0.095	我なることが予想される	

表 3.1.4-11 一次元排気圧縮~吸水除荷(膨潤)試験結果の一覧

図 3.1.4-36 C κ とモンモリロナイト含有率の関係

図 3.1.4-37 には、非可逆比Λとモンモリロナイト含有率の関係を示す。なお、この非可逆 比は、通常の地盤工学では、正規圧密曲線の勾配(圧縮指数)Ccと膨潤線の勾配(膨潤指数) Csを用いて、

$$\Lambda = 1 - \frac{C_s}{C_c}$$

で表されるが、ここでは、乾燥密度 $\sim \log P$ 平面における完全飽和線の勾配 $C \alpha$ と膨潤線の 勾配 $C \kappa$ を用いて、

$$\Lambda = 1 - \frac{C_{\kappa}}{C_{\alpha}}$$

で定義していることに注意を要する。

図から、非可逆比Λはモンモリロナイト含有率 80%のケースでは、急激に小さくなること が分かる。これを、図 3.1.4-36 と同様に、近似線を描くと、クニゲル V1 のモンモリロナイ ト含有率である 50~60wt%付近で非可逆比Λが急激に小さくなり、概ね 0.01 程度まで小さ くなるという結果となった。

図 3.1.4-37 非可逆比Λとモンモリロナイト含有率の関係

図 3.1.4-38 には、限界状態理論における非可逆比Λの意味を示している。図には、Cam-Clay モデルの降伏曲面を示している。降伏曲面の内側は弾性域であり、弾塑性状態では応力点は降 伏曲面上にある。図に示すように、先行圧密圧力、ダイレイタンシー係数などは一定として、 非可逆比Λのみを変化させると、降伏曲面の大きさが変化することが分かる。非可逆比Λが大 きくなると弾性域が小さくなり、非可逆比Λが小さくなると弾性域が大きくなっている。

このことを本試験結果に当てはめると、モンモリロナイト含有率が高いほど非可逆比Aが小 さくなるため、弾性域が大きくなり、モンモリロナイト含有率が低いほど非可逆比Aが大きく なるため、弾性域が小さくなる。なお、図 3.1.4-38の本検討は、先行圧密圧力、ダイレイタン シー係数などは一定として、非可逆比Aのみを変化させた場合の結果であり、一般的には、弾 性域が大きいほど、材料の剛性や強度は増すと考えられるため、モンモリロナイト含有率が大 きくなるほど弾性域が大きくなる(剛性や強度が小さくなる)という結果は実験事実と合致し ない。このことから、非可逆比Aが変化する際には先行圧密圧力や限界応力比、若しくはダイ レイタンシー係数なども変化するものと考えられる。

これらの結果は、モンモリロナイト含有率によってベントナイトの降伏曲面の形状や弾性域の大きさが変化することを示唆しており、今後、データの拡充が必要である。

図 3.1.4-38 限界状態理論における非可逆比Λの意味

(3) モンモリロナイトのせん断挙動

本検討では、これまでベントナイト系人工バリア材料の力学挙動として、膨潤挙動を中心に 取得してきた。これは、弾塑性力学においては相似(圧密)変形に類するものであり、得られ た結果は、弾塑性力学に立脚した構成モデルにおいては圧密項に反映される情報である。弾塑 性力学に立脚した構成モデルにおいけるせん断変形に反映すべき情報は、せん断試験から得ら れるが、ベントナイト系人工バリア材料のせん断挙動はあまり取得されておらず、力学モデル の構築のためにはせん断挙動の取得が求められてきた。

- 1) 膨潤圧がモンモリロナイトのせん断強度に及ぼす影響
 - a. これまでの試験結果

本検討では、せん断挙動のモデル化に向けた第一歩として、せん断挙動に膨潤圧が及ぼ す影響について調べた。具体的には、鉱物組成、間隙液組成、密度、飽和度が同じで膨潤 圧が異なるモンモリロナイト供試体のせん断強度を取得して、膨潤圧がせん断強度に及ぼ す影響を取得するとともに、膨潤圧を有効応力として取り扱うべきか、間隙水圧として取 り扱うべきかに関する議論に資する情報を取得した。

図 3.1.4-39 には、粉砕方法が異なるモンモリロナイトの膨潤圧の経時変化を示している。 これらの材料は、粉砕方法が異なるだけで、鉱物組成、間隙液組成、密度、飽和度がほぼ 同じである。図から、鉱物組成、間隙液組成、密度、飽和度がほぼ同じであっても、粉砕方 法の違いにより、膨潤圧が倍半分で異なることが分かる。よって、この粉砕方法が異なる 材料のせん断挙動を調べることによって、膨潤圧がせん断挙動に及ぼす影響を調べること が可能となる。なお、図 3.1.4-40 に示す XRD の回折パターンから、この粉砕の過程で、 回折パターンのピークが2~3層膨潤から、1~2層膨潤状態にシフトしている。さらに、 全体的に回折パターンがブロードである。これは、粉砕過程で、シート状のモンモリロナ イトの引き裂かれるように粉砕されたのではなく、図 3.1.4-41 に示すような二次粒子が劈 開して細かな二次粒子になったために、比表面積が増えて自由水が吸着水となったためで あると考えられる。このことは、別途実施された AFM によっても確認されている。

よって、力学的には、この粉砕過程によって材料は何ら変化しておらず、膨潤圧だけが 異なる材料と見なしてよい。さらに、粉砕作業に起因するメカノケミカル反応に関しても 考慮が必要であるとの指摘があるが、メカノケミカル反応が比表面積の増加に伴う化学的 な活性の増加だとすれば、粉砕中に上記のような二次粒子の劈開しか発生していないとす ると、メカノケミカル反応は、不活性な層間が粉砕という物理的な力によって活性化され、 水が浸透できる層間が増えることであると言える。これは、まさに膨潤圧だけが変わって いることに他ならず、膨潤中には、モンモリロナイトの層間の陽イオンに水分子が集まる だけで、化学的な変質が生じているわけではないため、セメント系材料のような材料の比 表面積の増加に伴う水和反応の促進などとは意味合いが異なるものと考えられる。

図 3.1.4-39 微粉砕モンモリロナイトの膨潤性能変化

図 3.1.4-40 XRD によるモンモリロナイトの粉砕によるアスペクト比の変化の確認結果

図 3.1.4-41 モンモリロナイトの粉砕によるアスペクト比の変化イメージ

図 3.1.4·42 にせん断試験のイメージを示す。本検討では、せん断試験として、等体積一 面せん断試験を実施する。これは、せん断前の膨潤圧試験が容易であること、せん断中の 体積拘束が容易であることなどのメリットがあるためである。図 3.1.4·42 に示すようなせ ん断箱を図 3.1.4·43 に示す一面せん断試験機にセットしてせん断を行った。図 3.1.4·44 に示すように、下せん断箱には凹凸をつけたポーラスメタルを設置し、凸部を連ねた位置 にせん断面が発生するようにした。表 3.1.4·12 に試験ケースの一覧を示す。

図 3.1.4-42 せん断試験イメージ図

図 3.1.4-43 一面せん断試験機の全景

図 3.1.4-44 下せん断箱の凹凸を施したポーラスメタル

表 3.1.4-12 せん断試験ケース

鉱物	ミル	間隙液組成	乾燥密度 (Mg/m ³)	備考
	0回		1.2	
モンモリロナイト (クニピア F) カオリンナイト	4回		1.2	
	ミル	蒸留水	1.2	膨潤圧の影響
	0回		1.2	
	4回		1.2	

試験では、膨潤圧のみが異なるモンモリロナイトのせん断試験に加え、鉱物の微粉砕が そのせん断強度に及ぼす影響を調べるために、鉱物組成、間隙液組成、密度、飽和度が同 じ非膨潤性材料であるカオリンナイト供試体のせん断試験のケースも実施した。微粉砕の 有無が強度に影響しないという結果が得られれば、メカノケミカルによるせん断強度への 影響は小さいと言える。

図 3.1.4-45 にモンモリロナイトとカオリンの等体積一面せん断試験中の応力経路を示 す。図から、微粉砕したカオリンは、微粉砕したモンモリロナイトに比べ、圧縮し難く、 乾燥密度 1.2Mg/m³に一次元排気圧縮するのに 2.13MPa の鉛直応力が必要であった。これ に対して、未粉砕カオリンでは、未粉砕モンモリロナイトに比べ乾燥密度 1.2Mg/m³に一 次元排気圧縮するのに必要な鉛直応力は 0.23MPa であり、未粉砕のモンモリロナイトに比べて小さな鉛直応力であった。

地盤材料のような粉体材料の強度は、一般的に有効拘束圧に依存する。モンモリロナイ トもカオリンの場合、初期鉛直応力が大きい微粉砕試料の方が、せん断強度が増加した。 しかしながら、微視的に考えると、モンモリロナイトの場合、この有効拘束圧の増加分に はモンモリロナイトの膨潤圧と鉱物間の接触応力である有効応力が含まれるものと考えら れるが、カオリンの場合には、拘束圧の増加は、有効応力の増加分のみであると考えられ る。しかしながら、モンモリロナイトの有効拘束圧の増加のうち、モンモリロナイトの膨 潤圧と鉱物間の接触応力である有効応力を分離することが難しいた。そこで、図 3.1.4-45 を各試験の初期鉛直応力で無次元化することによって、初期鉛直応力の違いを排除して強 度の相違を議論した。本試験では、せん断直前の乾燥密度も 1.2Mg/m³で揃えてせん断試 験を行っているため、強度の増減に影響を及ぼす因子は膨潤圧の大きさのみである。図 3.1.4-46 に初期鉛直応力で無次元化したせん断試験中のストレスパスを示す。図より、カ オリンの場合では、粉砕の有無がピーク強度や残留強度に及ぼす影響は小さいと言えるの に対して、モンモリロナイトの場合では、微粉砕することでピーク強度と残留強度が増加 していることが分かる。このことからも、膨潤圧が強度増加にある程度寄与していると言 える。

図 3.1.4-45 カオリンの等体積一面せん断試験中のストレスパス

図 3.1.4-46 初期鉛直応力で無次元化したせん断試験中のストレスパス

- 2) モンモリロナイトの非排水せん断挙動(一次元排気圧縮~等体積一面せん断試験)
 - a. これまでの試験結果

一般的に自然体積粘土の力学挙動は、限界状態理論に基づいて記述されることが多く、 粘土の限界状態線は、その力学挙動を記述する上で重要な情報である。また、限界状態理 論によれば、せん断試験から得られる限界状態線は、e-logP 平面では正規圧密曲線とほぼ 平行に存在する。仮にベントナイト系人工バリア材料のせん断試験から得られる限界状態 線が正規圧密曲線と並行に存在する結果が得られれば、ベントナイト系人工バリア材料の せん断挙動のモデル化のために有用な情報である。そこで、本検討では、等体積一面せん 断試験を実施し限界状態線と、正規圧密曲線と等価であることが示されている完全飽和線 の関係を以下の手順で調べた。

試験手順は以下の通りである。

- 表 3.1.4-13 に示した所定の含水比に調整した人工クニゲル V1 を飽和点になるまで一次元排気圧縮する。
- ② ①の工程で作製した飽和供試体を除荷することなく、そのまま一面せん断に供する。
- ③ せん断中は体積一定条件を課し、鉛直応力と水平応力を計測する。

このようにすれば、一連の手順で完全飽和線と限界状態線が得られ、両者を e-logP 平面 で整理することで、両者の関係を明確にすることができる。ただし、この際、既往の研究 から Ko 値は 1 を仮定して整理する。表 3.1.4-13 に試験条件を、図 3.1.4-47 に得られる せん断試験結果のイメージを示す。

表 3.1.4-13 等体積一面せん断試験ケース

鉱物	間隙液 組成	初期 含水比 (%)	飽和 乾燥密度 (Mg/m ³)	先行圧密圧力
ト <u> た^ッル 371</u>	苯四水	15	1.938	波二地层口婉温和态而很
入上7二7 // 1	※留水	25	1.623	一仍兀仍风江袖迥柱で取得

図 3.1.4-47 せん断試験結果のイメージ

表 3.1.4-14 に供試体諸元を示す。本試験では、一般的な等体積一面せん断試験装置を用いたため、表 3.1.4-13 に示した含水比 15%で飽和乾燥密度まで圧縮するためには荷重が足りなかった。そのため、含水比 18%の飽和乾燥密度である 1.8Mg/m³程度を高密度ケースとして試験を実施した。

		No.1	No.2
土粒子の密度	Mg/m^3	2.7	768
下部ポーラスメタル溝体積	cm ³	1.3	819
直径	mm	60	60
高さ	mm	5.0	5.0
供試体体積	cm^3	15.457	15.457
湿潤質量	g	31.61	33.58
含水比	%	24.97	18.34
乾燥質量	g	25.30	28.38
湿潤密度	Mg/m^3	2.045	2.173
乾燥密度	Mg/m^3	1.637	1.836
間隙比		0.691	0.508
飽和度	%	100.0	100.0

表 3.1.4-14 供試体諸元

図 3.1.4-48 に一次元排気圧縮過程とせん断過程の乾燥密度と鉛直応力の関係、さらに間 隙比と鉛直応力の関係を併せて示す。図に示すように、せん断終了時の鉛直応力を乾燥密 度と鉛直応力の平面にプロットすると、その応力点を連ねた限界状態線は完全飽和線と平 行関係にあることが分かる。このため、間隙比と鉛直応力の平面においては、完全飽和線 と限界状態線が平行関係にならない。

図 3.1.4-48 一次元排気圧縮過程とせん断過程の乾燥密度と鉛直応力の関係と 間隙比と鉛直応力の関係

限界状態理論によれば[9]、ある応力比 $\eta(=q/p')$ で圧密された粘土の正規圧密曲線と限界状態線の間隔は、次式で与えられる。

$$\Delta e = \left(\lambda - \kappa\right) \left(1 - \frac{\eta}{M}\right) \qquad (\vec{\pi} \ 3.1-22)$$

ただし、 λ は圧縮指数(=0.434*Cc*)、 κ は膨潤指数(=0.434*Cs*)、 \mathbf{M} は限界状態応力比である。このため、 $e \sim \ln p'$ 平面において限界状態線と正規圧密曲線が応力に依らず平行関係にあることが分かる。

一方、図 3.1.4-48 に示したように、乾燥密度 ρ_{l} ~hp'平面で限界状態線と完全飽和線が 平行関係にあると仮定すると、e~hp'平面において限界状態線と正規圧密曲線は平行とは ならない。ここで、飽和したベントナイトの静止土圧係数 Ko が 1 であったという実験事 実[10]に基づいて、ベントナイトが等方材料であると仮定すれば、 $\eta(=0/p')=0$ であるか ら、(式 3.1-22) は、

$$\Delta e = \lambda - \kappa$$
 (式 3.1-23)
となる。さらに、図 3.1.4-48 に示した $e \sim \ln p'$ 関係のように、低間隙比になるほど限界状態
線と正規圧密曲線の間隔が広がるためには、低間隙比(高密度)になるほど、 $\lambda \geq \kappa$ の差が
大きくなる必要がある。

ここで、限界状態理論に基づけは、(式 3.1-23)は、

$$\Delta e = \lambda - \kappa = (1 + e_0) MD \qquad (\vec{\mathfrak{T}} \ 3.1 - 24)$$

と書き直せるので、限界状態応力比 M やダイレイタンシー係数 D が間隙比(密度)に依存 するという取扱いも考えられる。

図 3.1.4-49 には、せん断変位とせん断応力の関係を示す。高密度のケースはピーク強度 までは線形的に応力が増加し、ピーク強度後に残留状態に漸近する傾向を示しているのに 対して、低密度のケースはピーク強度までの応力増加も緩やかであり、残留強度とピーク 強度の差異も小さい。これは、自然堆積粘土のせん断挙動に照らして考えれば、高密度の ケースが重い過圧密で低密度のケースが軽い過圧密状態であるようにも見える。

図 3.1.4-50 には、ストレスパスを示す。両者のストレスパスを比較すると、形状が明確 に異なることが分かる。パスの立ち上がり方が異なることから、高密度のケースよりも低 密度のケースにおいて負のダイレイタンシーが顕著である可能性がある。このことは、前 述の e ~ ln p' 平面において限界状態線と正規圧密曲線は平行ではない理由として、限界状態 応力比 M やダイレイタンシー係数 D が間隙比 (密度) に依存するという考察と整合する。 今後、試験ケースを増やして、再現性の確認や議論の信頼性を高める必要がある。

図 3.1.4-49 せん断変位とせん断応力の関係

図 3.1.4-50 ストレスパス

b. 平成 27 年度の試験のねらい

これまでの検討で、ベントナイト系人工バリア材料のせん断挙動が、鉛直応力の大小で 応力経路が大きく異なることが分かった。有効応力経路の形状から、低密度供試体の場合、 せん断初期に負のダイレイタンシーが発生していることが予想されたが、それ以外にも拘 束圧と膨潤圧の大小関係によってせん断面付近に局所的な膨潤が発生し、せん断挙動が変 化した可能性もある(図 3.1.4-51)。そこで、表 3.1.4-15 に示すようなケースに対して一 面せん断を実施し、拘束圧と膨潤圧の大小関係によるせん断挙動の違いを調べる。

図 3.1.4-51 せん断試験中の供試体内の変化イメージ図

表 3.1.4-15 膨潤圧の影響評価試験ケース

鉱物	間隙液組成	初期 乾燥密度 (Mg/m ³)	拘束圧(上載 圧) (MPa)	備考
			0.5	完全的和線から推
クニゲル V1	蒸留水	1.6	1.0	定される膨潤圧
			2.0	1.45MPa

図 3.1.4-52 せん断試験成果のイメージ図

平成27年度の試験では、一次元排気圧縮後に拘束圧(上載圧)を付与するため、試験手順を以下ようにした。

- 表 3.1.4-13 に示した所定の含水比に調整した人工クーゲル V1 を飽和点になるまで 一次元排気圧縮する。
- ② 体積拘束した条件で所定の拘束圧を付与する。
- ③ 拘束圧一定条件で、給排水を許容した状態で体積拘束を解除する。
- ④ 圧密、若しくは膨潤挙動が収束したら一面せん断に供する。
- ⑤ せん断中は再び体積一定条件を課し、鉛直応力と水平応力(せん断応力)を計測 する。

c. 試験結果

図 3.1.4-53 にはせん断試験中の乾燥密度の経時変化を示す。図から、拘束圧が 2.0MPa の場合、膨潤(乾燥密度が低下)することなく、圧密(乾燥密度が増加)している。一方、 拘束圧が 1.0MPa と 0.5MPa の場合は膨潤(乾燥密度が低下)していることが分かる。こ のことから、本試験の場合、膨潤圧が 1.0~2.0MPa の間であることが分かった。完全飽和 線から推定されるクニゲル V1の膨潤圧は 1.45MPa であり、概ね整合する。ただし、供試 体とセルの界面の摩擦や凹凸をつけた底部多孔質板などの影響が含まれている可能性があ る。

図 3.1.4-53 せん断試験中の乾燥密度の経時変化

図 3.1.4-54 には、せん断中の応力ひずみ関係と有効応力経路を示す。なお、有効応力経路の鉛直応力は、せん断面に作用している値と考えられる供試体下面で計測されている値 を使用した。供試体下面(せん断面)に作用している垂直応力は供試体とせん断リングの 間の摩擦により、供試体上面に作用している垂直応力よりも小さくなる。

図より、応力ひずみ関係は軟化型を示し、せん断変位が1mm程度でピーク強度に達し、 その後、緩やかに残留強度に至っている。拘束圧が2.0MPaのケースでは、せん断前の圧 密過程で圧密挙動を示しており、応力状態は正規状態となっていると考えられるが、正規 状態であっても応力ひずみ関係が軟化型となっている。

有効応力経路では、拘束圧が 2.0MPa のケースでは、せん断初期に急勾配で立ち上がっ ており、平成 26 年度に実施した高密度ケース(拘束圧が大きなケース)と類似の形状を示 している。一方、せん断前の圧密過程で膨潤挙動を示した拘束圧が 0.5MPa のケースでは、 応力状態が過圧密状態となっていると考えられるため、せん断初期の立ち上がりが他のケ ースよりも直線的であり、ピーク強度から残留強度に至る挙動は重い過圧密土の挙動に類 似している。拘束圧が 1.0MPa のケースでは、両者の中間のような有効応力経路である。

図 3.1.4-55 には、応力履歴の違いによる有効応力経路の形状の違いを比較し易くするために、図 3.1.4-54 に示した有効応力経路を各拘束圧で正規化した有効応力経路を示す。図から、せん断初期の有効応力経路の立ち上がりの勾配は、拘束圧が低いほど急であることが分かる。このことは、過圧密状態の粘土を等体積せん断すると弾性的な挙動を示すために、せん断中拘束圧が変化しないが、正規圧密状態の粘土を等体積せん断するとせん断中にダイレイタンシーに伴う過剰間隙水圧の分だけ有効応力が低下する(有効応力経路は左に移動する)という、従来の粘土の非排水せん断挙動と合致した挙動がベントナイトであっても得られることを示唆している。

図 3.1.4-54 せん断中の応力ひずみ関係と有効応力経路

図 3.1.4-55 拘束圧で正規化した有効応力経路

図 3.1.4-56 には、ρd·logp 平面、及び e·logp 平面での全試験過程における応力経路を 示している。図から、平成 26 年度の低密度ケースは一次元排気圧縮後に応力を維持したま までせん断されているのに対して、高密度ケースは一次元排気圧縮後に応力が低下(図中 赤丸箇所)していることが分かる。これは、言い換えれば、平成 26 年度の低密度ケースは 正規圧密状態、高密度ケースは過圧密状態でせん断されていることになる。このことは、 平成 27 年度の試験結果から得られた、応力履歴による有効応力経路の変化とも整合して いる。図 3.1.4-51 で説明すれば、高密度ケースが過圧密供試体であり、低密度供試体が正 規圧密供試体に相当することになる。

ベントナイト系人工バリア材料であっても、正規圧密状態ではせん断時に過剰間隙水圧 が発生することが分かったが、ベントナイト系人工バリア材料の場合、過剰間隙水圧の発 生領域では浸透膨潤による局所的な密度低下も考えられる。一般的な過圧密粘土供試体に おける非排水せん断時の有効応力経路は、せん断応力が漸増して限界状態に至るが、ベン トナイト系人工バリア材料の場合、正規圧密状態であってもピーク強度を示す。さらに、 一般的な過圧密粘土供試体における非排水せん断時の有効応力経路は直線的に拘束圧軸に 対して垂直に増加するのが典型的であるが、本試験における過圧密供試体のせん断時の有 効応力経路は反り上がる傾向を示す。

これらの一般的な粘性土と異なる挙動の原因が、図 3.1.4-51 に示したような、せん断時 の間隙水のマイグレーションに伴う浸透膨潤による影響であるかどうかは、せん断試験後 の供試体の速やかな解体などを行い、含水比分布や密度分布を取得する必要がある。今後 の課題である。

さらに、図 3.1.4-56 に示した、ρd-logp 平面、及び e-logp 平面での全試験過程における 応力経路では、一次元排気圧縮終了時の応力が完全飽和線を越えている。これは、垂直応 力を供試体下面で評価していること、供試体の底面に凹凸があるためであると考えられる。

限界状態線は、平成25度の結果から規定しているが、平成26年度の結果も併せて、平 成27年度の結果もほぼ同じ限界状態線に至っている。このことから、ベントナイト系材料 の限界状態線は、応力履歴に依らず、間隙比と拘束圧の関係において平行にならず、乾燥 密度と間隙比の関係において平行と見なすことが妥当と考えられる。

これまでに試験結果に基づいてモデル化を進めてきた、ベントナイトの化学変質(溶解と二次鉱 物生成)を伴う力学挙動のモデルについて、平成 27 年度はモデルの基礎的な検討を実施した。完 全飽和線の低密度、低応力領域の試験データの取得によるモデルの更新、変質によりモンモリロ ナイトが減少したベントナイトの平衡膨潤状態が、正規圧密曲線と異なる点に対する非可逆比に よる整理及びベントナイトの限界状態線のモデル化について検討を実施し、現象を把握し、モデ ル化の方法についての方向性を見出すことが出来た。しかし、それぞれのモデルについての検討 で挙げたように、モデル化に向けて確認すべき挙動があるため、今後は試験等を通して信頼性を 向上させる必要がある。なお、緩衝材の化学変質では、ベントナイトが溶解して二次鉱物が生成 する際にセメンテーションが起こることが懸念される。この様な現実的に起こる現象も念頭にモ デル化を進めていくことも必要と考えられる。また、透水係数のモデルについても化学変質との 関連の点から検証を行い、信頼性を向上させる必要がある。以下に各検討のまとめを以下に示す。

(1) 完全飽和線

平成 26 年度に完全飽和線を高度化するために、新たに σ' vmin なるパラメータを導入した修正完全飽和線、

 $\rho_d / \rho_W = C_\alpha \ln \left(\sigma'_v \pm \sigma'_{v \min} \right) + \bar{\rho}_d$

を用いて、高含水比材料のベントナイト(クニゲル V1)、Ca 型ベントナイト(Ca 型化クニゲル V1)、モンモリロナイト(クニピア)の一次元排気圧縮試験を実施し、高度化の妥当性確認 と σ' vmin の取得を行った。その結果、完全飽和線は乾燥密度~logP 平面で直線とはならず、高 含水比領域では低乾燥密度側(高間隙比側)に折れ曲がることが示唆された。この実験事実を 表現するためには、上式の σ' vmin の符号は"-(マイナス)"であり、クニゲル V1、Ca 型化ク ニゲル V1、クニピアの σ' vmin が、それぞれ 0.04MPa、0.24MPa、0.50MPa となることが分か った。

さらに、高含水比材料のベントナイト系人工バリア材料の一次元排気圧縮試験は、従来方法 では間隙水が排気を阻害して妥当な飽和点を得られないため、新たに一次元排気圧縮前に試料 の間隙空気を CO₂に置換した方法を併用した。これにより、従来実施できなかった含水比 50% 程度の試料の一次元排気圧縮が可能となった。さらに、この CO₂パージは、従来法で、非常に ゆっくりと一次元排気圧縮することに相当することも示した。

この CO₂パージによって、間隙水の pH が低下する可能性もある為、間隙水組成の確認などを 実施する必要がある。

(2) 膨潤挙動

これまでの検討で、二次鉱物の種類が膨潤挙動に及ぼす影響は小さく、膨潤挙動はモンモリ ロナイト含有率が支配的であること、モンモリロナイトは膨潤によって塑性化することなどが 明らかとなっている。その一方で、モンモリロナイト含有率が同等なクニゲル V1 と人工ベン トナイト(モンモリロナイト含有率 59%)では大きな相違がないが、モンモリロナイト含有率 が小さいほど、荷重制御膨潤量試験の平衡値は完全飽和線よりも小さい値を示すことが分かった。さらに、モンモリロナイト含有率が高い場合でも、上載圧が小さく膨潤量が非常に大きい ケースでも、その平衡値は完全飽和線よりも大きい値を示すことが分かった。

このような完全飽和線と乖離する原因として、モンモリロナイトの膨潤に対して非膨潤性随 伴鉱物の土骨格構造の応力履歴(膨潤時の随伴鉱物とモンモリロナイトの分離)が影響してい るものと考え、平成 26 年度は膨潤時の随伴鉱物とモンモリロナイトの分離の影響を定量評価 した。しかしながら、モンモリロナイト含有率は、膨潤前後の乾燥密度の変化に比べて、ほと んど変化しないという結果となった。このことは、モンモリロナイトの膨潤に伴って随伴鉱物 も一体となって移動していることを意味している。

以上の結果から、平成 27 年度は、モンモリロナイト含有率が低下する程、完全飽和線(正規 圧密線)と膨潤線が乖離するものと考え、モンモリロナイト含有率と完全飽和線(正規圧密線) と膨潤線の乖離を定量評価した。完全飽和線(正規圧密線)と膨潤線の乖離の程度は非可逆比 Λ を用いた。この非可逆比は、完全飽和線の傾き C_{α} と膨潤線の傾き C_{κ} を用いて、 $\Lambda=1-C_{\kappa}/C_{\alpha}$ として定義して、モンモリロナイト含有率と非可逆比 Λ の関係を取得した。

試験の結果、非可逆比Λはモンモリロナイト含有率が大きくなると急激に小さくなることが 分かった。このことは、モンモリロナイト含有率によってベントナイトの降伏曲面の形状や弾 性域の大きさが変化することを示唆しており、今後、データの拡充が必要である。

(3) せん断挙動

ベントナイト系人工バリア材料のせん断挙動を取得すべく、等体積一面せん断を実施した。 平成26年度に実施した試験では、完全飽和線と限界状態線が乾燥密度ρα~logP平面で平行関 係にあることを確認すべく高密度供試体と低密度供試体で等体積一面せん断を実施した。この 際に、同じ材料であるのにも拘らず、有効応力経路が大きく異なる結果となった。

平成27年度は、この原因を有効応力経路の相違の原因を解明すべく、一次元排気圧縮で同じ 密度まで圧縮成型された供試体が、その後に圧密や膨潤などの異なった応力履歴を受けた場合 の等体積一面せん断時の有効応力経路を取得した。その結果、一次元排気圧縮後に圧密履歴を 受けた供試体は等体積一面せん断時の有効応力経路はせん断初期の立ち上がりの勾配は緩く、 膨潤履歴を受けた供試体は等体積一面せん断時の有効応力経路はせん断初期の立ち上がりの勾 配は急であるという結果となった。これは、一般的に粘土の非排水せん断挙動における正規状 態と過圧密状態の有効応力経路と整合している。ただし、一般の粘性土の非排水せん断挙動と 異なる点も存在するため、この原因がせん断時の間隙水のマイグレーションに伴う浸透膨潤に よる影響であるかどうかは、せん断試験後の供試体の速やかな解体などを行い、含水比分布や 密度分布を取得する必要がある。

さらに、限界状態線は、これまでの結果も併せて、平成27年度の結果もほぼ同じ限界状態線 に至っている。このことから、ベントナイト系材料の限界状態線は、応力履歴に依らず、間隙 比と拘束圧の関係において平行にならず、乾燥密度と間隙比の関係において平行と見なすこと が妥当と考えられる。

3-55

3.2.1 概要

通常、力学を考慮した地球化学・物質移行解析モデルでは、化学的な作用に速度場を仮定すると 繰り返し収束計算に膨大な時間を要するために瞬時平衡に至るものとして取り扱う場合が多い。 しかしながら、実際には化学的な反応にはある速度が存在し、ある力学的・化学的に平衡な状態 (図 3.2.1-1、点 A)から化学的な外的作用が生じた場合(図 3.2.1-1、青矢印 A→B)には、ある 時間をかけて別の力学的・化学的平衡場(図 3.2.1-1、点 B)に至ると考えられる。図 3.2.1-1の 青矢印 A→B に示すように、平衡状態から別の平衡状態に至る過程は線形や非線形など様々な可 能性があり、実験的に確かめておく必要がある。さらに、力学的な変化や化学的な変化は、本来、 ある時間をかけて平衡状態に達するものであり、例えば、力学的なクリープ変形や化学的な鉱物 溶解などは少なくとも数年オーダーで試験を実施しなければ、有意なデータを取得することが難 しい。

そこで本検討では、前フェーズから、化学と力学の連成モデル試験を実施して、ある力学・化 学的平衡状態から別の平衡状態へ至る際の挙動を調べている。具体的には、非常に精緻に力学試 験を実施可能な超低ひずみ速度制御圧密試験機(図 3.2.1-2)と非常に精緻に透水試験を実施可能 なフローポンプ透水試験(図 3.2.1-3)を併用した試験機を用いて化学・力学連成モデル実験を実 施している。

本研究で使用する材料は、Na型モンモリロナイト(クニピアF)とCa型化させたモンモリロ ナイトである。このように事前に化学的に変質した材料に対して力学試験を実施する方法は、力 学変化に対して化学的変質が瞬時に平衡状態に達すると見なせるか、力学変化の速度に対して化 学的な変質が非常に緩慢で平衡状態に見なせる場合に適用可能となる。本研究で対象にしている 変質のうち、瞬時に平衡状態に達する化学変質はモンモリロナイトのCa型化であり、非常に緩 慢な化学変質は鉱物の溶解である。

そこで、本研究では、

- Na型ベントナイトのCa型化に伴う力学挙動変化の取得
- Na型ベントナイトの溶解に伴う力学挙動変化の取得

を行うこととした。図 3.2.1-4 には化学・力学連成モデル試験用セルとフローポンプ透水試験機 を示す。

図 3.2.1-2 超低ひずみ速度制御圧密試験機の概略図

図 3.2.1-3 フローポンプ透水試験機の概略図

図 3.2.1-4 化学・力学連成モデル試験用セルとフローポンプ透水試験機

3.2.2 Na型ベントナイトのCa型化に伴う力学挙動変化の取得試験

(1) 試験計画

本試験では、圧縮した Na 型モンモリロナイトを拘束条件下のままで、フローポンプ透水試 験機(図 3.2.1-2)を用いて、CaCl2水溶液を通水して Ca 化させ、超低ひずみ速度制御圧密試 験機(図 3.2.1-3)を用いて、この際の締固め圧力と間隙比の関係を取得した。試験手順は、以 下の通りである。

- Ca 型化モンモリロナイトと Na 型モンモリロナイトを乾燥密度 1.4 Mg/m³となるように圧 縮して締固める。
- ・Ca型化モンモリロナイトとNa型モンモリロナイトの供試体を、体積一定条件で、0.3mol/IのCaCl2水溶液と蒸留水でそれぞれ飽和させ、その際の膨潤圧を計測する。
- ・膨潤圧が平衡に達したら、Ca型化モンモリロナイトの供試体は乾燥密度が 1.6 Mg/m³、Na 型モンモリロナイトの供試体は乾燥密度が 1.5Mg/m³となるように圧密する。この間、間隙 比の変化と締固め圧力の関係(e-lnP関係)を、超低ひずみ速度制御圧密試験機により測定す る。
- ・e-lnP 関係を取得したら、Na 型モンモリロナイトの供試体に対してイオン交換水を 0.3 mol/l のイオン強度に調整した CaCl₂ 水溶液に替え、圧力、または体積一定条件下でフローポンプ 透水試験機により通水し、ベントナイト中の間隙水を Ca 置換させる。
- ・この際の間隙比の変化と圧力の変化を測定し、e-lnP 平面上で整理する。
- ・得られた結果をもとに、Na型ベントナイトがCa型化する過程におけるe-lnP関係を整理する。
- ・また、上記 Ca 型化したベントナイトの e-lnP 関係の信頼性を評価するため、CaCl₂水溶液に 懸濁させた後に余分なイオンを洗浄することによって事前に準備した Ca 型化ベントナイト を用いて乾燥密度 1.4 Mg/m³となるように圧縮して締固め、体積一定条件で 0.3 mol/l のイ オン強度に調整した CaCl₂水溶液で飽和させる。
- ・この際の膨潤圧の変化(e-lnP 関係)を、超低ひずみ速度制御圧密試験機により測定し、膨潤 圧が平衡に達したら、乾燥密度 1.6 Mg/m 程度に圧密し e-lnP 関係を取得する。

- ・得られた事前に Ca 型化させたベントナイトの e-lnP 関係は、Na 型ベントナイト、Ca 型化 ベントナイトと比較すべく e-lnP 関係上にプロットして纏める。
- ・なお、本試験では、Na型ベントナイトとしてクニピアFを用い、Ca化ベントナイトについてもクニピアFを事前にCa化させた試料を用いる。

この手順を図 3.2.2-1 を用いて説明すれば、Ca型化による化学的変質が平衡状態に至る過程 を取得するために、蒸留水を間隙水としたクニピアFの圧密試験、及びイオン強度 0.3mol/l の CaCl₂水溶液を間隙水とした Ca型化させたクニピア Fの圧密試験を実施すると図 3.2.2-1 の 青線と赤線で示す e-logP 関係が得られる。乾燥密度は 1.4 から 1.6Mg/m³程度である。次に蒸 留水を間隙水としたクニピア F を乾燥密度 1.4 から 1.5Mg/m³まで圧密すると、前述の青線上 を応力状態は変化する。ここで、荷重一定条件の下でフローポンプ透水試験を用いて間隙水を イオン強度 0.3mol/l の CaCl₂水溶液に置換させると、応力状態は青線 A 点から赤線 B 点に移 行する。この際の応力変化(図 3.2.2-1、A 点から B 点)を取得し、平衡状態(図 3.2.2-1、B 点)に達したら、乾燥密度 1.6Mg/m³程度まで再度圧密試験を行う。

図 3.2.2-1 Ca型化モデル試験イメージ図

さらに、この試験ケースだけでは、モデル実験とは言え、化学的な影響と力学的な影響を十 分に分離して考察することが難しいため、幾つかの試験を追加することとした。全ての試験ケ ースをまとめて表 3.2.2-1 に示す。表 3.2.2-2 には追加試験ケースの役割比較表を示す。各試験 で着目している事象を比較することで、特定の事象が化学/力学的な挙動に及ぼす影響を把握で きる。各試験の関連性については図 3.2.2-2 に示す。図に示すように、これらの追加検討によ って、さまざまな化学、力学挙動の影響割合が明らかとなる。

表 3.2.2-1 Na型ベントナイトの Ca型化に伴う力学挙動変化の取得試験ケース

呼称	モンモリロナイト	間隙水	備考
CKPCa	Ca 型化クニピア F	CaCl2水溶液	終了
	乾燥密度 1.4 Mg/m ³ 程度	イオン強度 0.3mol/l 程度	
	⇒1.6 Mg/m ³ 程度		
KPCa	クニピア F	蒸留水⇒CaCl₂水溶液	終了
	乾燥密度 1.4 Mg/m ³ 程度	イオン強度 0.3mol/l 程度	乾燥密度 1.5Mg/m ³ で液種を
	⇒1.5 Mg/m ³ 程度		CaCl ₂ 水溶液に置換中
			供試体高さ 20mm
KPCa-H	クニピア F	蒸留水	終了
	乾燥密度 1.4 Mg/m ³ 程度		供試体高さ 5mm
	⇒1.5 Mg/m ³ 程度		クリープ挙動の把握
CKPCa-H	Ca 型化クニピア F	蒸留水	終了
	乾燥密度 1.4 Mg/m ³ 程度		供試体高さ 5mm
	⇒1.5 Mg/m ³ 程度		クリープ挙動の把握
KPCa-N	クニピア F	蒸留水⇒NaCl 水溶液	終了
	乾燥密度 1.4 Mg/m ³ 程度	イオン強度 0.3mol/l 程度	供試体高さ 5mm
	⇒1.5 Mg/m ³ 程度		イオン強度の影響把握

表 3.2.2-2 追加試験ケースの役割比較表

	Na 型	Ca 型	ケイ砂 有無	イオン 強度	鉱物 溶解	Ca 型化	圧密	クリーフ゜	レラクセ゛ーション
CKPCa		•		•			•		
KPCa	٠			•		٠			•
KPCa-H	٠								•
CKPCa-H		٠							•
KPCa-N	•			•					•

図 3.2.2-2 Na型モンモリロナイトの Ca型化に関する検討ケース

(2) 試験結果(CKPCa、KPCa)

図 3.2.2-3、図 3.2.2-4 に蒸留水による Na 型モンモリロナイトと CaCl₂ 水溶液による Ca 型 化モンモリロナイトの飽和時の膨潤圧の計測結果を示す。図から、蒸留水による Na 型モンモ リロナイトと CaCl₂ 水溶液による Ca 型化モンモリロナイトの膨潤圧はほぼ平衡状態にあると 考えられる。さらに、蒸留水による Na 型モンモリロナイトの膨潤圧に比べ CaCl₂ 水溶液によ る Ca 型化モンモリロナイトの膨潤圧の方が 2 倍弱大きいことが分かる。また、両者とも膨潤 圧が平衡状態に達していることから、ほぼ飽和したものと判断できる。

図 3.2.2-3 Na型モンモリロナイトの蒸留水による飽和時の膨潤圧

図 3.2.2-4 Ca型モンモリロナイトの CaCl2 水溶液による飽和時の膨潤圧

さらに排水の採取を目的として、シリンジポンプで強制的に蒸留水を Na 型モンモリロナイトに通水させた。図 3.2.2-5 に通水圧を示す。シリンジポンプで通水してすぐに排水が確認されたため、圧密試験を行った。

図 3.2.2-5 Na型モンモリロナイトの通水圧と通水量

図 3.2.2-6 には、Na型モンモリロナイトに対して実施した圧密試験中の圧縮ひずみと圧密圧 力、間隙水圧の関係を示す。本試験ではひずみ速度制御の圧密を行っているため、圧縮ひずみ を与えて、そのアウトプットが間隙水圧と圧密圧力になる。圧縮変位速度は初期に 0.333 µ m/min に設定し、その後 0.133 µ m/min、0.0667 µ m/min へと低下させながら試験を 実施した。変位速度の変化に伴って間隙水圧や圧密圧力の応答が変化していることがわかる。

図 3.2.2-6 Na型モンモリロナイトの定ひずみ速度圧密試験時刻歴

図 3.2.2-7 には Na 型モンモリロナイトの間隙水に蒸留水を用いた圧密試験と、Ca 型モンモ リロナイトの間隙水に CaCl₂ 水溶液を用いた圧密試験から得られる乾燥密度と圧密圧力の関係 と間隙比と圧密圧力の関係(e-lnP 関係)を示す。

図からも明らかなように、Ca型モンモリロナイトの間隙水に CaCl₂水溶液を用いた圧密試 験から得られる e-lnP 関係よりも Na型モンモリロナイトの間隙水に蒸留水を用いた圧密試験 から得られる e-lnP 関係の方が e-lnP 空間で左側に存在している。これは、Na型モンモリロナ イトと Ca型モンモリロナイトを同じ密度に締め固める場合、Ca型モンモリロナイトの間隙水 に CaCl₂水溶液を用いた場合の方が、Na型モンモリロナイトの間隙水に蒸留水を用いた場合 よりも大きな載荷重を要することを意味している。

また、モンモリロナイトの圧密試験には非常に時間を要するために、Na型モンモリロナイトの間隙水に蒸留水を用いた圧密試験と、Ca型モンモリロナイトの間隙水に CaCl2 水溶液を用いた圧密試験はともに所定の乾燥密度(間隙比)に至っていないが、本試験の目的である力学的、化学的に平衡状態にあるベントナイト系人工バリアが外的作用によって別の平衡状態に達する間の挙動を実験によって取得するという目的に対して、Ca型化させる乾燥密度はある程度の大きさを満足していれば大きな意味を持たないため、乾燥密度 1.513Mg/m³の時点で CaCl2 水溶液の通水を開始した。この際、供試体の体積変化が生じないように体積拘束条件を課した。

図 3.2.2-7 Na 型モンモリロナイト(蒸留水)と Ca 型モンモリロナイト(CaCl₂)の e-lnP 関係

図 3.2.2-8 に、Na 型モンモリロナイトに CaCl₂水溶液を通水した場合の圧密圧力の変化を示 している。図から CaCl₂水溶液を通水中、圧密圧力が減少傾向を示している。これは、体積拘 東条件を課しているため供試体がクリープ挙動を示していること、間隙水のイオン強度が増加 した事による膨潤圧の低下、Ca型化による応力の変化が混在しているためと考えられる。図 3.2.2-9 にはこの CaCl₂水溶液を通水した場合の圧密圧力の変化をpd-lnP 関係に追記している。 図に示すように、CaCl₂水溶液を用いて取得した Ca型化モンモリロナイトの pd-lnP 関係と逆 の方向に応力が向かっていることが分かる。このことから、クリープ挙動とイオン強度による 膨潤圧の低下が Ca型化による応力増加よりも影響が大きい可能性がある。本試験で発生して いる現象は、実際の処分場でも想定されることではあるが、これらの影響を分離するためには、 別途クリープ試験、間隙水のイオン強度の異なる圧密試験などを実施する必要がある。

図 3.2.2-8 CaCl2 水溶液を通水した場合の圧密圧力の変化

図 3.2.2-9 ベントナイト系人工バリアの Ca 型化中の応力変化

図 3.2.2-10 にベントナイト系人工バリアの Ca 型化中の応力変化と完全飽和線の比較を示す。 図からも明らかなように、本試験における Na 型モンモリロナイトの e-logP 関係は完全飽和線 の右側にあり、Ca 型化に従って完全飽和線に向かって応力が移動していることが分かる。また 前述のひずみ速度制御圧密試験によって得られた e-logP 関係はさらに右側にシフトしている。 同じ材料で正規圧密線は唯一 1 つしかないこと、完全飽和線と正規圧密線の等価性などに鑑み れば、これらの違いは試験中に発生した過剰間隙水圧の影響を十分に排除できずに有効応力の 中に過剰間隙水圧がいくらか含まれているものと考えられる。その大きさは、完全飽和線と正 規圧密線の等価性から、完全飽和線との差と考えるのが合理的である。また Ca 型化中の挙動 には、レラクゼーション挙動、間隙水のイオン強度の影響が含まれていると考えられる。

図 3.2.2-10 ベントナイト系人工バリアの Ca型化中の応力変化と完全飽和線の比較

ここで採取された排水を用いて陽イオン分析を行った。採取された排水の質量は 0.123g であ る。本試料を、イオンクロマトグラフに導入するため純水を用いて 12.7 倍に希釈した。分析に 用いた試料質量は約 1.57g である。分析した陽イオンは、ナトリウム (Na)、カリウム (K)、 マグネシウム (Mg)、カルシウム (Ca)、陰イオンは塩化物イオン、亜硝酸イオン、硝酸イオン、 硫酸イオンの合計 8 種とした。分析結果を表 3.2.2-3 に示す。

ナトリウムイオンが高濃度に検出され、その濃度は 3660mg/ℓ であった。表 3.2.2・4 に本検討 で使用している Na 型モンモリロナイトの交換性陽イオン分析結果を示す。この結果は、平成 20 年度地層処分技術調査等 人工バリア長期性能評価技術開発人工バリアの長期挙動の評価に 係わるセメントーベントナイト相互影響に関するデータ取得のうち"変質ベントナイトの作製 及び特性データの取得"成果報告書[11]からの抜粋である。この Na 型モンモリロナイトの交換 性陽イオン分析のうち、交換性 Na イオンが全てこの排水中に溶出したとすると、表 3.2.2・5 に 示すように、供試体全体の乾燥質量が 90.46g(φ60mm×h20mm×pd1.6Mg/m3)であるため、全 間隙水が排水と同様の組成であるとすると全間隙水中の Na イオン 3.79meq は全体の 4.15%で ある。

測定結果	希釈溶液の 測定値(mg/l)	試料溶液中 の濃度(mg/l)
ナトリウムイオン	287.9	3660
カリウムイオン	1.2	15.2
カルシウムイオン	0.5	6.3
マグネシウムイオン	0.1 未満	1.3 未満
塩化物イオン	64.9	826
亜硝酸イオン	42.1	536
硝酸イオン	4.9	62.3
硫酸イオン	404.6	5150

表 3.2.2-3 Na 型モンモリロナイトからの排水を用いたイオン分析結果

表 3.2.2-4 本検討で使用している Na 型モンモリロナイトのからの排水を用いた イオン分析結果[11]

計測項目 試料名	CEC meq/100g	交換性 Na meq/100g	交換性 Ca meq/100g	交換性 Mg meq/100g	交換性 K meq/100g	Ca 型化率 CR%
クニヒ゜アF	111	101	21.5	2.87	2.15	-51.836

表 3.2.2-5 本検討で使用している Na 型モンモリロナイトのからの排水中の Na イオン

ベントナイト 絶乾量	陽イオン 交換容量	排水中の Na イオン	全間隙水	全間隙水中の Na イオン	交換した Na イオン
(g)	(meq)	(meq/l)	(1)	(meq)	(%)
90.46	55.00	159.20	0.023	3.79	4.15

(3) 試験結果(KPCa·H、CKPCa·H、KPCa·N)

以下に KPCa-H、CKPCa-H、KPCa-Nの試験結果を示す。

KPCa-H は、乾燥密度 1.4Mg/m³の Na 型モンモリロナイトに蒸留水を通水し、飽和させた後に 1.5Mg/m³まで圧密し、体積拘束条件で応力緩和させることによって、Na 型モンモリロナイトの圧密~レラクゼーション挙動を取得するものである。

CKPCa-H は、乾燥密度 1.4Mg/m³の Ca 型モンモリロナイトに蒸留水を通水し、飽和させた後に 1.5Mg/m³まで圧密し、体積拘束条件で応力緩和させることによって、Ca 型モンモリロナイトの圧密~レラクゼーション挙動を取得するものである。

KPCa-N は、乾燥密度 1.4Mg/m³の Na 型モンモリロナイトに NaCl 水溶液を通水し、飽和さ せた後に 1.5Mg/m³まで圧密し、体積拘束条件で応力緩和させることによって、Na 型モンモ リロナイトの圧密~レラクゼーション挙動にイオン強度が及ぼす影響を Ca 型化の影響を排除 して取得するものである。

図 3.2.2-11 に各試験の給水量の経時変化を示す。試験機のポーラスメタルや配管などのデッドスペースが飽和した後に供試体の飽和が始まり、各供試体ともに十分に飽和していることが分かる。なお、KPCa-Nのみ、通水開始から 210 日目で通水圧を 0.1MPa 作用させた。飽和度が 100%に達した時点で載荷段階に移行した。

図 3.2.2-11 Na型モンモリロナイトへの給水状況

図 3.2.2-12 には、各試験の吸水時の膨潤圧の経時変化、及び継続試験として実施している KPCaのCa型化中の膨潤圧変化を併せて示す。飽和度が100%になるにつれて膨潤圧は平衡状 態になっている。その後、段階載荷によって膨潤圧も載荷応力分だけ増加している。段階載荷 は供試体の乾燥密度が1.5Mg/m³になるまで行った(図 3.2.2-13参照)。載荷圧力は2.0、4.0、 5.0、6.0MPaであり、乾燥密度が1.5Mg/m³に達した時点で変形を拘束し、レラクゼーション 過程に移行した。図から、KPCaのCa型化中の膨潤圧に比ベレラクゼーション中の膨潤圧は 大きめの値を示しているが、概ね全ての試験で整合する値を示している。レラクゼーションに よって膨潤圧の値が低下して定常状態に達した時点でCa型化、レラクゼーション、過剰間隙 水圧、イオン強度などの影響を定量評価できるものと考えられる。

図 3.2.2-12 Na型モンモリロナイトの Ca型化に伴う膨潤圧変化(補正前)

図 3.2.2-13 Na型モンモリロナイトの段階載荷による密度増加

図 3.2.2-14 には、図 3.2.2-12 に示した図のうち、供試体作製時の初期応力の差を補正して、 初期応力からの増分値としての膨潤圧の経時変化を示している。Ca型化、レラクゼーション、 過剰間隙水圧、イオン強度などが膨潤圧に及ぼす影響を定量評価する場合、初期応力の差を排 除する必要がある。図から、Ca型化クニピアに蒸留水を通水したケース以外は概ね、平衡状態 に達したと考えられる(CKPCa-H)。

図 3.2.2-14 Na型モンモリロナイトの Ca型化に伴う膨潤圧変化(補正後)

図 3.2.2-15 に図 3.2.2-14 に示した初期応力からの増分値としての膨潤圧の経時変化の差か ら、Ca型化、レラクゼーション、過剰間隙水圧、イオン強度などが膨潤圧に及ぼす影響を定量 評価した結果を示す。KPCa、CKPCa は共に定ひずみ速度圧密試験結果であり、KPCa は乾燥 密度 1.4~1.5Mg/m³、CKPCa は乾燥密度 1.4~1.6g/m³まで圧密した試験である。一方、KPCa-H、CKPCa-H、KPCa-N は乾燥密度 1.5Mg/m³で、体積拘束条件で試験をしている。そのため、 両者を比較するために、KPCa で乾燥密度がほぼ 1.5Mg/m³で CaCl₂水溶液を給水している過 程の圧密圧力の変化と CKPCa で乾燥密度 1.5Mg/m³の値を示している。

図 3.2.2-15 Na型モンモリロナイトの Ca型化に伴う種々の影響

図から、各試験結果を比較して、膨潤圧に及ぼす影響を表にまとめると表 3.2.2-6 のように なる。KPCaの膨潤圧の最終値に Na イオンから Ca イオンへの層間陽イオンの変化、リラクゼ ーションによる応力減少、さらに過剰間隙水圧を補正した。なお、CKPCa では CaCl2水溶液を 使用しているため、イオン強度の補正はしていないが、過剰間隙水圧のみの補正値を算出する 際にイオン強度の補正値を使用した。

表 3.2.2-6	KPCa の膨潤圧の補正要因と補正後の値	

	要因	応刀 (MPa)
KPCa の試験後の膨潤圧		4.04
	イオン強度(H ₂ O→NaCl)	(0.303)
	層間陽イオン(Na→Ca)	+0.480
	リラクゼーション+摩擦(1100 日程度)	+0.215
	過剰間隙水圧	+2.919
Ca 型化後の補正した膨潤圧		7.65
CKPCa の e-logP 関係から		7.93
得られる膨潤圧		

この結果を図示すると、図 3.2.2-16 のようになる。図では補正後の Ca 型化過程の乾燥密度 を見易くするためにずらして示している。図からも明らかなように、種々の要因を補正すると、 Na 型モンモリロナイトの膨潤圧が Ca 型化によって、Ca 型化モンモリロナイトの e-logP 関係 に漸近することが分かる。ただし、これらの補正要因は、Ca 型化する過程で変化するため、最 終値のみを補正していることに注意が必要である。時々刻々と Ca 型化する過程を取得するた めには、各要因の経時変化をモデル化する必要がある。

図 3.2.2-16 ベントナイト系人工バリアの Ca 型化中の応力変化

(4) 供試体の解体

前述の Ca 型化の試験終了後、表 3.2.2-1 に示す KPCa、KPCa-H、CKPCa-H、KPCa-Nの 解体を行った。解体手順は以下の通りである。

◇準備

①ゴム手袋を着用(汗の Na や K などが分析の妨げになる)

◇排水の回収

②排水の採水瓶を取り外す

③給・排水経路にある液体を、細管を用いて注射器で吸引回収する

④バットの中でセルを解体し、バット内に漏れた液体も回収する

◇セルの解体

⑤解体したセルのポーラスメタル、メンブレンフィルタをセットで、給水側と排水側で分け てシャーレに入れてパラフィンシートで密封。

◇供試体のスライス

⑥セルをスライサーにセットし、押し出した量、押し出された量を計測。

⑦超音波カッターで下記の厚さでスライスする。

供試体高さ 5mm の供試体は 0.5mm×6 枚にスライスし、残試料の厚さ(2 mm程度)を計測 し、遠沈管に全て分けて入れる。

供試体高さ 20mm の供試体は 0.5mm×12 枚、1mm×12 枚にスライスし、残試料の厚さ (2mm 程度)を計測し、遠沈管に全て分けて入れる。

⑧スライスした試料は風袋引きした遠沈管に入れて湿潤質量を計測する。

⑨スライス時にカッターの刃にこびり付いた試料は回収し質量を測るが、本体試料と混合せずに保管。

試験の状況を図 3.2.2-17 に示す。供試体のスライスには、超音波カッターを用いてシート状 に試料が採取できるように工夫した。表 3.2.2-7 に Ca 型化試験供試体の解体結果を示す。 KPCa-H、CKPCa-H、KPCa において給水側の第1層目の厚さが計画よりも大きくなったもの の、概ね良好に解体できた。

図 3.2.2-18 には解体時の湿潤密度分布を示す。解体に伴う乱れの影響で、給排水面の近傍の 密度が低下傾向であるが概ね均一な供試体で試験を実施できたことが分かる。

図 3.2.2-17 Ca型化試験の解体状況
表 3.2.2-7 Ca型化試験供試体の解体結果

CASE	脱型時	時供試体	No	押出し厚さ	試料質量	清掃屑	湿潤密度	給水面からの	#± =⊐
CASE	質量(g)	厚さ(mm)	100.	(mm)	(g)	質量(g)	(g)	平均距離(mm)	14 86
KPCa-N	-	5.142	No.5 KPCa-N-01	0.502	1.846	0.006	1.301	0.251	
			No.5 KPCa-N-02	0.501	2.456	0.006	1.734	0.753	
			No.5 KPCa-N-03	0.500	2.552	0.014	1.805	1.253	
			No.5 KPCa-N-04	0.500	2.664	0.014	1.884	1.753	
			No.5 KPCa-N-05	0.500	2.665	0.014	1.885	2.253	
			No.5 KPCa-N-06	0.500	2.657	0.003	1.879	2.753	
			No.5 KPCa-N-07	2.253	10.896	-	1.711	4.129	
KPCa-H	26.15	4.900	No.3 KPCa-H-01	0.950	4.610	0.028	1.716	0.475	スライス片実測
			No.3 KPCa-H-02	0.501	2.675	0.010	1.888	1.201	
			No.3 KPCa-H-03	0.501	2.649	0.005	1.870	1.702	
			No.3 KPCa-H-04	0.501	2.706	0.004	1.910	2.203	
			No.3 KPCa-H-05	0.500	2.665	0.012	1.885	2.703	
			No.3 KPCa-H-06	0.501	2.628	0.009	1.855	3.204	
			No.3 KPCa-H-07	1.338	6.977	0.013	1.845	4.123	
CKPCa-H	26.78	4.933	No.4 CKPCa-H-01	0.740	3.554	0.019	1.699	0.370	スライス片実測
			No.4 CKPCa-H-02	0.500	2.593	0.011	1.834	0.990	
			No.4 CKPCa-H-03	0.504	2.606	0.011	1.829	1.492	
			No.4 CKPCa-H-04	0.500	2.594	0.006	1.835	1.994	
			No.4 CKPCa-H-05	0.501	2.631	0.014	1.857	2.495	
			No.4 CKPCa-H-06	0.500	2.585	0.008	1.829	2.995	
			No.4 CKPCa-H-07	1.605	8.866	0.030	1.954	4.048	
KPCa	105.46	19.788	No.2 KPCa-05-01	0.830	3.927	0.015	1.673	0.415	スライス片実測
			No.2 KPCa-05-02	0.505	2.519	0.009	1.764	1.083	
			No.2 KPCa-05-03	0.500	2.656	0.009	1.879	1.585	
			No.2 KPCa-05-04	0.500	2.676	0.009	1.893	2.085	
			No.2 KPCa-05-05	0.508	2.808	0.011	1.955	2.589	
			No.2 KPCa-05-06	0.500	2.587	0.010	1.830	3.093	
			No.2 KPCa-05-07	0.502	2.627	0.011	1.851	3.594	
			No.2 KPCa-05-08	0.500	2.613	0.008	1.848	4.095	
			No.2 KPCa-05-09	0.500	2.653	0.009	1.877	4.595	
			No.2 KPCa-05-10	0.500	2.648	0.006	1.873	5.095	
			No.2 KPCa-05-11	0.500	2.596	0.006	1.836	5.595	
			No.2 KPCa-05-12	0.500	2.639	0.007	1.867	6.095	
			No.2 KPCa-10-01	1.001	5.283	0.030	1.867	6.846	ここから 1mm 切断面が 0.5mm スライス時 より乾燥 切断抵抗増大
			No.2 KPCa-10-02	1.000	5.216	0.025	1.845	7.846	
			No.2 KPCa-10-03	1.000	5.259	0.021	1.860	8.846	
			No.2 KPCa-10-04	1.000	5.197	0.019	1.838	9.846	
			No.2 KPCa-10-05	1.000	4.872	0.046	1.723	10.846	操作ミス再設置
			No.2 KPCa-10-06	1.001	5.305	0.026	1.874	11.847	
			No.2 KPCa-10-07	1.000	5.273	0.036	1.865	12.847	
			No.2 KPCa-10-08	1.001	5.242	0.023	1.852	13.848	
			No.2 KPCa-10-09	1.000	5.205	0.022	1.841	14.848	
			No.2 KPCa-10-10	0.999	5.101	0.023	1.806	15.848	
			No.2 KPCa-10-11	1.000	5.144	0.022	1.819	16.847	
			No.2 KPCa-10-12	1.000	5.245	0.049	1.855	17.847	供試体浮き上がり 押えながらスライス
1	1		No.2 KPCa-最終層	1.335	4.701	0.002	1.245	19.015	

図 3.2.2-18 Ca型化試験の湿潤密度分布

3.2.3 Na型ベントナイトの溶解に伴う力学挙動変化の取得試験

(1) 試験計画

本試験では、圧縮した Na 型ベントナイトを拘束下で、フローポンプ透水試験機を用いて NaOH 水溶液を通水し、この際の締固め圧力と間隙比の関係を超定ひずみ速度制御圧密試験機 を用いて取得し、鉱物溶解という化学的な変化によって力学的平衡状態がどのように遷移する かを評価した。試験手順は、以下の通りである。

- ・Na型モンモリロナイトを乾燥密度 1.4、1.6 Mg/m³となるように圧縮して締固める。
- ・高圧一定条件下で、フローポンプ透水試験機により pH を 13 程度に調整した NaOH 水溶 液を通水する。
- ・乾燥密度 1.4、1.6 Mg/m³の平衡膨潤圧を間隙比の変化と締固め圧力の関係(e-lnP 関係) に整理して、NaOH 水溶液を用いた場合の正規圧密線とする。
- ・NaOH 通水中に間隙比の変化と締固め圧力の関係(e-lnP 関係)を測定する(図 3.2.3-1 中 A→B)。圧縮ベントナイト中を通過した溶液は採取し、ベントナイトの溶解挙動を評価する ための化学分析を行う。
- ・また、間隙比の遷移過程とモンモリロナイトの含有率の関係を考察するため、ケイ砂を混合した Na 型モンモリロナイトを乾燥密度 1.6 g/cm³となるように圧縮して締固め、pH を 13 程度に調整した NaOH 水溶液を通水し、この際の間隙比の変化と締固め圧力の関係(e-lnP 関係)を測定するとともに、ケイ砂混合モンモリロナイト(人工ベントナイト)中を通過した溶液を採取して化学分析を行う。
- ・得られた結果をもとに、e-lnP関係と圧縮ベントナイトのモンモリロナイト含有率ならびに 溶解量の関係を整理する。

この手順を図 3.2.3・1 を用いて説明すれば、間隙水に NaOH 水溶液を用いて pH13 程度に調整したクニピア F を乾燥密度 1.4 から 1.6Mg/m³まで連続的に圧密して正規圧密曲線を取得するすることが望ましいが、完全飽和線などからその直線性を考慮してクニピア F の乾燥密度 1.4 と 1.6Mg/m³の時点の間隙比と平衡膨潤圧を取得して内挿する。乾燥密度 1.6Mg/m3(図 3.2.3・1、 A 点)では、高圧一定条件下でフローポンプ透水試験機によって NaOH 水溶液を通水し続ける。 また、この際の圧力の減少状況(図 3.2.3・1、A 点から B 点)を取得する。また、この間隙が減少した応力点(図 3.2.3・1 B 点)を通る間隙水に NaOH 水溶液を用いて pH13 程度に調整した ケイ砂含有クニピア F の e-lnp'関係を取得し、ケイ砂含有率(モンモリロナイト含有率)とモ ンモリロナイトの溶解量の関係性などを検討する。

図 3.2.3-1 モンモリロナイト溶解試験イメージ図

ただし、この試験ケースだけでは、モデル実験とは言え、化学的な影響と力学的な影響を十 分に分離して考察することが難しいため、幾つかの試験を追加することとした。全ての試験ケ ースをまとめて表 3.2.3-1 に示す。表 3.2.3-2 には平成 23 年度の試験ケースの役割比較表を示 す。各試験で着目している事象を比較することで、特定の事象が化学/力学的な挙動に及ぼす影 響を把握できる。各試験の関連性については図 3.2.3-2 に示す。図に示すように、これらの追 加検討によって、さまざまな化学、力学挙動の影響割合が明らかとなる。

なお、本試験に関して、契約の期間内において e-lnP 関係が平衡に達しない場合、試験の継 続性を検討するものとして表 3.2.3-2 に示す化学・力学連成モデル試験ケースを実施している。

呼称	モンモリロナイト	間隙水	備考
KPDS-1	ケイ砂 30wt%含有クニピア F	NaOH 水溶液	終了
	乾燥密度 1.6Mg/m ³ 程度	pH13 程度	
KPDS-2	クニピア F	NaOH 水溶液	終了
	乾燥密度 1.6Mg/m ³ 程度	pH13 程度	供試体高さ 20mm
KPDS-3	クニピア F	NaOH 水溶液	終了
	乾燥密度 1.6Mg/m ³ 程度	pH13 程度	供試体高さ 5mm
KPDS-HP1	クニピア F	NaOH 水溶液	終了
	乾燥密度 1.6Mg/m ³ 程度	pH13 程度	供試体高さ 5mm
		超高圧、高通水圧	
KPDS-HP2	クニピア F	NaCl 水溶液	終了
	乾燥密度 1.6Mg/m ³ 程度	0.1mol/l 程度	供試体高さ 5mm
		超高圧、高通水圧	
KPDS-H	クニピア F	蒸留水	終了
	乾燥密度 1.6Mg/m ³ 程度		供試体高さ 5mm
KPDS-N01	クニピア F	NaCl 水溶液	終了
	乾燥密度 1.6Mg/m ³ 程度	0.1mol/l 程度	供試体高さ 5mm
KPDS-Nl	クニピア F	NaCl 水溶液	終了
	乾燥密度 1.6Mg/m ³ 程度	1.0mol/l 程度	供試体高さ 5mm
KPDS-NO3	クニピア F	NaNO3水溶液	終了
	乾燥密度 1.6Mg/m ³ 程度	0.1mol/l 程度	供試体高さ 5mm

表 3.2.3-1 Na型ベントナイトの溶解に伴う力学挙動変化の取得試験ケース

表 3.2.3-2 Na型ベントナイトの溶解に伴う力学挙動変化の取得試験ケースの役割比較表

	Na 型	Ca 型	ケイ砂 有無	イオン 強度	鉱物 溶解	Ca 型化	圧密	クリーフ゜	レラクセ゛ーション	陰化影響
KPDS-1	٠		٠	٠	•				•	
KPDS-2	•			•	•				•	
KPDS-3	•			•	•				•	•
KPDS-HP1	•			•	•			•		
KPDS-HP2	•			٠	•			•		
KPDS-H	•								•	
KPDS-N01	•			•					•	•
KPDS-N1	•			•					•	
KPDS-NO3	•			•					•	•

図 3.2.3-2 Na型モンモリロナイトの溶解に関する検討ケース

(2) 試験結果(KPDS-1、KPDS-2)

図 3.2.3-3 に NaOH 水溶液による飽和過程における膨潤圧の計測結果を示す。さらに、図 3.2.3-4 には、ケイ砂 30%混合 Na 型モンモリロナイトの NaOH 水溶液による飽和時の膨潤圧 を示している。ケイ砂 30wt%混合 Na 型モンモリロナイトを乾燥密度 1.6Mg/m³に締固めると 有効モンモリロナイト乾燥密度は 1.37Mg/m³ 程度となるため図 3.2.3-5 に示した乾燥密度 1.4Mg/m³の Na 型モンモリロナイトの膨潤圧とほぼ同等の値を示している。このことから、乾燥密度 1.4Mg/m³ 程度であれば、膨潤圧がモンモリロナイト含有率によって決定されるものと 考えられる。さらに、Ca 型化の影響評価のために実施した蒸留水による乾燥密度 1.4Mg/m³の Na 型モンモリロナイトの飽和時の膨潤圧(図 3.2.2·3)と比較すると、平衡膨潤圧がほぼ同じ 値であり、本試験期間程度の時間内であれば、高 pH がモンモリロナイトの膨潤圧に及ぼす影響は小さいと言える。

図 3.2.3-3 Na 型モンモリロナイトの NaOH 水溶液による飽和時の膨潤圧(KPDS2)

図 3.2.3-4 ケイ砂 30%混合 Na 型モンモリロナイトの NaOH 水溶液による飽和時の膨潤圧 (KPDS1)

図 3.2.3-5 Na型モンモリロナイトの NaOH 水溶液による飽和時の膨潤圧

さらに排水の採取を目的として、シリンジポンプで強制的に NaOH 水溶液を乾燥密度 1.6Mg/m³の Na 型モンモリロナイトに通水させた。図 3.2.3-6 に通水圧と通水量の経時変化を 示す。シリンジポンプで通水してすぐに排液が確認されたため、飽和しているものと判断して 溶解試験を行った。図 3.2.3-7 に乾燥密度 1.6Mg/m³で体積拘束した条件で NaOH 水溶液を通 水した場合の膨潤圧の経時変化を示す。図に示すように、NaOH 水溶液を通水するに従って膨 潤圧が漸減していたが、漸減傾向はほぼ終息したように思われる。

図 3.2.3-6 Na型モンモリロナイトの NaOH 水溶液による飽和時の通水圧と通水量(KPDS2)

図 3.2.3-7 Na 型モンモリロナイトの NaOH 水溶液による飽和時の膨潤圧の変化(KPDS2)

図 3.2.3-8 に乾燥密度 1.6Mg/m³の Na 型モンモリロナイトと乾燥密度 1.4Mg/m³の Na 型モ ンモリロナイトの平衡膨潤圧を示す。図には、乾燥密度 1.6Mg/m³のケイ砂 30%混合 Na 型モ ンモリロナイトの平衡膨潤圧も示している。

図から、ケイ砂 30%混合 Na 型モンモリロナイトの平衡膨潤圧は乾燥密度 1.6Mg/m³の Na 型モンモリロナイト乾燥密度 1.4Mg/m³の Na 型モンモリロナイトの平衡膨潤圧を結ぶ線の下 側に存在している。今後もシリンジポンプによって高 pH の NaOH 水溶液を通水し続ければ、 モンモリロナイトの溶解と沈殿が生じ、ほぼ乾燥密度 1.6Mg/m³を保ちつつ平衡膨潤圧がケイ 砂 30%混合 Na 型モンモリロナイトの平衡膨潤圧に近づく傾向を示すと考えられる。

図に示すように、乾燥密度 1.6Mg/m³の Na 型モンモリロナイトの溶解が定常状態に達して おらず、今後も継続して試験を実施する必要があるが、平衡膨潤圧線は完全飽和線や正規圧密 線と等価であり、この試験結果の位置関係から、モンモリロナイトの含有率の変化による力学 挙動が推定できる。

図 3.2.3-8 Na型モンモリロナイトの NaOH 水溶液による飽和時の平衡膨潤圧

図 3.2.3-9 には、図 3.2.3-8 に本試験結果によるモンモリロナイト溶解のモデル化イメージ を合わせたものを示す。図に示すように、モンモリロナイト 100%の材料が乾燥密度一定で高 pH 水溶液を通水されモンモリロナイトが溶解して平衡膨潤圧が低下したとする。モンモリロ ナイトが 30%溶解した場合の平衡膨潤圧が乾燥密度 1.6Mg/m³のケイ砂 30%混合 Na 型モンモ リロナイトの平衡膨潤圧と同等であることが確認できれば、モンモリロナイトの溶解はモンモ リロナイト含有率の変化として取り扱える可能性がある。

図 3.2.3-9 本試験結果によるモンモリロナイト溶解のモデル化イメージ

そこで、今後、試験を継続し、モンモリロナイト 100%の平衡膨潤圧が低下して乾燥密度 1.6Mg/m³のケイ砂 30%混合 Na 型モンモリロナイトの平衡膨潤圧と一致した場合の排液を採 取して溶解物質を調べれば、モンモリロナイトの溶解量とモンモリロナイト含有率をモデル化 できるため、化学と力学の連成解析にも資する情報となり得る。

ここで採取された排水を用いて陽イオン分析を行った。採取された排水の質量は 0.175g であ る。本試料を、ICP-質量分析計に導入するため純水を用いて 140 倍に希釈した。分析に用い た試料質量は約 24g である。分析した陽イオンは、シリカ(Si)、ナトリウム(Na)、カリウム (K)、マグネシウム(Mg)、カルシウム(Ca)、の合計 5 種とした。分析結果を表 3.2.3.3 に 示す。ケイ素イオンが高濃度に検出され、その濃度は 72.5mg/L であった。

ここで、モンモリロナイトの鉱物組成割合 *Na*_{0.33}*Mg*_{0.33}*Al*_{1.67}*Si*₄*O*₁₀(*OH*)₂ が常に保たれていると して、排水のシリカ量から溶解したモンモリロナイト量を算出すると、全間隙水の量が 0.02L であることから、1.67mg のシリカが溶解した事になる。この量は、1mol 当たりのシリカの量 に対して、0.22mmol に相当する。よって、0.08g のモンモリロナイトが溶解した事になり、こ れは全モンモリロナイトに対して 0.09%に相当する。

試料名	NaOH 通水	ケースの排水				
測定結果	希釈溶液の 測定値(mg/l)	試料溶液中 の濃度(mg/l)				
ケイ素	0.52	72.5				
ナトリウムイオン	86.6	12100				
カリウムイオン	0.7	97.6				
カルシウムイオン	0.1	13.9				
マグネシウムイオン	0.1 未満	14 未満				

表 3.2.3-3 ICP-質量分析計イオン分析結果

(3) 試験結果(KPDS-3,KPDS-HP1,KPDS-HP2,KPDS-H,KPDS-N01,KPDS-N1,KPDS-N03) 以下に、試験ケース KPDS-3、KPDS-HP1、KPDS-HP2、KPDS-H、KPDS-N01、KPDS-N1、 KPDS-NO3の結果を示す。

KPDS-3 は、乾燥密度 1.6Mg/m³ に圧縮した Na 型モンモリロナイトを体積拘束条件下で pH13 の NaOH 水溶液を通水しながら応力緩和させる試験であり、KPDS-2 と比較して試験時 間が短いことから、Na 型モンモリロナイトの圧密挙動にレラクゼーションやモンモリロナイ トの溶解、さらにイオン強度が及ぼす影響を考慮するためのである。

KPDS-HP1 は、乾燥密度 1.6Mg/m³に圧縮した Na 型モンモリロナイトを 10MPa の荷重一 定条件下で pH13の NaOH 水溶液を 1MPa で通水しながらクリープ変形させることによって、 Na 型モンモリロナイトの圧密挙動にクリープやモンモリロナイトの溶解、さらにイオン強度 が及ぼす影響を考慮するためのものである。

KPDS-HP2は、乾燥密度 1.6Mg/m³に圧縮した Na 型モンモリロナイトを 10MPa の荷重一 定条件下で NaCl 水溶液を 1MPa で通水しながらクリープ変形させ KPDS-HP2 と比較するこ とによって、Na 型モンモリロナイトの圧密挙動に、モンモリロナイトの溶解が及ぼす影響を考 慮するためのものである。

KPDS-H は、乾燥密度 1.6Mg/m³に圧縮した Na 型モンモリロナイトを体積一定条件下で蒸 留水水溶液を通水しながら応力緩和させることによって、Na 型モンモリロナイトのレラクゼ ーション挙動を取得するものである。

KPDS-N01 は、乾燥密度 1.6Mg/m³に圧縮した Na 型モンモリロナイトを体積一定条件下で NaCl 水溶液(イオン強度 0.1)を通水しながら応力緩和させることによって、Na 型モンモリロナ イトのレラクゼーション挙動に対するイオン強度の影響を陽イオン交換反応の影響を排除して 取得するものである。

KPDS-N1 は、乾燥密度 1.6Mg/m³に圧縮した Na 型モンモリロナイトを体積一定条件下で NaCl 水溶液(イオン強度 1.0)を通水しながら応力緩和させることによって、Na 型モンモリロナ イトのレラクゼーション挙動に対するイオン強度の影響を陽イオン交換反応の影響を排除して 取得するものである。 KPDS-NO3は、乾燥密度 1.6Mg/m3 に圧縮した Na 型モンモリロナイトを体積一定条件下で NaNO3水溶液(イオン強度 0.1)を通水しながら応力緩和させることによって、Na 型モンモリロ ナイトのレラクゼーション挙動に対する陰イオンの種類の影響を取得するものである。

図 3.2.3-10 に Na 型モンモリロナイトの NaOH 水溶液給水量の経時変化を、さらに図 3.2.3-11 には給水に伴う飽和度変化を示す。図に示すように、KPDS-HP1、KPDS-HP2 は飽和 度を高める必要があったため、両ケースに限って通水開始から 215 日目に通水圧を 0.1MPa を 作用させた。その結果、給水量が増加し、全てのケースで飽和度が 100%に達した。

図 3.2.3-10 Na型モンモリロナイトの NaOH 水溶液給水量の経時変化

図 3.2.3-11 Na型モンモリロナイトの給水中の飽和度の経時変化

図 3.2.3-12 に NaOH 水溶液給水時の Na 型モンモリロナイトの膨潤圧の経時変化を示す。 図から KPDS-H(蒸留水)と KPDS-N01(0.1mol/L の NaCl 水溶液)の膨潤圧がほぼ同等であ る。またイオン強度が 0.1mol/L である KPDS-3(NaOH 水溶液)、KPDS-N01(0.1mol/L の NaCl 水溶液)、KPDS-NO3(0.1mol/L の NaNO3水溶液)の平衡膨潤圧が異なる。これは、通水開始前 の初期応力状態が異なるために、各影響因子が膨潤圧に及ぼす影響に初期応力状態の差異が含まれているためである。そこで、図 3.2.3-12 に示した NaOH 水溶液給水時の Na 型モンモリロナイトの膨潤圧の経時変化から初期応力状態の影響を除去して、初期応力状態からの増分値としての膨潤圧の経時変化をまとめると図 3.2.3-13 のようになる。

図 3.2.3-12 給水時の Na 型モンモリロナイトの膨潤圧の経時変化(補正前)

図 3.2.3-13 給水時の Na 型モンモリロナイトの膨潤圧の経時変化(補正後)

図 3.2.3-14 に Na 型モンモリロナイトの溶解に伴う種々の影響を示す。KPDS-1 は乾燥密度 1.4Mg/m³ であるため、比較からは除外した。また KPDS-HP1,-HP2 に関しても、荷重制御で あるため比較から除外した。

KPDS-2 は乾燥密度 1.6Mg/m3 で供試体高さが 20mm である。一方、KPDS-3、KPDS-H、 KPDS-N01、KPDS-N1 は乾燥密度 1.6Mg/m3 で供試体高さ 5mm である。KPDS-2 と KPDS-3 は pH13 の NaOH 水溶液、KPDS-H は蒸留水、KPDS-N01、KPDS-N1 はそれぞれ 0.1、 1.0mol/I の水溶液を用いている。

KPDS-2 と KPDS-3 の比較から、両者はほぼ同等に膨潤圧に至っていることが分かる。両者

の相違点は、供試体高さだけであり、その影響は供試体とセルの摩擦のみと考えられるため、 KPDS-2の試験結果に対する摩擦の影響は小さいと言える。KPDS-3 と KPDS-H の比較から、 間隙水のイオン強度(pH13の NaOH 水溶液、0.1mol/l)の影響が 1.0MPa 程度であることが 分かる。また、KPDS-3、KPDS-NO3 と KPDS-N01の比較から、間隙水の陰イオンの違いに よる影響が 0.5MPa 程度であることが分かる。さらに、KPDS-N01 と KPDS-N1の比較から、 イオン強度の違いにより 1.5MPa 程度の差が生じることが分かる。KPDS-H、KPDS-N01 と KPDS-N1の比較から、イオン強度が 0 から 0.1 になった場合の影響は 0.5MPa 程度の影響で あるのに対して、0.1~1.0 になった場合の影響は 1.5MPa と急激に大きくなることが分かる。

図 3.2.3-14 Na型モンモリロナイトの溶解に伴う種々の影響

図から、各試験結果を比較して、膨潤圧に及ぼす影響を表にまとめると表 3.2.3・4 のように なる。KPDS・H と KPDS2 の膨潤圧の差からイオン強度とモンモリロナイトの溶解による膨潤 圧の低下量を算出し、KPDS・N01 と KPDS・H の膨潤圧の差からイオン強度による膨潤圧の低 下量を算出した。両者の差をモンモリロナイトの溶解による膨潤圧の低下量として、KPDS・H の膨潤圧にモンモリロナイトの溶解による膨潤圧の低下量を除してモンモリロナイトの溶解の みが発生した場合の膨潤圧とした。この際の膨潤圧を用いて完全飽和線と(式 3.1・21)から溶 解量を算出すると 39wt%となった。実際には、このような大量なモンモリロナイトが試験期間 内で溶解することは難しいと思われるため、膨潤圧の計測誤差などによる影響が大きいものと 考えられる。

さらに、完全飽和線から算出される膨潤圧を真値として、モンモリロナイトの溶解による膨 潤圧の低下量を除して(式 3.1-21)を用いてモンモリロナイトの溶解を算出すると 6.85wt%と なった(表 3.2.3-5)。この場合も、実際のモンモリロナイトの溶解量よりも大きめの値を見積 もっているものと考えられる。

表 3.2.3-4 KPDSの膨潤圧の補正要因と補正後の値(その1)

	要因など	応力 (MPa)
KPDS-H- KPDS2	溶解+イオン強度(H ₂ O→NaOH)	-1.07
KPDS-N01-KPDS-H	イオン強度(NaCl→H ₂ O)	+0.57
	溶解による膨潤圧変化	-0.5
KPDS-H の試験後の膨潤圧		2.83
	溶解のみが発生した場合の膨潤圧	2.33
	完全飽和線、及び(式 3.1-21)から算出した溶解 量	39wt%
KPDS-H-KPDS-NO3	イオン強度(H₂O→NaNO3)	-2.24**
KPDS-2-KPDS-3	リラクゼーション+摩擦	0.29 ^{**}

*陰イオンの影響については更なる検討が必要なため、補正に考慮しない。

***リラクゼーションと摩擦の影響が逆向きに発生しており、さらに個々の試験では摩擦の影響を除去してい るため、補正に考慮しない。

表 3.2.3-5 KPDS の膨潤圧の補正要因と補正後の値(その2)

	要因など	応力 (MPa)
	完全飽和線、及び(式 3.1-21)から算出したモン モリロナイトの膨潤圧 [*]	4.97
KPDS-H- KPDS2	溶解+イオン強度(H ₂ O→NaOH)	-1.07
KPDS-N01-KPDS-H	イオン強度 (NaCl→H ₂ O)	+0.57
	溶解のみが発生した場合の膨潤圧 (摩擦などを補正) [※]	4.47
	完全飽和線、及び(式 3.1-21)から算出した溶解 量	6.85wt%

*乾燥密度として設定値を使用

この結果を図示すると、図 3.2.3-15 のようになる。表 3.2.3-4 に示した方法では、KPDS-H の膨潤圧が完全飽和線から推定される平衡膨潤圧よりも小さいためにモンモリロナイトの溶解 量が非常に大きく見積もられて、ケイ砂 30wt%含有モンモリロナイトと同程度の完全飽和線上 に至っている。一方、表 3.2.3-5 に示した方法では、モンモリロナイトの溶解量が実際よりは 大きいと予想されるものの 6.85wt%程度となり、完全飽和線はほとんど変化しないという結果 となった。

これらの結果は、一次元排気圧縮試験などの一連の結果から得られる完全飽和線により、膨 潤圧から一意的にモンモリロナイトの溶解量(含有量)を取得できることを示している。この ことから、試験精度の影響で妥当なモンモリロナイトの溶解量を示しているとは言い難いが、 検討の進める方向の妥当性を示しているものと言える。

図 3.2.3-15 ベントナイト系人工バリアの Ca 型化中の応力変化

図 3.2.3-16 には、KPDS-HP1 と KPDS-HP2 のクリープ挙動を示している。KPDS-HP1 で は、乾燥密度 1.6Mg/m³に圧縮した Na型モンモリロナイトを 10MPa の荷重一定条件下で pH13 の NaOH 水溶液を 1MPa で通水しながらクリープ変形させることによって、Na型モンモリロ ナイトの圧密~クリープ挙動にモンモリロナイトの溶解とイオン強度が及ぼす影響を、KPDS-HP2 では、乾燥密度 1.6Mg/m³に圧縮した Na型モンモリロナイトを 10MPa の荷重一定条件 下で NaCl 水溶液を 1MPa で通水しながらクリープ変形させることによって、Na型モンモリ ロナイトの圧密~クリープ挙動に鉱物溶解が及ぼす影響を、イオン強度の影響を排除して調べ ることが可能である。また、KPDS-HP1 と KPDS-HP2 を比較することによって、陰イオンが Na 型モンモリロナイトの圧密~クリープ挙動に及ぼす影響を調べることができる。図から、 KPDS-HP2 に比べ KPDS-HP1 の方が、沈下量が有意に大きく、Na型モンモリロナイトの圧 密~クリープ挙動に対して陰イオンが及ぼす影響が有意であることが分かる。

図 3.2.3-16 高アルカリ環境下におけるクリープ挙動の変化

(4) 供試体の解体(平成26年度実施分)

前述のモンモリロナイト溶解試験のうち、表 3.2.3-1 に示す KPDS-HP1 と KPDS-HP2 の解体を行った。解体手順は 3.2.2 (4) で示したもとの同様である。

試験の状況を図 3.2.3-17 に示す。供試体のスライスには、超音波カッターを用いてシート状 に試料が採取できるように工夫した。表 3.2.3-6 に KPDS-HP1,KPDS-HP2 の解体結果を示す。 表に示す通り、概ね良好に解体できた。しかしながら、NaOH 水溶液を用いた HP1 のケース は供試体が固く、スライスが難しかった。図 3.2.3-18 には解体時の湿潤密度分布を示す。解体 に伴う乱れの影響で、密度分布が見られるが、給水側で密度低下が著しい傾向にある。

図 3.2.3-17 KPDS-HP1,KPDS-HP2の解体状況

	脱型時	供試体		押出し厚さ	試料質量	清掃屑	湿潤密度	給水面からの	
case	質量 (a)	厚さ (mm)	No.	(mm)	(g)	質量	(g)	平均距離	特記
No.10 KPDS- HP2	27.11	5.126	No.10 KPDS-HP2-01	0.501	1.985	0.008	1.401	0.251	
			No.10 KPDS-HP2-02	0.502	2.554	0.017	1.799	0.752	
			No.10 KPDS-HP2-03	0.500	2.620	0.020	1.853	1.253	
			No.10 KPDS-HP2-04	0.500	2.686	0.037	1.900	1.753	
			No.10 KPDS-HP2-05	0.499	1.988	0.117	1.409	2.253	前層より乾燥 粉じん多し
			No.10 KPDS-HP2-06	0.251	1.213	0.055	1.709	2.628	明らかに乾燥 ブレード逃げ確認、 デプスゲージで実測
			No.10 KPDS-HP2-07	2.365	11.922	0.011	1.783	3.936	
No.9 KPDS-HP1	27.55	5.225	No.9 KPDS-HP1-01	0.500	1.693	0.009	1.198	0.250	
			No.9 KPDS-HP1-02	0.500	2.671	0.009	1.889	0.750	
			No.9 KPDS-HP1-03	0.301	1.218	0.085	1.431	1.151	リング滑り ブレード加熱変色 水分蒸散多いと考えられる
			No.9 KPDS-HP1-04	0.500	2.362	0.106	1.671	1.551	供試体浮き上がり スライス前供試体端面変色部あり 押えながらスライス
			No.9 KPDS-HP1-05	0.500	2.877	0.064	2.035	2.051	供試体浮き上がり 押えながらスライス
			No.9 KPDS-HP1-06	0.698	3.199	0.130	1.621	2.650	供試体浮き上がり 押えながらスライス
			No.9 KPDS-HP1-07	2.328	11.766	0.010	1.788	4.163	

衣 3.2.3°6 モノモリロノイ F俗胜码駅の胜沿桁

図 3.2.3-18 KPDS-HP1, KPDS-HP2の解体時の湿潤密度分布

(5) 供試体の解体(KPDS-2,KPDS-3, KPDS-H,KPDS-N01,KPDS-N1,KPDS-NO3)

前述のモンモリロナイト溶解試験のうち、表 3.2.3-1 に示す KPDS-2,KPDS-3, KPDS-H, KPDS-N01,KPDS-NI,KPDS-NO3の解体を行った。解体手順は 3.2.2 (4) で示したもとの同様である。

試験の状況写真を図 3.2.3-17 に示す。供試体のスライスには、超音波カッターを用いてシー ト状に試料が採取できるように工夫した。表 3.2.3-7 と表 3.2.3-8 に解体結果を示す。表に示す 通り、概ね良好に解体できた。しかしながら、平成 26 年度と同様に、NaOH 水溶液を用いた KPDS-2 と KPDS-3 のケースは供試体が固く、スライスが難しかった。図 3.2.3-19 には KPDS-3, KPDS-H,KPDS-N01,KPDS-N1,KPDS-NO3 の解体時の乾燥密度分布、飽和度、含水比の分 布を、さらに図 3.2.3-20 には KPDS-2 の解体時の乾燥密度分布、飽和度、含水比の分布を示 す。解体に伴う除荷の影響で、給水側で密度低下が著しい傾向にある。この傾向は、間隙水と して、蒸留水や中性の水溶液を用いたケースの方が著しいため、吸水膨潤が発生しているもの と推察された。一方、NaOH 水溶液を長期に亘って供給し続けた KPDS-2 では、給水側の乾燥 密度が増加する傾向を示している。沈殿物や乾燥に伴う析出物の影響が推察される。

表 3.2.3-7 モンモリロナイト溶解試験の解体結果

Case:No.7 KI	PDS-2		層番号	層厚	給水面か (m	らの距離 m)	湿潤 質量	乾燥 質量	含水比	乾燥 (g/ci	密度 n ³⁾	飽和度
				mm	生データ	補正	g	g	%	生データ	補正	%
供試体直径 D	cm	6.000	1層目	0.500	0.250	0.241	3.180	2.568	23.856	1.816	1.885	140.0
供試体断面積 А	cm ²	28.274	2層目	0.499	0.750	0.722	2.835	2.308	22.844	1.636	1.697	99.8
作成時供試体高さ H0	cm	1.980	3層目	0.500	1.249	1.204	2.649	2.105	25.825	1.489	1.545	90.0
作成時乾燥密度 ρd0	g/cm ³	1.600	4層日	0.501	1.750	1.686	2.734	2.193	24.681	1.548	1.606	94.1
作成時乾燥員重 md0 フライス乾燥紫号 md	g	89.573	の暦日	0.499	2.250	2.168	2.620	2.088	25.467	1.480	1.536	87.6
	g	1 821	0 倍日	0.501	2.750	2.600	2.677	2.130	20.663	1.504	1.561	91.5
計 路後 訪 慢 哲 最 欲 和 mds	5 0	88 641	8屆日	0.500	3.750	3 614	2.001	2.150	25.567	1.525	1.636	101.4
スライス高さ総和 H	cm	2.055	9層目	0.499	4.250	4.095	2.682	2.116	26.737	1.500	1.556	94.7
スライス時乾燥密度 pds	g/cm ³	1.526	10層目	0.501	4.750	4.577	2.744	2.117	29.636	1.494	1.551	104.1
乾燥質量減少量 md0-mds	g	0.932	11層目	0.501	5.251	5.060	2.710	2.135	26.908	1.507	1.564	96.4
膨脹補正率 H/H0	-	1.038	12層目	0.517	5.760	5.550	2.832	2.232	26.870	1.527	1.585	99.2
			13層目	1.001	6.519	6.282	5.492	4.347	26.334	1.536	1.594	98.6
		14層目	0.999	7.519	7.245	5.294	4.195	26.204	1.485	1.541	90.8	
			15層目	1.000	8.518	8.209	5.422	4.284	26.570	1.515	1.572	96.3
			16層目	1.000	9.518	9.172	5.678	4.521	25.586	1.599	1.659	105.5
			17/僧日	1.000	10.518	10.136	5.180	4.177	24.004	1.477	1.533	82.2
			10 居日	0.999	11.518	11.099	5.161	4.134	24.837	1.464	1.519	83.3
			20届日	1,000	12.017	12.002	5 224	4.200	25.335 25.335	1.490	1.562	90.5
			20月日	0.999	14 517	13 989	5.380	4.244	26.761	1 503	1.559	95.2
			22層目	0.999	15.516	14.952	5.338	4.223	26.409	1.495	1.551	92.9
			23層目	0.998	16.514	15.914	4.916	3.954	24.333	1.401	1.454	74.3
		24層目	1.001	17.514	16.877	4.734	3.858	22.706	1.363	1.415	65.5	
		25層目	2.533	19.280	18.580	12.853	10.011	28.393	1.398	1.451	86.3	
Case:No.8 KI	PDS-3	1								1		
供試体直径 D	cm	4.000	1層目	0.500	0.250	0.217	0.940	0.837	12.306	1.332	1.536	42.3
供試体断面積 A	cm ²	12.566	2層目	0.525	0.763	0.661	1.028	0.763	34.714	1.157	1.333	89.1
作成時供試体高さ H0 作式時結婚密度 - 10	cm	0.490	3唐日	0.499	1.275	1.106	1.153	0.901	27.926	1.437	1.657	114.8
作成時乾燥質号 malo	g/cm ^o	0.766	4 暦日	0.499	1.774	1.038	1.104	0.904	27.627	1.442	1.662	114.0
1F成時¥2床員重 ma0 スライス乾燥質量 md	g	10 223	6層日	0.500	2.210	2.405	0.978	0.922	21.415	1.400	1.692	66.8
切削層乾燥質量 dust	9 g	0.144	7層日	0.500	3 274	2.405	1 182	1.050	12 614	1.207	1.404	78.3
試験後乾燥質量総和 mds	g	10.367	8層目	0.500	3.775	3.274	1.199	0.985	21.775	1.567	1.807	112.6
スライス高さ総和 H	cm	0.565	9層目	0.499	4.275	3.708	1.353	1.099	23.168	1.752	2.020	171.7
スライス時乾燥密度 pds	g/cm ³	1.460	10層目	1.125	5.087	4.412	2.574	1.954	31.737	1.382	1.593	118.7
乾燥質量減少量 md0-mds	g	-0.601										
膨脹補正率 H/H0	•	1.153										
Case:No.11 Ki	PDS-H	1.000		0 800	0.0	0.04.	0.500		00.004	0.000	1.005	18.0
	cm	4.000	1 増日	0.506	0.253	0.215	0.729	0.577	26.321	0.908	1.067	45.6
	cm	0.490	2暦日 2届日	0.501	0.707	0.643	1.078	0.839	28.471	1.333	1.868	102.5
作成時候做体間を110 作成時乾燥密度 od0	g/cm ³	1.596	4層日	0.501	1.256	1.005	1.154	0.890	26.325	1.415	1.002	119.7
作成時乾燥質量 md0	g	9.827	5層目	0.500	2.260	1.922	1.133	0.897	26.296	1.400	1.679	111.8
スライス乾燥質量 md	g	9.936	6層目	0.506	2.763	2.349	1.157	0.908	27.465	1.428	1.679	116.7
切削屑乾燥質量 dust	g	0.120	7層目	0.500	3.266	2.777	1.213	0.929	30.514	1.479	1.740	142.2
試験後乾燥質量総和 mds	g	10.056	8層目	0.502	3.767	3.203	1.012	0.826	22.489	1.310	1.540	77.8
スライス高さ総和 H	cm	0.576	9層目	1.745	4.891	4.158	4.021	3.145	27.846	1.434	1.687	119.7
スライス時乾燥密度 pds	g/cm ³	1.389										
乾燥質量減少量 md0-mds	g	-0.229										
	DS-NO1	1.176			_							
供試体直径 D	cm	4.000	1層月	0.500	0.250	0.226	1.099	0.875	25.629	1 392	1.562	91.6
供試体断面積 A	cm ²	12.566	2層目	0.500	0.750	0.678	1.225	0.968	26.510	1.541	1.729	121.6
作成時供試体高さ H0	cm	0.490	3層目	0.502	1.251	1.132	1.142	0.926	23.326	1.468	1.647	94.5
作成時乾燥密度 ρd0	g/cm ³	1.601	4層目	0.502	1.753	1.586	1.200	0.932	28.714	1.478	1.659	118.3
作成時乾燥質量 md0	g	9.858	5層目	0.500	2.254	2.039	1.182	0.932	26.865	1.483	1.664	111.6
スライス乾燥質量 md	9.636	6層目	0.501	2.755	2.492	1.131	0.901	25.541	1.431	1.606	97.3	
切削屑乾燥質量 dust g 0.193 7層目 0.502						2.945	1.256	1.014	23.829	1.608	1.804	122.9
試験後乾燥質量総和 mds	g	9.829	8層目	0.502	3.758	3.399	0.769	0.669	14.982	1.060	1.190	31.2
スワイス局さ総相 H	0.550	9唐日	1.490	4.754	4.300	3.364	2.419	39.048	1.292	1.450	118.5	
ヘフ1へ可犯深密度 ρds	g/cm ³	1.422										
<u>+4)床貝里(水少里 mau-mas</u> 膨脹補正率 H/H0	g -	1.122										

表 3.2.3-8 モンモリロナイト溶解試験の解体結果(続き)

Caso'No 14 KP	DS-NO3		層番号	層厚	給水面か (m	らの距離 m)	湿潤 質量	乾燥 質量	含水比	乾燥 (g/ci	密度 n ³⁾	飽和度	
0450110.14 111	001100			mm	生データ	補正	g	g	%	生データ	補正	%	
供試体直径 D	cm	6.000	1層目	0.615	0.308	0.278	3.030	2.479	22.222	1.426	1.576	81.0	
供試体断面積 A	cm^2	28.274	2層目	0.500	0.865	0.782	2.562	2.048	25.128	1.448	1.601	95.1	
作成時供試体高さ H0	cm	0.490	3層目	0.499	1.365	1.234	2.611	2.069	26.178	1.467	1.621	102.1	
作成時乾燥密度 ρd0	g/cm ³	1.602	4層目	0.500	1.864	1.686	2.589	2.055	25.961	1.454	1.607	99.1	
作成時乾燥質量 md0	g	22.195	5層目	0.501	2.365	2.139	2.533	2.015	25.682	1.423	1.573	93.2	
スライス乾燥質量 md	g	22.289	6層目	0.500	2.865	2.592	2.642	2.088	26.514	1.477	1.633	105.2	
切削屑乾燥質量 dust	g	0.231	7層目	0.503	3.367	3.045	2.552	2.023	26.180	1.422	1.572	94.9	
試験後乾燥質量総和 mds	g	22.520	8層目	0.499	3.868	3.498	2.660	2.089	27.309	1.481	1.637	109.0	
スライス高さ総和 H	cm	0.542	9層目	1.300	4.767	4.312	6.860	5.422	26.515	1.475	1.631	104.8	
スライス時乾燥密度 pds	g/cm ³	1.470											
乾燥質量減少量 md0-mds	g	-0.325											
膨脹補正率 H/H0	•	1.106											
Case:No.13 KF	PDS-N1												
	cm	4.000	1層日	0.501	0.251	0.227	0.915	0.776	17.867	1.233	1.363	47.9	
	cm2	12.566	2階日	0.500	0.751	0.679	1.253	1.022	22.615	1.626	1.798	115.4	
作成時供試体高さ H0	cm	0.490	3 唐日	0.502	1.252	1.133	1.301	1.056	23.154	1.675	1.851	128.7	
作成時乾燥密度 pd0	g/cm ³	1.621	4 借日	0.509	1.758	1.590	1.197	0.958	24.987	1.497	1.655	102.4	
1F 成 時 記 深 員 単 m d 0 フライフ 乾 崎 齋 号 … d	g	9.981	の暦日	0.500	2.262	2.046	1.246	1.005	24.029	1.599	1.768	115.9	
	g	0.100	0 倍日	0.513	2.769	2.504	1.207	0.994	26.510	1.041	1.704	117.0	
切削肩轮屎貝里 dust	g	0.190	(眉日	0.303	3.218	2.965	1.247	0.930	34.072	1.466	1.620	132.6	
武映後紀床員重応相 III08	g	0.542	0周日	0.499	5.760 4.981	0.419 2.979	0.856	0.895	20.020 6 799	1.427	1.077	90.9 10.1	
スパス同さ応和 II スライス時乾燥家度 ods	a/em ³	1 400	3/6日 10届日	0.505	4.201	4 502	2.051	1.594	90.466	1.203	1.403	105.0	
	g/cm a	-0.230	10/8 1	0.050	4.511	4.502	2.001	1.004	20.400	1.410	1.500	100.0	
		1 107											
参考·作製時密	度分布	1.107											
供試体直径 D	cm	1	1屋日	0.500	0.25	Ν	2 787	2.387	16 757	1.688	1	72.2	
供試体断面積 A	cm ²		2層日	1.002	0.751	\	2.319	1.978	17 240	1.394	1	48.2	
作成時供試体高さ H0	cm		3層目	1.502	1.252	\	2.508	2.138	17.306	1.512	1	57.5	
作成時乾燥密度 od0	g/cm ³		4層目	2.002	1.752		2.538	3 2.163 17.337 1.5	1.530		59.1		
作成時乾燥質量 md0	g		5層目	2.504	2.253	1	2.361	2.023	16,708	1.425		48.9	
スライス乾燥質量 md	g		6層目	3.003	2.7535		2.520	2.139	17.812	1.516		59.5	
切削屑乾燥質量 dust	g		7層目	3.503	3.253	\	2.091	1.774	17.869	1.255		40.9	
試験後乾燥質量総和 mds	g		8層目	4.003	3.753		2.422	2.042	18.609	1.444		56.0	
スライス高さ総和 H	cm		9層目	4.522	4.2625		2.588	2.183	18.552	1.488		59.5	
スライス時乾燥密度 pds	g/cm ³		10層目	5.021	4.7715		2.374	2.011	18.051	1.425		52.9	
乾燥質量減少量 md0-mds	g		11層目	5.520	5.2705		2.359	1.993	18.364	1.413		52.8	
膨脹補正率 H/H0	-	-	12層目	6.020	5.77		2.296	1.902	20.715	1.345		54.1	
			13層目	7.019	6.5195	\	5.694	4.769	19.396	1.688		83.6	
			14層目	8.017	7.518	\	5.150	4.301	19.740	1.524		66.7	
			15層目	9.016	8.5165		5.120	4.488	14.082	1.589		52.3	
			16層目	10.015	9.5155		5.499	4.504	22.091	1.595		82.8	
					10.515		5.735	4.696	22.125	1.661		91.5	
					11.515		5.292	4.389	20.574	1.552		72.4	
			19層目	13.016	12.5155		5.708	4.669	22.253	1.650		90.5	
			20層目	14.016	13.516		5.833	4.756	22.645	1.682		96.7	
			21層目	15.017	14.5165		5.517	4.517	22.139	1.596		83.1	
	\sim		22層目	16.017	15.517		5.717	4.694	21.794	1.660		90.0	
		$\overline{\}$	23層目	17.017	16.517		5.426	4.483	21.035	1.586		77.8	
			24層目	18.017	17.517		6.084	5.052	20.428	1.787		102.4	
		\sim	25層目	19.797	18.907	\	5.694	4.769	23.855	1.366		64.2	

図 3.2.3-19 KPDS-3,KPDS-H, KPDS-N01, KPDS-N1,KPDS-NO3の解体結果

図 3.2.3-20 KPDS-2の解体結果

蒸留水による Na 型モンモリロナイトの飽和時の膨潤圧の計測結果と乾燥密度 1.4Mg/m³の Na 型モンモリロナイトの NaOH 水溶液通水時の膨潤圧の経時変化を比較すると、平衡膨潤圧がほぼ 同じ値であり、本試験期間程度の時間内であれば、高 pH がモンモリロナイトの膨潤圧に及ぼす 影響は小さいと言える。

乾燥密度 1.6Mg/m³で体積拘束した条件で NaOH 水溶液を通水した場合の膨潤圧の経時変化から、NaOH 水溶液を通水するに従って膨潤圧が漸減していたが、漸減傾向は通水期間 800 日程度でほぼ終息する傾向であった。この膨潤圧の漸減には、リラクゼーション挙動やイオン強度などの影響も考えられるため、通水液の条件を変えて試験を行った。その結果、間隙水のイオン強度

(pH13 の NaOH 水溶液、0.1mol/l) の影響が 1.0MPa 程度、間隙水の陰イオンの違いによる影響が 0.5MPa 程度であった。さらに、イオン強度の違いにより 1.5MPa 程度の差が生じた。イオン強度の影響は、イオン強度が 0 から 0.1 になった場合の影響は 0.5MPa 程度の影響であるのに対して、0.1~1.0 になった場合の影響は 1.5MPa と急激に大きくなった。よって、NaOH を通水した場合の膨張圧の現象には、イオン強度の影響も含まれると考えられる。

また、膨張圧の低下がモンモリロナイトの溶解によると仮定し、膨潤圧と完全飽和線と(式 2 25)から溶解量を算出すると 6.85~39wt%となる。実際には、このような大量なモンモリロナイトが試験期間内で溶解することは難しいと考えられるため、溶解以外の要因の影響が大きいものと考えられる。その影響として、イオン強度以外に二次鉱物の生成が考えられる。

前述のモンモリロナイト溶解試験のうち、KPDS-2, KPDS-3, KPDS-H, KPDS-N01, KPDS-N1 及び KPDS-NO3 の解体を行った。解体は、超音波カッターを用いて通水方向に 0.5mm から 1mm 程度の厚さの間隔で切断し、密度分布の測定を行った。各切断試料は、モンモリロナイトの溶解 や二次鉱物の生成等について 3.3 項で化学分析を行ない、NaOH を通水した際の膨潤圧の低下の 原因を確認するものとした。なお、NaOH 水溶液を用いた KPDS-2 及び KPDS-3 は供試体が固 く、スライスが難しかった。KPDS-3, KPDS-H, KPDS-N01, KPDS-N1 及び KPDS-NO3 では、給 水側で密度低下が著しい傾向にあり、解体に伴う除荷の影響も含まれる可能性がある。一方、 NaOH 水溶液を長期に供給した KPDS-2 は、給水側の乾燥密度が増加する傾向を示した。沈殿物 や乾燥に伴う析出物の影響が考えられる。これらの情報も踏まえ化学解析結を検討する必要があ る。

3-91

3.3 化学・力学連成モデル試験後の試料の分析

平成26年度に実施した、化学・力学連成モデル試験後の試料の分析では、カラム内における密度、変質、溶解速度などの情報を断面プロファイルとして取得し、圧密下のベントナイトにおけるCa型化及びモンモリロナイトの溶解挙動に関する情報が得られた。加えて、ベントナイトの密度と溶解速度には明瞭な負の相関がみられたことから干渉計試験や数学モデルと同様の抑制効果等が確認できた

平成 27 年度は、3.2.3 において化学・力学連成モデル試験後に解体した Na 型ベントナイトの 溶解に関する試験について化学変質挙動に関して把握し、これまで構築した化学変質に関するモ デルの検証及び力学挙動の関連について検討した。

3.3.1 分析方法

平成 27 年度は Na 型ベントナイトの溶解に伴う力学挙動変化の取得試験の試料について、平成 26 年度の方法にならい分析を実施した。化学分析には、3.2.3(5)で試験体の超音波カッターによ り解体分割によって得られた試料を使用した。試験対象試料の条件、比較情報、分析項目につい て表 3.3.1-1 に示す。分割した試料の内訳は、高さ 5mm の供試体は、給水側より全て高さ 0.5 mm の 8~9 分割で、排水側の残りを 0.9 から 1.7mm とした。高さ 20mm の供試体は給水側より 高さ 6 mm までを 0.5 mm の 12 分割で、その後は高さ 1 mm の 12 分割、排水側の残り 2.5 mm とした。各分析項目の分析方法を以下に示す。

(1) 乾燥密度

超音波カッターによりスライス回収した各試料を、恒量となるまで真空乾燥し、乾燥密度測 定用に試料をカッターナイフなどで分割して、その分割率を測定した。その後メノウ乳鉢で粉 砕し、粉砕した試料を遠沈管に入れ、純水で3回洗浄し、洗浄溶液を回収した。その後、エタ ノールで2回洗浄及び洗浄後の遠心分離を繰り返した。遠心分離後の固相は真空乾燥した。圧 縮ベントナイト供試体の乾燥密度は、洗浄及び真空乾燥後の固相試料(以下、「前処理後の試料」 という)の重量、スライス時の試料体積と質量(前処理後の質量を、分割率を用いて、量り取り 前の試料全体の質量に換算)から乾燥密度を算出した。

(2) FESEM 観察及び EDS 分析

各試料について、純水中に分散し、イオン交換樹脂 MB-20 を同体積加えて脱イオンした分散 溶液を、ピペットを用いて、HOPG (highly oriented pyrolytic graphite: 高配向グラファイト) 基板上に滴下し、乾燥したものを Pt スパッタコートして、FESEM(field emission scanning electron microscope)、JEOL JSM-6700F に供した。加速電圧は 15 kV を用いて、観察と同時 に EDS(energy dispersive X-ray spectrometer)による定量分析を行った。定量の際、補正法は、 理論的に計算された内部標準データに基づく簡易 Oxide ZAF 法を用いた。微細部を観察(産状 観察)も合わせて行い、二次鉱物の生成の有無を確認した。二次鉱物の生成が認められた場合に

試料番号		力学試験条件					分析	項目			
	モンモリロナイト	間隙水	備考	イオン 強度	溶解速度	液相 分析	乾燥 密度	FESEM -EDS	XRD	µ-XRD	AFM
KPDS-1	ケイ砂含有クニピア F	NaOH 水溶液 pH13 程度	終了	•	•						
KPDS-2	クニピア F 乾燥密度 1.6Mg/m ³ 程度	NaOH 水溶液 pH13 程度	※継続試験 NaOH 水溶液を通水中 供試体高さ 20mm	•	•	•	•	•	•	•	•
KPDS-3	クニピア F 乾燥密度 1.6Mg/m ³ 程度	NaOH 水溶液 pH13 程度	※継続試験 供試体高さ 5mm	•	•	•	•	•	•	•	•
KPDS-HP1	クニピア F 乾燥密度 1.6Mg/m ³ 程度	NaOH 水溶液 pH13 程度 超高圧、高通水圧	※継続試験 供試体高さ 5mm	•	•	•	•	•	•	•	•
KPDS-HP2	クニピア F 乾燥密度 1.6Mg/m ³ 程度	NaCl 水溶液 0.1mol/l 程度 超高圧、高通水圧	※継続試験 供試体高さ 5mm	•	•	•	•	•	•	•	•
KPDS-H	クニピア F 乾燥密度 1.6Mg/m ³ 程度	蒸留水	※継続試験 供試体高さ 5mm			•	•	•	•	•	•
KPDS-N01	クニピア F 乾燥密度 1.6Mg/m ³ 程度	NaCl 水溶液 0.1mol/l 程度	※継続試験 供試体高さ 5mm	•		•	•	•	•	•	•
KPDS-Nl	クニピア F 乾燥密度 1.6Mg/m ³ 程度	NaCl 水溶液 1.0mol/l 程度	※継続試験 供試体高さ 5mm			•	•	•	•	•	•
KPDS-NO3	クニピア F 乾燥密度 1.6Mg/m ³ 程度	NaNO3 水溶液 1.0mol/l 程度	※継続試験 供試体高さ 5mm	•		•	•	•	•	•	•

表 3.3.1-1 Na型ベントナイトの溶解に伴う力学挙動変化の取得試験

(ハッチ部は完了試料。対象項目は青文字で示す。)

は、EDS により化学組成分析を行った。モンモリロナイトと判断される場所、それ以外の随伴鉱物 あるいは二次鉱物と推定されるものをそれぞれ、Area、あるいは Point で指定して、EDS による元 素分析を行った。測定した結果のうち、モンモリロナイトと判断された箇所は全酸素数を 22.0 とし て陽イオン数を算出した。分析結果を表 3.3.2-7 から表 3.3.2-12 にまとめて示した。

(3) モンモリロナイト含有量

各試料について、標準となる分割位置、及び全体を均等に見られる位置を考慮して 5mm の供試体は 3~5 箇所、20mm の供試体については 5 箇所を対象に分析した。(以下、各分析に対して同様の試料を用いた。)熱分析(TG/DTA)を用いた手法[12]等により、試料中のモンモリロナイト含有割合を測定した。この方法は、モンモリロナイトの構造中の H₂O(⁻) が高温で脱離する際、その量がモンモリロナイト量に比例することを利用してモンモリロナイトの含有量を測定するものである。

TG/DTA の測定には平成 26 年度と同様に、リガク㈱の機器を用い、N₂を 20ml/min の流量で流 した雰囲気中で 15 ℃/min の速さで昇温して測定した。この手法では、取得された TG 曲線より、 含水鉱物の分解特性を元に、各鉱物を同定しながら同時に定量ができるが、今回注目するモンモリ ロナイトの層間水、構造水それぞれの放出温度領域は、室温から 500℃が層間水、500℃から 845℃ が構造水と識別できる。(図 3.3.1-1)乾燥重量(層間水を放出後の重量)に対する構造水の重量濃 度は、純粋なモンモリロナイト(クニピア P)の場合、平成 25 年度の報告書で求めたように 4.74 wt.%であるので、この値に対する割合が、構造水をベースにしたモンモリロナイトの含有量となる。 モンモリロナイト含有量は(式 2.5.1-1)に従って求めた。

(4) AFM による溶解の測定

力学試験回収試料のモンモリロナイト粒子を、純水分散処理を行い、白雲母基板上に乾燥固定したものを原子間力顕微鏡(AFM: Atomic Force Microscopy)により観察し、その画像を処理することで単分子粒子の形状データを取得した。

(5) XRD 分析

カラム内の粘土の変質については、X線による結晶評価が有効である。そこで、各試料について 不定方位のX線回折データを得、その後、エチレングリコール処理後の定方位分析を行い、二次鉱 物の有無を検討した。

(6) µ-XRD 分析

各試料について、μ-XRD を使用してデバイシェラーリングをイメージングプレートに撮影し、解 析して鉱物を同定した。装置は Rigaku RINT Rapid (㈱リガク製)を用い、300 ミクロン径にコリ メートされた X 線による分析を行った。剥離した試料をホルダーに固定し、X 線ビームで打ち抜く 前方散乱の回折パターンを撮影した。

(7) 液相分析

通水溶液の液性は、表 3.3.1-1 に示したとおりである。平成 27 年度はこれらのカラムの排水側で 回収される通水液が試験期間では充分な液量に達していなかった。そこで、カラム解体時にスライ ス回収されたすべての試料についての粘土量、密度測定のための純水洗浄時の洗浄溶液を用いて、 その化学組成を ICP-AES 分析した。この分析によって、固相試料の間隙水化学組成を知ることがで きるため、粘土の変質の重要な手掛かりとなる。

液相分析の項目は、Na, K, Ca, Mg, Si, Al, Cl, SO₄², NO₃, pH である。陽イオンは ICP-AES 分 析によって、陰イオンはイオンクロマトグラフィーによって、pH は 25℃において pH メータによ り測定した。ICP-AES 分析の際はウルトラフィルター (USY-1:分画分子量 10,000)を用いて限外 ろ過を施し、粘土成分を除去した。洗浄液の化学組成(mg/kg=ppm≈mg/l)を用いて、洗浄に用いた 純水の体積(ml)と、洗浄後の固相重量(g)から、固相に付着していた成分の重量比(mg/g)の値が得ら れる。分析で得られたイオン濃度は、試料のモンモリロナイト含有量(wt.%)、体積、乾燥密度、モン モリロナイトの真密度(=2.74)より、間隙水の体積(間隙率x体積)を求め、間隙水中の溶質の濃度 への変換を行った。pH だけは、そのまま洗浄後の溶液の値とした。

3.3.2 試験結果

(1) 乾燥密度

回収した試料の洗浄による乾燥密度の測定結果を表 3.3.2-1~表 3.3.2-6 に示す。これらの密度プロファイルを図 3.3.2-1 から図 3.3.2-6 に示す。

通水液のアルカリ濃度が高い系の供試体 KPDS-2,3 は同じ溶液でも異なる密度プロファイルを示している。20 mm カラムである KPDS-2 は給水側の密度が明らかに高くなっており、なおかつ通水

量が充分ではないことから、高アルカリ環境によって溶解よりも高イオン強度と荷重によって高密 度化が起きていると思われる。一方で、5 mm カラムの KPDS-3 供試体は、給水側から 3 mm まで の密度は低くなっている傾向が見られ(図 3.3.2-2)、この領域での溶解が示唆される。

通水液が H₂O の試験(KPDS-H)では、給水側 1 mm までの密度低下が~0.5 g/cm³と顕著である。この溶液条件での溶解はアルカリ条件の上記 2 件よりも起こりにくいため、この密度低下は膨 潤により、上流側の自由空間(フィルター内やその外の通水系)への分散が起きたことなどが考え られる(図 3.3.2-3)。また、一方で化学的な影響以外にも、荷重を解放した時の膨潤の影響による 密度の変化も考えられる。

溶解が起こらない系と考えられる NaCl 溶液条件の KPDS-N01 (0.1M NaCl), 及び、N1 (1.0M NaCl)では、どちらも給水側 1 mm までの領域の密度低下が認められる。高濃度 NaCl の方が、その 低下がやや顕著に見える。同じく溶解が起こらない系である NaNO3 溶液条件の KPDS-NO3 は、今 回分析した供試体の中で最も安定した密度プロファイルを示し、通水中、特に大きな固相の状態変 化はなかったと解釈できる。

				乾燉	前	乾燥後		分割			洗	浄後		乾燥密度(g/cm ³)			
KPDS-2	厚み(mm)	位置	体積(cm³)	切断直後の 重量(g)	湿潤密度	乾燥後の重 量(g)	含水率%	洗浄前密度	含水比,%	分割後の重 量(g)	分割%	重量(風 袋込)	風袋	重量(g)	減量%	全重量(g)	密度
07-01	0.500	0.250	1.414	3.180	2.249	2.5675	19.3%	1.816	23.9	0.5382	21.0%	16.6620	16.1548	0.5072	5.8%	2.420	1.712
07-02	0.499	0.750	1.411	2.835	2.009	2.3078	18.6%	1.636	22.8	0.4303	18.6%	16.5405	16.1845	0.3560	17.3%	1.909	1.353
07-03	0.500	1.249	1.414	2.649	1.874	2.1053	20.5%	1.489	25.8	0.4522	21.5%	16.5473	16.1414	0.4059	10.2%	1.890	1.337
07-04	0.501	1.750	1.417	2.734	1.930	2.1928	19.8%	1.548	24.7	0.5371	24.5%	16.6476	16.1245	0.5231	2.6%	2.136	1.508
07-05	0.499	2.250	1.411	2.620	1.857	2.0882	20.3%	1.480	25.5	0.4472	21.4%	16.7000	16.2995	0.4005	10.4%	1.870	1.326
07-06	0.501	2.750	1.417	2.677	1.890	2.1303	20.4%	1.504	25.7	0.4059	19.1%	16.6336	16.2672	0.3664	9.7%	1.923	1.358
07-07	0.500	3.250	1.414	2.691	1.903	2.1558	19.9%	1.525	24.8	0.4725	21.9%	16.6909	16.2535	0.4374	7.4%	1.996	1.412
07-08	0.500	3.750	1.414	2.798	1.979	2.2283	20.4%	1.576	25.6	0.4846	21.7%	16.6228	16.1471	0.4757	1.8%	2.187	1.547
07-09	0.499	4.250	1.411	2.682	1.901	2.1162	21.1%	1.500	26.7	0.3898	18.4%	16.5298	16.1458	0.3840	1.5%	2.085	1.478
07-10	0.501	4.750	1.417	2.744	1.937	2.1167	22.9%	1.494	29.6	0.546	25.8%	16.6703	16.1400	0.5303	2.9%	2.056	1.451
07-11	0.501	5.251	1.417	2.710	1.913	2.1354	21.2%	1.507	26.9	0.4699	22.0%	16.6947	16.2937	0.4010	14.7%	1.822	1.286
07-12	0.517	5.760	1.462	2.832	1.937	2.2322	21.2%	1.527	26.9	0.4756	21.3%	16.7566	16.3342	0.4224	11.2%	1.983	1.356
07-13	1.001	6.519	2.830	5.492	1.940	4.3472	20.8%	1.536	26.3	0.5148	11.8%	16.8171	16.3055	0.5116	0.6%	4.320	1.526
07-14	0.999	7.519	2.825	5.294	1.874	4.1948	20.8%	1.485	26.2	0.431	10.3%	16.6783	16.2839	0.3944	8.5%	3.839	1.359
07-15	1.000	8.518	2.827	5.422	1.918	4.2838	21.0%	1.515	26.6	0.543	12.7%	16.6558	16.1320	0.5238	3.5%	4.132	1.462
07-16	1.000	9.518	2.827	5.678	2.008	4.5212	20.4%	1.599	25.6	0.4613	10.2%	16.7742	16.3302	0.4440	3.8%	4.352	1.539
07-17	1.000	10.518	2.827	5.180	1.832	4.1773	19.4%	1.477	24.0	0.5747	13.8%	16.6684	16.1260	0.5424	5.6%	3.943	1.394
07-18	0.999	11.518	2.825	5.161	1.827	4.1342	19.9%	1.464	24.8	0.5853	14.2%	16.8201	16.2615	0.5586	4.6%	3.946	1.397
07-19	1.000	12.517	2.827	5.217	1.845	4.2299	18.9%	1.496	23.3	0.5601	13.2%	16.8406	16.2946	0.5460	2.5%	4.123	1.458
07-20	1.000	13.517	2.827	5.334	1.887	4.2558	20.2%	1.505	25.3	0.44633	10.5%	16.7234	16.2659	0.4575	-2.5%	4.362	1.543
07-21	0.999	14.517	2.825	5.380	1.905	4.2442	21.1%	1.503	26.8	0.3487	8.2%	16.6887	16.3318	0.3569	-2.4%	4.344	1.538
07-22	0.999	15.516	2.825	5.338	1.890	4.2228	20.9%	1.495	26.4	0.5503	13.0%	16.9034	16.3305	0.5729	-4.1%	4.396	1.556
07-23	0.998	16.514	2.822	4.916	1.742	3.9539	19.6%	1.401	24.3	0.3463	8.8%	16.4990	16.1708	0.3282	5.2%	3.747	1.328
07-24	1.001	17.514	2.830	4.734	1.673	3.8580	18.5%	1.363	22.7	0.4908	12.7%	16.7649	16.3060	0.4589	6.5%	3.607	1.275
07-25	2.533	19.280	7.160	12.853	1.795	10.0107	22.1%	1.398	28.4	0.6595	6.6%	16.9725	16.3055	0.6670	-1.1%	10.125	1.414

表 3.3.2-1 密度の測定結果(KPDS-2)

表 3.3.2-2 密度の測定結果(KPDS-3)

				乾燥前		乾燥後				分割			洗	乾燥密度(g/cm ³)			
KPDS-3	厚み(mm)	位置	体積(cm ³)	切断直後の 重量(g)	湿潤密度	乾燥後の重 量(g)	含水率%	洗浄前密度	含水比,%	分割後の重 量(g)	分割%	重量(風 袋込)	風袋	重量(g)	減量%	全重量(g)	密度
08-01	0.500	0.250	0.628	0.940	1.496	0.8370	11.0%	1.332	12.3	0.4199	50.2%	16.6706	16.3585	0.3121	25.7%	0.622	0.990
08-02	0.525	0.763	0.660	1.028	1.558	0.7631	25.8%	1.157	34.7	0.3813	50.0%	16.5720	16.3080	0.2640	30.8%	0.528	0.801
08-03	0.499	1.275	0.627	1.153	1.839	0.9013	21.8%	1.437	27.9	0.4418	49.0%	16.7352	16.3006	0.4346	1.6%	0.887	1.414
08-04	0.499	1.774	0.627	1.154	1.840	0.9042	21.6%	1.442	27.6	0.46	50.9%	16.7940	16.3408	0.4532	1.5%	0.891	1.421
08-05	0.500	2.273	0.628	1.175	1.870	0.9222	21.5%	1.468	27.4	0.4861	52.7%	16.7818	16.3145	0.4673	3.9%	0.887	1.411
08-06	0.500	2.773	0.628	0.978	1.557	0.8086	17.3%	1.287	20.9	0.4266	52.8%	16.5512	16.1343	0.4169	2.3%	0.790	1.258
08-07	0.502	3.274	0.631	1.182	1.874	1.0496	11.2%	1.664	12.6	0.4329	41.2%	16.6218	16.2035	0.4183	3.4%	1.014	1.608
08-08	0.500	3.775	0.628	1.199	1.908	0.9846	17.9%	1.567	21.8	0.3509	35.6%	16.6611	16.3256	0.3355	4.4%	0.941	1.498
08-09	0.499	4.275	0.627	1.353	2.158	1.0985	18.8%	1.752	23.2	0.433	39.4%	16.7879	16.3708	0.4171	3.7%	1.058	1.687
08-10	1.125	5.087	1.414	2.574	1.821	1.9539	24.1%	1.382	31.7	0.3276	16.8%	16.7175	16.3960	0.3215	1.9%	1.918	1.356

表 3.3.2-3 密度の測定結果(KPDS-H)

	厚み(mm)		体積(cm ³)	乾燥前		乾燥後				分割			洗	乾燥密度(g/cm ³)			
KPDS-H		位置		切断直後の 重量(g)	湿潤密度	乾燥後の重 量(g)	含水率%	洗浄前密度	含水比,%	分割後の重 量(g)	分割%	重量(風 袋込)	風袋	重量(g)	減量%	全重量(g)	密度
11-01	0.506	0.253	0.636	0.729	1.146	0.5771	20.8%	0.908	26.3	0.2753	47.7%	16.3839	16.2546	0.1293	53.0%	0.271	0.426
11-02	0.501	0.757	0.630	1.078	1.712	0.8391	22.2%	1.333	28.5	0.4427	52.8%	16.5357	16.1304	0.4053	8.4%	0.768	1.220
11-03	0.501	1.258	0.630	1.154	1.833	0.8898	22.9%	1.413	29.7	0.4163	46.8%	16.6122	16.2396	0.3726	10.5%	0.796	1.265
11-04	0.502	1.759	0.631	1.168	1.852	0.9246	20.8%	1.466	26.3	0.4363	47.2%	16.6629	16.2600	0.4029	7.7%	0.854	1.353
11-05	0.500	2.260	0.628	1.133	1.803	0.8971	20.8%	1.428	26.3	0.4489	50.0%	16.6683	16.2586	0.4097	8.7%	0.819	1.303
11-06	0.506	2.763	0.636	1.157	1.820	0.9077	21.5%	1.428	27.5	0.4515	49.7%	16.7672	16.3355	0.4317	4.4%	0.868	1.365
11-07	0.500	3.266	0.628	1.213	1.931	0.9294	23.4%	1.479	30.5	0.4743	51.0%	16.7003	16.2960	0.4043	14.8%	0.792	1.261
11-08	0.502	3.767	0.631	1.012	1.604	0.8262	18.4%	1.310	22.5	0.3231	39.1%	16.5563	16.2966	0.2597	19.6%	0.664	1.053
11-09	1.745	4.891	2.193	4.021	1.834	3.1452	21.8%	1.434	27.8	0.7768	24.7%	17.0964	16.3304	0.7660	1.4%	3.101	1.414

表 3.3.2-4 密度の測定結果(KPDS-N01)

	厚み(mm)	位置	体積(cm³)	乾燥前			乾炸	纍後		分割			洗	乾燥密度(g/cm ³)			
KPDS-NO1				切断直後の 重量(g)	湿潤密度	乾燥後の重 量(g)	含水率%	洗浄前密度	含水比,%	分割後の重 量(g)	分割%	重量(風 袋込)	風袋	重量(g)	減量%	全重量(g)	乾燥密度
12-01	0.500	0.250	0.628	1.099	1.749	0.8748	20.4%	1.392	25.6	0.4643	53.1%	16.7640	16.3200	0.4440	4.4%	0.837	1.331
12-02	0.500	0.750	0.628	1.225	1.950	0.9683	21.0%	1.541	26.5	0.5994	61.9%	16.9205	16.3312	0.5893	1.7%	0.952	1.515
12-03	0.502	1.251	0.631	1.142	1.810	0.9260	18.9%	1.468	23.3	0.4787	51.7%	16.7179	16.2431	0.4748	0.8%	0.918	1.456
12-04	0.502	1.753	0.631	1.200	1.902	0.9323	22.3%	1.478	28.7	0.4378	47.0%	16.7705	16.3390	0.4315	1.4%	0.919	1.457
12-05	0.500	2.254	0.628	1.182	1.881	0.9317	21.2%	1.483	26.9	0.4712	50.6%	16.8023	16.3421	0.4602	2.3%	0.910	1.448
12-06	0.501	2.755	0.630	1.131	1.796	0.9009	20.3%	1.431	25.5	0.4167	46.3%	16.5274	16.1404	0.3870	7.1%	0.837	1.329
12-07	0.502	3.256	0.631	1.256	1.991	1.0143	19.2%	1.608	23.8	0.476	46.9%	16.6567	16.1845	0.4722	0.8%	1.006	1.595
12-08	0.502	3.758	0.631	0.769	1.219	0.6688	13.0%	1.060	15.0	0.3009	45.0%	16.5365	16.2288	0.3077	-2.3%	0.684	1.084
12-09	1.490	4.754	1.872	3.364	1.797	2.4193	28.1%	1.292	39.0	0.5273	21.8%	16.6763	16.1543	0.5220	1.0%	2.395	1.279

表 3.3.2-5 密度の測定結果(KPDS-N1)

	厚み(mm)	位置	体積(cm³)	乾燥前			乾	燥後		分	割		洗	乾燥密度(g/cm ³)			
KPDS-N1				切断直後の 重量(g)	湿潤密度	乾燥後の重 量(g)	含水率%	洗浄前密度	含水比,%	分割後の重 量(g)	分割%	重量(風 袋込)	風袋	重量(g)	減量%	全重量(g)	密度
13-01	0.501	0.251	0.630	0.915	1.453	0.7763	15.2%	1.233	17.9	0.3749	48.3%	16.6071	16.2535	0.3536	5.7%	0.732	1.163
13-02	0.500	0.751	0.628	1.253	1.994	1.0219	18.4%	1.626	22.6	0.4653	45.5%	16.7980	16.3339	0.4641	0.3%	1.019	1.622
13-03	0.502	1.252	0.631	1.301	2.062	1.0564	18.8%	1.675	23.2	0.3163	29.9%	16.5380	16.2199	0.3181	-0.6%	1.062	1.684
13-04	0.509	1.758	0.640	1.197	1.871	0.9577	20.0%	1.497	25.0	0.4786	50.0%	16.6737	16.1995	0.4742	0.9%	0.949	1.484
13-05	0.500	2.262	0.628	1.246	1.983	1.0046	19.4%	1.599	24.0	0.4722	47.0%	16.6879	16.2243	0.4636	1.8%	0.986	1.570
13-06	0.513	2.769	0.645	1.257	1.950	0.9936	21.0%	1.541	26.5	0.5175	52.1%	16.7900	16.2519	0.5381	-4.0%	1.033	1.603
13-07	0.505	3.278	0.635	1.247	1.965	0.9301	25.4%	1.466	34.1	0.4418	47.5%	16.5357	16.1020	0.4337	1.8%	0.913	1.439
13-08	0.499	3.780	0.627	1.132	1.805	0.8947	21.0%	1.427	26.5	0.4558	50.9%	16.6390	16.2111	0.4279	6.1%	0.840	1.339
13-09	0.503	4.281	0.632	0.856	1.354	0.8020	6.3%	1.269	6.7	0.3599	44.9%	16.6818	16.2895	0.3923	-9.0%	0.874	1.383
13-10	0.890	4.977	1.118	2.051	1.834	1.5842	22.8%	1.416	29.5	0.4906	31.0%	16.7713	16.2828	0.4885	0.4%	1.577	1.410

表 3.3.2-6 密度の測定結果(KPDS-NO3)

	厚み(mm)		体積(cm³)	乾燥前		乾燥後				分割		洗浄後				乾燥密度(g/cm ³)	
KPDS-Ntr		位置		切断直後の 重量(g)	湿潤密度	乾燥後の重 量(g)	含水率%	洗浄前密度	含水比,%	分割後の重 量(g)	分割%	重量(風 袋込)	風袋	重量(g)	減量%	全重量(g)	密度
14-01	0.615	0.308	1.739	3.030	1.743	2.4791	18.2%	1.426	22.2	1.203	48.5%	17.4558	16.3122	1.1436	4.9%	2.357	1.355
14-02	0.500	0.865	1.414	2.562	1.812	2.0475	20.1%	1.448	25.1	1.1979	58.5%	17.3504	16.2142	1.1362	5.2%	1.942	1.374
14-03	0.499	1.365	1.411	2.611	1.851	2.0693	20.7%	1.467	26.2	0.9573	46.3%	17.1946	16.2635	0.9311	2.7%	2.013	1.427
14-04	0.500	1.864	1.414	2.589	1.831	2.0554	20.6%	1.454	26.0	1.0522	51.2%	17.3142	16.2957	1.0185	3.2%	1.990	1.407
14-05	0.501	2.365	1.417	2.533	1.788	2.0154	20.4%	1.423	25.7	0.9522	47.2%	17.0463	16.1350	0.9113	4.3%	1.929	1.362
14-06	0.500	2.865	1.414	2.642	1.869	2.0883	21.0%	1.477	26.5	1.0188	48.8%	17.1643	16.1785	0.9858	3.2%	2.021	1.429
14-07	0.503	3.367	1.422	2.552	1.794	2.0225	20.7%	1.422	26.2	1.0141	50.1%	17.0966	16.1324	0.9642	4.9%	1.923	1.352
14-08	0.499	3.868	1.411	2.660	1.885	2.0894	21.5%	1.481	27.3	0.9381	44.9%	16.9743	16.1058	0.8685	7.4%	1.934	1.371
14-09	1.300	4.767	3.676	6.860	1.866	5.4223	21.0%	1.475	26.5	0.5513	10.2%	16.7546	16.2147	0.5399	2.1%	5.310	1.445

図 3.3.2-1 密度プロファイル(KPDS-2)

図 3.3.2-2 密度プロファイル(KPDS-3)

図 3.3.2-3 密度プロファイル(KPDS-H)

図 3.3.2-4 密度プロファイル(KPDS-N01)

図 3.3.2-5 密度プロファイル(KPDS-N1)

図 3.3.2-6 密度プロファイル(KPDS-NO3)

(2) FESEM 観察及び EDS 分析

KPDS-2 の FESEM 観察にて給水側から排水側に向かって観察した結果を順に図 3.3.2-7 から図 3.3.2-11 に示す。SEM 観察によって、無数の粒子状結晶が乾燥した液滴周縁部に集まっていること がわかる。これらの多くは石英であり、他に少量の斜長石やゼオライトが含まれている。

KPDS-3 の FESEM 観察結果を図 3.3.2-12 から図 3.3.2-16 に、KPDS-H の FESEM 観察結果 を図 3.3.2-17 から図 3.3.2-21 に、KPDS-N01 の FESEM 観察結果を図 3.3.2-22 から図 3.3.2-24 に、KPDS-N1 の FESEM 観察結果を図 3.3.2-25 から図 3.3.2-28 に、KPDS-NO3 の FESEM 観察 結果を図 3.3.2-29 から図 3.3.2-31 にそれぞれ示す。

以上の観察より、NaOH を通水した KPDS・2 の給水側及び排水側には1 ミクロンに達する角ばった結晶質のシリカ相の沈殿が顕著にあることがわかる。これに対し、H₂O を通水した KPDS・H はどのスライス試料もわずかに粒子状のシリカ相を伴っている程度で、全体的に均一な粘土組成を呈している。NaCl、NaNO₃の Na イオンを含む溶液を通水した試料では、やや微細なシリカ相が多いが、NaOH を通水したものよりそのサイズは小さい(500 nm 以下)。

次に、EDS 分析により各試料のモンモリロナイトの陽イオン組成を分析した結果を表 3.3.2-7 から表 3.3.2-12 に示す。層間イオン組成は、トータル陽イオンチャージ数を CEC(=Na + 2Ca + K) (apfu)として表してある。これらの結果を力学試験の試験体ごとに試料通水入り口側からの距離で 整理して図 3.3.2-32 に示した。

図 3.3.2-7 KPDS-2_7-1の FESEM-EDS 観察・分析結果(各エリアは EDS 分析領域)

図 3.3.2-8 KPDS-2_7-3の FESEM-EDS 観察・分析結果

図 3.3.2-9 KPDS-2_7-5の FESEM-EDS 観察・分析結果

図 3.3.2-10 KPDS-2_7-17の FESEM-EDS 観察・分析結果

図 3.3.2-11 KPDS-2_7-25の FESEM-EDS 観察・分析結果

図 3.3.2-12 KPDS-3_8-1の FESEM-EDS 観察・分析結果

図 3.3.2-13 KPDS-3_8-3の FESEM-EDS 観察・分析結果

図 3.3.2-14 KPDS-3_8-5の FESEM-EDS 観察・分析結果

図 3.3.2-15 KPDS-3_8-7の FESEM-EDS 観察・分析結果

図 3.3.2-16 KPDS-3_8-10の FESEM-EDS 観察・分析結果

図 3.3.2-17 KPDS-H_11-1の FESEM-EDS 観察・分析結果

図 3.3.2-18 KPDS-H_11-3の FESEM-EDS 観察・分析結果

図 3.3.2-19 KPDS-H_11-5の FESEM-EDS 観察・分析結果

図 3.3.2-20 KPDS-H_11-7の FESEM-EDS 観察・分析結果

図 3.3.2-21 KPDS-H_11-9の FESEM-EDS 観察・分析結果

図 3.3.2-22 KPDS-N01_12-1の FESEM-EDS 観察・分析結果

図 3.3.2-23 KPDS-N01_12-3の FESEM-EDS 観察・分析結果

図 3.3.2-24 KPDS-N01_12-5の FESEM-EDS 観察・分析結果

図 3.3.2-25 KPDS-N1_13-1の FESEM-EDS 観察・分析結果

図 3.3.2-26 KPDS-N1_13-2の FESEM-EDS 観察・分析結果

図 3.3.2-27 KPDS-N1_13-3の FESEM-EDS 観察・分析結果

図 3.3.2-28 KPDS-N1_13-5の FESEM-EDS 観察・分析結果

図 3.3.2-29 KPDS-NO3_14-1の FESEM-EDS 観察・分析結果

図 3.3.2-30 KPDS-NO3_14-3の FESEM-EDS 観察・分析結果

図 3.3.2-31 KPDS-NO3_14-5の FESEM-EDS 観察・分析結果

表 3.3.2-7 KPDS-2 の EDS 分析による陽イオン組成

KPDS-2	CI: //	EDS	~	c:		F -		6-	N		tetel	CEC (as total	
Column#	Slice#	spot#	0	Si	AI	Fe	Mg	Ca	Na	K	total	cation charge)	XNa
7	1	208	36	14.44	3.59	0.17	0.15	0.01	0.09	2.67	21.12	2.78	0.03
7	1	209	2	0.94	0.06	0.01	0.01	0.00	0.00	0.01	1.03	0.01	0.00
, 7	1	205	2	3.05	1 00	0.01	0.01	0.00	0.00	0.01	1.00	0.01	0.00
7	1	210	2	0.02	0.06	0.01	0.11		0.25	0.02	4.55	0.27	0.55
7	1	211	2	0.95	0.00		0.01	0.01	0.05	0.02	1.07	0.07	0.71
7	1	215	2	0.60	0.10	0.01	0.05	0.01		0.01	1.07	0.03	0.00
/	1	215	2	0.91	0.09	0.01	0.03	0.01		0.01	1.06	0.03	0.00
/	1	216	22	8.02	3.40	0.12	0.74				12.28	0.00	
7	1	217	22	8.12	3.31	0.17	0.60	0.02			12.22	0.04	0.00
7	1	218	22	7.94	3.56	0.22	0.47	0.09			12.28	0.18	0.00
7	1	219	22	7.96	3.41	0.11	0.73	0.13			12.34	0.26	0.00
7	1	220	22	8.01	3.32	0.14	0.76	0.03	0.13		12.39	0.19	0.81
7	1	221	22	8.06	3.22	0.49	0.52		0.06	0.03	12.38	0.09	0.67
7	1	222	22	7.92	3.43	0.13	0.68	0.03	0.21	0.11	12.51	0.38	0.60
7	1	223	22	8.01	3.24	0.45	0.50		0.20	0.16	12.56	0.36	0.56
7	1	224	22	7.81	3.53	0.33	0.71		0.04	0.04	12.46	0.08	0.50
7	1	225	22	8.01	3.19	0.19	0.69	0.09	0.35	0.08	12.60	0.61	0.67
7	1	226	22	8.04	2.95	0.30	1.06	0.08	0.06	0.07	12.56	0.29	0.29
7	3	227	22	8.14	3.12	0.27	0.69		0.12	0.04	12.38	0.16	0.75
7	3	228	22	8.21	3.09	0.20	0.64	0.06	0.10		12.30	0.22	0.63
7	3	229	22	7.83	3 51	0.18	0.80		0.17		12 49	0.17	1.00
, 7	3	220	22	7.05	3 37	0.10	0.00	0 13	0.17	0.00	12.35	0.26	0.00
7	2	200	22	0 1/	2 10	0.10	0.75	0.13		0.00	12.55	0.20	0.00
7	2	231	22	7.04	3.10	0.29	0.75	0.03	0.02	0.02	12.51	0.00	0.00
7	2	252	22	7.04	3.54	0.00	0.82	0.11	0.05	0.05	12.45	0.28	0.10
/	3	233	22	7.68	3.79	0.21	0.60	0.08	0.06	0.07	12.49	0.29	0.29
/	3	234	22	8.19	3.11	0.22	0.66	0.01	0.04	0.06	12.29	0.12	0.36
7	5	235	22	7.98	3.20	0.34	0.79		0.24		12.55	0.24	1.00
7	5	236	22	7.98	3.40	0.17	0.67	0.08	0.02		12.32	0.18	0.20
7	5	237	22	7.90	3.41	0.11	0.89	0.08			12.39	0.16	0.00
7	5	238	22	7.63	3.41	0.33	1.08	0.05	0.34		12.84	0.44	0.87
7	5	239	22	8.05	3.00	0.31	0.97	0.09	0.07	0.01	12.50	0.26	0.41
7	5	240	22	8.09	3.15	0.28	0.75		0.13		12.40	0.13	1.00
7	5	241	22	7.86	3.42	0.07	0.87	0.20	0.03		12.45	0.43	0.13
7	5	242	22	7.87	3.53		0.95				12.35	0.00	
7	5	243	22	7.61	3.75	0.47	0.36	0.18		0.28	12.65	0.64	0.00
7	17	245	22	8.18	3.23	0.23	0.42	0.04	0.03	0.16	12.29	0.27	0.13
7	17	246	22	8.13	3.03	0.33	0.81		0.06	0.03	12.39	0.09	0.67
7	17	247	22	8.08	3.19	0.19	0.79	0.05		0.09	12.39	0.19	0.00
7	17	248	22	7.96	3.33	0.12	0.83	0.13			12.37	0.26	0.00
7	17	249	22	7.96	3 22	0.27	0.96		0.03		12 44	0.03	1.00
, 7	17	250	22	7 93	3 36	0.18	0.90		0.05		12.11	0.00	1.00
7	17	250	22	9.55 8.14	3.00	0.10	0.55		0.22	0.04	12.40	0.00	0.85
7	17	251	22	7.05	2.00	0.30	0.80	0.02	0.22	0.04	12.30	0.20	0.85
7	17	252	22	7.95 0.16	2.20	0.20	0.90	0.02	0.12	0.00	12.47	0.10	0.80
7	17	255	22	0.10	5.10	0.52	0.00	0.42	0.05	0.42	12.24	0.00	0.47
/	17	254	22	7.82	3.35	0.13	0.99	0.13	0.05	0.12	12.59	0.43	0.17
/	1/	255	22	8.19	3.31	0.01	0.64	0.01			12.16	0.02	0.00
7	17	256	22	8.16	3.00	0.23	0.94		0.00		12.33	0.00	
7	17	257	22	8.10	3.25	0.17	0.76		0.00		12.28	0.00	
7	17	258	22	7.92	3.40	0.23	0.73	0.04	0.11	0.04	12.47	0.23	0.58
7	17	259	22	8.05	3.22	0.02	0.96	0.07		0.03	12.35	0.17	0.00
7	17	260	22	8.11	3.12	0.27	0.79	0.04			12.33	0.08	0.00
7	17	261	22	7.85	3.63	0.19	0.58	0.03	0.14		12.42	0.20	0.82
7	25	262	22	7.98	3.24	0.15	0.93		0.19		12.49	0.19	1.00
7	25	263	22	8.00	3.26	0.36	0.68		0.14		12.44	0.14	1.00
7	25	264	22	8.07	3.25	0.29	0.62		0.15		12.38	0.15	1.00
7	25	265	22	7.87	3.46	0.26	0.60	0.09	0.12	0.10	12.50	0.40	0.39
7	25	266	22	8.14	3.21	0.11	0.74	0.04		0.03	12.27	0.11	0.00
7	25	267	22	8.04	3.22	0.32	0.48	0.01	0.43	0.14	12.64	0.59	0.74
7	25	268	22	7.89	3.83	0.10	0.35	0.02		0.05	12.24	0.09	0.00
7	25	269	22	7.92	3.13	0.43	0.87	0.08	0.06	0.10	12.59	0.32	0.25
7	25	270	22	7 92	3,13	0.43	0.87	0.08	0.06	0.10	12 59	0.32	0.25
י ד	25	270	22	8 02	3 26	0.78	0.74	0.00	0.04	5.10	12 36	0.52	0.23
י ר	25	271	22	7 20	3.20	0.20	0.94	0.01	0.04	0 00	12.50	0.00	0.00
י ר	2.) 75	212	22 22	7.05 07 7	2 12	0.20	0.00	0.07		0.05	12.21	0.05	0.00
/ -	20	2/3	22	7.79 07 7	כ+3 סיד	0.30	0.90	0.07	0.06		12.49	0.14	1.00
/	25	274	22	7.70	5.77	0.14	0.77	0.01	0.06	0.05	12.44	0.06	1.00
7	25	2/5	22	7.96	3.29	0.17	0.80	0.01	0.29	0.05	12.57	0.36	0.83

表 3.3.2-8 KPDS-3の EDS 分析による陽イオン組成

KPDS-3	CI:++#	EDS	~	C :		F -	N.4-	6-	Nie	K	tatal	CEC (as total	VNIa
Column#	Since#	spot#	0	51	AI	re	ivig	Ca	INd	ĸ	total	cation charge)	ANd
8	1	156	22	8.32	2.96	0.10	0.59	0.03	0.34	0.04	12.38	0.44	0.83
8	1	157	22	8.13	3.10	0.17	0.81	0.13			12.34	0.26	0.00
8	1	158	22	8.25	2.96	0.17	0.85			0.08	12.31	0.08	0.00
8	1	160	22	8.16	3.21	0.29	0.51	0.06	0.00	0.00	12.23	0.12	0.00
8	1	161	22	7.88	3.14	0.37	0.79		0.72		12.90	0.72	1.00
8	1	162	22	7.50	3.59	0.51	1.03		0.07	0.08	12.78	0.15	0.47
8	1	163	22	7.95	3.04	0.42	0.80	0.11	0.44		12.76	0.66	0.80
8	1	164	22	7.72	3.48	0.24	0.99		0.10	0.12	12.65	0.22	0.45
8	1	165	22	7.85	3.41	0.29	0.62		0.54		12.71	0.54	1.00
8	3	166	22	7.72	3.55	0.35	0.83		0.10		12.55	0.10	1.00
8	3	167	22	7.97	3.38	0.29	0.70				12.34	0.00	
8	3	168	22	7.72	3.63	0.35	0.73		0.06	0.01	12.50	0.07	0.86
8	3	169	22	8.21	3.20	0.17	0.59		0.03		12.20	0.03	1.00
8	3	170	22	8.07	3.34	0.05	0.73	0.07			12.26	0.14	0.00
8	3	171	22	7.90	3.60	0.11	0.68			0.02	12.31	0.02	0.00
8	3	172	22	7.81	3.24	0.36	0.99		0.35		12.75	0.35	1.00
8	3	173	22	7.98	3.47	0.20	0.56	0.04	0.07		12.32	0.15	0.64
8	5	180	22	7.96	3.31	0.20	0.89	0.00	0.03		12.39	0.03	1.00
8	5	181	22	8.03	3.22	0.20	0.89			0.02	12.36	0.02	0.00
8	5	182	22	8.07	3.41	0.09	0.55	0.06		0.08	12.26	0.20	0.00
8	5	183	22	7.90	3.48	0.13	0.76	0.03	0.14		12.44	0.20	0.82
8	5	184	22	7.97	3.22	0.31	0.88	0.04			12.42	0.08	0.00
8	5	185	22	7.84	3.35	0.43	0.71	0.06	0.13	0.03	12.55	0.28	0.59
8	7	186	22	7.91	2.99	0.52	0.94	0.08	0.20	0.10	12.74	0.46	0.53
8	7	187	22	8.04	3.16	0.23	0.57	0.32	0.12		12.44	0.76	0.27
8	7	188	22	7.88	3.23		1.17	0.05	0.34		12.67	0.44	0.87
8	7	190	22	8.03	3.38	0.20	0.46		0.21	0.20	12.48	0.41	0.51
8	7	192	22	8.09	3.68	0.04	0.16	0.07	0.04	0.04	12.12	0.22	0.27
8	10	194	22	7.85	3.21	0.24	0.99	0.20	0.12		12.61	0.52	0.38
8	10	195	22	7.73	3.49	0.27	0.99			0.08	12.56	0.08	0.00
8	10	196	22	8.00	3.21	0.00	0.99		0.17	0.21	12.58	0.38	0.45
8	10	197	22	7.89	3.39	0.42	0.68		0.07		12.45	0.07	1.00
8	10	198	22	7.89	3.21	0.27	0.91	0.05	0.36		12.69	0.46	0.88
8	10	199	22	8.07	3.24	0.22	0.75	0.04			12.32	0.08	0.00
8	10	200	22	7.72	3.70	0.23	0.79				12.44	0.00	
8	10	201	22	7.88	3.31		1.15		0.27		12.61	0.27	1.00
8	10	202	22	8.12	3.17		0.84	0.12	0.09		12.34	0.33	0.43
8	10	203	22	8.03	3.44	0.19	0.46	0.03	0.18	0.03	12.36	0.27	0.75
8	10	204	22	7.91	3.57	0.23	0.49	0.09	0.04		12.33	0.22	0.31
8	10	205	22	7.88	3.33	0.25	0.78	0.16		0.08	12.48	0.40	0.00
8	10	206	22	7.94	3.41	0.33	0.51	0.08	0.14		12.41	0.30	0.64

表 3.3.2-9 KPDS-Hの EDS 分析による陽イオン組成

KPDS-H Column#	Slice#	EDS spot#	0	Si	Al	Fe	Mg	Са	Na	К	total	CEC (as total cation charge)	XNa
11	1	. 098	22	7.88	3.15	0.49	0.95		0.12	0.02	12.61	0.14	0.86
11	1	099	22	8.15	2.84	0.33	1.10	0.02			12.44	0.04	0.00
11	1	100	22	7.85	3.38	0.34	0.77	0.13			12.47	0.26	0.00
11	1	101	22	8.06	3.31	0.20	0.65		0.11		12.33	0.11	1.00
11	1	102	22	7.63	3.79	0.08	0.76	0.10	0.18	0.04	12.58	0.42	0.56
11	1	103	22	7.62	3.76	0.36	0.70		0.14		12.58	0.14	1.00
11	1	104	22	8.31	2.82	0.07	0.86		0.42		12.48	0.42	1.00
11	1	105	22	7.71	3.36	0.55	0.97	0.03			12.62	0.06	0.00
11	1	106	22	7.92	3.18	0.50	0.78		0.23		12.61	0.23	1.00
11	3	118	22	7.84	3.28	0.60	0.58		0.34	0.13	12.77	0.47	0.72
11	3	119	22	7.86	3.28	0.29	1.08				12.51	0.00	
11	3	121	22	8.17	3.07	0.11	0.70	0.08	0.34		12.47	0.50	0.81
11	3	122	22	7.56	3.72		1.03	0.12	0.26		12.69	0.50	0.68
11	3	123	22	7.73	3.80		0.59	0.03	0.34	0.09	12.58	0.49	0.74
11	3	124	22	7.94	3.29	0.28	0.84		0.13		12.48	0.13	1.00
11	3	125	22	8.18	2.95	0.20	0.75	0.13	0.09	0.20	12.50	0.55	0.21
11	3	127	22	7.88	3.01	0.94	0.74	0.03	0.05		12.65	0.11	0.63
11	3	128	22	7.84	3.53	0.21	0.82				12.40	0.00	
11	3	130	22	7.98	3.30	0.29	0.67		0.27		12.51	0.27	1.00
11	3	131	22	7.72	3.87		0.64	0.04	0.05	0.09	12.41	0.22	0.28
11	3	132	22	8.00	3.41	0.06	0.63		0.32	0.09	12.51	0.41	0.78
11	5	135	22	7.52	3.66	0.46	0.78	0.01	0.44		12.87	0.46	0.98
11	5	136	22	7.99	3.01	0.22	0.93		0.71		12.86	0.71	1.00
11	5	154	22	7.81	3.48	0.44	0.51		0.44		12.68	0.44	1.00
11	5	155	22	8.04	2.93	0.48	0.93		0.15	0.11	12.64	0.26	0.58
11	7	139	22	7.84	3.43	0.28	0.84		0.07	0.04	12.50	0.11	0.64
11	7	140	22	7.97	3.34	0.22	0.83		0.04		12.40	0.04	1.00
11	7	141	22	7.95	3.44	0.19	0.74			0.01	12.33	0.01	0.00
11	7	142	22	8.01	3.46	0.10	0.65		0.07		12.29	0.07	1.00
11	7	143	22	7.96	3.26	0.31	0.80	0.02	0.11	0.01	12.47	0.16	0.79
11	9	145	22	7.96	2.91	0.06	1.33	0.15	0.36		12.77	0.66	0.71
11	9	146	22	8.05	3.20	0.17	0.77	0.11	0.08		12.38	0.30	0.42
11	9	147	22	8.14	3.07		0.76	0.18	0.24	0.13	12.52	0.73	0.44
11	9	148	22	8.17	3.31	0.22	0.47				12.17	0.00	
11	9	149	22	8.13	2.93	0.55	0.74		0.11		12.46	0.11	1.00
11	9	150	22	8.40	3.26	0.11	0.15	0.04	0.01		11.97	0.09	0.20
11	9	151	22	7.94	3.25	0.22	0.91	0.07	0.11		12.50	0.25	0.61
11	9	152	22	7.79	3.39	0.24	0.77	0.08	0.41	0.05	12.73	0.62	0.76

KPDS-N01	Slice#	EDS	0	Si	Δ١	Fe	Μσ	Ca	Na	к	total	CEC (as total	XNa
Column#	Silce#	spot#	0	51	Ai	TC .	IVIS	Ca	Nu	ĸ	totai	cation charge)	And
12	1	070	22	8.17	3.16	0.15	0.75		0.04		12.27	0.04	1.00
12	1	071	22	7.70	3.29	0.60	0.98	0.07			12.64	0.14	0.00
12	1	072	22	7.60	3.87		0.74	0.06	0.31	0.09	12.67	0.52	0.67
12	1	073	22	7.84	3.36	0.27	0.95	0.05			12.47	0.10	0.00
12	1	074	22	7.77	3.48	0.20	0.78		0.50		12.73	0.50	1.00
12	1	075	22	8.24	2.86		0.80	0.23	0.24	0.17	12.54	0.87	0.38
12	1	079	22	8.04	3.22	0.22	0.74	0.08	0.11		12.41	0.27	0.58
12	3	084	22	7.85	3.17	0.21	1.02	0.15	0.34	0.08	12.82	0.72	0.60
12	3	086	22	8.09	3.23	0.20	0.56	0.09	0.23	0.03	12.43	0.44	0.66
12	3	090	22	7.76	3.54	0.12	1.03		0.03		12.48	0.03	1.00
12	3	091	22	8.05	3.41	0.37	0.27		0.29		12.39	0.29	1.00
12	3	092	22	7.61	3.27	0.66	0.89	0.08	0.12	0.37	13.00	0.65	0.21
12	5	093	22	8.01	3.42	0.15	0.53		0.35		12.46	0.35	1.00
12	5	094	22	7.99	3.51	0.13	0.49		0.28		12.40	0.28	1.00
12	5	095	22	7.92	3.36	0.25	0.79		0.03	0.13	12.48	0.16	0.19
12	5	096	22	7.93	3.37	0.11	0.92		0.08	0.07	12.48	0.15	0.53
12	5	097	22	7.76	3.51	0.01	1.15		0.05	0.04	12.52	0.09	0.56

表 3.3.2-10 KPDS-N01の EDS 分析による陽イオン組成

表 3.3.2-11 KPDS-N1の EDS 分析による陽イオン組成

KPDS-N1	Slice#	EDS spot#	0	Si	Al	Fe	Mg	Ca	Na	К	total	CEC (as total	XNa
13	1	030	22	8.06	3.02	0.70	0.65				12.43	0.00	
13	1	033	22	8.00	3.30	0.38	0.48		0.35		12.51	0.35	1.00
13	1	034	2	0.94	0.07	0.02				0.01	1.04	0.01	0.00
13	1	035	22	7.85	3.58	0.21	0.61	0.03	0.16		12.44	0.22	0.84
13	1	036	22	7.62	3.81	0.15	0.60	0.18	0.24		12.60	0.60	0.57
13	1	037	22	7.83	3.61	0.36	0.45	0.02	0.06	0.14	12.47	0.24	0.27
13	1	038	22	7.96	3.18	0.29	0.77	0.01	0.36	0.11	12.68	0.49	0.75
13	1	039	22	8.14	2.90	0.31	0.86	0.18	0.04		12.43	0.40	0.18
13	1	040	22	8.02	3.18	0.33	0.68	0.05	0.25		12.51	0.35	0.83
13	2	041	22	7.93	3.17	0.48	0.83		0.14		12.55	0.14	1.00
13	2	042	22	8.25	2.72	0.33	1.03		0.13		12.46	0.13	0.00
13	2	043	22	7.95	3.10	0.22	1.19			0.08	12.54	0.08	1.00
13	2	044	22	8.04	3.20		0.78		0.67		12.69	0.67	
13	2	045	22	7.73	3.82	0.41	0.41				12.37	0.00	0.00
13	2	046	22	8.02	3.02	0.30	1.06			0.14	12.54	0.14	
13	3	047	22	7.89	3.31	0.26	0.75	0.25			12.46	0.50	0.00
13	3	048	22	7.83	3.09	0.44	0.79	0.19	0.47	0.10	12.91	0.95	0.62
13	3	049	22	8.25	2.72	0.33	1.03		0.13		12.46	0.13	1.00
13	3	050	22	7.88	3.55	0.22	0.57	0.12			12.34	0.24	0.00
13	3	051	22	7.37	3.76	0.49	0.74		0.78		13.14	0.78	1.00
13	3	052	22	7.68	3.08	0.29	1.26		0.52	0.41	13.24	0.93	0.56
13	5	054	22	7.45	3.91	0.20	1.04			0.01	12.61	0.01	0.00
13	5	055	22	8.17	3.27	0.16	0.49		0.01	0.20	12.30	0.21	0.05
13	5	056	22	7.88	3.23	0.34	1.00	0.03	0.05	0.02	12.55	0.13	0.50
13	5	057	22	8.07	3.53	0.14	0.42			0.01	12.17	0.01	0.00
13	5	058	22	8.05	3.28	0.23	0.53	0.09	0.16	0.11	12.45	0.45	0.44
13	5	059	22	7.99	3.57	0.18	0.48				12.22	0.00	
13	7	060	22	8.04	2.89	0.32	1.07	0.06		0.26	12.64	0.38	0.00
13	7	061	22	7.99	3.33	0.18	0.71	0.03	0.16	0.05	12.45	0.27	0.67
13	7	062	22	7.77	3.55	0.39	0.44	0.25	0.15		12.55	0.65	0.38
13	7	064	22	7.90	3.02	0.35	1.07		0.45	0.06	12.85	0.51	0.88
13	7	067	22	8.09	3.17	0.23	0.82				12.31	0.00	
13	7	068	22	7.80	3.45	0.39	0.77	0.06			12.47	0.12	0.00

KPDS-Ntr	Slice#	EDS	0	Si	Δ١	Fρ	Μσ	Ca	Na	к	total	CEC (as total	XNa
Column#	Slice#	spot#	0	51	Ai	Te	IVIg	Ca	INd	ĸ	totai	cation charge)	Ana
14	1	006	8	3.17	0.94	0.01			0.35	0.12	4.59	0.47	0.74
14	1	008	2	0.93	0.02	0.01	0.02	0.01	0.00		0.99	0.02	0.00
14	1	009	2	0.91	0.09		0.01		0.02	0.00	1.03	0.02	1.00
14	1	010	2	0.88	0.12		0.05		0.01		1.06	0.01	1.00
14	1	001	22	8.71	2.09	1.44	0.00	0.00	0.00	0.00	12.24	0.00	
14	1	002	22	7.42	1.28	0.92	1.28	0.00	0.46	0.27	11.63	0.73	0.63
14	1	003	22	7.85	4.03			0.26			12.14	0.52	0.00
14	1	005	22	7.72	2.93	0.49	1.44	0.14		0.20	12.92	0.48	0.00
14	1	011	22	7.52	3.52	0.74	0.63	0.08	0.44		12.93	0.60	0.85
14	1	012	22	8.23	3.08		0.81	0.11			12.23	0.22	0.00
14	1	013	22	8.45	3.03		0.44	0.03	0.14		12.09	0.20	0.82
14	1	014	22	7.84	3.54		0.38	0.22	0.80		12.78	1.24	0.78
14	3	015	22	7.91	3.14	0.41	0.79	0.19	0.03	0.15	12.62	0.56	0.08
14	3	016	22	7.94	3.46		0.76	0.18			12.34	0.36	0.00
14	3	017	22	8.53	2.74	0.14	0.60		0.21		12.22	0.21	1.00
14	3	018	22	7.73	3.60	0.24	0.73	0.05	0.12	0.09	12.56	0.31	0.46
14	3	019	22	7.89	3.55		0.80	0.09			12.33	0.18	0.00
14	3	020	2	0.88	0.13	0.01	0.03		0.02		1.07	0.02	1.00
14	3	021	2	0.85	0.17	0.01	0.03				1.06	0.00	
14	5	022	22	8.10	3.01	0.21	1.07				12.39	0.00	
14	5	023	22	7.87	3.27	0.32	0.96		0.07	0.08	12.57	0.15	0.47
14	5	024	22	7.70	3.41	0.41	0.97	0.06	0.09	0.04	12.68	0.25	0.47
14	5	025	22	8.01	3.41		0.84	0.03	0.02		12.31	0.08	0.40
14	5	026	22	7.79	3.43	0.21	0.94	0.01	0.21		12.59	0.23	0.95
14	5	027	22	8.11	3.15	0.33	0.59	0.02	0.21		12.41	0.25	0.91
14	5	028	2	0.84	0.18	0.01	0.04				1.07	0.00	

表 3.3.2-12 KPDS-NO3 の EDS 分析による陽イオン組成

NaOH を通水した試料では両端で CEC 値がやや高い。H2O を通水した試料では、給水側でやや CEC が低下している。NaCl を通水した試料では希薄な 0.1M では給水側から内部にかけて CEC は 低下する傾向が顕著であるが、高濃度の 1M になると、その特徴的な組成プロファイルは見られな い。NaNO3 を通水した試料では給水側から内部への CEC の勾配は給水側の CEC 値が今回の試料 中最も高く、組成プロファイルもきれいな拡散勾配を示している。平成 26 年の分析値[3]について も同様に再プロットを行った。図 3.3.2-33 にそれらの結果を示す。

モンモリロナイトの CEC 値はモンモリロナイト構造が維持されている以上は変化しない。H26 試料では、CKPCa-H 試料(Ca型モンモリロナイトに H2O を通水)の給水側が平成 27 年度の試料 と近い結果を示しており、それ以外は高い値を示していた。特に Na を含む溶液の通水試料は入り 口側で高くなっている。以上の結果より、平成 27 年度の試料は反応期間が長いにもかかわらず、モ ンモリロナイトの CEC から判断できる変質は少なく、CEC を大きく変化させる(8 面体サイトの Al から Mg への置換に伴う層間チャージの増加)変質は平成 26 年度試料の KPDS-HP1(NaOH 通 水)に起きていたと考えられる。

図 3.3.2-32 各試料におけるトータル層間陽イオンチャージ(apfu)のプロファイル

図 3.3.2-33 平成 26 年度の分析におけるトータル層間陽イオンチャージ(apfu)のプロファイル

(3) モンモリロナイト含有量

07-25 19.280

26.368

1.404

2.041

表 3.3.2-13 から表 3.3.2-18 に定量結果を示す。1 M NaNO₃ 試料以外のモンモリロナイト含有量 はどれも概ね 100 wt.%以下の結果となった。NO₃:成分がモンモリナイトの水和状態に影響した可 能性が考えられる。5 mm の NaOH 試料(KPDS-3)では給水側に向かってモンモリロナイト含有量 が低下していて、乾燥密度プロファイルと整合的であるが、20 mm の NaOH 試料(KPDS-2)では乾 燥密度が大きい給水側で含有率が低い傾向があり、必ずしも乾燥密度と含有率は整合していない。

IG-DTA mont Mont含有量 TG-DTA TG-DTA mont TG-DTA 位置 TG-DTA H2O+ TG-DTA H2O+ TG-DTA H2O-TG-DTA H2O+ TG-DTA H2O+ TG-DTA H2O-KPDS-2 含有量 含有量 sample sample loss A (mg) loss B (mg) loss (mg) loss A (mg) loss B (mg) loss (mg) (mm) (wt.%) (mg) (wt.%) (mg) (wt.%) 97.496 07-01 1.581 0.250 32.661 2.854 4.234 97.658 30.763 2.135 3.610 4.862 97.333 07-02 0.750 27.642 4.564 2.023 3.463 96.034 29,468 2.030 3.365 4,480 90.098 93.066 07-03 1.249 07-04 1 750 0.945 2.506 22.517 1.742 95.900 32.354 1.439 93.837 94.869 2.686 3.834 07-05 2.250 07-06 2.750 07-07 3.250 07-08 3.750 4.250 07-09 4.750 07-10 07-11 5.251 07-12 5.760 07-13 6.519 07-14 7.519 07-15 8.518 07-16 9.518 10.518 32.354 1.439 2.506 3.834 93.837 30.640 1.395 2.526 3.771 93.456 93.646 07-17 07-18 11.518 07-19 12.517 07-20 13.517 07-21 14.517 07-22 15.516 07-23 16.514 07-24 17.514

表 3.3.2-13 TG-DTA によるモンモリロナイト含有量分析(KPDS-2)

表 3.3.2-14 TG-DTA によるモンモリロナイト含有量分析(KPDS-3)

24.080

1.344

1.928

2.997

101.775

101.015

100.254

3.197

KPDS-3	位置 (mm)	TG-DTA sample (mg)	TG-DTA H2O+ loss A (mg)	TG-DTA H2O+ loss B (mg)	TG-DTA H2O- loss (mg)	TG-DTA mont 含有量 (wt.%)	TG-DTA sample (mg)	TG-DTA H2O+ loss A (mg)	TG-DTA H2O+ loss B (mg)	TG-DTA H2O- loss (mg)	TG-DTA mont 含有量 (wt.%)	Mont含有量 (wt.%)
08-01	0.250	27.229	1.352	2.651	3.738	93.340	26.738	1.358	2.544	3.611	93.097	93.219
08-02	0.763											
08-03	1.275	21.212	1.158	1.877	2.745	94.728	22.931	1.388	2.099	3.057	97.070	95.899
08-04	1.774											
08-05	2.273	22.098	1.338	2.147	3.067	97.214	23.724	1.459	2.285	3.281	97.924	97.569
08-06	2.773											
08-07	3.274	26.537	1.516	2.688	3.792	97.599	25.981	1.681	2.762	3.809	95.179	96.389
08-08	3.775											
08-09	4.275											
08-10	5.087	32.779	1.598	2.736	4.150	99.315	32.552	1.496	2.926	4.306	98.242	98.778

表 3.3.2-15 TG-DTA によるモンモリロナイト含有量分析(KPDS-H)

位置 (mm)	TG-DTA sample (mg)	TG-DTA H2O+ loss A (mg)	TG-DTA H2O+ loss B (mg)	TG-DTA H2O- loss (mg)	TG-DTA mont 含有量 (wt.%)	TG-DTA sample (mg)	TG-DTA H2O+ loss A (mg)	TG-DTA H2O+ loss B (mg)	TG-DTA H2O- loss (mg)	TG-DTA mont 含有量 (wt.%)	Mont含有量 (wt.%)
0.253	23.888	1.512	2.663	3.684	101.551	24.330	1.531	2.593	3.601	97.898	99.725
0.757											
1.258	21.168	1.315	2.077	2.962	97.834	19.853	1.215	1.906	2.766	101.118	99.476
1.759											
2.260	20.317	1.345	1.963	2.812	97.673	24.567	1.634	2.409	3.438	97.937	97.805
2.763											
3.266	26.284	1.343	2.103	3.201	95.724	26.623	1.292	2.087	3.178	93.825	94.775
3.767											
4.891	19.814	0.680	1.211	2.128	103.946	29.557	1.061	1.935	3.376	110.051	106.998

表 3.3.2-16 TG-DTA によるモンモリロナイト含有量分析(KPDS-N01)

KPDS-N01	位置 (mm)	TG-DTA sample (mg)	TG-DTA H2O+ loss A (mg)	TG-DTA H2O+ loss B (mg)	TG-DTA H2O- loss (mg)	TG-DTA mont 含有量 (wt.%)	TG-DTA sample (mg)	TG-DTA H2O+ loss A (mg)	TG-DTA H2O+ loss B (mg)	TG-DTA H2O- loss (mg)	TG-DTA mont 含有量 (wt.%)	Mont含有量 (wt.%)
12-01	0.250	22.105	1.019	1.510	2.454	96.726	21.256	1.134	1.520	2.431	97.371	97.049
12-02	0.750											
12-03	1.251	24.413	1.228	1.702	2.756	97.890	21.038	1.708	2.173	3.032	96.031	96.960
12-04	1.753											
12-05	2.254	23.970	1.772	2.494	3.487	97.534	20.094	1.397	1.864	2.700	96.685	97.109
12-06	2.755											
12-07	3.256											
12-08	3.758											
12-09	4.754											

表 3.3.2-17 TG-DTA によるモンモリロナイト含有量分析(KPDS-N1)

KPDS-N1	位置 (mm)	TG-DTA sample (mg)	TG-DTA H2O+ loss A (mg)	TG-DTA H2O+ loss B (mg)	TG-DTA H2O- loss (mg)	TG-DTA mont 含有量 (wt.%)	TG-DTA sample (mg)	TG-DTA H2O+ loss A (mg)	TG-DTA H2O+ loss B (mg)	TG-DTA H2O- loss (mg)	TG-DTA mont 含有量 (wt.%)	Mont含有量 (wt.%)
13-01	0.251	23.966	0.997	1.913	2.925	96.726	25.545	1.037	1.858	2.966	98.630	97.678
13-02	0.751											
13-03	1.252	24.999	1.260	1.693	2.771	97.588	26.273	1.835	2.229	3.338	97.333	97.461
13-04	1.758											
13-05	2.262	34.563	1.441	2.028	3.533	97.545	25.999	1.547	2.029	3.194	102.483	100.014
13-06	2.769											
13-07	3.278											
13-08	3.780											
13-09	4.281											
13-10	4.977											

表 3.3.2-18 TG-DTA によるモンモリロナイト含有量分析(KPDS-NO3)

KPDS-Ntr	位置 (mm)	TG-DTA sample (mg)	TG-DTA H2O+ loss A (mg)	TG-DTA H2O+ loss B (mg)	TG-DTA H2O- loss (mg)	TG-DTA mont 含有量 (wt.%)	TG-DTA sample (mg)	TG-DTA H2O+ loss A (mg)	TG-DTA H2O+ loss B (mg)	TG-DTA H2O- loss (mg)	TG-DTA mont 含有量 (wt.%)	Mont含有量 (wt.%)
14-01	0.308	17.460	1.001	1.355	2.161	105.580	25.870	1.604	2.291	3.433	102.169	103.875
14-02	0.865											
14-03	1.365	29.989	1.611	2.177	3.509	101.005	29.750	1.498	2.181	3.479	99.299	100.152
14-04	1.864											
14-05	2.365	17.755	1.009	1.283	2.103	104.995	25.608	1.297	1.802	2.961	102.726	103.860
14-06	2.865											
14-07	3.367											
14-08	3.868											
14-09	4.767											

含有量の分析結果を図 3.3.2-34 及び図 3.3.2-35 に示す。試料の乾燥密度とモンモリロナイト含 有量測定結果の関係を平成 26 年度の分析結果と合わせて図 3.3.2-36 に示す。NaOH を通水した試 験試料について、直線回帰を行った結果、20 mm 試料の KPDS-2 では 8.14、5 mm 試料の KPDS-3 ではやや大きい 5.88 の勾配を示していた。これらの値は平成 26 年度の分析結果よりもかなり大 きく(0.02)、モンモリロナイトの含有量測定結果と乾燥密度には関連があることが示唆される。

NaOH を通水した試験試料について、直線回帰を行った結果、20 mm 試料の KPDS-2 では 8.14、 5 mm 試料の KPDS-3 ではやや大きい 5.88 の勾配を示していた。これらの値は平成 26 年度の分析 結果よりもかなり大きい(1.45, 0.88)。NaOH 1M を通水した試料の KPDS-HP1 では 1 点を除くと、 KPDS-2 試料の結果に調和的にも見える。直線回帰と測定結果の相関が良くない理由は、変質相の 出現の影響が考えられる。いずれにしても、乾燥密度の低下とモンモリロナイト含有量の測定結果 の関連が平成 27 年度の分析ではより強く現れている。

本検討では、含有量と乾燥密度に関する有益な知見が得られた。本測定のモンモリロナイト含有 量は変質が起きていない試料の含水量をもとに求めている。この含有量の低下は、固相内のモンモ リロナイト相対的な減少を示すため、溶解と同時に二次鉱物の生成があったことも示すが、本分析 の試料では、二次鉱物の生成は認められなかった。本検討では含有量と乾燥密度に相関が認められ、 何らかの関連が示唆できる。一方、モンモリロナイトそのものの量が低下しなくても、変質によっ て構造中により重い元素を取り込むことにより相対的に含水率が低下する影響も考えられる。その ため、本検討では、他の分析結果を踏まえると何らかの変質挙動をとらえているが、含有量の評価 が難しいケースであることも踏まえ、モンモリロナイトの溶解等の変質に関しては、AFM 測定によ る溶解速度の方が適性があると考えた。

図 3.3.2-34 モンモリロナイト含有量(a: 0.1M NaOH, 20 mm; b: 0.1M NaOH, 5 mm)

図 3.3.2-35 モンモリロナイト含有量(a: H₂O; b: 0.1M NaCl; c: 1.0M NaCl; d: 1M NaNO₃)

図 3.3.2-36 乾燥密度とモンモリロナイト含有率の関係

- (4) AFM による溶解の測定
 - 1) AFM 測定結果

各粒子測定データは統計処理により、BSA、ESAの中央値を求め、代表値とした。図 3.3.2-37 から図 3.3.2-42 に、各試料のモンモリロナイト単分子粒子の粒径分布(円近似した直径,nm)と ESA(分子ごとの端面積,nm²)を示す。

図 3.3.2-37 AFM による単分子粒子の粒径、ESA 分布(KPDS-2)

図 3.3.2-38 AFM による単分子粒子の粒径、ESA 分布(KPDS-3)

図 3.3.2-39 AFM による単分子粒子の粒径、ESA 分布(KPDS-H)

図 3.3.2-40 AFM による単分子粒子の粒径、ESA 分布(KPDS-N01)

図 3.3.2·41 AFM による単分子粒子の粒径、ESA 分布(KPDS·N1)

図 3.3.2-42 AFM による単分子粒子の粒径、ESA 分布(KPDS-NO3)

2) 溶解速度の解析 AFM による溶解の測定

測定手法は平成 26 年度報告書に記述したものと同じく、各単分子粒子のモンモリロナイトを、 その面積(底面及び端面)を画像処理によって求め、その平均面積と初期試料の平均面積の差から、 溶解量 ΔV を算出した。その速度は、試験期間中の平均溶解速度となる。溶解速度の算出式を(式 2.6.3-1)に示す。この式では、モンモリロナイト 1 分子粒子を代表として、溶解フラックスを計算 している。端面積(ESA)、底面積(BSA)の中央値(median 値)は AFM の測定から得た。取 得データは全て、出発試料であるクニピア F の測定値(図 3.3.2-43)を基準にしている。

$$rate = -\frac{\left(BSA - BSA_{KF}\right)/2 \times d_{001}}{ESA \cdot MV \cdot t} \qquad (\vec{x} \ 3.3\text{-}2)$$

BSA_{KF}: BSA median of Kunipia-F (m³)

d₀₀₁: d-space of (001) as 0.955 nm MV : molar volume as 138.36E-6 m³/mol t: duration (s), 1409 d.

図 3.3.2-43 AFM による Kunipia-F の粒径分布

各試料から得られた粒径測定結果、及び、上式に基づき計算された溶解速度を表 3.3.2-19 から 表 3.3.2-24 に示す。

KPDS-2	位置 (mm)	BSA (nm2)	ESA (nm2)	SESA (m2/g)	Rate (mol/m2/s)	Rate-TG (mol/m2/s)
07-01	0.250	75317.38	816.73	6.60	-2.504E-12	-8.347E-14
07-02	0.750					
07-03	1.249	67016.60	760.58	6.90	-2.998E-12	-2.208E-13
07-04	1.750					
07-05	2.250	72448.73	805.10	6.76	-2.641E-12	-1.669E-13
07-06	2.750					
07-07	3.250					
07-08	3.750					
07-09	4.250					
07-10	4.750					
07-11	5.251					
07-12	5.760					
07-13	6.519					
07-14	7.519					
07-15	8.518					
07-16	9.518					
07-17	10.518	78491.21	827.79	6.42	-2.362E-12	-2.178E-13
07-18	11.518					
07-19	12.517					
07-20	13.517					
07-21	14.517					
07-22	15.516					
07-23	16.514					
07-24	17.514					
07-25	19.280	69030.76	794.45	7.00	-2.799E-12	3.187E-14

表 3.3.2-19 AFM による単分子粒子の BSA、ESA と溶解速度(KPDS-2)

表 3.3.2-20 AFM による単分子粒子の BSA、ESA と溶解速度(KPDS-3)

KPDS-3	位置 (mm)	BSA (nm2)	ESA (nm2)	SESA (m2/g)	Rate (mol/m2/s)	Rate-TG (mol/m2/s)
08-01	0.250	36621.09	545.12	9.05	-5.764E-12	-1.647E-13
08-02	0.763					
08-03	1.275	58593.75	712.70	7.40	-3.535E-12	-1.219E-13
08-04	1.774					
08-05	2.273	66650.39	774.48	7.07	-2.958E-12	-7.563E-14
08-06	2.773					
08-07	3.274	69091.80	776.65	6.84	-2.861E-12	-1.161E-13
08-08	3.775					
08-09	4.275					
08-10	5.087	26489.26	456.74	10.49	-7.508E-12	-2.561E-14

KPDS-H	位置 (mm)	BSA (nm2)	ESA (nm2)	SESA (m2/g)	Rate (mol/m2/s)	Rate-TG (mol/m2/s)
11-01	0.253	31875.61	540.47	10.31	-6.063E-12	-5.869E-15
11-02	0.757					
11-03	1.258	27572.63	486.41	10.73	-6.987E-12	-1.074E-14
11-04	1.759					
11-05	2.260	28793.34	508.90	10.75	-6.610E-12	-4.489E-14
11-06	2.763					
11-07	3.266	32577.52	544.34	10.16	-5.983E-12	-1.130E-13
11-08	3.767					
11-09	4.891	37277.22	542.42	8.85	-5.759E-12	1.739E-13

表 3.3.2-21 AFM による単分子粒子の BSA、ESA と溶解速度(KPDS-H)

表 3.3.2-22 AFM による単分子粒子の BSA、ESA と溶解速度(KPDS-N01)

KPDS-N01	位置 (mm)	BSA (nm2)	ESA (nm2)	SESA (m2/g)	Rate (mol/m2/s)	Rate-TG (mol/m2/s)
 12-01	0.250	24566.65	481.53	11.92	-7.235E-12	-5.443E-14
12-02	0.750	25421.14	477.77	11.43	-7.241E-12	-1.923E-12
12-03	1.251	16479.49	393.39	14.52	-9.439E-12	-4.603E-14
12-04	1.753					
12-05	2.254	45837.40	643.11	8.45	-4.480E-12	-7.526E-14
12-06	2.755					
12-07	3.256					
12-08	3.758					
 12-09	4.754	49926.76	640.09	7.80	-4.320E-12	-2.820E-12

表 3.3.2-23 AFM による単分子粒子の BSA、ESA と溶解速度(KPDS-N1)

KPDS-N1	位置 (mm)	BSA (nm2)	ESA (nm2)	SESA (m2/g)	Rate (mol/m2/s)	Rate-TG (mol/m2/s)
13-01	0.251	28320.31	550.62	11.83	-6.134E-12	-4.318E-14
13-02	0.751	63720.70	750.40	7.16	-3.164E-12	-3.070E-12
13-03	1.252	81420.90	868.92	6.49	-2.155E-12	-8.601E-14
13-04	1.758					
13-05	2.262	71899.41	814.59	6.89	-2.630E-12	4.401E-16
13-06	2.769					
13-07	3.278					
13-08	3.780					
13-09	4.281					
13-10	4.977					

KPDS-NO3	位置 (mm)	BSA (nm2)	ESA (nm2)	SESA (m2/g)	Rate (mol/m2/s)	Rate-TG (mol/m2/s)
14-01	0.308	69580.08	835.86	7.31	-2.641E-12	6.528E-14
14-02	0.865					
14-03	1.365	77209.47	811.40	6.39	-2.454E-12	-2.412E-14
14-04	1.864					
14-05	2.365	50537.11	645.72	7.77	-4.255E-12	7.712E-14
14-06	2.865					
14-07	3.367					
14-08	3.868					
14-09	4.767					

表 3.3.2-24 AFM による単分子粒子の BSA、ESA と溶解速度(KPDS-NO3)

溶解速度の測定値は、平成26年度と同様、1×10⁻¹²のオーダーを示した。この結果は、これまでアルカリ条件での位相シフト干渉計及びAFMによって測定した溶解速度のオーダーと一致するが、純水中ではもっと遅いはずである。

試料位置に対する、溶解速度及び間隙水の Si 組成のプロファイルを作成して、図 3.3.2-44 から図 3.3.2-49 に示す。

図 3.3.2-44 溶解速度のプロファイル(KPDS-2)

図 3.3.2-45 溶解速度のプロファイル(KPDS-3)

図 3.3.2-46 溶解速度のプロファイル(KPDS-H)

図 3.3.2-47 溶解速度のプロファイル(KPDS-N01)

図 3.3.2-48 溶解速度のプロファイル(KPDS-N1)

図 3.3.2-49 溶解速度のプロファイル(KPDS-NO3)

NaOH 通水による溶解速度の違いは顕著ではないが、No.8 試験試料の排出側(8-10)では顕著に 加速していることがわかる。この試料では、溶解速度のプロファイルが上に凸のパターンをして おり、また間隙水の Na や pH 組成のプロファイルは内部で低く排出側でより高い傾向を示した。 さらに、供試体の解体時の情報によると、排水側に析出物が確認され、通水した NaOH 溶液が非 常にゆっくりとした蒸発によって飽和に達するほど濃縮されていた可能性がある。つまり、通水 排出側で濃縮された NaOH が濃度勾配の逆転により、排出側から内部へと再拡散したと考えられ る。その時の高 pH によって、顕著な溶解が起きたこと可能性が大きい。

分析データを用いて、カラムの密度と溶解速度を、図 3.3.2-50 にプロットした。0.1M NaOH 通水の KPDS-2 は-3×10⁻¹² mol/m²/s の遅い溶解を示していて、なおかつ高密度でわずかに減速 しているように見える。KPDS-3 は低密度化して、溶解速度も-8×10⁻¹² mol/m²/s と速くなってい る。しかし、純水や塩水のように pH 効果が期待できないものでも溶解は起きていることから、 圧縮状態においては、溶液の pH は重要ではない可能性がある。純水が比較的速い溶解速度を示 していることは、膨潤圧による粒子の破壊が起こり、端面の露出を促進したことが影響した可能 性もある。逆に高いイオン強度では、層間は短く保たれ、圧縮状態が達成されやすく、それによ る粒子端面のマスキングが機能したと考えられる。

低イオン強度の条件においては、膨潤により吸水した間隙水によって溶解が進行しやすくなる ことが考えられる。また、膨潤によってモンモリロナイト粒子の破壊が進行する可能性もあり、 溶解が進行しやすい状態になることも予想される。しかし、1.6Mg/m³の様に高い乾燥密度あるい は高イオン強度では、モンモリロナイト粒子の破壊は、低イオン強度の条件より進む可能性があ るが、間隙への吸水は遮られる方向であることで、粒子破壊があっても溶解は進みにくいことも 予想される。

図 3.3.2-50 密度と溶解速度の関係

この溶解速度は、AFM 測定した粒子を統計上中央値が代表粒子であるとして、初期代表粒子に 対する各粒子のサイズ変化に着目して計算したものである。しかし、その問題点は、粒子の分割 現象が起きていた場合、溶解速度として速い値が計算されてしまうことである(Satoh et al., 2013)。 つまり、分割した粒子はサイズが小さいがゆえに、溶けてそのサイズになったものとして計算さ れるからである。

そこで、平成 26 年度と同様に溶解速度を算出する。TG-DTA 測定で求めたモンモリロナイト 含有量、モンモリロナイト総量の減少量、モンモリロナイトの比端面積(Specific Edge Surface Area: SESA, m²/g)を元に速度(Raterg-AFM, mol/m²/s)を計算しており、次式で表わされる。

Rate_{TG-AFM} = $\frac{\left(M_0 \times C_{0,mont}/100 - M_i \times C_{i,mont}/100\right)}{FW \times M_i \times SESA \times \Delta t}$ ここに、MO: 初期の試料の乾燥重量 M_i: 各部位の試料の乾燥重量 C₀: 初期のモンモリロナイト重量濃度(wt.%)

Ci: 各部位のモンモリロナイト重量濃度(wt.%)

3-134

FW: モンモリロナイトの式量(373.585/mol) Δt: 反応時間(s)

上式による溶解速度と、乾燥密度との関係を平成26年度の測定結果と合わせて図3.3.2-51に 示す。

図 3.3.2-51 乾燥密度と溶解速度の関係(Raterg-AFM)

平成 26 年度の溶解速度は低密度における速度の増大が顕著である。平成 27 年度測定結果は、低イ オン強度、中性 pH 試験試料では 1E-12 mol/m²/s と分散系の溶解速度に近い値を示していて、両者は 速度レンジとしては近いものである。一方、高 pH 試験試料の KPDS-2, 3 試料は 1E-13 mol/m²/s と 1 桁遅い溶解速度に集中していて、溶解速度の密度依存性が密度の比較的高い範囲では弱い(ほとん ど溶けなくなっている)ことがわかる。

- (5) XRD 分析結果
 - 1) 定方位測定結果

図 3.3.2-52 から図 3.3.2-57 に各試料の定方位 XRD パターンを示す。全分析結果から、モンモ リロナイトの構造が保たれていることが示される。又、大きな変質、二次鉱物の生成はないと判 断できる。アナルサイムの生成は認められていない。

図 3.3.2-52 KPDS-2の定方位 XRD パターン

図 3.3.2-53 KPDS-3の定方位 XRD パターン

図 3.3.2-54 KPDS-H の定方位 XRD パターン

図 3.3.2-55 KPDS-N01の定方位 XRD パターン

図 3.3.2-56 KPDS-N1の定方位 XRD パターン

図 3.3.2-57 KPDS-NO3の定方位 XRD パターン

2) 定方位 EG 処理測定結果

図 3.3.2-58~図 3.3.2-63 に各試料の定方位 EG 処理試料の XRD パターンを示す。EG 処理を した分析結果においても、大きな変質、二次鉱物の生成はなく、アナルサイムの生成は認められ なかった。

図 3.3.2-58 KPDS-2の EG 処理定方位 XRD パターン

図 3.3.2-59 KPDS-3の EG 処理定方位 XRD パターン

図 3.3.2-60 KPDS-HのEG処理定方位 XRD パターン

図 3.3.2-61 KPDS-N01の EG 処理定方位 XRD パターン

図 3.3.2-62 KPDS-N1の EG 処理定方位 XRD パターン

図 3.3.2-63 KPDS-NO3の EG 処理定方位 XRD パターン

- (6) µ-XRD 分析
 - 1) KPDS-2の分析結果

図 3.3.2-64 に X 線回折パターンを示す。

小さな石英(Quartz)のピークが見られるが、他ピークはモンモリロナイトのピークである。 石英のピークは排出側に向かって強くなっていることから、給水側では選択的に溶解している可 能性がある。モンモリロナイトは排水側で(105)のピークが非常に強くなっている。図中にアナル サイムのピーク位置を示しているが、この NaOH 系では想定されるゼオライトであるにも関わら ず、昨年度の分析とは異なり明瞭なピークが見られない。結晶質のシリカは FESEM 観察で確認 されているが、それ以外のゼオライト変質等はほとんどないことが分かる。

図 3.3.2-64 KPDS-2 の µ - XRD パターン

2) KPDS-3の分析結果

分析結果を図 3.3.2-65 に示す。給水側に石英のピークがわずかに見られるが他に鉱物は見られ なかった。

図 3.3.2-65 KPDS-3 の µ -XRD パターン

3) KPDS-H の分析結果

純水を通水した試験試料の、分析結果を図 3.3.2-66 に示す。二次鉱物の生成は確認されなかった。

図 3.3.2-66 KPDS-H $\mathcal{O}\mu$ -XRD パターン

4) KPDS-N01の分析結果

0.1M NaCl 通水試験試料の分析結果を、図 3.3.2-67 に示す。回折ピークは試料間で同一であり、変質は確認できない。

図 3.3.2-67 KPDS-N01 の µ -XRD パターン

5) KPDS-N1 の分析結果

1.0Mの NaCl を通水した試験試料の分析結果を、図 3.3.2-68 に示す。非常に弱いクリノプチ ロライトのピークが検出されているが、これは初期の随伴鉱物である。

図 3.3.2-68 KPDS-N1 の µ -XRD パターン

6) KPDS-NO3の分析結果

1.0M NaNO₃を通水した試験試料での分析結果を、図 3.3.2-69 に示す。二次鉱物の生成は確認 されなかった。

図 3.3.2-69 KPDS-NO3 の µ - XRD パターン

以上の分析結果より、いずれの試料についても顕著な変質相の出現は認められなかった。した がって今回の圧縮モンモリロナイトの通水環境では溶解のみが進行していたと考えることができ る。

(7) 液相分析

液相分析によって得られた各イオンの濃度を、表 3.3.2-25 から表 3.3.2-30 に示す。

					porewater (ppm)										
KPDS-2	位置 (mm)	洗浄後 重量(g)	remarks	洗浄溶 液(ml)	Si	AI	Fe	Mg	Ca	Na	к	CI	NO3	SO4	pHx6000	рН
07-01	0.250	0.507		41.0	4350.22	5.75	0.06	3.32	30.52	36684.36	256.49	975.29	187.24	4395.83	50280	8.38
07-02	0.750	0.356		42.5	3460.12	5.93	6.86	2.88	6.43	17421.73	117.77	403.17	279.63	2130.43	50280	8.38
07-03	1.249	0.406		41.0	2517.92	1.91	5.67	2.38	4.93	13218.13	98.34	367.78	26.36	1716.56	48600	8.10
07-04	1.750	0.523		40.0	2220.70	9.52	5.51	2.31	2.31	14615.67	121.84	442.41	267.34	2138.25	49080	8.18
07-05	2.250	0.401		40.0	2596.20	8.42	5.51	2.31	3.13	15156.73	117.34	366.45	231.56	1885.86	50040	8.34
07-06	2.750	0.366		47.5	3177.56	11.49	0.06	3.14	6.52	14154.42	119.65	386.47	238.58	1698.31	49860	8.31
07-07	3.250	0.437		50.0	3067.54	14.25	0.18	3.00	1.19	15516.08	119.36	405.74	245.98	2005.42	49500	8.25
07-08	3.750	0.476		50.0	3373.89	16.60	0.07	3.37	0.36	18142.12	143.93	471.48	301.86	2332.72	49920	8.32
07-09	4.250	0.384		50.0	3006.34	23.45	8.98	3.76	7.80	14657.97	135.42	490.66	271.01	2073.71	50280	8.38
07-10	4.750	0.530		47.5	2599.27	21.18	5.94	2.49	2.02	14436.72	120.11	402.15	258.98	2012.98	50880	8.48
07-11	5.251	0.401		50.0	2361.62	16.47	0.11	2.72	0.29	12229.83	103.11	374.93	185.95	1722.87	49020	8.17
07-12	5.760	0.422		50.0	2633.27	25.52	0.17	2.86	0.96	13875.99	129.43	394.81	259.71	1980.40	49260	8.21
07-13	6.519	0.512		50.0	2879.13	36.83	7.24	3.03	11.72	15627.41	127.26	483.67	296.06	2304.19	50640	8.44
07-14	7.519	0.394		50.0	3294.67	22.36	0.06	3.08	6.97	14417.79	137.69	383.18	239.62	1842.41	50520	8.42
07-15	8.518	0.524		45.0	2817.09	19.57	0.15	2.42	4.78	13735.92	126.84	402.03	261.02	1902.22	50880	8.48
07-16	9.518	0.444		47.5	3261.75	25.58	0.07	3.39	6.87	15937.72	141.42	673.20	390.70	3012.50	49980	8.33
07-17	10.518	0.542	通水上部	45.0	2789.60	14.70	0.05	2.12	7.61	14362.72	122.95	480.54	333.08	2689.16	50460	8.41
07-18	11.518	0.559	0.1	45.0	2264.95	15.97	4.93	2.07	4.27	11293.57	94.30	480.24	326.90	2358.75	50820	8.47
07-19	12.517	0.546	ml	45.0	2716.70	22.62	0.03	2.32	6.82	14075.26	110.10	605.92	347.41	2742.04	49740	8.29
07-20	13.517	0.458	排水下部	47.5	3490.27	26.44	0.06	3.30	8.51	15397.22	136.07	691.10	394.13	3088.13	48840	8.14
07-21	14.517	0.357	1.0	50.0	4347.84	20.88	0.03	4.43	9.71	14278.17	162.00	625.66	369.31	2691.73	48960	8.16
07-22	15.516	0.573	ml	50.0	1906.74	34.26	6.76	2.83	2.63	9009.31	87.35	543.07	322.00	2198.05	48540	8.09
07-23	16.514	0.328	セル周り	50.0	2589.43	37.49	8.44	3.54	1.98	10588.76	109.38	486.41	246.15	2227.89	47940	7.99
07-24	17.514	0.459	350	50.0	1478.36	18.77	5.58	2.34	4.67	5367.53	57.70	441.13	253.67	1449.58	47400	7.90
07-25	19.280	0.667	ml	50.0	844.62	21.15	4.71	1.97	1.43	5315.92	61.00	725.37	358.52	1680.70	48300	8.05

表 3.3.2-25 間隙水の化学組成(KPDS-2)

					porewater (porewater (ppm)											
KPDS-3	位置 (mm)	洗浄後 重量(g)	remarks	洗浄溶 液(ml)	Si	AI	Fe	Mg	Ca	Na	К	CI	NO3	SO4	pHx6000	рН	
08-01	0.250	0.312		44.0	521.73	3.84	0.61	1.97	4.08	3048.79	48.47	103.82	42.62	2970.64	41160	6	
08-02	0.763	0.264		44.0	742.94	13.46	11.53	1.70	3.52	3185.14	37.70	86.75	36.21	2123.42	42540	7	
08-03	1.275	0.435		47.5	410.34	4.41	6.86	2.88	5.97	3051.44	65.51	174.98	31.93	4072.74	43140	7	
08-04	1.774	0.453		45.0	431.77	5.58	0.02	2.64	5.47	3304.10	64.97	115.13	29.30	4278.00	41760	6	
08-05	2.273	0.467		45.0	444.00	3.75	6.02	2.52	5.23	3459.33	54.43	176.76	46.22	4390.33	42480	7	
08-06	2.773	0.417		45.0	1098.09	2.73	5.39	2.26	4.69	6453.75	79.69	99.12	53.45	3405.10	46020	7	
08-07	3.274	0.418		50.0	1957.32	3.72	10.00	4.19	8.78	11716.24	135.27	133.00	81.38	5305.63	50340	8	
08-08	3.775	0.336	排水下部	50.0	2471.14	8.81	10.59	4.44	5.72	28268.23	288.77	135.49	49.27	3595.78	50520	8	
08-09	4.275	0.417	0.1	47.5	4940.62	11.95	10.75	4.51	19.53	42863.51	325.65	221.13	50.03	5015.40	51900	8	
08-10	5.087	0.322	ml	50.0	7085.67	40.11	0.33	3.76	24.30	23688.36	266.82	154.98	41.77	3355.62	50940	8	

6.86 7.09 7.19 6.96 7.08 7.67 8.39 8.42 8.65

8.49

မု	
1	
UT.	
Ú1	

表 3.3.2-27 間隙水の化学組成(KPDS-H)

					porewater (
KPDS-H	位置 (mm)	洗浄後 重量(g)	remarks	洗浄溶 液(ml)	Si	AI	Fe	Mg	Ca	Na	к	CI	NO3	SO4	pHx6000	рН
11-01	0.253	0.129		47.5	379.087	9.687	7.349	1.671	3.464	1423.703	27.312	99.770		942.433	40680	6.78
11-02	0.757	0.405		42.0	446.204	5.799	0.678	2.054	4.259	1315.338	41.897	106.461		722.427	41760	6.96
11-03	1.258	0.373		44.0	601.656	7.354	0.135	2.500	5.184	1097.532	36.567	74.366		424.277	42840	7.14
11-04	1.759	0.403		44.0	468.444	7.505	0.178	2.632	5.457	1131.373	33.229	103.988		485.764	41400	6.90
11-05	2.260	0.410		40.0	372.786	8.437	0.182	2.186	4.532	883.149	40.530	93.645		472.832	43200	7.20
11-06	2.763	0.432		44.0	608.016	5.712	0.026	2.498	5.179	1309.327	46.369	79.003		508.668	43080	7.18
11-07	3.266	0.404	排水下部	38.0	637.056	4.991	0.056	1.978	4.101	1486.583	50.204	50.932		420.845	43680	7.28
11-08	3.767	0.260	0.2	45.0	1138.283	5.745	0.057	2.669	5.534	2085.516	67.620	71.684		608.721	44760	7.46
11-09	4.891	0.766	ml	42.5	649.079	1.885	3.487	1.462	7.466	14808.024	137.617	168.850		1253.318	49260	8.21

					porewater (ppm)										
KPDS-N01	位置 (mm)	洗浄後 重量(g)	remarks	洗浄溶 液(ml)	Si	Al	Fe	Mg	Ca	Na	К	CI	NO3	SO4	pHx6000	рН
12-01	0.250	0.444		42.5	435.21	4.50	0.38	2.23	4.63	5465.52	74.61	2434.43		2252.22	42360	7.06
12-02	0.750	0.589		42.5	390.82	3.24	5.25	2.20	4.57	2841.95	48.69	1273.50		1491.30	44400	7.40
12-03	1.251	0.475		42.5	522.85	5.74	0.00	2.51	5.20	2606.01	44.42	923.27		1413.54	44820	7.47
12-04	1.753	0.432		47.5	337.34	8.57	0.11	3.08	6.40	1974.97	59.62	910.62		1364.56	41040	6.84
12-05	2.254	0.460		45.0	443.54	6.45	0.11	2.71	5.61	2214.23	53.94	961.21		1294.63	44520	7.42
12-06	2.755	0.387		47.5	683.52	5.17	6.81	2.85	5.92	2424.35	57.31	905.90		1361.70	43320	7.22
12-07	3.256	0.472	排水下部	45.0	1330.06	17.40	7.82	3.28	2.73	13199.52	127.42	1280.45		2698.40	48360	8.06
12-08	3.758	0.308	0.2	47.5	845.09	12.78	5.95	2.50	5.17	6206.35	74.06	617.57		1204.13	47580	7.93
12-09	4.754	0.522	ml	45.0	397.87	2.75	4.45	1.86	3.86	9476.71	92.17	1400.13		1974.66	49740	8.29

表 3.3.2-28 間隙水の化学組成(KPDS-N01)

表 3.3.2-29 間隙水の化学組成(KPDS-N1)

r	1	r		1	1											1
					porewater (ppm)										
KPDS-N1	位置 (mm)	洗浄後 重量(g)	remarks	洗浄溶 液(ml)	Si	AI	Fe	Mg	Ca	Na	к	Cl	NO3	SO4	pHx6000	рН
13-01	0.251	0.354		50.0	460.65	3.33	6.14	2.57	1.67	23961.65	173.68	20783.95	2188.11	2024.39	44760	7.46
13-02	0.751	0.464		47.5	454.94	3.81	8.75	3.67	2.51	30954.43	238.40	32396.08	40.70	2586.40	43320	7.22
13-03	1.252	0.318		45.0	675.62	4.81	13.29	5.57	3.76	63941.87	454.78	63804.87	61.83	4785.98	42840	7.14
13-04	1.758	0.474		50.0	235.68	3.78	7.33	3.07	6.37	20948.71	155.41	23195.29	34.11	1659.83	41040	6.84
13-05	2.262	0.464		50.0	253.60	4.46	8.52	3.57	0.73	23884.41	194.14	26836.03	39.64	1929.26	40920	6.82
13-06	2.769	0.538		50.0	264.84	3.93	7.71	3.23	1.73	24236.44	201.21	27731.77	35.88	2057.46	40560	6.76
13-07	3.278	0.434		47.5	619.31	2.69	7.13	2.99	6.20	25643.41	183.65	24952.35	33.18	2554.63	43080	7.18
13-08	3.780	0.428	排水下部	50.0	568.02	4.17	6.58	2.76	9.98	26945.17	183.10	22047.29	30.62	1746.33	44460	7.41
13-09	4.281	0.392	0.2	55.0	670.64	1.84	8.42	3.53	6.40	28029.74	199.88	21847.07	39.15	3645.49	46500	7.75
13-10	4.977	0.488	ml	55.0	509.77	14.49	7.03	2.95	131.58	53546.68	372.72	25034.64	32.73	2677.56	51180	8.53

				, 洗浄溶 液(ml)	porewater (p	porewater (ppm)											
KPDS-NO3	位置 (mm)	洗浄後 重量(g)	remarks		Si	AI	Fe	Mg	Ca	Na	к	CI	NO3	SO4	pHx6000	рН	
14-01	0.308	1.144	1st wash	150.0	269.24	2.12	1.08	0.45	6.58	7497.62	95.93	110.26	13392.27	1669.65		8.27	
14-02	0.865	1.136	2nd	170.0	244.67	3.52	1.25	0.53	1.09	3981.38	110.25	53.16	6477.77	846.20		8.31	
14-03	1.365	0.931	3rd	150.0	297.02	1.83	0.03	0.62	1.69	2629.26	93.86	28.37	3169.53	502.34		7.78	
14-04	1.864	1.019	total	470.0	269.22	2.53	0.81	0.53	3.03	4672.06	100.45	63.47	7628.70	999.26	48338	8.06	
14-05	2.365	0.911															
14-06	2.865	0.986															
14-07	3.367	0.964	排水下部														
14-08	3.868	0.869	0.5														
14-09	4,767	0.540	ml														

表 3.3.2-30 間隙水の化学組成(KPDS-NO3)

試料内の間隙水の化学組成の分析結果を図 3.3.2-70 から図 3.3.2-75 に示す。NaOH を通水した KPDS-2 は給水側から 1 mm で、Na は 35000 から 15000 ppm へ減少し、 内部はほぼ一定である。また排出側では 5000 ppm と低く、初期の間隙水濃度に近いと 推察される。Si は Na と同じく給水側で 4500 ppm と高いが、内部でやや変動するもの の 2000-3500 ppm の範囲内で変動している。一部不調和に Si が高い部分があるが、排 水側で 1000 ppm へと低下していて、概ね Na と相関がある。一方、同一溶液条件であ る KPDS-3 は、給水側での濃度は Na, Si ともに低く、排水側から 2.5 mm の位置より排 出側に向かって濃度が高い傾向がある。pH も排出側に向かって高くなる傾向がある。こ の原因は、排水側にたまった NaOH 溶液が蒸発によって濃縮し、試料の給水側へと拡散 した可能性があり、その影響と考えられる。Na の濃度の傾向に応じて、Si の濃度が変化 しているため、高 pH 通水溶液では粘土の溶解が起きていることがわかる。

図 3.3.2-70 KPDS-2の間隙水化学組成プロファイル

図 3.3.2-71 KPDS-3の間隙水化学組成プロファイル

イオン交換水の通水(KPDS-H)では、排出側の Na 濃度がわずかに高いが、概ね 50 ppm 以下 と非常に低い濃度プロファイルを示した(図 3.3.2-72)。Si も 400-1100 ppm で変動している ことから、イオン交換水の通水でもわずかながら溶解が起きていたことがわかる。

図 3.3.2-72 KPDS-Hの間隙水化学組成プロファイル

NaCl を通水した KPDS-N01 は、Na はイオン交換水を通水した KPDS-H と同じ程度の濃度 であるが、排出側でやや Na が高い傾向がある(図 3.3.2-73)。KPDS-N1 は最も NaCl リッチ の間隙水組成(Na = 20000-65000 ppm)を示している(図 3.3.2-74)。しかし Si 濃度は 250-700 ppm と低く、イオン交換水を通水したケースと変わらない Si 濃度であった。

図 3.3.2-73 KPDS-N01の間隙水化学組成プロファイル

図 3.3.2-74 KPDS-N1の間隙水化学組成プロファイル

陰イオン種の違いの影響を調べた NaNO3 通水の KPDS-NO3 では、スライス試料の洗浄溶 液を全て混合したため、データは平均した値である。Na 濃度の平均値を比較すると、同じ 1M の溶液通水である KPDS-N1 よりも、NO3 試料の方がかなり低いことがわかる。これは、CI-と NO³・イオン半径の違いによる試料中の透水性、拡散の違いによる可能性も考えられる。

図 3.3.2-75 KPDS-NO3の間隙水化学組成プロファイル

以上の分析結果から、通水溶液の液性によって、モンモリロナイトの溶解の仕方は異なって いることが示された。NaOH系では高 pH のため Si 濃度が高く溶解が促進されているが、NaCl 系は、イオン交換水の系と同程度の弱い溶解が起きていたと考えられる。

これらの間隙水の Si 濃度と、モンモリロナイトの溶解速度(RateTG-AFM)を比較したプロットをに示す。Si 濃度が高い間隙水では、未飽和度が小さい(平衡に近い)ために、溶解は減速するはずである。NaOH 系の溶解速度については、溶液の供給が遅かった、あるいは供給が無かったために、間隙では平衡に達して溶解は遅くなっていたと考えられる。通水のあった NaCl 系では間隙水の Si 濃度は低く、溶解速度は分散系の値に近い 1E-12 mol/m²/s オーダーを示していた。

このように、モンモリロナイトの溶解は、圧密状態で、粒子破壊などが起きていたとしても、 そのこと以上、圧密により束縛された間隙水化学に支配されていると考えられる。しかし、イ オン交換水や NaCl 系でモンモリロナイト粒子が圧縮破壊、分割した場合、その後に圧密状態 の拘束が解かれた場合、粒子が小さく、端面積が大きい粒子は溶解しやすいことも予想される。

図 3.3.2-76 間隙水の Si 濃度と溶解速度の関係

3.3.3 化学・力学連成モデル試験後の試料の分析のまとめ

3.2.3 節の Na 型ベントナイトの溶解に伴う力学挙動変化の取得試験の化学・力学連成モデル試験後の試料の分析を実施し、圧密下(1.4~1.6Mg/m³程度)での長期間のモンモリロナイト(クニ ピア・F)の化学変質に関するデータを得た。

給水側から排水側の方向における試料の乾燥密度分布を確認した結果、給水側及び排水側を中 心に乾燥密度の低下を確認した。次に試料の変質状況を確認した。モンモリロナイトの溶解状況 を確認した結果、溶解はわずかであり、モンモリロナイトの含有量の低下(TG-DTA による含有量 測定による)した部分、間隙水の Si 濃度(モンモリロナイト成分)が他より高い部分は、乾燥密度が 低下していた部分と一致していた。乾燥密度の低下は、モンモリロナイト溶解が関連するものと 考えられるが、分析結果を踏まえると他の要因も関連するものと考えられる。また、アナルサイ ム等の二次鉱物の生成は認められなかった。力学試験では、溶液の種類によって膨潤圧力に違い を確認したが、この違いはイオン強度の影響が大きく、モンモリロナイトの溶解及び変質の影響 は少なかったものと考えられる。

モンモリロナイトの溶解速度は、干渉計を使用した圧密下での溶解挙動の検討の成果と同等な 結果が得られ、これまでの成果を確証することも出来た。しかし、水や NaCl 溶液でも pH に依 存せず溶解が認められ、圧密によるモンモリナイトの割れによる端面積の増加等の影響が推察さ れ、今後確認する必要性がある。 3.4 緩衝材の化学変質を伴う力学挙動に関する試験とモデル化のまとめ

第3章では、HMC連成解析手法に関わる、ベントナイト系材料の化学変質挙動を考慮した力 学挙動モデルの検討を行った。加えて、化学・力学連成モデル試験により化学変質の影響を受け た場合の力学挙動に関するデータを取得するとともに、試験体を解体して変質状況を分析により 把握した。

3.1 項の力学挙動に関する試験とモデル化では、これまでに試験結果に基づいてモデル化を進めてきた、ベントナイトの化学変質(溶解と二次鉱物生成)を伴う力学挙動のモデルについて、平成 27 年度はモデルの基礎的な検討を実施した。完全飽和線の低密度、低応力領域の試験データの取 得によるモデルの更新、変質によりモンモリロナイトが減少したベントナイトの平衡膨潤状態が、 正規圧密曲線と異なる点に対する非可逆比による整理及びベントナイトの限界状態線のモデル化 について検討を実施し、現象を把握し、モデル化の方法についての方向性を見出すことが出来た。 しかし、それぞれのモデルについての検討で挙げたように、モデル化に向けて確認すべき挙動が あるため、今後は試験等を通して信頼性を向上させる必要がある。また、透水係数のモデルにつ

3.2 項の長期性能評価のための化学・力学連成モデル試験では、モンモリロナイトのアルカリ溶液による溶解等の力学挙動への影響について膨潤挙動に関する有益なデータを取得した。高アルカリの NaOH 溶液の通水による膨張圧の低下の原因について、通水液の種類を変えた試験によりイオン強度の影響が推定され、その他化学的な変質の影響等を確認するために試験体を解体して密度分布を確認して分析試料を得た。

いても化学変質との関連の点から検証を行い、信頼性を向上させる必要がある。

3.3 項の化学・力学連成モデル試験後の試料の分析では、3.2 項で解体した試料を分析し、圧密 下(1.4~1.6Mg/m³程度)での長期間のモンモリロナイト(クニピア-F)の化学変質に関するデータ を得た。アルカリ溶液等の影響により乾燥密度が低下している部分は、モンモリロナイトの溶解 や間隙水の Si 濃度の上昇の傾向がみられたが、変質の量は比較的少なく、二次鉱物の生成は認め られなかった。そのため、3.2 項の試験の力学挙動は、通水溶液のイオン強度の寄与が大きいもの と推察される。また、モンモリロナイトの溶解速度は、干渉計を使用した圧密下での溶解挙動の 検討の成果と同等な結果が得られ、これまでの成果を確証することも出来た。また、水や NaCl 溶 液でも pH に依存せず溶解が認められた点、圧密によるモンモリナイトの割れによる端面積の増 加の懸念等のモンモリロナイトの溶解モデルへ影響が懸念される事項があり、今後これらの事項 について確認を進める必要がある。 3章の参考文献

- [1] (公財) 原子力環境整備促進・資金管理センター, 平成24年度 地層処分技術調査等事業 TRU 廃棄物処分技術 人工バリア長期性能評価技術開発 平成19年度~24年度取りまとめ報告書 (2013).
- [2] (公財) 原子力環境整備促進・資金管理センター, 平成 25 年度 地層処分技術調査等事業 TRU 廃棄物処理・処分技術高度化開発(第4分冊) -人工バリア材料長期挙動評価・人工バリア初 期条件の設定-(2014).
- [3] (公財) 原子力環境整備促進・資金管理センター, 平成 26 年度 地層処分技術調査等事業 TRU 廃棄物処理・処分技術高度化開発(第4分冊) 人工バリア材料長期挙動評価・人工バリア初 期条件の設定-(2015).
- [4] 小林一三, 戸井田克, 笹倉剛, 太田秀樹: 等含水比線と等飽和度線を用いた締固めベントナイトの圧縮・膨潤挙動の解釈, 土木学会論文集 C, Vol. 63, No.4, pp.1065-1078 (2007).
- [5] 伊藤雅和,岡本真由美,鈴木啓三,他:ベントナイトの鉱物組成分析,原子力誌,36[11],1055 (1994).
- [6] (財)原子力環境整備促進・資金管理センター:平成 19 年度地層処分技術調査等委託費 TRU 廃棄物処分技術 人工バリア長期性能評価技術開発 報告書(第1分冊)-人工バリアの長期 挙動の評価-(2008).
- [7] Morodome.S: On swelling behavior of montmorillonite with various exchangeable cations and structure of montmorillonite –water systems –In situ observation and numerical simulation of X-ray diffraction and small angle X-ray scattering method, Doctoral thesis of Tokyo Institute of Technology (2008).
- [8] 飯塚敦:軟弱地盤の変形・安定解析に関する基礎的研究、京都大学学位論文 (1988).
- [9] Andrew Schofield and Peter Wroth: Critical State Soil Mechanics, McGraw-Hill (1968).
- [10] 笹倉剛, 畔柳幹雄, 小林一三, 岡本道孝: ベントナイト変遷挙動のモデル化のためのデータ 取得II, JNC TJ8400 2003-048 (2003).
- [11] 鹿島建設(株):平成20年度地層処分技術調査等人工バリア長期性能評価技術開発人工バリアの長期挙動の評価に係わるセメントーベントナイト相互影響に関するデータ取得のうち "変質ベントナイトの作製及び特性データの取得"成果報告書(2008).
- [12] 冨田武満、田辺和康、山本克己:マッフル炉を用いた強熱減量法による粘土鉱物量の定量、 土木学会論文集、455/Ⅲ-18, pp.55-63 (1992).