第3章 年代測定による反応時間の評価

3.1 フィリピンのナチュラルアナログにおける年代測定の検討

3.1.1 目的

ナチュラルアナログ研究は、自然界に存在する類似現象に着目し、特に室内実験など他の方法 で直接評価できない長期現象を直接観察し、地層処分の性能評価に役立てるという役割を担って いる。そのため、その類似現象やそこまでに至るプロセスの時間スケールを把握することは極め て重要な課題であると位置づけられる。

フィリピンは日本と同様に島弧型の変動帯に属しているため、Zambales オフィオライトや Palawan オフィオライトに代表される様々なオフィオライトが沈み込み帯で特徴づけられるテク トニクスの場に広く分布している。その一般層序は年代の古い順にかんらん岩・斑レイ岩・輝緑岩岩 脈・玄武岩枕上溶岩・堆積層で構成されている。また、オフィオライトの超塩基性岩と天水との反応 (蛇紋岩化作用)により生成された高アルカリ地下水が断裂系に沿ってベントナイト層に浸出し ている地域は、高アルカリ水によるベントナイトの変質プロセスを研究するのに適した調査サイ トである。

このような地質構造を有するナチュラルアナログサイトにおいて最も把握するべき時間スケー ルは、オフィオライト蛇紋岩化作用などに伴う高アルカリ環境下のベントナイトの変質過程にお ける①ベントナイト胚胎層(スメクタイトを含有する泥(粘土)質堆積物)の堆積時期及び埋没・ 続成変質作用の時期、②高アルカリ地下水の生成時期(滞留時間)、③高アルカリ地下水のベント ナイト層への侵入・浸透時期、④高アルカリ地下水によるベントナイト層の変質帯の形成時期、 である。これらの年代評価の適用性の検討のために、放射年代測定手法の適用性を整理した(表 3.1.1-1)。

ベントナイトの変質プロセスの時間スケールを把握するためには、ベントナイトの変質帯の形 成時期を直接測定することが望ましい。しかしながら、ベントナイト変質プロセスの温度が低い ことが推定されるため(150℃以下)、熱年代学的手法によってベントナイトの変質年代を直接測 定することは難しい。またベントナイトの変質で生じた鉱物に適した年代測定法にも乏しく、適 用できる手法は極めて限定されている。そのため本事業のナチュラルアナログ調査においては、 蛇紋岩作用によるアルカリ地下水生成プロセスに着目し、高アルカリ地下水の痕跡が残る断裂系 充填物や堆積物等の炭酸塩鉱物の年代決定から、この地域でいつ頃から高アルカリ地下水が湧出 し、それによる変質が起こっていたかを推定することを目的として年代測定法について検討する。

断裂系充填物に含まれる炭酸塩鉱物(方解石)については、高アルカリ地下水が閉塞される最 終期に CO₂に接して形成したと考えられることから、方解石の生成年代から高アルカリ地下水の 閉塞時期を推定することために、これまで熱ルミネッセンス(TL)法による年代測定を検討し、 その適用可能性を示したが、さらに、評価年代の精度向上(鉱物組成や産状等の影響)を図る必 要がある。

Palawan 島の Narra 地区の調査サイトは、高アルカリ地下水が現在も湧出する Active Type の ナチュラルアナログ(候補1)サイトである。ここでは、アルカリ地下水によって形成した炭酸塩 鉱物(石灰華(トラバーティン))が層状に重なって堆積しており、そのような炭酸塩鉱物に TL 年代が適用可能かを検討する必要がある。また、炭酸塩中には木根等の有機物の層や貝等の生物 の遺骸が保存されているため、14C 法年代による年代や堆積環境の推定が重要な課題である。

¹ 今年度のフィールド調査時点では候補サイトであったが、今年度の調査結果からActive Typeのナチ ュラルアナログ(高アルカリ地下水がスメクタイトを含有する堆積物と接触している露頭)が確認さ れ、当該サイトは今後Active Typeのナチュラルアナログサイトといえることとなった(第2章参照)。

妆好年代测学内家	おけた体測字のための封約仕様		放射年代測定法	借表/司約ね八折伝超先	
成射牛1、侧足内谷	放射中代例足のための試料11様	液相	固相(鉱物/全岩)	放射年代測定法[測定年代範囲]	加考く可能な分析依頼尤く
 ベントナイト胚胎層スメクタ イトを含有する泥(粘土)質堆 積物の堆積時期及び埋没・続成 変質作用の時期 	 (1) ベントナイト層における未変質部の主要構 成鉱物 (2) ベントナイト層を構成する主要構成鉱物 		 (i) ベントナイト層の未変質な鉱物 1) 主要構成鉱物 > 斜長石 > 黒雲母・絹雲母 > 石英 > (火山ガラス・軽石) 2) U-Th 含有の副成分鉱物 > ジルコン > モナザイト > アラナイト > ゼノタイム > 燐灰石 3) その他 > 化石 (ii) ベントナイトを構成する変質鉱物 > ベントナイトと共生関係にある鉱物 	 (i) K-Ar [10,000~30 億年] (ii) U-Pb [100 万~45 億年] (iii) Rb-Sr [6,000 万~45 億年] (iv) ESR [1,000~100 万年] (v) FT [50 万~10 億年] (vi) OSL [0~50 万年] (vii) TL [0~50 万年] (viii)LA-ICP-MS (U-Pb) (ix) Ar-Ar (x) CHIME [8000 万年~] 	 ※ 閉鎖温度放射年代(年代値) (ii) SHRIMP<広島大> (ix) <産総研> (x) サブグレイン年代<名古屋大 >
2. 高アルカリ地下水の生成時期 (滞留時間)	 (1) オフィオライトー水相互作用(蛇紋岩化作用) ① オフィオライト基盤岩中の断裂系に伴う地下水(湧水) ② 試錐孔(オフィオライト岩盤内)の地下水(深層地下水) 	地下水		 (i) ¹⁴C [500~40,000 年] (ii) ³⁶Cl [50,000~200 万年] (²H(D), ¹⁸O (涵養源・起源)) 	 (i) <名古屋大/(JAEA・TGC) > (ii) <電中研/オーストラリア国立 大> <地球化学研究所等>
3. 高アルカリ地下水のベントナ イト層への侵入・浸透時期	 (1) オフィオライト岩体中の断裂帯(高アルカリ 地下水の水路)の変質部 (2) ベントナイト層中の断裂帯(高アルカリ地下 水の水路)の変質部 (3) 試錐孔内での断裂帯の変質部 		 (i) 断裂帯の充填物 > 粘土鉱物他 > 蛇紋石 > 斜長石(曹長石) > 方解石 	 (i) K-Ar [10,000~30 億年] (ii) U-Pb [100 万~45 億年] (iii) Rb-Sr [6,000 万~45 億年] (iv) ESR [1,000~100 万年] (v) FT [50 万~10 億年] (vi) OSL [0~50 万年] (vii) TL [0~50 万年] (viii)U-Th [0~50 万年] 	(v) <金沢大> (vi) <金沢大> (vii) <金沢大>
 4. 高アルカリ地下水によるベン トナイト層の変質帯の形成時 期 	 (1) オフィオライト岩体の上部層(枕状溶岩)の 変質部 (2) ベントナイト層の変質(変質ハロー)部 (3) 試錐孔内でのベントナイト層の変質(変質ハ ロー)部 		 (i) タキライト層の変質部 > 玄武岩質ガラス > 粘土鉱物他 > 斜長石 (ii)ベントナイト層の変質ハロー部 > 粘土鉱物他 > 蛇紋石 > 斜長石 > ジルコン他(U-Th 含有の副成分鉱物) 	(ix) LA-ICP-MS (K-Ar) (x) EPMA (xi) CHIME [8000 万年~] (xii) SHRIMP (U-Pb)	

表 3.1.1-1 フィリピンのナチュラルアナログにおける放射年代測定の適用性

ESR : Electron Spin Resonance, FT : Fission Track, OSL : Optically Stimulated Luminescence, TL : Thermal Luminescence,

CHIME : CHemical Th-U-total Pb Isochron MEthod, SHRIMP : Sensitive High Resolution Ion-MicroProbe, LA-ICP-MS : Laser Inductively Coupled Plasma Mass Spectrometry

3.1.2 パラワン島 Narra 地区のナチュラルアナログにおける年代測定の検討概要

Active Type のナチュラルアナログサイトにおける把握すべき時間スケールは、パラワンオフィ オライトを構成する超塩基性岩と地下水との相互作用に蜜接に関与する蛇紋岩化作用に随伴して 生成される高アルカリ地下水環境下でのベントナイトやベントナイト質堆積物の主要構成鉱物 (主に、モントモリロナイト、沸石、長石、石英など)の変質反応プロセスを時空間で理解する ことである。そのためには、①高アルカリ地下水の起源・変遷プロセス、②高アルカリ地下水の ベントナイトやベントナイト質堆積物への浸透開始・滞留時間などを規制する水理学的場と地球 化学場の状態変化(変遷)、③高アルカリ地下水環境下での主要構成鉱物の変質反応プロセス(変 質反応パス)・二次鉱物の形成プロセス、④その長期安定性などに係わるそれぞれの時間スケール を地球科学的・岩石鉱物学的根拠・水理学・地下水の地球化学的特性のもと時間スケールを検討 することが必要である。

パラワン島 Narra 地区のナチュラルアナログにおける年代測定では、昨年まで試行してきた炭 酸塩鉱物の TL 年代測定法の適用可能性について検討する。昨年まで検討したルソン島の Fossil Type のナチュラルアナログサイトでは、高アルカリ地下水の湧出経路となっている断裂系の充填 物である炭酸塩鉱物(方解石)を対象に、その方解石の生成年代から高アルカリ地下水の閉鎖時 期を推定した。パラワン島 Narra 地区では、明らかに高アルカリ地下水から化学的沈殿プロセス で析出し、その後の固結・堆積プロセスで熟成された炭酸塩鉱物であり、比較的若い試料であり、 また固結度も低いため、TL 法の適用が難しい可能性もある。このような炭酸塩鉱物の TL 特性を 検討・把握し、高アルカリ地下水の生成・進化プロセスに係わる時間スケールの検討を実施した。

また、高アルカリ地下水が湧水・流出している炭酸塩鉱物が広く分布している平坦地での2ヶ 所のトレンチ(トレンチ1及び2)では、炭酸塩層や砕屑性堆積物中に木根や貝殻が存在するこ とを確認した。これらの年代を明らかにできれば、アルカリ地下水の反応時間(特に Narra 地区 は Active Type のサイトであるため、いつから高アルカリ地下水が供給されているかがわかれば 現在までの時間が反応時間といえる。)を推測することが可能である。また、生物の生息環境がわ かれば、砕屑性堆積物や炭酸塩層の堆積環境が把握できる。

そこで、これらトレンチの内壁から採取した4件の植物遺体(木根)と3件の貝殻を対象に、 それら木根の埋没・堆積時の絶対年代取得のために放射性炭素(14C)年代測定と、貝殻による年代 推定とその棲息環境による当時の堆積環境(古環境)などについて考察を行った。

これらのデータによる総合的な考察から、高アルカリ地下水の流動場や浸透・滞留時間スケー ルの推定が可能となり、炭酸塩鉱物の下位にあり、パラワンオフィオライト基盤岩の直上に累重 する砕屑性堆積物を構成している3八面型スメクタイト(サポナイト)のアルカリ変質反応プロ セス(変質反応パス)の時間スケールの設定を検討する。合わせて、高アルカリ地下水環境下で 化学的沈殿相として析出した C-S-H の組成・産状特性などから、高アルカリ地下水環境の保持と その状態変遷を考察することにより、スメクタイトのアルカリ変質反応プロセスを時空間的に理 解する。 3.1.3 年代測定のための試料

今年度の年代測定(①炭酸塩鉱物の TL 法による絶対年代測定、②埋没木根の放射性炭素(¹⁴C) による絶対年代測定、③貝による棲息環境と年代推定)のために、トレンチ1では、①10 件、② 1 件、③2 件、トレンチ2 では、②3 件、③1 件の試料を採取した。

TL年代測定用の試料は、水平方向に数層の堆積構造が見られるトラバーチンに対して、深度方向に炭酸塩鉱物が生成した時間の差を評価するために、鉛直方向に10試料採取した(図 3.1.3-1)。 TL用試料は当初コアドリルで採取する予定であったが、降雨等の影響により炭酸塩層がゆるく堆積しており、ドリルでの採取が困難であったため、シャベルで固定し、できるだけ光曝しないように容器に封入して採取した。

¹⁴C 年代測定用の試料は、トレンチ1で見られた、炭酸塩の堆積物の間に貝化石や木根を含む 黒色の炭化物の層(10~30cmの厚さで3層程度)の内、図 3.1.3-2 に示す数+ cm 程度の木根が 大量に混在していた下部の層から1 試料、図 3.1.3-3 に示すトレンチ2の粘土試料に混在してい る数 cm 程度の木根を2 試料、及び下部の腐葉土を含む粘土質堆積物を1 試料採取した。なお、 粘土質堆積物は分析の前処理において、腐植性炭酸塩質堆積物と腐植質堆積物に分離している。

貝殻は特定の層に集中して存在しており、すべて図 3.1.3・4 に示すような巻貝である。トレン チ1から2 試料(採取位置は図 3.1.3・1 参照)、トレンチ2から1 試料(採取位置は図 3.1.3・3 参 照)を採取した。

図 3.1.3-1 トレンチ1でのTL用の炭酸塩試料(Rc-01~10A)及び貝(●)の採取位置

図 3.1.3-2 トレンチ1での ¹⁴C 年代測定用の木根試料の採取位置

図 3.1.3·3 トレンチ2での ¹⁴C 年代測定用試料及び貝(●)の採取位置

図 3.1.3-4 トレンチ1 (PWT01-15-Rh-004) で採取した貝

3.2 方解石の熱ルミネセンス年代測定

3.2.1 熱ルミネセンス年代測定法

熱ルミネセンス(Thermoluminescence: TL)年代測定法とは、環境放射能により放射線を受けた鉱物を加熱するときに出るルミネセンス(発光)の量から年代を算出する方法である。試料 自体にウランやカリウムなどの放射性核種をほとんど含まなくても年代測定が可能である。

U,Th,K等の放射性元素からの放射線(a,8, γ線)や宇宙線が鉱物に照射されると、鉱物を構成 する原子の電子が電離する。電子が欠けた部位をルミネセンスセンター(正孔)と呼ぶ。電離し た電子の大部分はすぐに元の状態になるが、一部は欠陥光子や不純物に捕らえられ捕獲電子と成 る。図 3.2.1-1 のように捕獲電子は加熱や光の照射等の刺激を与えることにより解放され、正孔 と再結合し、この際にルミネセンス現象が起こる。熱による発光を熱ルミネセンス、光による発 光を光励起ルミネセンス(Optically stimulated luminescence)と呼ぶ。

ルミネセンス量は今まで鉱物が受けた放射線量(蓄積線量)に比例するので、ルミネセンス量 を調べることにより蓄積線量を求めることができる。鉱物周囲の自然放射線の強さを基にすれば、 蓄積線量との関係から時間情報(経過年代)を知ることができる。式では次のように表せる。

年代=蓄積線量/年間線量 (3.2.1-1)

年間線量は1年間に鉱物が受ける放射線の量であり、鉱物周囲の自然放射線の強さ、すなわち放射性元素の濃度より算出する。TL 法は数十万年までの年代を対称にできる[1][2]。アルカリ地下水の湧出は現在も続いており、対象とするイベントの年代域が若いことが期待される。蓄積線量及び年間線量は以下の手順により算出する。

図 3.2.1-1 熱ルミネッセンス年代測定の概念

(1) 蓄積線量測定

サンプルの蓄積放射線量を求めるための実験過程の詳細を以下に述べる。

1) SARA法

ルミネセンス年代測定法による蓄積線量の算出は、人工放射による線量とルミネセンス測 - 251 - 定で得たシグナル強度の関係を求める検量線を引き、その検量線を利用して天然放射線によ る蓄積線量を求めるというものである。検量線をどのように求めるかに依存していろいろな 算出法があり、その中で近年一般的に用いられているのは、SAR (single-aliquot regenerative-dose)法である[2]。SAR法とは、サンプルから1つのアリコートを取り出し、 "線量を与える(本照射)(天然ルミネセンス測定時はなし)ープレヒート・TL測定ー一定線 量照射(テスト照射)ープレヒート・TL測定"の手順を繰り返し行い検量線を引く方法であ る。なお、プレヒートとは、人工照射後に生成する不安定なシグナルを除去するために行う 手順である(表 3.2.1-1参照)。つまり、1つのアリコートのみで、既知の人工照射とルミネ センス測定から検量線を求め、その検量線に天然ルミネセンスを内挿し、蓄積線量を得る方 法である。テスト照射は繰り返しの加熱と放射線照射に伴う試料の感度変化の補正のために 行う手順である。

しかし、SAR 法では方解石等で生じるとされる最初の加熱(天然ルミネセンス測定)後の重 大な感度変化[3]が問題になってしまう。そこで、今回の測定ではこの感度変化を無視できる SARA (single-aliquot regeneration and added-dose) 法を使用した。SARA 法の手順を以 下に記述する。

SARA 法では、1 つのサンプルから 4~5 アリコートを取り出し、各アリコートに特定量の 放射線(今回は 0, 30, 60, 90Gy または 0, 30, 60, 90, 120Gy)を照射する。追加照射後に各 アリコートの蓄積線量を SAR 法で測定し、追加照射量の関数として SAR 法蓄積線量を図示 することにより蓄積線量を求める方法である(図 3.2.1-2 参照)。感度変化が起きていない場 合、描かれた直線の傾きは 1 になるが、負の感度変化(最初の加熱によって線量に対する発 光量が減少すること)が場合は傾きが>1 に、反対に正の感度変化(最初の加熱によって線量 に対する発光量が増加すること)が起きた場合は傾きが<1 になる。

図 3.2.1-2 SARA 法の実施手順のイメージ

表 3.2.1-1 SAR 法手順

1.X線を照射する
2. プレヒート(200℃,240秒)
3. RTL 測定(Li)
4. テスト照射する
5. カットヒート(200℃,240 秒)
6. RTL 測定(Ti)
7.1に戻る

2) TL 測定条件

TLCI 撮影からサンプルの熱ルミネセンスが最も多い赤色熱ルミネセンス(Red Thermoluminescence)を測定する。RTL 測定のため、受光波長域を約 600-650nm にする 透過フィルター(R60, hoya+IRC-65L, kenko)を付けた光電子増倍管(浜松フォトニクス,受 光波長域 300-850nm, ピーク 420nm)を使用する。TL 測定温度は 100-400℃、加熱率は 1℃/s で行う。追加照射は 0, 30, 60, 90Gy または 0, 30, 60, 90, 120Gy を照射する。人工的に放射 線を照射するために、線量率 0.12Gy/s の X 線を利用する。プレヒートは 200℃、240 秒間と する。本照射、テスト照射は各アリコートに適当量を照射する。

3) 蓄積線量誤差

周囲の岩石との距離や沈積した年代の差のため、採取位置によって蓄積線量が異なると考 えられるため複数の位置・深さから試料を採取し、蓄積線量を評価する。採取場所の差異によ る蓄積線量誤差を最小にするため、各位置の各アリコート測定を1回ずつにする。

(2) 年間線量測定

年間線量の測定には、試料採取場所に線量計を置き直接測定する方法と、試料中と試料周囲の放射性元素濃度から測定する方法がある。今回は後者の方法を利用し年間線量を求める。年間線量計算に必要な放射性元素は U, Th, Rb, K である。これらの濃度を XRF、EPMA、LA-ICP-MS を用いて測定する。

1) 年間線量算出

Ito et al. (2009)[4]の式から年間線量を算出する。 Annual dose (Gy/year)= $D_{\alpha}+D_{\beta}+D_{\gamma}$

$$= \frac{2.18 \times U(\text{ppm}) + 0.6111 \times Th(\text{ppm})}{1 + 1.5 \times W.C.} \times a$$

+
$$\frac{0.146 \times U(\text{ppm}) + 0.0273 \times Th(\text{ppm}) + 0.00038 \times Rb(\text{ppm}) + 0.649 \times K_2O(\%)}{1 + 1.25 + W.C.} \times b$$

+
$$\frac{0.113 \times U(\text{ppm}) + 0.0476 \times Th(\text{ppm}) + 0.202 \times K_2O(\%)}{1 + 1.14 + W.C.} \times c$$

ここで、 D_{a} , D_{b} , D_{Y} はそれぞれ α 崩壊、 β 崩壊、 γ 崩壊からの放射線に基づく年間線量である。aは有効 α 線量、w.c.は含水比である。なお、年間線量の算出において以下のことに留意する。

a. *D*aの項

α線の飛程範囲はおよそ 10µm である。このため、年代測定を行う方解石自身からの α 線のみを考慮し、玄武岩からの α線はないものと仮定する。

b. W.C. (含水比)

現在までの試料の保存場所・状態が分からない場合は、正確な含水比を得ることができな いとして含水比を0と仮定した。

c. U、Th、Rb 濃度

LA-ICP-MS 測定では ²⁹Si, ⁴³Ca, ⁸⁵Rb, ⁸⁶Sr, ⁸⁷Rb, ⁸⁸Sr, ²³²Th, ²³⁴U, ²³⁸U の濃度を測定し、 これらの結果から各放射性同位体の同位体存在比率を用いて U, Th, Rb 濃度を算出する。 ⁸⁵Rb は Rb の 72.17%、 ²³⁸U は U の 99.2745%、 ²³²Th は Th の 100%を占める存在比率であ るため、U, Th, Rb 濃度は測定した濃度の存在比率の逆数をかけることから算出する。

d. 宇宙線

年間線量を考慮するには、宇宙線の寄与を考えなければならない。Prescott and Hutton (1994)[5]の式を用いて宇宙線の算出を行う。

2) 年間線量誤差

年間線量(AD)の誤差については以下の誤差伝播の式を用いて算出する。ここで σAD、σU、 σTh、σRb はそれぞれ年間線量の相対誤差、U 濃度の相対誤差、Th 濃度の相対誤差、Rb 濃 度の相対誤差である。以下の式により算出した年間線量の相対誤差をもとに年間線量の誤差 を算出する。

 $\sigma AD^2 = \sigma U^2 + \sigma Th^2 + \sigma Rb^2 \qquad (3.2.1-3)$

炭酸塩熱ルミネセンス年代測定は、石英を利用する熱ルミネセンス年代測定と比較し利用例が 少ない。これは炭酸塩熱ルミネセンス特性が加熱による物性変化の影響[6][7]や、不純物濃度[8][9] 等に大きく依存しそれらの影響の補正について理解がすすんでいないことが原因と考えられる。 Medlin (1968)[8]は、炭酸塩の発光は Mn²⁺イオンサイトの遷移が主な原因であり、そのため鉱物 中の Mn 濃度によって TL 特性が変化することを示した。Townsend et al., (1994)[9]は Medilin (1968)[8]の研究結果を基に、高 Mn 濃度の天然方解石、Mn 濃度や他元素濃度の低い Iceland Spar、 および合成方解石を、温度 20-400℃、波長 200-800nm 範囲で TL 測定を行った結果、Mn 以外の 不純物濃度によっても TL 特性が変化することを示した。

Mn 以外の元素では U 濃度が方解石熱ルミネセンスに大きく影響するという報告もある[10]。 また微量元素の有無により熱ルミネセンス特性が変化することも示されている。

塚本(1994)[11]は、方解石カソードルミネセンスの発光促進元素として Mn が、発光抑制作用 として Fe が最も重要な元素とし、これらの量比によって発光量が変化することを示している。カ ソードルミネセンスと熱ルミネセンスは励起エネルギー以外の発光メカニズムは同様なので、方 解石熱ルミネセンスにおいても発光抑制の役割を果たす元素が存在し、それらが発光量に影響を 及ぼすことが考えられる。

そこで発光メカニズムの理解をすすめるために、炭酸塩の化学組成と発光特性の関連の調査が 必要である。天然炭酸塩を用い化学組成を測定するとともに、発光特性研究、とくに各種放射線 によりルミネッセンスサイトが形成される効率に関して調査を行ったところ、Mn, Fe, Mg 濃度が 発光特性に大きく寄与を与える可能性が明らかになった。またβ線、γ線によるルミネッセンス サイト形成効率と、α線によるルミネッセンスサイト形成効率は挙動が全く異なっていた。しか しながら天然の試料ではいろいろな元素が微量に混入し、支配要因を定量的に特定するのが難し い。

そのため、化学組成をコントロールした炭酸塩を合成し、その発光特性を調べるとともに、パ ラワン島のNarra地区のトラバーチンが層状に重なって堆積しているナチュラルアナログサイト から採取した炭酸塩鉱物のTL年代の算出に関する検討を実施した。 3.2.3 炭酸塩の発光特性

(1) 方解石の合成

微量元素の濃度を調整し、方解石を合成した。

方解石合成のための基礎試薬として、炭酸ナトリウム(純度>99.8 wt% 試薬特級, Wako)、 塩化カルシウム(純度>95.0 wt%, 試薬特級, Wako)、塩化鉄(II)(純度>99.0-102.0 wt%, 試 薬特級, Wako)、塩化マグネシウム(純度>98.0 wt%, 試薬特級, Wako)、塩化マンガン(純度 >99.0 wt%, 試薬特級, Wako)を用いた。

カルシウム溶液に微量元素(Fe, Mg, Mn)を添加した混合溶液に炭酸ナトリウム溶液を添加 し、マグネティックスターラーを用いて室温で24時間撹拌させた。撹拌後、孔径0.2µmのフ ィルターを用いて減圧ろ過を行い、イオン交換水を注ぐことで沈殿物を洗浄した。

Mgのみを添加した試料を3つ(Mg1, Mg2, Mg3)、Mnのみを添加した試料を5つ(Mn1, Mn2, Mn3, Mn4, Mn5)、Feのみを添加した試料を3つ(Fe1, Fe2, Fe3)、微量元素を添加しない試料を1つ(Pure calcite)合成した。また Mn と Mg を添加した試料を2つ(Dual1, Dual2)、Mn と Fe を添加した試料を2つ(Dual3, Dual4)合成した。合成の際の試薬の混合比を表 3.2.3-1 に示す。

Sample	イオン交換水(ml)	1M-NaCO₃(ml)	1M-CaCl2(ml)	1M-MnCl2(ml)	0.1M-MnCl2(ml)	1M-MgCl2(ml)	1M-FeCl2(ml)
Pure calcite	900	50	50	_	-	-	-
Mn1	900	50	50	_	0.005	-	-
Mn2	900	50	50	0.005	_	-	_
Mn3	900	50	49.95	0.05	_	-	_
Mn4	900	50	49.5	0.5	_	-	_
Mn5	900	50	45	5	_	-	_
Mg1	900	50	49.95	_	_	0.05	_
Mg2	900	50	49.5	_	_	0.5	_
Mg3	900	50	45	_	_	5	_
Fe1	900	50	49.95	_	_	-	0.05
Fe2	900	50	49.5	_	_	-	0.5
Fe3	900	50	45	_	_	-	5
Dual1	900	50	49.9	0.05	_	0.05	_
Dual2	900	50	49.5	0.05	_	0.5	_
Dual3	900	50	49.9	0.05	_	-	0.05
Dual4	900	50	49.5	0.05	_	-	0.5

表 3.2.3-1 各合成試料の溶液組み合わせ

(2) 合成試料の鉱物組成

合成した試料は、粉末 X 線回折を用いて鉱物同定を行った。Fe1、Mg1、Fe3 を除いて、純 方解石であることを確認した(図 3.2.3・1)。Fe1 と Mg1 は方解石とファテライトピークを、 Fe3 は方解石や霰石、シデライト、ファテライトの複数のピークを示した。ファテライトが生 じる原因としては試料の撹拌不足が考えられる。また Fe3 については、Fe を多く添加したこ とで、方解石中の不純物としてではなく、Fe の炭酸塩鉱物としてシデライトが晶出したと思 われる。Mg1 と Fe1 に関しては、方解石ピークに比べてファテライトのピークが小さいこと や、ファテライトは加熱することで方解石に転移することから[12]、方解石の熱ルミネッセン ス実験への影響は小さいと考えられる。しかし Fe3 は方解石ピークとファテライトのピーク強 度が同じくらいであり、また Fe 炭酸塩鉱物であるシデライトが存在することから、微量元素 濃度と熱ルミネッセンス特性の関係を評価する上で方解石以外の鉱物の影響を考慮する必要 があると考えられる。

図 3.2.3-1 合成した方解石の XRD パターン

(3) 微量元素濃度測定

LA-ICP-MS を用いて、合成した方解石の微量元素濃度を調べた(図 3.2.3-2 及び表 3.2.3-2 参照)。測定装置は金沢大学理工学域の 7500S Agilent を用いた。外部標準試料として NIST610 を 用いた。測定した元素濃度は 7Li, ¹¹B, ²³Na, ²⁴Mg, ²⁷Al, ²⁹Si, ³¹P, ³⁹K, ⁴²Ca, ⁴³Ca, ⁴⁵Sc, ⁴⁷Ti, ⁵¹V, ⁵³Cr, ⁵⁵Mn, ⁵⁷Fe, ⁵⁹Co, ⁶²Ni, ⁶³Cu, ⁶⁶Zn, ⁸⁵Rb, ⁸⁸Sr, ⁸⁹Y, ⁹⁰Zn, ⁹³Nb, ⁹⁵Mo, ¹³³Cs, ¹³⁷Ba, ¹³⁹La, ¹⁴⁰Ce, ¹⁴¹Pr, ¹⁴⁶Nd, ¹⁴⁷Sm, ¹⁵¹Eu, ¹⁵⁷Gd, ¹⁵⁹Tb, ¹⁶³Dy, ¹⁶⁵Ho, ¹⁶⁶Er, ¹⁶⁹Tm, ¹⁷²Yb, ¹⁷⁵Lu, ¹⁷⁸Hf, ¹⁸¹Ta, ²⁰⁸Pb, ²³²Th, ²³⁸U である。

※影の部分は添加した元素

図 3.2.3-2 合成した試料の微量元素濃度

Doping element	Sample	Mg (ppm)	Mn (ppm)	Fe (ppm)
No	Pure calcite	35.3	0.854	81.2
Mn	Mn1	28.1	5.30	127
	Mn2	31.7	53.8	118
	Mn3	47.1	609	121
	Mn4	29.3	5220	62.3
	Mn5	23.7	58300	60.1
Mg	Mg1	201	0.879	157
	Mg2	1600	2.46	50.6
	Mg3	11800	1.03	50.6
Fe	Fe1	25.8	0.200	428
	Fe2	29.5	0.276	8210
	Fe3	20.6	0.958	58200
Mn+Mg	Dual1	211	548	130
	Dual2	1960	532	119
Mn+Fe	Dual3	25.0	515	859
	Dual4	17.3	557	8740

表 3.2.3-2 合成した試料の Mg, Mn, Fe 濃度

合成試料は粉末試料であるため、直接レーザー照射を行うと粉末が舞い上がり、シグナルが不 安定に成る原因や機器の故障に繋がる。そこで試料を固形にする必要がある。本研究では粉末試 料を圧縮し、ペレット形状にして LA-ICP-MS 測定を行った。直径 8mm のアルミニウムパイプ を高さ 2.5mm に切ったサンプルホルダーの中に粉末試料を入れ、タングステンカーバイドで挟み、 300kN の圧力を1分間かけることでペレットを作成した。

各試料とも添加した微量元素の濃度は無添加の試料に比して増加しており、方解石に取り込ま れたことが確認された(図 3.2.3・3 及び表 3.2.3・2)。Mg、Mn、Feの添加量をオーダー単位で変 えると混入量もオーダー単位で変化する。Sr、Baは添加していないにも関わらず、全試料で高い 濃度を示す(図 3.2.3・2)。Sr、Baは試薬として利用した塩化カルシウムまたは炭酸ナトリウム 中に多く含まれていることが考えられる。同様にMgを添加していない試料でもMg濃度が、Fe を添加していない試料でも Fe 濃度が比較的高いことから塩化カルシウムまたは炭酸ナトリウム にMg、Fe も含まれていると考えられる。Mo は Mn を添加した試料のみ比較的高い濃度を示し、 Mn 添加量に応じて Mo も増加する。したがって塩化マグネシウム中に Mo が混入していることが 考えられる。また他の合成方解石と比して Mg1、Fe3、Mn3 の Ni と Cu は高い濃度示した。こ の Ni と Cu は添加元素や添加量との関係性はないため、方解石合成時もしくは LA-ICP-MS 測定 用のペレットを作成したときに混入したものと考えられる。

合成方解石には試薬由来の意図していない元素が混入することが明らかになったが、一部を除 き各合成方解石間で混入量に大きな差はなかった。そのため添加元素濃度と熱ルミネッセンス特 性の関係を評価する上で、混入の影響は無視できると考えられる。Mo に関しては Mn と区別し て評価する必要がある。Mg1、Fe3、Mn3の熱ルミネッセンス特性の評価の際には、Ni と Cu の 混入も考慮していく。


```
※複数元素を添加した試料(Dual1, Dual2, Dual3, Dual4)については添加元素毎にプロット
```


(4) 発光ピーク温度測定

熱ルミネッセンスのピークは 100-450℃間に複数存在し、複数のピークが見かけ上1つのピー クとして現れることもある[13]。各ピークで放射線量に対する発光効率が異なる可能性があるた め、発光ピーク数を明らかにする Tm-Tstop 法[14]を用いて発光ピーク温度を同定した。

X線100Gyを照射した試料をT_{stop}℃まで加熱し、その後室温まで冷やしてから再び加熱し残ったTLグロー曲線を測定する。残存TLグロー曲線の最初のピーク温度をTm℃として記録する。 この作業を繰り返し行い、T_{stop}℃に対するTm℃をプロットすることでピーク数を測定した。

試料には Mn3 を用いた。測定温度は 70-450℃、加熱率は 1℃/s、T_{stop}℃の間隔は 5 ℃とした。 測定の結果、Mn3 のピーク温度は 120、170、240、280、330、420℃の 6 つであった (図 3.2.3-4、 図 3.2.3-5)。低温度ピークは熱的に不安定であるため、本研究では 240、280、330、420℃の 4 ピークに着目し評価を行った。

図 3.2.3-4 Tm-Tstop 法における TL グロー曲線

図 3.2.3-5 Tm-Tstop 法におけるアニーリング温度 Tstop と初期ピーク温度 Tm

(5) 発光量測定

各合成方解石試料に X 線を 100Gy 照射し、熱ルミネッセンス測定を行うことで発光量の評価を 行った。発光量は Tm⁻T_{stop} 法で求めた 240、280、330、420℃ピークで測定した。

各合成方解石の発光量をピーク温度毎に評価したものを図 3.2.3-6 に示す。Pure calcite と単元 素添加試料(Single)では、240、280、420℃ピークは 100ppm まで、330℃ピークでは 10ppm ま で、発光量と Mn 濃度が相関関係を示し、それ以降は逆相関関係を示した。Fe 濃度は、420℃ピ ークを除いた全てのピークで発光量と逆相関関係を示した。また、Mg 濃度と発光量についての 相関は見られなかった。また二元素添加試料(Dual1, Dual2, Dual3, Dual4)に関しては、Mn のみ を添加した試料と Mn+Mg を添加した試料(Dual1, Dual2)では発光量に大きな差は見られなかっ たが、Mn+Fe を添加した試料(Dual3, Dual4)はこれらの結果より発光量が低くなった。さらに Fe 濃度が高い程、発光量が低い値を示した。これらの結果より、方解石熱ルミネッセンスの発光 量は、ピーク温度に関わらず、Mn はある量 (~10ppm) まではアクチベーター(発光量増加要因) として、Fe はクエンチャー(発光量抑制要因) としての効果を持つことが明らかになった。

図 3.2.3-6 微量元素濃度と発光量

(6) α線、β線、γ線、X線照射

濃度調整した方解石を用い、α線、6線、γ線、X線を照射し、方解石熱ルミネセンス特性を調 べる。ルミネセンス測定装置では、蓄積線量測定の際に必要な放射線の人工照射(再現照射)と そのルミネセンス量の関係から求める検量線の作成に、再現照射としてX線源もしくは6線源を 利用する。本研究室ではX線を利用して検量線を引いている。石英ではX線と自然放射線(6,γ 線)の間に放射線量に対するルミネセンス量の差はないことが先行研究で示されている。α線に ついては概ね 0.15 の発光効率であると考えられているが[15]、より小さい値とする論文もある (0.04, [16]参照)。方解石においては、天然試料の分析に基づくと各放射線に対するルミネセン ス効率は化学組成に依存していると考えられるため、濃度調整を行った合成方解石に放射線照射 を行った。

γ線照射実験

γ線照射は京都大学原子炉実験所(KUR)の ⁶⁰Co-γ線照射装置を用い行った。γ線照射を行った試料の熱ルミネッセンスを測定したのち、X線源による人工線量と発光量の関係を調べて検量線を作成する SAR 法[17]にて等価線量を計算した。γ線で与えた線量と測定した等価線量を比較してX線に対するγ線熱ルミネッセンスの発光効率(c-x-value)を求めた。

γ線照射実験は2015年10月15日に行った。γ線照射量が100Gyになるように照射実験 を行ったが、放射線のゆらぎや試料の配置によって照射量がずれる可能性を考慮し、X線と γ線間に放射線量に対する熱ルミネッセンス量に差がない石英を同時に照射・測定し、γ線照 射量を評価した。

Pure calcite、Mg1、Fe1、Mn1、Mn2、Mn3、Mn4、Mn5、Dual1、Dual2のTLグロー 曲線と放射線反応曲線を図 3.2.3-7~図 3.2.3-16 に、c-x-value を表 3.2.3-3 に示す。放射線 反応曲線、および c-x-value の計算には全ての試料に存在した 240℃ピークを用いた。

合成方解石と天然方解石を用いて、Mn 濃度と c-x-value の関係を評価した(図 3.2.3-17)。 Mn を添加した試料(Mn1, Mn2, Mn3, Mn4, Mn5, Dual1, Dual2)の c-x-value は無添加の Pure calcite(0.60)や Mg のみを添加した Mg1(0.70)と比較して、0.12-0.40 と低い値を示した。 また、同程度の Mn を添加した試料(Mn3; 0.27, Dual1; 0.23, Dual2; 0.23)を比較すると、Mg を同時に添加した Dual1、Dual2 が若干低い値を示したものの Mg 濃度による差は見られな かった。

Mn 濃度と c-x-value は逆相関関係を示した。合成方解石の 5.3ppm(Mn1)から 609ppm(Mn3)は線形関係を示し、天然方解石との結果とも一致している。609ppm から 5220ppm(Mn4)にかけて c-x-value が大きく減少している。Mn 濃度が高くなると発光量が減少するため、Mn 炭酸塩が形成されることによって、発光量の減少および c-x-value の変化が 生じると考えられる。これらの結果より、Mn は c-x-value を低くする効果を持ち、Mg 混入 がルミネッセンス効率に与える影響は Mn に比べて無視できる程度であると考えられる。以 上の結果は 240℃ピークで得たものであるが、異なる温度で評価すると Mn 濃度と c-x-value の傾向は同じであるが、数値そのものはやや変動する。そのため、天然試料にこの値を応用

図 3.2.3-7 TL グロー曲線と放射線反応曲線(Pure calcite)

図 3.2.3-8 TL グロー曲線と放射線反応曲(Mg1)

図 3.2.3-9 TL グロー曲線と放射線反応曲(Mn1)

図 3.2.3-10 TL グロー曲線と放射線反応曲(Mn2)

図 3.2.3-11 TL グロー曲線と放射線反応曲(Mn3)

図 3.2.3-12 TL グロー曲線と放射線反応曲(Mn4)

図 3.2.3-13 TL グロー曲線と放射線反応曲(Mn5)

図 3.2.3-14 TL グロー曲線と放射線反応曲(Dual1)

図 3.2.3-15 TL グロー曲線と放射線反応曲(Dual2)

※Fe1 はほとんど発光を示さなかったため、発光量なし(No TL)とした。
 図 3.2.3-16 TL グロー曲線と放射線反応曲(Fe1)

Sample	γ 線照射量(Gy)	等価線量(Gy)	c−x−value
Pure calcite	116	69.3	0.60
Mg1	127	89.5	0.70
Fe1	125	No TL	-
Mn1	133	52.8	0.40
Mn2	131	43.1	0.33
Mn3	130	35.2	0.27
Mn4	129	15.9	0.12
Mn5	128	14.8	0.12
Dual1	123	27.9	0.23
Dual2	121	27.6	0.23

表 3.2.3-3 合成方解石の c-x-value

図 3.2.3-17 Mn 濃度と c-x-value

3.2.4 パラワン島の炭酸塩試料の年代測定

今年度 TL 年代に供するフィリピンパラワン島のナチュラルアナログ試料は、図 3.1.3-1 に示 す Narra 地区トレンチ1で採取した炭酸塩試料のうち表層部の PWT01-15-Rc-001 と最深部の PWT01-15-Rc-010A の 2 試料を対象とする。

3.2.3 で示したように炭酸塩中の化学組成が TL 特性に影響するため、今年度採取した鉱物特性 及び鉱物化学特性についてまず調べたのちに、SARA 法による TL 年代測定を実施する。

(1) 鉱物学的特性 (XRD)

トレンチ1から採取した PWT01-15-Rc-001~010AのX線回折測定を実施した。なお、試料調整及び分析方法は第2章(2.2.4 (2))に記載した方法と同じである。図 3.2.4-1~図 3.2.4-10 にX線回折チャートを示す。

これらの試料は方解石である他の鉱物は同定されなかった。

図 3.2.4-1 PWT01-15-Rc-001のXRD チャート

図 3.2.4-3 PWT01-15-Rc-003のXRD チャート

図 3.2.4-4 PWT01-15-Rc-004のXRD チャート

図 3.2.4-5 PWT01-15-Rc-005のXRD チャート

図 3.2.4-7 PWT01-15-Rc-007のXRD チャート

図 3.2.4-8 PWT01-15-Rc-008のXRD チャート

図 3.2.4-9 PWT01-15-Rc-009のXRD チャート

図 3.2.4-10 PWT01-15-Rc-010AのXRD チャート

(2) 誘導プラズマ質量分析 (ICP-MS) 及び Si 濃度分析

同じくトレンチ1の炭酸塩の10試料について、ICP-MS により主成分・微量成分分析を行った。全ケイ素アルカリ溶融脱水法で定量したSi 濃度と合わせてにそれらの結果を表 3.2.4-1 に示す。

また、希土類元素パターンをサンプリングした深度ともに図 3.2.4-11 に示す。

表 3.2.4-1 ICP-MS 及び全ケイ素アルカリ溶融脱水法による主成分・微量成分分析結果

Location	PWT01-15-Ro-001	PWT01-15-Ro-002	PWT01-15-Ro-003	PWT01-15-Rc-004	PWT01-15-Ro-005	PWT01-15-Ro-006	PWT01-15-Ro-007	PWT01-15-Ro-008	PWT01-15-Ro-009	PWT01-15-Ro-010A
Na (wt.%)	2.47	4.08	4.10	3.77	2.73	2.70	2.79	2.02	1.98	2.16
Mg	0.56	0.22	0.07	0.35	1.33	1.19	2.77	1.21	0.63	0.68
Al	0.85	1.52	1.55	1.45	1.14	1.08	1.16	0.79	0.80	0.95
Р	b.d.1	b.d.1	b.d.l	0.00	b.d.l	b.d.1	b.d.l	b.d.l	b.d.1	b.d.l
K	0.22	0.22	0.27	0.25	0.05	0.08	0.06	0.07	0.07	0.08
Ca	39.40	37.63	38.31	39.17	41.67	41.92	39.88	39.53	39.74	38.86
Sc (ppm)	0.30	0.47	0.51	0.57	0.73	0.88	1.01	0.52	0.63	2.07
Ti (wt.%)	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.02
V (ppm)	b.d.1	2.11	0.54	0.63	0.84	1.73	2.13	0.67	1.46	5.77
Cr	8.87	5.65	11.49	31.64	13.58	40.63	53.02	13.13	23.94	235.21
Mn (ppm)	5.81	8.23	9.07	41.74	27.05	79.69	312.37	22.87	79.96	86.48
Mn (wt.%)	0.00	0.00	0.00	0.00	0.00	0.01	0.03	0.00	0.01	0.01
Fe(wt%)	0.03	0.04	0.04	0.14	0.10	0.38	0.46	0.08	0.22	0.68
Fe(ppm)	302	350	374	1403	1007	3827	4649	816	2160	6828
Co (ppm)	0.67	1.01	1.17	4.04	2.15	4.41	8.95	1.84	7.78	31.78
Ni	b.d.1	b.d.1	b.d.l	b.d.1	b.d.1	b.d.1	34.39	b.d.1	b.d.1	378.77
Cu	3.43	4.39	4.87	4.66	2.82	3.73	4.55	2.54	3.16	4.22
Zn	58.99	34.60	34.41	36.22	31.20	34.47	43.30	27.90	44.75	47.28
Ga	31.24	31.88	37.95	34.23	0.71	4.23	0.67	1.22	3.59	1.28
As	2.07	4.91	4.84	4.50	3.89	4.18	3.99	3.12	3.25	3.78
Rb	0.64	0.74	0.84	0.79	0.95	1.03	0.86	1.03	0.84	0.91
Sr	741.61	689.82	643.28	735.60	676.99	778.15	601.82	701.56	739.91	629.51
Y	0.81	1.68	1.74	1.57	1.37	1.38	1.40	0.95	1.03	1.16
Zr	27.24	83.67	77.95	86.35	299.00	260.81	299.29	191.41	127.41	217.55
Nb	0.02	0.03	0.03	0.03	0.43	0.17	0.40	0.25	0.09	0.36
Mo	1.43	2.35	2.37	2.22	1.64	1.75	1.66	1.22	1.28	1.38
Cs	0.17	0.47	0.24	0.26	0.49	0.56	1.12	0.37	0.80	0.51
Ba	2243.74	2319.83	2760.80	2491.93	51.13	302.23	47.95	88.36	258.11	92.66
La	0.45	0.95	0.99	0.90	0.80	0.81	0.83	0.64	0.64	0.69
Ce	0.90	1.93	1.87	1.71	1.58	1.53	1.63	1.11	1.18	1.36
Pr	0.12	0.23	0.24	0.22	0.19	0.19	0.21	0.15	0.15	0.18
Nd	0.34	0.72	0.73	0.68	0.60	0.63	0.65	0.42	0.48	0.55
Sm	0.08	0.15	0.18	0.16	0.12	0.13	0.13	0.09	0.11	0.12
Eu	0.01	0.02	0.03	0.02	0.02	0.02	0.02	0.01	0.02	0.03
Gd	0.09	0.18	0.18	0.15	0.12	0.15	0.13	0.09	0.11	0.14
Tb	0.01	0.03	0.03	0.03	0.02	0.03	0.03	0.02	0.02	0.02
Dy	0.10	0.24	0.24	0.23	0.18	0.18	0.19	0.13	0.14	0.18
Ho	0.03	0.06	0.06	0.05	0.05	0.04	0.05	0.03	0.03	0.04
Er	0.10	0.20	0.21	0.18	0.15	0.15	0.17	0.12	0.12	0.15
Tm	0.02	0.04	0.04	0.03	0.03	0.03	0.03	0.02	0.02	0.02
Yb	0.13	0.28	0.28	0.25	0.22	0.21	0.22	0.15	0.16	0.19
Lu	0.02	0.05	0.05	0.04	0.04	0.04	0.05	0.03	0.03	0.03
Hf	0.30	0.85	0.78	0.81	4.44	3.50	4.27	2.52	1.66	3.12
Та	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00
W	0.53	1.59	1.27	2.22	1.50	139.47	1.48	13.54	12.69	1.98
Pb	8.12	15.30	6.93	7.19	8.89	7.62	27.54	10.47	7.63	10.37
Th	0.25	0.51	0.52	0.47	0.37	0.38	0.38	0.26	0.27	0.31
U	0.15	0.32	0.31	0.28	0.36	0.35	0.34	0.34	0.25	0.35
SiO ₂ (g/kg)	232	409	427	388	421	361	435	525	537	894

Location No.	Depth(cm)	Rare Earth Elements (mg/l)															
PWT01-15-Rc-001	-25	1.00 0.80 0.60 0.40 0.20 0.00	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Y
PWT01-15-Rc-002	-40	4.00 - 2.00 - 0.00 -	↓ La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Y
PWT01-15-Rc-003	-55	2.00 1.50 1.00 0.50 0.00	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	Y
PWT01-15-Rc-004	-65	2.00 1.50 1.00 0.50 0.00	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Y
PWT01-15-Rc-005	-90	2.00 1.50 1.00 0.50 0.00	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Y
PWT01-15-Rc-006	-115	2.00 1.50 1.00 0.50 0.00	La		Pr	Nd	l Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	Y
PWT01-15-Ro-007	-130	2.00 1.50 1.00 0.50 0.00	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	Y
PWT01-15-Rc-008	-155	1.50 - 1.00 - 0.50 - 0.00 -	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Y
PWT01-15-Rc-009	-180	1.50 - 1.00 - 0.50 - 0.00 -	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	Y
PWT01-15-Rc-010A	-185	1.50 1.00 0.50 0.00	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	/ Y

図 3.2.4-11 トレンチ1の炭酸塩試料の希土類元素パターン

(3) TL法年代測定結果と考察

フィリピンパラワン島の Narra 地区の調査サイトで採取した炭酸塩試料の年間線量を、放射 性元素濃度と(4.2.1-2)式を炭酸塩試料にも適用できるように改良した次式[4][16][18]から求 めた。:

$$Annual \ dose \ (mGy/year) = D_{\alpha} + D_{\beta} + D_{\gamma} + D_{cosmic}$$

$$= \frac{2.18 \times U(ppm) + 0.6111 \times Th(ppm)}{1 + 1.5 \times W.C.} \times K_{\alpha}$$

$$+ \frac{0.146 \times U(ppm) + 0.0273 \times Th(ppm) + 0.00038 \times Rb(ppm) + 0.649 \times K_2O(\%)}{1 + 1.25 \times W.C.} \times K_{\beta}$$

$$+ \frac{0.113 \times U(ppm) + 0.0476 \times Th(ppm) + 0.202 \times K_2O}{1 + 1.14 \times W.C.} \times K_{\gamma} + D_{cosmic}$$

 D_{α} 、 D_{β} 、 D_{γ} は α 線、 β 線、 γ 線、宇宙線の1年間の線量率を表す。W.C.は含水比、 K_{α} 、 K_{β} 、 K_{γ} は a-x-value、b-x-value、c-x-value である。

PWT01-15-Rc-001 から PWT01-15-Rc-010A の Mn 濃度範囲(5.3-312.4ppm:表 3.2.4-1 参照)は、合成試料を用いた基礎実験で Mn 濃度と c-x-value が線形関係を示す範囲(図 3.2.3-17; 5.3-609ppm)と一致する。そこで、本測定ではこの線形関係を用いて各試料の Mn 濃度から c-x-value を算出した。a-x-value、b-x-value に関しては測定中のため、天然方解石 によって得られた Mn 濃度と a-x-value、b-x-value の関係を用いて算出した(図 3.2.4-12)。 宇宙線の寄与は、Prescott and Hutton (1994)[5]の式を用いて算出した。

年間線量の結果を表 3.2.4・2 に示す。各試料間に、放射性元素や Mn 濃度、含水比、宇宙線 量率に大きな差はなかったため、年間線量率にも大きな差はなかった(0.36-0.50mGy/year)。

本測定では、表層部の PWT01-15-Rc-001 と最深部の PWT01-15-Rc-010A の蓄積線量を測定し、年代を算出した(図 3.2.4-13~図 3.2.4-14、表 3.2.4-2)。その結果、PWT01-15-Rc-001 の年代は 988ka、PWT01-15-Rc-010A では 173ka となった。

図 3.2.4-12 Mn 濃度と a-x-value, b-x-value

Annual dose Equivalent dose TL age (ka) Cosmic ray (mGy/year) U (ppm) Th (ppm) Rb (ppm) K_2O (%) Mn (ppm) 含水比 a-x-value b-x-value c-x-value Sample (mGy/year) (Gy) 988 PWT01-15-Rc-001 0.15 0.49 0.51 0.19 0.36 360 0.25 0.64 0.39 5.8 0.23 0.39 PWT01-15-Rc-002 0.32 0.51 0.74 0.41 8.2 0.79 0.26 0.45 0.38 0.18 0.40 PWT01-15-Rc-003 0.31 0.84 0.45 0.27 0.18 0.48 0.52 0.49 9.1 0.43 0.38 PWT01-15-Rc-004 0.28 0.47 0.79 0.45 41.7 0.60 0.41 0.25 0.34 0.17 0.44 PWT01-15-Rc-005 0.36 0.37 0.95 0.10 27.0 0.64 0.37 0.29 0.35 0.16 0.39 PWT01-15-Rc-006 0.47 0.35 0.38 1.03 0.15 79.7 0.82 0.20 0.32 0.16 0.40 PWT01-15-Rc-007 0.34 0.38 0.86 0.11 312.4 0.70 0.59 0.12 0.28 0.15 0.46 PWT01-15-Rc-008 0.34 1.03 0.13 0.74 0.35 0.31 0.15 0.33 0.26 22.9 0.36 PWT01-15-Rc-009 0.25 0.27 0.84 0.13 80.0 0.54 0.47 0.20 0.32 0.14 0.35 PWT01-15-Rc-010A 0.35 0.14 86.5 0.28 0.48 0.32 0.50 86 173 0.31 0.91 0.19 0.14

表 3.2.4-2 各試料の年代に関するパラメータ

*U, Th, Rb, K, Mnの濃度はICP-MSの計測値(表3.2.4-1)

*K2OはKが全て酸化していると仮定した値

※(b)は(a)の拡大図

図 3.2.4-13 PWT01-15-Rc-001のTLグロー曲線

図 3.2.4-14 PWT01-15-Rc-010AのTLグロー曲線

今回、暫定的に年代測定を行ったが、正確な年代を求めるにはいくつか考慮する課題がある。 以下に課題をまとめる。

- 方解石では、最初の加熱(Natural 測定)の際に大きな感度変化が生じ、年代が過大評価、 もしくは過小評価される可能性がある。SARA(single-aliquot regeneration and added-dose)法[7]を用いる事で感度変化を補正できるが、本測定ではそれを行っていない こと。
- ② 本測定では、240℃ピークを用いて蓄積線量測定を行った。しかし、ピーク分離を行わな かったため、高いルミネッセンス強度を示す 330、420℃ピークの影響を受け、蓄積線量 が過大評価されている可能性があること。
- ③ PWT01-15-Rc-001、PWT01-15-Rc-010A ともに試料中に微量ながら貝等の生物起源のア ラゴナイトが含まれている可能性がある。アラゴナイトは加熱することで方解石に転移す る。熱ルミネッセンス測定中に、アラゴナイトが方解石に転移し、熱ルミネッセンス感度 が大きく変化する可能性があるため、アラゴナイトと方解石の TL 特性を考慮し、補正す る、もしくは方解石とアラゴナイトを分別し測定する必要があること。

PWT01-15-Rc-001-, PWT01-15-Rc-010A ともに年代測定に必要な発光量を示しているため、 上記の課題をクリアすることでより正確な年代を測定できると考えられる。
3.3 埋没木根の放射性炭素年代法による年代測定

3.3.1 放射性炭素年代法の概要と実施概要

放射性炭素と¹⁴C は時間とともに壊変し、その半減期は 5730 年である。これを利用する方法 が放射性炭素年代法で、現代から数万年前の年代範囲を対象とする年代測定のうち最も精度の高 い年代測定法の1つである。

動植物が生きている間は光合成や呼吸を行うため大気中とほぼ同じ割合の炭素同位体を含むが、 動植物の死後は、大気との交換が止まり、体内に残った¹⁴Cのみが時間とともに減少していくた め、試料中の¹⁴C濃度を測定することにより年代値を推定することができる。

ここでは、国立研究開発法人日本原子力機構の東濃地科学センター土岐地球年代学研究所において、当研究所の加速器質量分析(Accelerator Mass spectrometry: AMS)装置(ペレトロン年 代測定装置)を用いて、パラワン島 Narra 地区のトレンチで採取した埋没木根の炭素同位体を定 量し、放射性炭素年代を算出する[19][20][21]。

(1) AMS 装置と測定手法

今回利用する AMS 装置(ペレトロン年代測定装置)(図 3.3.2-1)は ¹⁰Be, ¹⁴C, ²⁶Al, ³⁶Cl, ¹²⁹I の放射性同位体の測定が可能である。今回実施する放射性炭素(¹⁴C)年代測定では、試料は、カ ソードに詰められた後、ホイールに充填され、固体試料用イオン源①にセットされる。試料は、 そこでイオン化された後、逐次入射システム②で同位体ごとに分離され、加速器 ③に送られる。 加速器では、二段階のイオンの加速が行われ、検出器に運ばれる。¹²C 及び ¹³C はファラデーカッ プ検出器④で、量の少ない ¹⁴C は重イオン検出器⑤で検出される[22]。に AMS 装置の概要を表 3.3.2-1 示す。

図 3.3.2-1 AMS 装置(ペレトロン年代測定装置)図[22]

表 3.3.2-1	AMS 装置の概要

名称	JAEA-AMS-TONO				
製造元	National Electrostatics Corp. (USA)				
加速器	ペレトロン 5MV 15SDH-2				
最大加速電圧	$5 \mathrm{MV}$				
最大電流	1 μA				
最小試料量	数 mg (炭素の場合)				
年代測定範囲	最大約6万年前まで(炭素の場合)				
測定所要時間	1 試料あたり約1時間程度(炭素の場合)				

放射性炭素同位体を対象とした基本的な AMS 測定の条件を表 3.3.2-2 に示す。

表 3.3.2-2 AMS 測定の条件

	同位体比 ¹⁴ C/ ¹² C, ¹⁴ C/ ¹³ C, ¹³ C/ ¹² C								
加	速	電	圧	4.5 メガボルト (イオンエネルギーは 22.5 メガ電子ボルト)					
検出イオン (方法)				¹² C ⁴⁺ , ¹³ C ⁴⁺ (以上, ファラデーカップ), ¹⁴ C ⁴⁺ (<i>ΔE</i> 電離箱)					
測	定	時	間	1 サイクル約 0.1s(¹² C: 0.3 ms + ¹³ C: 0.9 ms + ¹⁴ C: 98.6 ms)					
				×約 3600 サイクル(6 分)×繰り返し約 10 回。					
	したがって ¹⁴ C 測定時間は約1時間。								

(2) 試料調整

試料は、洗浄、酸・アルカリ処理後に燃焼法によって二酸化炭素を回収し、これを鉄触媒による水素還元法によって炭素粉末(グラファイト)にして、AMS 測定に用いられる。図 3.3.2-2 に 試料調整の流れを示す。

図 3.3.2-2 AMS 測定における放射性炭素年代測定のための試料調整方法[22]

(3) ¹⁴C 年代の算出

AMS 装置で測定した同位体比 ¹⁴C/¹²C, ¹⁴C/¹³C, ¹³C/¹²C から、次式により年代を算出する。

T

$t = -\frac{1}{\lambda} ln$	$\left[\frac{N}{N_0}\right] = \frac{I\frac{1}{2}}{0.693} \ln\left[\frac{N}{N_0}\right] = -8033 \ln\left[\frac{N}{N_0}\right] = -8033 \ln\left[\frac{R_{SA}}{f \times R_{STD}}\right]$
$T_{1/2}$: ¹⁴ C の半減期=5730 年
λ	: ¹⁴ C の崩壊定数
Ν	:現代炭素の ¹⁴ C 濃度
N ₀	: 未知試料の ¹⁴ C 濃度
f	:標準試料によって決定される定数
R _{STD}	: 標準試料の同位体比(¹⁴ C/ ¹² C または ¹⁴ C/ ¹³ C)
R_{SA}	: 未知試料の同位体比(14C/12C または 14C/13C)

(3.3.2-1)

同位体比の正確さを確認するため、IAEA 国際標準試料を同時に測定している。その pMC (percent Modern Carbon)単位の¹⁴C 濃度の測定値と標準値の差が標準値の1%以内にある事で もって測定データが妥当であると判断する。

¹⁴C のバックグラウンドの由来は主に並列する他のカソードからの汚染と試料調整の際の現 代炭素の汚染によると考えられる。¹⁴C のバックグラウンドによる ¹⁴C 年代の補正は次式で表 される。

$$\begin{split} t &= -8033 \ln \left[\frac{(R_{SA} \times D_{SA} - R_B \times D_B)}{f \times (R_{STD} - R_B)} \right] \\ R_B & : バックグラウンド試料の同位体比(14C/12C または 14C/13C) \\ D_B & : バックグラウンド試料の炭素同位体分別による補正係数 \end{split}$$

(3.3.2-2)

3.3.3 パラワン島 Narra 地区トレンチの埋没木根の放射性炭素年代

図 3.1.3・2 に示すように、トレンチ1 (深度:約 2.8m)における埋没木根(試料番号: PWT01-15-Rh-25 / 深度約 2.8m)の分布は、散在的で、空間的な連続性に乏しいが、トラバー チンが沈殿・堆積(成層)・固結した多孔質で縞状な堆積性炭酸塩岩の堆積面(層理面)に整合的 である。また、トレンチの下部に向かって、埋没木根が塊状的に分布する傾向を示し、それらの 埋没木根それ自身と近傍での炭化作用の影響があり、一部腐植化作用(黒色)が観察される。

一方、トレンチ2(深度:約 1.8m)における埋没木根(PWT02-15-Rh-001;地表近傍、PWT02-15-Rh-011<パラワンオフィオライト基盤岩から上位約 80cm>の試料で2分割:①腐植性炭酸塩質堆積物試料<PWT02-15-Rh-011-①と②腐植質堆積物<PWT02-15-Rh-011-②>、PWT02B-15-C2-0:パラワンオフィオライト基盤岩の直上>)の4 試料である。この埋没木根の分布は、トレンチ1のものと大きな差異はないが、腐植化作用が顕著でその腐植化による黒色化(還元環境)が床面(基盤岩)から上位約 80cm まで観察される。

これらの 5 試料についての放射性炭素による絶対年代測定結果を表 3.3.3-1 に示す。なお、標 準試料として木 (IAEA C5)、同位体比補正の標準試料としてシュウ酸 (HOxII, SRM-4990C: National institute of standards and technology (NIST))、バックグラウンド補正の標準試料とし て大理石 (IAEA C1) を用いている。また、解析は AMS 装置製造元より提供されている解析ソ フト (NEC AMS Analysis Program "abc" Ver.6.1) を使用している。

これらの年代測定値を考察する上で、最初にトレンチ1及び2からの堆積性炭酸塩岩(一部、 堆積性炭酸塩鉱物質堆積物)とトレンチ2からの砕屑性堆積物(トレンチ2:PWT02-15-C2-0) が採取された場所の地形・深度の位置関係および、それぞれの堆積環境を考慮することが必要で ある。

まず地形的位置関係については、図 3.3.3-1 に示すようにトレンチ1 (標高:約61m)は、パ ラワンオフィオライト起源でその母岩の断裂系に沿って上昇してきた高アルカリ湧水地点に近く、 現状の湧水地点から約80m離れた東へ緩傾斜する扇状地的な平坦地にある。一方、トレンチー2(標 高:約58m)は、トレンチ1からさらに東へ約40m離れ、この平坦地が東に低角度で傾斜する地形 変換地点のほぼ縁に位置している。このことから、両者の高低差は、約3m(地形勾配:0.075) である。

次に、この平坦地を構成する炭酸塩鉱物を主体とする堆積性炭酸塩岩(一部、堆積性炭酸塩鉱 物質堆積物)の堆積構造は、殆ど水平な層状構造を示すことから、その堆積環境は、パラワンオ フィオライト基盤岩の穏やかな隆起・風化・浸食作用のもとで、静的な沈殿・堆積・固結プロセ スを経たものと考えられる。

また、トラバーチン起源の炭酸塩鉱物主体で、固結化が余り進んでいない堆積性炭酸塩質沈殿 物は、まず早期に高アルカリ湧水地点とその周辺の凹部に化学沈殿物として堆積し始めたことが 想定される。その後、化学沈殿量と移動・運搬のための湧水量・湧水速度・湧水方向などに規制 されながら緩斜面前方に運搬・移動し、地形的に凹部に優先的に堆積・固結プロセスが繰り返し 生起したものと推察される。

	測定日 平成27年 11月 27日			JAEA-AMS-TONO									
— N		ユーザー試料ID	施設試料ID	試料種 [†]	δ ¹³ C	++	7	F確かさ ^{†††}	¹⁴ C age	1	下確かさ ^{†††}	暦年代較正した年代範囲 +++++	
	NO	User's sample ID	Lab's sample ID	Type [†]	value (‰)	pMC''		UNC ^{†††}	(BP) ^{††††}		UNC ^{†††}	1σ 暦年代範囲	2σ 暦年代範囲
	1	-	OXII	OXII	-17.80 *	134.07	±	1.12	-	±	-		
	2	-	OXII_11627_1	OXII	-15 *	135.67	±	1.39	-	±	-		
	3	-	OXII_11627_2	OXII	-20 *	132.97	±	1.27	-	±	-		
	4	-	OXII_11628_1	OXII	-26 *	134.38	±	1.38	-	±	-		
	5	_	OXII_11628_2	OXII	-11 *	133.29	±	1.23	-	±	-		
	6	-	C1	C1	8 *	0.08	±	0.01	-	±	-		
	7	-	C1_11626_1	C1	11 *	0.08	±	0.01	-	±	-		
	8	-	C1_11626_2	C1	6 *	0.09	±	0.01	-	±	-		
	9	-	C5	C5	-20 *	23.05	±	0.23	-	±	-		
	10	-	C5_11629_1	C5	-23 *	23.05	±	0.26	-	±	-		
	11	-	C5_11629_2	C5	-17 *	23.07	±	0.23	-	±	-		
	12	PWT01-15-Rh-025	UNK_11589_1	UNK	-26.41	56.73	±	0.58	4554	±	82	3486(2.7%)3474calBC 3372(27.7%)3264calBC <u>3243(37.8%)3102calBC</u>	3621(0.5%)3609calBC <u>3522(94.9%)3012calBC</u>
	13	PWT02B-15-C2-0	UNK_11590_1	UNK	-28.40	81.18	±	0.83	1675	±	82	<u>250(63.4%)429calAD</u> 495(3.2%)508calAD 520(1.6%)527calAD	141(4.1%)197calAD <u>208(91.3%)553calAD</u>
	14	PWT02-15-Rh-001	UNK_11591_1	UNK	-27.69	84.40	±	0.78	1363	±	75	<u>605(58.8%)714calAD</u> 744(9.4%)765calAD	<u>542(90.1%)779calAD</u> 790(5.3%)868calAD
	15	PWT02-15-Rh-011-①フミン	UNK_11592_1	UNK	-27.21	74.47	±	0.71	2368	±	77	735(10.3%)689calBC 663(3.1%)648calBC <u>547(54.9%)375calBC</u>	<u>768(90.4%)354calBC</u> 291(5.0%)232calBC
	16	PWT02-15-Rh-011-②ヒューミン	UNK_11593_1	UNK	-28.26	74.05	±	0.76	2413	±	82	747(16.1%)685calBC 666(6.0%)642calBC <u>555(46.1%)401calBC</u>	784(95.4%)381calBC

表 3.3.3-1 パラワン島 Narra 地区トレンチの埋没木根の放射性炭素年代測定結果

※δ¹³C: 通常 安定同位体比質量分析装置の測定結果。ただし、"*"印がつくものは AMS 装置による測定値。

※※pMC ¹⁴C/¹²C, ¹⁴C/¹³C: pMC (percent Modern Carbon)値(単位は%)。

※※※¹⁴C 年代(Libby Age): Libby の半減期 5568 年を用いて算出した放射性炭素年代(単位は年)。また、不確かさは 1oの標準偏差で示す。

図 3.3.3-1 パラワン島 Narra 地区トレンチサイト周辺の模式層序学的断面図

この結果、トレンチ1での層厚は 2.8m 深度(トレンチ1の底面には、パラワンオフィオライ ト基盤岩に達していない)より厚いことが推察される。一方、トレンチ2では 1.8m 深度で基盤 岩に達している。このことは、これらの堆積性炭酸塩岩は、トレンチ1周辺では厚く堆積し、東 へ約 40m 離れたトレンチ2周辺ではその層厚が薄いことになる。つまりトレンチ1の深部に堆積 した堆積性炭酸塩岩は、トレンチ2のものと比較すると古いことが解釈できる。

これらのことから、トレンチ1の床面近傍の試料 (PW01-15-Rh-025:深度約 2.8m)の埋没木根 年代が、最も古い(4554±82 BP)。この事実は、地形的にも堆積作用などの観点から合理的に叶う ものである。さらに、単純計算から求める堆積速度は、約 0.06cm/year (2.8m/4554y)程度である と見積もられる。

トレンチ2では、パラワンオフィオライト基盤岩から直上約 80cm に位置する腐植質・泥質堆 積物(PWT02-15-Rh-011-①)と腐植質・堆積性炭酸塩鉱物質堆積物(PWT01-15-Rh-001-②)からの 埋没木根が最も古い(2368±77~2413±82 BP)。最も新しい(若い)のは、地表近傍の堆積性炭酸 塩鉱物質堆積物(PWT02-15-Rh-001)からの埋没木根年代が、1363±75 BP である。

しかし、最下位(パラワンオフィオライト基盤岩の直上)に位置している砕屑性堆積物からの埋没 木根が、1675±82 BP の年代を取得した。層準的に考察すればトレンチ2では最古であることが 考えられる。このことの解釈としては、この砕屑性堆積物の分布や堆積構造などを考察すること が必要である。この堆積物は基盤岩の直上(近傍)に累重し、その性状は他の堆積物とは明瞭な 境界を有するパラワンオフィオライトの細礫(岩片・鉱物片)を含有する固結度の弱い礫層であ る。その産状は塊状である。これらの観察から、この礫層は,パラワンオフィオライトが機械的風 化により破砕・砕片(砕屑構造)となり運搬・篩別などを受けて集積された風化残留堆積物であ ると考えられる。さらに、この砕屑性堆積物の運搬・堆積(集積)の力学的営力とそのプロセス は、パラワンオフィオライト基盤岩の特質が深く関与している。それはこの基盤岩が、比較的進 んだ蛇紋岩質であることである。この蛇紋岩化作用が地滑りの営力を具備しているということで ある。

従って、この砕屑性堆積物は、小規模な地滑りがその成因的なメカニズム・プロセスにより形 成されたものと示唆される。

この埋設木根が砕屑性堆積物中のものということから、おそらく砕屑・運搬過程で比較的若い 木根を取り込んで基盤岩上に局所的に再堆積したものと示唆される。今後,より正確な埋没木根の 堆積年代については、粉砕された化石の鑑定が鍵になる。ただし、これらの埋設木根の植物鑑定 はしていないが、恐らくマングローブ様の植物遺体と推察される。

堆積環境については、後述する貝の棲息環境とその年代推定の解釈で考察する。

今年度採取した貝試料は、トレンチ1 (PWT01-15-Rh-004:地表から約1m、PWT01-15-Rh-008:地表から約2.2m)から2試料(堆積性炭酸塩岩または堆積性炭酸塩鉱物質堆積物)と、ト レンチ2 (PWT02-15-HU-019:パラワンオフィオライト基盤岩直上)からの1試料(砕屑性堆 積物)である。

これらの貝の分布については、トレンチ1では比較的ルーズで、多孔質な堆積性炭酸塩鉱物質 堆積物中に特定され、その産状には、連続性が観察されないが、小児の頭程度のスポット状で、 不規則な散在の埋没形状(密度の小さいコロニー)を示す。その個体数は約10個程度で、貝自体 は新鮮で若干の色合いが見られ、貝の中には、化学沈殿物様の炭酸塩鉱物様なもので充填されて いる。

一方、トレンチ2での貝の分布は、トレンチ1との差異はないが、貝はすべて砕屑性堆積物の 黒色腐植質な泥層に観察される。ただ、砕屑性堆積物中にも貝の存在が観察されたが、破砕程度 が激しく鑑定上必要な形状確認が困難であった。

貝の鑑定につては、豊橋市自然史博物館・学芸員(動物化石担当)・芳賀拓真博士の協力を頂いた。貝鑑定用の試料は図 3.1.3-4 に示す。

鑑定結果については、これらの貝はトゲカワ二ナ科のソデカワニナ(Faunas ater)とタイワンカ ワニナ(Melanoides turbercula)の2種類であると同定された。これらはいずれも現生種(今でも フィリピンに普通に棲息)で、その棲息環境は、亜熱帯~熱帯の淡水~汽水産に広く分布するト ゲカワニナ科に属す巻貝である。

さらに、これらは小河川~湖沼まで広く分布するために微小棲息環境を限定することは難しい。 ただ、砂泥底に棲息する種類なので、決して流れの強い環境ではない。ソデカワニナは、乾季で も水深のある泥底にも棲息する能力を持ち合わせている。また、トゲカワニナの多くは幼生が海 に流れ出て、また河川に戻ってくる両側回遊をするので、少なくとも棲息環境(場)として海と の接続があったことがいえる。特に、ソデカワニナがその傾向が顕著である。

また、貝殻のコロージョンや殻内の基質から判断すると、かなり新しい時代の化石(経験的に は数千年オーダー)ではないかと推察されている。さらに、殻内のユニークな石灰質様な沈殿物 の存在である。これは殻のゴツゴツとした無機的な形状から、死後埋没過程で沈着したものと推 察されている。このことは堆積性炭酸塩岩の堆積環境と整合的である。

特に、貝の棲息環境による推定年代のオーダーとしては、放射性炭素年代測定値との違和感はない。

3.5 まとめ

今年度調査したパラワン島 Narra 地区のトレンチサイトでは、アルカリ地下水によって生成・ 堆積した炭酸塩の年代にかかわる埋没木根や貝(化石)が見つかったことから、炭酸塩の TL 年 代測定に加え、新たに埋没木根の放射性炭素による絶対年代測定と、貝(化石)の鑑定による種 の同定から棲息環境による堆積環境と棲息期間による相対的な年代推定を実施した。

特に、トレンチ1の最下部(深度約2.8m)を構成する堆積性炭酸塩岩層中の埋没木根の放射性 炭素による絶対年代として、約4,500年前(4554±82BP)の年代値を取得した。この年代値は、埋 没木根の母岩がパラワンオフィオライト起源の高アルカリ湧水からの化学的沈殿により形成され た堆積性炭酸塩岩であり、その時棲息していたあるいは遺体としての植物木根が沈殿・堆積・固 結プロセス中に取り込まれたものと考えられる。

従って、この埋没木根の賦存(産状)は高アルカリ地下水湧水の時間スケールと見做すことが 出来る。つまり、過去約4,500年前より高アルカリの湧水が始動していたことになる。

しかし、この埋没木根を含有している堆積性炭酸塩岩はパラワンオフィオライト基盤岩の直上 に累重しているものでないことから、高アルカリ湧水の時間スケール(始動開始時期)はより古 くなることが見込まれる。さらに、現在、トレンチ1及び2の壁面からの湧水は pH>11 で、その pH は、パラワンオフィオライト起源の湧水源のものとほぼ同じである。

また、パラワンオフィオライト基盤岩の直上に累重している砕屑性堆積物とその中位にある堆 積性炭酸塩岩および、最上位にある堆積性炭酸塩鉱物質堆積物に含有される貝(化石)は、亜熱 帯~熱帯の淡水~汽水の砂泥底に棲息する現生種の巻貝(ソデカワニナとタイワンカワニナ)で ある。生態的には、幼生中は海に出てまた、河川に戻る両側回遊の活動をすることから、海との 連結性があり、トレンチ周辺の地質環境や堆積環境を推察する上で有効である。ただ現生種とい うことで棲息期間(年代)を決めることは難しいが、経験的には数千年程度の時間スケールであ ることが推定される。この時間スケールは放射性炭素測定による絶対年代値の枠内である。

一方、炭酸塩の TL 年代測定では、合成鉱物による基礎実験で確かめられた、炭酸塩の Mn 濃度と TL 特性の関連性を踏まえ、対象試料の Mn 濃度から TL 年代を補正する係数を算出した。 これを用いて、パラワン島 Narra 地区のトレンチサイトの炭酸塩試料の TL 年代を評価した結果、 表層部の PWT01-15-Rc-001 の年代は 988ka、最深部の PWT01-15-Rc-010A では 173ka となっ た。上記の ¹⁴C 年代を求めた木根が炭酸塩の形成とともに埋没したと考えると、図 3.5.1-1 から明 らかなように両者の隔たりは大きく、さらに検討が必要である。ただし、これまで実績を積んで きた Saile 鉱山の基盤岩の亀裂中のカルサイトや Bigbiga の石灰質砂岩(あるいは石灰岩)のボ ーリングコアに比べると、今回の試料は含水率が高く分析資料としての状態は極めて悪かったこ とも原因一つとしてあげられる。

Narra 地区のナチュラルアナログにおける年代測定の今後の課題は、パラワンオフィオライト の直上に累重する砕屑性堆積物と、黒色の腐植性炭酸塩質堆積物か腐食性堆積物に含有される動 植物化石による絶対年代測定値と相対年代測定を行い、より現実的な高アルカリ湧水の始動時間 を明らかにして、これらの堆積物に含有される粘土鉱物(主に、スメクタイト他)の高アルカリ 地下水環境下でのアルカリ変質反応とその反応経路および、長期安定性に関する時間枠(時間ス ケール)を設定することである。つまり、ナチュラルアナログ(自然系)に対する時間枠の設定 を行うことである。

また、TL 年代測定では、今年度の測定結果を踏まえ、正確な年代を求めるために以下の課題が あげられる。

- ① 方解石では、最初の加熱(Natural 測定)の際に大きな感度変化が生じ、年代が過大評価、 もしくは過小評価される可能性がある。SARA 法を用いる事で感度変化を補正できるが、 本測定ではそれを行っていないこと。
- ② 本測定では、240℃ピークを用いて蓄積線量測定を行ったが、ピーク分離を行わなかったため、高いルミネッセンス強度を示す330、420℃ピークの影響を受け、蓄積線量が過大評価されている可能性があること。
- ③ PWT01-15-Rc-001、PWT01-15-Rc-010A ともに試料中に微量ながら貝等の生物起源のアラゴナイトが含まれている可能性がある。アラゴナイトは加熱することで方解石に転移する。 熱ルミネッセンス測定中に、アラゴナイトが方解石に転移し、熱ルミネッセンス感度が大き く変化する可能性があるため、アラゴナイトと方解石の TL 特性を考慮し、補正する、もし くは方解石とアラゴナイトを分別し測定する必要があること。

ただし、今回のトレンチ試料でも年代測定に必要な発光量を示していることは確認できたため、 上記の課題をクリアすることでより正確な年代を測定できると考えられる。

また、今回のサイトでは幸いなことに植物や貝などの有機物が、アルカリ地下水の浸出開始時 間と関連する炭酸塩の堆積物中にあることから、反応時間の推定においてこれら有機物の¹⁴C 年 代測定等を適用することができたが、粘土鉱物の変質を対象とするこのナチュラルアナログで適 用可能な年代測定法は本質的には限定されており、TL 年代の検討も引き続き重要な課題として継 続するべきだと考えている。

Trench1(~2.8m depth) 61m asl

PWT01-15-Rh-025 ¹⁴C年代:4554±82年

図 3.5.1-1 トレンチ1の年代測定結果

参考文献

[1] 兼岡一郎: 年代測定概論. 東京大学出版会 (1998).

[2] 橋本哲夫: ルミネッセンス(発光) で探る古代情報. 新潟日報事業社 (2005).

[3] Duller, G.A.T., Penkman, K.E.H. and Wintle, A.G.: Assessing the potential for using biogenic calcites as dosemeters for luminescence dating. Radiation Mesurements 44, 429-433 (2009).

[4] Ito, K., Hasebe, N., Sumita, R., Arai, S., Yamamoto, M., Kashiwaya, K., and Ganzawa, Y.: LA-ICP-MS analaysis of pressed powder pellets to luminescence geochronology. Chem. Geol. 262, 131-137 (2009).

[5] Prescott, J.R. and Hutton, J.T.: Cosmic ray contributions to dose rates for luminescence and ESR dating: Large depths and long-term variations. Radiation Measurements 23(2/3), 497-500 (1994).

[6] Roque, C., Guibert, P., Vartanian, E., Bechtel, F. and Schvoerer, M.: Themoluminescencedating of calcite: study of heated limestone fragments from Upper Paleolithic layers at Combe Sauniere. Dordogne, France. Quaternary Science Reviews 20, 935-938 (2001).

[7] Buylaert, J.P., Murray, A.S., Huot, S., Vriend, M.G.A., Vandenberghe, D., De Corte, F. and Van Den Haute, P.: A comparison of quartz OSL and isothermal TL ameasurements on chine-se loess. Radiation Protection Dosimetry 119(1-4), 474-478 (2006).

[8] Medlin, W.L.: The nature of traps and emission centers in thermoluminescenct rock materials. In Thermoluminescence of Geological Materials (Edited by D.J. McDougall), Ch.4. Academic Press, New York (1968).

[9] Townsend, P.D., Luff, B.J. and Wood, R.A.: Mn²⁺ Transitions in the TL emission spectra of calcite. Radiation Measurement 23(2/3), 433-440 (1994).

[10] Valle-Fuentes, F.J., Garcia-Guinea, J., Cremades, A., Correcher, V., Sanchez-Moral, S., Gonzalez-Martin, R., Snachez-Munoz, L. and Lopez-Arce, P.: Low-magnesium uranium-calcite with high degree of crystallinity and gigantic luminescence emission. Applied Radiation and Isotopes 65, 147-154 (2007).

[11] 塚本斉: ルミネセンス顕微鏡・分光分析を利用した岩石・鉱物の研究. 地質ニュース 474, 46-56 (1994).

[12] 山口喬,村川和則:球形炭酸カルシウム(バテライト)の生成と水中におけるカルサイトへの 転移.材料.30(336),856-860 (1981).

[13] Macedo, Z.S., Valerio, M.E.G. and Lima, J.F.: Thermoluminescence mechanism of Mn²⁺,

Mg²⁺ and Sr²⁺ doped calcite. Journal of Physics and Chemistry of Solids 60, 1973-1981 (1999). [14] McKeever, S.W.S.: On the Analysis of Complex Thermoluminescence Glow-Curves: Resolution into Individual Peaks. Phys. Tat. Sol. (a) 62, 331-340 (1980).

[15] Aitken, M.J.: Thermoluminescence dating. Akademic Press, London, 357 (1985).

[16] Stokes, S., Ingram, S., Aitken, M.J., Sirocko, F., Anderson, R. and Leuschner, D.: Alternative chronologies for Late Quaternary (Last Interglacial-Holocence) deep sea sediments via optical dating of silt-sized quartz. Quaternary Science Reviews 22, 925-941 (2003).

[17] Murray, A.S. and Wintle, A.G.: Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32, 57-73 (2000).

[18] Adamiec, G. and Aitken, M.: Dose-rate conversion factors: update. Ancient TL 16, 37-50 (1998).

[19] Saito-Kokubu, Y., Nishizawa, A., Suzuki, M., Ohwaki, Y., Nishio T., Matsubara, A., Saito, T., Ishimaru, T., Umeda, K. and Hanaki, T.: Current status of the AMS facility at the Tono

Geoscience Center of the Japan Atomic Energy Agency, Nucl. Instrum. Methods Phys. Res., Sect. B 294, 43-45 (2013).

[20] Matsubara, A., Saito-Kokubu, Y., Nishizawa, A., Miyake, M., Ishimaru, T. and Umeda, K.: Quaternary Geochronology using Accelerator Mass Spectrometry (AMS): Current Status of the AMS System at the Tono Geoscience Center, In Geochronology - Methods and Case Studies, edited by J. van Mourik, pp. 3-30 (2014), ISBN 978-953-51-1643-1, InTech. http://www.intechopen.com/books/geochronology-methods-and-case-studies http://www.jaea.go.jp/04/tono/shisetsu/pere/pere.htm

^[21] Saito-Kokubu, Y., Matsubara, A., Miyake, M., Nishizawa, A., Ohwaki, Y., Nishio, T., Sanada, K. and Hanaki, T.: Progress on multi-nuclide AMS of JAEA-AMS-TONO, Nucl. Instrum. Methods Phys. Res. B 361, 48-53 (2015).

^[22] ペレトロン年代測定装置ホームページ

第4章 アルカリ環境下でのベントナイトの長期変質プロセス

4.1 パラワン島 Narra 地区のナチュラルアナログ

Active Type におけるベントナイトのアルカリ変質反応により形成される変質鉱物の鉱物学的・ 鉱物化学的特性に係る地球化学的プロセスを考察する上で、その要因(トリガー)となるアルカ リ地下水の流動特性と地球化学的特性の理解に向けた取り組みにおいて、これまでの調査・研究 結果に基づき重要度の高い課題への取り組みを明確にすることが必要である。

ルソン島の Fossil Type のナチュラルアナログでは、ベントナイトのアルカリ変質反応の規模 (範囲・程度)が当初の予想に反して限られた狭い範囲(オフィオライトとベントナイトの界面) に限定されていたことが確認された。しかしながら地下水の地球化学特性や流動特性が変質プロ セスの過程でどのように変遷していくのかは明らかにできない。また、反応時間の評価もアルカ リ地下水との反応が始まった時間と止まった時間の両者を評価するのは難しい。

このような Fossil Type のナチュラルアナログの限界に対して、Active Type のナチュラルアナ ログでは、これらを明らかにできる可能性があり、特にベントナイトとアルカリ溶液との変質反 応による、変質鉱物の形成プロセスでの固相変化である、主に陽イオン交換で代表されるネオト ランスフォーム(結晶縁での交代・置換など)および、モンモリロナイトやシリカ鉱物などの溶 解ー沈殿反応による二次鉱物の形成(結晶核の誕生ー結晶核の成長-熱力学的に安定な鉱物の生 成)について、その現象理解に基づき、ベントナイトの長期健全性やそこで得た実データを用い た解析モデルの改良にまで展開することが期待される。

第2章で記載したように、パラワン島 Narra 地区では、pH11を超える高アルカリ地下水がス メクタイトに浸出している Active Type のナチュラルアナログサイトが確認された。この Narra 地区に分布するスメクタイトは3八面体型のサポナイトであるが、オフィオライトライトからの 鉄の供給があり、それによる溶存鉄成分を含むアルカリ地下水の環境下であった Fossil Type の ナチュラルアナログサイトでは、サポナイトがモンモリロナイトの変質鉱物として生成されたこ とを確認している。このような現象が、鉄製の廃棄体容器や構造躯体とセメント系の充填材が共 存する TRU 廃棄物の人工バリアシステムおいて、緩衝材中のモンモリロナイトの鉄-アルカリ 相互作用による変質過程で生じる可能性は十分考えられることから、このフィリピンでみられる 天然現象を鉄-セメントー緩衝材の相互作用のナチュラルアナログとしてみることができる。

モンモリロナイトからサポナイトへの変質では膨潤性等は少し落ちるかもしれないが、同じス メクタイト族の粘土鉱物への変質であり、沸石化やイライト化に比べれば極端な緩衝材の機能喪 失の可能性は小さいと見込まれ、このスメクタイトのアルカリ環境下での安定性も、ナチュラル アナログで観察することが重要である。

4.2.1 分析項目

鉱物の組成および構造・組織(性状、共生関係)などの観察・同定・元素分布からアルカリ地下 水の生成やアルカリ地下水との相互作用による変質プロセスを明らかにするために、パラワン島 Narra 地区のアルカリ地下水が浸出しているトレンチ2の壁面から採取した粘土試料の 5 試料 (そのうち PWT02-15-Rh-020 はオフィオライト基盤岩のハルツバージャイト)とコアドリルで 採取した粘土試料の 4 試料について、走査電子顕微鏡(FESEM: Field Emission Scanning Electron Microscope)観察、電子線プローブマイクロアナライザー(Electron Probe Micro Analyzer: EPMA)による元素マッピング観察、鉱物のスポット定量分析、鉱物のマイクロX線回 折(Micro X-ray Diffraction: μ-XRD (マイクロ XRD))分析を実施した。

4.2.2 分析手法

(1) 試料調製

フィリピン、パラワン島 Narra 地区のトレンチから採取した試料を一晩 60-100℃恒温槽 内で乾燥後に真空乾燥させて、その後に樹脂包埋して鏡面研磨した。試料の写真を図 4.2.2-1 に示す。これらへ炭素蒸着を施し、EPMA 分析に供した。また、この EPMA 試料の分析面を 共有する切断試料はµ-XRD 分析に供した。また樹脂包埋する直前の乾燥試料もµ-XRD 分析に 用いた。これらの試料の観察・分析を実施し、鉱物組成に係わるデータを取得・評価し、鉱物 のアルカリ変質に関する知見を抽出した。

図 4.2.2-1 EPMA 分析試料

(2) 分析手法

EPMA 分析には、JEOL JXA-8200 を用いた(図 4.2.2·2 a)。観察および分析時の電子線加 速電圧は 15 kV であり、定量分析時の試料電流は 12 nA を、マッピング分析の際は 20 nA を 用いた。定量法は Oxide ZAF 補正法に基づき、酸化物結晶を標準試料としている。SEM 観察 には EPMA と FESEM(JEOL JSM-6700F)を用いた(図 4.2.2·2 b)。 μ -XRD 分析には Rigaku Rint-Rapid を用いた。Cu Ka線管球の出力は加速電圧 40 kV、照射電流 30 mA であった。試 料への照射 X 線ビーム径は 300 μ m で、ビデオカメラ観察しながら位置決めした。取得したデ バイシェラー回折線の補正には、同条件で測定した NIST Si 標準試料のピークを用いている。

図 4.2.2-2 試料の分析と観察に用いた分析装置(a: EPMA; b: FESEM-EDS)

(3) 試料の分析情報

EPMA 元素マッピングは全て 1024×1024 ピクセルの画像解像度で行った。各マッピングエ リアは表 4.2.2-1 に示す通りである。またスポット定量分析や XRD 分析についてもここに示 した点数で行った。

Sample ID	Thin section No.	Specimen ID	Sample status	Rock type	EPMA mapping area	EPMA spot analysis	XRD analysis
PWT02-15-Rh-006	11	Rh-006	Fresh mud	Mud with concretion	4.096×4.096 mm ²	37	3
PWT02-15-Rh-013	12	Rh-013	Fresh mud	Mud with CSH tube	1.024×1.024 mm ²	35	2, 3
PWT02-15-Rh-015	9	Rh-015	Fresh mud	Mud with CSH tube	$512 \times 512 \mu m^2$	38	5
					$512 \times 512 \ \mu m^2$		
PWT02-15-Rh-016	10	Rh-016	Fresh mud	Mud with CSH tube	166.8×166.8 μm²	129	3
					$512 \times 512 \mu m^2$		
					1024×1024 μm^2		
PWT02-15-Rh-020	4	Rh-020	Resin sealed	Herzburgite	$2048{\times}2048\mu\text{m}^2$	97	2
PWT02B-15-C1-001	5	C1-001	Resin sealed	Mud	$2048{\times}2048\mu\text{m}^2$	24	7
PWT02B-15-C2-1-001	6	C2-1-001	Resin sealed	Mud	10.24×10.24 mm ²	43	Not analyzed
					10.24×10.24 mm ²		
PWT02B-15-C2-2-001	7	C2-2-001	Resin sealed	Mud with	Not analyzed		Not analyzed
PWT02B-15-C2-2-002	8	C2-2-002	Resin sealed	Mud	10.24×10.24 mm ²	80	4
					$4096 \times 4096 \ \mu m^2$		

表	4.2.2-1	試料の分析情報

EPMAのSEI(Secondary Electron Image; SEM と同画像)-BEI(Backscattered ElectronImage) 観察機能を用いて、鉱物産状の観察を行った。以下に試料ごとの観察結果を示す。なお、画像中の数字はスポット定量分析位置を示している。

(1) PWT02-15-Rh-006

図 4.2.3-1~図 4.2.3-3 に SEI-BEI 画像を示す。

(a:C-S-H 鉱物と斜方輝石,b: 緑泥石,c: 変質した斜方輝石,d:C-S-H 鉱物に取り囲まれる 緑泥石と斜方輝石)

図 4.2.3-1 SEI-BEI 観察(PWT02-15-Rh-006 その1)

(2) PWT02-15-Rh-013

図 4.2.3·2~図 4.2.3·3 に SEI-BEI 画像を示す。

図 4.2.3-2 SEI-BEI 観察(PWT02-15-Rh-013 その1)

図 4.2.3-3 SEI-BEI 観察(PWT02-15-Rh-013 その2)

(3) PWT02-15-Rh-015

図 4.2.3⁻4~図 4.2.3⁻5 に SEI-BEI 画像を示す。

図 4.2.3-4 SEI-BEI 観察(PWT02-15-Rh-015 その1)

図 4.2.3-5 SEI-BEI 観察(PWT02-15-Rh-015 その2)

(4) PWT02-15-Rh-016

図 4.2.3-6~図 4.2.3-10 に SEI-BEI 画像を示す。

 $512{\times}512~\mu m^2$

(Cpx→Sap 及び C-S-H と共生する Sap)

図 4.2.3-6 SEI-BEI 観察(PWT02-15-Rh-016のCa鉱物に富む岩片、その1)

(b, c: 斜方輝石→サポナイトへの交代と C-S-H と共生するサポナイト)
 図 4.2.3-7 SEI-BEI 観察(PWT02-15-Rh-016、その2)

図 4.2.3-8 SEI-BEI 観察(PWT02-15-Rh-016、その3)

(b:斜方輝石→サポナイトへの交代,d:角閃石→サポナイトへの交代)
 図 4.2.3-9 SEI-BEI 観察(PWT02-15-Rh-016、その4)

(c:角閃石→サポナイトへの交代)

図 4.2.3-10 SEI-BEI 観察(PWT02-15-Rh-016、その5)

(5) PWT02B-15-C1-001

図 4.2.3-11~図 4.2.3-13 に SEI-BEI 画像を示す。

2048×2048 µm²

図 4.2.3-12 SEI-BEI 観察(PWT02B-15-C1-001、その2)

(6) PWT02B-15-C2-1-001

図 4.2.3-14~図 4.2.3-15 に SEI-BEI 画像を示す。

図 4.2.3-14 SEI-BEI 観察(PWT02B-15-C2-1-001、その1)

(a:緑泥石とサポナイト(緑泥石→サポナイトへの交代),b:CaCO₃,c:緑泥石と共存するカ ミングトン閃石)

図 4.2.3-16~図 4.2.3-19 に SEI-BEI 画像を示す。

⁽a:C-S-H と共生するサポナイト)

図 4.2.3-17 SEI-BEI 観察(PWT02B-15-C2-2-001、その2)

(a:粒子間の鉄サポナイトの生成と蛇紋石→鉄サポナイトへの交代)
 図 4.2.3-18 SEI-BEI 観察(PWT02B-15-C2-2-001、その3)

(斜方輝石→鉄サポナイトへの交代)

- 図 4.2.3-19 SEI-BEI 観察(PWT02B-15-C2-2-001、その4)
- (8) PWT02-15-Rh-020

図 4.2.3-20~図 4.2.3-23 に SEI-BEI 画像を示す。

2048×2048 µm²

図 4.2.3-20 SEI-BEI 観察(PWT02-15-Rh-020、その1)

(a:斜方輝石→鉄サポナイトへの交代)
図 4.2.3-21 SEI-BEI 観察(PWT02-15-Rh-020、その2)

図 4.2.3-22 SEI-BEI 観察(PWT02-15-Rh-020、その3)

(a:斜方輝石→サポナイトへの交代,b:かんらん石→サポナイトへの交代)
 図 4.2.3-23 SEI-BEI 観察(PWT02-15-Rh-020、その4)

4.2.4 元素マッピング

EPMA のマッピング機能を用いて、各試料における特定視野の SEI-BEI および特性 X 線 (Kα)の画像を表 4.2.2-1 に示した領域と分解能で撮影した。各試料について以下に列記する。

(1) PWT02-15-Rh-006

マッピング視野における SEI-BEI 画像を図 4.2.4-1 に、元素分布を図 4.2.4-2~図 4.2.4-5 に示す。

試料面を大きく占める白色の領域は、コンクリーションによるものであり、空隙が少なく緻密な結晶で構成されていることがわかる(図 4.2.4-1)。初生鉱物として、輝石類や角閃石など源岩由来のマフィック鉱物が残存しているが、視野中央部に位置する粘土は、それを取り巻く C-S-H系鉱物で固結している。反射電子線像 BEI の輝度が高いことから Ca に富むことがわかる。

4.096×4.096 mm²

図 4.2.4-1 PWT02-15-Rh-006 のマッピング視野における SEI(a)と BEI(b)

図 4.2.4-2 PWT02-15-Rh-006の元素分布(その1、a: Si; b: Al; c: Fe; d: Mg)

図 4.2.4-3 PWT02-15-Rh-006の元素分布(その2、a: Ca; b: Na; c: K; d: O)

図 4.2.4-4 PWT02-15-Rh-006の元素分布(その3、a: C; b: Ti; c: Ni; d: Mn)

図 4.2.4-5 PWT02-15-Rh-006の元素分布(その4、Cr)

(2) PWT02-15-Rh-013

マッピング視野における SEI-BEI 画像を図 4.2.4-6 に、元素分布を図 4.2.4-7~図 4.2.4-10 に示す。

1.024×1.024 mm²

図 4.2.4-6 PWT02-15-Rh-013のマッピング視野における SEI(a)と BEI(b)

図 4.2.4-7 PWT02-15-Rh-013の元素分布(その1、a: Si; b: Al; c: Fe; d: Mg)

図 4.2.4-8 PWT02-15-Rh-013の元素分布(その2、a: Ca; b: Na; c: K; d: O)

図 4.2.4-9 PWT02-15-Rh-013の元素分布(その3、a: C; b: Ti; c: Ni; d: Mn)

図 4.2.4-10 PWT02-15-Rh-013の元素分布(その4、Cr)

(3) PWT02-15-Rh-015

マッピング視野における SEI-BEI 画像を図 4.2.4-11 と図 4.2.4-15 に、元素分布を図 4.2.4-12~図 4.2.4-14 及び図 4.2.4-16~図 4.2.4-19 に示す。

 $512 \times 512 \ \mu m^2$

図 4.2.4-11 PWT02-15-Rh-015 のマッピング視野 1 における SEI(a)と BEI(b)

図 4.2.4-12 PWT02-15-Rh-015の視野1における元素分布(その1a: Si; b: Al; c: Fe; d: Mg)

図 4.2.4-13 PWT02-15-Rh-015の視野1における元素分布(その2、a: Ca; b: Na; c: K; d: O)

図 4.2.4-14 PWT02-15-Rh-015の視野1における元素分布(その3、C)

 $512 \times 512 \ \mu m^2$

図 4.2.4-16 PWT02-15-Rh-015の視野2における元素分布(その1、a: Si; b: Al; c: Fe; d: Mg)

図 4.2.4-17 PWT02-15-Rh-015の視野2における元素分布(その2、a: Ca; b: Na; c: K; d: O)

図 4.2.4-18 PWT02-15-Rh-015の視野2における元素分布(その3、a: C; b: Ti; c: Ni; d: Mn)

図 4.2.4-19 PWT02-15-Rh-015の視野2における元素分布(その4、Cr)

(4) PWT02-15-Rh-016

マッピング視野における SEI-BEI 画像を図 4.2.4-20 に、元素分布を図 4.2.4-21~図 4.2.4-23 に示す。

斜方輝石を交代したサポナイトと C-S-H と共生するマトリクス部のサポナイトの産状がみ られる。この C-S-H は低温の高アルカリ溶液との反応で沈殿したものであり、C-S-H と共生 するサポナイトも低温の高アルカリ溶液により斜方輝石が変質して生じたものと考えられる。

166.8×166.8 μm²

(Opx→Sap 及び C-S-H と共生する Sap)

図 4.2.4-20 PWT02-15-Rh-016 のマッピング視野 1 における SEI(a)と BEI(b)

界面が溶解した単結晶サポナイトの内部は複雑なパッチ状ゾーニングを示している。内部に 残存する Fe に富む領域と、周縁部に発達する Mg に富む領域とがある。Mg に富むサポナイ トリムは Ca にも富む。マトリクス中のサポナイトは Mg に富む。

図 4.2.4-21 PWT02-15-Rh-016の視野1における元素分布(その1、a: Si; b: Al; c: Fe; d: Mg)

図 4.2.4-22 PWT02-15-Rh-016の視野1における元素分布(その2、a: Ca; b: Na; c: K; d: O)

図 4.2.4-23 PWT02-15-Rh-016の視野1における元素分布(その3、C)

つぎに、Ca に富む造岩鉱物 (スフィーン、単斜輝石) に濃集する岩片と粘土の界面の観察を 行った。図 4.2.4-20 にその SEI-BEI 結果を示す。

Caに富むこの単斜輝石の周縁部でサポナイト化が起きている。このサポナイトと C-S-H の 共生関係がみられることから、低温蛇紋岩化作用により生成された高アルカリ溶液によりサポ ナイト化(Cpx→Sap)が起きたと考えられる。

 $512 \times 512 \ \mu m$

(Cpx→Sap 及び C-S-H と共生する Sap)

図 4.2.4-24 PWT02-15-Rh-016 のマッピング視野 2 における SEI(a)と BEI(b)

この元素分布を図 4.2.4-25~図 4.2.4-27 にマップデータとして示す。

図 4.2.4-25 PWT02-15-Rh-016の視野2における元素分布(その1、a: Si; b: Al; c: Fe; d: Mg)

図 4.2.4-26 PWT02-15-Rh-016の視野2における元素分布(その2、a: Ca; b: Na; c: K; d: O)

図 4.2.4-27 PWT02-15-Rh-016の視野2における元素分布(その3、C)

最後に、緑泥石の Fe-Ca 反応が確認できる観察を行った。その SEI-BEI 結果を図 4.2.4-28 に示す。 粗粒な緑泥石結晶が周縁部から Fe-Ca 型化しており、同時に K にも富化していることがわかる。その空隙は最終的に C-S-H 鉱物の沈殿物で占められている。

この元素分布を図 4.2.4-29~図 4.2.4-32 にマップデータとして示す。

 $1024 \times 1024 \ \mu m^2$

図 4.2.4-28 PWT02-15-Rh-016 のマッピング視野 3 における SEI(a)と BEI(b)

図 4.2.4-29 PWT02-15-Rh-016の視野3における元素分布(その1、a: Si; b: Al; c: Fe; d: Mg)

図 4.2.4-30 PWT02-15-Rh-016の視野3における元素分布(その2、a: Ca; b: Na; c: K; d: O)

図 4.2.4-31 PWT02-15-Rh-016の視野3における元素分布(その3、a: C; b: Ti; c: Ni; d: Mn)

図 4.2.4-32 PWT02-15-Rh-016の視野3における元素分布(その3、Cr)

(5) PWT02B-15-C1-001

マッピング視野における SEI-BEI 画像を図 4.2.4·33 に、元素分布図 4.2.4·34~図 4.2.4·37 に示す。

 $2048{\times}2048~\mu m^2$

図 4.2.4-33 PWT02B-15-C1-001 のマッピング視野における SEI(a)と BEI(b)

図 4.2.4-34 PWT02B-15-C1-001の元素分布(その1、a: Si; b: Al; c: Fe; d: Mg)

図 4.2.4-35 PWT02B-15-C1-001 の元素分布(その2、a: Ca; b: Na; c: K; d: O)

図 4.2.4-36 PWT02B-15-C1-001 の元素分布(その3、a: C; b: Ti; c: Ni; d: Mn)

図 4.2.4-37 PWT02B-15-C1-001 の元素分布(その4、Cr)

(6) PWT02B-15-C2-1-001

マッピング視野における SEI-BEI 画像を図 4.2.4-38 と図 4.2.4-43 に、元素分布を図 4.2.4-39~図 4.2.4-42 と図 4.2.4-44~図 4.2.4-47 に示す。

10.24×10.24 mm²

図 4.2.4-38 PWT02B-15-C2-1-001 のマッピング視野1における SEI(a)と BEI(b)

図 4.2.4-39 PWT02B-15-C2-1-001の視野1の元素分布(その1a: Si; b: Al; c: Fe; d: Mg)

図 4.2.4-40 PWT02B-15-C2-1-001の視野1の元素分布(その2、a: Ca; b: Na; c: K; d: O)

図 4.2.4-41 PWT02B-15-C2-1-001の視野1の元素分布(その3、a: C; b: Ti; c: Ni; d: Mn)

図 4.2.4-42 PWT02B-15-C2-1-001の視野1の元素分布(その4、Cr)

10.24×10.24 mm²

図 4.2.4-43 PWT02B-15-C2-1-001 のマッピング視野 2 における SEI(a)と BEI(b)

図 4.2.4-44 PWT02B-15-C2-1-001の視野2の元素分布(その1、a: Si; b: Al; c: Fe; d: Mg)

図 4.2.4-45 PWT02B-15-C2-1-001の視野2の元素分布(その2、a: Ca; b: Na; c: K; d: O)

図 4.2.4-46 PWT02B-15-C2-1-001の視野2の元素分布(その3、a: C; b: Ti; c: Ni; d: Mn)

図 4.2.4-47 PWT02B-15-C2-1-001の視野2の元素分布(その4、Cr)

(7) PWT02B-15-C2-C2-2-002

マッピング視野における SEI-BEI 画像を図 4.2.4-48 と図 4.2.4-53 に、元素分布を図 4.2.4-49~図 4.2.4-52 と図 4.2.4-54~図 4.2.4-57 に示す。

10.24×10.24 mm²

図 4.2.4-49 PWT02B-15-C2-2-002の視野1の元素分布(その1、a: Si; b: Al; c: Fe; d: Mg)

図 4.2.4-50 PWT02B-15-C2-2-002の視野1の元素分布(その2、a: Ca; b: Na; c: K; d: O)

図 4.2.4-51 PWT02B-15-C2-2-002の視野1の元素分布(その3、a: C; b: Ti; c: Ni; d: Mn)

図 4.2.4-52 PWT02B-15-C2-2-002の視野1の元素分布(その4、Cr)

4096×4096 μm²

図 4.2.4-53 PWT02B-15-C2-2-002 のマッピング視野 2 における SEI(a)と BEI(b)

図 4.2.4-54 PWT02B-15-C2-2-002の視野2の元素分布(その1、a: Si; b: Al; c: Fe; d: Mg)

図 4.2.4-55 PWT02B-15-C2-2-002の視野2の元素分布(その2、a: Ca; b: Na; c: K; d: O)

図 4.2.4-56 PWT02B-15-C2-2-002の視野2の元素分布(その3、a: C; b: Ti; c: Ni; d: Mn)

図 4.2.4-57 PWT02B-15-C2-2-002の視野2の元素分布(その4、Cr)

(8) PWT02-15-Rh-020

マッピング視野における SEI-BEI 画像を図 4.2.4-58 に、元素分布を図 4.2.4-59~図 4.2.4-62 に示す。

 $2048 \times 2048 \ \mu m^2$

図 4.2.4-59 PWT02-15-Rh-020の元素分布(その1、a: Si; b: Al; c: Fe; d: Mg)

図 4.2.4-60 PWT02-15-Rh-020 の元素分布(その2、a: Ca; b: Na; c: K; d: O)

図 4.2.4-61 PWT02-15-Rh-020の元素分布(その3、a: C; b: Ti; c: Ni; d: Mn)

図 4.2.4-62 PWT02-15-Rh-020 の元素分布(その4、Cr)

4.2.5 鉱物化学組成

以下に、パラワン試料の EPMA 分析結果を鉱物ごとに記載する。

(1) 石英

石英は PWT02B-15-C2-2-002 試料にのみ確認でき、微量元素としてわずかに Al, Fe を含む こと、メルト包有物が確認できることから(図 4.2.5-1 参照)、この石英は火山岩斑晶鉱物であ ると考えられる。石英の化学組成とメルト包有物の化学組成をそれぞれ、表 4.2.5-1 と表 4.2.5-2 に示す。石英は風化や粘土の変質反応の過程においても別の鉱物には変化しない鉱物 である。そして、そこに含まれているガラス質の包有物も、そういう反応からは隔絶している ため、オリジナルな化学組成を維持していると考えられる。

図 4.2.5-1 メルト包有物をもつ石英の産状

表	$4.2.5 \cdot 1$	石英の化学組成
1	1.2.0 1	

Stage posit	tion				
x (mm)	30.969	30.743	30.737	30.283	30.604
y (mm)	26.101	26.292	26.407	26.248	27.681
z (mm)	11.878	11.882	11.882	11.877	11.869
Depth	7	7	7	7	7
Sample ID	C2-2-002	C2-2-002	C2-2-002	C2-2-002	C2-2-002
Spot#	368	369	370	371	381
Oxide wt.%	6				
SiO2	99.508	99.301	98.650	99.013	99.514
AI2O3	0.011	0.011	0.000	0.000	0.018
TiO2	0.000	0.000	0.000	0.000	0.013
FeO	0.040	0.000	0.017	0.003	0.007
Cr2O3	0.000	0.000	0.000	0.017	0.024
NiO	0.084	0.000	0.000	0.000	0.000
MnO	0.002	0.000	0.010	0.000	0.000
MgO	0.000	0.009	0.000	0.000	0.000
CaO	0.067	0.026	0.000	0.061	0.006
Na2O	0.000	0.000	0.008	0.000	0.000
K2O	0.032	0.000	0.000	0.002	0.007
Total	99.744	99.347	98.685	99.096	99.589
Cation (O =	= 2)				
Si	0.999	1.000	1.000	1.000	1.000
Al	0.000	0.000	0.000	0.000	0.000
Ti	0.000	0.000	0.000	0.000	0.000
Fe	0.000	0.000	0.000	0.000	0.000
Cr	0.000	0.000	0.000	0.000	0.000
Ni	0.001	0.000	0.000	0.000	0.000
Mn	0.000	0.000	0.000	0.000	0.000
Mg	0.000	0.000	0.000	0.000	0.000
Ca	0.001	0.000	0.000	0.001	0.000
Na	0.000	0.000	0.000	0.000	0.000
К	0.000	0.000	0.000	0.000	0.000
Total	1.001	1.000	1.000	1.000	1.000

(2) ガラス

石英斑晶中に見られたメルト包有物の化学組成から、この石英は流紋岩からデイサイト組成の珪長質マグマから晶出したものであることがわかる。

Stage position	on			
x (mm)	30.551		30.553	
y (mm)	27.686		27.687	
z (mm)	11.869		11.868	
Depth	7		7	
Sample ID	C2-2-002	(22-2-002	
Spot#	385		386	
Oxide wt.%				
SiO2	73.182	70.945	75.361	72.840
AI2O3	21.100	20.455	21.222	20.512
TiO2	0.011	0.011	0.000	0.000
FeO	0.033	0.032	0.043	0.042
Cr2O3	0.006	0.006	0.042	0.041
NiO	0.180	0.174	0.000	0.000
MnO	0.008	0.008	0.021	0.020
MgO	0.006	0.006	0.005	0.005
CaO	0.244	0.237	0.102	0.099
Na2O	8.352	8.097	6.608	6.387
К2О	0.031	0.030	0.057	0.055
Total	103.153	100.000	103.461	100.000

表 4.2.5-2 メルト包有物の化学組成

(3) 炭酸塩

炭酸塩は PWT02-15-Rh-015、PWT02-15-Rh-020、PWT02B-15-C2-1-001 試料において確認できた。PWT02-15-Rh-020 の炭酸塩はロードクロサイト成分(XMn)がおよそ 0.5 含まれていて、炭酸塩を沈殿させた変質流体には Mn が含まれていたことがわかる。また、PWT02-15-Rh-015、PWT02B15-C2-1-002 試料の Ca 炭酸塩には Fe が多い特徴がある。

Stage posit	ion							
x (mm)	49.522	49.458	63.625	63.528	15.161	10.497	10.752	9.8
y (mm)	16.869	17.004	60.646	60.684	60.414	60.727	60.721	60.614
z (mm)	11.568	11.565	12.112	12.112	11.94	11.921	11.921	11.922
Depth	2	2	4	4	6	6	6	6
Sample ID	Rh-015 F	Rh-015	Rh-020	Rh-020	C2-1-001	C2-1-001	C2-1-001	C2-1-001
Spot#	67	70	52	54	299	320	321	329
Oxide wt.%								
SiO2	1.956	1.123	0.069	1.561	3.187	9.354	10.630	3.643
AI2O3	0.121	0.119	0.004	0.000	0.428	0.708	0.503	0.295
TiO2	0.004	0.012	0.000	0.028	0.000	0.011	0.000	0.015
FeO	1.349	0.985	0.217	0.482	2.833	6.213	0.685	2.445
Cr2O3	0.023	0.000	0.000	0.024	0.204	0.042	0.001	0.035
NiO	0.535	0.138	0.000	0.449	0.301	0.327	0.151	0.382
MnO	0.000	0.004	28.658	26.057	0.000	0.026	0.000	0.005
MgO	0.217	0.092	0.651	1.373	0.208	0.952	0.100	0.842
CaO	56.087	56.320	17.362	20.106	49.362	46.052	54.388	52.975
Na2O	0.039	0.006	0.042	0.000	0.049	0.003	0.000	0.091
K2O	0.013	0.014	0.014	0.006	0.000	0.000	0.007	0.000
Total	60.344	58.813	47.017	50.086	56.572	63.688	66.465	60.728
Cation (O =	1)							
Si	0.030	0.018	0.002	0.032	0.050	0.123	0.131	0.053
Al	0.002	0.002	0.000	0.000	0.008	0.011	0.007	0.005
Ti	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Fe	0.017	0.013	0.004	0.008	0.038	0.068	0.007	0.030
Cr	0.000	0.000	0.000	0.000	0.003	0.000	0.000	0.000
Ni	0.007	0.002	0.000	0.007	0.004	0.003	0.002	0.005
Mn	0.000	0.000	0.549	0.445	0.000	0.000	0.000	0.000
Mg	0.005	0.002	0.022	0.041	0.005	0.019	0.002	0.018
Ca	0.908	0.944	0.421	0.434	0.837	0.647	0.717	0.831
Na	0.001	0.000	0.002	0.000	0.002	0.000	0.000	0.003
К	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Total	0.970	0.982	1.000	0.968	0.945	0.872	0.866	0.945
XCa	0.976	0.984	0.423	0.468	0.952	0.881	0.988	0.945
XMn	0.000	0.000	0.551	0.479	0.000	0.000	0.000	0.000
NOTE:	XCa = Ca/(Ca+	+Mg+Mn+Fe);	XMn = Mn/(Ca+N	lg+Mn+Fe)				

表 4.2.5-3 炭酸塩の化学組成

(4) スピネルとかんらん石

未変質のかんらん石は PWT02-15-Rh-020 においてのみ観察できる。その化学組成は、XMg >0.9 とフォルステライト (Forsterite:苦土かんらん石)であり、典型的な超塩基性岩のかん らん石の組成を示す。一方で、共存するスピネル (Spinel) (MgAl₂O₄)はほとんどすべての試料 において確認できるが、多くは Cr と Fe に富むクロマイト (Chromite:クロム鉄鉱)成分 (FeCr₂O₄)が支配的である。PWT02-15-Rh-015 試料のスピネルはクロマイト成分が大きく変化 しているが、それ以外はだいたい XCr, XMg = 0.5 近傍に集中している。

図 4.2.5-2 スピネルとかんらん石の化学組成

これらの分析結果を表 4.2.5-4 に示す。

表 4.2.5-4 スピネルとかんらん石の化学組成

Stage positi	on																											
x (mm)	14.993	15.941	38.636	39.139	49.539	49.454	37.461	37.517	38.736	15.019	70.545	70.538	68.890	70.251	78.423	78.409	70.883	74.533	74.877	63.674	63.613	59.391	71.138	71.117	71.084	71.047	15.010	30.557
y (mm)	63.050	63.278	16.374	16.526	16.961	16.928	24.279	24.281	25.569	58.286	69.155	68.680	68.400	67.961	53.150	53.153	69.199	67.514	66.257	60.635	60.676	53.485	69.994	70.011	70.062	70.115	60.417	28.022
z (mm)	11.526	11.510	11.844	11.845	11.564	11.564	11.442	11.442	11.442	11.542	12.099	12.101	12.146	12.105	12.123	12.123	12.085	12.075	12.075	12.112	12.112	12.168	12.076	12.076	12.077	12.076	11.940	11.854
Depth	0	0	1	1	2	2	2	2	2	3	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	6	7
Sample ID	Rh-006	Rh-006	Rh-013 I	Rh-013	Rh-015 F	Rh-015	Rh-015	Rh-015	Rh-015	Rh-016	Rh-020	Rh-020	Rh-020 F	Rh-020 R	h-020	Rh-020	Rh-020	Rh-020	Rh-020	C2-1-001	C2-2-002							
Spot#	423	434	457	475	65	66	83	84	90	184	1	2	12	13	14	15	18	39	42	51	53	277	278	279	280	281	300	411
Oxide wt.%																												
SiO2	0.078	0.003	0.045	0.037	0.062	0.064	0.274	0.227	1.770	0.013	39.164	40.675	39.874	0.099	0.105	0.105	40.595	40.925	40.806	40.547	40.971	0.093	41.367	40.748	40.547	40.851	0.027	0.080
AI2O3	20.360	20.491	14.932	20.961	17.083	17.259	30.391	16.888	20.568	18.978	0.042	0.000	0.005	20.461	20.781	21.001	0.000	0.013	0.000	0.013	0.000	23.034	0.000	0.003	0.004	0.016	22.535	20.105
TiO2	0.006	0.004	0.000	0.000	0.061	0.009	0.086	0.017	0.016	0.000	0.006	0.000	0.006	0.000	0.008	0.013	0.000	0.002	0.007	0.013	0.000	0.002	0.012	0.012	0.010	0.000	0.003	0.012
FeO	21.122	15.535	17.579	17.692	18.554	13.103	26.412	17.295	20.358	17.204	4.522	7.128	5.749	23.833	23.997	23.382	7.631	5.699	5.415	5.446	5.555	21.809	8.137	7.880	7.966	7.746	22.828	21.123
Cr2O3	47.269	50.542	55.935	49.576	48.199	54.608	26.680	42.761	31.413	47.506	0.046	0.000	0.050	42.921	42.721	42.544	0.033	0.026	0.037	0.011	0.000	41.265	0.000	0.052	0.016	0.053	42.486	44.419
NiO	0.013	0.000	0.264	0.000	0.076	0.302	1.137	0.696	0.447	0.579	0.000	0.000	0.000	0.000	0.000	0.000	0.000	2.253	1.834	2.036	1.564	0.126	0.472	0.996	0.577	0.629	0.118	0.198
MnO	0.151	0.164	0.187	0.208	0.406	0.272	0.699	0.264	0.170	0.241	0.053	0.089	0.059	0.286	0.272	0.265	0.089	0.061	0.079	0.162	0.355	0.231	0.090	0.118	0.104	0.086	0.236	0.187
MgO	10.158	13.341	10.354	11.978	7.592	10.840	3.916	6.845	6.648	11.708	37.222	50.603	50.496	9.819	10.068	9.998	50.724	51.480	51.233	51.230	51.104	10.685	52.025	51.220	51.111	51.489	11.128	11.235
CaO	0.341	0.099	0.023	0.085	0.096	0.085	0.103	0.122	0.171	0.096	0.168	0.020	0.000	0.053	0.012	0.000	0.046	0.007	0.010	0.046	0.069	0.010	0.010	0.016	0.014	0.007	0.078	0.444
Na2O	0.000	0.034	0.000	0.000	0.000	0.039	0.047	0.132	0.000	0.035	0.000	0.000	0.028	0.000	0.000	0.000	0.013	0.000	0.031	0.000	0.000	0.023	0.000	0.010	0.000	0.000	0.055	0.000
K2O	0.000	0.000	0.007	0.000	0.011	0.009	0.000	0.012	0.000	0.000	0.004	0.007	0.000	0.000	0.000	0.000	0.008	0.010	0.000	0.000	0.000	0.000	0.011	0.000	0.005	0.000	0.000	0.022
Total	99.498	100.213	99.326	100.537	92.140	96.590	89.745	85.259	81.561	96.360	81.227	98.522	96.267	97.472	97.964	97.308	99.139	100.476	99.452	99.504	99.618	97.278	102.124	101.055	100.354	100.877	99.494	97.825
Cation (apfu	u, O = 4)																											
Si	0.003	0.000	0.002	0.001	0.002	0.002	0.010	0.009	0.068	0.000	1.136	0.999	0.997	0.003	0.003	0.003	0.994	0.990	0.994	0.990	0.997	0.003	0.987	0.985	0.986	0.987	0.001	0.003
AI	0.765	0.747	0.571	0.767	0.701	0.661	1.239	0.746	0.925	0.730	0.001	0.000	0.000	0.790	0.797	0.808	0.000	0.000	0.000	0.000	0.000	0.873	0.000	0.000	0.000	0.001	0.841	0.767
Ti	0.000	0.000	0.000	0.000	0.002	0.000	0.002	0.001	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Fe	0.563	0.402	0.477	0.459	0.540	0.356	0.764	0.542	0.650	0.470	0.110	0.146	0.120	0.653	0.653	0.639	0.156	0.115	0.110	0.111	0.113	0.587	0.162	0.159	0.162	0.157	0.604	0.572
Cr	1.191	1.236	1.434	1.217	1.326	1.402	0.730	1.267	0.948	1.226	0.001	0.000	0.001	1.111	1.099	1.098	0.001	0.001	0.001	0.000	0.000	1.050	0.000	0.001	0.000	0.001	1.063	1.136
Ni	0.000	0.000	0.007	0.000	0.002	0.008	0.032	0.021	0.014	0.015	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.044	0.036	0.040	0.031	0.003	0.009	0.019	0.011	0.012	0.003	0.005
Mn	0.004	0.004	0.005	0.006	0.012	0.008	0.021	0.008	0.006	0.007	0.001	0.002	0.001	0.008	0.008	0.007	0.002	0.001	0.002	0.003	0.007	0.006	0.002	0.002	0.002	0.002	0.006	0.005
Mg	0.483	0.615	0.501	0.554	0.394	0.525	0.202	0.382	0.378	0.570	1.609	1.853	1.882	0.479	0.488	0.487	1.851	1.857	1.861	1.864	1.854	0.512	1.851	1.846	1.852	1.854	0.525	0.542
Ca	0.012	0.003	0.001	0.003	0.004	0.003	0.004	0.005	0.007	0.003	0.005	0.001	0.000	0.002	0.000	0.000	0.001	0.000	0.000	0.001	0.002	0.000	0.000	0.000	0.000	0.000	0.003	0.015
Na	0.000	0.002	0.000	0.000	0.000	0.003	0.003	0.010	0.000	0.002	0.000	0.000	0.001	0.000	0.000	0.000	0.001	0.000	0.002	0.000	0.000	0.001	0.000	0.001	0.000	0.000	0.003	0.000
к	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001
Total	3.020	3.010	2.996	3.007	2.983	2.968	3.006	2.990	2.996	3.023	2.863	3.001	3.003	3.046	3.049	3.043	3.006	3.009	3.006	3.010	3.003	3.036	3.013	3.014	3.014	3.013	3.049	3.046
XMg	0.462	0.605	0.512	0.547	0.422	0.596	0.209	0.414	0.368	0.548	0.936	0.927	0.940	0.423	0.428	0.433	0.922	0.942	0.944	0.944	0.943	0.466	0.919	0.921	0.920	0.922	0.465	0.487
XCr	0.609	0.623	0.715	0.613	0.654	0.680	0.371	0.629	0.506	0.627	0.440	0.000	0.909	0.585	0.580	0.576	1.000	0.556	1.000	0.333	0.000	0.546	0.000	0.909	0.750	0.667	0.558	0.597
Mineral	Sp	Sp	Sp	Sp	Sp	Sp	Sp	Sp	Sp	Sp	Olv	Olv	Olv	Sp	Sp	Sp	Olv	Olv	Olv	Olv	Olv	Sp	Olv	Olv	Olv	Olv	Sp	Sp
NOTE: VAA-	A 4-1/A 4-15	- VC- IC-L	C A1)																									

NOTE: XMg = Mg/(Mg+Fe); XCr = (Cr/(Cr+AI)

(5) 斜長石

斜長石は PWT02B-15-C2-2-002 試料の C-S-H コンクリーション中に溶解残存組織として観察されるのみである。分析結果を表 4.2.5-5 に示す。全ての斜長石は構造式が不完全であり、総陽イオン数が5以下である。これは溶脱しやすいアノーサイト(anorthite: 灰長石)成分 (CaAl₂Si₂O₈)が不調和に失われているためと考えられる。

Stage posit	ion					
x (mm)	30.482	30.186	30.562	30.556	30.551	30.553
y (mm)	26.726	27.199	27.676	27.695	27.686	27.687
z (mm)	11.868	11.868	11.869	11.869	11.869	11.868
Depth	7	7	7	7	7	7
Sample ID	C2-2-002	C2-2-002	C2-2-002	C2-2-002	C2-2-002	C2-2-002
No.	373	377	383	384	385	386
Oxide wt.%	, D					
SiO2	61.574	62.748	61.368	67.138	73.182	75.361
Al2O3	24.884	25.011	26.166	23.682	21.100	21.222
TiO2	0.000	0.006	0.000	0.000	0.011	0.000
FeO	0.080	0.127	0.053	0.000	0.033	0.043
Cr2O3	0.005	0.000	0.042	0.006	0.006	0.042
NiO	0.041	0.000	0.152	0.097	0.180	0.000
MnO	0.004	0.015	0.010	0.013	0.008	0.021
MgO	0.009	0.010	0.000	0.014	0.006	0.005
CaO	6.596	6.549	6.954	0.832	0.244	0.102
Na2O	4.689	4.851	5.667	6.896	8.352	6.608
K2O	0.134	0.140	0.063	0.057	0.031	0.057
Total	98.016	99.457	100.475	98.735	103.153	103.461
Cation (O =	8)					
Si	2.752	2.763	2.694	2.921	3.045	3.093
Al	1.311	1.298	1.354	1.215	1.035	1.027
Ti	0.000	0.000	0.000	0.000	0.000	0.000
Fe	0.003	0.005	0.002	0.000	0.001	0.002
Cr	0.000	0.000	0.002	0.000	0.000	0.001
Ni	0.002	0.000	0.005	0.003	0.006	0.000
Mn	0.000	0.001	0.000	0.001	0.000	0.001
Mg	0.001	0.001	0.000	0.001	0.000	0.000
Ca	0.316	0.309	0.327	0.039	0.011	0.005
Na	0.406	0.414	0.483	0.582	0.674	0.526
К	0.008	0.008	0.004	0.003	0.002	0.003
Total	4.799	4.799	4.871	4.764	4.775	4.657
XAn	0.433	0.423	0.402	0.062	0.016	0.008

表 4.2.5-5 斜長石の化学組成

NOTE: XAn = Ca/(Ca+Na+K)

(6) 輝石

輝石はこの試料では最も普遍的に出現する鉱物である。その多くは斜方輝石であり、単斜輝 石は PWT02-15-Rh-016 のみに観察された。源岩の超塩基性岩としては、ハルツバージャイト に分類される。Ca-Mg-Fe 三成分輝石プロットでは、PWT02B-15-C2-1-001 と PWT02B-15-C2-2-002 試料の一部で Fe に富む斜方輝石が見られるが、それ以外はまとまった組成に集中し ていて、源岩の超塩基性岩の輝石の化学組成としては大きな違いは認められない。

図 4.2.5-3 輝石の組成プロット

4配位と6配位のAlの組成プロットでは、チャルマック輝石成分を示す PWT02-15-Rh-016 試料の単斜輝石以外は、ほぼ同じ組成変動幅を有しており、どの斜方輝石も同一のものと考え ていいと思われる。

図 4.2.5-4 輝石の Al(4) vs. Al(6) プロット

層序ごとに輝石の Al(4), Al(6)組成を示すと、図 4.2.5-5 のようにプロットされる。PWT02-15-Rh-016 で大きな変動がみられるが、これは単斜輝石が存在するためであり、輝石としては おおむね一定の組成を表していると考えられる。

図 4.2.5-5 輝石の Al(4)、Al(6)の層序プロファイル

これらの分析結果を

表 4.2.5-6 及び表 4.2.5-7 に示す。

表 4.2.5-6 輝石の化学組成(その1)

bit bit <th></th>																																
	Stage posit	ion																														
	x (mm)	15.203	14.888	16.307	16.859	15.003	38.794	38.528	38.686	38.873	38.806	38.745	40.647	40.752	39.074	39.639	50.543	49.659	49.661	36.801	39.458	39.467	48.511	11.992	11.933	11.805	11.791	11.778	11.730	14.953	13.811	16.445
i fram 11.54 11.57 11.55 <t< td=""><td>y (mm)</td><td>63.088</td><td>63.002</td><td>63.286</td><td>63.411</td><td>61.653</td><td>16.806</td><td>16.499</td><td>16.381</td><td>16.176</td><td>16.212</td><td>16.089</td><td>14.852</td><td>15.127</td><td>16.513</td><td>16.660</td><td>17.853</td><td>17.103</td><td>17.108</td><td>24.871</td><td>27.096</td><td>27.102</td><td>22.930</td><td>53.861</td><td>53.789</td><td>53.784</td><td>53.807</td><td>53.848</td><td>53.940</td><td>58.210</td><td>57.889</td><td>64.246</td></t<>	y (mm)	63.088	63.002	63.286	63.411	61.653	16.806	16.499	16.381	16.176	16.212	16.089	14.852	15.127	16.513	16.660	17.853	17.103	17.108	24.871	27.096	27.102	22.930	53.861	53.789	53.784	53.807	53.848	53.940	58.210	57.889	64.246
b 0	z (mm)	11.524	11.527	11.493	11.487	11.515	11.835	11.844	11.844	11.844	11.841	11.851	11.877	11.877	11.845	11.840	11.569	11.562	11.562	11.443	11.441	11.441	11.519	11.516	11.516	11.509	11.509	11.509	11.509	11.542	11.539	11.525
Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>	Death	0	0			0		1			1			1		1		2	-	-	-	2	2	2	2	2	2	2	2	2	2	2
North North <th< td=""><td>Sample ID</td><td>PL OOF T</td><td></td><td>Ph OOG</td><td>Ph OOG</td><td>Ph OOG</td><td>Ph 012</td><td>Ph 012</td><td>Ph 012</td><td>PF 012 1</td><td>Ph 012</td><td>Ph 012</td><td>2h 012</td><td>Ph 012</td><td>Ph 012</td><td>Ph 012</td><td>Ph 015</td><td>2 Ph 015</td><td>Ph 015</td><td>2 Ph 015</td><td>2 Rh 01E - I</td><td>2 2</td><td>2 Dh 01E</td><td>Ph 016</td><td>Db 016</td><td>DF 016</td><td>DF 016</td><td>э эь 016 г</td><td>5 55 016</td><td>26 016 1</td><td>Db 016</td><td>Db 016</td></th<>	Sample ID	PL OOF T		Ph OOG	Ph OOG	Ph OOG	Ph 012	Ph 012	Ph 012	PF 012 1	Ph 012	Ph 012	2h 012	Ph 012	Ph 012	Ph 012	Ph 015	2 Ph 015	Ph 015	2 Ph 015	2 Rh 01E - I	2 2	2 Dh 01E	Ph 016	Db 016	DF 016	DF 016	э эь 016 г	5 55 016	26 016 1	Db 016	Db 016
Soluti LD LD <	Spot#	A1E	A10	420	425	442	452	VE2	AEC	450	461	ACE	460	471	A74	1013	KII-015	61-015 67	KII-015	76	02	01 CTO-II	251	125	127	140	141	142	144	100	202	250
Und Und <td>Ouide unt 0</td> <td>413</td> <td>410</td> <td>430</td> <td>433</td> <td>442</td> <td>432</td> <td>435</td> <td>430</td> <td>435</td> <td>401</td> <td>403</td> <td>409</td> <td>4/1</td> <td>4/4</td> <td>403</td> <td>00</td> <td>02</td> <td>03</td> <td>70</td> <td>55</td> <td>24</td> <td>231</td> <td>133</td> <td>137</td> <td>140</td> <td>141</td> <td>142</td> <td>144</td> <td>103</td> <td>202</td> <td>230</td>	Ouide unt 0	413	410	430	433	442	432	435	430	435	401	403	409	4/1	4/4	403	00	02	03	70	55	24	231	133	137	140	141	142	144	103	202	230
3100 3.330 36.46 36.40	Oxide WL.7	57 502	50 400	50.047	50.000		57.070		57 700	55 500	FF 222	50 433	57.007	F7 607	50.474	50.040	56 500	50.000		F 4 400	56 533	56.354		40.000	50.400	53.440	53 300	50.004	50 400	57.407		FF 046
ALAD U.97 I.12 U.88 L.02 U.92 U.93 L.04 L.04 <thl.04< th=""> L.04 L.04 <thl< td=""><td>SIO2</td><td>57.583</td><td>58.439</td><td>58.847</td><td>58.002</td><td>57.244</td><td>57.879</td><td>57.277</td><td>57.728</td><td>55.589</td><td>55.222</td><td>58.132</td><td>57.827</td><td>57.687</td><td>58.1/1</td><td>56.810</td><td>56.502</td><td>58.008</td><td>57.634</td><td>54.460</td><td>56.522</td><td>56.251</td><td>57.534</td><td>49.936</td><td>50.109</td><td>52.118</td><td>52.388</td><td>50.084</td><td>50.482</td><td>57.107</td><td>57.561</td><td>55.816</td></thl<></thl.04<>	SIO2	57.583	58.439	58.847	58.002	57.244	57.879	57.277	57.728	55.589	55.222	58.132	57.827	57.687	58.1/1	56.810	56.502	58.008	57.634	54.460	56.522	56.251	57.534	49.936	50.109	52.118	52.388	50.084	50.482	57.107	57.561	55.816
102 100 1	AI203	0.997	1.112	0.805	0.928	1.067	0.884	1.652	0.823	0.763	1.260	1.645	0.796	1.014	1.807	1.698	1.346	1.275	1.246	2.023	1.268	1.234	1.223	4.282	3.821	1.654	1.584	3.517	3.879	1.678	1.426	1.4//
Her 4.84 5.97 5.86 5.17 5.10 5.87 5.88 5.97 <	1102	0.000	0.000	0.001	0.007	0.000	0.005	0.000	0.000	0.031	0.013	0.023	0.026	0.001	0.000	0.020	0.000	0.006	0.019	0.037	0.000	0.026	0.000	0.795	0.629	0.366	0.356	0.683	0.621	0.012	0.007	0.006
CACD 0.57 0.137 0.499 0.438 0.449 0.57 0.139 0.049 0.049 0.049 0.040 0.	FeU	4.946	5.297	5.286	5.121	5.029	5.410	5.553	5.403	15.902	9.016	5.181	15.849	5.342	5.602	5.867	3.787	4.110	3.956	4.540	4.373	3.903	5.637	8.618	8.097	7.009	8.112	9.987	7.279	3.760	4.262	5.338
NHO 0.05 0.15 0.49 0.00 0.21 0.24 0.14 0.03 0.43 0.04 0.04	Cr2O3	0.432	0.426	0.357	0.312	0.499	0.433	0.444	0.262	0.057	0.057	0.489	0.076	0.411	0.483	0.435	0.556	0.416	0.458	0.747	0.529	0.422	0.543	0.003	0.109	0.077	0.091	0.030	0.044	0.720	0.613	0.621
Nmbq 0.15 0.029 0.029 0.029 0.029 0.024 0.029 0.024 0.029 0.024 0.029 0.024 0.029 0.024 0.029 0.024 0.029 0.024 0.029 0.024 0.024 0.024 0.029 0.024 0	NIO	0.056	0.153	0.459	0.000	0.291	0.348	0.194	0.055	0.318	0.222	0.166	0.193	0.056	0.432	0.223	0.386	0.455	0.360	0.307	0.053	0.430	0.096	0.480	0.192	0.227	0.174	0.157	0.400	0.440	0.435	0.105
Mg0 94.748 94.748 94.748 94.748 94.845 94.742 94.845 94.742 94.845 94.742 94.845 94.757 94.747 15.00 17.744 17.94 17.944 17.95 17.95 17.94 17.97 17.97 17.97 17.97 17.97 17.97 17.97 17.97 17.97 17.97 17.97 17.97 17.97 17.97 <td>MnO</td> <td>0.057</td> <td>0.039</td> <td>0.052</td> <td>0.029</td> <td>0.067</td> <td>0.036</td> <td>0.040</td> <td>0.051</td> <td>0.126</td> <td>0.090</td> <td>0.044</td> <td>0.095</td> <td>0.046</td> <td>0.043</td> <td>0.071</td> <td>0.147</td> <td>0.113</td> <td>0.113</td> <td>0.118</td> <td>0.109</td> <td>0.087</td> <td>0.101</td> <td>0.180</td> <td>0.203</td> <td>0.226</td> <td>0.187</td> <td>0.195</td> <td>0.179</td> <td>0.074</td> <td>0.074</td> <td>0.102</td>	MnO	0.057	0.039	0.052	0.029	0.067	0.036	0.040	0.051	0.126	0.090	0.044	0.095	0.046	0.043	0.071	0.147	0.113	0.113	0.118	0.109	0.087	0.101	0.180	0.203	0.226	0.187	0.195	0.179	0.074	0.074	0.102
Calo 0.511 0.986 0.881 0.990 0.085 0.992 0.333 0.219 1.494 1.041 0.276 0.063 0.084 0.090 0.038 1.986 1.985 1.823 1.283 1.278 1.611 0.057 0.618 0.037 0.038 0.039	MgO	34.784	36.047	36.496	35.897	35.708	35.609	34.939	35.762	21.897	28.260	36.028	24.388	35.415	35.862	34.732	34.685	36.582	35.638	32.467	34.575	32.757	35.127	15.600	17.474	17.934	18.647	16.822	15.876	33.035	34.998	34.164
Na2D 0.000 0.008 0.006 0.018 0.000 0.028 0.000 0.028 0.000 0.028 0.000 0.003 0.016 0.000	CaO	0.511	0.986	0.381	0.930	0.365	0.929	0.333	0.219	1.494	1.041	0.263	1.192	1.328	1.258	1.051	0.557	0.636	0.674	0.913	0.397	3.998	1.596	17.952	16.263	17.398	16.051	15.405	18.912	3.491	1.162	1.306
K20 0.000 0	Na2O	0.000	0.038	0.005	0.000	0.018	0.000	0.028	0.000	0.074	0.278	0.000	0.137	0.028	0.000	0.028	0.018	0.003	0.038	0.064	0.000	0.033	0.010	0.388	0.176	0.126	0.138	0.227	0.220	0.041	0.000	0.005
Total 99.366 102.37 102.382 102.385 101.386 100.579 101.38 103.58 100.585 97.984 101.612 101.184 98.24 97.07 97.10 97.704 97.100 97.704 100.338 80.403 Cation (0 = 6) 1.865 1.961 1.967 1.968 1.962 1.966 1.975 2.076	K2O	0.000	0.000	0.000	0.012	0.007	0.016	0.000	0.000	0.029	0.000	0.000	0.000	0.008	0.000	0.000	0.000	0.008	0.029	0.000	0.000	0.000	0.017	0.000	0.000	0.000	0.002	0.003	0.012	0.000	0.000	0.000
Cathen (0 = 6) Si 1985 1987 1985 1970 1968 1970 1968 1962 1955 1960 1975 2076 2020 1956 2060 1962 1999 1945 1971 1957 1969 1956 1976 1962 1952 1881 1893 1960 199 190 170 0.073 0.073 0.158 0.172 0.068 0.057 0.061 Al 0.041 0.044 0.022 0.037 0.043 0.035 0.067 0.033 0.04 0.054 0.065 0.033 0.041 0.071 0.069 0.055 0.051 0.050 0.066 0.052 0.051 0.049 0.100 0.100 0.000	Total	99.366	102.537	102.689	101.238	100.295	101.549	100.460	100.303	96.280	95.459	101.971	100.579	101.336	103.658	100.935	97.984	101.612	100.165	95.676	97.826	99.141	101.884	98.234	97.073	97.135	97.730	97.110	97.904	100.358	100.538	98.940
Si 1.985 1.966 1.966 1.967 1.966 1.967 1.969 1.956 1.976 1.962 1.956 1.971 1.969 1.956 1.976 1.961 1.969 1.950 1.981 1.983 1.980 1.983 1.980 1.983 1.	Cation (O =	6)																														
Al 0.044 0.032 0.037 0.033 0.033 0.033 0.054 0.055 0.055 0.055 0.055 0.055 0.049 0.190 0.170 0.073 0.070 0.158 0.172 0.080 0.007 0.015 0.017 0.020 0.005 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.	Si	1.985	1.961	1.970	1.968	1.962	1.965	1.960	1.975	2.076	2.020	1.956	2.060	1.962	1.939	1.945	1.971	1.957	1.969	1.956	1.976	1.962	1.952	1.881	1.893	1.960	1.959	1.903	1.899	1.962	1.965	1.948
Ti 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.001 0.001 0.000 0.001 0.	Al	0.041	0.044	0.032	0.037	0.043	0.035	0.067	0.033	0.034	0.054	0.065	0.033	0.041	0.071	0.069	0.055	0.051	0.050	0.086	0.052	0.051	0.049	0.190	0.170	0.073	0.070	0.158	0.172	0.068	0.057	0.061
Fe 0.143 0.149 0.148 0.148 0.148 0.144 0.154 0.159 0.156 0.466 0.472 0.156 0.166 0.111 0.116 0.113 0.126 0.114 0.160 0.222 0.256 0.212 0.256 0.217 0.229 0.108 0.122 0.117 Cr 0.012 0.011 0.010 0.002 0.001 0.002 0.003 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.001 0.002 0.011 0.012 0.011 0.012 0.011 0.013 0.003 0.003 0.001 0.001 0.002 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 </td <td>Ti</td> <td>0.000</td> <td>0.000</td> <td>0.000</td> <td>0.000</td> <td>0.000</td> <td>0.000</td> <td>0.000</td> <td>0.000</td> <td>0.001</td> <td>0.000</td> <td>0.001</td> <td>0.001</td> <td>0.000</td> <td>0.000</td> <td>0.001</td> <td>0.000</td> <td>0.000</td> <td>0.001</td> <td>0.001</td> <td>0.000</td> <td>0.001</td> <td>0.000</td> <td>0.023</td> <td>0.018</td> <td>0.010</td> <td>0.010</td> <td>0.020</td> <td>0.018</td> <td>0.000</td> <td>0.000</td> <td>0.000</td>	Ti	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.001	0.001	0.000	0.000	0.001	0.000	0.000	0.001	0.001	0.000	0.001	0.000	0.023	0.018	0.010	0.010	0.020	0.018	0.000	0.000	0.000
Cr 0.011 0.010 0.008 0.014 0.012 0.012 0.001 0.002 0.011 0.011 0.012 0.011 0.012 0.011 0.010 0.002 0.011 0.011 0.011 0.011 0.011 0.012 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.	Fe	0.143	0.149	0.148	0.145	0.144	0.154	0.159	0.155	0.497	0.276	0.146	0.472	0.152	0.156	0.168	0.111	0.116	0.113	0.136	0.128	0.114	0.160	0.272	0.256	0.221	0.254	0.317	0.229	0.108	0.122	0.156
Ni 0.002 0.004 0.012 0.008 0.010 0.005 0.005 0.005 0.005 0.005 0.005 0.012 0.012 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.001 0.002 0.001 0.	Cr	0.012	0.011	0.010	0.008	0.014	0.012	0.012	0.007	0.002	0.002	0.013	0.002	0.011	0.013	0.012	0.015	0.011	0.012	0.021	0.015	0.012	0.015	0.000	0.003	0.002	0.003	0.001	0.001	0.020	0.017	0.017
Mm 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.001 0.003 0.001 0.003 0.	Ni	0.002	0.004	0.012	0.000	0.008	0.010	0.005	0.002	0.010	0.007	0.005	0.006	0.002	0.012	0.006	0.011	0.012	0.010	0.009	0.002	0.012	0.003	0.015	0.006	0.007	0.005	0.005	0.012	0.012	0.012	0.003
Mg 1.787 1.804 1.822 1.816 1.824 1.802 1.783 1.824 1.219 1.511 1.795 1.781 1.773 1.804 1.825 1.775 1.804 1.825 1.775 1.804 1.825 1.775 1.804 1.815 1.775 1.801 1.775 1.801 1.703 1.777 0.876 0.984 1.005 1.040 0.953 0.880 1.692 1.781 1.777 1.804 1.821 1.775 0.876 0.984 1.005 1.040 0.643 0.075 0.675 0.675 0.795 0.782 0.795 0.782 0.795 0.782 0.795 0.785 0.795 0.795 0.782 0.795 0.785 0.795 0.785 0.795 0.785 0.795 0.785 0.795 0.785 0.795 0.785 0.795 0.785 0.795 0.785 0.795 0.785 0.795 0.785 0.795 0.785 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.795 0.	Mn	0.002	0.001	0.002	0.001	0.002	0.001	0.001	0.002	0.004	0.003	0.001	0.003	0.001	0.001	0.002	0.004	0.003	0.003	0.004	0.003	0.003	0.003	0.006	0.007	0.007	0.006	0.006	0.006	0.002	0.002	0.003
Ca 0.036 0.014 0.034 0.012 0.038 0.036 0.014 0.034 0.012 0.038 0.035 0.015 0.149 0.058 0.149 0.058 0.712 0.648 0.672 0.762 0.129 0.043 0.040 Na 0.000 0.000 0.000 0.001 0.000 0.002 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 </td <td>Mg</td> <td>1.787</td> <td>1.804</td> <td>1.822</td> <td>1.816</td> <td>1.824</td> <td>1.802</td> <td>1.783</td> <td>1.824</td> <td>1.219</td> <td>1.541</td> <td>1.808</td> <td>1.295</td> <td>1.795</td> <td>1.782</td> <td>1.773</td> <td>1.804</td> <td>1.839</td> <td>1.815</td> <td>1.739</td> <td>1.801</td> <td>1.703</td> <td>1.777</td> <td>0.876</td> <td>0.984</td> <td>1.005</td> <td>1.040</td> <td>0.953</td> <td>0.890</td> <td>1.692</td> <td>1.781</td> <td>1.777</td>	Mg	1.787	1.804	1.822	1.816	1.824	1.802	1.783	1.824	1.219	1.541	1.808	1.295	1.795	1.782	1.773	1.804	1.839	1.815	1.739	1.801	1.703	1.777	0.876	0.984	1.005	1.040	0.953	0.890	1.692	1.781	1.777
Na 0.000 0.003 0.000 0.001 0.000 0.002 0.000 0.005 0.002 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0	Ca	0.019	0.036	0.014	0.034	0.013	0.034	0.012	0.008	0.060	0.041	0.010	0.046	0.048	0.045	0.039	0.021	0.023	0.025	0.035	0.015	0.149	0.058	0.725	0.658	0.701	0.643	0.627	0.762	0.129	0.043	0.049
k 0.000 0.000 0.001 0.000 0.001 0.000 0.0	Na	0.000	0.003	0.000	0.000	0.001	0.000	0.002	0.000	0.005	0.020	0.000	0.010	0.002	0.000	0.002	0.001	0.000	0.003	0.005	0.000	0.002	0.001	0.028	0.013	0.009	0.010	0.017	0.016	0.003	0.000	0.000
Total 3.989 4.012 4.009 4.011 4.012 4.001 4.005 3.909 3.92 4.014 4.019 4.015 3.994 4.013 4.001 3.991 4.008 4.017 4.009 3.996 4.007 4.005 3.998 4.014 Al(4) 0.015 0.039 0.030 0.032 0.039 0.030 0.022 0.000 0.027 0.019 0.014 0.021 0.019 0.044 0.019 0.014 0.021 0.039 0.040 0.017 0.022 0.030 0.042 0.010 0.014 0.027 0.019 0.044 0.019 0.044 0.019 0.041 0.019 0.041 0.019 0.014 0.025 0.039 0.041 0.017 0.031 0.041 0.031 0.041 0.019 0.041 0.025 0.031 0.041 0.017 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.03	к	0.000	0.000	0.000	0.001	0.000	0.001	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000
Al(4) 0.015 0.039 0.030 0.032 0.039 0.030 0.032 0.039 0.035 0.040 0.025 0.076 0.019 0.04 0.026 0.019 0.04 0.050 0.039 0.061 0.055 0.029 0.04 0.031 0.04 0.025 0.038 0.048 0.19 0.17 0.040 0.01 0.07 0.01 0.038 0.03 0.05 0.05 Al(6) 0.025 0.005 0.005 0.005 0.005 0.005 0.000 0.027 0.008 0.110 0.074 0.022 0.093 0.02 0.010 0.014 0.027 0.007 0.19 0.042 0.028 0.012 0.01 0.072 0.064 0.033 0.029 0.61 0.071 0.030 0.022 0.008 Xen 0.917 0.907 0.918 0.910 0.921 0.906 0.912 0.918 0.687 0.830 0.921 0.71 0.005 0.025 0.024 0.023 0.020 0.910 0.927 0.966 0.912 0.918 0.468 0.518 0.522 0.537 0.502 0.473 0.877 0.916 0.897 Xwo 0.010 0.013 0.007 0.017 0.007 0.017 0.006 0.044 0.034 0.022 0.005 0.025 0.024 0.023 0.020 0.011 0.12 0.013 0.18 0.008 0.076 0.029 0.387 0.347 0.364 0.332 0.31 0.405 0.67 0.022 0.025 Xfs 0.073 0.075 0.073 0.073 0.07 0.081 0.078 0.20 0.14 0.074 0.20 0.076 0.079 0.085 0.057 0.059 0.058 0.071 0.066 0.058 0.080 0.14 0.13 0.14 0.13 0.17 0.122 0.056 0.03 0.079	Total	3.989	4.012	4.009	4.010	4.011	4.012	4.001	4.005	3.909	3.962	4.004	3.927	4.014	4.019	4.015	3.994	4.013	4.001	3.991	3.991	4.008	4.017	4.015	4.009	3.996	4.000	4.007	4.005	3.995	3.998	4.014
A (4) 0.015 0.039 0.032 0.039 0.035 0.040 0.025 0.044 0.021 0.044 0.021 0.044 0.023 0.031 0.044 0.015 0.032 0.032 0.039 0.035 0.030 0.035 0.030 0.032 0.033 0.035 0.040 0.044 0.055 0.020 0.044 0.031 0.044 0.025 0.031 0.044 0.19 0.01 0.040 0.041 0.097 0.101 0.038 0.035 0.052 Al(6) 0.025 0.005 0.005 0.006 0.017 0.007 0.010 0.017 0.010 0.017 0.0																																
Al(6) 0.025 0.005 0.002 0.005 0.005 0.000 0.027 0.008 0.110 0.074 0.022 0.010 0.014 0.027 0.019 0.021 0.001 0.010 0.012 0.010 0.017 0.010 0.012 0.012 0.010 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.012 0.011 0.012 0.011 0.012 0.012 0.011 0.012 0.011 0.012 0.012 0.012 0.011 0.012 0.012 0.012 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 <th< td=""><td>AI(4)</td><td>0.015</td><td>0.039</td><td>0.030</td><td>0.032</td><td>0.039</td><td>0.035</td><td>0.040</td><td>0.025</td><td>-0.076</td><td>-0.019</td><td>0.044</td><td>-0.060</td><td>0.039</td><td>0.061</td><td>0.055</td><td>0.029</td><td>0.044</td><td>0.031</td><td>0.044</td><td>0.025</td><td>0.038</td><td>0.048</td><td>0.119</td><td>0.107</td><td>0.040</td><td>0.041</td><td>0.097</td><td>0.101</td><td>0.038</td><td>0.035</td><td>0.052</td></th<>	AI(4)	0.015	0.039	0.030	0.032	0.039	0.035	0.040	0.025	-0.076	-0.019	0.044	-0.060	0.039	0.061	0.055	0.029	0.044	0.031	0.044	0.025	0.038	0.048	0.119	0.107	0.040	0.041	0.097	0.101	0.038	0.035	0.052
Xen 0.917 0.907 0.918 0.910 0.921 0.906 0.912 0.918 0.807 0.810 0.921 0.907 0.918 0.910 0.921 0.918 0.921 0.918 0.921 0.918 0.912 0.918 0.921 0.918 0.820 0.912 0.920 0.930 0.929 0.910 0.927 0.866 0.891 0.468 0.518 0.522 0.537 0.502 0.473 0.877 0.916 0.897 Xwo 0.010 0.018 0.007 0.007 0.007 0.004 0.034 0.022 0.025 0.024 0.023 0.020 0.11 0.12 0.11 0.12 0.13 0.14 0.347	AI(6)	0.025	0.005	0.002	0.005	0.005	0.000	0.027	0.008	0.110	0.074	0.022	0.093	0.002	0.010	0.014	0.027	0.007	0.019	0.042	0.028	0.012	0.001	0.072	0.064	0.033	0.029	0.061	0.071	0.030	0.022	0.008
Xwo 0.010 0.018 0.007 0.017 0.001 0.018 0.002 0.012 0.012 0.023 0.012 0.012 0.023 0.021 0.025 0.022 0.025 0.024 0.023 0.021 0.025 0.022 0.025 0.025 0.025 0.024 0.023 0.027 0.017 0.031 0.018 0.008 0.076 0.029 0.387 0.347 0.346 0.332 0.331 0.405 0.067 0.022 0.025 Xfs 0.075 0.075 0.073 0.073 0.074 0.081 0.076 0.075 0.075 0.14 0.131 0.167 0.022 0.025 Xfs 0.073 0.075 0.073 0.073 0.076 0.024 0.025 0.025 0.057 0.058 0.057 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058	Xen	0.917	0.907	0.918	0.910	0.921	0.906	0.912	0.918	0.687	0.830	0.921	0.714	0.900	0.899	0.896	0.932	0.930	0.929	0.910	0.927	0.866	0.891	0.468	0.518	0.522	0.537	0.502	0.473	0.877	0.916	0.897
Xfs 0.073 0.075 0.073 0.077 0.081 0.078 0.280 0.149 0.074 0.260 0.079 0.085 0.057 0.059 0.058 0.071 0.066 0.185 0.114 0.131 0.167 0.122 0.056 0.063 0.071 NOTE: Xen = Mg/(Mg+Fe+Ca); Xis = Fe/(Mg+Fe+Ca); Xis = Fe/(Mg+Fe+	Xwo	0.010	0.018	0.007	0.017	0.007	0.017	0.006	0.004	0.034	0.022	0.005	0.025	0.024	0.023	0.020	0.011	0.012	0.013	0.018	0.008	0.076	0.029	0.387	0.347	0.364	0.332	0.331	0.405	0.067	0.022	0.025
NOTE: Xen = Mg/(Mg+Fe+Ca); Xfs = Fe/(Mg+Fe+Ca); Xfs	Xfs	0.073	0.075	0.075	0.073	0.073	0.077	0.081	0.078	0.280	0.149	0.074	0.260	0.076	0.079	0.085	0.057	0.059	0.058	0.071	0.066	0.058	0.080	0.145	0.135	0.114	0.131	0.167	0.122	0.056	0.063	0.079
	NOTE: Xen	= Mg/(Mg+Fe	e+Ca); Xwo	o = Ca/(Mg-	+Fe+Ca); Xt	s = Fe/(Mg+Fe	e+Ca)																									

表 4.2.5-7 輝石の化学組成 (その2)

Stage posit	on																																	
x (mm)	69.984	69.944	69.860	69.935	69.917	69.840	69.533	69.092	70.082	69.818	69.805	60.351	60.236	60.097	60.017	59.763	61.254	61.053	60.895	60.625	60.438	60.090	49.036	14.613	14.509	12.175	11.979	50.639	50.618	49.018	46.116	45.388	30.749	30.728
y (mm)	68.956	68.973	68.967	67.586	67.615	67.718	67.783	68.047	69.118	68.863	68.867	53.211	53.209	53.234	53.236	53.840	53.353	53.408	53.453	53.511	53.422	53.578	49.799	60.354	60.333	62.454	62.565	15.281	15.300	17.816	18.844	18.404	28.607	28.724
z (mm)	12.110	12.111	12.112	12.105	12.108	12.111	12.115	12.117	12.094	12.094	12.094	12.172	12.170	12.169	12.168	12.163	12.164	12.167	12.169	12.170	12.172	12.167	11.830	11.943	11.941	11.917	11.918	11.970	11.968	11.930	11.921	11.929	11.846	11.846
Denth	4	4	4	4	4		4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	5	6	6	6	6	7	7	7	7	7	7	7
Sample ID	Rh-020	Rh-020	Rh-020	Rh-020	Rh-020	Rh-020	Rh-020	Rh-020	Rh-020	Rh-020	Rh-020	** Rh-020	Rh-020	Rh-020	Rh-020	Rh-020	Rh-020	Rh-020	Rh-020	Rh-020	Rh-020	Rh-020	C1-001	(2-1-001 0	2-1-001	C2-1-001	C2-1-001	C2-2-002	2-2-002	2-2-002 0	2-2-002 0	c2-2-002 ·	c2-2-002	c2-2-002
Spot#	3	4	5	6	7	9	10	11	28	49	50	252	253	254	255	274	285	286	287	288	289	291	108	307	308	332	333	344	345	352	361	364	393	394
Oxide wt.%																																		
SiO2	56.521	56.965	56.373	46.002	56.725	56.755	56.764	55.845	56.787	54.356	56,711	56.562	56.236	56.127	55.755	56.074	58.070	58,793	57.852	57.764	57,809	57.521	56.171	58.365	57.406	57.055	56.853	58.031	56.964	58.008	57.878	57.904	57.488	56.880
AI2O3	1.643	1.502	1.633	1.250	1.435	1.492	1.569	1.491	1.379	1.009	1.449	1.563	1.616	1.669	1.619	1.311	1.868	1.636	1.800	1.660	1.628	1.524	1.380	1.362	1.242	0.573	0.667	1.654	1.742	1.111	1.587	1.674	1.645	1.651
TiO2	0.000	0.002	0.009	0.000	0.000	0.001	0.009	0.000	0.000	0.019	0.012	0.000	0.004	0.007	0.000	0.007	0.000	0.008	0.000	0.000	0.000	0.000	0.005	0.019	0.000	0.013	0.011	0.005	0.000	0.002	0.010	0.010	0.025	0.025
FeO	5.218	4.994	5.111	4.315	4.733	5.341	4.962	4.906	3.833	1.606	3.708	4.976	4.758	5.289	5.574	4.976	4.957	5.325	4.566	5.009	4.760	5.032	4.014	5.512	4.844	14.531	14.180	4.888	4.110	5.479	5.134	4.989	5.504	5.340
Cr2O3	0.626	0.619	0.656	0.589	0.582	0.713	0.731	0.672	0.502	0.603	0.700	0.722	0.642	0.595	0.506	0.414	0.461	0.437	0.497	0.513	0.533	0.478	0.534	0.347	0.286	0.021	0.000	0.472	0.531	0.205	0.425	0.484	0.445	0.442
NiO	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.447	0.403	0.482	0.141	0.000	0.254	0.237	0.256	0.227	0.026	0.122	0.200	0.141	0.211	0.308	0.042	0.028	0.168	0.211	0.056	0.153	0.208	0.000	0.083	0.234	0.290
MnO	0.093	0.090	0.101	0.063	0.073	0.086	0.088	0.091	0.100	0.052	0.090	0.097	0.098	0.100	0.076	0.065	0.084	0.082	0.083	0.064	0.089	0.071	0.086	0.097	0.079	0.176	0.207	0.056	0.042	0.058	0.072	0.049	0.065	0.055
MgO	34.789	34.941	34.999	28.990	32.837	35.272	34.746	33.876	35.425	22.298	34.876	34.755	34.772	34.349	34.065	34.217	35.946	36.460	34.692	35.424	35.446	34.862	34.158	36.092	34.873	24.679	24.407	35.765	32.221	36.158	35.566	35.385	34.740	34.436
CaO	1.100	0.683	0.648	2.012	2.913	0.641	0.928	1.624	0.755	18.223	0.527	1.361	1.195	1.217	0.700	0.982	1.235	0.762	1.447	0.966	0.709	1.011	1.230	0.591	0.477	0.734	0.704	0.468	4.569	0.457	0.535	1.198	1.244	1.095
Na2O	0.043	0.000	0.000	0.051	0.000	0.025	0.028	0.000	0.000	0.061	0.040	0.043	0.030	0.031	0.000	0.013	0.035	0.003	0.000	0.000	0.000	0.000	0.000	0.025	0.000	0.000	0.032	0.000	0.000	0.015	0.020	0.084	0.013	0.000
K2O	0.022	0.013	0.023	0.028	0.036	0.007	0.008	0.000	0.000	0.011	0.005	0.012	0.008	0.033	0.000	0.000	0.014	0.000	0.010	0.000	0.015	0.002	0.000	0.000	0.010	0.006	0.012	0.010	0.013	0.000	0.017	0.022	0.000	0.000
Total	100.055	99.809	99.553	83.300	99.334	100.333	99.833	98.505	99.228	98.641	98.600	100.232	99.359	99.671	98.532	98.315	102.897	103.532	101.069	101.600	101.130	100.712	97.886	102.452	99.245	97.956	97.284	101.405	100.345	101.701	101.244	101.882	101.403	100.214
Cation (O =	6)																																	
Si	1.947	1.960	1.948	1.917	1.970	1.948	1.955	1.953	1.960	1.967	1.967	1.946	1.947	1.944	1.952	1.962	1.943	1.952	1.964	1.955	1.961	1.963	1.967	1.959	1.980	2.072	2.076	1.961	1.962	1.962	1.961	1.954	1.955	1.956
AI	0.067	0.061	0.067	0.061	0.059	0.060	0.064	0.062	0.056	0.043	0.059	0.063	0.066	0.068	0.067	0.054	0.074	0.064	0.072	0.066	0.065	0.061	0.057	0.054	0.051	0.025	0.029	0.066	0.071	0.044	0.063	0.067	0.066	0.067
11 Fo	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001
Fe Cr	0.130	0.144	0.148	0.130	0.157	0.135	0.145	0.144	0.111	0.049	0.108	0.145	0.156	0.155	0.105	0.140	0.139	0.146	0.150	0.142	0.155	0.144	0.118	0.133	0.140	0.001	0.455	0.138	0.118	0.133	0.140	0.141	0.137	0.134
Ni	0.000	0.000	0.000	0.015	0.010	0.015	0.020	0.015	0.014	0.017	0.013	0.020	0.000	0.007	0.007	0.007	0.002	0.0012	0.013	0.005	0.004	0.015	0.015	0.003	0.000	0.001	0.000	0.013	0.015	0.000	0.000	0.013	0.002	0.002
Mn	0.003	0.003	0.003	0.002	0.002	0.003	0.003	0.003	0.003	0.002	0.003	0.003	0.003	0.003	0.002	0.002	0.002	0.002	0.002	0.002	0.003	0.002	0.003	0.003	0.002	0.005	0.006	0.002	0.001	0.002	0.002	0.001	0.002	0.002
Me	1.786	1.792	1.803	1.801	1.700	1.805	1.784	1.766	1.822	1.203	1.803	1.782	1.795	1.774	1.777	1.785	1.793	1.804	1.756	1.787	1.792	1.774	1.783	1.806	1.793	1.336	1.329	1.802	1.655	1.823	1.797	1.780	1.761	1.765
Ca	0.041	0.025	0.024	0.090	0.108	0.024	0.034	0.061	0.028	0.707	0.020	0.050	0.044	0.045	0.026	0.037	0.044	0.027	0.053	0.035	0.026	0.037	0.046	0.021	0.018	0.029	0.028	0.017	0.169	0.017	0.019	0.043	0.045	0.040
Na	0.003	0.000	0.000	0.004	0.000	0.002	0.002	0.000	0.000	0.004	0.003	0.003	0.002	0.002	0.000	0.001	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.000	0.000	0.002	0.000	0.000	0.001	0.001	0.006	0.001	0.000
к	0.001	0.001	0.001	0.002	0.002	0.000	0.000	0.000	0.000	0.001	0.000	0.001	0.000	0.002	0.000	0.000	0.001	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.001	0.000	0.001	0.001	0.000	0.000
Total	4.014	4.002	4.011	4.046	3.994	4.013	4.004	4.007	4.006	4.005	3.995	4.015	4.013	4.015	4.008	4.005	4.016	4.010	3.994	4.006	4.000	4.000	3.997	4.010	3.992	3.915	3.910	4.000	3.995	4.014	4.002	4.009	4.006	4.004
AI(4)	0.054	0.040	0.052	0.083	0.030	0.052	0.045	0.047	0.040	0.033	0.033	0.054	0.053	0.056	0.049	0.038	0.057	0.048	0.036	0.045	0.039	0.037	0.033	0.041	0.020	-0.072	-0.076	0.039	0.038	0.038	0.039	0.046	0.045	0.044
AI(6)	0.013	0.021	0.014	-0.022	0.028	0.008	0.019	0.015	0.016	0.010	0.026	0.009	0.013	0.013	0.018	0.016	0.017	0.016	0.036	0.021	0.026	0.025	0.024	0.013	0.030	0.097	0.105	0.027	0.033	0.006	0.025	0.021	0.021	0.023
Xen	0.903	0.914	0.913	0.882	0.874	0.911	0.910	0.896	0.929	0.614	0.934	0.902	0.908	0.899	0.904	0.907	0.907	0.912	0.906	0.910	0.918	0.908	0.916	0.911	0.919	0.740	0.743	0.921	0.852	0.914	0.916	0.906	0.897	0.901
Xwo	0.021	0.013	0.012	0.044	0.056	0.012	0.017	0.031	0.014	0.361	0.010	0.025	0.022	0.023	0.013	0.019	0.022	0.014	0.027	0.018	0.013	0.019	0.024	0.011	0.009	0.016	0.015	0.009	0.087	0.008	0.010	0.022	0.023	0.021
Xfs	0.076	0.073	0.075	0.074	0.071	0.077	0.073	0.073	0.056	0.025	0.056	0.072	0.070	0.078	0.083	0.074	0.070	0.075	0.067	0.072	0.069	0.073	0.060	0.078	0.072	0.244	0.242	0.071	0.061	0.078	0.074	0.072	0.080	0.078

NOTE: Xen = Mg/(Mg+Fe+Ca); Xwo = Ca/(Mg+Fe+Ca); Xfs = Fe/(Mg+Fe+Ca)

(7) 蛇紋石

多くの蛇紋石は Mg に富むが、PWT02B-15-C2-2-002 と PWT02-15-Rh-016 の一部が XMg-Ca プロットにおいて傾向から外れてプロットされる。蛇紋石はかんらん石の水和生成物であ るが、かんらん石の XMg とは明らかに異なるこれらの蛇紋石は、変質過程で Fe を含む流体 の関与があったことが推察される。

図 4.2.5-6 蛇紋石の組成プロット

表 4.2.5-8 蛇紋石の化学組成(その1)

Stage per	tion																										
stage pos	14 656	14 640	20 725	20 712	40.004	40.072	40 700	20.155	20.140	20.022	20.972	20.960	20 726	20.070	26 977	27 402	27 515	40 411	20 720	12 104	11 670	15 726	15 750	15 746	15 720	12 021	12 029
x (mm)	14.050	14.049	38.725	38.713	40.904	40.872	40.799	39.155	39.140	39.923	39.8/3	39.869	39.720 16.525	39.979	30.877	37.483	37.515	40.411	38.739	12.194	11.079 E2.820	15.730	15.759	15.740	15.728	13.031	13.028
y (11111)	11 511	11 511	10.147	11 041	11 077	14.952	14.090	11 027	11 027	11 042	11 942	11 942	11 042	11 027	24.900	11 442	24.200	11 462	23.304	11 500	11 512	11 544	37.945	30.240 11 EAC	30.270 11 EAC	11 520	11 5 20
2 (11111)	11.511	11.511	11.041	11.041	11.6/7	11.0//	11.877	11.657	11.657	11.042	11.042	11.042	11.042	11.657	11.445	11.442	11.442	11.402	11.442	11.509	11.515	11.544	11.544	11.540	11.540	11.528	11.526
Depth	0	0	1	1	1	1	1	1	1	1	1	1	1	1	2	2	2	2	2	3	3	3	3	3	3	3	3
Sample ID	Rh-006	Rh-006	Rh-013	Rh-013	Rh-015	Rh-015	Rh-015	Rh-015	Rh-015	Rh-016	Rh-016 I	Rh-016	Rh-016	Rh-016 F	Rh-016	Rh-016 F	Rh-016										
Spot#	447	448	463	464	466	467	468	472	473	481	482	483	484	486	77	85	86	88	89	128	146	169	170	172	173	211	212
Oxide wt.	%																										
SiO2	43.155	44.681	45.561	45.337	36.162	34.812	30.404	30.627	32.298	30.897	33.802	33.271	33.496	46.076	45.798	46.698	41.014	41.057	56.153	43.077	30.806	57.357	38.677	42.383	45.190	39.558	40.779
AI2O3	0.460	0.288	0.093	0.046	10.870	11.266	16.473	15.452	15.917	13.878	11.742	13.971	12.945	0.097	0.311	0.187	0.212	0.288	2.793	0.119	12.375	1.443	0.055	0.027	0.110	9.536	9.039
TiO2	0.006	0.014	0.004	0.011	0.021	0.006	0.036	0.039	0.025	0.261	0.176	0.268	0.247	0.000	0.004	0.000	0.006	0.008	0.004	0.000	0.033	0.005	0.007	0.000	0.000	0.009	0.001
FeO	10.060	7.243	3.018	2.757	8.370	9.518	8.241	3.945	4.433	7.387	10.097	11.143	12.933	2.835	2.658	3.728	4.503	3.365	6.699	2.338	20.456	4.767	2.701	2.091	2.389	3.144	3.320
Cr2O3	0.000	0.000	0.000	0.008	0.229	0.029	0.070	0.976	0.827	0.737	0.331	0.706	0.569	0.000	0.000	0.068	0.093	0.054	0.321	0.000	0.128	0.566	0.008	0.010	0.005	3.273	2.990
NiO	0.166	0.042	0.445	0.222	0.028	0.235	1.076	0.460	0.278	2.635	2.768	5.926	7.561	0.557	1.895	1.965	1.779	0.965	0.762	1.194	23.817	0.563	0.915	1.504	1.232	0.870	0.835
MnO	0.016	0.046	0.007	0.015	0.072	0.091	0.017	0.000	0.021	0.042	0.044	0.089	0.061	0.000	0.020	0.042	0.056	0.031	0.129	0.034	0.210	0.094	0.027	0.025	0.012	0.020	0.009
MgO	31.864	34.062	37.449	36.192	31.015	27.896	25.509	30.883	31.830	23.602	22.366	22.730	22.938	40.289	40.939	40.242	32.736	34.672	27.431	34.967	10.036	34.889	31.691	35.091	38.663	36.364	37.706
CaO	1.542	0.557	0.094	0.116	0.034	0.044	0.662	0.023	0.033	1.614	2.589	1.425	0.899	0.065	0.424	0.212	0.325	0.322	0.615	0.435	1.343	0.720	0.371	0.163	0.332	0.495	1.189
Na2O	0.079	0.039	0.000	0.010	0.011	0.016	0.019	0.053	0.005	0.416	0.224	0.261	0.204	0.000	0.000	0.023	0.024	0.053	0.268	0.002	0.169	0.000	0.000	0.000	0.000	0.054	0.008
K2O	0.044	0.014	0.000	0.002	0.008	0.014	0.020	0.061	0.082	0.257	0.158	0.080	0.189	0.000	0.000	0.023	0.029	0.037	0.005	0.017	0.119	0.000	0.000	0.001	0.004	0.000	0.027
Total	87.392	86.986	86.671	84.716	86.820	83.927	82.527	82.519	85.749	81.726	84.297	89.870	92.042	89.919	92.049	93.188	80.777	80.852	95.180	82.183	99.492	100.404	74.452	81.295	87.937	93.323	95.903
Cation (O	= 7)																										
Si	2.084	2.121	2.125	2.154	1.743	1.747	1.558	1.536	1.557	1.621	1.738	1.636	1.636	2.077	2.037	2.059	2.096	2.076	2.371	2.125	1.577	2.291	2.113	2.115	2.087	1.753	1.762
Al	0.026	0.016	0.005	0.003	0.618	0.667	0.995	0.913	0.904	0.858	0.712	0.810	0.745	0.005	0.016	0.010	0.013	0.017	0.139	0.007	0.747	0.068	0.004	0.002	0.006	0.498	0.460
Ti	0.000	0.001	0.000	0.000	0.001	0.000	0.001	0.002	0.001	0.010	0.007	0.010	0.009	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000
Fe	0.406	0.288	0.118	0.110	0.337	0.400	0.353	0.165	0.179	0.324	0.434	0.458	0.528	0.107	0.099	0.137	0.193	0.142	0.237	0.096	0.876	0.159	0.123	0.087	0.092	0.117	0.120
Cr	0.000	0.000	0.000	0.000	0.009	0.001	0.003	0.039	0.032	0.031	0.014	0.027	0.022	0.000	0.000	0.002	0.004	0.002	0.011	0.000	0.005	0.018	0.000	0.000	0.000	0.115	0.102
Ni	0.006	0.002	0.017	0.009	0.001	0.010	0.044	0.019	0.011	0.111	0.115	0.234	0.297	0.020	0.068	0.070	0.073	0.039	0.026	0.047	0.980	0.018	0.040	0.060	0.046	0.031	0.029
Mn	0.001	0.002	0.000	0.001	0.003	0.004	0.001	0.000	0.001	0.002	0.002	0.004	0.003	0.000	0.001	0.002	0.002	0.001	0.005	0.001	0.009	0.003	0.001	0.001	0.001	0.001	0.000
Mg	2.294	2.411	2.603	2.563	2.229	2.087	1.949	2.308	2.287	1.846	1.714	1.666	1.670	2.708	2.714	2.644	2.494	2.614	1.727	2.571	0.766	2.078	2.581	2.610	2.662	2.402	2.428
Ca	0.080	0.028	0.005	0.006	0.002	0.002	0.036	0.001	0.002	0.091	0.143	0.075	0.047	0.003	0.020	0.010	0.018	0.017	0.028	0.023	0.074	0.031	0.022	0.009	0.016	0.024	0.055
Na	0.007	0.004	0.000	0.001	0.001	0.002	0.002	0.005	0.001	0.042	0.022	0.025	0.019	0.000	0.000	0.002	0.002	0.005	0.022	0.000	0.017	0.000	0.000	0.000	0.000	0.005	0.001
К	0.003	0.001	0.000	0.000	0.001	0.001	0.001	0.004	0.005	0.017	0.010	0.005	0.012	0.000	0.000	0.001	0.002	0.002	0.000	0.001	0.008	0.000	0.000	0.000	0.000	0.000	0.002
Total	4.908	4.872	4.873	4.845	4.944	4.920	4.943	4.992	4.978	4.954	4.909	4.951	4.987	4.920	4.955	4.937	4.897	4.918	4.565	4.872	5.059	4.666	4.885	4.884	4.910	4.943	4.958
XMσ	0.850	0 805	0.057	0 950	0.860	0 820	0.8/7	0 025	0.929	0.851	0.709	0.784	0.760	0.962	0.965		0.929	0 0/10	0.879	0.064	0.467	0 929	0.954	0.969	0.966	0.95/	0.952
Ca	0.80	0.095	0.937	0.959	0.009	0.002	0.047	0.955	0.928	0.001	0.798	0.784	0.700	0.902	0.905	0.951	0.928	0.946	0.079	0.964	0.407	0.929	0.954	0.908	0.900	0.954	0.955
NOTE	XMg = Mg/	(Mg+Fe)	0.005	0.000	0.002	0.002	0.030	0.001	0.002	0.091	0.143	0.075	0.047	0.003	0.020	5.010	0.018	0.017	0.028	0.023	0.074	0.031	0.022	0.009	0.010	0.024	0.000

表 4.2.5-9 蛇紋石の化学組成(その2)

_																																						
Stage posit	ion																																					
x (mm)	69.848	70.838	70.506	70.286	70.223	70.000	77.685	74.892	74.768	74.803	74.873	74.858	74.865	74.855	74.845	74.835	74.842	59.618	59.589	59.646	59.631	61.277	60.046	15.292	7.753	7.535	7.306	6.663	49.307	30.296	29.734	30.080	30.364	30.565	31.025	30.990	30.076	30.042
y (mm)	67.639	69.028	69.214	69.071	69.099	69.196	50.633	67.104	66.837	67.000	66.247	66.261	66.260	66.267	66.271	66.274	66.273	53.173	53.199	53.869	54.362	53.227	53.505	60.177	58.379	58.186	58.238	58.331	16.483	26.902	26.851	27.173	26.999	27.662	28.508	28.472	26.568	26.633
z (mm)	12.108	12.088	12.088	12.088	12.088	12.093	12.134	12.075	12.075	12.075	12.075	12.075	12.075	12.075	12.075	12.075	12.075	12.163	12.163	12.160	12.157	12.161	12.167	11.934	11.939	11.939	11.938	11.936	11.948	11.863	11.862	11.861	11.868	11.869	11.848	11.846	11.869	11.865
Depth	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	6	6	6	6	6	7	7	7	7	7	7	7	7	7	7
Sample ID	Rh-020	Rh-020 F	Rh-020	Rh-020 F	Rh-020	C2-1-001	C2-1-001	C2-1-001	C2-1-001	C2-1-001	C2-2-002	C2-2-002	C2-2-002 (C2-2-002	C2-2-002 (2-2-002	C2-2-002 (2-2-002 0	C2-2-002	C2-2-002																		
Spot#	8	22	24	25	26	27	32	35	37	40	41	43	44	45	46	47	48	263	264	275	276	284	290	296	313	316	317	319	348	374	375	378	380	382	387	388	398	399
Oxide wt.9	5																																					
SiO2	40.216	40.064	40.324	43.866	38.969	37.373	38.643	44.731	39.878	44.443	43.660	40.101	38.176	40.347	39.336	40.909	40.246	40.438	41.505	40.049	40.252	39.833	40.809	43.684	34.853	33.743	35.848	42.414	39.972	29.163	27.715	27.633	27.274	64.134	45.711	49.752	28.627	29.047
AI2O3	1.270	0.040	0.110	0.104	0.664	1.221	0.006	0.011	0.018	0.036	0.000	0.015	0.000	0.012	0.010	0.000	0.015	0.051	0.001	1.024	1.254	1.468	0.989	0.143	12.704	12.700	10.897	1.403	0.192	16.717	17.440	17.504	17.509	8.111	1.996	2.194	16.098	15.376
TiO2	0.004	0.000	0.007	0.003	0.000	0.000	0.012	0.000	0.000	0.000	0.003	0.000	0.000	0.000	0.000	0.000	0.007	0.001	0.004	0.000	0.006	0.009	0.008	0.012	0.003	0.025	0.008	0.000	0.001	0.002	0.000	0.002	0.009	0.375	0.010	0.022	0.000	0.000
FeO	5.372	5.134	4.220	2.109	4.406	5.329	6.163	2.358	4.350	1.392	4.028	6.116	4.544	6.270	4.267	4.712	5.695	6.284	4.081	5.865	5.552	5.727	5.256	3.960	5.864	3.850	4.831	6.290	7.807	28.927	30.057	28.461	29.598	8.842	6.667	5.279	28.094	28.691
Cr2O3	0.629	0.021	0.000	0.018	0.335	0.265	0.022	0.000	0.000	0.000	0.029	0.000	0.000	0.007	0.000	0.000	0.011	0.000	0.041	0.655	0.672	0.496	0.201	0.000	0.047	0.051	0.078	0.054	0.055	0.000	0.000	0.000	0.000	0.000	0.362	0.427	0.037	0.003
NiO	0.000	2.114	1.557	0.877	0.280	0.114	3.100	0.570	2.392	0.544	2.629	1.580	2.564	1.667	1.756	3.079	1.972	0.841	0.684	0.053	0.018	0.000	0.184	0.494	0.305	0.236	0.083	0.804	0.816	1.694	0.583	0.745	0.190	0.000	0.813	0.193	1.431	1.996
MnO	0.091	0.125	0.060	0.023	0.080	0.127	0.021	0.028	0.040	0.034	0.043	0.049	0.063	0.077	0.083	0.096	0.125	0.082	0.073	0.082	0.055	0.059	0.085	0.042	0.022	0.017	0.038	0.034	0.034	0.128	0.114	0.134	0.145	0.265	0.040	0.023	0.152	0.105
MgO	35.309	36.062	36.960	39.532	34.272	32.412	30.706	38.488	36.377	39.418	38.259	32.856	37.827	33.237	35.529	35.721	33.268	36.947	35.542	35.451	36.415	37.793	35.776	37.140	31.380	29.160	30.158	32.626	30.937	11.588	11.074	11.617	11.433	8.123	20.453	23.611	10.949	10.413
CaO	0.649	0.264	0.500	0.300	0.634	0.089	1.299	0.027	0.376	0.130	0.641	1.064	0.193	1.121	0.337	0.817	1.289	0.103	0.573	0.490	0.603	0.368	0.854	0.221	0.603	0.055	0.298	0.595	1.321	0.677	0.524	0.943	0.495	7.411	1.712	1.226	0.727	0.881
Na2O	0.003	0.000	0.023	0.017	0.030	0.079	0.050	0.000	0.013	0.036	0.003	0.000	0.000	0.019	0.049	0.016	0.016	0.021	0.033	0.000	0.000	0.000	0.033	0.000	0.049	0.010	0.061	0.011	0.008	0.031	0.049	0.024	0.083	1.040	0.220	0.182	0.062	0.126
K2O	0.000	0.020	0.005	0.000	0.000	0.012	0.019	0.007	0.005	0.007	0.018	0.034	0.010	0.010	0.000	0.000	0.007	0.000	0.000	0.020	0.000	0.000	0.000	0.011	0.040	0.060	0.029	0.031	0.036	0.152	0.045	0.030	0.099	0.095	0.011	0.026	0.210	0.272
Total	83.543	83.844	83.766	86.849	79.670	77.021	80.041	86.220	83.449	86.040	89.313	81.815	83.377	82.767	81.367	85.350	82.651	84.768	82.537	83.689	84.827	85.753	84.195	85.707	85.870	79.907	82.329	84.262	81.179	89.079	87.601	87.093	86.835	98.396	77.995	82.935	86.387	86.910
Cation (O =	7)																																					
Si	1.992	1.998	1.997	2.051	2.016	2.007	2.046	2.097	1.994	2.081	2.029	2.052	1.924	2.044	2.008	2.010	2.042	1.991	2.065	1.987	1.968	1.931	2.005	2.080	1.684	1.724	1.785	2.082	2.071	1.550	1.503	1.498	1.489	2.612	2.384	2.398	1.568	1.592
AI	0.074	0.002	0.006	0.006	0.041	0.077	0.000	0.001	0.001	0.002	0.000	0.001	0.000	0.001	0.001	0.000	0.001	0.003	0.000	0.060	0.072	0.084	0.057	0.008	0.723	0.765	0.640	0.081	0.012	1.048	1.115	1.119	1.126	0.389	0.123	0.125	1.039	0.993
Ti	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.012	0.000	0.001	0.000	0.000
Fe	0.223	0.214	0.175	0.083	0.191	0.239	0.273	0.092	0.182	0.055	0.157	0.262	0.192	0.266	0.182	0.194	0.242	0.259	0.170	0.243	0.227	0.232	0.216	0.158	0.237	0.165	0.201	0.258	0.338	1.286	1.363	1.291	1.351	0.301	0.291	0.213	1.287	1.315
Cr	0.025	0.001	0.000	0.001	0.014	0.011	0.001	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.026	0.026	0.019	0.008	0.000	0.002	0.002	0.003	0.002	0.002	0.000	0.000	0.000	0.000	0.000	0.015	0.016	0.002	0.000
Ni	0.000	0.085	0.062	0.033	0.012	0.005	0.132	0.022	0.096	0.021	0.098	0.065	0.104	0.068	0.072	0.122	0.081	0.033	0.027	0.002	0.001	0.000	0.007	0.019	0.012	0.010	0.003	0.032	0.034	0.072	0.025	0.033	0.008	0.000	0.034	0.008	0.063	0.088
Mn	0.004	0.005	0.003	0.001	0.004	0.006	0.001	0.001	0.002	0.001	0.002	0.002	0.003	0.003	0.004	0.004	0.005	0.003	0.003	0.003	0.002	0.002	0.004	0.002	0.001	0.001	0.002	0.001	0.002	0.006	0.005	0.006	0.007	0.009	0.002	0.001	0.007	0.005
Mg	2.607	2.681	2.729	2.756	2.644	2.594	2.423	2.689	2.711	2.751	2.651	2.506	2.842	2.511	2.704	2.617	2.516	2.712	2.636	2.622	2.654	2.730	2.620	2.637	2.260	2.220	2.239	2.387	2.389	0.918	0.895	0.939	0.930	0.493	1.590	1.697	0.894	0.851
Ca	0.034	0.014	0.027	0.015	0.035	0.005	0.074	0.001	0.020	0.007	0.032	0.058	0.010	0.061	0.018	0.043	0.070	0.005	0.031	0.026	0.032	0.019	0.045	0.011	0.031	0.003	0.016	0.031	0.073	0.039	0.030	0.055	0.029	0.323	0.096	0.063	0.043	0.052
Na	0.000	0.000	0.002	0.002	0.003	0.008	0.005	0.000	0.001	0.003	0.000	0.000	0.000	0.002	0.005	0.002	0.002	0.002	0.003	0.000	0.000	0.000	0.003	0.000	0.005	0.001	0.006	0.001	0.001	0.003	0.005	0.003	0.009	0.082	0.022	0.017	0.007	0.013
К	0.000	0.001	0.000	0.000	0.000	0.001	0.001	0.000	0.000	0.000	0.001	0.002	0.001	0.001	0.000	0.000	0.001	0.000	0.000	0.001	0.000	0.000	0.000	0.001	0.003	0.004	0.002	0.002	0.002	0.010	0.003	0.002	0.007	0.005	0.001	0.002	0.015	0.019
Total	4.959	5.001	5.001	4.946	4.958	4.954	4.957	4.903	5.007	4.920	4.971	4.949	5.076	4.956	4.994	4.991	4.959	5.009	4.936	4.971	4.983	5.018	4.964	4.916	4.957	4.895	4.897	4.878	4.924	4.933	4.944	4.945	4.956	4.226	4.558	4.540	4.923	4.928
XMg	0.921	0.926	0.940	0.971	0.933	0.916	0.899	0.967	0.937	0.981	0.944	0.905	0.937	0.904	0.937	0.931	0.912	0.913	0.939	0.915	0.921	0.922	0.924	0.944	0.905	0.931	0.918	0.902	0.876	0.417	0.396	0.421	0.408	0.621	0.845	0.889	0.410	0.393
Ca	0.034	0.014	0.027	0.015	0.035	0.005	0.074	0.001	0.020	0.007	0.032	0.058	0.010	0.061	0.018	0.043	0.070	0.005	0.031	0.026	0.032	0.019	0.045	0.011	0.031	0.003	0.016	0.031	0.073	0.039	0.030	0.055	0.029	0.323	0.096	0.063	0.043	0.052
NOTE	XMg = Mg/	(Mg+Fe)																																				

(8) 緑泥石

組成的特徴を図 4.2.5-7 に示す。緑泥石はすべての試料で確認できる。Fe に富むものは Ca にも富む明瞭な組成的傾向が見られる。PWT02-15-Rh-013 は Fe と Ca に富むが、 PWT02-15-Rh-016、PWT02-15-Rh-020 はその傾向に従わず Mg と Ca に富むものがある。 また Ca 組成は変動が大きく、単一鉱物の組成を表していない可能性(微細な Ca 鉱物が潜 在)もある。

図 4.2.5-7 緑泥石の組成プロット

表 4.2.5-10 緑泥石の化学組成(その1)

Stage position																								
x (mm)	14 962	14 983	14 976	14 962	14 860	15 038	16 722	16 704	16 629	38 443	38 381	38 880	38 834	40 683	39 074	39 015	39 266	39 965	36 902	36 894	36 890	36 875	36 885	40 470
v (mm)	62 902	62 921	62 957	62 889	63 151	63 104	63 455	63 467	63 483	16 412	16 375	16 227	16 229	15 000	16 618	16 527	16 562	16 594	24 813	24.81	24.82	24 841	24 863	24 469
z (mm)	11.524	11.524	11.527	11.526	11.526	11.521	11.489	11.489	11.489	11.835	11.835	11.844	11.841	11.877	11.843	11.843	11.842	11.842	11.443	11.443	11.443	11.443	11.443	11.462
Depth	0	0	0	0	0	0	0	0	0		1	1	1	1	1	1	1	1	2	2	2	2	2	2
Sample ID	Rh-006	Rh-006	Rh-006	Rh-006	Rh-006	Rh-006	Rh-006	Rh-006	Rh-006	Rh-013	Rh-013 I	Rh-013	Rh-013	Rh-013	Rh-013 I	Rh-013	Rh-013 I	Rh-013	Rh-015	Rh-015 I	Rh-015 I	Rh-015 F	Rh-015 F	th-015
Spot#	416	417	419	420	421	424	437	438	439	454	455	458	460	470	476	477	478	480	78	79	80	81	82	87
Oxide wt.%																								
SiO2	53.454	54.603	56.466	53.953	57.633	34.962	38.590	39.393	35.978	38.353	37.807	29.385	33.326	31.331	35.237	37.250	31.914	35.149	34.534	33.403	33.571	33.409	33.867	37.020
AI2O3	5.362	5.489	4.941	5.593	1.993	3.391	0.813	0.708	0.613	5.028	4.208	3.329	4.469	3.924	4.297	4.446	3.421	4.354	4.694	4.612	4.611	4.305	5.095	5.758
TiO2	0.053	0.037	0.042	0.052	0.049	0.013	0.000	0.000	0.002	0.027	0.053	0.038	0.034	0.035	0.018	0.033	0.027	0.032	0.085	0.064	0.064	0.029	0.057	0.070
FeO	5.887	6.087	5.674	5.995	2.983	25.627	5.661	5.325	5.489	30.446	29.827	31.611	31.979	30.631	30.563	32.296	27.135	30.326	20.627	19.505	20.056	19.783	19.526	18.104
Cr2O3	0.228	0.316	0.270	0.238	0.072	0.203	0.044	0.012	0.062	0.277	0.277	0.259	0.214	0.305	0.303	0.303	0.288	0.371	0.323	0.385	0.359	0.339	0.400	0.549
NiO	0.168	0.000	0.153	0.097	0.000	1.231	0.664	0.761	0.609	2.230	2.218	1.920	1.547	1.760	1.483	1.765	1.697	1.973	3.528	3.931	3.756	6.409	6.526	5.410
MnO	0.061	0.036	0.060	0.030	0.042	0.037	0.036	0.031	0.030	0.034	0.033	0.005	0.028	0.027	0.017	0.021	0.017	0.017	0.045	0.041	0.034	0.019	0.081	0.064
MgO	19.448	20.226	21.388	19.865	22.462	6.667	24.638	25.942	23.795	8.049	8.225	1.515	5.728	5.686	6.402	6.907	7.208	6.141	6.439	6.276	6.298	6.630	7.030	9.799
CaO	11.861	11.777	12.118	11.847	12.948	8.633	6.197	5.473	4.213	6.716	6.317	6.842	6.820	6.129	6.860	6.712	6.499	7.432	4.312	4.102	4.520	4.230	4.236	3.938
Na2O	0.418	0.539	0.498	0.513	0.309	0.212	0.038	0.000	0.027	0.044	0.047	0.036	0.117	0.030	0.093	0.115	0.000	0.026	0.334	0.377	0.359	0.253	0.244	0.301
K2O	0.031	0.053	0.031	0.054	0.028	0.164	0.052	0.051	0.023	0.016	0.006	0.036	0.045	0.034	0.023	0.001	0.000	0.016	0.399	0.330	0.401	0.325	0.344	0.443
Total	96.971	99.163	101.641	98.237	98.519	81.140	76.733	77.696	70.841	91.220	89.018	74.976	84.307	79.892	85.296	89.849	78.206	85.837	75.320	73.026	74.029	75.731	77.406	81.456
Cation (O = 14)																								
Si	4.564	4.556	4.587	4.547	4.770	4.143	4.240	4.252	4.260	4.053	4.094	4.008	3.925	3.911	4.036	4.048	3.988	4.014	4.286	4.277	4.254	4.196	4.144	4.182
Al	0.540	0.540	0.473	0.556	0.194	0.474	0.105	0.090	0.086	0.626	0.537	0.535	0.620	0.577	0.580	0.570	0.504	0.586	0.687	0.696	0.689	0.637	0.735	0.767
Ti	0.003	0.002	0.003	0.003	0.003	0.001	0.000	0.000	0.000	0.002	0.004	0.004	0.003	0.003	0.002	0.003	0.003	0.003	0.008	0.006	0.006	0.003	0.005	0.006
Fe	0.420	0.425	0.386	0.423	0.207	2.540	0.520	0.481	0.544	2.691	2.701	3.606	3.150	3.198	2.928	2.936	2.836	2.896	2.141	2.089	2.126	2.078	1.998	1.711
Cr	0.015	0.021	0.017	0.016	0.005	0.019	0.004	0.001	0.006	0.023	0.024	0.028	0.020	0.030	0.027	0.026	0.029	0.034	0.032	0.039	0.036	0.034	0.039	0.049
Ni	0.012	0.000	0.010	0.007	0.000	0.117	0.059	0.066	0.058	0.190	0.193	0.211	0.147	0.177	0.137	0.154	0.171	0.181	0.352	0.405	0.383	0.648	0.642	0.492
Mn	0.004	0.003	0.004	0.002	0.003	0.004	0.003	0.003	0.003	0.003	0.003	0.001	0.003	0.003	0.002	0.002	0.002	0.002	0.005	0.004	0.004	0.002	0.008	0.006
Mg	2.475	2.516	2.590	2.496	2.771	1.178	4.036	4.174	4.200	1.268	1.328	0.308	1.006	1.058	1.093	1.119	1.343	1.045	1.191	1.198	1.190	1.241	1.282	1.650
Ca	1.085	1.053	1.055	1.070	1.148	1.096	0.730	0.633	0.535	0.760	0.733	1.000	0.861	0.820	0.842	0.782	0.870	0.909	0.573	0.563	0.614	0.569	0.555	0.477
Na	0.069	0.087	0.078	0.084	0.050	0.049	0.008	0.000	0.006	0.009	0.010	0.010	0.027	0.007	0.021	0.024	0.000	0.006	0.080	0.094	0.088	0.062	0.058	0.066
к	0.003	0.006	0.003	0.006	0.003	0.025	0.007	0.007	0.004	0.002	0.001	0.006	0.007	0.005	0.003	0.000	0.000	0.002	0.063	0.054	0.065	0.052	0.054	0.064
Total	9.192	9.208	9.206	9.209	9.154	9.646	9.713	9.706	9.699	9.626	9.627	9.715	9.768	9.789	9.671	9.663	9.744	9.678	9.419	9.424	9.454	9.522	9.520	9.469
XMg	0.855	0.856	0.870	0.855	0.931	0.317	0.886	0.897	0.885	0.320	0.330	0.079	0.242	0.249	0.272	0.276	0.321	0.265	0.358	0.364	0.359	0.374	0.391	0.491
Ca	1.085	1.053	1.055	1.070	1.148	1.096	0.730	0.633	0.535	0.760	0.733	1.000	0.861	0.820	0.842	0.782	0.870	0.909	0.573	0.563	0.614	0.569	0.555	0.477
NOTE:	XMg = Mg/	(Mg+Fe)																						

表 4.2.5-11 緑泥石の化学組成(その2)

Stage position																															-		
x (mm)	12 241	11 932	11 837	13 021	12 898	12 721	12 554	12 975	12 531	15 672	15 750	15 797	15 840	15 871	15 898	15 788	15 741	15 743	15 722	16 138	70.880	74 735	48 985	49 006	49 039	49.061	49 148	49 180	49 237	49 194	48 490	48 453	48 160
v (mm)	53 905	53 602	53 754	57 637	57 639	57 580	57 765	57 880	57 842	63 951	63 972	63 972	63 984	63,980	63 985	64 148	64 227	64 271	64 305	64 316	69.072	66 954	49 827	49.854	49 931	49 995	50 072	50 110	50 539	50 505	50.071	50.058	50 266
z (mm)	11.516	11.519	11.509	11.526	11.526	11.531	11.529	11.532	11.532	11.529	11.529	11.529	11.529	11.529	11.529	11.529	11.529	11.529	11.523	11.513	12.088	12.075	11.830	11.830	11.830	11.830	11.830	11.830	11.830	11.830	11.830	11.830	11.830
Depth	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	4	4	5	5	5	5	5	5	5	5	5	5	5
Sample ID	Rh-016	Rh-020	Rh-020	C1-001	C1-001	C1-001	C1-001 (C1-001 0		1-001	.1-001 0	c1-001 (1-001	21-001																			
Spot#	124	130	139	213	214	216	219	221	227	237	238	239	240	241	242	243	244	245	246	249	21	36	109	110	111	112	113	114	115	116	117	118	119
Oxide wt.%																																	
SiO2	35.665	50.324	29.453	36.118	30.700	34.045	44.122	49.941	39.823	30.102	24.810	28.165	29.652	34.750	36.256	32.922	30.827	34.908	29.942	33.658	49.155	38.777	16.473	22.652	19.313	37.542	39.551	43.951	32.642	25.467	20.471	19.645	44.339
AI2O3	7.214	7.231	10.717	8.168	16.990	14.429	2.056	6.633	1.580	1.223	1.071	1.142	2.237	2.856	4.747	2.306	2.331	3.130	2.513	7.015	0.000	0.039	0.692	0.843	0.637	1.968	1.821	2.570	3.050	1.009	0.469	0.297	3.511
TiO2	0.018	0.362	0.066	0.025	0.013	0.000	0.025	0.276	0.015	0.020	0.003	0.000	0.016	0.000	0.012	0.018	0.003	0.009	0.010	0.005	0.015	0.000	0.023	0.008	0.015	0.000	0.000	0.000	0.011	0.011	0.020	0.001	0.016
FeO	11.062	6.620	24.983	4.124	15.200	2.457	8.727	7.235	4.644	17.566	17.844	20.208	17.218	15.639	11.602	18.317	19.350	14.998	22.841	9.277	8.984	7.392	3.125	6.570	6.876	16.128	16.629	19.846	19.578	12.070	5.729	4.696	16.910
Cr2O3	0.585	0.196	0.150	2.456	0.066	2.415	0.137	0.462	0.081	0.975	0.853	0.579	0.760	0.337	0.678	0.741	0.618	0.635	0.148	1.599	0.000	0.007	0.399	0.610	0.512	0.907	0.500	0.360	0.261	0.289	0.160	0.115	0.424
NIO	4.623	0.271	25.931	1.736	3.769	1.035	8.281	0.298	2.365	1.519	1.707	1.485	1.590	1.381	1.463	1.952	1.603	1.620	0.919	0.801	3.484	5.760	3.074	4.776	5.538	6.609	5.653	4.069	3.425	7.255	6.184	4.169	6.310
MnO	0.080	0.140	0.219	0.014	0.098	0.025	0.037	0.094	0.062	0.083	0.084	0.096	0.071	0.057	0.044	0.068	0.089	0.065	0.086	0.032	0.042	0.122	0.053	0.109	0.086	0.192	0.127	0.155	0.144	0.130	0.072	0.090	0.084
MgO	13.306	17.934	5.956	29.345	16.553	27.414	18.349	16.584	21.112	7.636	4.216	8.125	7.079	10.547	16.913	8.576	6.206	12.864	4.522	22.276	8.176	19.478	7.459	8.694	6.966	13.498	15.666	9.759	6.524	8.216	7.943	8.507	11.616
CaO	8.527	11.479	1.790	3.373	4.184	2.925	5.349	11.706	7.404	4.880	4.781	4.245	4.487	4.327	3.937	4.662	4.934	4.028	5.596	2.070	7.168	4.205	1.169	1.745	2.042	3.780	3.795	4.472	9.055	2.740	1.739	1.133	4.154
Na2O	0.003	1.697	0.327	0.000	0.051	0.005	0.125	0.714	0.058	0.056	0.040	0.154	0.124	0.203	0.247	0.103	0.078	0.125	0.236	0.057	0.148	0.028	0.000	0.034	0.018	0.062	0.068	0.154	0.071	0.078	0.000	0.066	0.326
к20	0.109	0.077	0.153	0.068	0.024	0.016	0.175	0.087	0.076	0.085	0.113	0.098	0.302	0.183	0.239	0.133	0.142	0.217	0.301	0.260	0.197	0.049	0.008	0.001	0.000	0.020	0.020	0.091	0.053	0.015	0.000	0.000	0.098
Total	81.192	96.331	99.745	85.427	87.648	84.766	87.383	94.030	77.220	64.145	55.522	64.297	63.536	70.280	76.138	69.798	66.181	72.599	67.114	77.050	77.369	75.857	32.475	46.042	42.003	80.706	83.830	85.427	74.814	57.280	42.787	38.719	87.788
Cation (O = 14)	0.005									4.070							4 0 70				=					4 970							
51	3.935	4.381	3.141	3.564	3.147	3.324	4.432	4.455	4.359	4.378	4.319	4.191	4.343	4.428	4.145	4.359	4.370	4.296	4.295	3.749	5.342	4.444	4.419	4.416	4.2/5	4.278	4.293	4.647	4.163	4.225	4.374	4.489	4.536
AI	0.938	0.742	1.347	0.950	2.053	1.661	0.243	0.697	0.204	0.210	0.220	0.200	0.386	0.429	0.640	0.360	0.390	0.454	0.425	0.921	0.000	0.005	0.219	0.194	0.166	0.264	0.233	0.320	0.459	0.197	0.118	0.080	0.423
	0.002	0.024	0.005	0.002	0.001	0.000	0.002	0.019	0.001	0.002	0.000	0.000	0.002	0.000	1.100	0.002	0.000	0.001	0.001	0.000	0.001	0.000	0.005	0.001	0.003	0.000	0.000	0.000	0.001	0.001	0.003	0.000	0.001
Fe	1.021	0.482	2.228	0.340	1.303	0.201	0.733	0.540	0.425	2.13/	2.598	2.515	2.109	1.007	1.109	2.028	2.294	1.544	2.740	0.141	0.817	0.709	0.701	1.0/1	1.2/3	1.557	1.510	1.755	2.088	1.0/5	0.027	0.897	1.447
Ni	0.031	0.014	2 224	0.192	0.005	0.180	0.660	0.055	0.007	0.112	0.117	0.008	0.000	0.054	0.001	0.078	0.009	0.002	0.017	0.141	0.000	0.001	0.063	0.054	0.090	0.062	0.045	0.050	0.020	0.058	1.062	0.021	0.034
Mn	0.008	0.019	0.020	0.001	0.009	0.001	0.003	0.007	0.200	0.170	0.012	0.012	0.009	0.006	0.004	0.200	0.105	0.100	0.100	0.002	0.004	0.012	0.005	0.018	0.016	0.000	0.012	0.014	0.016	0.018	0.013	0.017	0.007
Mg	2 189	2 327	0.947	4 316	2 529	3,990	2 747	2 205	3 445	1 656	1 094	1 802	1 545	2 004	2 882	1 693	1 311	2 360	0.967	3 699	1 325	3 328	2 983	2 526	2 299	2 293	2 535	1 538	1 240	2 032	2 530	2 898	1 772
Ca	1.008	1.071	0.205	0.357	0.460	0.306	0.576	1.119	0.868	0.761	0.892	0.677	0.704	0.591	0.482	0.661	0.749	0.531	0.860	0.247	0.835	0.516	0.336	0.365	0.484	0.462	0.441	0.507	1.237	0.487	0.398	0.277	0.455
Na	0.001	0.287	0.068	0.000	0.010	0.001	0.024	0.124	0.012	0.016	0.014	0.044	0.035	0.050	0.055	0.026	0.021	0.030	0.066	0.012	0.031	0.006	0.000	0.013	0.008	0.014	0.014	0.032	0.018	0.025	0.000	0.029	0.065
ĸ	0.015	0.009	0.021	0.009	0.003	0.002	0.022	0.010	0.011	0.016	0.025	0.019	0.056	0.030	0.035	0.023	0.026	0.034	0.055	0.037	0.027	0.007	0.003	0.000	0.000	0.003	0.003	0.012	0.009	0.003	0.000	0.000	0.013
Total	9.577	9.365	10.218	9.868	9.830	9.754	9.463	9.229	9.546	9.475	9.531	9.706	9.465	9.380	9.549	9.445	9.424	9.478	9.543	9.745	8.686	9.559	9.426	9.446	9.599	9.557	9.577	9.200	9.607	9.670	9.550	9.475	9.273
XMg	0.682	0.828	0.298	0.927	0.660	0.952	0.789	0.803	0.890	0.437	0.296	0.417	0.423	0.546	0.722	0.455	0.364	0.605	0.261	0.811	0.619	0.824	0.810	0.702	0.644	0.599	0.627	0.467	0.373	0.548	0.712	0.764	0.550
Ca	1.008	1.071	0.205	0.357	0.460	0.306	0.576	1.119	0.868	0.761	0.892	0.677	0.704	0.591	0.482	0.661	0.749	0.531	0.860	0.247	0.835	0.516	0.336	0.365	0.484	0.462	0.441	0.507	1.237	0.487	0.398	0.277	0.455
NOTE:																																	

表 4.2.5-12 緑泥石の化学組成(その2)

Stage position																																			
x (mm)	14.938	14.878	14.794	14.737	14.684	14.653	14.410	14.354	14.348	14.331	7.665	7.517	6.754	10.498	10.286	12.031	49.663	49.249	49.294	49.202	49.287	48.791	48.474	45.373	30.975	30.947	30.833	30.703	30.094	29.308	29.330	29.323	29.195	29.557	29.842
y (mm)	60.384	60.377	60.390	60.385	60.372	60.359	60.302	60.296	60.211	60.215	58.178	57.856	58.254	60.297	60.204	62.318	15.806	16.179	16.513	16.577	17.725	17.647	17.136	18.988	28.483	28.547	28.657	28.642	26.573	25.524	25.577	25.625	25.705	25.691	27.796
z (mm)	11.940	11.932	11.941	11.938	11.938	11.941	11.943	11.936	11.936	11.936	11.941	11.946	11.937	11.924	11.924	11.913	11.959	11.950	11.937	11.945	11.927	11.925	11.930	11.915	11.846	11.846	11.846	11.846	11.868	11.882	11.881	11.880	11.885	11.879	11.854
Depth	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
Sample ID	C2-1-001 0	2-1-001	C2-1-001	2-1-001 0	2-1-001	C2-1-001	C2-1-001	C2-1-001 (2-1-001 0	2-1-001	2-1-001 0	2-1-001	C2-1-001	C2-1-001	2-1-001 0	2-1-001	C2-2-002 0	2-2-002	2-2-002	C2-2-002	C2-2-002	C2-2-002	C2-2-002	C2-2-002 (2-2-002 0	2-2-002 0	2-2-002 0	2-2-002 0	2-2-002 C	2-2-002 0	2-2-002	C2-2-002 (.2-2-002 C	2-2-002	C2-2-002
Spot#	301	302	303	304	305	306	309	310	311	312	314	315	318	325	326	331	346	347	349	350	351	353	355	363	389	391	392	395	397	400	401	403	404	406	407
Oxide wt.%																																			
SiO2	35.733	37.145	38.352	37.702	36.112	37.960	37.337	24.339	27.414	27.199	26.634	27.782	42.671	40.666	25.651	36.590	32.237	39.986	25.533	28.678	24.374	21.422	36.223	36.965	27.385	33.605	33.811	31.471	33.459	35.351	36.377	36.658	36.674	37.047	31.292
AI2O3	2.812	2.671	2.371	2.033	1.258	1.271	2.688	0.926	2.813	3.100	1.758	7.049	1.727	1.284	0.729	6.943	1.507	0.798	0.928	0.429	1.010	0.740	0.593	1.052	0.827	2.363	1.886	1.311	12.297	1.038	3.431	3.562	3.670	4.031	14.195
TiO2	0.019	0.002	0.002	0.001	0.007	0.014	0.037	0.019	0.013	0.032	0.012	0.014	0.000	0.000	0.000	0.000	0.000	0.000	0.008	0.000	0.000	0.006	0.000	0.005	0.000	0.010	0.015	0.006	0.000	0.000	0.016	0.023	0.002	0.000	0.000
FeO	26.794	27.191	27.581	26.759	20.041	17.076	25.335	14.087	24.695	20.818	24.936	9.768	7.545	21.657	21.111	13.097	21.508	18.969	30.507	17.292	19.781	11.382	20.039	15.233	13.563	21.150	25.375	15.072	27.385	14.466	31.802	34.870	30.299	31.276	28.509
Cr2O3	1.062	0.754	0.728	0.564	0.391	0.412	0.564	0.154	0.165	0.119	0.179	0.004	0.010	0.162	0.077	0.032	0.063	0.101	0.244	0.229	0.244	0.059	0.133	0.595	0.473	0.604	0.716	0.529	0.000	0.059	0.317	0.284	0.418	0.218	0.000
NiO	1.619	1.782	0.000	2.028	1.230	0.727	1.389	1.934	0.989	0.802	1.166	1.431	1.023	2.106	1.115	0.597	1.488	1.537	1.066	1.299	1.396	0.874	1.982	1.370	1.322	1.574	2.055	0.913	2.577	0.954	1.374	1.385	1.913	1.415	2.534
MnO	0.053	0.048	0.081	0.048	0.057	0.102	0.053	0.030	0.049	0.010	0.063	0.036	0.129	0.055	0.103	0.009	0.124	0.117	0.157	0.082	0.083	0.022	0.124	0.054	0.044	0.104	0.121	0.050	0.105	0.047	0.079	0.084	0.086	0.067	0.135
MgO	6.499	7.544	10.109	11.815	15.882	21.384	8.037	7.834	3.697	4.959	3.052	18.713	26.203	13.189	7.644	14.057	13.701	23.181	2.430	16.745	4.257	6.161	20.775	19.625	12.444	10.713	8.462	13.970	9.337	16.990	6.765	6.036	7.082	6.416	10.463
CaO	7.288	7.594	7.243	6.687	4.176	3.128	7.290	3.955	8.133	6.381	6.518	1.988	2.660	6.569	5.381	8.171	4.626	4.036	6.812	3.116	5.177	3.059	4.178	3.227	3.049	5.648	6.175	3.453	1.419	3.117	7.339	7.543	7.895	7.964	1.258
Na2O	0.199	0.134	0.207	0.060	0.093	0.081	0.177	0.083	0.134	0.032	0.133	0.023	0.033	0.051	0.062	0.125	0.007	0.013	0.080	0.046	0.071	0.047	0.000	0.016	0.039	0.055	0.133	0.077	0.080	0.074	0.044	0.071	0.106	0.015	0.088
K2O	0.145	0.062	0.071	0.014	0.025	0.000	0.050	0.057	0.072	0.054	0.049	0.000	0.031	0.000	0.000	0.031	0.007	0.007	0.033	0.046	0.031	0.027	0.007	0.011	0.020	0.024	0.021	0.020	2.241	0.015	0.018	0.044	0.065	0.003	0.710
Total	82.223	84.927	86.745	87.711	79.272	82.155	82.957	53.418	68.174	63.506	64.500	66.808	82.032	85.739	61.873	79.652	75.268	88.745	67.798	67.962	56.424	43.799	84.054	78.153	59.166	75.850	78.770	66.872	88.900	72.111	87.562	90.560	88.210	88.452	89.184
Cation (O = 14)																																			
Si	4.195	4.205	4.196	4.106	4.179	4.122	4.267	4.264	4.002	4.120	4.136	3.620	4.341	4.366	4.056	4.040	4.033	4.068	3.948	3.923	4.237	4.477	3.976	4.203	4.208	4.154	4.146	4.241	3.585	4.331	4.075	4.025	4.061	4.086	3.340
AI	0.389	0.356	0.306	0.261	0.172	0.163	0.362	0.191	0.484	0.554	0.322	1.083	0.207	0.163	0.136	0.904	0.222	0.096	0.169	0.069	0.207	0.182	0.077	0.141	0.150	0.344	0.273	0.208	1.553	0.150	0.453	0.461	0.479	0.524	1.786
Ti	0.002	0.000	0.000	0.000	0.001	0.001	0.003	0.003	0.001	0.004	0.001	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.001	0.000	0.000	0.000	0.001	0.001	0.001	0.000	0.000	0.001	0.002	0.000	0.000	0.000
Fe	2.631	2.574	2.523	2.437	1.940	1.551	2.422	2.064	3.015	2.637	3.239	1.064	0.642	1.945	2.792	1.210	2.251	1.614	3.946	1.978	2.876	1.989	1.839	1.449	1.743	2.187	2.602	1.699	2.454	1.482	2.979	3.202	2.806	2.885	2.545
Cr	0.099	0.068	0.063	0.049	0.036	0.035	0.051	0.021	0.019	0.014	0.022	0.000	0.001	0.014	0.010	0.003	0.006	0.008	0.030	0.025	0.034	0.010	0.012	0.054	0.058	0.059	0.069	0.056	0.000	0.006	0.028	0.025	0.037	0.019	0.000
Ni	0.153	0.162	0.000	0.178	0.115	0.064	0.128	0.273	0.116	0.098	0.146	0.150	0.084	0.182	0.142	0.053	0.150	0.126	0.133	0.143	0.195	0.147	0.175	0.125	0.163	0.157	0.203	0.099	0.222	0.094	0.124	0.122	0.170	0.126	0.218
Mn	0.005	0.005	0.008	0.004	0.006	0.009	0.005	0.005	0.006	0.001	0.008	0.004	0.011	0.005	0.014	0.001	0.013	0.010	0.021	0.010	0.012	0.004	0.012	0.005	0.006	0.011	0.013	0.006	0.010	0.005	0.008	0.008	0.008	0.006	0.012
Mg	1.137	1.273	1.649	1.918	2.740	3.461	1.369	2.046	0.805	1.120	0.707	3.635	3.974	2.111	1.802	2.314	2.555	3.516	0.560	3.415	1.103	1.919	3.399	3.326	2.851	1.974	1.547	2.806	1.491	3.103	1.130	0.988	1.169	1.055	1.665
Ca	0.917	0.921	0.849	0.780	0.518	0.364	0.893	0.742	1.272	1.036	1.085	0.278	0.290	0.756	0.912	0.967	0.620	0.440	1.129	0.457	0.964	0.685	0.491	0.393	0.502	0.748	0.811	0.499	0.163	0.409	0.881	0.887	0.937	0.941	0.144
Na	0.045	0.029	0.044	0.013	0.021	0.017	0.039	0.028	0.038	0.009	0.040	0.006	0.007	0.011	0.019	0.027	0.002	0.003	0.024	0.012	0.024	0.019	0.000	0.004	0.012	0.013	0.032	0.020	0.017	0.018	0.010	0.015	0.023	0.003	0.018
к	0.022	0.009	0.010	0.002	0.004	0.000	0.007	0.013	0.013	0.010	0.010	0.000	0.004	0.000	0.000	0.004	0.001	0.001	0.007	0.008	0.007	0.007	0.001	0.002	0.004	0.004	0.003	0.003	0.306	0.002	0.003	0.006	0.009	0.000	0.097
Total	9.594	9.602	9.647	9.747	9.729	9.787	9.546	9.648	9.771	9.603	9.715	9.840	9.560	9.551	9.881	9.522	9.854	9.882	9.966	10.040	9.658	9.440	9.981	9.702	9.696	9.652	9.699	9.638	9.800	9.601	9.690	9.741	9.698	9.645	9.824
XMg	0.302	0.331	0.395	0.440	0.586	0.691	0.361	0.498	0.211	0.298	0.179	0.773	0.861	0.521	0.392	0.657	0.532	0.685	0.124	0.633	0.277	0.491	0.649	0.697	0.621	0.474	0.373	0.623	0.378	0.677	0.275	0.236	0.294	0.268	0.395
Ca	0.917	0.921	0.849	0.780	0.518	0.364	0.893	0.742	1.272	1.036	1.085	0.278	0.290	0.756	0.912	0.967	0.620	0.440	1.129	0.457	0.964	0.685	0.491	0.393	0.502	0.748	0.811	0.499	0.163	0.409	0.881	0.887	0.937	0.941	0.144
NOTE:	XMg = Mg/((Mg+Fe)																																	

(9) スメクタイト

パラワン試料ではスメクタイトは蛇紋石や緑泥石よりも少ないが、多くの試料で確認できる 粘土鉱物である。多くのスメクタイトは3八面体組成のサポナイトであるが、2八面体のノン トロナイトが PWT02-15-Rh-020 においてのみ認められ、処分場のベントナイト緩衝材の主要 鉱物であるモンモリロナイトは確認できなかった。この PWT02-15-Rh-020 ではかんらん石と 蛇紋石が多いが、特徴として緑泥石が非常に少ない。この PWT02-15-Rh-020 のノントロナイ トは最も Ca に富む。XMg-Ca には負の相関が見られるが、これは CaMg-NaAl 複合置換を行 うモンモリロナイトの傾向 (Ca モンモリロナイトは必ず Mg に富む)とは異なるものであり、 変質流体の化学組成を反映していると考えられる。PWT02-15-Rh-016 はサポナイトとしては 最も Ca に富むが、一部明らかに Ca に乏しいものがあり、これは PWT02-15-Rh-015 と同一 の組成トレンドを示している。PWT02-15-Rh-016 のサポナイトは、それらの中間に位置する トレンドも見せており、大きく3つにわけることができる。この試料の Ca 変質は主に3つの ステージで進行したのかもしれない。また、Fe-Ca の組成的な関連性より、これらの元素に富 む流体がサポナイト、ノントロナイトの組成を最終的には左右していると思われる。PWT02B-15-C2-2-002 には K と Fe を持った 2 八面体粘土のイライトが見られる。

図 4.2.5-8 スメクタイトの組成プロット

表 4.2.5-13 スメクタイトの化学組成(その1)

Stage positi	on																							
x (mm)	49.708	37.029	38.739	39.418	12.021	11.859	11.668	11.677	8.688	8.67	8.659	8.646	8.641	8.625	8.587	8.773	15.271	13.709	13.712	12.525	12.508	12.516	12.367	12.384
y (mm)	17.071	25.28	25.564	27.086	53.891	53.742	53.814	53.82	59.974	59.964	59.952	59.943	59.939	59.936	59.912	59.99	58.089	57.812	57.81	57.637	57.828	57.832	57.575	57.58
z (mm)	11.566	11.422	11.442	11.441	11.516	11.516	11.513	11.515	11.495	11.495	11.495	11.495	11.495	11.491	11.491	11.497	11.53	11.53	11.526	11.529	11.53	11.53	11.531	11.531
Depth	2	2	2	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Sample ID	Rh-015 H	Rh-015 F	Rh-015 F	Rh-015	Rh-016	Rh-016 F	Rh-016	Rh-016	Rh-016 F	Rh-016 F	Rh-016 I	Rh-016 F	Rh-016 F	Rh-016 F	≀h-016									
Spot#	64	73	89	95	133	138	147	150	154	155	156	157	158	159	160	162	178	204	205	220	222	224	231	232
Oxide wt.%																								
SiO2	59.049	59.034	56.153	54.181	37.449	34.253	41.053	32.949	36.942	33.582	38.167	36.616	36.326	35.852	34.525	31.725	57.221	51.103	50.880	50.797	45.396	41.412	56.935	56.728
AI2O3	0.633	0.868	2.793	0.831	5.044	3.046	1.645	3.145	2.646	3.310	2.089	2.441	1.868	2.033	1.929	2.436	1.550	1.659	1.830	0.622	1.871	1.750	0.519	0.481
TiO2	0.002	0.021	0.004	0.039	0.164	0.110	0.023	0.109	0.015	0.012	0.000	0.005	0.010	0.000	0.002	0.008	0.002	0.019	0.032	0.016	0.007	0.013	0.004	0.016
FeO	9.580	2.602	6.699	11.883	12.962	11.690	12.570	16.484	17.967	16.575	14.885	15.673	16.459	14.692	14.959	16.666	8.121	9.297	8.599	13.192	8.041	8.453	5.215	5.721
Cr2O3	0.071	0.146	0.321	0.113	0.117	0.122	0.008	0.158	0.980	2.777	0.788	0.787	0.620	0.573	0.586	0.623	0.151	0.031	0.057	0.030	0.143	0.167	0.106	0.051
NiO	0.367	0.704	0.762	0.420	3.596	3.380	5.078	4.962	7.135	6.286	8.342	7.200	7.058	5.899	6.880	5.551	0.570	0.525	0.421	0.368	6.835	7.773	0.841	0.552
MnO	0.241	0.001	0.129	0.265	0.084	0.036	0.023	0.074	0.150	0.139	0.143	0.138	0.097	0.090	0.065	0.105	0.147	0.253	0.205	0.281	0.024	0.039	0.047	0.044
MgO	26.597	29.236	27.431	21.425	9.187	8.598	11.536	7.652	9.803	8.987	15.159	11.283	16.349	13.305	12.395	8.801	26.928	22.506	23.339	19.283	19.098	16.574	22.680	24.040
CaO	0.723	0.353	0.615	1.016	4.087	3.522	2.684	4.123	3.475	3.456	3.174	3.480	2.759	3.660	2.926	3.006	0.613	0.530	0.637	1.130	2.537	2.606	1.373	1.533
Na2O	0.000	0.181	0.268	0.094	0.137	0.114	0.082	0.096	0.155	0.137	0.115	0.000	0.076	0.161	0.011	0.140	0.156	0.224	0.252	0.050	0.210	0.151	0.087	0.108
K2O	0.000	0.026	0.005	0.013	0.143	0.087	0.128	0.200	0.045	0.078	0.054	0.098	0.034	0.088	0.064	0.145	0.004	0.011	0.000	0.006	0.192	0.190	0.012	0.035
Total	97.263	93.172	95.180	90.280	72.970	64.958	74.830	69.952	79.313	75.339	82.916	77.721	81.656	76.353	74.342	69.206	95.463	86.158	86.252	85.775	84.354	79.128	87.819	89.309
Cation (O =	22)																							
Si	7.722	7.791	7.452	7.758	7.084	7.282	7.532	6.858	6.821	6.559	6.644	6.820	6.463	6.738	6.727	6.739	7.598	7.599	7.536	7.743	7.235	7.159	8.062	7.936
AI	0.098	0.135	0.437	0.140	1.125	0.763	0.356	0.772	0.576	0.762	0.429	0.536	0.392	0.450	0.443	0.610	0.243	0.291	0.319	0.112	0.352	0.357	0.087	0.079
Ti	0.000	0.002	0.000	0.004	0.023	0.018	0.003	0.017	0.002	0.002	0.000	0.001	0.001	0.000	0.000	0.001	0.000	0.002	0.004	0.002	0.001	0.002	0.000	0.002
Fe	1.048	0.287	0.744	1.423	2.051	2.078	1.929	2.870	2.774	2.707	2.167	2.441	2.449	2.309	2.437	2.961	0.902	1.156	1.065	1.682	1.072	1.222	0.618	0.669
Cr	0.007	0.015	0.034	0.013	0.018	0.021	0.001	0.026	0.143	0.429	0.109	0.116	0.087	0.085	0.090	0.105	0.016	0.004	0.007	0.004	0.018	0.023	0.012	0.006
Ni	0.039	0.075	0.081	0.048	0.547	0.578	0.749	0.831	1.060	0.988	1.168	1.079	1.010	0.892	1.078	0.948	0.061	0.063	0.050	0.045	0.876	1.081	0.096	0.062
Mn	0.027	0.000	0.014	0.032	0.014	0.007	0.004	0.013	0.024	0.023	0.021	0.022	0.015	0.014	0.011	0.019	0.017	0.032	0.026	0.036	0.003	0.006	0.006	0.005
Mg	5.185	5.752	5.427	4.573	2.591	2.725	3.155	2.374	2.698	2.616	3.934	3.133	4.336	3.728	3.600	2.787	5.330	4.989	5.153	4.382	4.537	4.271	4.787	5.013
Ca	0.101	0.050	0.087	0.156	0.828	0.802	0.528	0.920	0.688	0.723	0.592	0.695	0.526	0.737	0.611	0.684	0.087	0.084	0.101	0.185	0.433	0.483	0.208	0.230
Na	0.000	0.046	0.069	0.026	0.050	0.047	0.029	0.039	0.055	0.052	0.039	0.000	0.026	0.059	0.004	0.058	0.040	0.065	0.072	0.015	0.065	0.051	0.024	0.029
К	0.000	0.004	0.001	0.002	0.034	0.024	0.030	0.053	0.011	0.020	0.012	0.023	0.008	0.021	0.016	0.039	0.001	0.002	0.000	0.001	0.039	0.042	0.002	0.006
Total	14.226	14.157	14.347	14.176	14.364	14.344	14.316	14.772	14.851	14.880	15.113	14.865	15.313	15.034	15.017	14.951	14.294	14.286	14.333	14.206	14.631	14.696	13.902	14.038
XFe	0.168	0.048	0.121	0.237	0.442	0.433	0.379	0.547	0.507	0.509	0.355	0.438	0.361	0.383	0.404	0.515	0.145	0.188	0.171	0.277	0.191	0.222	0.114	0.118
XMg	0.832	0.952	0.879	0.763	0.558	0.567	0.621	0.453	0.493	0.491	0.645	0.562	0.639	0.617	0.596	0.485	0.855	0.812	0.829	0.723	0.809	0.778	0.886	0.882
Ca IL	0.101	0.050	0.087	0.156	0.828	0.802	0.528	0.920	0.688	0.723	0.592	0.695	0.526	0.737	0.611	0.684	0.087	0.084	0.101	0.185	0.433	0.483	0.208	0.230
NaIL	0.000	0.046	0.069	0.026	0.050	0.047	0.029	0.039	0.055	0.052	0.039	0.000	0.026	0.059	0.004	0.058	0.040	0.065	0.072	0.015	0.065	0.051	0.024	0.029
Species	Sap	Sap	Sap	Sap	Sap	Sap	Sap	Sap	Sap	Sap	Sap	Sap	Sap	Sap	Sap	Sap	Sap	Sap	Sap	Sap	Sap	Sap	Sap	Sap

表 4.2.5-14 スメクタイトの化学組成(その2)

Stage posit	ion																						
x (mm)	77.88	77.736	77.654	74.681	63.55	62.361	59.867	59.864	59.827	59.835	59.563	59.546	59.542	71.051	70.956	10.54	50.757	31.025	30.99	30.973	31.166	31.157	31.168
y (mm)	50.525	50.52	50.718	66.771	60.847	59.054	53.22	53.26	53.289	53.219	53.223	53.222	53.234	70.174	70.167	60.446	14.678	28.508	28.472	28.498	25.95	25.946	25.938
z (mm)	12.134	12.134	12.134	12.075	12.112	12.12	12.169	12.163	12.163	12.163	12.163	12.163	12.163	12.076	12.084	11.924	11.96	11.848	11.846	11.846	11.875	11.875	11.875
Depth	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	6	7	7	7	7	7	7	7
Sample ID	Rh-020	Rh-020	Rh-020 I	Rh-020 I	Rh-020	C2-1-001	C2-2-002	C2-2-002	C2-2-002	C2-2-002 (22-2-002	22-2-002	2-2-002										
Spot#	29	30	31	38	56	58	256	257	261	262	265	266	267	282	283	324	339	387	388	390	412	413	414
Oxide wt.%																							
SiO2	55.088	53.784	54.548	49.500	55.146	57.295	55.198	55.929	57.486	56.266	54.099	56.052	54.382	42.917	58.217	39.811	31.458	45.711	49.752	25.258	46.282	47.798	47.098
AI2O3	0.012	0.016	0.028	0.016	0.009	0.000	0.006	0.000	0.000	0.007	0.018	0.017	0.018	0.026	0.010	1.987	0.252	1.996	2.194	0.688	34.153	32.215	36.604
TiO2	0.000	0.006	0.015	0.000	0.019	0.005	0.004	0.010	0.000	0.009	0.000	0.000	0.021	0.010	0.000	0.007	0.000	0.010	0.022	0.015	0.000	0.000	0.000
FeO	14.811	15.215	16.256	10.321	12.461	10.027	13.515	12.982	12.343	10.673	14.469	14.313	14.389	15.900	16.039	14.262	7.036	6.667	5.279	9.860	0.508	0.836	0.510
Cr2O3	0.046	0.045	0.000	0.055	0.000	0.031	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.034	0.004	0.122	0.005	0.362	0.427	0.545	0.000	0.000	0.040
NiO	2.959	3.343	3.471	3.187	2.761	1.474	0.691	0.723	0.603	0.829	0.488	0.801	0.644	0.805	0.759	0.922	0.926	0.813	0.193	1.023	0.124	0.014	0.125
MnO	0.000	0.000	0.027	0.031	0.106	0.066	0.099	0.108	0.074	0.084	0.019	0.035	0.058	0.048	0.057	0.077	0.016	0.040	0.023	0.089	0.000	0.002	0.008
MgO	7.728	7.593	7.099	10.694	9.585	14.781	12.863	11.504	15.815	11.716	12.074	11.249	9.555	8.364	11.855	15.929	13.522	20.453	23.611	3.892	0.020	0.035	0.018
CaO	4.215	4.192	4.205	3.598	4.685	3.404	4.912	4.612	3.956	4.018	5.689	6.004	5.747	4.930	3.461	3.394	1.440	1.712	1.226	1.751	0.227	4.095	0.250
Na2O	0.000	0.039	0.062	0.092	0.083	0.101	0.087	0.066	0.114	0.105	0.036	0.201	0.208	0.045	0.273	0.000	0.000	0.220	0.182	0.093	0.178	0.076	0.090
K2O	0.078	0.056	0.026	0.173	0.090	0.092	0.089	0.160	0.165	0.202	0.086	0.121	0.122	0.089	0.251	0.019	0.014	0.011	0.026	0.033	10.210	8.532	9.804
Total	84.937	84.289	85.737	77.667	84.945	87.276	87.464	86.094	90.556	83.909	86.978	88.793	85.144	73.168	90.926	76.530	54.669	77.995	82.935	43.247	91.702	93.603	94.547
Cation (O =	22)																						
Si	8.589	8.515	8.527	8.357	8.513	8.398	8.265	8.447	8.219	8.583	8.213	8.318	8.419	8.017	8.408	7.097	7.546	7.494	7.537	8.015	6.347	6.442	6.237
Al	0.002	0.003	0.005	0.003	0.002	0.000	0.001	0.000	0.000	0.001	0.003	0.003	0.003	0.006	0.002	0.418	0.071	0.386	0.392	0.257	5.520	5.118	5.714
Ti	0.000	0.001	0.002	0.000	0.002	0.001	0.001	0.001	0.000	0.001	0.000	0.000	0.002	0.001	0.000	0.001	0.000	0.001	0.003	0.004	0.000	0.000	0.000
Fe	1.931	2.015	2.125	1.457	1.609	1.229	1.692	1.640	1.476	1.362	1.837	1.776	1.863	2.484	1.937	2.126	1.411	0.914	0.669	2.617	0.058	0.094	0.057
Cr	0.006	0.006	0.000	0.007	0.000	0.004	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.005	0.000	0.017	0.001	0.047	0.051	0.137	0.000	0.000	0.004
Ni	0.371	0.426	0.436	0.433	0.343	0.174	0.083	0.088	0.069	0.102	0.060	0.096	0.080	0.121	0.088	0.132	0.179	0.107	0.024	0.261	0.014	0.002	0.013
Mn	0.000	0.000	0.004	0.005	0.014	0.008	0.013	0.014	0.009	0.011	0.002	0.004	0.008	0.008	0.007	0.012	0.003	0.006	0.003	0.024	0.000	0.000	0.001
Mg	1.796	1.792	1.654	2.691	2.206	3.230	2.871	2.590	3.371	2.664	2.732	2.489	2.205	2.329	2.552	4.233	4.835	4.998	5.332	1.841	0.004	0.007	0.004
Ca	0.704	0.711	0.704	0.651	0.775	0.535	0.788	0.746	0.606	0.657	0.925	0.955	0.953	0.987	0.536	0.648	0.370	0.301	0.199	0.595	0.033	0.592	0.036
Na	0.000	0.012	0.019	0.030	0.025	0.029	0.025	0.019	0.032	0.031	0.011	0.058	0.063	0.016	0.076	0.000	0.000	0.070	0.054	0.057	0.047	0.020	0.023
к	0.016	0.011	0.005	0.037	0.018	0.017	0.017	0.031	0.030	0.039	0.017	0.023	0.024	0.021	0.046	0.004	0.004	0.002	0.005	0.013	1.786	1.467	1.656
Total	13.415	13.491	13.481	13.672	13.505	13.623	13.756	13.577	13.812	13.451	13.800	13.721	13.620	13.995	13.653	14.687	14.421	14.325	14.268	13.820	13.810	13.742	13.744
XFe	0.518	0.529	0.562	0.351	0.422	0.276	0.371	0.388	0.305	0.338	0.402	0.417	0.458	0.516	0.432	0.334	0.226	0.155	0.111	0.587	0.934	0.930	0.942
XMg	0.482	0.471	0.438	0.649	0.578	0.724	0.629	0.612	0.695	0.662	0.598	0.583	0.542	0.484	0.568	0.666	0.774	0.845	0.889	0.413	0.066	0.070	0.058
Ca IL	0.704	0.711	0.704	0.651	0.775	0.535	0.788	0.746	0.606	0.657	0.925	0.955	0.953	0.987	0.536	0.648	0.370	0.301	0.199	0.595	0.033	0.592	0.036
Na IL	0.000	0.012	0.019	0.030	0.025	0.029	0.025	0.019	0.032	0.031	0.011	0.058	0.063	0.016	0.076	0.000	0.000	0.070	0.054	0.057	0.047	0.020	0.023
Species	Nont	Nont	Nont	Nont	Nont	Nont	Nont	Nont	Nont	Nont	Nont	Nont	Nont	Nont	Nont	Sap	Sap	Sap	Sap	Sap	Illite	Illite	Illite

NOTE: XFe = Fe/(Fe+Mg)

(10) C-S-H 鉱物

C-S-H 鉱物の存在が今回のナチュラルアナログ試料の最も大きな特徴である。これらの C-S-H 鉱物の C/S 比(= Ca/Si)と微量に含まれている Al 成分(C-A-S-H 成分として)を比較した。 構造式はトバモライト Ca5Si6O16(OH)2・4(H2O)に基づき、O = 17 で計算した。これによる と、PWT02-15-Rh-020 は Al-free の C-S-H しか出現しないのに対し、その他の多くはわずか に Al を含んでおり、ジャイロライト成分を持っている。C/S が低下すると Al が増大するのは Si-Al 置換によるものであるが、溶液の Ca-Al 濃度の傾向を反映している可能性がある。同様 に、Al vs. Fe, Al vs. Na+K には正の相関があり、これはジャイロライトの Al が Na (K も) とカップリングしているためと思われるが、Fe も Na+K と同じように振る舞っていることを 示唆するものである。C-S-H 鉱物の組成はアルカリ変質溶液の組成推定において今後重要な情 報となると思われる。例えば、PWT02-15-Rh-016 試料に多く存在する C-S-H 鉱物は、PWT02B-15-C2-2-002 のそれよりも Na+K に富む溶液から沈殿していることが予想される。

図 4.2.5-9 C-S-H 鉱物の組成プロット

図 4.2.5-10 C-S-H 鉱物の微量元素(a: Fe; b: Na+K)

表 4.2.5-15 C-S-H 鉱物の化学組成(その1)

Stage posit	ion														
x (mm)	14.896	14.845	15.176	15.367	16.253	16.149	15.919	16.747	16.596	16.625	14.747	14.625	14.509	14.487	50.222
y (mm)	63.132	62.861	63.139	62.983	63.299	63.314	63.344	63.461	63.47	63.614	61.484	61.491	61.424	61.421	18.001
z (mm)	11.526	11.526	11.514	11.509	11.493	11.505	11.505	11.489	11.489	11.489	11.511	11.511	11.511	11.511	11.561
Depth	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
Sample ID	Rh-006	Rh-015													
Spot#	422	426	427	428	431	432	433	436	440	441	445	446	450	451	59
Oxide wt.%	/ 0														
SiO2	37.657	53.079	37.242	38.196	36.620	40.496	37.076	38.821	38.734	38.124	50.055	44.664	44.376	42.471	41.859
AI2O3	1.878	0.473	2.039	0.717	1.349	1.884	1.769	1.905	2.710	2.989	0.441	1.114	2.556	1.838	0.165
TiO2	0.026	0.000	0.007	0.015	0.023	0.018	0.011	0.016	0.000	0.020	0.000	0.011	0.002	0.016	0.000
FeO	11.313	0.368	12.076	2.625	17.770	10.442	10.314	10.138	10.645	20.556	0.310	3.429	4.693	4.514	0.110
Cr2O3	0.072	0.000	0.152	0.037	0.097	0.061	0.339	0.078	0.112	0.135	0.026	0.033	0.336	0.117	0.022
NiO	0.798	0.097	0.769	0.138	0.862	0.632	0.343	0.865	0.728	1.025	0.028	0.069	0.525	0.000	0.044
MnO	0.012	0.012	0.015	0.000	0.018	0.004	0.015	0.000	0.012	0.019	0.000	0.010	0.012	0.005	0.004
MgO	0.848	0.012	2.553	0.191	1.002	0.750	0.743	1.776	3.402	4.269	0.018	0.424	8.977	3.301	0.074
CaO	23.552	34.625	20.554	28.684	19.329	25.509	21.297	25.251	21.850	15.564	34.910	32.109	23.718	28.599	35.926
Na2O	0.135	0.000	0.090	0.026	0.051	0.035	0.000	0.152	0.009	0.246	0.000	0.006	0.077	0.000	0.097
K2O	0.193	0.032	0.138	0.073	0.116	0.072	0.202	0.111	0.134	0.123	0.000	0.077	0.046	0.066	0.066
Total	76.484	88.698	75.635	70.702	77.237	79.903	72.109	79.113	78.336	83.070	85.788	81.946	85.318	80.927	78.367
Cation (O =	: 17)														
Si	5.537	6.243	5.505	5.843	5.477	5.634	5.695	5.489	5.466	5.264	6.138	5.868	5.510	5.653	5.789
Al	0.326	0.065	0.355	0.129	0.238	0.309	0.320	0.318	0.451	0.486	0.064	0.173	0.374	0.288	0.027
Ti	0.003	0.000	0.001	0.002	0.003	0.002	0.001	0.002	0.000	0.002	0.000	0.001	0.000	0.002	0.000
Fe	1.391	0.037	1.493	0.336	2.223	1.215	1.325	1.199	1.256	2.374	0.031	0.377	0.487	0.502	0.013
Cr	0.009	0.000	0.018	0.004	0.011	0.007	0.041	0.009	0.013	0.014	0.003	0.003	0.033	0.012	0.003
Ni	0.094	0.009	0.092	0.017	0.104	0.071	0.043	0.099	0.082	0.114	0.003	0.008	0.053	0.000	0.005
Mn	0.002	0.001	0.002	0.000	0.003	0.001	0.002	0.000	0.002	0.003	0.000	0.001	0.001	0.001	0.001
Mg	0.186	0.002	0.563	0.043	0.224	0.156	0.170	0.374	0.716	0.879	0.003	0.083	1.662	0.655	0.015
Ca	3.710	4.364	3.256	4.702	3.097	3.803	3.505	3.826	3.304	2.303	4.587	4.521	3.155	4.078	5.324
Na	0.038	0.000	0.026	0.008	0.014	0.009	0.000	0.042	0.003	0.065	0.000	0.002	0.019	0.000	0.026
К	0.037	0.005	0.026	0.014	0.022	0.013	0.040	0.020	0.024	0.021	0.000	0.013	0.008	0.011	0.012
Total	11.331	10.727	11.335	11.099	11.416	11.218	11.143	11.377	11.316	11.527	10.829	11.050	11.300	11.202	11.215
C/S	0.670	0.699	0.591	0.805	0.566	0.675	0.616	0.697	0.604	0.437	0.747	0.770	0.573	0.722	0.920
Na+K	0.075	0.005	0.052	0.022	0.037	0.022	0.040	0.062	0.026	0.087	0.000	0.014	0.026	0.011	0.038
Al	0.326	0.065	0.355	0.129	0.238	0.309	0.320	0.318	0.451	0.486	0.064	0.173	0.374	0.288	0.027

表 4.2.5-16 C-S-H 鉱物の化学組成(その2)

Stage po	sition																																									-
x (mm)	13.058	12.187	12.22	12.084	12.111	12.177	11.878	11.668	11.607	8.612	8.874	8.875	9.08	15.821	15.8	15.602	15.262	15.249	15.262	15.146	15.125	14.783	14.789	14.63	14.648	14.736	14.536	14.339	14.314	14.245	14.201	14.193	14.164	14.174	14.175	13.98	13.469	12.902	12.678	12.525	12.526	12.529
y (mm)	58.66	53.904	53.926	53.927	53.917	53.848	53.642	53.783	53.709	59.918	59.901	59.913	59.414	58.062	57.937	58.316	58.048	57.973	58.071	58.135	58.234	57.781	57.744	57.743	57.804	58.008	57.66	57.904	57.912	58.019	58.134	58.156	58.153	58.168	58.175	57.68	58.016	57.664	57.573	57.828	57.833	57.838
z (mm)	11.925	11.508	11.508	11.516	11.512	11.509	11.519	11.513	11.51	11.491	11.497	11.497	11.484	11.545	11.545	11.546	11.53	11.53	11.53	11.537	11.537	11.518	11.518	11.518	11.518	11.518	11.518	11.518	11.518	11.518	11.533	11.533	11.533	11.533	11.533	11.521	11.528	11.526	11.531	11.53	11.53	11.53
Depth	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Sample I	D Rh-016	Rh-016	Rh-016 F	th-016 F	h-016 I	Rh-016 F	Rh-016	Rh-016 I	Rh-016	Rh-016	Rh-016	Rh-016 I	Rh-016	Rh-016	Rh-016	th-016 I	Rh-016	Rh-016 I	Rh-016 I	Rh-016	Rh-016 I	Rh-016	Rh-016 F	h-016 F	Rh-016 I	Rh-016 I	Rh-016	Rh-016 R	th-016 I	Rh-016 F	Rh-016	Rh-016 F	Rh-016 R	(h-016 /	Rh-016							
Spot#	121	122	123	125	126	127	131	148	149	161	163	164	165	166	167	174	176	177	179	182	183	188	189	190	191	192	193	194	195	196	197	198	199	200	201	203	208	215	217	223	225	226
Oxide w	t.%																																									
SiO2	17.906	34.598	36.548	26.933	27.063	29.219	37.725	33.808	45.194	48.027	40.581	38.101	40.961	46.446	41.661	30.899	39.195	29.761	40.210	44.030	47.669	34.787	49.290	33.821	46.631	36.308	42.192	40.860	33.246	45.681	42.038	49.011	43.146	49.391	47.780	43.096	51.153	38.215	43.500	36.135	41.607	40.365
AI2O3	0.898	1.510	1.684	0.694	0.650	0.712	1.035	2.230	2.645	1.158	1.920	1.499	1.832	2.497	0.323	0.711	1.338	0.691	1.841	2.153	0.490	0.816	0.349	0.459	0.489	1.219	1.957	0.360	0.445	0.552	0.300	0.447	0.329	0.501	0.457	0.480	0.386	1.234	0.397	2.504	2.506	2.561
TiO2	0.017	0.022	0.009	0.029	0.046	0.023	0.024	0.050	0.067	0.000	0.003	0.017	0.008	0.045	0.003	0.010	0.020	0.016	0.033	0.019	0.012	0.014	0.007	0.012	0.000	0.018	0.022	0.014	0.007	0.009	0.000	0.000	0.000	0.002	0.000	0.009	0.001	0.037	0.000	0.007	0.015	0.012
FeO	0.717	4.294	5.553	0.612	0.612	0.487	1.368	12.070	7.431	2.942	9.745	8.811	8.343	8.909	0.770	0.903	3.096	1.147	5.768	5.903	0.186	2.757	0.595	1.180	0.177	3.976	4.327	0.110	0.150	0.060	0.060	0.000	0.103	0.068	0.090	0.267	0.561	2.406	0.385	7.957	7.685	9.271
Cr2O3	0.022	0.131	0.067	0.000	0.045	0.003	0.000	0.130	0.089	0.193	0.290	0.273	0.224	0.110	0.051	0.026	0.115	0.026	0.066	0.097	0.049	0.058	0.004	0.000	0.006	0.048	0.066	0.025	0.041	0.000	0.045	0.000	0.032	0.038	0.000	0.003	0.052	0.078	0.000	0.190	0.112	0.131
NIO	0.638	2.234	1.896	0.236	0.288	0.341	0.148	3.134	2.274	3.411	2.384	2.064	2.794	1.961	0.088	0.105	1.439	0.201	1.944	1.764	0.474	2.281	0.386	0.978	0.228	2.033	1.309	0.613	1.253	0.088	0.279	0.000	0.225	0.000	0.000	0.105	0.524	0.526	0.158	11.687	3.099	4.215
MnO	0.001	0.042	0.018	0.000	0.037	0.002	0.000	0.040	0.028	0.032	0.120	0.123	0.098	0.051	0.008	0.000	0.011	0.000	0.029	0.032	0.000	0.041	0.005	0.017	0.000	0.006	0.024	0.000	0.001	0.033	0.006	0.000	0.018	0.004	0.000	0.007	0.001	0.022	0.000	0.043	0.027	0.040
MgO	0.350	2.939	2.757	0.165	0.106	0.101	0.224	4.228	3.727	2.2/4	5.6/1	3.825	5.341	3.525	0.055	0.237	1.189	0.961	1.645	1.962	0.533	10.989	0.214	1.51/	0.000	4.535	0.728	0.045	0.020	0.020	0.017	0.009	0.007	0.008	0.000	0.033	0.058	0.811	0.011	9.242	3.347	4.584
CaU	12.160	21.789	20.520	19.995	20.931	22.968	29.262	13.290	17.361	31.128	15.818	17.714	19.130	20.138	31.495	23.300	28.043	24.129	25.832	24.971	34.453	17.241	35.799	32.461	34.896	21.038	28.808	33.631	15.079	33.201	33.225	34.481	33.6/5	38.349	37.421	32.924	32.303	25.145	33.917	18.339	20.298	19.276
Nazo	0.009	0.104	0.095	0.053	0.014	0.155	0.072	0.034	0.306	0.082	0.205	0.143	0.239	0.161	0.040	0.146	0.099	0.020	0.058	0.076	0.014	0.064	0.049	0.056	0.000	0.027	0.099	0.040	0.137	0.051	0.000	0.000	0.000	0.000	0.000	0.034	0.000	0.094	0.040	0.115	0.132	0.100
Total	22 719	67 762	60 202	49 903	40.967	E4 095	60.025	60.200	70.245	90.222	76 974	72 702	70.002	92.096	74 522	0.090	74 600	57.026	77 496	91 120	92 010	60.002	96 720	70 522	93.476	60.250	70.751	75 706	0.060	70 712	75.076	92.049	77 572	99 261	95 750	76.006	95 071	68 630	79.417	96 244	79.066	90.675
Cation (32.710	07.703	03.232	40.002	45.007	34.083	09.925	03.200	75.343	09.332	70.874	12.702	75.055	63.500	74.332	30.433	74.055	57.030	77.400	01.129	63.919	05.052	80.720	70.333	82.470	05.330	/5./51	73.700	30.403	/5./15	73.970	03.940	/1.3/3	00.301	63.735	70.350	83.071	08.029	/0.41/	00.344	78.900	80.075
ci	E 940	E 593	E 720	E 900	E 927	E 010	E 910	E 464	6 005	E 014	E 712	E 720	E 627	E 009	E 072	E 977	E 710	E 667	E 67E	E 020	6 022	E 265	6 029	E 2E4	6.010	E 650	E 746	E 920	6 661	6 050	E 027	6 127	E 049	E 060	E 0.49	E 069	6 271	E 022	E 027	4 951	E 710	E 522
AI	0.345	0.287	0.310	0.179	0.165	0.167	0.188	0.425	0.003	0.165	0.310	0.265	0.208	0.374	0.054	0.150	0.230	0.155	0.306	0.337	0.022	0.149	0.050	0.086	0.010	0.224	0.315	0.060	0.001	0.035	0.050	0.137	0.054	0.071	0.067	0.078	0.056	0.226	0.064	4.831	0.406	0.413
ті	0.004	0.003	0.001	0.005	0.008	0.003	0.003	0.006	0.007	0.000	0.000	0.002	0.001	0.004	0.000	0.002	0.003	0.003	0.003	0.002	0.001	0.002	0.000	0.002	0.000	0.002	0.003	0.002	0.001	0.001	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.004	0.000	0.001	0.002	0.001
Fe	0.196	0.580	0.727	0.112	0.111	0.081	0.176	1.631	0.826	0.298	1.148	1.106	0.961	0.948	0.093	0.144	0.377	0.183	0.681	0.655	0.020	0.355	0.061	0.156	0.019	0.518	0.493	0.013	0.026	0.007	0.007	0.000	0.012	0.007	0.009	0.031	0.058	0.313	0.044	0.893	0.883	1.061
Cr	0.006	0.017	0.009	0.000	0.008	0.001	0.000	0.017	0.009	0.019	0.032	0.032	0.025	0.011	0.006	0.004	0.014	0.004	0.008	0.010	0.005	0.007	0.000	0.000	0.001	0.006	0.007	0.003	0.007	0.000	0.005	0.000	0.003	0.003	0.000	0.000	0.005	0.009	0.000	0.020	0.012	0.014
Ni	0.167	0.290	0.239	0.042	0.050	0.054	0.019	0.407	0.243	0.332	0.270	0.249	0.309	0.201	0.010	0.016	0.168	0.031	0.221	0.188	0.048	0.283	0.038	0.125	0.024	0.254	0.144	0.071	0.202	0.009	0.031	0.000	0.025	0.000	0.000	0.012	0.052	0.065	0.017	1.261	0.343	0.464
Mn	0.000	0.006	0.003	0.000	0.007	0.000	0.000	0.005	0.003	0.003	0.014	0.015	0.011	0.005	0.001	0.000	0.002	0.000	0.003	0.003	0.000	0.005	0.001	0.003	0.000	0.001	0.003	0.000	0.000	0.003	0.001	0.000	0.002	0.000	0.000	0.001	0.000	0.003	0.000	0.005	0.003	0.004
Mg	0.170	0.707	0.643	0.054	0.034	0.030	0.052	1.018	0.739	0.411	1.190	0.856	1.096	0.668	0.012	0.067	0.258	0.273	0.346	0.388	0.100	2.526	0.039	0.358	0.000	1.052	0.148	0.009	0.006	0.004	0.003	0.002	0.002	0.002	0.000	0.007	0.010	0.188	0.003	1.850	0.686	0.935
Ca	4.249	3.766	3.441	4.693	4.837	4.900	4.829	2.302	2.472	4.038	2.386	2.849	2.821	2.745	4.838	4.744	4.378	4.923	3.907	3.547	4.664	2.849	4.700	5.506	4.820	3.508	4.203	5.142	3.238	4.718	5.019	4.626	4.974	4.959	4.992	4.886	4.243	4.183	4.961	2.638	2.989	2.825
Na	0.006	0.032	0.029	0.026	0.006	0.060	0.021	0.011	0.079	0.020	0.056	0.042	0.064	0.040	0.011	0.054	0.028	0.008	0.019	0.020	0.003	0.020	0.012	0.017	0.000	0.009	0.026	0.011	0.054	0.013	0.000	0.000	0.000	0.000	0.000	0.009	0.000	0.028	0.010	0.030	0.035	0.026
К	0.000	0.020	0.029	0.021	0.020	0.019	0.013	0.055	0.037	0.013	0.025	0.026	0.021	0.023	0.007	0.023	0.029	0.020	0.009	0.020	0.006	0.009	0.003	0.007	0.008	0.028	0.038	0.002	0.022	0.003	0.001	0.000	0.007	0.000	0.002	0.007	0.005	0.012	0.002	0.021	0.024	0.021
Total	10.984	11.291	11.149	11.031	11.083	11.134	11.111	11.342	10.835	11.111	11.152	11.163	11.244	10.928	11.006	11.084	11.195	11.266	11.178	11.008	10.943	11.570	10.944	11.614	10.957	11.251	11.124	11.144	10.320	10.906	11.047	10.831	11.027	11.002	11.019	11.000	10.702	10.966	11.037	11.966	11.101	11.287
C/S	0.728	0.675	0.602	0.796	0.829	0.842	0.831	0.421	0.412	0.694	0.418	0.498	0.500	0.465	0.810	0.808	0.767	0.869	0.688	0.608	0.774	0.531	0.778	1.028	0.802	0.621	0.732	0.882	0.486	0.779	0.847	0.754	0.836	0.832	0.839	0.819	0.677	0.705	0.836	0.544	0.523	0.512
Na+K	0.006	0.053	0.058	0.048	0.026	0.078	0.034	0.066	0.116	0.032	0.081	0.067	0.085	0.063	0.018	0.077	0.057	0.028	0.028	0.040	0.009	0.028	0.015	0.024	0.008	0.037	0.065	0.013	0.076	0.016	0.001	0.000	0.007	0.000	0.002	0.016	0.005	0.040	0.012	0.051	0.059	0.048
Al	0.345	0.287	0.310	0.179	0.165	0.167	0.188	0.425	0.414	0.165	0.319	0.265	0.298	0.374	0.054	0.159	0.230	0.155	0.306	0.337	0.073	0.149	0.050	0.086	0.074	0.224	0.315	0.060	0.105	0.087	0.050	0.066	0.054	0.071	0.067	0.078	0.056	0.226	0.064	0.396	0.406	0.413

表 4.2.5-17 C-S-H 鉱物の化学組成(その3)

Stage posit	on																								
x (mm)	70.842	70.876	70.839	59.859	59.838	59.52	59.596	59.605	59.615	59.637	46.964	45.432	45.516	45.621	45.673	45.724	45.9	46.088	48.992	49.076	48.853	15.16	15.118	15.245	11.92
y (mm)	69.175	69.172	69.179	53.304	53.286	53.277	53.308	53.333	53.355	53.325	46.92	46.074	46.004	46.08	46.032	46.029	45.902	46.241	44.422	44.389	44.285	60.076	60.078	60.139	62.884
z (mm)	12.085	12.085	12.084	12.163	12.163	12.163	12.163	12.163	12.163	12.163	11.837	11.844	11.844	11.844	11.844	11.844	11.844	11.85	11.849	11.849	11.848	11.934	11.934	11.934	11.91
Depth	4	4	4	4	4	4	4	4	4	4	5	5	5	5	5	5	5	5	5	5	5	6	6	6	6
Sample ID	Rh-020 F	Rh-020 R	th-020 F	Rh-020	Rh-020 F	Rh-020 F	Rh-020 I	Rh-020 I	Rh-020 I	Rh-020	C1-001 (C1-001 (01-001	01-001	C1-001	C1-001	C1-001	C1-001	C1-001	C1-001 (21-001	C2-1-001 C	2-1-001 0	2-1-001 0	2-1-001
Spot#	16	17	20	259	260	269	270	271	272	273	96	97	98	99	100	101	102	103	104	105	107	293	294	295	334
Oxide wt.%																									
SiO2	55.237	52.256	55.736	44.519	51.074	45.574	48.110	45.371	49.047	50.382	48.324	47.070	47.488	50.075	49.234	49.895	49.003	23.244	43.583	40.516	26.744	14.104	15.188	29.736	48.782
AI2O3	0.010	0.014	0.002	0.000	0.000	0.005	0.000	0.000	0.000	0.000	0.391	0.310	0.243	0.317	0.335	0.350	0.244	0.256	0.328	0.248	0.301	0.693	0.664	1.904	3.896
TiO2	0.000	0.013	0.000	0.000	0.000	0.001	0.002	0.000	0.000	0.000	0.003	0.000	0.000	0.000	0.006	0.000	0.005	0.011	0.013	0.004	0.006	0.006	0.020	0.024	0.006
FeO	0.374	0.675	0.374	1.197	2.913	1.205	0.438	0.337	0.246	0.463	0.054	0.098	0.044	0.000	0.038	0.000	0.003	0.114	0.000	0.035	0.173	0.728	0.560	10.050	0.079
Cr2O3	0.000	0.027	0.028	0.004	0.026	0.031	0.000	0.005	0.035	0.000	0.000	0.000	0.017	0.000	0.019	0.000	0.017	0.030	0.000	0.016	0.012	0.000	0.000	0.108	0.000
NiO	0.000	0.000	0.218	0.035	0.184	0.000	0.035	0.000	0.088	0.000	0.000	0.000	0.000	0.079	0.000	0.044	0.000	0.035	0.096	0.114	0.280	0.026	0.105	0.556	0.197
MnO	0.010	0.076	0.018	0.464	0.650	0.113	0.044	0.052	0.036	0.113	0.000	0.000	0.007	0.000	0.026	0.022	0.006	0.004	0.017	0.000	0.011	0.006	0.000	0.007	0.002
MgO	0.159	0.095	0.156	0.027	0.382	0.116	0.070	0.061	0.047	0.058	0.002	0.000	0.005	0.016	0.002	0.021	0.000	0.032	0.020	0.004	0.016	0.010	0.000	2.519	0.033
CaO	33.775	31.926	32.797	29.006	23.961	29.522	33.427	33.513	34.210	32.444	37.739	35.293	37.748	37.011	38.370	37.419	37.360	18.508	35.030	36.509	21.751	10.158	10.994	17.324	36.736
Na2O	0.017	0.017	0.017	0.028	0.000	0.003	0.037	0.011	0.040	0.008	0.023	0.000	0.034	0.025	0.000	0.034	0.000	0.009	0.043	0.000	0.037	0.032	0.000	0.052	0.077
К2О	0.000	0.000	0.010	0.002	0.024	0.016	0.000	0.019	0.000	0.000	0.009	0.012	0.000	0.003	0.009	0.010	0.004	0.000	0.000	0.002	0.022	0.021	0.025	0.077	0.151
Total	89.582	85.099	89.356	75.282	79.214	76.586	82.163	79.369	83.749	83.468	86.545	82.783	85.586	87.526	88.039	87.795	86.642	42.243	79.130	77.448	49.353	25.784	27.556	62.357	89.959
Cation (O =	17)																								
Si	6.377	6.364	6.428	6.223	6.599	6.242	6.168	6.069	6.167	6.293	5.959	6.035	5.938	6.060	5.967	6.032	6.015	5.897	5.906	5.704	5.844	5.845	5.878	5.362	5.749
AI	0.002	0.002	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.057	0.047	0.036	0.045	0.048	0.050	0.036	0.077	0.053	0.041	0.077	0.338	0.303	0.405	0.541
Ti	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.001	0.002	0.002	0.000	0.001	0.002	0.006	0.003	0.001
Fe	0.036	0.069	0.036	0.140	0.315	0.138	0.047	0.037	0.026	0.048	0.006	0.010	0.004	0.000	0.004	0.000	0.000	0.024	0.000	0.004	0.031	0.252	0.181	1.516	0.008
Cr	0.000	0.003	0.003	0.001	0.003	0.003	0.000	0.001	0.003	0.000	0.000	0.000	0.002	0.000	0.002	0.000	0.002	0.006	0.000	0.002	0.002	0.000	0.000	0.015	0.000
Ni	0.000	0.000	0.020	0.004	0.019	0.000	0.003	0.000	0.009	0.000	0.000	0.000	0.000	0.008	0.000	0.004	0.000	0.007	0.010	0.013	0.049	0.009	0.032	0.081	0.019
Mn	0.001	0.008	0.002	0.055	0.071	0.013	0.005	0.006	0.004	0.012	0.000	0.000	0.001	0.000	0.003	0.003	0.001	0.001	0.002	0.000	0.002	0.002	0.000	0.001	0.000
Mg	0.027	0.017	0.027	0.006	0.074	0.024	0.014	0.012	0.009	0.011	0.000	0.000	0.001	0.003	0.000	0.003	0.000	0.012	0.004	0.001	0.005	0.006	0.000	0.677	0.006
Ca	4.178	4.167	4.053	4.344	3.318	4.332	4.592	4.803	4.609	4.342	4.987	4.848	5.058	4.799	4.983	4.847	4.913	5.031	5.086	5.508	5.092	4.511	4.559	3.347	4.638
Na	0.003	0.004	0.003	0.008	0.000	0.001	0.009	0.003	0.009	0.002	0.005	0.000	0.009	0.006	0.000	0.008	0.000	0.004	0.011	0.000	0.015	0.026	0.000	0.018	0.018
к	0.000	0.000	0.002	0.000	0.004	0.003	0.000	0.003	0.000	0.000	0.002	0.002	0.000	0.001	0.002	0.002	0.001	0.000	0.000	0.000	0.006	0.011	0.013	0.018	0.023
Total	10.625	10.634	10.574	10.781	10.402	10.758	10.838	10.934	10.837	10.708	11.016	10.943	11.048	10.922	11.008	10.949	10.968	11.062	11.073	11.274	11.127	11.002	10.972	11.444	11.002
C/S	0.655	0.655	0.631	0.698	0.503	0.694	0.744	0.791	0.747	0.690	0.837	0.803	0.852	0.792	0.835	0.804	0.817	0.853	0.861	0.966	0.871	0.772	0.776	0.624	0.807
Na+K	0.003	0.004	0.005	0.008	0.004	0.003	0.009	0.006	0.009	0.002	0.007	0.002	0.009	0.007	0.002	0.009	0.001	0.004	0.011	0.000	0.021	0.037	0.013	0.036	0.041
Al	0.002	0.002	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.057	0.047	0.036	0.045	0.048	0.050	0.036	0.077	0.053	0.041	0.077	0.338	0.303	0.405	0.541

表 4.2.5-18 C-S-H 鉱物の化学組成(その4)

Stage posit	ion																			
x (mm)	51.182	51.09	51.041	50.835	50.694	50.643	50.836	50.832	46.911	46.827	46.735	46.626	45.95	31.093	31.101	31.107	30.698	29.779	29.973	29.285
y (mm)	14.473	14.505	14.533	14.608	14.767	14.743	14.838	14.907	19.011	18.988	18.999	19.015	18.811	25.802	25.865	25.865	26.08	26.914	27.169	25.601
z (mm)	11.96	11.959	11.958	11.962	11.961	11.961	11.959	11.959	11.914	11.913	11.914	11.914	11.914	11.876	11.876	11.876	11.876	11.859	11.864	11.881
Depth	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
Sample ID	C2-2-002																			
Spot#	335	336	337	338	340	341	342	343	357	358	359	360	362	365	366	367	372	376	379	402
Oxide wt.%	/ D																			
SiO2	23.830	25.883	28.609	38.069	34.211	19.034	48.820	49.596	21.128	32.065	34.463	47.812	41.419	19.879	40.730	32.430	44.188	42.147	44.922	27.807
AI2O3	0.919	0.882	1.722	1.314	1.523	0.337	0.362	0.300	1.146	1.926	2.228	0.463	2.978	0.830	0.770	1.084	1.923	2.440	3.179	2.668
TiO2	0.034	0.026	0.038	0.001	0.022	0.007	0.005	0.005	0.026	0.015	0.017	0.000	0.029	0.000	0.002	0.000	0.011	0.011	0.000	0.003
FeO	5.237	5.888	6.972	3.031	5.779	0.088	0.128	0.000	7.984	8.259	8.255	0.040	8.074	0.718	0.084	0.191	0.094	0.178	0.241	21.284
Cr2O3	0.066	0.036	0.145	0.000	0.055	0.052	0.000	0.000	0.104	0.088	0.124	0.000	0.167	0.042	0.005	0.000	0.000	0.000	0.000	0.175
NiO	0.454	0.634	0.948	0.525	0.358	0.041	0.000	0.000	0.561	0.576	0.563	0.000	0.467	0.000	0.124	0.000	0.000	0.193	0.000	0.835
MnO	0.028	0.021	0.043	0.051	0.025	0.000	0.015	0.002	0.040	0.029	0.040	0.007	0.037	0.016	0.001	0.002	0.000	0.000	0.007	0.082
MgO	0.555	7.139	1.708	3.749	1.310	0.024	0.002	0.000	2.029	2.256	2.426	0.000	6.411	0.111	0.029	0.011	0.014	0.010	0.188	1.961
CaO	14.754	10.301	16.749	23.013	22.341	15.625	33.785	34.045	10.600	17.663	17.008	35.500	18.885	17.721	32.835	28.469	37.275	37.047	37.435	21.158
Na2O	0.022	0.060	0.025	0.000	0.052	0.028	0.000	0.028	0.000	0.000	0.012	0.000	0.030	0.009	0.000	0.051	0.025	0.048	0.034	0.000
К2О	0.032	0.010	0.053	0.001	0.025	0.008	0.022	0.010	0.012	0.065	0.077	0.007	0.153	0.042	0.045	0.091	0.157	0.213	0.136	0.021
Total	45.931	50.880	57.012	69.754	65.701	35.244	83.139	83.986	43.630	62.942	65.213	83.829	78.650	39.368	74.625	62.329	83.687	82.287	86.142	75.994
Cation (O =	: 17)																			
Si	5.717	5.459	5.547	5.794	5.685	5.814	6.165	6.188	5.443	5.597	5.726	6.042	5.614	5.533	5.855	5.651	5.692	5.562	5.607	4.515
Al	0.260	0.219	0.394	0.235	0.298	0.122	0.054	0.044	0.348	0.396	0.436	0.069	0.476	0.272	0.130	0.223	0.292	0.380	0.468	0.511
Ti	0.006	0.004	0.006	0.000	0.003	0.002	0.001	0.001	0.005	0.002	0.002	0.000	0.003	0.000	0.000	0.000	0.001	0.001	0.000	0.000
Fe	1.051	1.039	1.131	0.386	0.803	0.022	0.014	0.000	1.720	1.205	1.147	0.004	0.915	0.167	0.010	0.028	0.010	0.020	0.026	2.891
Cr	0.013	0.006	0.022	0.000	0.008	0.013	0.000	0.000	0.021	0.012	0.016	0.000	0.018	0.009	0.001	0.000	0.000	0.000	0.000	0.022
Ni	0.088	0.108	0.148	0.065	0.048	0.010	0.000	0.000	0.116	0.081	0.076	0.000	0.051	0.000	0.014	0.000	0.000	0.020	0.000	0.109
Mn	0.006	0.003	0.007	0.007	0.003	0.000	0.002	0.000	0.009	0.004	0.006	0.001	0.004	0.003	0.000	0.000	0.000	0.000	0.001	0.011
Mg	0.199	2.245	0.494	0.851	0.325	0.011	0.000	0.000	0.779	0.587	0.601	0.000	1.295	0.046	0.006	0.003	0.003	0.002	0.035	0.474
Ca	3.793	2.328	3.480	3.753	3.977	5.114	4.571	4.552	2.926	3.304	3.028	4.807	2.743	5.285	5.058	5.315	5.146	5.239	5.007	3.681
Na	0.010	0.025	0.009	0.000	0.017	0.017	0.000	0.007	0.000	0.000	0.004	0.000	0.008	0.005	0.000	0.017	0.006	0.012	0.009	0.000
К	0.010	0.003	0.013	0.000	0.005	0.003	0.003	0.002	0.004	0.014	0.016	0.001	0.026	0.015	0.009	0.020	0.026	0.036	0.021	0.004
Total	11.151	11.438	11.251	11.089	11.172	11.127	10.810	10.793	11.370	11.204	11.057	10.924	11.154	11.336	11.084	11.257	11.177	11.272	11.174	12.220
C/S	0.663	0.427	0.627	0.648	0.700	0.880	0.741	0.736	0.538	0.590	0.529	0.796	0.489	0.955	0.864	0.941	0.904	0.942	0.893	0.815
Na+K	0.020	0.027	0.022	0.000	0.022	0.020	0.003	0.009	0.004	0.014	0.020	0.001	0.034	0.020	0.009	0.037	0.031	0.048	0.030	0.004
Al	0.260	0.219	0.394	0.235	0.298	0.122	0.054	0.044	0.348	0.396	0.436	0.069	0.476	0.272	0.130	0.223	0.292	0.380	0.468	0.511

(11) 角閃石

角閃石は風化によっても変質は起きずにシンプルに溶解していく鉱物として知られており、 その風化組織(微細な芝生状の界面を形成する)は電顕観察などでよく知られている。パラワ ンの超塩基性岩はハルツバージャイト組成を示しているが、そこにはわずかに角閃石が含まれ ていたと思われる。角閃石はほとんど全ての主要元素を含む鉱物のため、アルカリ溶液の生成 時において、Ca, Al, Na のソースとして重要な鉱物と位置づけられる。SEM 観察では、角閃 石の表面には無数のエッチピットが確認できる。

パーガサイトはエデナイト置換とチェルマカイト置換の2つの置換が複合した角閃石であ るが、パラワンの角閃石はそれぞれの置換を伴っており(図 4.2.5-11 参照)、パーガサイトに 分類される。これらの置換のうち、チェルマカイト置換がより強く示されていることから、高 圧型の角閃石と考えることができる。しかし、PWT02-15-Rh-016、PWT02B-15-C2-1-001の 一部と、PWT02B-15-C2-2-002の角閃石だけは、低圧角閃石であるトレモライト組成を示して おり、二次的な角閃石であると思われる。

図 4.2.5-11 角閃石の組成プロット(a: エデナイト置換; b: チェルマカイト置換)

角閃石の Al(6)組成は試料の層序ごとに特徴がある。図 4.2.5-12 には垂直方向のプロファイルを示す。PWT02-15-Rh-016 は角閃石の Al(6)が大きく変化しており、高圧型のパーガサイトから低圧型のトレモライトまで変化が表れている。PWT02-15-Rh-016 をピークにして、その

上下に向かって Al(6)は減少していく傾向にある。角閃石は低温で変質しない鉱物であるため、 これは源岩の角閃石が元々持っていた変化であるとみなすことができ、C-S-H 鉱物を大量に沈 殿させている PWT02-15-Rh-016 では、パーガサイトからトレモライトまでの変化に富む角閃 石が豊富に含まれており、その Ca と Al, Mg などを溶解によってアルカリ溶液に供給したの であろう。Ca の供給源としても角閃石は重要である。

図 4.2.5-12 層序と角閃石の Al(6)の関係

表 4.2.5-19 角閃石の化学組成

Species	Ede	Ede	Ede	Ede	Irem	Ede	Ede	Ede	Parg	Parg	Ede	Ede	Ede	Irem	Ede	Ede	Ede	Parg	Ede	Ede	Parg	Ede	Ede	Parg	Parg	Irem	Ede	Ede	Ede	Ede	Ede	Ede	Irem	Ede	Irem
A-site	0.100	0.127	0.124	0.129	0.038	0.192	0.285	0.290	0.534	0.499	0.492	0.338	0.385	0.046	0.121	0.318	0.377	0.406	0.170	0.165	0.546	0.193	0.161	0.419	0.486	-0.008	0.352	0.387	0.296	0.346	0.267	0.134	0.072	0.124	0.022
AI(6)	0.384	0.372	0.313	0.383	0.156	0.413	0.346	0.483	0.695	0.666	0.557	0.289	0.417	0.156	0.082	0.589	0.553	0.584	0.393	0.313	0.728	0.422	0.464	1.065	1.145	0.146	-0.113	-0.036	0.540	0.550	0.429	0.413	0.082	0.329	0.067
AI(4)	0.502	0.515	0.464	0.529	0.164	0.684	0.663	0.853	1.298	1.274	0.992	0.581	0.802	0.165	0.269	0.980	0.905	1.112	0.608	0.586	1.389	0.638	0.682	1.485	1.690	0.075	0.671	0.872	0.915	0.877	0.827	0.577	0.165	0.493	0.085
Total	15.100	15.127	15.124	15.129	15.038	15.192	15.285	15.290	15.534	15.499	15.492	15.338	15.385	15.046	15.121	15.318	15.377	15.406	15.170	15.165	15.546	15.194	15.161	15.419	15.486	14.992	15.352	15.387	15.296	15.346	15.267	15.134	15.072	15.124	15.022
к	0.006	0.009	0.005	0.010	0.005	0.010	0.012	0.005	0.019	0.021	0.019	0.006	0.014	0.003	0.000	0.013	0.031	0.018	0.009	0.012	0.031	0.013	0.016	0.027	0.020	0.007	0.000	0.002	0.023	0.020	0.008	0.011	0.004	0.010	0.000
Na	0.114	0.143	0.129	0.138	0.082	0.156	0.295	0.259	0.525	0.449	0.583	0.388	0.471	0.103	0.093	0.328	0.474	0.369	0.234	0.157	0.515	0.227	0.203	0.482	0.495	0.077	0.058	0.063	0.279	0.410	0.252	0.174	0.077	0.107	0.038
Ca	1.783	1.730	1.733	1.758	1.886	1.437	1.804	1.720	1.793	1.825	1.900	2.020	1.759	1.952	1.943	1.820	1.847	1.812	1.774	1.948	1.887	1.809	1.838	1.712	1.693	1.989	2.608	2.906	1.738	1.840	1.800	1.738	1.845	1.806	1.717
Mg	4.066	4.133	4.255	4.100	4.553	3.623	3.897	3.564	3.905	3.913	3.532	3.801	3.824	3.835	4.716	3.875	3.191	3.728	3.879	4.347	3.906	3.961	3.623	2.573	2.548	3.891	3.666	3.350	3.889	3.623	3.979	3.915	4.771	4.136	4.848
Mn	0.007	0.004	0.007	0.004	0.005	0.010	0.005	0.011	0.010	0.008	0.017	0.015	0.017	0.011	0.003	0.008	0.022	0.013	0.010	0.005	0.007	0.008	0.012	0.017	0.015	0.017	0.027	0.022	0.010	0.010	0.008	0.006	0.006	0.006	0.007
Ni	0.019	0.000	0.016	0.011	0.000	0.000	0.002	0.000	0.028	0.063	0.012	0.054	0.031	0.063	0.069	0.049	0.005	0.063	0.055	0.031	0.032	0.009	0.035	0.005	0.000	0.000	0.011	0.018	0.025	0.000	0.012	0.000	0.000	0.043	0.021
Cr	0.025	0.034	0.029	0.026	0.008	0.010	0.024	0.021	0.025	0.025	0.003	0.006	0.022	0.007	0.038	0.043	0.000	0.035	0.042	0.106	0.047	0.020	0.054	0.006	0.008	0.015	0.004	0.009	0.036	0.011	0.071	0.025	0.020	0.028	0.008
Fe	0.691	0.698	0.633	0.694	0.339	1.511	0.885	1.212	0.505	0.503	0.843	0.757	0.792	0.906	0.177	0.566	1.202	0.750	0.734	0.242	0.358	0.700	0.887	1.488	1.522	0.844	1.024	0.959	0.729	0.856	0.682	0.823	0.267	0.654	0.316
Ti	0.006	0.004	0.004	0.005	0.005	0.022	0.015	0.016	0.027	0.027	0.025	0.003	0.039	0.008	0.001	0.027	0.052	0.034	0.038	0.003	0.034	0.024	0.030	0.043	0.040	0.007	0.067	0.094	0.025	0.027	0.026	0.028	0.000	0.003	0.002
AI	0.886	0.887	0.777	0.913	0.319	1.096	1.008	1.337	1.993	1.940	1.549	0.870	1.219	0.321	0.352	1.570	1.457	1.696	1.002	0.899	2.117	1.060	1.146	2.550	2.835	0.221	0.558	0.837	1.455	1.427	1.257	0.990	0.246	0.822	0.151
Si	7.498	7.485	7.536	7.471	7.836	7.316	7.337	7.147	6.702	6.726	7.008	7.419	7.198	7.835	7.731	7.020	7.095	6.888	7.392	7.414	6.611	7.362	7.318	6.515	6.310	7.925	7.329	7.128	7.085	7.123	7.173	7.423	7.835	7.507	7.915
Cation (O	: 23)							-3.500	23.075				50.551										2030			2052		55.510			20.200				50.750
Total	96.971	99.163	101.641	98,237	98.519	99.167	95.666	98.386	95.873	96 292	91.729	92.220	96.331	91.094	96.602	96.440	94.457	93.527	95.594	96.653	96.128	96.666	94.030	95.394	97.062	94.092	93, 389	93.618	91,733	93.517	96.208	98,803	97.315	98.060	98,736
K20	0.031	0.053	0.031	0.054	0.028	0.058	0.066	0.028	0.106	0.114	0.096	0.034	0.077	0.018	0.000	0.070	0.164	0.094	0.051	0.065	0.172	0.070	0.087	0.141	0.107	0.039	0.000	0.008	0.123	0.104	0.044	0.063	0.023	0.059	0.000
Na2O	0.418	0.539	0.498	0.513	0.309	0.571	1.058	0.943	1 897	1.506	1 991	1 338	1.479	0.353	0.346	1 1 9 4	1 648	1 290	0.847	0.581	1 870	0.878	0 714	1 678	1 747	0 273	0.199	0.214	0.963	1 434	0.913	0.650	0.289	0 397	0 144
IVIEO	11.961	20.226	21.388	11 847	12.462	17.258	10.103	10.892	18.341	11.069	11 726	17.043	17.934	12.070	12.071	11.094	14.440	10.943	10.1/1	20.918	10.439	10.819	11 700	10.790	10.010	12.765	10.301	17.027	10.956	10.4/6	18.763	10.983	25.311	13.391	24.067
MaQ	10.001	20.226	21 299	10.965	22.462	17 759	19 162	16 907	19 2/1	19 441	15 690	17.042	17 024	17.041	22 802	19 245	14 440	16.047	0.083	20.044	19 420	19 910	16 59/	0.130	11 704	17.057	16 201	14 955	17.460	16.476	19 762	19 092	0.048	10.001	24.057
NIU	0.168	0.000	0.153	0.097	0.000	0.000	0.014	0.000	0.245	0.551	0.096	0.446	0.2/1	0.517	0.615	0.430	0.044	0.534	0.480	0.280	0.279	0.079	0.298	0.044	0.000	0.000	0.087	0.148	0.210	0.000	0.105	0.000	0.000	0.390	0.193
Ur2U3	0.228	0.316	0.270	0.238	0.072	0.087	0.207	0.184	0.223	0.219	0.026	0.046	0.196	0.060	0.342	0.387	0.000	0.300	0.372	0.963	0.420	0.175	0.462	0.049	0.068	0.132	0.030	0.075	0.307	0.093	0.631	0.230	0.188	0.258	0.070
FeO	5.887	6.087	5.674	5.995	2.983	12.829	7.352	10.238	4.228	4.230	6.672	6.053	6.620	7.174	1.526	4.774	9.693	6.079	6.131	2.078	3.013	5.929	7.235	12.002	12.463	6.937	8.113	7.582	5.837	6.941	5.728	7.109	2.328	5.634	2.792
TiO2	0.053	0.037	0.042	0.052	0.049	0.206	0.143	0.155	0.252	0.255	0.219	0.022	0.362	0.072	0.005	0.251	0.464	0.308	0.357	0.032	0.317	0.230	0.276	0.384	0.366	0.060	0.593	0.825	0.221	0.241	0.243	0.271	0.000	0.025	0.020
AI2O3	5.362	5.489	4.941	5.593	1.993	6.603	5.944	8.014	11.841	11.564	8.696	4.933	7.231	1.805	2.152	9.398	8.340	9.750	5.933	5.471	12.639	6.369	6.633	14.594	16.466	1.288	3.139	4.691	8.262	8.206	7.494	6.073	1.522	5.026	0.948
SiO2	53.454	54.603	56.466	53.953	57.633	51.948	50.980	50.499	46.932	47.259	46.381	49.592	50.324	51.895	55.721	49.539	47.861	46.667	51.613	53.179	46.526	52.138	49.941	43.942	43.205	54.509	48.581	47.117	47.411	48.297	50.413	53.649	57.066	54.084	58.581
Oxide wt.9	6																																		
Sample ID	Rh-006 F	Rh-006 F	Rh-006	Rh-006 I	Rh-006 F	Rh-006 F	Rh-006	Rh-013	Rh-015 F	Rh-015	Rh-015	Rh-015	Rh-016	Rh-016	Rh-016	Rh-016	Rh-016	Rh-016	Rh-016 I	Rh-016 F	Rh-016 F	Rh-016 F	Rh-016	Rh-016 I	Rh-016 F	Rh-016	Rh-016 F	Rh-016 F	Rh-016 I	Rh-016	C2-1-001 C	2-1-001	C2-1-001 C	2-1-001	C2-2-002
Depth	0	0	0	0	0	0	0	1	2	2	2	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	6	6	6	6	7
z (mm)	11.524	11.524	11.527	11.526	11.526	11.497	11.514	11.842	11.436	11.436	11.441	11.441	11.519	11.544	11.53	11.537	11.542	11.518	11.526	11.531	11.528	11.535	11.532	11.531	11.531	11.534	11.522	11.519	11.525	11.513	11.934	11.921	11.923	11.923	11.881
y (mm)	62.902	62.921	62.957	62.889	63.151	63.398	61.577	16.551	25.197	25.207	26.691	26.669	53.602	58.256	57.945	58.051	57.999	57.994	57.71	57.831	57.965	57.781	57.88	57.487	57.526	57.583	53.87	53.869	64.393	64.409	60.135	60.697	60.479	60.842	25.883
x (mm)	14.962	14.983	14.976	14.962	14.86	16.353	14.842	39.972	37.069	37.078	39.304	39.317	11.932	15.65	15.163	15.132	14.993	14.792	13.572	13.24	13.241	12.616	12.975	12.409	12.379	12.384	11.746	11.738	15.502	15.439	15.19	10.752	9.781	10.899	29.162
Stage posi	tion																																		

4.2.6 マイクロ XRD 分析

(1) PWT02-15-Rh-006

図 4.2.6-1 に µ-XRD 測定結果を示す。

蛇紋石 (lizardite で代表) と C-S-H 鉱物である 14Å トバモライト(Plombierite)および 11Å トバモライト(Tobermorite)のピークが確認できる。

図 4.2.6-1 PWT02-15-Rh-006のµ-XRD ピーク

(2) PWT02-15-Rh-013

図 4.2.6-2 に µ-XRD 測定結果を示す。

チューブ状の C-S-H 鉱物は 14Å トバモライト(Plombierite)によくマッチングした回折ピー クを示している。また粘土成分の測定結果はサポナイトと蛇紋石のピークが顕著である。

図 4.2.6-2 PWT02-15-Rh-013の µ-XRD ピーク

(3) PWT02-15-Rh-015

図 4.2.6-3 に µ-XRD 測定結果を示す。

図 4.2.6-3 PWT02-15-Rh-015 の µ-XRD ピーク

(4) PWT02-15-Rh-016

図 4.2.6-4 に µ-XRD 測定結果を示す。

図 4.2.6-4 PWT02B-15-Rh-016 の μ-XRD ピーク

(5) PWT02B-15-C1-001

図 4.2.6-5 に µ-XRD 測定結果を示す。

図 4.2.6-5 PWT02B-15-C1-001 試料の µ-XRD ピーク

(6) PWT02B-15-C2-2-002

図 4.2.6-6 に µ-XRD 測定結果を示す。

図 4.2.6-6 PWT02B-15-C2-2-002 試料の µ-XRD ピーク
(7) PWT02-15-Rh-020

図 4.2.6-7 に µ-XRD 測定結果を示す。

図 4.2.6-7 PWT02-15-Rh-020 の µ-XRD ピーク

4.2.7 偏光顕微鏡観察結果

パラワンオフィオライト基盤岩(1 試料)とこの基盤岩直上に累重する砕屑性堆積物(7 試料) を対象に、偏光顕微鏡観察を実施した(2.6.4 (4)参照)。

観察した試料の主成分鉱物(初生鉱物)と変質鉱物(一部二次鉱物も含む)の鉱物組み合わせ・ 鉱物組成・組織・共生関係および、基質の微細鉱物と C-S-H 化学沈殿相(水和物)などを改めて 以下に示し、表 4.2.7-1 に取りまとめた。

(1) 砕屑性堆積物試料(PWT02-15-Rh-015 [図 2.6.4-91~図 2.6.4-93])

本試料は基盤岩ら約 40cm 上位に位置する極粗粒の礫層である。基質は、微細な葉片状の粘 土質で、径 1.2mm 以下の岩片・鉱物片が散在している。主要構成鉱物は、柱状〜亜柱状で、 長径 1.2mm 以下の斜方輝石(一部、単斜輝石と固相分離組織を示す)、柱状〜亜円状で長径 0.6mm 以下の蛇紋石(主としてアンチゴライト)、亜柱状〜柱状で、長径 0.3mm 以下の単斜 輝石、Cr-スピネル、亜柱状〜柱状で、長径 0.4mm 以下のトレモラ角閃石および、輝石を完全 に変質した緑泥石と蛇紋石を交代した緑泥石が観察される。基質は、主としてスメクタイトが 卓越し、蛇紋石または、水滑石の風化変質鉱物としてパイロオーライトやコーリンガイトが観 察される。

また、長径 0.4mm 以下の柱状の植物遺体破片も観察される。

(2) 砕屑性堆積物試料 (PWT02-15-Rh-016 [図 2.6.4-94~図 2.6.4-98])

本試料は,基盤岩より約 20cm 上位に位置する細礫の礫層である。基質は、微細な葉片状〜塊 状の粘土質で、径 1.5mm 以下の岩片・鉱物片が散在し、一部、径 0.3mm 以下で亜柱状のタル ク岩、径 0.4mm 以下の亜柱状の斑レイ岩と、0.17mm 以下の黒色片岩(変形・変質し絹雲母・ 緑泥石・石墨の鉱物組み合わせ)を含有している。主要構成鉱物は、蛇紋石(リザルダイト・ クリソタイル、アンチゴライトで、一部クリソタイルの集合体を形成)、斜方輝石(柱状〜亜円 状で、径 1.0mm 以下の斜方輝石が、単斜輝石と固相分離組織を示す)、Cr-スピネル(柱状〜 亜柱状で、径 0.6mm 以下)である。基質は、スメクタイト、蛇紋石(パイロオーライトの風 化変質鉱物)、炭酸塩鉱物(殆どが方解石)、C-S-H(トバモライト)と緑泥石からなる微細鉱 物の集合帯として観察される。

また、長径 0.9mm、直径 0.2mm 以下の柱状〜亜円状植物遺体が、針状で微細な C-S-H 様の炭酸塩鉱物(トバモライト)へ変質・交代されている産状と、針状で束状や放射状に集合する Fe-水滑石などが観察される。

(3) 砕屑性堆積物試料(PWT02-15-Rh-018 [図 2.6.4-99~図 2.6.4-100])

本試料は基盤岩ら約 40cm 上位に位置する極粗粒の礫層である。基質は、微細な葉片状の粘 土質で、径 1.2mm 以下の岩片・鉱物片が散在している。主要構成鉱物は、柱状~亜柱状で、 長径 1.2mm 以下の斜方輝石 (一部、単斜輝石と固相分離組織を示す)、柱状~亜円状で長径 0.6mm 以下の蛇紋石 (主としてアンチゴライト)、亜柱状~柱状で、長径 0.3mm 以下の単斜 輝石、Cr-スピネル、亜柱状~柱状で、長径 0.4mm 以下のトレモラ角閃石および、輝石を完全 に変質した緑泥石と蛇紋石を交代した緑泥石が観察される。基質は、主としてスメクタイトが 卓越し、蛇紋石または、水滑石の風化変質鉱物としてパイロオーライトやコーリンガイトが観 察される。

また、長径 0.4mm 以下の柱状の植物遺体破片も観察される。

(4) 砕屑性堆積物試料(PWT02B-15-C1-001 [図 2.6.4-101~図 2.6.4-104])

本試料は基盤岩直上に累重する極粗粒で散在するハルツバージャイト質の礫層で、基質は径 4mm 以下のハルツバージャイト質の岩片・鉱物片から構成される。一部、亜角礫上のアクチ ノ角閃石を含むかんらん石ウェブスライト(斜方・単斜輝石と少量のかんらん石が主成分鉱物) が含まれる。これらの岩片・鉱物片は、上記基盤岩(PWT02-15-Rh-020)の構成鉱物の組成・産 状(組織)などとほぼ同じであるが、自形のかんらん石を交代した緑泥石や、縫合状の斜方・ 輝石の産状が観察される。

一方、基質は微細な風化鉱物が主体な砂質である。特に、褐色の鉱物は主としてスメクタイトであるが、蛇紋石や水滑石の風化鉱物であるパイロオーライトやコーリンガイトの産状の可能性がある。

また、炭酸塩鉱物(方解石)や C-S-H(トバモライト)の沈殿相が観察される。

(5) 砕屑性堆積物試料 (PWT02B-15-C2-1-001 [図 2.6.4-105~図 2.6.4-108])

本試料は基盤岩直上に累重する主として細礫と少量の中礫が混在するハルツバージャイト の礫層である。基質は径 5mm 以下のハルツバージャイト質と、極少量であるが亜円礫状の径 4mm 以下の斑レイ岩の岩片・鉱物片から構成される。この斑レイ岩の主成分鉱物は斜長石、 単斜輝石、石英で構成される完晶質であるが、斜長石の一部はソーシュライト化と、単斜輝石 の緑泥石化が観察される。Cr-スピネルや蛇紋岩類の鉱物組成・産状(組織)などについては、 上記のものとの相違はない。斜方輝石は、単斜輝石と固相分離(共晶による離溶性ラメラ)組 織が観察される。

特徴的な産状として長径 5mm 以下の柱状~亜円状植物木根が観察され、その産状を残存した形状で水滑石と少量の炭酸塩鉱物に置換されている。

一方、基質は微細な風化鉱物が主体な砂質であり、スメクタイトと蛇紋石(一部、パイロオ ーライトやコーリンガイトおよび、水滑石へ変質)および、緑泥石の微細鉱物が卓越する部分 が観察される。

(6) 砕屑性堆積物試料(PWT02B-15-C2-2-001 [図 2.6.4-109~図 2.6.4-111])

本試料は基盤岩直上に累重する主として細礫と、一部中礫が混在するハルツバージャイト質 岩石と、一部トレモラ角閃岩の礫層である。基質は径 5mm 以下の蛇紋石の鉱物片が多数観察 される。主要構成鉱物は斜方輝石、Cr-スピネルで、径 0.8mm 以下の斜方輝石は、亜角状で、 蛇紋石(リザルダイト・クリソタイル、アンチゴライトから構成され、アンチゴライトが前者 の蛇紋石を脈状に横断)に変質している。径 1.8mm 以下のトレモラ角閃石岩は亜円状で、長 柱状のトレモラ角閃石が主体で、粒間を青緑色の緑泥石様鉱物で充填されている。

種子状で楕円形の植物遺体が観察される。

基質は、スメクタイト、蛇紋石の変質鉱物であるパイロオーライト・コーリンガイトや水滑 石が観察されるが、径 10mm 程度の空隙に菱形のシデライトかドロマイト様の炭酸塩鉱物が 充填している。

また、化学沈殿相である非晶質 C-S-H(トバモライト)も観察される。

(7) 砕屑性堆積物試料(PWT02B-15-C2-2-002 [図 2.6.4-112~図 2.6.4-113])

本試料は、基盤岩直上に累重する主として細礫と一部中礫が混在するハルツバージャイト質 岩石の礫層で、PWT02B-15-C2-2-001 試料の上部のものである。基質は、径 7mm 以下の蛇紋 石が散在している。主要構成鉱物は、PWT02B-15-C2-2-001 のものとの差異がないが、斜方輝 石と単斜輝石が固相分離組織を示すことと、0.2mm 以下の柱状な単斜輝石が観察される。

基質は、スメクタイト、蛇紋石(変質鉱物のパイロオーライト/コーリンガイト)と水滑石や、 水酸化鉄様の不透明鉱物が観察される。

また、空隙を Fe-水滑石様の微細鉱物と針状の C-S-H 様鉱物も観察される。

(8) 超塩基性岩石試料(PWT02-15-Rh-020 [図 2.6.4-114~図 2.6.4-116])

表 4.2.7-1 に示すように、本試料はトレンチ床面から採取されたパラワンオフィオライトの 基盤岩であるハルツバージャイト(かんらん石と斜方輝石が主成分鉱物)である。特に、苦鉄 質鉱物のかんらん石と斜方輝石が比較的強い蛇紋岩化作用を受けている。蛇紋石鉱物は低温型 クリソタイルとリザルダイトおよび、高温型アンチゴライトがメッシュ組織と局所的にブレイ デッド・マット組織を示す。この蛇紋岩化作用は、低温型から高温型への環境変化(低温型の 蛇紋石を高温型の蛇紋石が脈状に横断)を示すことから、これは広域変成作用か貫入岩による 接触変成作用が考えられるが、おそらく、パラワンオフィオライトの定置か、オフィオライト への後期貫入岩である斑レイ岩や輝緑岩の貫入(岩脈)による高温の場によるものと示唆され る。

これらの蛇紋岩化作用に伴いかんらん石を交代した水滑石(ブルーサイト)や斜方輝石を部 分交代した滑石(タルク)が観察される。但し、これらの苦鉄質鉱物のコア部分が残存してい ることから、完全な蛇紋岩そのものではなく、蛇紋岩化が進行したハルツバージャイトである。

また、少量の緑泥石が斜方輝石を交代したリザルダイトをさらに交代し、特徴的な淡緑色を 示す。不透明鉱物としては、多形・粒状の Cr-スピネルと、ダスト状でメッシュ組織のリザル ダイト中に散在する微量の磁鉄鉱(マグネタイト)が観察される。この後者は、その産状から 蛇紋岩化作用により形成された副産物鉱物であることが示唆される。

表 4.2.7-1 偏光顕微鏡観察による岩石鉱物学的特徴

Image: Field in the section of the sectin of the section of the section o				火成岩(Igneous Rock)				砕屑性堆積物(Clastic Sediments)]
U U MAXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	試料番号 PWT02-15-Rh-020			PWT02-15-Rh-020	PWT02B-15-C1-001	PWT02B-15-C2-1-001	PWT02B-15-C2-2-001	PWT02B-15-C2-2-002	PWT02-15-Rh-016	PWT02-15-Rh-018	PWT02-15-Rh-015	
Normal state Normal state<	岩石名(原岩) ハルツバージャイ			ハルツバージャイト	砕屑性堆積物 (ハルツバージャイト質)	砕屑性堆積物 (ハルツバージャイト質)	砕屑 (ハルツバ・		砕屑性堆積物	砕屑性堆積物	砕屑性堆積物 (ダナイト質)	
No. No. Solution	 ・ 産状 (露頭観察) ・ サンプル採取位置 (基盤岩からの距離) 			 ・パラワンオフィオライト (超塩基性複合岩体) ・基盤岩 	 ・極粗粒 (径4mm以下の岩片/鉱物片) ・基盤岩直上 	 細碟(少量の中碟) 〈径5.5mm以下の岩片/鉱物片〉 基盤岩直上 	 ・細礫,一部中礫 〈径5mm以下の蛇紋石多数〉 ・基盤岩直上 	 ・細礫,一部中礫 〈径7mm以下の蛇紋石が散在〉 ・基盤岩直上 	・細粒,基質は粘土質 〈径1.5mm以下の岩片・鉱物片〉 ・基盤岩より約20cm上位	 ・細粒,基質は粘土質 〈径1.2mm以下の岩片・鉱物片〉 ・基盤岩より約40cm上位 	 ・細粒,基質は粘土質 〈径0.9mm以下の岩片・鉱物片〉 ・基盤岩より約80cm上位 	17 (24)
Norm Norm <th< td=""><td></td><td></td><td>カンラン石 (01</td><td>)メッシュ組織のコア残存〔蛇紋石〕</td><td>[Ch1]</td><td>[sp]</td><td>[sp]</td><td></td><td></td><td></td><td></td><td> </td></th<>			カンラン石 (01)メッシュ組織のコア残存〔蛇紋石〕	[Ch1]	[sp]	[sp]					
Norm Norm </td <td rowspan="2"></td> <td>viere and vier</td> <td>単斜輝石 (CPX</td> <td>)</td> <td></td> <td></td> <td></td> <td>角状</td> <td></td> <td>柱状, [ch1]</td> <td></td> <td></td>		viere and vier	単斜輝石 (CPX)				角状		柱状, [ch1]		
Norm 1 Norm No		庫石類	斜方輝石 (OPX) 他形 [Chl→Liz→Ant]	(Liz)	CPXと固相分離(離溶), [Ch1]	亜角粒状	CPXと固相分離	CPXと固相分離	CPXと固相分離, 〔SP→Ch1〕	EN, CPXと固相分離, 〔Ch1〕	
Norm Ref Ref <td></td> <td>(1 HH</td> <td>アクチノ角閃石 (AC</td> <td>)</td> <td>柱状の集合体</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		(1 HH	アクチノ角閃石 (AC)	柱状の集合体							
No. No. <td></td> <td>角闪石3</td> <td>環 透角閃石 (TR</td> <td>)</td> <td></td> <td></td> <td>長柱状, 〔Ch1?〕 〈CPX〉</td> <td></td> <td></td> <td>角~亜角粒状</td> <td>亜角~亜円粒の集合</td> <td>〇鉱</td>		角闪石3	環 透角閃石 (TR)			長柱状, 〔Ch1?〕 〈CPX〉			角~亜角粒状	亜角~亜円粒の集合	〇鉱
No No Second Se	主	F - - 10	斜長石 (PL)		〈はんれい岩:ソシューライト化〉 [Br,Cb]						*
№ № № № № № № № № №	成分	長石梨	カリ長石 (K-F)								
Image: bold bold bold bold bold bold bold bold	物		ガーネット (GA)							Mn-rich(?) 〈ロジン石〉	
Image: bit												
Image Image <t< td=""><td></td><td></td><td>クロム鉄鉱 (CR</td><td>)他形(粒状):径 < 0.2 mm</td><td>他形(亜角~亜円粒状)</td><td>角~亜角粒状</td><td>角粒状</td><td>角粒状</td><td>角~亜円粒状</td><td></td><td>Antと共生 TC脈がメッシュ状に切る</td><td></td></t<>			クロム鉄鉱 (CR)他形(粒状):径 < 0.2 mm	他形(亜角~亜円粒状)	角~亜角粒状	角粒状	角粒状	角~亜円粒状		Antと共生 TC脈がメッシュ状に切る	
N N		不透明	磁鉄鉱 (MT) ダスト状(Liz中に散在)				[水酸化鉄鉱物]				
Image Image <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>**</td></t<>												**
N N												
P $\frac{1}{2}$ $\frac{1}$	変		リザルダイト (Liz) (01)	〈01,OPX・CPX〉メッシュ状(組織)	〈OPX, CPX〉メッシュ状 (組織)	<01, OPX〉メッシュ状(組織)	〈OPX〉メッシュ状(組織)	〈OPX〉メッシュ状 (組織)	for all l i d (dr. Mi)	メッシュ状 (組織)	
Phy $\frac{1}{\sqrt{3}}$		*** 蛇 へ	クリソタイル (Chr)	〈01,OPX・CPX〉メッシュ状(組織)	(OPX, CPX)	<01, OPX>	(OPX)	(OPX)	- [SP→Ch1] メッシュ状(組織)	^{【SP→Ch1】} ブレイデッド・マッド状(組 織)	
No Addressing No	鉱物	紋 S 石 P	アンチゴライト (Ant) 脈状 〈OP〉 [Liz-Chr]	晩期の脈(Liz・chrを切る)	〈OPX, CPX〉 ブレイデッド・マッド状 (組織)	晩期の脈	晩期の脈	晩期の脈 ブレイデッド・マッド状 (# 織)	^Ⅱ ブレイデッド・マッド状(組織)		
M I	Ê	類一	パイロオーライト (Pya) $\langle SP, Br \rangle$								0鉱
	次鉱		コーリンガイト (Coa) $\langle SP, Br \rangle$								
	物		滑石 (Tc) 〈OPX〉 , 脈状					亜角粒状		亜角~亜円粒状	
$ \frac{1}{2} 1$			水滑石 (Br) <01>, 脈状	メッシュ状(組織)〈01,Liz-chr〉	〈植物片〉 《Br > Cb》			(植物片) 微細針状の束/放射状(Fe-Br)			
$ \frac{1}{2} 1$	化学		トバモライト (TM)	[Cb] と共生		[Cb] と共生	針状	針状			
karbon x/2 / 2 / x / x / x / x x/2 / 2 / x / x / x x/2	沈殿物	CSH	ジャイロライト (GY)								
$ \frac{k_{\perp}}{y_{\perp}} \frac{y_{\perp} + y_{\perp}}{y_{\perp}} \frac{k_{\perp}}{y_{\perp}} \frac{y_{\perp}}{y_{\perp}} y$			スメクタイト※ (Sm)	「Pva・Coa・Brと#生]	[SP•Cb1] (PL)	[Pva_Br] (OPX_Sp)	「Sn Br」と共生 〈OPX〉	− − − − − − − − − − − − − − − − − − − −	「Pva・Coa・Br」と#牛	「Pva・Coa・Br」と#生	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		粘土 鉱物	クロライト (Ch1									•
g u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u <td>(基</td> <td></td> <td>NADT-JAK (Pra</td> <td></td> <td></td> <td>((SP Rr))</td> <td>(SP Br)</td> <td>((SP))</td> <td>((SD))</td> <td></td> <td></td> <td>•</td>	(基		NADT-JAK (Pra			((SP Rr))	(SP Br)	((SP))	((SD))			•
vec vec <td rowspan="7">当質・セメント・粒間孔隙)</td> <td>風化</td> <td>コーリンガイト (Coa</td> <td></td> <td></td> <td>((),)) //</td> <td>((SP Br))</td> <td>((SP))</td> <td>((SP))</td> <td></td> <td></td> <td></td>	当質・セメント・粒間孔隙)	風化	コーリンガイト (Coa			((),)) //	((SP Br))	((SP))	((SP))			
リント カ・ ・ 、 ガー ゴー ロー ロー ロー ロー ロー ロー ロー 、 ガー ・ <t< td=""><td>蛇紋</td><td></td><td>/</td><td></td><td></td><td>(01, D1//</td><td></td><td>(()) //</td><td></td><td></td><td></td></t<>		蛇紋		/			(01, D1//		(()) //			
ク・ ス粒 間 孔 院 //<		石類										
AL AL AL AL AL AL AL AL												1
原 一 / / / /			IDI J H'HI'N	· - /								1
ウベはな3回384100 COD COD // 「 COD // 「 「 円 円 円 円 回 <th< td=""><td></td><td>出融指矿物 (CL</td><td></td><td></td><td>〔古解五〕</td><td>(シデライト/ドロマイト)</td><td></td><td>微細~細粒集合体</td><td>資源~相対</td><td></td><td>•</td></th<>			出融指矿物 (CL			〔古解五〕	(シデライト/ドロマイト)		微細~細粒集合体	資源~相対		•
			100 FX + III 100 (UD	· - /		CV/#**1	C2774777247471		[SP,Chl, TM] との共生	1995 (1991 - 1712 T.L.	□ Ⅲ円性小	

〇鉱物の変質・風化特性 〔 〕 変質鉱物

- 〈 〉 先駆鉱物(初生鉱物)
- 《 》 風化鉱物 〇鉱物(Sm)の生成プロセス

※ Sm(3・八面体saponite) (i)パラワンオフィオライト起源 $\langle \text{OPX} \rangle$, $\langle \text{OPX}{\rightarrow}\text{Chl} \rangle$, $\langle \text{OPX}{\rightarrow}\text{Sp} \rangle$ (ii)デイサイト質 斜長石の斑晶起源 $\langle PL \rangle$

〇鉱物組織

- ※※ (i)Liz-Chr蛇紋石(メッシュ組織)
 - (ü)Ant蛇紋石(ブレイデット・マット組織;★織 状組織)

〇鉱物名

Chl	緑泥石
Cb	炭酸塩鉱物
EN	頑火輝石

4.3 中央パラワン島・Narra 地区における鉱物変遷モデルの考察

Narra 地区での Active Type のナチュラルアナログ有望サイトで掘削したトレンチ2より採取 したパラワンオフィオライト起源の砕屑性堆積物を対象にアルカリ地下水環境下でのサポナイト 形成・成長(熟成)と、変質プロセスを考察し、鉱物変遷モデルについて検討する。特に、アルカ リ変質反応により生成された変質鉱物の形成環境(地球化学的場<状態>)・鉱物特性(鉱物組み合 わせ・分布・組成・組織・共生関係など)を明らかにし、その形成プロセスについて考察する。 4.3.1 トレンチ2採取試料の岩石鉱物学的特徴

ここでは、XRD、µ-XRD、XRF、偏光顕微鏡観察、EPMA (SEI / BEI)、FESEM-EDS のすべ ての分析機器による分析に供した試料(基盤岩 1 件: PWT02-15-Rh-020、砕屑性堆積物 7 件: PWT02B-15-C2-2-002, PWT02B-15-C2-1-001, PWT02B-15-C1-001, PWT02-15-Rh-016, PWT02-15-Rh-015, PWT02-15-Rh-013, PWT02-15-Rh-006)を選定して考察する。これらの試料 の採取位置を図 4.3.1-1 に改めて示す。

特に、XRD 回析・偏光顕微鏡観察・EPMA 分析による鉱物学的特徴(初生主要鉱物・副成分鉱物・変質鉱物の鉱物組み合わせ・分布・鉱物組成、組織、共生<産状>)などを整理し、表4.3.1-1 に取りまとめた。 なお、これらの試料の岩石鉱物学的特徴などについては、表4.2.7-1 に示す。 これらのとりまとめ表と、EPMA、FESEM-EDS による微細な構造・組織などのデータによる総 合的な解析により、サポナイト形成とその地球化学的環境(場)を考察し、変質反応による鉱物変遷 モデルを検討する。

図 4.3.1-1 分析試料の試料採取位置(トレンチ2)

岩質			砕屑性堆積物(Clastic Sediments)					^゚ラワンオフィオライト (基盤岩:ハルツパージャイト)			
	試彩	科番号	PWT02-15-Rh-006 (Rh-006)	PWT02-15-Rh-013 (Rh-013)	PWT02-15-Rh-015 (Rh015)	PWT02-15-Rh-016 (Rh-016)	PWT02B-15-C2-2-002 (C2-2-002)	PWT02B-15-C2-1-001 (C2-1-001)	PWT02B-15-C1-001 (C1-001)	PWT02-15-Rh-020 (Rh-020)	
鉱物構成	鉱 物 名	鉱 物 組 成									1. <i>ba</i> i
	0L	[Fo]						0	0	 〇〇〇 (未変質かんらん石/Foge) 	XRD (□:粉末(不定方位)/■:定方位-EG処理)
	OPX	[En]	• •	- O	-	- O O	OO (Fe-rich)	□ 0 (Fe=rich)	0 0		-定性的な量:□[ごく少量]/□[少量]/□[多い]
	CPX	[Diop]			0	 (チャルマック成分を含 	0	0			Petrography (O:鉱物相/〇:基質)
erals		[Trem]	0	0	0 0	- O	• •	- O		• •	BPMA (◎ :鉱物相/◎:基質)
t Min	110	[Par]									
i tuen	AMP	[Tsh]									
Const		[Ac]							0		
	OD	[Mag]					0			0	
	OF	[Cr-Spin]	Ø	٥	00	00	00	00	00	00	
	0thers						[Plag] [Qz]	[Plag:ソシュール石化]			
		[Liz]			• o	O (Fe-rich)	O (Fe-rich)	<u>п о</u>	0 0	묘ㅇ	Abbreviation;
		[Chry]			0	O (Fe-rich)	O (Fe-rich)	0	0	0	OL(かんらん石)・Fo(苦土かんらん石)、OPX(斜方輝石)・En(碩火輝石)、
	SP	[Ant]				0	0	0	0	0	CPX(単斜輝石)・Diop(透輝石)、AMP(角閃石)・Trem(透閃石)・
erals)		[Pyr]				0	0	0			Par(パーガス閃石)・Tsh(ツェルマク閃石)・Ac(緑閃石)、Gar(柘榴石)、
y Mine		[Coa]				0	0				0P(不透明鉱物)・Mag(磁鉄鉱)・Cr-Spin(クロム鉄鉱), Plag(斜長石),
ondary		[Br]				0	0	0	0	0	9z(石英), SP(蛇紋石)・Liz(リザルダイト)・Chrv(クリソタイル)・
g Seco		[Tc]			0				0	0	Ant(アンチゴライト)・Pyr(パイロオーライト), Coa(コーリンガイト),
ludin		[Ch1/Sm]									Tc (タルク:滑石), Br (ブルーサイト:水滑石),
(Inc.		[Sm]		0							CLAY(粘土鉱物)・Ch1/Sm(緑泥石・スメクタイト混合層)・
lineral	CLAY	[Sap] (3・八面体型Sm)	٥	0	■ ©	■ ©	٥	0	0	0	Sm(スメクタイト)・Sap(サポナイト)・Nont(ノントロナイト)・
red b		(2・八面体型Sm)								0	Illite(イライト)・Kao(カオリナイト),
Alte		[K-Fe Illite]					0				ZEO(沸石)・Cpt(斜プチロル沸石)・Heu(輝沸石)・Lau(濁沸石),
		[Kao]									CSH(ケイ酸カルシウム水和物)・Tob(トバモライト)・Gyr(ジャイロライト)
	ZE0	[Cpt, Heu]									CB(炭酸塩鉱物)・Ca1(方解石)・Ara(霰石)・Sid(菱鉄鉱)
		[Lau]									
	CSH	[Tbr]	<u> </u>	©		<u> </u>	<u>□ ○</u>	• • • • • • • • • • • • • • • • • • •	□ O	(Al-free)	
Phas		[Gyr]				(Na•K-rich)					
tated		[Ca1]			(Fe > Ca)						
Precipit	CB	[Ara]						_			
		[Sid]						0			
	0thers	[Gar]					Ø				

表 4.3.1-1 トレンチ2 試料の XRD・偏光顕微鏡・EPMA 分析による岩石鉱物学的特徴

4.3.2 地球化学的環境としてのアルカリ地下水の地球化学的特性

Narra 地区のアルカリ湧水の起源(成因)は、パラワンオフィオライト超塩基性複合岩体を構成しているハルツバージャイトと地下水との相互作用過程で生じる蛇紋岩作用と密接に関与している。当地区でのアルカリ泉源(pH 11.1)から東へ約 120m に位置するトレンチ2の壁面から現在も湧水(pH 11.3)している。

また、砕屑性堆積物中に自形・柱状の C-S-H 水和物(トバモライト:一部、ジャイロライト成 分を固溶)が肉眼でも容易に観察される。これらの C-S-H 水和物は、低温のアルカリ環境下で生 成されたものと指摘されている[1]。これらのことからトレンチ2壁面からの湧水(アルカリ性 < pH~11.3>、温度<30~50℃>)は、パラワンオフィオライト超塩基性岩体内での蛇紋岩化作用に より形成・進化しながら断裂系(割れ目集中帯など)に沿って上昇し、トレンチ2の母岩である 砕屑性堆積物層に現在も直接浸水・湧出している。

次に、これらのアルカリ湧水の水質と地球化学的・物理学的パラメーターについて整理する。 砕屑性堆積物に湧水・湧出しているアルカリ地下水の地球化学的・物理学的パラメーターは表 2.5.2・2~表 2.5.2・3 に示す。このアルカリ湧水(アルカリ泉源・トレンチ2の壁面からの湧水) は、典型的な Ca²⁺⁻OH·タイプの水質で、還元環境下にあり、主要な溶存イオン種として、Mg²⁺ (~0.12 ppm)・Si(0.6~1.0 ppm)・Al³⁺(0.007~0.008 ppm)・K⁺(~2.8 ppm)、そして、HCO₃(9.7~10.16 ppm)の濃度は低いが、Ca²⁺(34.9~43.6 ppm)・Na⁺(~41.6 ppm)・Cl⁻(25.7~27.8 ppm)の濃度は比 較的高い数値を示す。特に、高 Na・Cl 濃度は化石海水との混和の影響が示唆される。pH は、ア ルカリ泉源 (Narra3-1)では 11.1、トレンチ2の壁面(トレンチ2はアルカリ泉源から東下流へ約 120m に位置)からの湧水では 11.3 である。このように pH の変化が小さいことから、降雨水な どの表層水による希釈の影響は無視できる。さらに、この両者の水質パターンが酷似しているこ とから、トレンチ2壁面からのアルカリ湧水は、源泉のものと連結した流路であることが示唆さ れる。

従って、Narra 地区のトレンチ2において、床面のパラワンオフィオライト(ハルツバージャ イト)基盤岩と、その直上に累重している砕屑性堆積物に浸出・反応した地下水(溶液)は、上記 の地球化学的プロセスにより形成・進化したアルカリ地下水(pH 11.3)である。

また、砕屑性堆積物には、特異的な C-S-H 水和物(主にトバモライト、少量の Al を固溶する ジャイロライト成分を固溶)が自形・柱状で観察される。この C-S-H 水和物の産状がアルカリ地 下水環境を具備する重要な証拠になる。

これらのアルカリ湧水はこれまでのルソン島のナチュラルアナログにおいても、ザンバレスオ フィオライトと地下水との相互作用により形成されたアルカリ湧水と共通的な地球化学的性質を 示し、特に、溶存 Mg イオンが極端に少量で、Ca・Na 濃度に富む Ca²⁺⁻OH⁻タイプの水質、還元 環境、発熱(湧水温度:~30℃)、溶存ガス(水素・メタン)などで特徴づけられる。

これらのことから、アルカリ変質反応に寄与した溶液組成は、オフィオライトの初生鉱物であ る斜方輝石・単斜輝石・カンラン石・角閃石・Cr-スピネルおよび、蛇紋石・緑泥石と、流紋岩質 ~石英安山岩質岩屑の石英・斜長石斑晶である。これらの鉱物からの選択的な溶出可能な成分と しては、前者から Ca, Mg, Fe, Si, (Al)、後者からは Si, Al, Na, (K)である。従って、アルカリ変 質反応により形成される鉱物学的変遷については、これらの溶出元素(溶存イオン種)の物質移動(蛇紋岩化過程での溶質移動)における先駆鉱物との変質反応などによる地球化学的場の状態変化(変数)を追跡・理解し、必要に応じて、副成分鉱物や変質鉱物の関与についても併せて考察することが必要である。

特に、スメクタイトの鉱物変遷(変質反応プロセス<反応経路>)には、溶液中の Al, Si と副次 的に Ca, Mg, Fe 濃度・イオン強度・化学種・濃度・活動度などを考慮することが必要である。ま た、C-S-H 水和物の沈殿反応については、低温環境での Ca / Si 濃度比 (CaO / SiO₂比)・飽和度 などが重要である。合わせて、C-S-H 水和物と共沈関係が観察・示唆されるサポナイトの形成に ついては、アルカリ地下水環境下での C-S-H 水和物の沈殿反応との係わりに注視してサポナイト の形成プロセスを考察することが必要である。 4.3.3 パラワンオフィオライト起源の砕屑性堆積物の岩石鉱物学的特性

今年度のNarra 地区の調査では、ベントナイト緩衝材の主成分鉱物であるモンモリロナイトの アルカリ地下水環境下での長期的変質反応がみられる、Active Type のナチュラルアナログサイ トが特定できることが期待されたが、モンモリロナイトは同定されず同じスメクタイト族である サポナイトが同定された。ここでは、アルカリ地下水環境下でのサポナイト形成プロセスと地球 化学的場(状態)の変化に伴う鉱物変遷モデルを検討・考察する。

一般的であるが、オフィオライトのような超塩基性岩が強力な蛇紋岩化作用により変質した蛇 紋岩にはモンモリロナイトが生成されないことが指摘されている。その理由は、高温環境で、バ ルク組成としての Si と Al の不足のために化学量論的に形成できる地球化学的場でないことが指 摘されている[2][3]。

但し、サポナイトは蛇紋石と共存し、交代作用や細粒の連晶(Intergrowth:異種結晶構造)と して産状することが報告されている[4]。この組織の産状を示すスメクタイト(サポナイト)の形 成は、蛇紋岩化作用が一時期停滞し、その結果、蛇紋石の形成が緩和され、進化したアルカリ地 下水との変質反応によって形成されたものと示唆している。また、サポナイトは続成作用により、 3・八面体型サポナイト/Fe サポナイト、2・八面体型ノントロナイトと Fe-バイデライトが形成 されることが報告されている[5]。

さらに、蛇紋岩化した超塩基性岩と地下水との相互作用により形成されたアルカリ地下水と河 川系堆積物との変質反応で、Fe²⁺ - Mg²⁺サポナイトの形成が報告されている[6][7]。これらのサポ ナイト含有の堆積物(母岩)は、蛇紋岩化作用の影響を受けた複数のオフィオライト岩質の風化・ 運搬・混合・堆積した砕屑性堆積物で特徴づけられ、オフィオライト基盤岩との境界部に胚胎し ていることが共通した岩石鉱物学的および地質環境を示すことが指摘されている。

Narra 地区の地質環境および岩石学的特徴については、中央パラワン島を構成するパラワンオフィオライト(基盤岩)の初生鉱物は、表 4.3.3・1 に示すように、主に苦土カンラン石(Fogo Falo)、斜方輝石(En: 頑火輝石)と、ごく少量の単斜輝石(Dip: 透輝石)、角閃石(Trem: 透角閃石、 Par:パーガス角閃石)、Cr-スピネル・磁鉄鉱から構成されている。

また、支配的な変質作用として、苦鉄質鉱物(カンラン石と斜方輝石)の蛇紋岩化作用が観察 されるが、特に、カンラン石が未変質な形状・組織を示すことから、基盤岩の蛇紋岩化作用の程 度が著しいものでないことが言える。この初期の蛇紋岩化作用は、低温型リザダイト、クリソタ イルで代表され、その後形成された少量の脈状の高温型アンチゴライトが観察される。これらの 蛇紋石族は、二次的な風化・変質作用により、パイロオーライトとコーリンガイトの鉱物も観察 される。さらに、蛇紋岩化作用に伴う副次的生成鉱物としては、タルク(滑石)、ブルーサイト(水 滑石)、方解石、磁鉄鉱が共生している。

一方、蛇紋岩化作用過程に随伴したと考えられる初生鉱物の変質反応による鉱物組成変化や変 質生成物(変質鉱物)については、前者では、斜方輝石のFe-型化(Fs(Ferrosilite:フェロシラ イト(鉄珪輝石))成分に富む傾向)や蛇紋石のCa-Mg成分からFe成分へ変化する傾向がある。 角閃石は、透角閃石からエデナイトとチェルマカイト置換が複合したパーガサイトに組成変化し ている。後者の変質鉱物は苦鉄質鉱物の緑泥石化作用でその組成変化は、Ca-FeとMg-Caが見ら れるが、Ca組成変化が著しいことが特徴である。このCaに富む領域は、微細なCa-鉱物が潜在 しているように示唆される。また、少量であるが、緑泥石/スメクタイト混合層・イライトの存在 が想定されそうである。

Narra 地区のトレンチ2でサポナイトの産状が観察される砕屑性堆積物は成因的に2つの異な る起源のもと形成されたものと考えられる。一つは、パラワンオフィオライトの岩片・その複数 鉱物片で構成される砕屑性堆積物である(パラワンオフィオライト起源:主にハルツバージャイ ト)。これらは、比較的粗粒な鉱物間を充填する基質があり、苦鉄質鉱物(斜方輝石・カンラン石・ 角閃石)や蛇紋石・緑泥石などの変質鉱物である。もう一つは、少量ではあるが石英・斜長石斑 晶である(流紋岩質~石英安山岩質噴出岩起源:中性~酸性凝灰岩)である。サポナイトの形成 には化学量論的に Si, Al と Mg, Ca の供給鉱物の貢献が不可欠であるが、前述したようにモンモ リロナイトが形成する環境に比べると Si, 特に Al に乏しく、そのような環境であるためサポナイ トが形成したともいえる。

Lithology		Primary	Water - Roo	ck Interaction	Reaction with Hyperalkaline Groundwater	
		Mineral [初期構成鉱物]	Serpentinization	Low-Temparature Diagenesis Alteration		
Travertine [石灰華:化学 沈殿物] Carbonate [炭酸塩岩]		凡例 Sap:サポナイト< Q:石英 <quartz> Plagioclase:斜長石 O:かんらん石<olivine> Opx:斜方輝石<orthopyn Cpx:単斜輝石<clinopyro Amph:角閃石<amphibol< td=""><td colspan="2">Saponite> Nont: ノントロナイト<notronite> Mag: 磁鉄鉱<magnetite> Serp: 蛇紋石<serpentine> Bru: ブルーサイト、水滑石<brucite> roxenes> Tal: タルク、滑石 oxenes> Chl: 線泥石<chloite> le> Cal: 方解石<calcite></calcite></chloite></brucite></serpentine></magnetite></notronite></td><td colspan="2">Calcite Calcite (Aragonite)</td></amphibol<></clinopyro </orthopyn </olivine></quartz>	Saponite> Nont: ノントロナイト <notronite> Mag: 磁鉄鉱<magnetite> Serp: 蛇紋石<serpentine> Bru: ブルーサイト、水滑石<brucite> roxenes> Tal: タルク、滑石 oxenes> Chl: 線泥石<chloite> le> Cal: 方解石<calcite></calcite></chloite></brucite></serpentine></magnetite></notronite>		Calcite Calcite (Aragonite)	
		Cr-Spinel: クロムスヒネル	Aragonite: J	アラコナイト、嵌石	溶存イオン種	Smectite (Saponite)の形成
Clastic Sediment [砕屑性堆積物]	phiolite Derivatives Pyroclastics רフィオライトから派生した堆積物 [火山砕屑物]	(Qz) (Plagioclase)* Ol* Opx** (Cpx)* (Amph)* [Cr-Spinel] (Magnetite)]	*は高アルカリ地下水との 元の鉱物 Sepentine* Brucite Talc Magnetite	D反応でサポナイトを生成した Chlorite	$(Si^{4+}) (Ca^{2+}) (Al^{3+}) Mg^{2+} Ca^{2+} Si^{4+} (Al^{3+}) Fe^{2+} $	Saponite (tri-octahedral smectite) $[3\cdot/\Box f H Z \times 2554+1]$ $[X_{0.33}(Mg_3)(Al_{0.33}Si_{3.67})O_{10}(OH)_2]$ C-S-H Fe-Saponite (tri-octahedral smectite) $[X_{0.33}(Mg,Fe)_3(Al_{0.33}Si_{3.67})O_{10}(OH)_2]$ C-S-H
Palawan Ophiolite (Harzbergite) [ハルツハージャイト:創方 輝石かんらん岩]		Ol Opx (Cpx) (Amph) Cr-Spinel (Magnetite)	Sepentine Brucite Talc Magnetite	Chlorite		(Nontronite) (Saponite) (C-S-H)

表 4.3.3-1 Narra 地区トレンチの砕屑性堆積物のスメクタイトの生成に関する鉱物変遷過程

4.3.4 アルカリ地下水環境下でのサポナイトの形成プロセスとサポナイト形成環境に関わる構造発達史

今年度調査した Narra 地区の砕屑性堆積物からは、スメクタイト族であるサポナイトが同定さ れた。一般的には、スメクタイト族のモンモリロナイトやサポナイトの形成には、Si-Al や Mg-Fe 成分が必要である。従って、これらの鉱物形成に密接に関与する鉱物は、パラワンオフィオライ ト起源であるハルツバージャイトを構成する斜方輝石・単斜輝石・カンラン石・角閃石・磁鉄鉱・ Cr-スピネルと二次的変質鉱物である蛇紋石・緑泥石と、火山噴出岩起源である石英・斜長石であ る。これらの鉱物とアルカリ溶液との変質反応により、サポナイト形成が生起するものと考えら れる。

ここでは、上記鉱物の変質反応により形成されたものと考察されるサポナイトに着目し、鉱物 間の形状・組織・共生関係などに基づき、アルカリ地下水環境下でのサポナイトの形成プロセス、 サポナイトが形成環境に関わる地質構造学的発展とその環境でのサポナイトの鉱物学的変遷モデ ルを考察する。

(1) サポナイトの形成プロセス

サポナイトの形成プロセスを考察するために、偏光顕微鏡・EPMA/FESEM・µ-XRD, XRD, XRFによるサポナイトの産状(鉱物組み合わせ・分布・組織・共生関係など)による鉱物学的 特徴と鉱物組成による鉱物化学的特徴に特化して考察する。特に、サポナイトの産状について は、鉱物・組成・分布・組織・共生などの解析が不可欠であるために EPMA(SEI;二次電子 像で SEM と同画像、SEM:後方散乱電子像)/FESEM による分析が有効である。

偏光顕微鏡・EPMA/FESEM 観察により、アルカリ地下水環境下でのサポナイトの形成には、 ①苦鉄質鉱物(主に、斜方輝石で、少量の単斜輝石と極少量のカンラン石・角閃石・蛇紋石) の置換プロセス(図 4.3.4-1~図 4.3.4-8)で、その産状は部分的交代と全面的置換(元の結晶 の骨格維持)である固相変化(Transformation)である。後者のケースでは先駆鉱物である苦鉄 質鉱物の仮像として観察される。②-(i)鉱物(苦鉄質鉱物・緑泥石)粒子間のマトリックス(空 隙・微小割れ目・劈開)の充填プロセス(図 4.3.4-3/図 4.3.4-6)と、②-(ii)C-S-H 水和物(炭 酸塩鉱物<主に方解石>も伴う)と共沈プロセス(図 4.3.4-1/図 4.3.4-2)で示唆される溶解-沈殿反応(Neoformation)が考えられる。 二次電子線像(SEI)

反射電子線像(BEI)

図 4.3.4-1 C-S-H と共生するサポナイト (PWT02-15-Rh-016)

図 4.3.4-2 C-S-H と共生するサポナイト (PWT02B-15-C2-2-001)

二次電子線像(SEI)

反射電子線像(BEI)

図 4.3.4-3 粒子間に成長する Fe-サポナイト (PWT02B-15-C2-2-001)

 $3Opx + 2H_2O = Serp + SiO2(aq)$

図 4.3.4-4 斜方輝石を置き換えるサポナイトと C-S-H と共生するサポナイト (PWT02-15-Rh-016)

 $2Cpx + Bru + 2H_2O = Sap + 2Portlandite$

図 4.3.4-5 単斜輝石から成長するサポナイト (PWT02-15-HU-001)

 二次電子線像(SEI)
 反射電子線像(BEI)

 Amphi(Se)
 Amphi(Se)

 $2Ol + 3H_2O = Serp + Bru$ $2Cpx + Bru + 2H_2O = Sap + 2Portlandite$

図 4.3.4-6 単斜輝石を置き換えるサポナイトと粒子間に成長するサポナイト (PWT02-15-Rh-016)

Amph + Bru + $2H_2O$ = 2Sap + 2Portlandite

図 4.3.4-7 角閃石からのサポナイトの生成 (PWT02-15-Rh-016)

反射電子線像(BEI)

反射電子線像(BEI)

 $2O1 + 2SiO_2 + 2H_2O = Sap + Bru$

(2) サポナイト形成環境の地質構造学的発達史

Narra 地区の砕屑性堆積物のスメクタイト(鉄サポナイト)生成に関する鉱物変遷過程の考察(表 4.3.3-1 参照)に基づき、パラワンオフィオライトの地質構造学的発展と砕屑性堆積物のスメクタイトの形成モデルを時系列で図 4.3.4-9~図 4.3.4-13 に示す。

図 4.3.4-9 に示すように、中央・南部パラワン島の基盤岩であるパラワンオフィオライト(ハルツバージャイト質超塩基性岩体)が、広域的テクトニクス変遷プロセスのもと陸性堆積物 (Panas 累層、Panadian 累層)に押しかぶさるように、33~23 Ma に定置・隆起し、陸地化 が始動した。

おそらくその前後に、パラワンオフィオライトと天水起源と思われる地下水との相互作用に より蛇紋岩化作用が活発化し、その結果、蛇紋石、滑石、水滑石、磁鉄鉱等が沈殿するととも に、高アルカリ性(pH > 11)地下水が形成され、その組成が進化しながら断裂系に沿って湧 水した(図 4.3.4-10)。

その後、定置したパラワンオフィオライトは、風化→浸食→移動→(運搬)→堆積サイクルを 繰り返しながら、砕屑性堆積物を累積していった。この砕屑性堆積物は主にパラワンオフィオ ライト起源のものと、少量ではあるが流紋岩質~石英安山岩質噴出岩の石英・斜長石の斑晶か ら構成されている。この堆積物は円磨度の少ない苦鉄質鉱物礫を含有することから、遠くから 運搬されたというより、現地性のものと解釈される。また、断裂系に沿って湧水した高アルカ リ地下水の湧水口には少量の随伴する炭酸塩沈殿物(トラバーチン)が堆積した(図 4.3.4-11)。

さらにその後、砕屑性堆積物と蛇紋岩化作用により浸出した高アルカリ地下水との相互作用 による粘土化の過程で、砕屑性堆積物に含有する斜方輝石、少量の単斜輝石、極少量のカンラ ン石・角閃石・蛇紋石のアルカリ変質によりサポナイトが生成した。また、アルカリ浸出地点 で発達したトラバーチンが、沈殿後荷重などによる圧密作用を受け、下部の方ほど炭酸塩岩へ の岩石化が進展していった(図 4.3.4-12)。また、この炭酸塩岩や砕屑性堆積物中で採取した 貝や木根等から、その堆積環境は海水の干満の影響を受ける沿岸域と考えられる。

図 4.3.4-8 かんらん石を置き換えるサポナイト (PWT02-15-Rh-020)

現状は図 4.3.4-13 に示すように、高アルカリ地下水は湧水地点 (Narra3-1) を源泉として、 トレンチ1、2においても壁面より高アルカリ地下水が湧水し、降雨水との混合はほとんどな いものと考えられる。

図 4.3.4-9 パラワンオフィオライトの地質構造学的発展と砕屑性堆積物のスメクタイトの形成 モデル(I. パラワンオフィオライトの定置)

図 4.3.4-10 パラワンオフィオライトの地質構造学的発展と砕屑性堆積物のスメクタイトの形成 モデル(II. パラワンオフィオライトでの蛇紋岩化作用)

図 4.3.4-11 パラワンオフィオライトの地質構造学的発展と砕屑性堆積物のスメクタイトの形成 モデル(III. パラワンオフィオライトの隆起-浸食-移動-堆積(砕屑性堆積物) とアルカリ地下水に伴う炭酸塩(トラバーチン)の沈殿)

図 4.3.4-12 パラワンオフィオライトの地質構造学的発展と砕屑性堆積物のスメクタイトの形成 モデル(IV. 砕屑性堆積物のアルカリ変質によるスメクタイト生成と炭酸塩沈殿物 の圧密作用による岩石(炭酸塩岩)化)

図 4.3.4-13 パラワンオフィオライトの地質構造学的発展と砕屑性堆積物のスメクタイトの形成 モデル(V.現在も蛇紋岩作用による高アルカリ地下水が生成し、砕屑性堆積物に浸 出(Active Type のナチュラルアナログ))

(3) サポナイトの鉱物変遷モデル

ここでは、サポナイト形成プロセスとその地球化学的環境(場)を考察し、サポナイトの鉱物変遷パスを明らかにして、その鉱物変遷モデルの作成を試みる。

最初に、アルカリ地下水の地球化学的環境であるが、まず流動系を考慮した水理地質構造場 (水理場)としての流路はアルカリ泉源(pH 11.1)からの湧水がトレンチ2内に連結していて、現 在もアルカリ湧水(pH 11.3)が浸出している。この水理場としての連結証拠は、水質パターンが Ca-OH タイプで、主要な物理化学的パラメーターが酷似しているからである(図 2.5.2.20)。

さらに、注目すべきことは、トレンチ2の砕屑性堆積物中に自形・柱状の C-S-H の沈殿相 (固相)として肉眼的に観察できることである。この事実は、まさに低温・アルカリ環境を示 す地球化学的場を長期的に維持していることにもなり、現在もサポナイトの形成・熟成および、 変質反応に係わりあっている状態にあるということである。

次に、砕屑性堆積物中のサポナイト形成の地球化学的場(地質環境)とその場の状態変化を 考慮して、アルカリ変質反応による鉱物変遷モデルの考察を試みる。

アルカリ地下水の形成・進化とサポナイトの変質反応による鉱物学的変遷モデルを作成する ためには、サポナイト形成の地球化学的場としての溶液化学特性とその状態変化を考察してみ る。

まず、サポナイト形成に深く関与する鉱物とアルカリ地下水との相互作用(溶解)による主要な溶液(地下水)タイプは、①オフィオライト起源の「Ca²⁺-Mg²⁺タイプ [Ca-Mg-Fe-Al-(OH)]、 ②流紋岩質~石英安山岩質噴出岩起源の「Ca²⁺-Si⁴⁺タイプ [Ca-Si-Al-(Na+K)-(OH)]」と、新た な C-S-H 水和物の沈殿相を促す③Ca-Si-OH タイプ[Ca-Si-Al-(OH)]が示唆される。このよう な地球化学的環境下では、①の苦鉄質鉱物(斜方輝石・単斜輝石・角閃石・カンラン石)、変質 鉱物(蛇紋石・緑泥石)と Cr-スピネルおよび、②斜長石が低温状態(続成作用が進展できる 温度)のもとアルカリ地下水との変質反応(続成作用も含む)などが進展した。その結果、① と②の母岩である砕屑性堆積物で同定された 3・八面体型サポナイト→3・八面体型 Fe サポナ イトへの鉱物変遷プロセスになったものと示唆される。

さらに、今年度観察された C-S-H と共沈関係(図 4.3.4-1/図 4.3.4-2)にあると考えられるサポナイトの産状である。この事実は、アルカリ溶液からの沈殿相として新たに形成されたものと示唆される。偏光顕微鏡や EPMA などの観察から、2 タイプの地球化学的プロセスが考えられる。1つのプロセスは、Ca-Si-(Al)-(OH)の過飽和溶液からの沈殿、2 つのプロセスは、ブルーサイトや埋没木根骨格への化学的沈殿である。

但し、C·S·H の化学的沈殿相は、これらのサポナイトの形成に寄与されたにも拘わらず、過 剰な溶存 Ca²⁺・Si⁴⁺と(OH⁻) 濃度により沈殿し、恐らく低温環境での化学沈殿相として核の発 生ー成長-熟成(オストワルド熟成)段階のもと、主にトバモライトで特徴づけられる自形で 柱状結晶に成長したと考えられる。 4.4 まとめ

パラワン島 Narra 地区のアルカリ地下水が浸出しているトレンチ2の壁面から採取した粘土質 の砕屑性堆積物からの5試料(そのうちオフィオライト基盤岩の岩石試料が1試料)とコアドリ ルで採取した基盤岩に近い礫を含む粘土質の砕屑性堆積物からの4試料について、FESEM観察、 EPMAによる元素マッピング観察、鉱物のスポット定量分析、鉱物のμ-XRD分析を実施し、アル カリ変質プロセスに関わる鉱物組成や化学組成の変遷過程について調べた。

パラワン島の Narra 地区のトレンチで確認された pH11.3 のアルカリ環境下にある砕屑性堆積 物のスメクタイト(サポナイト)は、C-S-H との共生関係から、現在も見られる低温蛇紋岩化作 用による高アルカリ地下水との反応によって形成されたと考えられる。その生成過程では、砕屑 性堆積物の超塩基性岩起源のかんらん石、斜方輝石、少量の単斜輝石、角閃石と蛇紋石及び少量 の石英、斜長石と高アルカリ地下水との反応であり、かんらん石、輝石に加え Cr-スピネル、マグ ネタイト等のマフィック鉱物から供給される Fe によって鉄サポナイトが生成したものと示唆さ れる。

スメクタイトが高アルカリ地下水によって生成するこのサイトの地質構造学的発展は、①パラ ワンオフィオライト(ハルツバージャイト質超塩基性岩体)の定置・隆起、②蛇紋岩化作用がに 伴う蛇紋石、滑石、水滑石、磁鉄鉱等の沈殿と高アルカリ性(pH>11)地下水の形成、③パラワ ンオフィオライトの風化→浸食→移動→(運搬)→堆積サイクルによる砕屑性堆積物の累積と炭 酸塩沈殿物(トラバーチン)の堆積、④砕屑性堆積物に含有する斜方輝石、少量の単斜輝石、極 少量のカンラン石・角閃石・蛇紋石のアルカリ変質によるサポナイトの生成と酸塩沈殿物の圧密 作用による岩石(炭酸塩岩)化、⑤現在の環境(蛇紋岩化作用による高アルカリ地下水の生成と 砕屑性堆積物への浸出が継続)と解釈することができる。

このような天然現象が TRU 廃棄物の地層処分のどのナチュラルアナログといえるのか。 Narra 地区でみられるスメクタイトにかかわる長期現象は、図 4.4.1-1 に示す Fossil Type のナチュラル アナログのように、火山性砕屑物を起源とし続成作用でできたベントナイトに、ベントナイト化 後に高アルカリ地下水が過去に浸出したのではなく、アルカリ溶液によりスメクタイト(サポナ イト)が生成したものである。したがって、TRUの地層処分における充填材等のセメント系材料 の高アルカリ浸出水に廃棄体容器等から鉄成分が付加され、それがベントナイトとの長期相互作 用どうなるのか(アルカリ変質による鉱物変遷、変質による緩衝材の機能への影響)に関するナ チュラルアナログとして解釈するのは困難である。しかしながら、この Narra 地区のサイトでみ られるスメクタイトが生成する環境は、高アルカリ溶液がモンモリロナイトを溶解させ非膨潤性 の鉱物である沸石等に変質させるだけでなく、モンモリロナイトとと同じ膨潤性等の特性を有す る別のタイプのスメクタイト(鉄サポナイト)が形成されることを意味し、当然そのような環境 ではこの鉄サポナイトは長期間安定に存在する。したがって、Narra 地区の天然現象は、TRU の 地層処分場の充填材等のセメント系材料の高アルカリ浸出水に廃棄体容器等から鉄成分が付加さ れることが想定される人工バリアシステムで、どのような条件でサポナイトが生成し、スメクタ イトが安定に存在することになるのかの手がかりとなり得る、絶好のナチュラルアナログである とだと位置づけられることができる。

さらに、このナチュラルアナログは Active Type であることから、①アルカリ変質反応に寄与 する高アルカリ地下水は、低温蛇紋岩化作用により現在も湧出しているため、その地球化学特性 を現地調査により直接把握できる、②炭酸塩や堆積物の年代測定が可能であり、アルカリ地下水 との反応時間が推測できる、という利点もあげられる。

また、このサイトでみられるサポナイトが人工バリアシステムのナチュラルアナログというた めには、苦鉄質(Mafic)の構成鉱物とアルカリとの反応によってだけでなく、珪長質(Felsic)の鉱物 が多く含まれる人工バリアのベントナイト緩衝材のアルカリ変質でも生成するかが重要なポイン トであるが、少なくともモンモリロナイトが主要鉱物であるベントナイトとアルカリ地下水との 反応により、直下の玄武岩ガラスからアルカリで溶脱した鉄成分も加わり、二次鉱物として鉄サ ポナイトが生成したが、Fossil Type であるルソン島の Saile 鉱山のナチュラルアナログで確認し ている(この数 mm の変質ベントナイトでしか鉄サポナイトはみられない)。このことから、アル カリ環境下での鉄サポナイトの生成は人工バリアシステムにおいても生じることが十分予測され、 このナチュラルアナログにおいて、鉄ーアルカリーベントナイト相互作用の地球化学計算による 評価も合わせて評価することが重要な課題である。

図 4.4.1-1 処分環境とのアナログ性

[参考文献]

[1] 平尾宙(2005):トバモライト. セメントの性質 29. C³クリップボート[セメント化学編], 社団法人セメント協会, 65-66.

[2] Evance, B.W. (2008): Control of the products of serpentinization by the Fe²⁺ Mg-₁ Exchange potential of olivine and orthopyroxene. Jour. of Petrology, **49**, 1873-1887.

[3] Evance, B.W., Hattori, K, and Baronnet, A. (2013): Serpentinite: What, Why, Where. Elements, **9**, 99-106.

[4] Schwarzenbach, E.M., Fruh-Green. G.L., Bernaconi, S.M., Alt, J.C. and Plas, A. (2013): Serpentinization and the incorporation of Carbon: A study of two ancient peridotite-hosted hydrothermal systems. Chem. Geol, **351**, 115-133.

[5] Bristow, T.F. and Kennedy, M.J. (2008): Mechnisms and Conditions of Saponite Production in the Precambrian Doushantuo Formation.Martian Phyllosilicates. Recorders of Aqueous Processes.

[6] Boschetti, T. and Toscani, L. (2008): Springs and streas of the Taro-Ceno Valleys (Northern Apennine, Italy): Reaction path modelling of waters interacting with serpentinized ultramafic rocks. Chem. Geology, **257**, 76-91.

[7] Manuella, F.C., Carbone, S., and Barreca, G. (2012): Origin of Saponite-Rich Clays in a fossil Serpentinite-Hosted Hydrothermal System In The Crustal Basement Of The Hyblean Plateau (Sicily, Italy). Clays and Clay Minerals, **60**(1), 18-31.

第5章 地球化学シミュレーションモデルによる変質解析

5.1 目的

5.1.1 これまでの背景

TRU 廃棄物処分場ではセメント系材料とベントナイトが接して設置される可能性が高い。その ため、実際の処分場を模擬したセメントーベントナイト接触試料に対して数多くの変質加速実験 が実施されてきた。また、その実験結果を再現することを目的として一次元反応輸送モデリング が行われ、モデルや熱力学データベースの検証がなされてきた。しかし、短期間の室内実験(カ ラム変質実験等)結果さえも十分再現できない場合も多く、現在でも課題が残されている。また、 短期間の室内実験やそこで得られたデータを用いた検証だけでは、天然環境での処分場の長期現 象を予測するには不十分で、ベントナイトの長期性能評価には実際の天然環境で生じた長期間の 反応(鉱物変質の変遷等)をも説明可能なモデルが必要不可欠である。

本事業において、フィリピン国ルソン島西部の Saile ベントナイト・沸石鉱山のトレンチ調査 により、Fossil Type の高アルカリ地下水-ベントナイト相互作用の痕跡が観察可能な、オフィオ ライト最上位の枕状溶岩とベントナイトの接触界面が見つかり、平成 24 年度までに鉱物変質の変 遷の空間的な情報が得られた。残念ながら、現在までにその鉱物変質の変遷の時間的な情報は得 られていないが、上述のモデル検証に値する空間的な情報は得られている。それゆえに、現在得 られている反応輸送モデルや構成式、熱力学的データベースで、上述の鉱物変質の変遷の空間分 布を説明可能かどうかの検証を実施してゆく作業が必要となる。

引き続き平成 26 年度[1]までの検討により、ベントナイトに含まれる主成分のモンモリロナイ トや随伴鉱物の玉髄、灰長石、方解石の溶解だけでなく、カギを握る二次鉱物のカリ長石と Fe-サポナイトの溶解・沈殿を速度論的に取り扱った計算により、変質ベントナイト中で生成する二 次鉱物(カリ長石、鉄サポナイト、沸石)の鉱物組み合わせを再現するために、それらの二次鉱 物の生成は平衡論的、溶解は速度論的に取り扱う必要性が示唆された。ただし、本質的にはベン トナイトのアルカリ変質反応については、反応に寄与するアルカリ溶液の①拡散速度と②鉱物の 溶解・生成(沈殿)の反応速度の大きさによって平衡論と速度論の取り扱いが決まるものと考え られる。したがって、ナチュラルアナログにおける拡散速度を評価し、これと生成する鉱物の反 応速度との関係を明らかにし、変質解析への適用を検討することが、重要な課題であると考えら れる。

また、Saile 鉱山ではアルカリ変質鉱物として、鉄モンモリロナイト、鉄サポナイト、ノントロ ナイトが同定されているが、Narra ではアルカリ環境下で鉄サポナイトが生成するサイトが確認 され、フィリピンのナチュラルアナログが TRU 廃棄物の人工バリアシステムにおけるアルカリ 溶液と鉄が供給される環境でのスメクタイトが安定性を示す可能性が高いことが示された。しか しながら、その地球化学計算による評価に必要な鉄含有粘土鉱物の熱力学データは十分ではなく、 そのデータ整備と検証も重要な課題である。 5.1.2 実施内容

本年度は、地球化学モデルにおけるアルカリ環境下のベントナイトの変質解析に今後必要とな る鉄含有粘土鉱物の熱力学データについて、既存のデータベースを調査してその適用性について 検討する。

また、これまでの地球化学計算の検討結果を踏まえ、拡散速度と生成する鉱物の反応速度との 関係について、拡散速度(拡散係数)を変化させた解析を行う。また、二次鉱物の設定について、 これまでナチュラルアナログでの解析において設定した二次鉱物(試験で観察されている鉱物) 設定と、TRU2[2]の二次鉱物設定[3]の比較・考察を行う。 5.2 鉄含有粘土鉱物の熱力学データ

5.2.1 既存の熱力学データベースの調査

粘土鉱物の熱力学的取り扱いの難しさについては、相律に従わないのではないか、非平衡状態 での存在ではないのかという不確実性を含むことがあげられる。それに加え、鉄含有粘土鉱物の 熱力学的データの整備が不十分である。

そこで、既存の熱力学データベースの鉄スメクタイトの熱力学データについて調査した。 各データベースと整備されている鉄スメクタイトを図 5.2.1-1 に示す。

• LLNL(ローレンスリバモア国立研究所)

Smectite-high-Fe-Mg, Smectite-low-Fe-Mg

- Termodem(フランス地質調査所) • Saponite(FeK, FeNa, FeCa, FeMg)
- Wateq4 •
 - Montmorillonite-Aberdeen, BelleFourche
- PHREEQC ٠
 - なし
- MINTEQ
 - なし
- 140331g0(JAEA)

なし

Wilson et al. (2006a)

Fe(2+)-beidellite,Fe(2+)-Fe-saponite,Fe(2+)-montmorillonite,Fe-nontronite, Na-nontronite

Fe(2+)-Mg-saponite, Na-Fe(2+)-saponite,

図 5.2.1-1 各データベース内の鉄スメクタイト

各データベースにおいて、Al₂O₃-FeO-MgO-Na₂O-SiO₂-H₂O 系、Al₂O₃-FeO-Na₂O-SiO₂-H₂O 系、Al₂O₃-FeO-Na₂O-SiO₂-H₂O 系の安定相図を GWB (Geochmist's WorkBench[4]) を用いて 書き出し、それにパラワン島 Narra 地区の高アルカリ地下水の実測値をプロットし、Narra 地区 のナチュラルアナログサイトでの鉄含有粘土鉱物の安定相を評価した。

Al₂O₃·FeO-MgO-Na₂O-SiO₂·H₂O 系の結果を図 5.2.2⁻¹ に、Al₂O₃·FeO-Na₂O-SiO₂·H₂O 系の 結果を図 5.2.2⁻² に、Al₂O₃·FeO-Na₂O-SiO₂·H₂O 系(横軸 SiO₂)の結果を図 5.2.2⁻³ に示す。

図 5.2.2-1 Al₂O₃-FeO-MgO-Na₂O-SiO₂-H₂O 系の安定相図

図 5.2.2-2 Al₂O₃-FeO-Na₂O-SiO₂-H₂O 系の安定相図

図 5.2.2-3 Al₂O₃-FeO-Na₂O-SiO₂-H₂O系(横軸 SiO₂)の安定相図

これらの結果から、鉄スメクタイトの熱力学データがもっとも多い Wilson et al. (2006a)[5]の 熱力学データセットでは、Narra で採取したいずれの溶液もサポナイトの安定な領域にプロット されていることから、平衡論において、高アルカリ水による変質や溶液からの沈殿によって鉄サ ポナイトが安定相として生成したことを示し、これはパラワン島 Nara 地区の高アルカリ泉が観 測された超塩基性岩堆積物で認められた結果と一致した。

また、Wilson et al. (2006b)[6]では図 5.2.2-4 にのように室内実験で得られたデータが Wilson et al. (2006a)[5]のデータベースで説明可能であることが示されている。

したがって、当面は、 Wilson et al. (2006a)[5]の鉄含有粘土鉱物の熱力学的データセットを使 用して、一次元輸送反応モデリングを実施することが好ましいと考えられる。

J. Wilson et al. 70 (2006) 323-336

図 5.2.2-4 Wilson et al. (2006a)[5]の熱力学データセットの室内実験による検証[6]

5.3 地球化学反応輸送モデル

5.3.1 地球化学反応輸送モデルで再現することを目標にした二次鉱物の空間分布

ベントナイトの長期性能評価において、実際の天然環境で生じた長期間の反応(鉱物変質の変 遷等)をも説明可能なモデルが必要不可欠であるため、ナチュラルアナログを活用した数値シミ ュレーションモデルの向上を目的とした変質解析の検討を行っている。

このような目的のもと、フィリピン国ルソン島北西部の Fossil Type のナチュラルアナログサ イトである Saile 鉱山のトレンチで確認した、高アルカリ地下水との相互作用によりベントナイ トと枕状溶岩の接触部の 1~5mm のベントナイトの変質帯における天然事象を対象として、地球 化学-物質移行計算コードによる変質解析を行った。

この枕状溶岩とベントナイトの接触界面では(図 1.3.4-6)、界面の枕状溶岩のガラス部分が変 質していると共に、界面の接触部であるベントナイトも高アルカリ地下水と反応して溶解し低密 度となるとともに、Fe-サポナイトやカリ長石の生成が認められる。このベントナイト変質部より も 1-5mm 程度の下流側には、ノントロナイトと針鉄鉱で特徴付けられる鉄濃集帯が観察され、X 線 CT 観察により鉄濃集帯部は空隙が減少して高密度になっていた。

以上から、高アルカリ地下水との反応前は図 5.3.1-1 に示すような鉱物組成であったものが、 反応が終結した際は図 5.3.1-2 のような鉱物組成と空間分布になったと考えた。したがって、本 検討で実施する地球化学反応輸送モデルでは図 5.3.1-2 に示す鉱物組成と空間分布を再現するこ とを最終的な目標としている。

図 5.3.1-1 Saile 鉱山ベントナイトの初期状態におけるベントナイト中の鉱物空間分布

図 5.3.1-2 枕状溶岩と接するベントナイトの界面(右写真)で観察された変質後の鉱物組成

今回の地球化学モデリングの概要およびセッティングは平成 24 年度[7]および平成 26 年度[1] に報告した「地球化学反応輸送モデルの概要」の内容と同様のものである。しかし、本年度は二 次生成鉱物として考慮する鉱物の種類と分布を観察結果に合わせ、その生成ためにインプットす る高アルカリ溶液の組成を考慮するとともに、二次鉱物の溶解・沈殿過程を平衡論的および速度 論的に取り扱い比較することとした。

平成24年度[7]に実施した検討によって、Saile鉱山近傍のManleluag温泉保養施設やPoonbato 地区における高アルカリ泉の実測データを使用しても、測定地点の化学組成の違いが解析結果に 与える影響は小さかった。

そこで平成 25 年度[8]は、はじめに実測データとして Manleluag の高アルカリ泉の溶液データ (Manleluag 温泉の中で最も pH が高かったもの)を用いた。しかし、実際の地表で採水する高 アルカリ水は、カンラン石の低温蛇紋岩作用により発生したものが断裂系に沿って亀裂を通過し た後のものであり、その蛇紋岩化に際して Mg や Fe とシリカが消費されるため、かんらん岩の水 和反応で生成する溶液に比べて溶存 Mg や Fe が少ない。上述のように、界面での反応では鉄を主 成分とするスメクタイトである鉄サポナイトやノントロナイト、鉄水酸化鉱物の針鉄鉱の生成が 認められているので、亀裂を上昇し枕状溶岩中のガラスの Fe を溶脱させた溶液より溶存 Fe 濃度 が低い可能性が高い。

そこで、地表に湧出する前の高アルカリ地下水として、岩石学的研究に関する報告の多いオマ ーンのかんらん岩の鉱物組成と典型的な雨水を反応させ、Fe 鉱物の沈殿を suppress して計算し た地下水組成を反応高アルカリ地下水として用いた。

具体的な方法は、オマーンの低温蛇紋岩化作用と高アルカリ地下水の生成に関する先行研究で ある秋田 (2002)[9]を参考にした。まず、典型的な雨水 1kgの反応溶液として用意し、その 900g が蒸発した 25℃の溶液がかんらん岩と反応する地下水と設定した(表 5.3.2・1 を参照)。この蒸 発の過程で生成した沈殿物は、セピオライト(Sepiolite)・水苦土石(Hydromagnesite)・方解石等 であり、オマーンオフィオライトの亀裂に生成している二次鉱物と一致している。ちなみに、蒸 発後の Na・Cl 濃度は 10 倍となっている。

次に、上で求めた反応溶液にかんらん岩の構成鉱物を添加する計算を行った。このシミュレー ションでは、かんらん岩の構成鉱物は少しずつ添加され、添加された鉱物はその都度溶解度に従 って瞬時に溶解すると共に、過飽和になった鉱物は瞬時に沈殿する設定となっている。ここでの 構成鉱物の添加量は、地下に滲みこんだ地表水が徐々に水みちのかんらん岩と反応することを模 擬している。このとき添加されるかんらん岩の構成鉱物は松影(1999)[10]によって報告された鉱 物の EPMA 定量分析とモード組成測定を参考に設定した。GWB の熱力学データセットには、か んらん岩の構成鉱物の端成分鉱物しか含まれていないため、固溶体は端成分鉱物の混在物として 表現した。苦土かんらん石 (Forsterite)、鉄かんらん石 (Fayalite)、頑火輝石 (Enstatite)、鉄 紫蘇輝石 (Ferrosilite)、透輝石 (Diopside) を組み合わせて、松影(1999)[10]の分析値をできる だけ忠実に再現した鉱物組み合わせのモデリングをかんらん岩の組成とした(表 5.3.2-2)。かん らん岩として添加される鉱物比は Forsterite: Fayalite: Enstatite: Ferrosilite: Diopside=0.79:

0.08:0.11:0.01:0.01である。

今回行ったモデリングでは、最終的にかんらん岩の構成鉱物を 2mol 反応させている。なお、 高アルカリ泉は大気に対して閉鎖的な環境に置かれていたと考えられるので、それを模擬するた めにかんらん岩と反応溶液の反応過程において二酸化炭素の供給がないように設定した。すなわ ち、系に存在する二酸化炭素やメタン等の炭素種はスタートの反応溶液に含まれていたもののみ となる。

		溶液 1	溶液 2
	pН	11.08	12.1
	Temp.(°C)	34.0	25.0
	ре	-12.1	-13.2
	Na+	1.58	126
	K+	0.280	13
	Ca^{2+}	23.6	379
洃 浤浀	${ m Si}^{4+}$	11.5	0.0179
俗攸侲皮 ()	Al ³⁺	20.3	$1.52 \mathrm{x} 10^{-3}$
(ppm)	Mg^{2+}	0.17	7.04x10 ⁻⁴
	${ m Fe^{+}} ({}^{2+, 3+)}$	0.001	0.0475
	HCO ₃ -	73.5	0.001
	Cl	charge	balance

表 5.3.2-1 解析に用いた溶液データ

表 5.3.2-2 高アルカリ地下水生成のモデルに用いたかんらん岩の鉱物組成データ

Minerals	Chemical formula	(wt%)
Forstelite	$Mg_2(SiO_4)$	79
Fayalite	Fe ₂ (SiO ₄)	8.0
Enstatite	$Mg_2Si_2O_6$	11
Ferrosilite	${ m FeMgSi_2O_6}$	1.0
Diopside	$CaMg(Si_2O_6)$	1.0
5.3.3 解析条件

解析プログラムは、地球化学反応と物質輸送現象を連成させた地球化学計算コード PHREEQC[11]及び、PHREEQC-TRANS[2]を使用する。鉱物変化による空隙率の変化及び拡散 係数変化を反映することができる。

(1) ベントナイト基本物性

本検討における解析条件の初期条件として、平成 23 年度[12]に取得した物性値(スメクタ イト(モンモリロナイト)含有率:60%、乾燥密度:1.1 g/cm³、間隙率:60%)を使用する。 この物性値から、ベントナイト部の初期鉱物組成を設定する。ベントナイト構成鉱物含有割合 として、Na型モンモリロナイト 60wt%、随伴鉱物として方解石 5wt%、モルデン沸石 (Mordenite)を10wt%、斜長石として灰長石 5wt%、非晶質シリカとして玉髄を10wt%とし た。初期鉱物組成を表 5.3.3-1 に示す。

鉱物		含有率(wt%)	初期濃度 (mol/L_water)
モンモリロナイト	Na-Mont	60	3.00
方解石	Calcite	5	0.92
モルデン沸石	Mordenite	10	0.41
灰長石	Anorthite	5	0.33
玉髄	Chalcedony	10	3.05

表 5.3.3-1 ベントナイトの初期鉱物組成

(2) 解析体系

解析は、図 5.3.3-1 に示すような1次元の体系で行った。上流側を地下水組成固定境界とし、 下流側は自由流出境界とした。なお、本検討では物質移行は拡散のみを考慮し、移流による物 質移行は考慮しない。ベントナイト部の拡散係数は昨年度と同様に、4.71×10⁻¹⁰ m²/s とした。

図 5.3.3-1 解析体系概念図

(3) 熱力学データベース

熱力学データベースは昨年度まで検討に使用していた熱力学データベースである、フランスの地質調査所(BRGM)が公表している Thermoddem[13]を用いることとする。

解析にあたり、表 5.3.2-1 の地下水組成について、Thermoddem にて電荷バランスを調整した溶液組成を表 5.3.3-2 に示す。

		波远 1	波远 0
		俗假 1	俗攸 2
温度	°C	34	25
pН		11.08	12.1
pe		-12.1	-13.2
Na		2.42E-3 *	5.48E-3
Κ		7.16E-6	3.32E-4
Ca		5.89E-4	9.46E-3
Si		4.09E-4	6.37E-7
Al	mol/l	7.52E-4	5.63E-8
Mg		6.99E-6	2.90E-8
Fe		1.79E-8	8.51E-7
С		1.20E-3	1.64E-8
Cl		0.0	8.79E-3 *

表 5.3.3-2 解析に	用いた溶液データ
---------------	----------

*電荷バランスを調整(溶液1においては Na で調整、溶液2においては Cl で調整)

(4) 二次鉱物と鉱物の反応速度

二次鉱物は、実際にトレンチ試料で観察されている鉱物であるノントロナイトおよび針鉄鉱、 カリ長石のマイクロクリン (Microcline)、沸石類の輝沸石、斜プチロル沸石、モルデン沸石を 設定する。

なお、計算に考慮した二次鉱物について、表 5.3.3-3 に示す。

表 5.3.3-3 考慮した二次鉱物とモル体積(JNC-TDB.TRU に含有されるもの)

鉱物		モル体積 (L/mol)
針鉄鉱	Goethite	0.0208
微斜長石	Microcline	0.109
モルデン沸石	MordeniteB_Ca	0.210
	NontroniteCa	0.138
ノントロナイト	NontroniteK	0.141
	NontroniteMg	0.138
	NontroniteNa	0.139
	Fe-SaponiteCa	0.140
鉄サポナイト	Fe-SaponiteK	0.143
	Fe-SaponiteMg	0.140
	Fe-SaponiteNa	0.141

昨年度の解析検討と同様に、初期鉱物や二次鉱物の溶解や沈澱については速度論を考慮する。 モンモリロナイトの溶解速度式は、温度と pH の影響を考慮した Sato 式と飽和度の影響を 考慮した Oda 式を組み合わせた Sato-Oda 式を考慮した。Oda 式は、pH12.1(70℃)の実験で 求められた溶解速度に対する飽和の影響を表現した経験式である。

Sato 式

$$f(OH^{-}) = \left(4.74 \cdot 10^{-6} \cdot e^{-39.6/RT} \cdot \frac{177 \cdot e^{20.4/RT} \cdot a_{OH^{-}}}{1+177 \cdot e^{20.4/RT} \cdot a_{OH^{-}}} + 1.70 \cdot e^{-69.7/RT} \cdot \frac{0.0297 \cdot e^{23.5/RT} \cdot a_{OH^{-}}}{1+0.0297 \cdot e^{23.5/RT} \cdot a_{OH^{-}}}\right)$$

Oda 式

$$f(\Delta G_{\rm r}) = 1 - \exp\left(-2.56 \cdot 10^{-5} \cdot \left(\frac{\Delta G_{\rm r}}{2RT}\right)^3\right)$$

ここで、

R: 気体定数 [J/K/mol] T: 絶対温度 [K] аон: 水酸化物イオンの活量 f(ΔGr): 反応のギブス自由エネルギー変化の関数

モンモリロナイトの溶解速度は、次のように表す。 モンモリロナイトの溶解速度 = $f(OH^{-}) \cdot A_{min} \cdot f(\Delta G_r)$

ここで、A_{min} は鉱物の反応表面積(m²/dm³)である。モンモリロナイトの比表面積として Yokoyama et al. (2005)[14] にて算出された 7(m²/g)を使用した。

モンモリロナイト以外の鉱物の溶解速度として、セメントとベントナイト界面の現象を取り 扱っている Marty et al.(2013)[15] と同様の速度論的な取り扱いとする。鉱物の反応速度一般 式には様々なものがあるが、広い pH 領域によって異なる溶解様式をとる鉱物の場合には、以 下の式で溶解速度を表現することが多い(Lasaga et al. (1994)[16]と Palandri and Kharaka (2004)[17])。

$$Rate = \left(k_{25}^{nu} \cdot exp\left[\frac{-E_a^{nu}}{R}\left(\frac{1}{T} - \frac{1}{298.15}\right)\right] + k_{25}^H \cdot exp\left[\frac{-E_a^H}{R}\left(\frac{1}{T} - \frac{1}{298.15}\right)\right] \cdot a_H^{n_H} + k_{25}^{OH} \cdot exp\left[\frac{-E_a^{OH}}{R}\left(\frac{1}{T} - \frac{1}{298.15}\right)\right] \cdot a_{OH}^{n_{OH}}\right) \cdot A_{min} \cdot |1 - \Omega^{\theta}|^{\eta}$$

ここで、k は速度定数 (mol/m²/s)、上付き文字の nu と H、OH はそれぞれ中性と酸性、アル カリ性における反応を示している。 a_H は H⁺の活動度であり、n は指数である。 E_a は反応の活 動エネルギー (J/mol) である。 A_{min} は鉱物の反応表面積(m²/dm³)である。 θ と η は定数を表 している。灰長石とカリ長石と鉄サポナイトの速度パラメータを表 5.3.3-4 に示す。

	灰長石 *1	カリ長石 *2	鉄サポナイト *3
$A_{min} (m^2 g^{-1})$	0.24	0.1	8.5
$\mathrm{Log}\;\mathrm{k_{25}^{nu}}$ (mol m ⁻² sec ⁻¹)	-12.1	-14	-13
Ea ^{nu} (kJ mol ⁻¹)	61.1	-	-
$\text{Log } k_{25}^{\text{H}} \text{ (mol } m^{-2} \text{ sec}^{-1} \text{)}$	-9.47	-	-
E _a ^H (kJ mol ⁻¹)	64.3	-	-
nH	0.335	-	-
$\text{Log } k_{25}^{\text{OH}} \text{ (mol } m^{-2} \text{ sec}^{-1} \text{)}$	-9.38	-	-
E _a OH (kJ mol ⁻¹)	60.6	-	-
nOH	-	-	-
Θ	1	1	1
η	1	1	1

表 5.3.3-4 25℃における速度論パラメータ

*1 Chou and Wollast (1984) [18] ; Chou and Wollast (1985) [19] ; Burch et al.(1993) [20] ; Hellmann (1994) [21] ; Knauss and Copenhaver,(1995) [22] ; Alekseyev et al.(1997) [23] ; Hellmann and Tisserand (2006) [24]

*2 Inskeep and Bloom (1985) [25] ; Lioliou et al.(2007) [26]

*3 Marty et al.(2013) [15]

(5) 計算ケース

本年度の計算では、初期鉱物はモンモリロナイトと灰長石について溶解速度を設定し、他の 初期鉱物については瞬時平衡を仮定する。

二次鉱物については、表 5.3.3-3 に示した二次鉱物全てを平衡論で取り扱うケースと、カリ 長石と鉄サポナイトに溶解速度を設定したケースを考慮する。カリ長石と鉄サポナイトに溶解 速度を設定する場合、沈澱速度は非常に大きい値となるようにした。

また、解析メッシュサイズや反応速度定数は変更せず、拡散係数を変化させた計算ケースを 設定する。なお、拡散係数は、第2次TRUレポートにおいてベントナイト系材料に用いられ ている次の関係式[2]に従って変化させる。

ベントナイト系材料の実効拡散係数

De=2.27×10-9 ε n n=2.22fs0.13+1 fs:モンモリロナイト含有割合 ε:間隙割合

表 5.3.3-5 計算ケース

ケース	地下水 組成	拡散係数	二次鉱物	
			カリ長石及び鉄 サポナイト	その他の 二次鉱物
M1-1	溶液 1	一定 (4.71e-10 m²/s)	平衡論	平衡論
M1-2	溶液 2	一定 (4.71e-10 m²/s)	平衡論	平衡論
M1-3	溶液 1	空隙率関係式	平衡論	平衡論
M1-4	溶液 2	空隙率関係式	平衡論	平衡論
M1-5	溶液 1	空隙率関係式 (1 桁小)	平衡論	平衡論
M1-6	溶液 2	空隙率関係式 (1 桁小)	平衡論	平衡論
M1-7	溶液1	空隙率関係式 (2 桁小)	平衡論	平衡論
M1-8	溶液 2	空隙率関係式 (2 桁小)	平衡論	平衡論
M2-1	溶液 1	空隙率関係式	溶解速度	平衡論
M2-2	溶液 2	空隙率関係式	溶解速度	平衡論
M2-3	溶液 1	空隙率関係式 (1 桁小)	溶解速度	平衡論
M2-4	溶液 2	空隙率関係式 (1 桁小)	溶解速度	平衡論
M2-5	溶液1	空隙率関係式 (2 桁小)	溶解速度	平衡論
M2-6	溶液 2	空隙率関係式 (2 桁小)	溶解速度	平衡論

5.3.4 解析結果

(1) カリ長石及び鉄サポナイトについて平衡論で取り扱ったケース

計算ケース M1-1~M1-8(二次鉱物の反応は平衡論)について、1年、5年、10年、20年、 50年、100年後の固相体積分布を図 5.3.4-1から図 5.3.4-8に示す。

初期固相のモンモリロナイト(Montmor-Na)と灰長石(Anorthite)以外の随伴鉱物の溶 解とともに上流側から空隙率が大きくなった。二次鉱物として、マイクロクリン(Microcline) と鉄サポナイト(Fe-SaponiteNa)が生成するが、さらに時間を経ると生成した二次鉱物も溶 解する。また、溶液1より溶液2のほうが変質は早く、pHの高い溶液のほうがベントナイト の構成鉱物との反応性が高いことがよくわかる。

拡散係数を小さくすると、そのぶん変質は遅くなる傾向であった。拡散係数が1桁小さい場 合、二次鉱物の生成は10倍程度遅くなる傾向があるが、反応速度を設定したモンモリロナイ トとアノーサイトについては、その効果(10倍遅くなる効果)は少ない。ただし、いずれの ケースでも二次鉱物の沈殿によって空隙が閉塞するケースは見られず、拡散律速でも基盤岩と の界面に近い側から時間とともにモンモリロナイトの溶解に伴う空隙率の上昇が見られた。

図 5.3.4-1 ケース M1-1 の変質解析結果(鉱物の体積分布と空隙率)

図 5.3.4-2 ケース M1-2 の変質解析結果(鉱物の体積分布と空隙率)

空隙率分布

図 5.3.4-3 ケース M1-3 の変質解析結果(鉱物の体積分布と空隙率)

図 5.3.4-4 ケース M1-4 の変質解析結果(鉱物の体積分布と空隙率)

空隙率分布

図 5.3.4-5 ケース M1-5 の変質解析結果(鉱物の体積分布と空隙率)

図 5.3.4-6 ケース M1-6 の変質解析結果(鉱物の体積分布と空隙率)

図 5.3.4-7 ケース M1-7 の変質解析結果(鉱物の体積分布と空隙率)

図 5.3.4-8 ケース M1-8 の変質解析結果(鉱物の体積分布と空隙率)

(2) カリ長石及び鉄サポナイトについて溶解速度を適用したケース

二次鉱物におけるマイクロクリン(Microcline)と鉄サポナイト(Fe-SaponiteNa)につい て生成は速やかに(沈澱における反応速度として非常に大きい値を設定)、溶解について溶解 速度を設定した計算ケース M2-1~M2-6 について、1年、5年、10年、20年、50年、100年 後の固相体積分布を図 5.3.4-9 から図 5.3.4-14 に示す。

二次鉱物の溶解速度を設定したため、生成後の溶解が緩やかであった。とくに、カリ長石 (Microcline)の溶解速度が小さい(反応表面積が小さい)ため、生成後ほとんど溶解してい ない。

ここで、この変質解析の目標とする図 5.3.1・2 をふまえて計算結果を考察する。図 5.3.1・2 の鉄濃集帯による空隙減少部分より上流側における変質は、モンモリロナイト及び初期固相が 溶解して低密度となり、鉄サポナイトとカリ長石が生成している。このような鉱物組成(モン モリロナイト以外の初期固相の消失と鉄サポナイトとカリ長石の生成)を示すのは、ケース M2・2 (図 5.3.4・10)の10~100年後、ケース M2・4 (図 5.3.4・12)の20年の上流側と50~ 100年後、ケース M2・6 (図 5.3.4・14)の100年後の上流側である。なお、計算ケース M1シ リーズには対応する結果はなかった。すなわち、反応性の高い溶液2でカリ長石及び鉄サポナ イトについて溶解速度を適用したケースのときである。このときの各固相の量比は経過時間・ 拡散係数によって異なる。たとえば、ケース M2・2の100年後の上流側では、モンモリロナイ ト量よりもカリ長石 (Microcline)のほうが多くなっている(他のケース、場所・時間では、 モンモリロナイトのほうが多い)。このような固相の量比は、反応速度と拡散速度および経過 時間の違いによって異なると考えられる。

空隙率分布

図 5.3.4-9 ケース M2-1 の変質解析結果(鉱物の体積分布と空隙率)

空隙率分布

図 5.3.4-10 ケース M2-2 の変質解析結果(鉱物の体積分布と空隙率)

図 5.3.4-11 ケース M2-3 の変質解析結果(鉱物の体積分布と空隙率)

図 5.3.4-12 ケース M2-4 の変質解析結果(鉱物の体積分布と空隙率)

鉱物分布(縦軸はログ)

空隙率分布

図 5.3.4-13 ケース M2-5 の変質解析結果(鉱物の体積分布と空隙率)

図 5.3.4-14 ケース M2-6 の変質解析結果(鉱物の体積分布と空隙率)

(3) 経時変化

比較的変質の早い地下水組成である溶液2における計算結果について、地下水境界に接する 部分とベントナイト部中心部の固相濃度の経時変化を図 5.3.4-15、図 5.3.4-16に示す。

上記(1)において考察を行っているが、拡散係数の増加とともに変質が早くなる傾向である。 拡散係数が1桁小さいと二次鉱物の生成や溶解は10倍程度遅くなる傾向があるが、溶解速度 を設定した初期固相であるモンモリロナイト(Montmor-Na)と灰長石(Anorthite)につい ては、その効果(10倍遅くなる効果)はやや少ない。なお、二次鉱物については、初期固相 の溶解量もその生成挙動に影響すると考えられるため、厳密には拡散速度との関係はリニアで はないと考えられる。

図 5.3.4-15 固相濃度の経時変化 (ケース M1-2, M1-4, M1-6, M1-8)

図 5.3.4-16 固相濃度の経時変化 (ケース M2-2, M2-4, M2-6)

5.4 まとめ

Saile 鉱山ではアルカリ変質鉱物として、鉄モンモリロナイト、鉄サポナイト、ノントロナイト が同定されているが、Narra ではアルカリ環境下で鉄サポナイトが生成するサイトが確認され、 フィリピンのナチュラルアナログが TRU 廃棄物の人工バリアシステムにいてアルカリと鉄が供 給される環境でのスメクタイトが安定性を示す可能性が高いことが示された。しかしながら、そ の地球科学計算による評価に必要な鉄含有粘土鉱物の熱力学データは十分ではなく、そのデータ 整備と検証も重要な課題である。

現状のデータベースでこれらが十分整備されているものは少なく、このナチュラルアナログや 人工バリアシステムの評価に必要な Al₂O₃·FeO-MgO-Na₂O- SiO₂·H₂O 系の安定相図はデータベ ースによって大きく異なる。ただし、鉄スメクタイトのデータセットが整備されている Wilson et al. (2006a)[5]の熱力学データセットでは、パラワン島 Narra 地区の高アルカリ地下水の条件では 安定相として鉄サポナイトが生成することが示され、このことはフィールドで確認した結果と一 致した。また、室内実験で得られたデータでも鉄サポナイトの安定相を確認しており、現状では Wilson et al. (2006a)[5]の鉄含有粘土鉱物の熱力学的データセットを使用して、一次元輸送反応モ デリングを実施することが好ましいと考えられる。

二次鉱物(カリ長石、鉄サポナイト、沸石)の鉱物組み合わせを再現するために、それらの二 次鉱物の生成は平衡論的、溶解は速度論的に取り扱う必要性が示唆された昨年度[1]の検討につい て、本質的にはベントナイトのアルカリ変質反応については、反応に寄与するアルカリ溶液の拡 散速度と鉱物の溶解・生成(沈殿)の反応速度の大きさによって平衡論と速度論の取り扱いが決 まるものと考えられることから、ナチュラルアナログにおける拡散速度を評価し、これと生成す る鉱物の反応速度との関係を明らかにすることが当面の重要な課題と位置付けられた。

今年度の変質解析の検討から、反応性の高い pH がより高いアルカリ溶液との反応では、二次 鉱物の溶解に反応速度を設定することで、実現象の固相組成・固相分布を再現できる可能性が示 唆された。二次鉱物の溶解については、拡散速度より反応速度が十分遅いとみられることから、 速度論の適用が妥当かもしれない。ただし、今回のケースではカリ長石と鉄サポナイトの沈殿(生 成)・溶解挙動を見るため、二次鉱物として生じると考えられる沸石類は設定していないため、鉄・ アルカリ環境下での変質を考える場合には、ベントナイトの構成鉱物が溶解してサポナイトが形 成するのか、あるいは沸石が生成するのか、条件によってどちらが支配的になるか見極めること が重要であり、まずは Wilson et al. (2006a)[5]の鉄スメクタイトの熱力学データの適用性を確認 する必要がある。その上で、TRU2[2]をはじめアルカリ変質の地球化学計算における二次鉱物の 設定について見直しが必要なのかを、ナチュラルアナログ再現解析から検討することが、当面の 最も重要な課題である。 [参考文献]

[1] (公財)原子力環境整備促進・資金管理センター:平成26年度地層処分技術調査等事業 TRU 廃棄物処理・処分高度化開発報告書(第3分冊)ーナチュラルアナログ調査-(2015).

[2] 電気事業連合,核燃料サイクル開発機構: TRU 廃棄物処分技術検討書 一第 2 次 TRU 廃棄 物処分研究開発取りまとめー, JNC TY1400 2005-013, FEPC TRU-TR2-2005-02, 2005 年 9 月 (2005)、根拠資料集 4-2.

[3] (公財)原子力環境整備促進・資金管理センター:平成 26 年度地層処分技術調査等事業 TRU 廃棄物処理・処分技術高度化開発 報告書(第4分冊)一人工バリア材料長期挙動評価・人工バリア評価の初期条件の設定-(2015).

[4] https://www.gwb.com/.

[5] Wilson, J., Savage, D., Cuadros, J., Shibata, M. and Ragnarsdottir, K.V.: The effect of iron on montmorillonite stability. (I) Background and thermodynamic considerations. Geochimica et Cosmochimica Acta, **70**(2), 306–322 (2006).

[6] Wilson, J., Cressey, G., Cressey, B., Cuadros, J., Ragnarsdottir, K.V., Savage, D. and Shibata, M.: The effect of iron on montmorillonite stability. (II) Experimental investigation. Geochimica et Cosmochimica Acta, **70**(2), 323–336 (2006).

[7] (公財)原子力環境整備促進・資金管理センター:平成24年度放射性廃棄物共通技術調査等 事業 放射性廃棄物重要基礎技術研究調査報告書(第3分冊)-多重バリアの長期安定性に関す る基礎情報の収集及び整備-(2013).

[8] (公財)原子力環境整備促進・資金管理センター:平成25年度地層処分技術調査等事業 TRU 廃棄物処理・処分高度化開発報告書(第3分冊)-ナチュラルアナログ調査-(2014).

[9] 秋田奈生子: オマーンオフィオライトに湧出する高アルカリ泉と沈殿物の地球化学.金沢大学修士論文,110 (2002).

[10] 松影香子・荒井章司: オマーンオフィオライトのマントル~モホ遷移帯の火成岩岩石学.月 刊 地球, **21**(6), 339-344 (1999).

[11] Parkhurst, D.L. and Appelo, C.A.J.: User's guide to PHREEQC (version 2)-a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. USGS Water-resour. Inv. Rep., 99-4259 (1999).

[12] (公財) 原子力環境整備促進・資金管理センター:平成 23 年度放射性廃棄物共通技術調査等 事業 放射性廃棄物重要基礎技術研究調査報告書(第3分冊) – 多重バリアの長期安定性に関す る基礎情報の収集及び整備 – (2012).

[13] Blanc, P. and Galihnou, H.: Thermochimie: Estimation des entropies, capacites calorifiques et volumes molaires des phyllosilicates deshydrates et hydrates, Rapport final. Rapport BRGM/RP-55966-FR (2007).

[14] Yokoyama, S., Kuroda, M. and Sato, T.: Atomic force microscopy study of montmorillonite dissolution under highly alkaline conditions. Clays and Clay Minerals **53**(2), 147-154 (2005).

[15] Marty, N.C.M., Munier, I., Gaucher, E.C., Tournassat, C., Gaboreau, S., Vong, C.Q., Giffaut, E., Cochepin, B. and Claret, F.: Simulation of Cement/Clay Interactions: Feedback on the Increasing Complexity of Modelling Strategies. Transport in porous media, **104**, 385-405 (2014).

[16] Lasaga, A.C., Soler, J.M., Ganor, J., Burch, T.E. and Nagy, K.L.: Chemical-weathering rate laws and global geochemical cycles. Geochimica et Cosmochimica Acta **58**, 2361-2386 (1994).

[17] Palandri, J.L. and Kharaka, Y.K.: A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling. U.S. Geological Survey Water-Resources Investigations Report, 04-1068 (2004).

[18] Chou, L. and Wollast, R.: Study of the weathering of albite at room-temperature and pressure with a fluidized-bed reactor. Geochimica et Cosmochimica Acta 48, 2205-2217 (1984).
[19] Chou, L. and Wollast, R.: Steady-state kinetics and dissolution mechanisms of albite. American Journal of Science 285, 963-9938 (1985).

[20] Burch, T.E., Nagy, K.L. and Lasaga, A.C.: Free-energy dependence of albite dissolution Kinetics at 80°C and pH 8.8. Chemical Geology 105, 137-162 (1993).

[21] Hellmann, R.: The albite-water system: Part I. The kinetics of dissolution as a function of pH at 100, 200, and 300°C. Geochimica et Cosmochimica Acta 58, 595-611 (1994).

[23] Alekseyev, V.A., Medvedeva, L.S., Prisyagina, N.I., Meshalkin, S.S. and Balabin, A.I.: Change in the dissolution rates of alkali feldspars as a result of secondary mineral precipitation and approach to equilibrium. Geochimica et Cosmochimica Acta 61, 1125-1142 (1997).

[24] Hellmann, R. and Tisserand, D.: Dissolution kinetics as a function of the Gibbs free energy of reaction: An experimental study based on albite feldspar. Geochimica et Cosmochimica Acta 70, 364-383 (2006).

[25] Inskeep, W.P. and Bloom, P.R.: An evaluation of rate equations for calcite precipitation kinetics at pCO2 less than 0.01 atm and pH greater than 8. Geochimica et Cosmochimica Acta 49, 2165-2180 (1985).

[26] Lioliou, M.G., Paraskeva, C.A., Koutsoukos, P.G. and Payatakes, A.C.: Heterogeneous nucleation and growth of calcium carbonate on calcite and quartz. Journal of Colloid and Interface Science 308, 421 -428 (2007).

^[22] Knauss, K.G. and Copenhaver, S.A.: The effect of malonate on the dissolution kinetics of albite, quartz, and microcline as a function of pH at 70°C. Applied Geochemistry 10, 17-33 (1955).

第6章 まとめ

6.1 今年度の調査結果のまとめ

本事業で実施したフィリピンにおけるナチュラルアナログは、今後実際に処分事業を進めて行 くに当たり、基礎的かつ学際的な知見として処分事業の進捗に貢献し得る諸分野の広範な研究テ ーマの内、重要な基礎テーマを対象に、大学等の基礎的研究機関等と連携して取り組んでいくこ とにより、所要の基盤技術を確立することとあわせ、研究成果や収集した情報について広く提供 を行い、情報の共有化、知識の普及を図るために、平成 19 年度より「放射性廃棄物重要基礎技術 研究調査」の一テーマとして開始された。

ここでナチュラルアナログの対象としているセメントーベントナイト相互作用の問題は、HLW に比べ充填材や構造躯体等多くのセメント系材料を使用されると見込まれる TRU 廃棄物の地層 処分において重要な問題であると位置づけられていることから、平成 25 年度より「TRU 廃棄物 処理・処分技術高度化開発」において、TRU 廃棄物処分における人工バリア性能評価に係るセメ ント系材料の影響による人工バリア(ベントナイト)の長期健全性について、ナチュラルアナロ グ調査を実施することで、アルカリー緩衝材反応による緩衝材の長期変遷に関する直接的な根拠 となるデータを取得し、それらフィールドデータと解析モデルを活用したアルカリ変質現象の解 釈に基づき、その長期挙動評価の信頼性向上を図ることを目的として、本事業を進めている。

特に、平成24年度まで実施してきた Fossil Type のサイトでは環境条件が明確でない(過去に 浸出していた)アルカリ地下水の地球化学特性とその反応時間について、それらがより明確に理 解できる場として、現在もなおアルカリ性地下水が浸出している Active Type のナチュラルアナ ログを見つけ出し、そこでの観察、試料採取と分析によりベントナイトの長期のアルカリ変質に 関する直接的な根拠となるデータを取得することが重要な課題であると考えている。

上記に示すこれまでの検討で得られた課題を踏まえ、今年度は、ナチュラルアナログ調査として、実施計画策定(6.1.1)、ナチュラルアナログサイトの探査(6.1.2)、年代測定による反応時間の評価(6.1.3)、アルカリ環境下でのベントナイトの長期変質プロセス(6.1.4)、地球化学シミュレーションモデルによる変質解析(6.1.5)、について検討した。以下にその成果をまとめる。

6.1.1 実施計画

平成25年度に策定した5カ年のナチュラルアナログ調査の全体計画を踏まえ、平成26年度ナ チュラルアナログ調査の年度計画及びフィリピン国を対象としたフィールド調査の詳細計画を作 成した。フィールド調査計画の策定においては、台風等現地の気象状況に対応可能な安全の確保 とフィールド調査の効率性を踏まえ、2チーム編成による調査の実施を反映した。

6.1.2 ナチュラルアナログサイトの探査

5 カ年のナチュラルアナログ調査の全体計画と平成 26 年度までの調査結果を踏まえ、平成 27 年度ナチュラルアナログ調査の年度計画及びフィリピン国を対象としたフィールド調査の詳 細計画を作成した。フィールド調査計画の策定においては、台風等現地の気象状況に対応可能な 安全の確保とフィールド調査の効率性を踏まえ、時間の十分な確保と2チーム編成による調査の 実施を反映した。

(1) Active Type のナチュラルアナログの特定

pH11 程度の高アルカリ地下水がスメクタイトを含有する粘土質堆積物中に直接浸水しているサイト(コンタクト部)、いわゆる Active Type のナチュラルアナログ、を探査・選定することを目的として、平成 26 年度の概査で pH11 を超えるアルカリ湧水を複数地点で確認したパラワン島中央部の東部沿岸域に位置する Narra 地区を中心に、地質概査、高アルカリ地下水の水理地質学的調査や地球化学的調査およびトレンチ調査などを実施した。

Narra 地区の Narra3-1 地点の高アルカリ源泉(pH11.20)の南東約 100m 下流側に分布す る石灰華(Travertine)の平坦地となっている Narra3-2 周辺を対象として露頭調査を行い、2 カ所のトレンチ(トレンチ1:Narra3-2の平坦地に注ぐ河川の比較的上流域周辺、トレンチ 2:トレンチ1の下流の地形が落ち込んだ先の石灰華の堆積する場所)掘削地点を選定し、ト レンチ調査を実施した。

2.0m で基盤岩に達したトレンチ2において、基盤岩直上には砕屑性堆積物と思われる粘土 層を確認した。このトレンチ2を含む2ヶ所のトレンチ壁面の浸出水は、pH11の高アルカリ 地下水で流量が多い。またトレンチ2の砕屑性堆積物では XRD による鉱物分析からスメクタ イトが同定されことから、アルカリ地下水が現在もスメクタイトを含む粘土質堆積物に浸出し ている Active Type のナチュラルアナログといえる露頭が本事業で初めて確認された。

(2) 高アルカリ地下水の地球科学特性

地下水の地球化学特性と流動特性の観点から、Narra 地区の高アルカリ地下水は、pH と温 度が高く、還元性である。また Narra3-1~3-2 地区だけでなく Palawan のアルカリ地下水は 総じて Mg 濃度が低く、Ca 濃度が高い蛇紋岩化作用に伴うアルカリ地下水の典型的な特徴を 示す。Narra3-2 トレンチの浸透水は Narra3-1 の源泉とほぼ水質が同じであり、一方、表層水 と混合しているとみられるアルカリ河川水とは水質が異なる。このことから、Narra3-2 トレ ンチの浸透水は Narra3-1 源泉の地下水がトラバーチンを上部から下部の方へ浸透したのでは なく、Narra3-1 と同様に、高アルカリ地下水が湧出するオフィオライトの亀裂のチャンネル いくつか存在し、そこからの高アルカリ地下水がトラバーチン下の粘土質堆積物に浸透してい るものと考えられる。これは、炭酸塩鉱物の縞状構造の形成(透水性が高い層と低い層の成層 構造)に伴う固化プロセスにおける続成作用により、炭酸塩岩が深くなるほど熟成され、緻密 で割れ目が少ない組織的に安定していくため、炭酸塩質堆積物が不透水層となって上面からの 降雨水等の浸透を抑制しているためだと考えられる。

(3) 地質環境

トレンチ2の基盤岩直上の砕屑性堆積物は、パラワンオフィオライト(殆どが、ハルツバージャイト)起源の岩片(亜角礫:長径 2cm 以下)の礫と少量の石英安山岩起源の斜長石(Abe9 An₃₁)と石英の斑晶から構成されている。基質は、一部砂質なものもあるが、大部分がシルト 質から粘土質を示す。特に、上位層の堆積物(約 20cm の層厚)は細かい層理面が発達する黒 色粘土質である。トレンチの西壁の露頭観察、特に、礫種や粒度・構成鉱物・運搬<篩別>・堆 積過程などを考慮すると現地性の地滑り堆積物と想定される。

(4) 岩石鉱物学的特性

この砕屑性堆積物に含まれるスメクタイトは、定方位 XRD のエチレングリコール処理によるピークのシフトや006 面の観察から3 八面体型スメクタイトであるサポナイトが主であることが同定された。

さらにこのアルカリ地下水と接触していた砕屑性堆積物や基盤岩の薄片の顕微鏡観察から 岩石鉱物学的特徴(変質鉱物を含む主要構成鉱物組み合わせ・産状/共生・組織など)について 以下のことが明らかになった。

1) 原岩

基盤岩であるパラワンオフィオライトは、単斜輝石を微量含むハルツバージャイト質超塩 基性火成岩(斜方輝石かんらん岩)である。

他の砕屑性堆積物(Clastic Sediments)を構成する岩片・鉱物片の原岩は、自形の Cr-スピンネルを含有するダナイト質超塩基性火成岩起源(ダンかんらん岩)、透角閃石で特徴づけられるトレモラ角閃岩起源、かんらん石ウェブスライト起源と斑レイ岩起源であると考えられる。これらの原岩は、苦鉄質鉱物の組成とモードによる程度の差はあるが、蛇紋岩化作用が顕著である。

2) 蛇紋岩化作用

超塩基性火成岩と地下水との相互作用過程において、特に超塩基性火成岩の主要構成鉱物 であるかんらん石や両輝石で代表される苦鉄質鉱物の蛇紋岩化作用が特筆される。トレンチ 2の試料からは、高温型アンチゴライトの産状は局所的で、低温型蛇紋石を横断する脈状と してのみ観察される。これら産状関係から、アンチゴライトの形成は低温型蛇紋石の形成後 に生起したものと考えられる。この現象は新たな高温環境での形成環境が必要となる。これ は、パラワンオフィオライトの定置過程でのテクトニクス変遷過程か、パラワンオフィオラ イトを構成する斑レイ岩や輝緑岩などの貫入岩による熱の供給によって生起した高温環境が 高温型アンチゴライトの生成をもたらしたものと示唆される。

3) 蛇紋岩化作用に伴う水滑石・クリソタイルと地下水との相互作用

このパラワンオフィオライトのハルツバージャイト(斜方輝石かんらん岩)の基盤岩は、 炭酸塩鉱物(主に方解石)が少なく、水滑石やクリソタイルが多く含まれる。一般的には蛇 紋岩化作用が進行している超塩基性火成岩体では、地下水(Ca-OH タイプ)は高 Ca になり、その結果、炭酸塩鉱物を多く沈殿する。このことからこの基盤岩は、少なくとも地表近傍ではかんらん石や輝石を消費して蛇紋石などの Mg-鉱物を形成するような地球科化学的環境にはないことが示唆される。

一方、砕屑性堆積物を構成する種々の岩片の基質には、少量の炭酸塩鉱物と C-S-H(主に トバモライトなど)が観察される。これは水滑石や蛇紋石の生成後の残液が、Ca や Si に富 むようになり析出したものと考えられる。また、植物遺体(木根)を水滑-石や C-S-H が置 換していることから、高アルカリで、高 Mg/Si 比の地球化学的場と地下水がかなりの時間浸 透するような水理場が存在したものと示唆される。基質の 3 八面体型スメクタイト(サポナ イト)もこのような環境のもとで形成されたものと考えられる。

(5)
 今後の展開

以上の結果を踏まえ、当面の目標であった Active Type のナチュラルアナログサイトを特定 することができ、今後ナチュラルアナログ調査として一段階ステップが進み、このナチュラル アナログサイトでのアルカリ変質プロセスの調査を中心に今後展開することとなる。 ただし、アルカリ地下水と接触していたスメクタイトは2八面体型のモンモリロナイトではな く3八面体型のサポナイトである。サポナイトの生成やアルカリ地下水との相互作用をナチュ ラルアナログとしてどう位置づけるかを明らかにして、今後の調査を進める必要がある。

6.1.3 年代測定による反応時間の評価

今年度調査したパラワン島 Narra 地区のトレンチサイトでは、アルカリ地下水によって生成・ 堆積した炭酸塩の年代にかかわる埋没木根や貝(化石)が見つかったことから、炭酸塩の TL 年 代測定に加え、新たに埋没木根の放射性炭素による絶対年代測定と、貝の鑑定による種の同定か ら棲息環境による堆積環境と棲息期間による相対的な年代推定を実施した。

特に、トレンチ1の最下部(深度約2.8m)を構成する堆積性炭酸塩岩層中の埋没木根の放射性 炭素による絶対年代として、約4,500年前(4554±82BP)の年代値を取得した。この年代値は、埋 没木根の母岩がパラワンオフィオライト起源の高アルカリ湧水からの化学的沈殿により形成され た堆積性炭酸塩岩であり、その時棲息していたあるいは遺体としての植物木根が沈殿・堆積・固 結プロセス中に取り込まれたものと考えられる。従って、この埋没木根の賦存(産状)は高アル カリ地下水湧水の時間スケールと見なすことが出来る。つまり、過去約4,500年前より高アルカ リの湧水が始動していたことになる。しかし、この埋没木根を含有している堆積性炭酸塩岩はパ ラワンオフィオライト基盤岩の直上に累重しているものでないことから、高アルカリ湧水の時間 スケール(始動開始時期)はより古くなることが見込まれる。さらに、現在、トレンチ1及び2 の壁面からの湧水はpH>11で、そのpHは、パラワンオフィオライト起源の湧水源のものとほぼ 同じである。

パラワンオフィオライト基盤岩の直上に累重している砕屑性堆積物とその中位にある堆積性炭 酸塩岩および、最上位にある堆積性炭酸塩鉱物質堆積物に含有される貝は、亜熱帯~熱帯の淡水 ~汽水の砂泥底に棲息する現生種の巻貝(ソデカワニナとタイワンカワニナ)である。生態的に は、幼生中は海に出てまた、河川に戻る両側回遊の活動をすることから、海との連結性があり、 トレンチ周辺の地質環境や堆積環境を推察する上で有効である。ただ現生種ということで棲息期 間(年代)を決めることは難しいが、経験的には数千年程度の時間スケールであることが推定さ れる。この時間スケールは放射性炭素測定による絶対年代値の枠内である。

炭酸塩の TL 年代測定では、合成鉱物を使った基礎実験で炭酸塩の Mn 濃度と TL 特性の関連 性がわかったことを踏まえ、対象試料の Mn 濃度から TL 年代を補正する係数を算出した。これ を用いて、パラワン島 Narra 地区のトレンチサイトの炭酸塩試料の TL 年代を評価した結果、表 層部の炭酸塩の年代は 988ka、最深部の炭酸塩では 173ka となった。上記の¹⁴C 年代を求めた木 根が炭酸塩の形成とともに埋没したと考えると、両者の隔たりは大きく、さらに検討が必要であ る。ただし、これまで実績を積んできた Saile 鉱山の基盤岩の亀裂中のカルサイトや Bigbiga の 石灰質砂岩(あるいは石灰岩)のボーリングコアに比べると、今回の試料は含水率が高く分析資 料としての状態は極めて悪かったことも原因一つとしてあげられる。

今後は、パラワンオフィオライトの直上に累重する砕屑性堆積物と、黒色の腐植性炭酸塩質堆 積物か腐食性堆積物に含有される動植物化石による絶対年代測定値と相対年代測定を行い、より 現実的な高アルカリ湧水の始動時間を明らかにして、これらの堆積物に含有される粘土鉱物(主 に、スメクタイト他)の高アルカリ地下水環境下でのアルカリ変質反応とその反応経路および、 長期安定性に関する時間枠(時間スケール)を設定することである。つまり、ナチュラルアナロ グ(自然系)に対する時間枠の設定を行うことである。

また、TL 年代測定では、正確な年代を求めるには以下の考慮する課題がある。

- ① 方解石では、最初の加熱(Natural 測定)の際に大きな感度変化が生じ、年代が過大評価、 もしくは過小評価される可能性がある。SARA 法を用いる事で感度変化を補正できるが、 本測定ではそれを行っていないこと。
- ② 本測定では、240℃ピークを用いて蓄積線量測定を行ったが、ピーク分離を行わなかったため、高いルミネッセンス強度を示す 330、420℃ピークの影響を受け、蓄積線量が過大評価されている可能性があること。
- ③ PWT01-15-Rc-001、PWT01-15-Rc-010A ともに試料中に微量ながら貝等の生物起源のアラゴナイトが含まれている可能性がある。アラゴナイトは加熱することで方解石に転移する。 熱ルミネッセンス測定中に、アラゴナイトが方解石に転移し、熱ルミネッセンス感度が大きく変化する可能性があるため、アラゴナイトと方解石の TL 特性を考慮し、補正する、もしくは方解石とアラゴナイトを分別し測定する必要があること。

ただし、今回のトレンチ試料でも年代測定に必要な発光量を示していることは確認できたため、 上記の課題をクリアすることでより正確な年代を測定できると考えられる。

また、今回のサイトでは幸いなことに植物や貝などの有機物が、アルカリ地下水の浸出開始時間 と関連する炭酸塩の堆積物中にあることから、反応時間の推定においてこれら有機物の14C年代 等を適用することができたが、このナチュラルアナログで適用可能な年代測定法は限定されてお り、TL法による年代測定手法開発は引き続き重要な課題として進めていく。 6.1.4 アルカリ環境下でのベントナイトの長期変質プロセス

Palawan 島 Narra 地区のアルカリ地下水が浸出しているトレンチ2の壁面から採取した粘土 質の砕屑性堆積物からの5試料(そのうちオフィオライト基盤岩の岩石試料が1試料)とコアド リルで採取した基盤岩に近い礫を含む粘土質の砕屑性堆積物からの4試料について、走査電子顕 微鏡観察、電子線プローブマイクロアナライザーによる元素マッピング観察、鉱物のスポット定 量分析、鉱物のマイクロX線回折分析を実施し、アルカリ変質プロセスに関わる鉱物組成や化学 組成の変遷過程について調べた。

パラワン島の Narra 地区のトレンチで確認された pH11.3 のアルカリ環境下にある砕屑性堆積 物のスメクタイト(サポナイト)は、C-S-H との共生関係から、現在も見られる低温蛇紋岩化作 用による高アルカリ地下水との反応によって形成されたと考えられる。その生成過程では、砕屑 性堆積物の超塩基性岩起源のかんらん石、斜方輝石、少量の単斜輝石、角閃石と蛇紋石及び少量 の石英、斜長石と高アルカリ地下水との反応であり、かんらん石、輝石に加え Cr-スピネル、磁 鉄鉱等のマフィック鉱物から供給される Fe によって鉄サポナイトが生成したものと示唆される。

スメクタイトが高アルカリ地下水によって生成するこのサイトの地質構造学的発展は、①パラ ワンオフィオライト(ハルツバージャイト質超塩基性岩体)の定置・隆起、②蛇紋岩化作用がに 伴う蛇紋石、滑石、水滑石、磁鉄鉱等の沈殿と高アルカリ性(pH>11)地下水の形成、③パラワ ンオフィオライトの風化→浸食→移動→(運搬)→堆積サイクルによる砕屑性堆積物の累積と炭 酸塩沈殿物(トラバーチン)の堆積、④砕屑性堆積物に含有する斜方輝石、少量の単斜輝石、極 少量のカンラン石・角閃石・蛇紋石のアルカリ変質によるサポナイトの生成と酸塩沈殿物の圧密 作用による岩石(炭酸塩岩)化、⑤現在の環境(蛇紋岩化作用による高アルカリ地下水の生成と 砕屑性堆積物への浸出が継続)と解釈することができる。

これらのことから、Narra地区のナチュラルアナログでは、Fossil Type のナチュラルアナログ のように、火山性砕屑物を起源とし続成作用でできたベントナイトに、ベントナイト化後に高ア ルカリ地下水が過去に浸出したのではなく、このアルカリ環境下でスメクタイト(サポナイト) が生成したため、TRUの地層処分における充填剤等のセメント系材料の高アルカリ浸出水に廃棄 体容器等から鉄成分が付加され、それがベントナイトとの長期相互作用どうなるのか(アルカリ 変質による鉱物変遷、変質による緩衝材の機能への影響)に関するナチュラルアナログとして解 釈するのは困難である。しかしながら、この Narra地区のサイトでみられるスメクタイトが生成 する環境は、高アルカリ溶液がモンモリロナイトを溶解させ非膨潤性の鉱物である沸石等に変質 させるだけでなく、モンモリロナイトとと同じ膨潤性等の特性を有する別のタイプのスメクタイ ト(鉄サポナイト)が形成されることを意味し、当然そのような環境ではこの鉄サポナイトは長 期間安定に存在する。したがって、Narra地区の天然現象は、TRUの地層処分場の充填材等のセ メント系材料の高アルカリ浸出水に廃棄体容器等から鉄成分が付加されることが想定される人工 バリアシステムで、どのような条件でサポナイトが生成し、スメクタイトが安定に存在すること になるのかの手がかりとなり得る、絶好のナチュラルアナログであるとだと位置づけられること ができる。

さらに、このナチュラルアナログは Active Type であることから、①アルカリ変質反応に寄与

する高アルカリ地下水は、低温蛇紋岩化作用により現在も湧出しているため、その地球化学特性 を現地調査により直接把握できる、②炭酸塩や堆積物の年代測定が可能であり、アルカリ地下水 との反応時間が推測できる、という利点もあげられる。

また、このサイトでみられるサポナイトが人工バリアシステムのナチュラルアナログというた めには、苦鉄質(Mafic)の構成鉱物とアルカリとの反応によってだけでなく、珪長質(Felsic)の鉱物 が多く含まれる人工バリアのベントナイト緩衝材のアルカリ変質でも生成するかが重要なポイン トであるが、少なくともモンモリロナイトが主要鉱物であるベントナイトとアルカリ地下水との 反応により、直下の玄武岩ガラスからアルカリで溶脱した鉄成分も加わり、二次鉱物として鉄サ ポナイトが生成したが、Fossil Type であるルソン島の Saile 鉱山のナチュラルアナログで確認し ている(この数 mm の変質ベントナイトでしか鉄サポナイトはみられない)。このことから、ア ルカリ環境下での鉄サポナイトの生成は人工バリアシステムにおいても生じることが十分予測さ れ、このナチュラルアナログにおいて、鉄ーアルカリーベントナイト相互作用の地球化学計算に よる評価も合わせて評価することが重要な課題である。

6.1.5 地球化学シミュレーションモデルによる変質解析

Saile 鉱山ではアルカリ変質鉱物として、鉄モンモリロナイト、鉄サポナイト、ノントロナイト が同定されているが、Narra ではアルカリ環境下で鉄サポナイトが生成するサイトが確認され、 フィリピンのナチュラルアナログが TRU 廃棄物の人工バリアシステムにいてアルカリと鉄が供 給される環境でのスメクタイトが安定性を示す可能性が高いことが示された。しかしながら、そ の地球科学計算による評価に必要な鉄含有粘土鉱物の熱力学データは十分ではなく、そのデータ 整備と検証も重要な課題である。

現状のデータベースでこれらが十分整備されているものは少なく、このナチュラルアナログや 人工バリアシステムの評価に必要な Al₂O₃·FeO-MgO-Na₂O- SiO₂·H₂O 系の安定相図はデータベ ースによって大きく異なる。ただし、鉄スメクタイトのデータセットが整備されている Wilson et al. (2006a)[1]の熱力学データセットでは、パラワン島 Narra 地区の高アルカリ地下水の条件では 安定相として鉄サポナイトが生成することが示され、このことはフィールドで確認した結果と一 致した。また、室内実験で得られたデータでも鉄サポナイトの安定相を確認しており、現状では Wilson et al. (2006a)[1]の鉄含有粘土鉱物の熱力学的データセットを使用して、一次元輸送反応モ デリングを実施することが好ましいと考えられる。

二次鉱物(カリ長石、鉄サポナイト、沸石)の鉱物組み合わせを再現するために、それらの二 次鉱物の生成・溶解における平衡論的または速度論的な取り扱いについては、本質的にベントナ イトのアルカリ変質反応において、反応に寄与するアルカリ溶液の拡散速度と鉱物の溶解・生成

(沈殿)の反応速度の大きさによってその取り扱いが決まるものと考えられることから、ナチュ ラルアナログにおける拡散速度を評価し、これと生成する鉱物の反応速度との関係を明らかにす る必要がある。

今年度の変質解析の検討から、反応性の高い pH がより高いアルカリ溶液との反応では、二次 鉱物の溶解に反応速度を設定することで、実現象の固相組成・固相分布を再現できる可能性が示 唆された。二次鉱物の溶解については、拡散速度より反応速度が十分遅いとみられることから、 速度論の適用が妥当かもしれない。ただし、今回のケースではカリ長石と鉄サポナイトの沈殿(生 成)・溶解挙動を見るため、二次鉱物として生じると考えられる沸石類は設定していないため、鉄・ アルカリ環境下での変質を考える場合には、ベントナイトの構成鉱物が溶解してサポナイトが形 成するのか、あるいは沸石が生成するのか、条件によってどちらが支配的になるか見極めること が重要であり、まずは Wilson et al. (2006a)[1]の鉄スメクタイトの熱力学データの適用性を確認 する必要がある。その上で、アルカリ変質の地球化学計算における二次鉱物の設定について見直 しが必要なのかを、ナチュラルアナログ再現解析から検討することが、当面の最も重要な課題で ある。
[参考文献]

[1] Wilson, J., Savage, D., Cuadros, J., Shibata, M. and Ragnarsdottir, K.V.: The effect of iron on montmorillonite stability. (I) Background and thermodynamic considerations. Geochimica et Cosmochimica Acta, **70**(2), 306–322 (2006).