平成26年度
地層処分技術調査等事業
処分システム工学確証技術開発
報告書
（第2分冊）

－人工バリア品質／健全性評価手法の構築－
緩衝材

平成27年3月

公益財団法人 原子力環境整備促進・資金管理センター
本報告書は、経済産業省からの委託研究として、公益財団法人原子力環境整備促進・資金管理センターが実施した、平成26年度地層処分技術調査等事業処分システム工学確証技術開発のうち、人工バリア品質／健全性評価手法の構築－緩衝材－の開発成果を取りまとめたものです。
平成26年度地層処分技術調査等事業処分システム工学確証技術開発の報告書は、以下の分冊により構成されている。

<table>
<thead>
<tr>
<th>当該報告書</th>
<th>分冊名</th>
<th>報告書の標題</th>
</tr>
</thead>
<tbody>
<tr>
<td>①</td>
<td>第1分冊</td>
<td>処分システム工学確証技術開発人工バリア品質／健全性評価手法の構築－オーバーパック</td>
</tr>
<tr>
<td>②</td>
<td>第2分冊</td>
<td>処分システム工学確証技術開発人工バリア品質／健全性評価手法の構築－緩衝材</td>
</tr>
<tr>
<td>③</td>
<td>第3分冊</td>
<td>処分システム工学確証技術開発モニタリング関連技術の整備</td>
</tr>
<tr>
<td>④</td>
<td>第4分冊</td>
<td>自然災害に対する操業期間中の安全対策に関わる基盤技術の開発</td>
</tr>
</tbody>
</table>
目 次

第 1 章 研究の目的及び概要 ... 1-1
 1.1 処分システム工学確証技術開発の背景、および目的 1-1
 1.1.1 開発の背景 .. 1-1
 1.1.2 開発の目的 .. 1-1
 1.2 人工バリア品質／健全性評価手法の構築（緩衝材）に関する開発の背景、および目的 1-4
 1.2.1 開発の背景 .. 1-4
 1.2.2 開発の目的 .. 1-5
 1.3 報告書の構成及び概要 .. 1-9

第 1 章 参考文献 .. 1-10

第 2 章 再冠水時に発生する現象の整理と検討計画 .. 2-1
 2.1 全体計画 .. 2-1
 2.1.1 基本方針 ... 2-1
 2.1.2 全体計画 ... 2-2
 2.1.3 5年間の全体研究計画 .. 2-4
 2.2 再冠水時に発生する現象の整理 .. 2-6
 2.2.1 再冠水時に発生する現象の整理方法 ... 2-6
 2.2.2 緩衝材の施工品質のうち再冠水挙動に影響を及ぼす項目 2-8
 2.2.3 緩再冠水時に緩衝材に発生する現象、評価項目選定の妥当性 2-11
 2.3 試験の共通条件 .. 2-13
 2.3.1 試験の実施環境 .. 2-13
 2.3.2 使用材料 ... 2-13

第 2 章 参考文献 .. 2-14

第 3 章 施工品質（密度差）が緩衝材の膨潤挙動に及ぼす影響の調査 3-1
 3.1 背景 3-1
 3.2 既往の研究 .. 3-1
 3.3 密度分布が圧縮ベントナイトの膨潤圧に及ぼす影響試験の目的 3-4
 3.3.1 試験ケース .. 3-4
 3.3.2 供試体作成方法及び試験方法 ... 3-4
 3.3.3 試験結果[6] .. 3-6
 3.3.4 供試体解体後の物性試験 ... 3-9
 3.3.5 密度分布が膨潤圧に及ぼす影響の理論的考察 3-14
 3.4 密度分布が圧縮ベントナイトの膨潤量に及ぼす影響 3-15
 3.4.1 試験ケース .. 3-15
 3.4.2 試験結果（蒸留水ケース） .. 3-17
 3.4.3 試験結果（NaCl水溶液ケース） ... 3-24
3.5 応力履歴が圧縮ベントナイトの膨潤量に及ぼす影響 ... 3-27
3.5.1 試験ケース ... 3-27
3.5.2 試験結果（蒸留水のケース） ... 3-30
3.5.3 試験結果（NaCl 水溶液ケース） ... 3-36
3.6 力学に立脚した残留密度差の理論的解釈 .. 3-39
3.6.1 概要 ... 3-39
3.6.2 既往の成果による残留密度差の理論的解釈 ... 3-39
3.6.3 残留密度差の理論的解釈に資するデータ取得 ... 3-42
3.7 工学技術への反映 .. 3-48
3.7.1 概要 ... 3-48
3.7.2 試験結果に基づく密度差の工学技術への反映 ... 3-49
3.8 解析技術への反映 .. 3-51
3.8.1 解析技術への反映 .. 3-51

第 3 章 参考文献 .. 3-54

第 4 章 化学変質が緩衝材の膨潤挙動に及ぼす影響の調査 .. 4-1
4.1 Ca 型化と飽和の可逆性検討 .. 4-1
4.1.1 試験の目的及び概要 .. 4-1
4.1.2 使用材料 ... 4-2
4.1.3 試験ケース .. 4-3
4.1.4 供試体作成方法及び試験方法 .. 4-3
4.1.5 試験結果 ... 4-4
4.1.6 供試体解体後の物性試験 .. 4-8
4.1.7 通水圧を付与した場合の膨潤圧の算出方法 .. 4-9
4.1.8 工学技術への反映 .. 4-10
4.1.9 解析技術への反映 .. 4-11
第 4 章 参考文献 .. 4-12

第 5 章 減衝材への地下水浸潤状況の評価 .. 5-1
5.1 長尺ベントナイト供試体を用いた一次元浸潤速度取得試験 5-1
5.1.1 試験の目的及び概要 .. 5-1
5.1.2 試験ケース .. 5-2
5.1.3 供試体作成方法及び試験方法 .. 5-5
5.1.4 飽和度と比抵抗の関係取得 .. 5-7
5.1.5 試験結果 ... 5-11
5.1.6 工学技術への反映 .. 5-18
5.1.7 解析技術への反映 .. 5-18
第 5 章 参考文献 .. 5-19
第6章 緩衝材表面近傍の止水性評価

6.1 小型セルによるパイピング・エロージョン・破過試験

6.1.1 試験の目的及び概要（既往試験のレビューも含む）

6.1.2 原位置施工を模擬した小型セルによるブレイクスルー、パイピング、エロージョン試験

6.1.3 ブロック定置・ペレット充填方式を模擬した小型セルによるパイピング、エロージョン、破過試験

6.1.4 パイピング、エロージョン、破過現象の詳細検討

6.2 流路長がブレイクスルー、パイピング、エロージョンに及ぼす影響

6.2.1 試験概要

6.2.2 試験ケース

6.2.3 試験結果

6.3 緩衝材の限界流量の検討

6.3.1 試験概要

6.3.2 試験ケース

6.3.3 試験結果

6.4 工学規模パイピング・エロージョン試験

6.4.1 試験概要

6.4.2 試験ケース

6.4.3 無対策ケースの試験結果

6.4.4 人工不陸ケースの試験結果

6.5 工学技術への反映

6.5.1 緩衝材や埋め戻し材等の材料特性としての許容流量の整理

6.5.2 試験結果に基づく対策フロー

6.5.3 戦災防制技術に関する文献調査

6.6 緩衝材の流出に関する課題の抽出

6.6.1 処分概念に対する洪水環境のモデル化の実験的評価方法

6.6.2 影響低減対策の検討

6.6.3 解析技術への反映

6.6.4 まとめと今後の試験計画

6.7 排水の分析

6.7.1 試験の目的及び概要

6.7.2 これまでの排水分析結果

6.7.3 平成23年度以降の排水の分析結果

第7章 小規模試験をスケールアップした土槽規模試験での緩衝材の膨潤挙動の調査

7.1 施工品質（密度差）が再冠水時発生する現象に及ぼす影響の調査のための試験
第 7 章 試験結果.. 7-1
7.1 試験結果概要 ... 7-1
7.1.1 概要 ... 7-1
7.1.2 試験条件 .. 7-1
7.1.3 試験結果(ペレット充填ケース) .. 7-3
7.1.4 試験結果(ブロック定置ケース) ... 7-10
7.1.5 試験結果(ブロック定置とペレット充填併用ケース) .. 7-29

第 8 章 浸潤による間隙空気の移行調査 ... 8-1
8.1 検討の目的と手段 ... 8-1
8.1.1 試験概要 .. 8-1
8.2 緩衝材の製作方法 .. 8-2
8.3 浸潤による間隙空気の移行調査手順 .. 8-2
8.4 試験結果 ... 8-4
8.4.1 流量制御過程 .. 8-4
8.4.2 圧力制御過程 .. 8-7
8.4.3 工学技術への反映 .. 8-10
8.4.4 解析技術への反映 .. 8-11

第 9 章 緩衝材施工技術の高度化検討 ... 9-1
9.1 調査の背景及び概要 ... 9-1
9.1.1 本研究の目的 ... 9-1
9.1.2 緩衝材の施工技術に関するこれまでの成果の概要 .. 9-2
9.2 平成 26 年度の調査概要 ... 9-5
9.2.1 調査項目 .. 9-5
9.3 吹付け施工技術の高度化に向けた取り組み ... 9-7
9.3.1 本検討の背景 ... 9-7
9.3.2 吹付け工法の概要 .. 9-7
9.3.3 吹付けベントナイトの密度管理方法[9] .. 9-14
9.3.4 平成 22 年度の緩衝材の施工技術の高度化のための施工試験[3] 9-18
9.3.5 平成 23 年度の吹付け施工試験計画 ... 9-29
9.4 実規模施工確認試験 .. 9-31
9.4.1 本検討の背景 ... 9-31
9.4.2 平成 24 年度の湧水環境下における吹付け施工実験[4] 9-31
9.4.3 平成 25 年度の湧水環境下における吹付け施工実験 .. 9-45
9.4.4 平成 26 年度の試験計画 ... 9-66
9.5 まとめ ... 9-71
9.5.1 実施内容 .. 9-71
9.5.2 平成 26 年度までの成果 ... 9-71
9.6 今年度の試験結果を踏まえた今後の試験計画 .. 9-73
第10章 地下研究施設におけるエロージョン試験

10.1 背景
10.2 試験の概要
10.2.1 実施事項
10.2.2 実施事項
10.3 既往検討の概要
10.3.1 SKBにおける検討
10.3.2 地下施設での試験
10.4 試験孔壁面の再観察
10.4.1 壁面観察結果まとめ
10.4.2 壁面観察図
10.5 緩衝材ブロックの制作
10.5.1 緩衝材用混合材料の製作
10.5.2 緩衝材ブロックの製作
10.6 緩衝材ブロック定置治具の製作
10.6.1 定置治具図面
10.6.2 定置治具の強度確認
10.6.3 定置治具製作結果
10.7 試験孔の湧水量測定
10.7.1 湧水量測定
10.7.2 3次元流向流速測定
10.7.3 目視による湧水箇所の概略確認
10.8 地下水の採水
10.8.1 地下水の採取
10.9 緩衝材流出予備試験
10.9.1 湧水量測定
10.9.2 緩衝材ブロックの設置
10.9.3 流出試料の採取
10.10 緩衝材流出試験
10.10.1 湧水量測定
10.10.2 緩衝材ブロックの設置
10.10.3 流出試料の採取
10.10.4 解体・コア分析
10.10.5 採取試料の吸光度分析
10.11 緩衝材流出予備試験試
10.11.1 湧水量測定
10.11.2 試験体・撮影機材等の設置 ... 10-74
10.11.3 流出試料の採取 ... 10-76
10.11.4 試験体の撤去 ... 10-78
10.11.5 試験体の状態確認 ... 10-80
10.12 衝材流出試験 .. 10-85
10.12.1 湯水量測定体 .. 10-85
10.12.2 試験体・撮影機材等の設置 ... 10-86
10.12.3 流出試料の採取 ... 10-88
10.12.4 試験体の撤去・解体 .. 10-90
10.12.5 試験体の状態確認 ... 10-95
10.12.6 試験体のコア分析 ... 10-103
10.12.7 採取試料の吸光度分析 .. 10-107
10.13 試験結果の評価と今後の方針 ... 10-110
10.13.1 試験結果の評価 ... 10-110
10.13.2 平成 27 年度の試験計画結果 .. 10-112
第 10 章参考文献 .. 10-113

第 11 章 地下水流入低下工法の検討 .. 11-1
11.1 研究の目的及び概要 ... 11-1
11.2 平成 26 年度～平成 29 年度の実施計画 .. 11-2
11.3 割れ目ネットワークモデルの構築 ... 11-5
11.4 割れ目の幾何学的パラメータセットの設定 11-6
11.5 割れ目ネットワークモデルの作成 ... 11-9
11.5.1 割れ目ネットワークモデルの作成方法 11-9
11.5.2 割れ目ネットワークモデルの作成結果 11-12
11.6 水理モデル構築に必要な水理データの設定 11-21
11.7 水理試験再現解析による透水係数分布の算定 11-23
11.7.1 水理試験再現解析による透水係数分布の算定方法 11-23
11.7.2 水理試験再現解析による透水係数分布の算定結果 11-28
11.8 処分孔及び処分坑道への湧水量の算定 ... 11-34
11.8.1 水理試験再現解析による透水係数分布の算定方法 11-35
11.8.2 水理試験再現解析による透水係数分布の算定方法 11-38
11.8.3 処分坑道掘削時の処分坑道への湧水量の算定結果 11-40
11.8.4 坑道湧水量 .. 11-41
11.8.5 坑道 5m 区間湧水量 .. 11-42
11.8.6 坑道と交差する割れ目の流量 ... 11-47
11.8.7 坑道壁面湧水量分布 ... 11-50
11.9 処分孔掘削時の処分坑道及び処分孔への湧水量の算定結果 11-60
11.9.1 坑道湧水量及び処分孔湧水量 ... 11-61
11.9.2 坑道 5m 区間湧水量 ... 11-64
11.9.3 坑道及び処分孔と交差する割れ目の流量 11-69
11.9.4 坑道壁面湧水量分布及び処分孔湧水量分布 11-72
11.10 止水対策による湧水量低減効果の評価 11-87
11.10.1 水抜きポーリングと E Đ Z グラウトのモデル化 11-87
11.10.2 水抜きポーリングのモデル化 .. 11-88
11.10.3 水抜きポーリング設置後の処分坑道及び処分孔への湧水量の算定結果 11-89
11.10.4 坑道湧水量及び処分孔湧水量 .. 11-89
11.10.5 坑道 5m 区間湧水量 ... 11-95
11.10.6 坑道と交差する割れ目の流量 ... 11-100
11.10.7 坑道壁面湧水量分布及び処分孔湧水量分布 11-103
11.11 掘削影響領域へのグラウト改良のモデル化 11-118
11.12 掘削影響領域へのグラウト改良後の処分坑道及び処分孔への湧水量の算定結果 11-120
11.12.1 坑道湧水量及び処分孔湧水量 .. 11-120
11.12.2 坑道 5m 区間湧水量 ... 11-125
11.12.3 坑道と交差する割れ目の流量 ... 11-130
11.12.4 坑道壁面湧水量分布及び処分孔湧水量分布 11-133
11.13 掘削影響領域へのグラウト改良のモデル化 11-148

第 11 章 参考文献 .. 11-151

第 12 章 研究成果の設計施工指針への反映 12-1
12.1 再冠水時の緩衝材の挙動に関する研究成果 12-1
12.1.1 再冠水時の緩衝材の研究目的と反映先 12-1
12.1.2 再冠水時の緩衝材の挙動に関するこれまでの研究成果 12-1
12.2 再冠水時の緩衝材の研究成果の設計指針・施工指針への反映 12-7
12.2.1 再冠水時の緩衝材の研究方針 ... 12-7
12.2.2 再冠水時の緩衝材の密度差 ... 12-9
12.2.3 緩衝材の Ca 型化速度 .. 12-13
12.2.4 緩衝材の浸潤速度と飽和度 ... 12-14
12.3 パイピング/エロージョン現象に対する対策について 12-16
12.3.1 緩パイピング/エロージョン現象と流出する物質 12-16
12.3.2 緩衝材がエロージョンを起こさない限界流速の検討 12-19
12.3.3 パイピング/エロージョンに対する対策 12-21
12.3.4 吹付け施工試験と仮設プラグの効果について 12-22
12.4 幡延深地層研究所におけるエロージョン試験と工学的対策について 12-24
12.4.1 幡延深地層研究所におけるエロージョン試験の評価 12-24
12.4.2 幡地下水位低下工法に関する検討 ... 12-28
12.5 埋め戻し材、プラグに関する設計・施工仕様について 12-31
12.5.1 埋め戻し材のバリア機能と設計要領 12-31
<table>
<thead>
<tr>
<th>項目</th>
<th>位置</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5.2 埋め戻し材の設計指標</td>
<td>12-34</td>
</tr>
<tr>
<td>12.5.3 プラグの定義と設計要領</td>
<td>12-35</td>
</tr>
<tr>
<td>12.5.4 プラグの設計指標</td>
<td>12-37</td>
</tr>
<tr>
<td>12.6 再冠水時の緩衝材に関する今後の方針</td>
<td>12-40</td>
</tr>
<tr>
<td>12.6.1 検討フロー</td>
<td>12-40</td>
</tr>
<tr>
<td>第12章 参考文献</td>
<td>12-42</td>
</tr>
<tr>
<td>第13章 まとめ</td>
<td>13-1</td>
</tr>
<tr>
<td>13.1 実施内容</td>
<td>13-1</td>
</tr>
<tr>
<td>13.2 平成26年度までの成果</td>
<td>13-2</td>
</tr>
<tr>
<td>13.2.1 施工品質（密度差）が再冠水時に発生する現象に及ぼす影響の調査のための試験</td>
<td>13-2</td>
</tr>
<tr>
<td>13.2.2 Ca型化と飽和の可逆性検討</td>
<td>13-5</td>
</tr>
<tr>
<td>13.2.3 長尺ベントナイト供試体を用いた一次元浸潤速度取得試験</td>
<td>13-7</td>
</tr>
<tr>
<td>13.2.4 緩衝材表面近傍の止水性評価</td>
<td>13-8</td>
</tr>
<tr>
<td>13.2.5 施工品質による密度分布の均質化検討（2次元土槽試験）</td>
<td>13-15</td>
</tr>
<tr>
<td>13.2.6 浸潤による間隙空気の移行調査手順</td>
<td>13-18</td>
</tr>
<tr>
<td>13.2.7 吹付け施工技術の適用性</td>
<td>13-19</td>
</tr>
<tr>
<td>13.2.8 地下施設を使った緩衝材の性能確認試験</td>
<td>13-20</td>
</tr>
<tr>
<td>13.3 研究計画の更新</td>
<td>13-21</td>
</tr>
<tr>
<td>13.3.1 5年間の全体計画の更新</td>
<td>13-21</td>
</tr>
<tr>
<td>13.3.2 処分環境（湧水量や水質等）の影響検討</td>
<td>13-21</td>
</tr>
<tr>
<td>13.3.3 施工品質（密度差）が再冠水時に発生する現象に及ぼす影響の調査のための試験</td>
<td>13-22</td>
</tr>
<tr>
<td>13.3.4 Ca型化と飽和の可逆性検討</td>
<td>13-25</td>
</tr>
<tr>
<td>13.3.5 長尺ベントナイト供試体を用いた一次元浸潤速度取得試験</td>
<td>13-26</td>
</tr>
<tr>
<td>13.3.6 緩衝材表面近傍の止水性評価</td>
<td>13-26</td>
</tr>
<tr>
<td>13.3.7 施工品質による密度分布の均質化検討（2次元土槽試験）</td>
<td>13-32</td>
</tr>
<tr>
<td>13.3.8 浸潤による間隙空気の移行調査手順</td>
<td>13-32</td>
</tr>
<tr>
<td>13.3.9 吹付け施工技術の適用性</td>
<td>13-32</td>
</tr>
<tr>
<td>13.3.10 地下施設を活用した緩衝材の性能確認</td>
<td>13-32</td>
</tr>
<tr>
<td>13.3.11 人工バリア全体としての設計・施工仕様の策定に資する指標の整備</td>
<td>13-33</td>
</tr>
<tr>
<td>第13章 参考文献</td>
<td>13-34</td>
</tr>
</tbody>
</table>
図 1.2.1-1 検討内容の人工バリアの時系列における意味 ... 1-5
図 1.2.2-1 再冠水時に緩衝材に生じる事象を踏まえた建設操業時の影響項目の評価とその反映先 ... 1-6
図 1.2.2-2 本研究の位置づけ .. 1-6
図 2.1.1-1 本研究の基本方針 .. 2-1
図 2.1.2-1 全体試験計画 .. 2-3
図 2.2.1-1 本研究の基本方針 .. 2-7
図 2.2.2-1 抽出した象の相互関係 .. 2-10
図 2.2.2-2 抽出した試験項目の位置付け ... 2-11
図 2.3.1-1 試験状況 ... 2-13
図 3.3.1-1 既往の均質化試験例[1] .. 3-1
図 3.3.1-2 既往の均質化試験例[2] .. 3-2
図 3.3.1-3 小峯らの試験装置概要[3] .. 3-2
図 3.3.1-4 小峯らの試験結果[3] .. 3-3
図 3.3.1-5 JAEA（旧 JNC）の試験結果[4] ... 3-3
図 3.3.1-6 鈴木らの試験結果[5] .. 3-4
図 3.3.1-7 密度分布が圧縮ペントナイトの膨潤圧に及ぼす影響取得試験機 3-5
図 3.3.1-8 密度分布が圧縮ペントナイトの膨潤圧に及ぼす影響取得試験の供試体 3-5
図 3.3.2-1 密度分布が圧縮ペントナイトの膨潤圧に及ぼす影響取得試験の供試体作製手順 3-6
図 3.3.3-1 密度分布が圧縮ペントナイトの膨潤圧に及ぼす影響取得試験結果 3-7
図 3.3.3-2 密度分布が圧縮ペントナイトの膨潤圧に及ぼす影響取得試験の収束状況 3-7
図 3.3.3-3 密度分布が圧縮ペントナイトの膨潤圧に及ぼす影響取得試験の透水係数経時変化 3-8
図 3.3.4-1 密度分布の差が存在する場合の圧縮ペントナイトの膨潤量 3-8
図 3.3.4-2 密度分布を有する供試体の試験前後の密度分布 ... 3-9
図 3.3.4-3 密度分布を有する供試体の解体状況 ... 3-9
図 3.3.4-4 供試体の解体計画図 .. 3-10
図 3.3.5-1 有効ペントナイト乾燥密度と透水係数の関係 .. 3-11
図 3.3.5-2 有効ペントナイト乾燥密度と透水係数の関係 .. 3-12
図 3.3.5-3 上下方向に密度分布を有する供試体の膨潤圧と既往の研究の比較 3-13
図 3.3.5-4 平衡膨潤圧のばらつきに関する考察 ... 3-13
図 3.3.5-5 平衡膨潤圧のばらつきに関する考察 ... 3-14
図 3.3.5-6 既往の研究による平衡膨潤圧と正規圧密曲線の関係 3-15
図 3.3.6-1 密度分布の差が存在する場合の圧縮ペントナイトの膨潤量 3-16
図 3.3.6-2 密度分布が圧縮ペントナイトの膨潤量に及ぼす直列膨重量試験 3-16

図 3.3.7-1 密度分布が圧縮ペントナイトの膨潤量に及ぼす直列膨重量試験 3-16
図 5.1.5-5 飽和フロントの進展状況 ... 5-16
図 5.1.5-6 液体の浸潤状況 ... 5-16
図 5.1.5-7 液体の浸潤状況（左：蒸留水、右：NaCl 水溶液（0.5M）） 5-17
図 5.1.5-8 圧力計と浸潤面の水位差 ... 5-17
図 6.1.1-1 SKB 社による水みちのパイピング試験（SKB 社 Report R-06-80 [2]） 6-2
図 6.1.1-2 SKB 社による隙間のパイピング試験（SKB 社 Report R-06-80 [2]） 6-2
図 6.1.1-3 SKB 社によるペレット充填部のパイピング試験（SKB 社 Report R-06-72 [3]） ... 6-3
図 6.1.1-4 SKB 社による B 30/S70 ベントナイトブロックのパイピング試験（SKB 社 Report R-06-72 [3]） ... 6-3
図 6.1.2-1 破過圧計測試験のイメージ ... 6-4
図 6.1.2-2 破過圧測定試験装置概略図 .. 6-5
図 6.1.2-3 破過圧測定試験装置 .. 6-5
図 6.1.2-4 破過試験の試験ケース ... 6-5
図 6.1.2-5 破過圧計測試験の試験結果のイメージ ... 6-6
図 6.1.2-6 破過圧計測試験結果（流量 0.001cc/min） ... 6-7
図 6.1.2-7 破過圧計測試験結果（拡大図） ... 6-8
図 6.1.2-8 破過圧計測試験結果（流量 0.01cc/min） ... 6-9
図 6.1.2-9 破過圧計測試験結果 ... 6-9
図 6.1.2-10 破過試験中の全応力の作用 .. 6-10
図 6.1.2-11 ローダミン注入後のベントナイト/セメント供試体 6-11
図 6.1.2-12 ローダミン注入後のベントナイト/花崗岩供試体 6-12
図 6.1.3-1 ブレイクスルー、パイピング、エロージョン試験条件の検討（左：ブロック定置工法、右：ペレット充填工法） .. 6-13
図 6.1.3-2 HLW 縦置き概念イメージ図 .. 6-14
図 6.1.3-3 ブレイクスルー、パイピング、エロージョン試験セルの概略図 6-15
図 6.1.3-4 2連シリンジポンプによる定流量制御装置 6-16
図 6.1.3-5 2連シリンジポンプによる定流量制御装置 6-16
図 6.1.3-6 注入口：底面/蒸留水/ブロックケースのパイピングとエロージョンの発生状況 6-17
図 6.1.3-7 注入口：底面/NaCl 水溶液/ブロックケースのパイピングとエロージョンの発生状況 ... 6-18
図 6.1.3-8 注入口：底面/蒸留水/大粒径ペレットケースのパイピングとエロージョンの発生状況 6-19
図 6.1.3-9 蒸留水/注入口底面/大粒径ペレットケースのパイピングとエロージョンの発生状況 ... 6-20
図 6.1.3-10 注入口：底面/蒸留水/大粒径ペレットケースのパイピングとエロージョンの発生状況 ... 6-22
図 6.1.3-11 注入口：底面/蒸留水/大粒径ペレットケースのパイピングとエロージョンの発生状況 ... 6-23
図 6.1.3-12 注入口：上面/蒸留水/ブロックケースのパイピングとエロージョンの発生状況
図 6.1.3-13 注入口：上面/蒸留水ブロックケースのパイピングとエロージョンの発生状況
図 6.1.3-14 蒸留水/注入口底面/大粒径ペレットケースのパイピングとエロージョンの発生状況
図 6.1.3-15 注入口：上面/NaCl 水溶液/大粒径ペレットケースのパイピングとエロージョンの発生状況
図 6.1.3-16 パイピングとエロージョン試験中の通水圧の発生状況
図 6.1.4-1 膨潤による間隙体積の減少
図 6.1.4-2 水みちの収斂のイメージ図
図 6.1.4-3 水みちの収斂現象の確認試験イメージ
図 6.1.4-4 水みちの収斂現象の確認試験全ケースのイメージ
図 6.1.4-5 人為的な水みちを有する供試体作製状況
図 6.1.4-6 水みちの形成状況(Case1)
図 6.1.4-7 解体状況(Case1)
図 6.1.4-8 Case1 の通水圧と流量の関係
図 6.1.4-9 水みちの形成状況(Case2)
図 6.1.4-10 解体状況(Case2)
図 6.1.4-11 Case2 の通水圧と流量の関係
図 6.1.4-12 水みちの形成状況(Case3)
図 6.1.4-13 Case3 の通水圧と流量の関係
図 6.1.4-14 総流量とエロージョン質量の関係
図 6.1.4-15 水みちの形成状況(Case4)
図 6.1.4-16 解体状況(Case4)
図 6.1.4-17 Case4 の通水圧と流量の関係
図 6.1.4-18 水みちの形成状況(Case5)
図 6.1.4-19 解体状況(Case5)
図 6.1.4-20 Case5 の通水圧と流量の関係
図 6.1.4-21 水みちの形成状況(Case6)
図 6.1.4-22 解体状況(Case6)
図 6.1.4-23 Case6 の通水圧と流量の関係
図 6.1.4-24 水みちの形成状況(Case7)
図 6.1.4-25 解体状況(Case7)
図 6.1.4-26 Case7 の通水圧と流量の関係
図 6.1.4-27 水みちの形成状況(Case8)
図 6.1.4-28 解体状況(Case8)
図 6.1.4-29 Case8 の通水圧と流量の関係
図 6.1.4-30 水みちの形成状況(Case1)
図 6.1.4-31 解体状況(Case1)
図 6.1.4-32 Case1 の通水圧と流量の関係
図 6.1.4-33 水みちの形成状況(Case2)
図 6.1.4-34 解体状況（Case2）...6-51
図 6.1.4-35 Case2 の通水圧と流量の関係...6-51
図 6.1.4-36 水みちの形成状況（Case3）...6-52
図 6.1.4-37 Case3 の通水圧と流量の関係...6-53
図 6.1.4-38 総流量とエロージョン質量の関係...6-53
図 6.1.4-39 水みちの形成状況（Case4）...6-54
図 6.1.4-40 解体状況（Case4）...6-54
図 6.1.4-41 Case4 の通水圧と流量の関係...6-54
図 6.1.4-42 水みちの形成状況（Case5）...6-55
図 6.1.4-43 解体状況（Case5）...6-55
図 6.1.4-44 Case5 の通水圧と流量の関係...6-55
図 6.1.4-45 水みちの形成状況（Case6）...6-56
図 6.1.4-46 解体状況（Case6）...6-57
図 6.1.4-47 Case6 の通水圧と流量の関係...6-57
図 6.1.4-48 水みちの形成状況（Case7）...6-58
図 6.1.4-49 解体状況（Case7）...6-58
図 6.1.4-50 Case7 の通水圧と流量の関係...6-58
図 6.1.4-51 水みちの形成状況（Case8）...6-59
図 6.1.4-52 解体状況（Case8）...6-59
図 6.1.4-53 Case8 の通水圧と流量の関係...6-59
図 6.1.4-54 水みちの形成状況（Case1）...6-60
図 6.1.4-55 解体状況（Case1）...6-60
図 6.1.4-56 Case1 の通水圧と流量の関係...6-60
図 6.1.4-57 水みちの形成状況（Case2）...6-61
図 6.1.4-58 解体状況（Case2）...6-61
図 6.1.4-59 Case2 の通水圧と流量の関係...6-62
図 6.1.4-60 水みちの形成状況（Case3）...6-63
図 6.1.4-61 Case3 の通水圧と流量の関係...6-64
図 6.1.4-62 総流量とエロージョン質量の関係...6-64
図 6.1.4-63 水みちの形成状況（Case4）...6-65
図 6.1.4-64 解体状況（Case4）...6-65
図 6.1.4-65 Case4 の通水圧と流量の関係...6-65
図 6.1.4-66 水みちの形成状況（Case5）...6-66
図 6.1.4-67 解体状況（Case5）...6-66
図 6.1.4-68 Case5 の通水圧と流量の関係...6-66
図 6.1.4-69 水みちの形成状況（Case6）...6-67
図 6.1.4-70 解体状況（Case6）...6-67
図 6.1.4-71 Case6 の通水圧と流量の関係...6-67
図 6.1.4-72 水みちの形成状況（Case7）...6-68

xiv
図 6.2.3-18 1000mm セルによるパイピング、エロージョン、ブレイクスルーの発生状況 (H24) ... 6-94
図 6.2.3-19 1000mm セルによるパイピング試験の水みち観察(H24) 6-95
図 6.2.3-20 水みち形成状況 ... 6-96
図 6.2.3-21 1000mm セルによるパイピング試験中の膨潤圧と送水圧の経時変化 6-97
図 6.2.3-22 1000mm セルによるパイピング試験の総流量とエロージョン質量の関係..... 6-98
図 6.2.3-23 1000mm セルによるパイピング試験におけるケイ砂の堆積状況とロージョン質量 .. 6-98
図 6.3.1-1 限界流量計測試験 .. 6-99
図 6.3.1-2 限界流速計測試験結果のイメージ .. 6-100
図 6.3.1-3 限界流速のイメージ .. 6-100
図 6.3.3-1 膨潤量と流量の経時変化（乾燥密度 1.6Mg/m³ の場合） 6-102
図 6.3.3-2 流量毎の膨潤・エロージョン状況（乾燥密度 1.6Mg/m³ の場合） 6-102
図 6.3.3-3 膨潤量と流量の経時変化（乾燥密度 1.8Mg/m³ の場合） 6-103
図 6.3.3-4 流量毎の膨潤・エロージョン状況（乾燥密度 1.8Mg/m³ の場合） 6-103
図 6.3.3-5 膨潤量と流速の関係（乾燥密度 1.6 Mg/m³ と 1.8Mg/m³ の場合） 6-104
図 6.3.3-6 限界流速と乾燥密度の関係 ... 6-104
図 6.4.1-1 工学規模パイピング・エロージョン試験セルのイメージ 6-105
図 6.4.1-2 送水圧と送水量の経時変化 ... 6-107
図 6.4.3-1 水みち形成観察結果のイメージ ... 6-111
図 6.4.3-2 工学規模エロージョン試験のサンプリング位置 6-111
図 6.4.3-3 工学規模エロージョン試験の解体結果（乾燥密度コンター） 6-113
図 6.4.3-4 工学規模エロージョン試験の解体結果（飽和度コンター） 6-113
図 6.4.3-5 工学規模エロージョン試験から得られる総流量とエロージョン質量の関係. 6-114
図 6.4.3-6 エロージョン物質のモンモリロナイト含有率の経時変化 6-114
図 6.4.4-1 エロージョン対策としての人工不陸の意味① 6-115
図 6.4.4-2 エロージョン対策としての人工不陸の意味② 6-116
図 6.4.4-3 給水量と給水圧の経時変化 .. 6-116
図 6.4.4-4 工学的対策の効果の評価イメージ ... 6-120
図 6.5.1-1 流量とエロージョン量の関係における湧水対策の意味 6-122
図 6.5.1-2 削孔→1次覆工→ベントナイト吹付け→2次覆工 6-123
図 6.5.2-1 処分孔としての使用可否、および湧水を有する処分孔の緩衝材の最適な施工法の 決定チャートにおける本検討結果反映先 .. 6-124
図 6.6.1-1 試験ケース ... 6-128
図 6.6.1-2 試験ケース ... 6-128
図 6.6.1-3 ブレイクスルー、パイピング、エロージョン試験セルの概略図 6-129
図 6.6.1-4 パイピング生成試験セル（流路長を変化） 6-130
図 6.6.1-5 コンパートメントプラグの止水性効果の検討 6-130
図 6.6.1-6 人工給水効果の検討 ... 6-131
図 9.3.2-10 転圧と吹付け工法による緩衝材の密度分布の比較 .. 9-12
図 9.3.2-11 吸引方式によるリバウンド材の回収イメージ ... 9-13
図 9.3.2-12 吸引機のベルヌーイ効果 ... 9-13
図 9.3.2-13 サイクロンによる気体と個体の分離技術 ... 9-14
図 9.3.3-1 浮力法による高密度測定方法 ... 9-15
図 9.3.3-2 不飽和土のメニスカス水の表面張力の概念図 ... 9-16
図 9.3.3-3 極性有機分子－水、無極性有機分子－水の界面張力の相違 9-16
図 9.3.3-4 浸漬時間と乾燥密度関係（シリコンオイル染込みの影響あり） 9-17
図 9.3.3-5 浸漬時間と乾燥密度関係（シリコンオイル染込みの影響除去） 9-18
図 9.3.4-1 吹付け箱試験の概要 ... 9-19
図 9.3.4-2 試験で使用した吹付け箱 ... 9-19
図 9.3.4-3 締固め試験で得られた締固め曲線（締固めエネルギー5Ec） 9-20
図 9.3.4-4 吹付け箱試験で得られた締固め曲線 ... 9-22
図 9.3.4-5 吹付け後の吹付け箱の写真（MX80 素体） ... 9-23
図 9.3.4-6 吹付け後の吹付け箱の写真（MX80 5mm 以下） .. 9-23
図 9.3.4-7 吹付け後の吹付け箱の写真（Milos Ca-bentonite 素体） 9-24
図 9.3.4-8 吹付け後の吹付け箱の写真（Milos Ca-bentonite 5mm 以下） 9-24
図 9.3.4-9 吹付け後の吹付け箱の写真（Friedland Clay 素体） 9-25
図 9.3.4-10 吹付け後の吹付け箱の写真（Friedland Clay 5mm 以下） 9-25
図 9.3.4-11 締固め工法における間隙水の役割 ... 9-26
図 9.3.4-12 透水係数の経時変化（Friedland Clay） ... 9-27
図 9.3.4-13 透水係数と乾燥密度の関係（Friedland Clay） .. 9-28
図 9.3.4-14 有効モンモリロナイト密度と透水係数の関係 ([1]に加筆) 9-29
図 9.3.5-1 施工方法の高度化試験イメージ ... 9-30
図 9.3.5-2 緩衝材施工試験工学規模リング型土槽 ... 9-30
図 9.4.2-1 施工方法の実験イメージ ... 9-32
図 9.4.2-2 リング型モールドの諸元 ... 9-32
図 9.4.2-3 リング型モールド ... 9-33
図 9.4.2-4 フローポンプ ... 9-34
図 9.4.2-5 ジャンクションパイプ .. 9-34
図 9.4.2-6 制御機器（シーケンサ、モータダライバ、PC） 9-34
図 9.4.2-7 実験装置系統図（Case1） ... 9-34
図 9.4.2-8 Case1 の吹付け方法（平面図） .. 9-35
図 9.4.2-9 Case2 の吹付け方法 ... 9-36
図 9.4.2-10 ブロックサンプル箇所 .. 9-37
図 9.4.2-11 吹付け前の様子（Case1） .. 9-37
図 9.4.2-12 吹付け後の施工部（Case1） .. 9-37
図 9.4.2-13 経過時間－送水圧－流量関係（Case1） ... 9-38
図 9.4.2-14 リング型モールドの湧水孔 ... 9-39
図 9.4.2-15 側壁と底盤の間からの水漏れ... 9-39
図 9.4.2-16 仕切り壁と側壁の間からの水漏れ.. 9-39
図 9.4.2-17 密度分布図（Case1、平面図）.. 9-40
図 9.4.2-18 吹付け前の様子（Case2）... 9-41
図 9.4.2-19 吹付け後の施工部（Case2）... 9-41
図 9.4.2-20 経過時間－送水圧－流量関係（Case2）... 9-41
図 9.4.2-21 密度分布図（Case2、側面図）.. 9-42
図 9.4.2-22 吹付け前の様子（Case2）... 9-43
図 9.4.2-24 吹付け後の施工部（Case3）... 9-43
図 9.4.2-25 経過時間－送水圧－流量関係（Case3）... 9-43
図 9.4.2-26 密度分布図（Case2、側面図）.. 9-44
図 9.4.2-27 吹付け前の様子（Case3）... 9-44
図 9.4.3-1 検討のフロー.. 9-46
図 9.4.3-2 アイリットミキサーの外観.. 9-47
図 9.4.3-3 アイリットミキサーの摺拌翼... 9-47
図 9.4.3-4 水添加混合方式の作業フロー... 9-48
図 9.4.3-5 赤外線水分計への試料投入... 9-49
図 9.4.3-6 含水比計測（点/パッチ）... 9-49
図 9.4.3-7 近赤外線水分計と炉乾燥法による含水比の測定結果.......................... 9-50
図 9.4.3-8 実規模 1/4 リングモールド外観... 9-51
図 9.4.3-9 底板と側壁の剛結箇所... 9-51
図 9.4.3-10 実規模 1/4 リングモールド組立順序.. 9-51
図 9.4.3-11 実規模 1/4 リングモールドの諸元（側壁・底盤部）......................... 9-52
図 9.4.3-12 実規模 1/4 リングモールドの諸元（側壁・底盤部）......................... 9-53
図 9.4.3-13 実規模 1/4 リングモールドの諸元（アクリル蓋）............................. 9-54
図 9.4.3-14 実規模 1/4 リングモールドの諸元（鋼製蓋）................................. 9-55
図 9.4.3-15 液状ガスケット.. 9-56
図 9.4.3-16 涂布の様子.. 9-56
図 9.4.3-17 フローポンプ.. 9-57
図 9.4.3-18 ジャンクションパイプ.. 9-57
図 9.4.3-19 制御機器（シーケンサ、モータドライバ、PC）................................. 9-57
図 9.4.3-20 実験装置系統図（Case1 の場合）.. 9-58
図 9.4.3-21 吹付け方法（平面図、図 9.4.2-8 を再掲）.. 9-58
図 9.4.3-22 経過時間－送水量－流量関係【Case1 堆積岩】................................. 9-59
図 9.4.3-23 経過時間－送水量－流量関係【Case2 結晶質岩】............................. 9-61
図 9.4.3-24 含水比と乾燥密度の関係... 9-63
図 10.12.5-3 同位置でのベントナイトペレットの膨潤状況（再冠水開始 15 分後）... 10-92
図 10.12.5-4 同位置でのベントナイトペレットの膨潤状況（再冠水開始 20 分後）... 10-93
図 10.12.5-5 同位置でのベントナイトペレットの膨潤状況（再冠水開始 25 分後）... 10-93
図 10.12.5-6 同位置でのベントナイトペレットの膨潤状況（再冠水開始 30 分後）... 10-93
図 10.12.5-7 同位置でのベントナイトペレットの膨潤状況（再冠水開始 35 分後）... 10-94
図 10.12.5-8 ベントナイトペレットの水中での膨潤状況（再冠水開始 24 時間後）... 10-94
図 10.12.5-9 緩衝材の膨潤状況（1か月後）... 10-95
図 10.12.5-10 引き上げた試験体の状態... 10-96
図 10.12.5-11 回収した試験体ブロック... 10-97
図 10.12.5-12 孔壁観察状況（試験孔 2）... 10-98
図 10.12.5-13 （参考）試験孔 2 のパノラマ写真... 10-98
図 10.12.6-1 試験体から取得したコア（上部）... 10-100
図 10.12.6-2 試験体から取得したコア（中部）... 10-100
図 10.12.6-3 試験体から取得したコア（下部）... 10-101
図 10.13.2-1 緩衝材試験に仮設プラグを設置したイメージ... 11-107
図 11.2-1 イメージ図... 11-3
図 11.2-2 本解析業務の位置づけ... 11-4
図 11.4-1 深度 350m 調査孔平面図... 11-6
図 11.4-2 船延サイトのポーリングデータに基づく割れ目卓越方向分布（文献 1）... 11-7
図 11.4-3 船延サイトの割れ目トレース長の頻度分布（文献 1）... 11-8
図 11.4-4 円形を仮定した割れ目半径に対するトレース長の期待値の関係... 11-8
図 11.5-1 割れ目発生プログラム処理フロー... 11-9
図 11.5-2 チャンネルネットワークによるモデル化概念図... 11-10
図 11.5-3 割れ目モデルの三次元表示... 11-12
図 11.5-4 HL1 割れ目ネットワークモデル... 11-13
図 11.5-5 HL12 割れ目ネットワークモデル... 11-14
図 11.5-6 各モデルの割れ目枚数... 11-15
図 11.5-7 割れ目枚数のモデル間の比較... 11-16
図 11.5-8 三次元割れ目密度のモデル間の比較... 11-17
図 11.5-9 各モデルの割れ目のシュミットネットプロット... 11-17
図 11.5-10 各モデルの割れ目の半径分布... 11-20
図 11.7-1 格子状パイプによる水理地質構造のモデル化... 11-23
図 11.7-2 水理地質構造モデルの概念図... 11-24
図 11.7-3 HL1 モデルのチャネルネットワーク（RZ2）... 11-24
図 11.7-4 HL2 モデルのチャネルネットワーク（RZ2）... 11-25
図 11.7-5 HL12 モデルのチャネルネットワーク（RZ2）... 11-25
図 11.7-6 水理試験再現解析による割れ目量透水係数の算定フロー... 11-26
図 11.7-7 水理試験再現解析による透水量係数分布... 11-29
図 11.7-8 各モデルの境界面からの流量... 11-30
図 11.9-9	区間湧水量集計結果（HL12_07）	11-67
図 11.9-10	区間湧水量集計結果（HL12_08）	11-67
図 11.9-11	区間湧水量集計結果（HL12_09）	11-68
図 11.9-12	区間湧水量集計結果（HL12_10）	11-68
図 11.9-13	坑道壁面の湧水量分布（HL12_01）	11-72
図 11.9-14	坑道壁面の湧水量分布（HL12_02）	11-73
図 11.9-15	坑道壁面の湧水量分布（HL12_03）	11-74
図 11.9-16	坑道壁面の湧水量分布（HL12_04）	11-75
図 11.9-17	坑道壁面の湧水量分布（HL12_05）	11-76
図 11.9-18	坑道壁面の湧水量分布（HL12_06）	11-77
図 11.9-19	坑道壁面の湧水量分布（HL12_07）	11-78
図 11.9-20	坑道壁面の湧水量分布（HL12_08）	11-79
図 11.9-21	坑道壁面の湧水量分布（HL12_09）	11-80
図 11.9-22	坑道壁面の湧水量分布（HL12_10）	11-81
図 11.9-23	処分孔交差割れ目分布と処分孔湧水量分布（HL12_01）	11-82
図 11.9-24	処分孔交差割れ目分布と処分孔湧水量分布（HL12_02）	11-82
図 11.9-25	処分孔交差割れ目分布と処分孔湧水量分布（HL12_03）	11-83
図 11.9-26	処分孔交差割れ目分布と処分孔湧水量分布（HL12_04）	11-83
図 11.9-27	処分孔交差割れ目分布と処分孔湧水量分布（HL12_05）	11-84
図 11.9-28	処分孔交差割れ目分布と処分孔湧水量分布（HL12_06）	11-84
図 11.9-29	処分孔交差割れ目分布と処分孔湧水量分布（HL12_07）	11-85
図 11.9-30	処分孔交差割れ目分布と処分孔湧水量分布（HL12_08）	11-85
図 11.9-31	処分孔交差割れ目分布と処分孔湧水量分布（HL12_09）	11-86
図 11.9-32	処分孔交差割れ目分布と処分孔湧水量分布（HL12_10）	11-86
図 11.10-1	止水対策工のモデル化	11-87
図 11.10-2	水抜きポーリングの境界条件の設定	11-88
図 11.10-3	水抜きポーリングのモデル化方法	11-88
図 11.10-4	水抜きポーリング設置前後の坑道湧水量	11-91
図 11.10-5	水抜きポーリング設置前後の処分孔湧水量	11-91
図 11.10-6	処分孔毎の湧水量（水抜きポーリング設置前後）	11-94
図 11.10-7	区間湧水量集計結果（HL12_01）	11-95
図 11.10-8	区間湧水量集計結果（HL12_02）	11-95
図 11.10-9	区間湧水量集計結果（HL12_03）	11-96
図 11.10-10	区間湧水量集計結果（HL12_04）	11-96
図 11.10-11	区間湧水量集計結果（HL12_05）	11-97
図 11.10-12	区間湧水量集計結果（HL12_06）	11-97
図 11.10-13	区間湧水量集計結果（HL12_07）	11-98
図 11.10-14	区間湧水量集計結果（HL12_08）	11-98
図 11.10-15	区間湧水量集計結果（HL12_09）	11-99
図 11.12-17 坑道壁面割れ目分布（HL12_04） .. 11-136
図 11.12-18 坑道壁面割れ目分布（HL12_05） .. 11-137
図 11.12-19 坑道壁面割れ目分布（HL12_06） .. 11-138
図 11.12-20 坑道壁面割れ目分布（HL12_07） .. 11-139
図 11.12-21 坑道壁面割れ目分布（HL12_08） .. 11-140
図 11.12-22 坑道壁面割れ目分布（HL12_09） .. 11-141
図 11.12-23 坑道壁面割れ目分布（HL12_10） .. 11-142
図 11.12-24 処分孔交差割れ目分布と処分孔湧水量分布（HL12_01） 11-143
図 11.12-25 処分孔交差割れ目分布と処分孔湧水量分布（HL12_02） 11-143
図 11.12-26 処分孔交差割れ目分布と処分孔湧水量分布（HL12_03） 11-144
図 11.12-27 処分孔交差割れ目分布と処分孔湧水量分布（HL12_04） 11-144
図 11.12-28 処分孔交差割れ目分布と処分孔湧水量分布（HL12_05） 11-145
図 11.12-29 処分孔交差割れ目分布と処分孔湧水量分布（HL12_06） 11-145
図 11.12-30 処分孔交差割れ目分布と処分孔湧水量分布（HL12_07） 11-146
図 11.12-31 処分孔交差割れ目分布と処分孔湧水量分布（HL12_08） 11-146
図 11.12-32 処分孔交差割れ目分布と処分孔湧水量分布（HL12_09） 11-147
図 11.12-33 処分孔交差割れ目分布と処分孔湧水量分布（HL12_10） 11-147

図 12.1.2-1 緩衝材ブロックとペレットが一体化した状況（C-3,C-4ブロックの浸潤後1カ月） .. 12-3
図 12.1.2-3 日本における処分施設の配置[6] .. 12-6
図 12.1.2-5 人工不陸のエロージョン対策と緩衝材の膨出対策 12-7
図 12.2.1-1 第3フェーズの基本方針 .. 12-8
図 12.2.1-2 設計検討のフロー図 .. 12-8
図 12.2.2-1 左 実規模1/8分割ブロック成形装置 .. 12-9
図 12.2.2-2 緩衝材ブロックの2断面における乾燥密度分布 12-10
図 12.2.2-3 緩衝材の吹付け施工状況 .. 12-10
図 12.2.2-4 湧水量0.1L/分（堆積岩を模擬）の状況で吹付け施工した場合の乾燥密度分布 .. 12-10
図 12.2.2-5 密度差のある供試体を直列に繋ぎ蒸留水、0.5M NaCl で膨潤させた場合の乾燥密度 .. 12-11
図 12.2.2-6 密度差のある供試体を直列に繋ぎ蒸留水、0.5M NaCl で膨潤させた場合の膨潤圧 .. 12-11
図 12.2.2-7 乾燥密度差と透水係数と、膨潤後の乾燥密度を設計指針に反映 12-12
図 12.2.2-8 緩衝材の施工法を選定するための設計フロー 12-13
図 12.2.3-1 Ca型化の透水係数に及ぼす影響 .. 12-14
図 13.3.4-4 工学規模緩衝材膨出試験のイメージ 13-24
図 13.3.4-1 Ca 型化の拡散速度取得試験のイメージ 13-25
図 13.3.6-1 横置き処分施設を模擬したエロージョン試験のイメージ 13-26
図 13.3.6-2 横置き処分施設を模擬したエロージョン試験のイメージ 13-26
図 13.3.6-3 ベントナイトの粘性とせん断強度の取得試験のイメージ 13-27
図 13.3.6-4 試験ケース .. 13-27
図 13.3.6-5 パイピング生成試験セル（流路長を変化） 13-28
図 13.3.6-6 コンパートメントプラグの止水性効果の検討 13-28
図 13.3.6-7 人工給水効果の検討 .. 13-29
図 13.3.6-8 水封効果の検討 ... 13-29
図 13.3.6-9 水密構造評価試験セル ... 13-30
図 13.3.6-10 実験装置系統図 ... 13-30
表 2.1.3-1 5カ年間の全体研究計画 ... 2-5
表 2.2.2-1 試験計画のための整理表[1] ... 2-9
表 2.2.2-2 抽出した試験項目とその試験分類 .. 2-10
表 2.3.1-1 SKB における建設許認可申請時における FEP[5] 2-12
表 2.3.2-2 スウェーデンの Forsmark における性能に関する指標名称とその値[6] 2-12
表 3.3.1-1 密度分布が圧縮ペントナイトの膨潤圧に及ぼす影響取得試験条件 3-5
表 3.3.1-1 密度分布が圧縮ペントナイトの膨潤圧に及ぼす影響取得試験供試体の物理試験結果 ... 3-10
表 3.4.1-1 密度分布が圧縮ペントナイトの膨潤量に及ぼす影響試験条件 3-17
表 3.4.1-1 密度分布が圧縮ペントナイトの膨潤量に及ぼす影響試験供試体の物理試験結果 ... 3-10
表 3.5.1-1 応力履歴が圧縮ペントナイトの膨潤量に及ぼす影響試験条件 3-28
表 3.5.2-1 直列膨潤量試験の解体結果 .. 3-34
表 3.6.3-1 圧密試験ケース .. 3-42
表 3.6.3-2 供試体諸元 ... 3-44
表 3.7.2-1 直列膨潤圧試験結果に基づく残留密度分布と透水係数 3-49
表 4.1.3-1 可逆性確認試験ケース案 .. 4-3
表 4.1.5-1 排水から算出した Ca 型化率 ... 4-7
表 4.1.5-2 ペントナイト系人工バリア材料の陽イオン交換容量一覧 4-7
表 5.1.1-1 鈴木らの試験条件[1] ... 5-2
表 5.1.4-1 比密度と比抵抗の関係取得試験ケースと試験結果一覧（蒸留水） 5-8
表 5.1.4-2 比密度と比抵抗の関係取得試験ケースと試験結果一覧（NaCl 水溶液） 5-9
表 6.1.2-1 原位置施工の試験ケース .. 6-6
表 6.1.3-1 昆酸供試体のブレイクスルー、パイピング、エロージョン試験ケース 6-14
表 6.1.3-2 エロージョン状況一覧 ... 6-28
表 6.1.4-1 水みちの収斂現象の確認試験全ケースの試験条件 6-34
表 6.1.4-2 水みちの収斂現象の確認試験供試体の乾燥密度 6-35
表 6.1.5-1 人工給水・エロージョン試験の検討ケース 6-72
表 6.1.5-2 人工給水・エロージョン試験の状況一覧 (Case1~8) 6-76
表 6.1.5-3 人工給水・エロージョン試験の状況一覧 (Case9~11) 6-77
表 6.1.5-4 人工給水・エロージョン試験の状況一覧 (Case12~14) 6-79
表 6.2.2-1 流路長がブレイクスルー、パイピング、エロージョンに及ぼす影響試験ケース 6-82
表 6.3.2-1 自己シール限界流量取得試験ケース .. 6-101
表 6.4.2-1 工学規模パイピング・エロージョン試験ケース 6-107
表 6.5.3-1 処分施設の溶出対策一覧 .. 6-127
表 6.7.2-1 排水の状況 .. 6-138
表 6.7.2-2 排水のICP-AES結果

表 7.1.2-1 土槽規模試験の試験ケース
表 7.1.3-1 ペレット充填による模擬緩衝材の初期状態
表 7.1.4-1 ブロック定置による模擬緩衝材の初期状態
表 7.1.5-1 ブロック定置とペレット充填併用ケースの供試体諸元
表 8.1.1-1 浸潤による間隙空気の移行試験のケース
表 9.3.2-1 本工法の標準機器仕様一覧
表 9.3.2-2 サイクロンによる気体と固体の分離技術の効果
表 9.3.4-1 各試料のモンモリロナイト含有率
表 9.3.4-2 各試料の土粒子密度
表 9.3.4-3 吹付け箱試験ケース一覧
表 9.3.4-4 各試験ケースの乾燥密度一覧
表 9.3.4-5 各試験ケースの付着量一覧
表 9.3.4-6 Friedland Clayの透水試験結果
表 9.4.2-1 実験ケース
表 9.4.3-1 実験ケース
表 9.4.3-2 アイリッヒミキサーの運転条件
表 9.4.3-3 含水比測定結果
表 9.4.3-4 液状ガスケットの諸元
表 9.4.3-5 各イベントの状況【Case1 堆積岩】
表 9.4.3-6 各イベントの状況【Case2 結晶質岩】
表 9.4.4-1 試験ケース
表 9.6.1-1 平成27年度の試験ケース案
表 10.2.1-1SKBによる室内試験結果
表 10.2.3-1 試験孔の出来形一覧（レベル測量による再確認結果）
表 10.3.1-1 壁面観察結果のまとめ（試験孔2）
表 10.3.1-2 壁面観察結果のまとめ（試験孔3）
表 10.4.1-1 混合材料の使用材料
表 10.4.1-2 混合材料の配合重量比
表 10.4.1-3 使用材料の試験項目
表 10.4.1-4 混合材料の品質管理項目
表 10.4.1-5 材料含水比
表 10.4.2-1 緩衝材ブロック製作時の品質・出来形確認項目・管理基準値
表 10.5.2-1 外圧強度計算結果
表 10.5.2-2 作用荷重内訳
表 10.5.2-3 底板強度計算結果
表 10.5.2-4 溶接部強度計算結果

xxxii
表 10.5.2-5 ロックネジの強度計算結果 ... 10-35
表 10.5.2-6 スペーサー強度計算結果 ... 10-36
表 10.5.2-7 スペーサー強度計算結果 ... 10-37
表 10.6.1-1 湧水量測定実施ケース ... 10-38
表 10.6.1-2 水位計の仕様 .. 10-40
表 10.6.1-3 均脈湧水および測定時の隣接孔の状態 ... 10-48
表 10.6.2-1 流向流速測定実施ケース ... 10-49
表 10.6.2-2 流向流速計の主な仕様 .. 10-51
表 10.6.2-3 淹水後の水の動きの測定結果 .. 10-55
表 10.6.2-4 試験孔 2 各深度での流速（静置計測） ... 10-58
表 10.6.2-5 試験孔 3 各深度での流速（静置計測） ... 10-60
表 11-1 割れ目幾何学的パラメータセット .. 11-7
表 11-2 各モデルの三次元割れ目密度 ... 11-16
表 11-3 各モデルの卓越方向及びフィッシャ定数 .. 11-18
表 11-4 各モデルの割れ目半径に対する超過割れ目枚数 11-19
表 11-5 PB-V01 孔 水理試験データ（文献 3） .. 11-22
表 11-6 水理試験再現解析結果（HL1 モデル） .. 11-28
表 11-7 水理試験再現解析結果（HL2 モデル） .. 11-28
表 11-8 水理試験再現解析結果（HL12 モデル） ... 11-28
表 11-9 各モデルにおける基質部を透過した流量の割合 11-31
表 11-1 本検討における透水係数の設定値 .. 11-36
表 11-2 坑道湧水量算定結果（処分坑道掘削時） ... 11-42
表 11-3 坑道に交差する割れ目の本数 ... 11-48
表 11-4 坑道に交差する主要割れ目の流量算定結果（処分坑道掘削時） 11-49
表 11-5 坑道湧水量算定結果（処分孔掘削時） .. 11-61
表 11-6 処分孔湧水量算定結果 .. 11-62
表 11-7 坑道に交差する割れ目の本数 ... 11-69
表 11-8 処分孔と交差する割れ目の本数 .. 11-69
表 11-9 坑道に交差する主要割れ目の流量算定結果（処分孔掘削時） 11-70
表 11-10 処分孔に交差する主要割れ目の流量算定結果（処分孔掘削時） 11-71
表 11-1 坑道湧水量算定結果（水抜きボーリング設置後） 11-90
表 11-2 処分孔湧水量算定結果（水抜きボーリング設置後） 11-93
表 11-3 水抜きボーリング排水量算定結果 .. 11-94
表 11-4 坑道に交差する主要割れ目の流量算定結果（水抜きボーリング掘削後） 11-102
表 11-5 処分孔に交差する主要割れ目の流量算定結果（水抜きボーリング掘削後） 11-103
表 11-6 坑道湧水量算定結果（グラウト改良後） ... 11-122
表 11-7 処分孔湧水量算定結果（グラウト改良前後） 11-124
表 11-8 坑道に交差する主要割れ目の流量算定結果（EDZ グラウト後） 11-133
表 11-9 処分孔に交差する主要割れ目の流量算定結果（EDZ グラウト後） 11-134

xxxiii
表 12.1.2-1 原環センターの緩衝材の挙動に関する研究成果 12-2
表 12.1.2-2 日本・スウェーデンにおける処分坑道1本当たりの処分孔数の比較 12-6
表 12.5.1-1 埋め戻し材に関するバリア機能、設計されるべき特性及び設計要領 12-33
表 12.5.2-1 モンモリロナイトの含有量 ... 12-34
表 12.5.2-2 埋め戻し材に関名する支配的な陽イオン、C E C及び副成分鉱物 12-35
表 12.5.2-3 ペレットの設計指標 ... 12-35
表 12.5.4-1 プラグの設置状態の構成部材に関する設計指標 12-39
第1章 研究の目的及び概要 .. 1-1

1.1 処分システム工学確証技術開発の背景、および目的 .. 1-1
 1.1.1 開発の背景 ... 1-1
 1.1.2 開発の目的 ... 1-1

1.2 人工バリア品質／健全性評価手法の構築（緩衝材）に関る開発の背景、および目的 1-4
 1.2.1 開発の背景 ... 1-4
 1.2.2 開発の目的 ... 1-5

1.3 報告書の構成及び概要 .. 1-7

第1章 参考文献 .. 1-8

図 1.2.1-1 検討内容の人工バリアの時系列における意味 ... 1-5
図 1.2.2-1 再冠水時に緩衝材に生じる事象を踏まえた建設操業時の影響項目の評価とその
 反映先 .. 1-6
図 1.2.2-2 本研究の位置づけ ... 1-6
第1章 研究の目的及び概要

1.1 処分システム工学確証技術開発の背景、および目的

1.1.1 開発の背景

我が国において、これまでの原子力発電の利用に伴って放射性廃棄物が既に発生しており、その処理・処分対策を着実に進める必要がある。高レベル放射性廃棄物（ガラス固化体）については、地層処分に向けた取組が行われており、処分技術の信頼性向上に関する基盤技術の開発が、最終処分のサイト選定プロセスを考慮して段階的に実施されている。

処分場の操業期間中におけるガラス固化体のオーバーパックへの封入・検査技術、オーバーパックの周囲に設置される緩衝材の施工技術及び人工バリアのモニタリング技術等の要素技術について、必要となる基盤技術が整備されてきた。今後、さらなる処分技術の信頼性向上のためには実際の深部地下環境での活用を通じて、これらの工学的な要素技術の信頼性を高める必要がある。

さらに、東京電力福島第一原子力発電所事故を踏まえ、操業期間中における自然災害である巨大地震や巨大津波等の操業期間中の安全対策に関る基盤技術の整備も喫緊の課題となっている。

本事業では、上記状況を踏まえ、平成25年度から5年程度の期間で処分場の操業期間中における人工バリアの製作・施工技術及びモニタリング技術等の工学技術を、地下研究施設を活用して確証していくとともに、自然災害に対する操業期間中の工学的対策に関する基盤技術の整備を行う。

1.1.2 開発の目的

平成25年度に立案した5か年計画の2年目として、以下の研究開発を実施する。

(1) 処分システム工学確証技術開発

オーバーパック及び緩衝材の製作・施工技術に対して深部地下環境を考慮した長期健全性の観点から工学的信頼性の向上を図るため、種々の判断指標の提示に基づいた品質に係わる知見の拡充、および健全性評価技術の構築に係わる検討を行う。また、これらの健全性を確認するモニタリング技術の整備の一環として地下研究施設での適用性確認等を行う。

1) 人工バリア品質／健全性評価手法の構築−オーバーパック

平成24年度までの遠隔操作技術高度化開発により、HLW第2次取りまとめで提示された板厚190 mmの炭素鋼オーバーパックについて、現状の技術で実際に製作、検査が可能なことを示した。さらに、人工バリア品質評価技術の開発では、溶接部と母材の耐食性は同等であることを確認した。

本開発では、実際の地下深部を想定した複合系でのオーバーパック溶接部の耐食性評価試験を実施するとともに、材料の劣化予測方法の検討、非破壊検査による欠陥検出精度の向上に関する検討を実施する。上記の実施内容で得られる知見より、腐食評価と構造評価
を合わせたオーバーパックの健全性評価手法を構築し、判断指標の具体化に資するものとする。

平成25年度は、オーバーパックの健全性評価の方法論について整理し、全体計画を立案した。腐食試験については、地上及び地下研究施設を活用した試験計画を立案し、地下研究施設での試験孔の掘削や、試験に必要な溶接供試体や試験機器の一部について製作を実施した。また、材料劣化事象の一つである中性子照射による脆化量を予測するための、オーバーパックの照射線量評価について検討を進めた。さらに、超音波探傷法による欠陥寸法測定誤差について調査した。

平成26年度は、腐食・構造評価を合わせた健全性評価手法について検討を進め、オーバーパックの品質確保に必要な判断指標（腐食、材料劣化、欠陥）の観点から健全性評価モデルを検討する。また、複雑系での溶接部の腐食挙動評価のため、地下研究施設および地上での溶接部耐食性評価試験を開始するとともに、耐食性における溶接組織の影響を評価するための知見を電気化学試験により取得する。材料の中性子照射脆化については、最新の計算コードを用いてオーバーパックへのガラス固化体からの照射線量を取得するとともに、照射脆化量予測のための方法論について検討する。さらに、超音波探傷法による欠陥寸法測定精度向上に関する検討を実施する。

2) 人工バリア品質／健全性評価手法の構築－緩衝材

緩衝材の製作・施工技術について実規模試験などを通じてその実現性が示された一方、緩衝材の初期の密度分布は膨潤しても均質化せず密度分布が残ることや、隙間を有する緩衝材施工において湧水量によってはパイピングが発生し、ペントナイトの成分が流出することが示されている。

本開発では、処分環境（湧水量や水質等）を考慮した調査・検討を実施し、緩衝材施工法の選定方法に定量的な評価を加える。さらに、緩衝材の性能劣化事象として懸念されるパイピング／エロージョン現象に対しては、工学的対策の提示に向けた調査・検討を実施する。また、上記実施内容で得られる知見を取りまとめ、多様な技術により構築される人工バリアの品質／健全性評価に向け、人工バリア性能を満足する緩衝材指標の具体化に資するものとする。

平成25年度は、処分環境（湧水量や水質等）を想定した緩衝材施工法の選定方法を検討した。また、パイピング／エロージョンに対する工学的対策に関する調査・検討では、岩盤と緩衝材との隙間へのペレット充填効果、モンモリロナイト含有率の高い緩衝材ブロックのパイピング／エロージョン挙動の評価を行い、人工バリア全体としての設計・施工仕様に関する検討では、地下水マネジメントを調査した。また、地下研究施設を活用した試験計画を策定し、試験孔と設備の一部を施工した。

平成26年度は、塩水環境下における緩衝材の密度分布の残留現象、パイピング／エロージョン現象を定量的に評価するとともに、平成25年度に検討したパイピング／エロージョンに対する工学的対策の有効性を検討する。地下研究施設におけるパイピング／エロージョン試験を開始し、工学規模室内試験との比較評価を実施し、小規模試験で得られた挙動の再現性を確認する。人工バリア全体としての設計・施工仕様については、プラグの
構築、止水性能等に資するデータを整備する。

3) モニタリング関連技術の整備

地層処分のためのモニタリングについては、その目的を検討し、特に重点的な検討が必要な性能確認モニタリングについて制約条件やバラメータの選定方法案を提示した。また、バリア機能を保持したモニタリングの実現のため地下研究施設における地中無線通信装置の性能確認試験等を実施し、これらの成果や文献調査結果を反映した技術メニューの整備を実施した。さらに、併せて制度的管理としての記録保存について媒体の開発や国内外の調査を行い、基本的システム案を提示した。

本整備では、技術的選択肢検討の基盤となるモニタリングの枠組みや結果の反映方法等に関する検討を、国際研究等への参画とフィードバック等により実施する。また、モニタリングの技術的実現性の向上のために、バリア機能や処分場性能を保持したモニタリングシステムの確立に向けた地中無線モニタリング技術の検討を、地下研究施設への反映を考慮して実施する。

上記で得られる知見より、セーフティーケースの信頼性強化に資するモニタリングの技術選択肢の整備を行い、モニタリング計画の立案に資するものとする。

また、併せて制度的管理としての記録保存についても動向の調査を実施する。

平成25年度は、5年間の検討計画を国際共同研究MoDeRnに参画して得た成果等を参照して立案した。これに基づき、モニタリング結果のバリア性能の確認への反映方法に関する課題抽出を実施するとともに、研究開発成果や文献調査結果を反映する技術メニューの整備方針を検討した。さらに、モニタリングの技術的実現性の向上のため、地中無線モニタリング技術について地下研究施設における中継試験等を実施した。これに加え、記録保存に関し英国及びOEC／NEAにおける検討状況の調査を実施した。

平成26年度は、モニタリングの枠組みの検討及び技術的実現性向上のための整備等を実施する。具体的には、人工バリア品質／健全性評価手法の構築－緩衝材等との連携を図りつつモニタリング結果のバリア性能の確認への反映方法に関する検討を実施するとともに、自然災害に対する操業期間中の安全対策に関する基盤技術の開発との連携による操業期間中の安全性に関するモニタリングの検討、および回収技術、回収可能性に関する検討成果を参照した廃棄体の回収可能性に関連するモニタリングの検討を実施し、技術的課題を抽出する。また、研究開発成果や文献調査結果を反映する技術メニューの整備を実施する。さらに、モニタリングの技術的実現性の向上のため、地中無線モニタリング技術について地下研究施設における適用試験等を実施する。これに加え、記録保存に関して引き続きOEC／NEAにおける検討状況の調査を実施する。

(2) 自然災害に対する操業期間中の安全対策に関する基盤技術の開発

本開発では、東北地方太平洋沖地震を受け、事業主体が実施する地層処分施設の設計に反映すべく、主に処分事業操業中の処分システムに対する地震・津波等の大規模な自然災害の影響を検討し、安全確保のための対策技術を開発、提示する。

平成25年度は、処分パネルにおける火災事象等を対象に、気流解析及び避難シミュレー
ション解析による安全確保対策の検討に向け、解析条件の設定や事前解析を実施した。人工バリアの限界性能等の調査試験については、ガラス固化体及びオーバーパックを対象とした火災影響についての解析的検討、緩衝材の高湿時熱特性試験及び津波被害を想定したガラス固化体の腐食性に関する情報収集を実施した。状況把握・監視技術については、地層処分施設で想定される種々の異常状態や事故ごとに、状況把握手順を整理・体系化するとともに、その際に必要となる技術の抽出と技術情報調査に着手した。

平成26年度は、施設計画技術については、平成25年度の事前解析結果等を踏まえ、処分パネルの解析モデルによる気流解析及び避難シミュレーション解析を実施し、火災事象等に対する安全確保対策の検討にあたっての解析的利用の適用性等を検討する。また、施設全体についての操作安全確保の観点からの技術要件の調査・検討に着手する。人工バリアの限界性能等の調査試験については、緩衝材を介した火災影響の解析的検討を実施するとともに、高温履歴を受けた人工バリア材料の力学的性質に関する検討及び津波被害を想定したキャニスタの腐食環境条件に関する検討に着手する。

1.2 人工バリア品質／健全性評価手法の構築（緩衝材）に関する開発の背景、および目的

1.2.1 開発の背景

緩衝材の品質指標である「密度」「成分」「形状」は、地層処分施設の建設・操業時の緩衝材の施工品質と、その後の再冠水に至る期間における環境の「温度」「湿度」「湧水」の影響を反映する。地層処分施設の建設・操業時には、湧水や滴水への対策を講じて、ベントナイト系人工バリア材料に締固めという外力を作用させて緩衝材を構築する時期であり、緩衝材の化学変質に必要な間隙水がほとんど存在しない不飽和状態である。このため、建設・操業時の緩衝材は、力学的な挙動が支配的である。また、この時期の緩衝材は、不飽和状態であるため、施工に伴う外力が緩衝材に作用しても時間遅れを伴う圧密挙動のような非定常状態は長期間続き、比較的短期間に釣合い（定常）状態に達する。一方、再冠水後においては、緩衝材に作用する外力は天然バリアのクリープ挙動程度であり、化学的な変質が支配的である。この化学的な変質は非常に緩慢であり、室内試験の時間スケールの中では定常状態と見なせる場合が多い。このような理由から、これまでの放射性廃棄物地層処分施設の緩衝材の室内試験による研究は、比較的短時間に定常状態と見なせる建設計画検討や、定常状態と見なせる再冠水後の緩衝材の長期性能評価に関するものが大半である。

しかしながら、緩衝材の構築後から再冠水終了後までの期間（力学的挙動が支配的な状態から化学的な挙動が支配的な状態への過渡的段階）においては、地下水の浸潤によってベントナイトの膨潤が生じる一方で剛性や強度が低下するなど、力学的な釣合い場が崩れ、別の釣合い状態へ遷移する。さらにグラウトなどの影響によるCaイオンを含む地下水の浸潤によってベントナイト中のモンモリロナイトのCa型化などの化学的変質が生じ始める。このように再冠水時には、水理、力学、化学的な挙動が全て別の安定な系へ変遷していく過程であり、室内試験規模で検証することが非常に難しく、現状では十分な検討がなされていない。このため、建設・操業時から長
期性能までの緩衝材の性能を連続的に評価することが難しい状況であり、建設・操業時に要求性能を満足している緩衝材が、長期性能の観点から緩衝材に求められる性能を満足できない可能性も懸念される。

このため、建設・操業時の緩衝材の施工品質が再冠水時に発生する現象に及ぼす影響を考慮して再冠水時の挙動を定量的に評価することによって、図1.2.1-1に示す建設・操業時から再冠水後（長期性能評価の初期状態）までの緩衝材の性能を連続的に評価する必要がある。

ここで、不飽和状態での緩衝材における水の移行と、飽和状態における水の移行は異なるものであることが指摘されている[1]。不飽和状態では周囲の岩盤からの水の吸収によって緩衝材のサクション（間隙水の負圧）や相対湿度の変化に伴って膨潤圧、乾燥密度が変化する。また、岩盤からの流入量によってはパイピング・エロージョンが発生し、移流が重要なプロセスとなり、長期の安全性能に影響を与える。一方、緩衝材の飽和状態では緩衝材の浸透性は非常に低いため、水、溶存種の重要なメカニズムは拡散となる。したがって緩衝材の膨潤挙動については不飽和状態と飽和状態を分けて取り扱うことが必要である。

図1.2.1-1 検討内容の人工バリアの時系列における意味

1.2.2 開発の目的

地層処分における緩衝材については、建設・操業時の緩衝材の施工品質が再冠水時に発生する現象に及ぼす影響を考慮し、再冠水時の挙動を定量的に評価することによって、建設・操業時から再冠水後（長期性能評価の初期状態）までの緩衝材の性能を連続的に評価する必要がある。「人工バリア品質/健全性評価手法の構築—緩衝材」（以下「本研究」と称す。）では、緩衝材の再冠水挙動に影響を及ぼす因子として、

・隙間の有無、位置
・密度分布の程度、方向
・初期透水性（施工直後の間隙分布）

を取り上げ、これらが再冠水時に生じる以下の事象により、どのように変遷するかを把握するためのデータを取得してきた。

・膨潤挙動
・化学変質（イオン交換）
・力学性能変化
・地下水浸潤（流入量、液種）
・ガス移行（間隙空気移行）
・熱影響

本研究はこのようなデータを踏まえ、①再冠水後の長期性能の観点から施工技術の評価項目に数値範囲を与えること、つまり、施工品質への仕様の提示（例えば、均質化すると見做せる密度差の範囲）を目的としている。これらの結果は、海外の実施機関（SKB等）との共同研究結果も踏まえ、施工方法の選定や施工管理項目の設定に反映される（図1.2.2-1）。

1-5
図1.2.2-1 再冠水時に緩衝材に生じる事象を踏まえた建設操業時の影響項目の評価とその反映先

さらに、図1.2.2-1で提示した数値範囲に抑えることができる技術選択肢を拡充するため、②施工技術の評価項目が工学上無視できるまで高度化すること、つまり、施工方法による影響度の低減（例えば、密度差を生じさせない施工方法の開発）も目的としている。緩衝材施工技術の高度化によって施工技術が緩衝材の長期性能に及ぼす影響を低減できれば、再冠水中に緩衝材に発生する事象が、緩衝材の定置から長期に亘る性能に及ぼす影響を小さくすることが出来るため、長期性能評価技術の精度が向上すると考えられる。

本研究は、再冠水後の長期間に亘る“緩衝材の性能を適切に確保”するために図1.2.2-2に示すように長期性能の初期条件として“再冠水後の緩衝材の品質”に大きく影響する“建設操業時の施工品質”、“地下水の浸潤等再冠水時の影響”に関する指標を与えることを目的としている。再冠水後の緩衝材の品質を評価するためには、“建設操業時の施工品質”を評価した上で、“地下水の浸潤等再冠水時の影響”を適切に評価することが必要である。なぜなら“建設操業時の施工品質”は、設計仕様、施工方法、施工（建設操業）技術、施工精度及び原位置における施工条件（湧水圧・量等）によって制約を受けるからである。
1.3 報告書の構成及び概要

本報告書は、第1章から第13章までの13部構成となっている。

第1章では「研究の目的及び概要」として、本研究の背景や目的、概要を示した。

第2章では再冠水時に発生する現象の整理と検討計画を示した。

第3章では施工品質が緩衝材の膨潤挙動に及ぼす影響の調査について、蒸留水、0.5M NaClで緩衝材に通水した場合、再冠水前に乾燥密度差のある場合は、膨潤後も密度差が残ること、また、緩衝材の応力履歴の異なる場合も、乾燥密度差が残ることを明らかにした。さらに密度差が残る理由について力学的解釈を試みた。また、これらの試験結果の工学技術への反映として、乾燥密度と透水係数との関係から蒸留水、0.5M NaClで通水した場合の再冠水後の密度差の範囲を示した。

第4章ではCa型化が緩衝材の膨潤挙動に及ぼす影響を調査した。Na型ベントナイトは再冠水の液種として、蒸留水で通水するとCa型化速度が遅くなり、CaCl2で通水した場合に比べて透水係数が1オーダー小さくなることを明らかにした。

第5章では緩衝材の浸潤速度を蒸留水と0.5M NaClの場合について求めた。

第6章では緩衝材表面液への止水性評価を行い、小規模試験において、緩衝材ブロック相互の接触面が大きいほど破過圧が大きくなること、花崗岩の場合は、岩の中を浸潤していくことを確認した。小規模試験（直径10cm×高さ5cm）では、蒸留水、0.5M NaClの場合、常に移流が起こる境界条件の場合は、流量によってパイピング（水みち）が発生し、緩衝材の成分が侵食され、流出する（エロージョン）ことを明らかにした。また、その時の水圧は100kPa以下であった。パイピングの発生する場所は、緩衝材と密度の大きくなる場所であり、ブロックとペレットを混在させた場合、これらの界面ではなく、ペレットとアクリルセルの界面であった。初期に複数あったパイピングも1本に収斂することが明らかになった。パイピング／エロージョンにおける蒸留水とNaClの違いは、前者が1cc/分の場合に、パイピングが発生しなかったこと、NaClの場合、0.1cc/分でも破過とシールを繰り返す状況であった。

平成26年度は、液種をCaCl2で実施したが、基本的に0.5M NaClに近い挙動を示した。また、事前に蒸留水で膨潤させると膨潤後は3MPaの水圧を作用させても破過しないことから、プレハイドレーションの効果があることが分かった。緩衝材は通水すると膨満し、流量が一定値以上である場合には緩衝材が削られることから、バランスする場合の流速を限界流速としてこれを測定した。試験規模がパイピング／エロージョン現象に与える影響を調査するため、工学規模試験のパイピング／エロージョン試験を実施した。この装置の大きさは、地下研究施設におけるエロージョン試験の規模と同じ大きさであり、室内試験と原位置試験の結果を比較するために実施した。

第7章では小規模試験からスケールアップした試験系で、小規模試験で確認した挙動が再現されるかどうか、また、通水の浸潤状況を比抵抗を使って調査した。

第8章では浸潤によって閉じ込められた間隙空気の移行調査を実施するため、直径5cm×高さ1mの緩衝材の上下から通水して閉じ込められた空気の緩衝材の膨潤挙動に及ぼす影響を調査している。
第9章では緩衝材施工技術の高度化検討として、吹付け工法が緩衝材の乾燥密度を均一に施工できること、さらに実規模で湧水がある場合の止水性能について試験を行った。本試験では、吹付け工法によって止水性能を確保することはできなかったが、天端に蓋を設置することによって水の流れを低減し、緩衝材をプレ膨潤させる効果があることが確認できた。

第10章は幌延深層地層研究所350mの試験坑道における緩衝材のエロージョン現象を実験するに当たり、事前に2つの処分孔への地下水流入量の測定を実施し、緩衝材ブロック、緩衝材ブロック+ペレットを定置した場合の挙動を調査した。

第11章は地下水流入低下工法の検討について、幌延深層研究センターの地下環境を参考にして割れ目ネットワークモデルから水理地質構造モデルを作成し、処分孔、坑道掘削時の地下水流入量を解析によって算定し、地下水流入を低下させる方法として、水抜きポーリングとゆるみ域へのグラウトに着目してその効果を検証した。

第12章は、研究成果の設計施工指針への反映について、これまでの試験成果をどのように設計施工指針に活用するか、その考え方と手法について示した。特に、パイピング/エロージョン現象については、工学的対策を室内試験と同様に、幌延の実際の環境下でその効果を確認することを提示した。

第13章は、これまでの試験の成果と平成27年度の試験の方向性についてまとめた。

第1章 参考文献

第2章 再冠水時に発生する現象の整理と検討計画

2.1 全体計画

2.1.1 基本方針

本研究は、放射性廃棄物の地層処分における緩衝材の施工品質が再冠水時の発生現象に及ぼす影響の整理、発生現象の定量的評価、および施工技術へのフィードバックを調査、検討するものであり、平成 20 年度に試験計画を立案した。この試験計画に準じて平成 21 年度以降、理想的な系における小規模試験、単純な系における土槽試験、さらには複合的な系における工学規模土槽試験へと、長期性能評価上問題となる発生現象の影響を試験によって確認し、検討すべき現象を段階的に絞り込みながらスケールアップさせることを基本として試験を実施している（図 2.1.1-1 参照）。このため、本研究の実施においては長期間を要し、平成 21 年度から平成 34 年度まで合計 15 年間程度を一つの目処としている。今後の試験結果や、今後のわが国の地層処分事業の進捗状況によっては、工程に見直しが生じること（例えば、短縮など）も考えられる。

このような試験規模の段階的なスケールアップは、複雑な現象の個別検討を可能にするだけでなく、各段階で確認可能な結果をもたらすものと考えられる。こうして得られる検討成果は、再冠水から長期性能評価の観点からの緩衝材の設計や品質、及び搬送・定置技術への提言（施工方法の選択に資する情報などの工学技術）を反映させる。ただし、検討段階で複合的な現象に対して詳細な検討が必要になった場合には、試験規模をスケールダウンして单一現象について詳細な検討を行う。

さらに、これらの成果は、その都度、不飽和浸透流解析へ反映させながら、最終的には複合的な系の工学規模土槽試験に適用し得る評価解析ツールへと高度化させることも可能である。不飽和浸透流解析成果は、実規模試験への適用、ひいては現実現場の設計などに適用可能なものとなる。

図 2.1.1-1 本研究の基本方針
2.1.2 全体計画

本研究では、2.1.1の基本方針に示したように、建設・操業から再冠水後まで切れ間のない、緩衝材の性能の連続的な評価を実施することを最終目標として、平成20年度には、先ず、再冠水時に影響を及ぼす緩衝材の施工方法に関連する因子（影響因子）を抽出し、次に、この影響因子によって変動する再冠水時に緩衝材に発生する現象を整理した。そして、抽出した施工方法の影響因子が、再冠水時の緩衝材に発生する現象に及ぼす影響を実験的に定量評価することによって、緩衝材の長期性能の観点から施工方法の影響因子の許容範囲を示すことが可能となる試験計画を立案した。

さらに本研究を通じて、緩衝材の設計や品質、および搬送・定置技術への提言をより積極的に行うために、緩衝材の施工方法を高度化することによってより均質な緩衝材を構築できるようにする。このことにより、緩衝材の施工方法が再冠水時に発生する現象に及ぼす影響を減少できる。このような緩衝材の施工方法を高度化した成果は、再冠水時の緩衝材に発生する現象の不確実性や建設・操業から長期性能評価までの緩衝材に関わる性能について、連続的な説明をすることにも役立つ。

これらの各検討項目とその実施内容を現状の想定に基づき年度展開したものを図2.1.2-1に示す。同図には、各試験の成果の流れを示してあり、小規模試験から工学規模試験へと試験結果が反映される計画となっている。
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1)地下水浸潤による膨潤時の事象の整理</td>
<td></td>
</tr>
<tr>
<td>2)施工品質が過渡的段階の 緩衝材の挙動に及ぼす影響検討</td>
<td></td>
</tr>
<tr>
<td>3)工学規模試験における地下水浸潤による膨潤時の事象の複合的な検討</td>
<td></td>
</tr>
<tr>
<td>- 試験予測解析</td>
<td></td>
</tr>
<tr>
<td>(a) 施工品質（密度分布）の均一化</td>
<td></td>
</tr>
<tr>
<td>(b) Ca型化</td>
<td></td>
</tr>
<tr>
<td>(c) 施工品質（密度分布）が再冠水に及ぼす影響</td>
<td></td>
</tr>
<tr>
<td>(d) 不飽和浸潤速度</td>
<td></td>
</tr>
<tr>
<td>(e) 緩衝材表面近傍の止水性評価</td>
<td></td>
</tr>
<tr>
<td>(f) 異種材料界面を有する緩衝材の浸潤状況</td>
<td></td>
</tr>
<tr>
<td>(g) 再冠水挙動に対する部分レイアウト（境界条件）の影響</td>
<td></td>
</tr>
<tr>
<td>(h) 再冠水時のガスの影響</td>
<td></td>
</tr>
<tr>
<td>(i) 再冠水時の地下水浸潤に及ぼすガスの影響</td>
<td></td>
</tr>
<tr>
<td>(j) 熱、ガス、金属腐食、力学変形など複合的な再冠水挙動評価</td>
<td></td>
</tr>
<tr>
<td>4)緩衝材の施工技術の高度化による 影響度の低減検討</td>
<td></td>
</tr>
<tr>
<td>- 施工計画及び試験準備</td>
<td></td>
</tr>
<tr>
<td>- 施工の高度化試験実施</td>
<td></td>
</tr>
</tbody>
</table>

図 2.1.2-1 全体試験計画
2.1.3 5年間の全体研究計画

平成20年度から平成25年度には、緩衝材ブロックは、クニケルV170wt%+ケイ砂30wt%を対象として、緩衝材の再冠水挙動について実験を行い、緩衝材の初期の密度分布は膨潤しても均質化せず密度分布が残ることや、隙間を有する緩衝材施工において湧水量によってはパイピングが発生し、ベントナイトの成分が流出することを確認した。特に、0.5M NaClが0.1L/分の流速で下から上に流出する塩水環境においては、ケイ砂が分離し、自己修復しないことを確認した。これは、実際の海水起源の地下水環境では、クニケルV170wt%+ケイ砂30wt%は適切な材料ではない可能性があることを示している。SKBが提出した建築許可申請では、緩衝材として2タイプを挙げているが、これだけでは不十分であるという国際レビューの指摘からも、日本においてクニケルV170wt%+ケイ砂30wt%のみをレファランスデザインとするのは、説明性が不足していると指摘される可能性が高い。

そのため、今後、5年間は一方では、クニケルV170wt%+ケイ砂30wt%の緩衝材が、地下環境において所定の健全性を保持できることを確認するために、より現実的な処分環境（工学規模、湧水量や水質等）を考慮した研究を行う必要がある。緩衝材の性能劣化事象として懸念されるパイピング／エロージョン現象に対しては、緩衝材の工学的対策として、平成25年度に検討した方法について有効性を評価するとともに、例えば、モンモリロナイトの含有率を上げてクニケルV1100wt%の材料を評価するなどの検討も実施しなければならない。さらに、埋め戻し材や、プラグを含む人工バリアの性能について調査を行う。一方、海外と比較して日本では地下での湧水量が多いことが予想されており、湧水量を制御するためのグラウトや、人工注水等の地下水マネジメントについても調査を行い、人工バリア品質評価モデル、健全性評価モデルによる判断指標を反映した人工バリア設計・製作・施工手順の基礎を提案することを目標とする。実施にあたっては以下の4項目について検討を実施する。なお、本年度策定した計画は、随時見直しを行い、変更があるものとして進めていくものとする。表2.1.3-1に5カ年間の全体研究計画を示す。
表 2.1.3-1 5年間の全体研究計画

<table>
<thead>
<tr>
<th>年度</th>
<th>H25</th>
<th>H26</th>
<th>H27</th>
<th>H28</th>
<th>H29</th>
</tr>
</thead>
<tbody>
<tr>
<td>①8年間の全体研究計画立案</td>
<td>計画立案</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>②緩衝材の建設策画時の影響の項目の調査・検討</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i 施工品質計画（密度分布）の作成</td>
<td>0.5NaCl、人工海水（0.5M NaCl）</td>
<td>0.5NaCl溶液の場合：密度均質の検討、応力履歴の検討</td>
<td>0.5NaCl、0.5/3M Cl溶液の場合：通水飽和時の浸透圧の関係を取得、密度変化の検討</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ii 施工品質が再処理に及ぼす影響試験（従来方法）</td>
<td>密度均質係数の取得</td>
<td>0.5M NaCl溶液の場合：密度均質の検討、応力履歴の検討</td>
<td>0.5M NaCl+0.5/3M CaCl2溶液場合：通水飽和時の浸透圧の関係を取得、密度変化の検討</td>
<td></td>
<td></td>
</tr>
<tr>
<td>iii 緩衝材の品質確認及び品質改善手法の検討</td>
<td>0.5M NaCl溶液の場合：密度均質の検討、応力履歴の検討</td>
<td>0.5M NaCl+0.5/3M CaCl2溶液場合：通水飽和時の浸透圧の関係を取得、密度変化の検討</td>
<td>0.5M NaCl+0.5/3M CaCl2溶液場合：通水飽和時の浸透圧の関係を取得、密度変化の検討</td>
<td></td>
<td></td>
</tr>
<tr>
<td>③通過的観察に緩衝材に生じる現象の評価</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i 小規模パイピング試験（海水相当の液種）</td>
<td>0.5M NaCl溶液の場合の変形速度の計測</td>
<td>0.5/3M Cl溶液の場合の変形速度の計測</td>
<td>0.5/3M Cl溶液の場合の変形速度の計測</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ii 工学規模パイピング試験（鉄水位、一部、流速、処分孔の不関係）</td>
<td>0.5M NaCl溶液の場合の変形速度の計測</td>
<td>0.5/3M Cl溶液の場合の変形速度の計測</td>
<td>0.5/3M Cl溶液の場合の変形速度の計測</td>
<td></td>
<td></td>
</tr>
<tr>
<td>iii 地下施設を活用した緩衝材性能確認</td>
<td>0.5M NaCl溶液の場合の変形速度の計測</td>
<td>0.5/3M Cl溶液の場合の変形速度の計測</td>
<td>0.5/3M Cl溶液の場合の変形速度の計測</td>
<td></td>
<td></td>
</tr>
<tr>
<td>④施工技術の高度化による影響低減検討</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i 施工技術の高度化による影響の低減検討</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ii 埋め戻し材、プラグの要求品質に関する調査・検討</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>iii 人工注水、グラウトの要求品質に関する調査・検討</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>各年度の成果目標</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.2 再冠水時に発生する現象の整理

2.2.1 再冠水時に発生する現象の整理方法

建設・操業から再冠水後の数万年間という長期間の中でも、施設の閉鎖から再冠水終了までの間は、人工バリアにとって、様々な現象が急速に変化する期間である。建設・操業時の人工バリアにおいては、施工による様々な外的要因として力学的作用と、岩盤からの地下水流入による水理学的作用が主であるといえる。この再冠水時における発生現象の整理を行い、建設・操業時から再冠水後の状態への平衡場の変化の評価が実施できれば、建設・操業時から再冠水後まで、説明性の高い処分概念を構築することが可能となる。そのためには、緩衝材の施工時の品質によって影響を受ける再冠水時で発生する現象のうち、処分シナリオに及ぼす影響が大きいと考えられる現象を抽出する必要がある。

そこで本研究では、図2.2.1-1に示すように、既往の研究[1]などを参考に、緩衝材の施工品質のうちで再冠水時の緩衝材に発生する現象を抽出した。

さらに、下記に示す既往のFEP（地層処分システムに影響を及ぼすと考えられるシステムの特質（Feature）、そこで発生する事象（Event）や過程（Process））に関する調査を行い、FEPリストに基づき整理した再冠水時に緩衝材に発生する現象との対比によってその網羅性を確認した。

・ 地層処分研究開発第2次取りまとめにおけるFEP
・ 第2次TRU廃棄物処分研究開発取りまとめにおけるFEP
・ スウェーデン、フィンランドのFEP
・ ベルギー、フランスの事象に関する知見

更に、放射性廃棄物地層処分関連機関で緩衝材の研究施設（ベントナイト研究所）を有し、世界的にも研究と地層処分の実施状況が先行しているSKB社（スウェーデン核燃料・廃棄物管理会社）に対して調査を行い、抽出した現象の妥当性を確認した。
図 2.2.1-1 再冠水時に発生する現象の整理のイメージ（高レベル放射性廃棄物地層処分縦置き、横置き）[1]
2.2.2 緩衝材の施工品質のうち再冠水挙動に影響を及ぼす項目

平成 20 年度は、文献調査などによって緩衝材の施工品質のうち再冠水挙動に影響を及ぼす項目 (影響因子)、及び影響因子によって影響を受ける再冠水時の現象を抽出した。影響因子としては、

- 隙間の有無、位置
- 密度分布の程度、方向
- 初期透水性（施工直後の間隙分布）

を考え、これらの影響因子によって影響を受ける再冠水時に緩衝材に発生する現象としては、

- 膨潤
- 化学変質
- 力学性能変化
- 地下水浸潤（流入量、液種）
- ガス移行
- 熱影響

を抽出した。これらの妥当性は、既往の研究「平成 19 年度地層処分技術調査等委託費 高レベル放射性廃棄物処分関連 処分システム工学要素技術高度化開発報告書（第 1 分冊）-遠隔操作技術高度化開発-」[1]、下記の文献、及び先行機関（SKB 社）調査で確認した。

- 地層処分研究開発第 2 次取りまとめにおける FEP
- 第 2 次 TRU 廃棄物処分研究開発取りまとめにおける FEP
- スウェーデンの FEP[2],[3]
- フィンランドの FEP[4]
- ベルギー、フランスの事象に関する知見

これらに加え、本研究では、スウェーデンの HLW 地層処分の実施主体である SKB 社からヒアリングを行い、緩衝材の初期に問題となるパイピングに関する事象について考慮することとした。

表 2.2.2-1 には整理した施工法の影響因子、再冠水時に緩衝材に発生する現象、及びその影響因子が再冠水時に緩衝材に発生する現象に及ぼす影響の評価項目を示している。これらの評価項目を実験によって調べるための試験計画を(a)〜(j)まで立案した。平成 22 年度までの試験計画に加えて、再冠水時の緩衝材の密度分布や異種材料との界面、隙間などに発生することが考えられるパイピングの発生の有無を評価すべき事象として加えることとした。

これらの事象は表 2.2.2-2 に示すように、表 2.2.2-1 中に示した試験項目(a)〜(k)までを示し、さらにどのような試験規模で定量的に評価するのかを分類している。前述のように、本研究では、試験規模をスケールアップすることによって着実な成果を構築することを基本方針としており、現象毎に単独現象を室内小規模試験レベルで評価した後に、複合的な現象として工学規模試験を行う計画となっている（図 2.2.2-1 参照）。

これらの試験計画が着目している再冠水時の発生現象を図示すると図 2.2.2-2 のようになる。図からもわかるように、再冠水時には熱・水理・力学・化学（THMC）の影響割合が変化しながら定常状態へと至る。その過程において本研究で計画している試験によって着目している現象は水理、力学が中心である。また時系列的には、再冠水初期には力学関係の現象、さらに再冠水が進むにつれて水理・化学関係の現象に着目していることが分かる[1]。
<table>
<thead>
<tr>
<th>緩衝材の建設・操業時の影響因子</th>
<th>評価項目</th>
<th>試験分類</th>
</tr>
</thead>
<tbody>
<tr>
<td>隙間の有無、位置</td>
<td></td>
<td></td>
</tr>
<tr>
<td>·膨潤挙動</td>
<td>隙間の自己シール、膨潤パターン</td>
<td>(a)</td>
</tr>
<tr>
<td>·化学変質</td>
<td>速い化学変質の発生パターン</td>
<td>(b)</td>
</tr>
<tr>
<td>·力学性能変化</td>
<td>浸潤による剛性低下、変形</td>
<td>(c)</td>
</tr>
<tr>
<td>·地下水浸潤</td>
<td>浸潤経路・パングル・浸潤パターン</td>
<td>(d)</td>
</tr>
<tr>
<td>·ガス移行</td>
<td>ガストラップ、破過</td>
<td>(e)</td>
</tr>
<tr>
<td>·熱影響</td>
<td>熱収縮、亀裂の発生</td>
<td>(j)</td>
</tr>
<tr>
<td>密度分布の程度、方向</td>
<td></td>
<td></td>
</tr>
<tr>
<td>·膨潤挙動</td>
<td>膨潤圧分布、残留密度分布</td>
<td>(a)</td>
</tr>
<tr>
<td>·化学変質</td>
<td>低密度領域の凝集など</td>
<td>(b)</td>
</tr>
<tr>
<td>·力学性能変化</td>
<td>浸潤による剛性低下、変形</td>
<td>(c)</td>
</tr>
<tr>
<td>·地下水浸潤</td>
<td>浸潤経路・パングル・透水係数分布</td>
<td>(d)</td>
</tr>
<tr>
<td>·ガス移行</td>
<td>ガストラップ、破過</td>
<td>(e)</td>
</tr>
<tr>
<td>·熱影響</td>
<td>熱収縮、亀裂の発生</td>
<td>(j)</td>
</tr>
<tr>
<td>初期透水性（施工直後の間隙分布）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>·膨潤挙動</td>
<td>膨潤パターン</td>
<td>(a)</td>
</tr>
<tr>
<td>·化学変質</td>
<td>速い化学変質の発生パターン</td>
<td>(b)</td>
</tr>
<tr>
<td>·力学性能変化</td>
<td>浸潤による剛性低下、変形</td>
<td>(c)</td>
</tr>
<tr>
<td>·地下水浸潤</td>
<td>透水性の変化、パイニング</td>
<td>(d)</td>
</tr>
<tr>
<td>·ガス移行</td>
<td>ガストラップ、破過</td>
<td>(e)</td>
</tr>
<tr>
<td>·熱影響</td>
<td>熱収縮、亀裂の発生</td>
<td>(j)</td>
</tr>
</tbody>
</table>
表 2.2.2-2 抽出した試験項目とその試験分類

<table>
<thead>
<tr>
<th>試験項目</th>
<th>小規模試験</th>
<th>土槽試験</th>
<th>工学規模</th>
<th>分類</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) 施工品質（密度分布）の均質化</td>
<td>●</td>
<td>-</td>
<td>-</td>
<td>密度均質化</td>
</tr>
<tr>
<td>(b) Ca 型化</td>
<td>●</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>(c) 施工品質（密度分布）が再冠水に及ぼす影響</td>
<td>-</td>
<td>●</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>(d) 不飽和浸潤速度</td>
<td>●</td>
<td>-</td>
<td>-</td>
<td>浸潤状況把握</td>
</tr>
<tr>
<td>(e) 緩衝材表面近傍の止水性能評価</td>
<td>●</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>(f) 異種材料界面を有する緩衝材の浸潤状況</td>
<td>-</td>
<td>●</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>(g) 再冠挙動に対する処分レイアウト（境界条件）の影響</td>
<td>-</td>
<td>-</td>
<td>●</td>
<td>複合問題</td>
</tr>
<tr>
<td>(h) 再冠水時のガスの影響</td>
<td>●</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>(i) 再冠水時の地下水浸潤に及ぼすガスの影響</td>
<td>-</td>
<td>-</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>(j) 熱、ガス、金属腐食、力学変形など複合的な再冠挙動評価</td>
<td>-</td>
<td>-</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>(k) 緩衝材の施工技術の高度化による影響度の低減検討</td>
<td>-</td>
<td>-</td>
<td>●</td>
<td></td>
</tr>
</tbody>
</table>

図 2.2.2-1 抽出した現象の相互関係
図 2.2.2-2 抽出した試験項目の位置付け

2.2.3 緩再冠水時に緩衝材に発生する現象、評価項目選定の妥当性

表 2.2.3-1 にスウェーデンの核廃棄物の実施主体である SKB が SSM（放射性安全機構）に対して 2010 年 3 月に建設許認可申請を行った時に提出した緩衝材に関する FEP を示す。赤字で示しているのが、再冠水時、不飽和状態の緩衝材に関する事象であり、膨潤挙動（Bu8）、化学変質（Bu4）、力学性能変化（Bu4、Bu8）、地下水浸潤（Bu4）、ガス移行（Bu6）、熱影響（Bu5）が規定されており、パイピング/エロージョンが（Bu7）に挙げられている。これは主に亀裂から処分孔に地下水が流入し、不飽和から飽和の状態、または坑道のプラグ設置によって地下水の移動が抑制されるまでの間とされている。パイピング/エロージョンの発生、維持条件は以下の 3 通りが挙げられている。

1）亀裂から出る水圧が緩衝材のせん断抵抗の合計より大きい場合
2）緩衝材の透水性が、パイニング内を通過する水圧を維持できる程度に低い場合
3）パイニングの水路が開いたままであるためには、浸食された材料が排出される箇所が下流側にあること

さらに、スウェーデンの Forsmark をサイトにして緩衝材の性能に関する指標として、具体的な事象を挙げ、レファランスとなる設計指標を示したもののが 2011 年に報告されている。表 2.2.3-2 にその事例を挙げる。これらの指標は、スウェーデンの Forsmark において設定された設計指針、例えば許容エロージョン量の判断規準として使われるために、それを分析評価する上で必要な情報である。ただし、スウェーデンにおいては高レベルの放射性廃棄物の直接処分を前提とし、鋼を外側に、鋼製のインサートを内側にした直径 1.7m、長さ約 8m のキャニスターを閉じ込め容器とし、緩衝材として MX80 を使うことから、これらの条件を考慮して設定されており、そのまま日本のケースに摘要できるものではないことに注意が必要である。
表 2.2.3-1 SKBにおける建設許認可申請時における FEP[5]

<table>
<thead>
<tr>
<th>FEP名称</th>
<th>FEP名称</th>
<th>FEP名称</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bu1:放射線減衰/熱生成</td>
<td>Bu13:不純物の変化</td>
<td>Bu25:水相における放射性核種の移行</td>
</tr>
<tr>
<td>Bu2:微生物の活動抑制</td>
<td>Bu14:溶存化学種と化学反応</td>
<td>Bu26:ガス相における放射性核種の移行</td>
</tr>
<tr>
<td>Bu3:凍結</td>
<td></td>
<td>Bu15:浸透</td>
</tr>
<tr>
<td>Bu4:不飽和状態での水吸収および水移行</td>
<td>Bu16:モンモリロナイトの変質</td>
<td></td>
</tr>
<tr>
<td>Bu5:溶存種の拡散</td>
<td>Bu17:微生物の活動を制限する</td>
<td></td>
</tr>
<tr>
<td>Bu6:ガス移行・溶解</td>
<td>Bu18:不活性ガス移行</td>
<td></td>
</tr>
<tr>
<td>Bu7:パイピング/エロージョン</td>
<td>Bu19:放射線誘発性変質</td>
<td></td>
</tr>
<tr>
<td>Bu8:溶存・質量の再分配</td>
<td>Bu20:間隙水の放射線分解</td>
<td></td>
</tr>
<tr>
<td>Bu9:液状化</td>
<td>Bu21:微生物プロセス</td>
<td></td>
</tr>
<tr>
<td>Bu10:溶存種の移流</td>
<td>Bu22:セメントーション</td>
<td></td>
</tr>
<tr>
<td>Bu11:溶存種の拡散</td>
<td>Bu23:コロイド移行</td>
<td></td>
</tr>
<tr>
<td>Bu12:収着（イオン交換を含む）</td>
<td>Bu24:放射性核種のスペシエーション</td>
<td></td>
</tr>
</tbody>
</table>

表 2.2.3-2 スウェーデンの Forsmrkにおける性能に関する指標名称とその値[6]

<table>
<thead>
<tr>
<th>性能に関する指標名称</th>
<th>性能に関する指標</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buff1:移流を制限する</td>
<td>- 透水係数<1.0X10^{-12}</td>
</tr>
<tr>
<td></td>
<td>- 膨潤圧>1MPa</td>
</tr>
<tr>
<td>Buff2:微生物の活動を制限する</td>
<td>- 酸和密度>1,800kg/m³</td>
</tr>
<tr>
<td>Buff3:キャニスターを岩盤のせん断変形から守る</td>
<td>- 酸和密度>2,050kg/m³</td>
</tr>
<tr>
<td>Buff4:温度による変質に抵抗する</td>
<td>- T緩衝材<100°C</td>
</tr>
<tr>
<td>Buff5:キャニスターの変形を防ぐ</td>
<td>- 膨潤圧>0.2MPa</td>
</tr>
<tr>
<td>Buff6:キャニスターに作用する圧力を制限する。緩衝材の凍結を防ぐ</td>
<td>- 膨潤圧<15MPa</td>
</tr>
<tr>
<td></td>
<td>- 緩衝材>-4°C</td>
</tr>
<tr>
<td>Buff7:コロイドのフィルトレーション</td>
<td>- 酸和密度>1,650kg/m³</td>
</tr>
<tr>
<td>Buff8:放射性核種の移行抑制</td>
<td>核散係数(De)、収着係数(Kd)</td>
</tr>
<tr>
<td>Buff9:ガス移行の許容</td>
<td></td>
</tr>
</tbody>
</table>
2.3 試験の共通条件

表 2.2.2-1 に示した(a)～(k)で実施している試験では、放射性廃棄物処分施設の再冠水時に、緩衝材に発生する事象を試験によって定量評価することが目的の一つとなっている。そのために、様々な試験を実施している。以下に、これらの試験に共通する試験条件、試験環境を示す。本検討では、特に断りがない限り、下記の条件に準拠して試験を実施している。

2.3.1 試験の実施環境

小規模試験は、緩衝材へ水を定量、もしくは定圧で給水するものである。緩衝材の浸潤水の供給はシリンジポンプ (フローポンプ) で制御している。シリンジポンプによる制御のメリットは、定量、もしくは定圧での液体の供給が高精度、且つ自動で実施できる点である。ただし、シリンジポンプで供給される液体は、難透水性の緩衝材とシリンジポンプによってほぼ体積拘束された状態となるため、温度変化に対してその通水圧が敏感となる。そこで、試験は 20℃、相対湿度 65% の恒温恒湿チャンバー内で実施した。図 2.3.1-1 に試験状況を示す。

2.3.2 使用材料

使用する材料は山形県産の Na 型ペントナイト (クニゲル V1) に対して愛知県産のケイ砂 3 号とオーストラリア産のケイ砂 5 号を 7:1.5:1.5 の割合で混合したケイ砂 30wt%混合ペントナイトである。ペントナイトの土粒子密度は 2.733Mg/m³程度であり、ケイ砂の土粒子密度は 2.65Mg/m³程度である。また、クニゲル V1 のモンモリロナイト含有率は 50~60%程度である。ただし、(e) 小型セルによるプレクスルーパイピング、エロージョン試験で使用するペレットは Na 型ペントナイト単体である。
第2章 参考文献

[1] (財)原子力環境整備促進・資金管理センター：平成19年度地層処分技術調査等委託費
高レベル放射性廃棄物処分関連処分システム工学要素技術高度化開発報告書（第1分冊）
－遠隔操作技術高度化開発－（2008）。

TR-06-18（2006）。

Repository and Olkiluoto, POSIVA2007·12（2007）。

[5] SKB Buffer, backfill and closure process report for the safety assessment SR·Site,
SKB TR Report TR-10-47（2010）

[6] Long-term safety for the final repository for spent nuclear fuel at Forsmark, SKB
TR·Report, p253-p257, TR-11-01（2011）
第3章 施工品質（密度差）が緩衝材の膨潤挙動に及ぼす影響の調査

3.1 背景

これまで処分施設に用いる緩衝材は、建設操業技術と長期性能検討は個別になされてきた。これは建設操業技術と長期性能検討を繋ぐ再冠水時の挙動を定量的に評価できる情報が少なかったことに併せて、どのような施工法で緩衝材を施工しても、全体の乾燥密度が仕様を満足すれば、緩衝材の持つ膨潤性能によって、再冠水中に施工による緩衝材内の密度分布はなくなる、という想定がなされていたことが考えられる。このため、長期性能評価では施工方法特有の密度分布は反映されずに、均一な乾燥密度を想定して実施されていた。

3.2 既往の研究

ベントナイト系材料は、再冠水によって膨潤するため、緩衝材の施工時の密度分布や隙間などがあっても、飽和後には均質化すると考えられている。そのため、に示したように、過去に密度分布を有する供試体が均質化する様子を取得する試験は数多くなされてきた。しかしこの実験で密度分布がなくなるまで均質に膨潤した例は無い。既往の均質化試験例[1]に示した結果にも、均質化する傾向が若干見られるものの、最終的には密度差を残したままで膨潤変形が収束していることが分かる。

さらに、図 3.2-2には、SKB 社 (スウェーデン核燃料・廃棄物管理会社) [2]が実施した均質化試験の結果を示している。試験では、緩衝材とその隙間に充填されたペレットを実規模で模擬して、再冠水によって低密度のペレット充填領域が均質化するかを調べている。図から、均質化する傾向が若干見られるものの、やはり最終的には密度差を残したままで膨潤変形が収束していることが分かる。これに対して SKB 社は、残留密度の原因が、ベントナイトとその周辺の材料との摩擦によるものが主だという解釈をしている。

図 3.2-1 既往の均質化試験例[1]
一方、小峯ら[3]は、図3.2-2に示すような試験装置を用いて、さまざまな条件のベントナイト系材料の膨潤圧を計測している。その中で、図3.2-3に示すように、供試体上部に隙間を空けた状態で冠水させ、供試体が十分に膨潤し、隙間を埋めた際の膨潤圧を計測している。言い換えれば、初期密度を揃えた供試体（膨潤圧試験開始時の密度はそれぞれ異なる）に、膨潤という応力履歴を与えた場合と与えない場合（図3.2-4、白抜きプロット）で、膨潤圧の発現が異なるかどうか実験していることになる。その結果、図3.2-4に示すように、膨潤圧の差異は認められなかった。これは、供試体の密度が同じであれば、その供試体が膨潤圧の発生に至る途中の応力履歴は膨潤圧に無関係であるということを示唆していることに他ならない。後述するが、本研究では、供試体作製時の圧力や試験前の膨潤過程の違いによって密度が同等でも応力履歴が異なる供試体を準備して、その膨潤挙動の違いを調べている。

図3.2-2 既往の均質化試験例[2]

図3.2-3 小峯らの試験装置概要[3]
さらには、JAEA（旧 JNC）[4]は、第2次取りまとめの中で、膨潤方向と注水位置、さらには膨潤履歴の違いによる膨潤圧の違いについて調べている。図 3.2-4 に示すように、小塚ら[3]が示した結果と同様に、膨潤圧と膨潤履歴の有無や膨潤方向や注水位置などは有意に影響せず、ほぼ乾燥密度に一意の関係にあるとみなせる。

一方、鈴木ら[5]は、図 3.2-6 に示すように、供試体の成型圧と膨潤圧の関係を調べ、乾燥密度が同じであっても成型圧が高いほど膨潤圧が大きいという結果を示している。乾燥密度が同じで成型圧が高いということは、膨潤圧が成型圧に依存するのではなく、飽和度が低いほど成型圧が高くなるため、結果として、成型圧が高いほど膨潤圧が大きくなるものと考えられる。つまり、膨潤圧は飽和に伴い解放されるサクション圧の分だけ発生するとも考えられる。サクション圧は飽和度が小さいほど大きいから、飽和度が小さいほど膨潤圧が大きくなることと整合する。この結果は、先行圧密圧力とそれに伴うサクション圧の差異が膨潤圧に少からず影響を及ぼしていることを示唆している結果であると考えられる。

図 3.2-5 JAEA（旧 JNC）の試験結果[4]
図 3.2-6 鈴木らの試験結果[5]

この鈴木ら[5]の結果は、小峯ら[3]の結果と異なり、密度が同じであっても成型圧が異なれば膨潤圧が異なるということを示している。小峯らの試験は、膨潤後の密度が同じになるように、初期密度を設定しており、膨潤させた供試体の方が供試体作製時の乾燥密度が大きいため、成型圧力は大きいものと考えられる。このような観点から鈴木らの結果をみると、成型圧という、いわば応力履歴の違いによって、膨潤させた供試体のほうが膨潤圧が大きく見える。この膨潤履歴や成型圧などの応力履歴の違いは、浸透膨潤圧そのものに比べれば小さな影響しか及ぼさないかもしれないが、膨潤圧試験のばらつきなどを説明するためには不可欠な要因である可能性がある。

3.3 密度分布が圧縮ベントナイトの膨潤圧に及ぼす影響試験の目的

本検討は、密度分布を有する緩衝材が再冠水によって膨潤し、密度が均一化するかどうか、均一化しなければどの程度の密度分布が残るのか、さらに平衡膨潤圧と乾燥密度との関係を理論的に説明できるモデル化を行うことを目的としており、表 2.2.2-2 に示す施工品質（密度分布）の均質化試験のうち、後述する互いに異なる密度を有する緩衝材の直列膨潤試験、互いに応力履歴の異なる緩衝材の直列膨潤試験の基礎検討となるものである。

3.3.1 試験ケース

図 3-2-4 に示した膨潤圧による均質化を評価試験のイメージ図を元に、図 3.3.1-1 に示すような密度分布が圧縮ベントナイトの膨潤圧に及ぼす影響取得試験機を準備した。試験機を準備するに当たり、明確にした試験条件は以下のとおりである。

- 供試体内に間際の空気がトラップされないように、下面から上向きに一方向、一次元に浸漬させる。
- 供試体とセルとの間の摩擦が膨潤挙動に及ぼす影響を軽減するために、供試体の直径を60mm、高さを20mmとしてアスペクト比を大きくした。
- 注水は1m程度の水位差で行った。注水側はビューレットによって注水量を計測し、排水側は集水瓶で重量によって計測した。
- 図 3.3.1-2 に示すように、試験体の数は、密度分布が圧縮ベントナイトの膨潤圧に及ぼす影
響を取得するために、均質な供試体、半径方向に密度分布がある供試体、上下方向に密度分布がある供試体の3種類である。

・モールドと供試体との摩擦低減に留意した。

以上をまとめると表3.3.1-1のようになる。表には、作製した高密度ブロックと低乾燥密度ブロックの乾燥密度の実測値も示している。表に示すように、概ね、計画通りのブロックが作製できていることが分かる。

図3.3-1 密度分布が圧縮ベントナイトの膨潤圧に及ぼす影響取得試験機

図3.3-2 密度分布が圧縮ベントナイトの膨潤圧に及ぼす影響取得試験の供試体

表3.3.1-1 密度分布が圧縮ベントナイトの膨潤圧に及ぼす影響取得試験条件

<table>
<thead>
<tr>
<th>試験ケース</th>
<th>試験ケース</th>
<th>高乾燥密度（Mg/m³）</th>
<th>低乾燥密度（Mg/m³）</th>
<th>有効ベントナイト乾燥密度（Mg/m³）</th>
<th>初期含水比（％）</th>
<th>膨潤方向</th>
<th>平均乾燥密度（Mg/m³）</th>
<th>液種</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.584 (1.6)</td>
<td>1.584 (1.6)</td>
<td>1.351</td>
<td>25.91</td>
<td>等方</td>
<td></td>
<td>1.584(1.6)</td>
<td>蒸留水</td>
<td>実施済み</td>
</tr>
<tr>
<td>2</td>
<td>1.978 (2.0)</td>
<td>1.195 (1.2)</td>
<td>1.784 0.967</td>
<td>13.41 46.74</td>
<td>水平</td>
<td>1.587(1.6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1.978 (2.0)</td>
<td>1.195 (1.2)</td>
<td>1.784 0.967</td>
<td>13.41 46.74</td>
<td>鉛直</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*試験結果に基づき調整（）は計画値
3.3.2 供試体作成方法及び試験方法

図3.3.3に示すように、密度分布は、乾燥密度2.0Mg/m³の高密度ブロックと乾燥密度1.2Mg/m³の低乾燥密度ブロックをあわせることで表現した。両ブロックの体積は同等であるため、両者を合わせた乾燥密度は、均質供試体と同様な乾燥密度1.6Mg/m³となる。

試験結果

試験結果を図3.3.3-1に示す。図には均質な供試体、半径方向に密度分布がある供試体、上下方向に密度分布がある供試体の膨潤圧の経時変化を併せて示している。また、再現性確認のために同条件で実施した結果も併せて示している。図から、密度分布がある供試体の平衡膨潤圧が0.7MPa程度であるのに対して、均質供試体の平衡膨潤圧が0.5MPa程度である。図3.3.3-2には、膨潤圧の経時変化を対数軸で示すことで平衡状態の判定を行っている。図から全体的に若干の増加傾向であるものの、その差は縮まる傾向には無いことが分かる。また、半径方向に密度分布がある供試体、上下方向に密度分布がある供試体の膨潤圧の経時変化は、初期の立ち上がりが半径方向に密度分布がある供試体の方が急であるが、平衡状態では膨潤圧はほぼ同等である。

均質な供試体、半径方向に密度分布がある供試体、上下方向に密度分布がある供試体のマスの乾燥密度は全てほぼ1.6Mg/m³である。通常の膨潤圧試験でこのような試験を実施した場合、乾
燥密度 1.6Mg/m³のケイ砂 30wt%混合ペントナイトの膨潤圧は 0.5～0.7MPa となる。マスの乾燥密度で膨潤圧を整理すると、膨潤圧がばらつく原因となる。

従来、ペントナイトの膨潤圧試験は、その試験結果がばらつく事が指摘されてきたが [7]、その一因として供試体の密度分布の影響が示唆された。

図 3.3-4 密度分布が圧縮ペントナイトの膨潤圧に及ぼす影響取得試験結果

図 3.3-5 密度分布が圧縮ペントナイトの膨潤圧に及ぼす影響取得試験の収束状況

図 3.3-6 には、密度分布が圧縮ペントナイトの膨潤圧に及ぼす影響取得試験時の透水係数の経時変化を示す。透水係数は給水量から算出している。図から、透水係数にばらつきがあるものの、概ね、どのケースも透水係数に傾向的な相違は見られない。すなわち、均質な供試体は膨潤圧が
小さく、かつ透水係数も小さいが、密度分布がある場合、均質な供試体と透水係数は変わらないが膨潤圧が大きめになる可能性がある。これは、本試験の密度差の範囲では、膨潤圧よりも透水係数の方が乾燥密度に対してより線形であると考えられる（図 3.3.3-3、図 3.3.3-4 参照）。

図 3.3.6 密度分布が圧縮ベントナイトの膨潤圧に及ぼす影響取得試験の透水係数経時変化

図 3.3.7 有効ベントナイト乾燥密度と透水係数の関係

図 3.3.3-5 と図 3.3.3-6 には、図 3.3.3-1 に示した試験結果の妥当性を調べるために、JAEA の緩衝材基本特性データベースから取得した有効ベントナイト乾燥密度と平衡膨潤圧の関係に均質な供試体、半径方向に密度分布がある供試体、上下方向に密度分布がある供試体のマスの有効ベントナイト乾燥密度に対する平衡膨潤圧をプロットしている。図から、均質な供試体、半径方向に密度分布がある供試体、上下方向に密度分布がある供試体の平衡膨潤圧は、マスの乾燥密度に対する値としては、ほぼ妥当であると言える。

また、密度分布を有する供試体に関しては、得られた平衡膨潤圧が、低密度ブロックのマスの有効ベントナイト乾燥密度に対しては大きく、高密度ブロックのマスの有効ベントナイト乾燥密度に対しては小さく、かつ透水係数も小さいが、密度分布がある場合、均質な供試体と透水係数は変わらないが膨潤圧が大きめになる可能性がある。これは、本試験の密度差の範囲では、膨潤圧よりも透水係数の方が乾燥密度に対してより線形であると考えられる（図 3.3.3-3、図 3.3.3-4 参照）。
度に対しては小さいことから、内部では、高密度ブロックの膨潤圧が、低密度ブロックの圧縮変
形で相殺されることによって密度分布の均質化が生じていることが推定される。図 3.3-9 には、
低密度ブロックと高密度ブロックの有効ベントナイト乾燥密度から推定される平衡膨潤圧の平均
値と本試験から得られた密度分布を有する供試体のマスの有効ベントナイト乾燥密度に相当する
平衡膨潤圧の比較を示している。図から、平衡膨潤圧と有効粘土密度の関係が線形ではないため
両ブロックの平衡膨潤圧の平均値で評価するとマスの膨潤圧を高めに見積もりことになることが
分かる。

図 3.3-8 上下方向に密度分布を有する供試体の膨潤圧と既往の研究の比較

図 3.3-9 半径方向に密度分布を有する供試体の膨潤圧と既往の研究の比較

3.3.4 供試体解体後の物性試験

試験終了後の供試体の物性試験（密度計測、含水比計測）、および排水の化学分析（イオン分析）
を実施した。図 3.3-10 に各供試体の解体計画図を示す。密度分布を設定した方向に可能な限り分
割して試験後の密度分布はパラフィン法などで、含水比分布は炉乾燥法で計測した。試験結果を
表 3.3.4-1 に示す。また、図 3.3.4-2 には表 3.3.4-1 に示した試験後の密度分布を図示している。
図中には試験前の高、低密度各領域の平均密度と供試体全体の平均密度も示している。

表、図から、膨潤圧は平衡に達しているにも関わらず、供試体内部では密度分布が残っている
ことが分かる。また、初期の乾燥密度分布に比べ、均質化する方向に密度分布が変化している。このことか、密度分布や隙間を有する緩衝材は再冠水後に膨潤して均質化すると暗黙のうちに想定されているが、必ずしも均質化までは至らない可能性がある。さらに、膨潤圧が同じであっても密度分布が異なる場合があることも明らかとなった。このことから、密度と膨潤圧は必ずしも一意に対応しない可能性がある。図 3.3.4-3 に示せば体の写真を示しているが、目視観察からも明らかに密度分布が残っていることが確認できる。

なお、幾つかのケースで飽和度が 100% を超えるものがあるが、脱型や解体中の間隙水の移動などによるものと考えられる。また、サンプルの平均値と試験前の供試体の乾燥密度が異なるが、これは解体に伴う除荷により供試体が力学膨潤したためと考えられる。

図 3.3-10 供試体の解体計画図

表 3.3.4-1 密度分布が圧縮ベントナイトの膨潤圧に及ぼす影響取得試験供試体の物理試験結果

<table>
<thead>
<tr>
<th>試験ケース</th>
<th>試料位置</th>
<th>乾燥密度 (Mg/m³)</th>
<th>含水比 (%)</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>均質な供試体</td>
<td>1</td>
<td>1.550</td>
<td>30.25</td>
<td>平均乾燥密度 1.584 (Mg/m³)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.583</td>
<td>25.35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.578</td>
<td>27.59</td>
<td></td>
</tr>
<tr>
<td>半径方向に密度分布のある供試体</td>
<td>1</td>
<td>1.680</td>
<td>20.17</td>
<td>平均乾燥密度 1.587 (Mg/m³)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.313</td>
<td>36.30</td>
<td>高乾燥密度領域 1.978 (Mg/m³)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.285</td>
<td>37.95</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.524</td>
<td>25.76</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.646</td>
<td>21.56</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1.284</td>
<td>38.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1.480</td>
<td>28.00</td>
<td></td>
</tr>
<tr>
<td>上下方向に密度分布のある供試体</td>
<td>1</td>
<td>1.617</td>
<td>21.64</td>
<td>低乾燥密度領域 1.195 (Mg/m³)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.761</td>
<td>20.39</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.387</td>
<td>31.51</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.348</td>
<td>36.26</td>
<td></td>
</tr>
</tbody>
</table>
図 3.3-11 密度分布を有する供試体の試験前後の密度分布
図3.3.4-4には、膨潤圧試験の解析を示す。図中最上段には、密度が同じで高さが異なる飽和したペントナイトが体積拘束下で膨潤圧試験に供されている。この際に発揮される膨潤圧は両者とも同じである。なぜならば、両供試体の内部に発生する応力は互いに相殺し合うためである。さらに図3.3.4-4下段には、同じ供試体の膨潤圧試験の試験開始直後と平衡状態の供試体の様子を示している。図から、仮に供試体と側面との間に摩擦が作用せず、不飽和領域のペントナイトが膨潤圧によって塑性変形を生じないとすれば、試験開始直後であっても、ある程度飽和領域が形成されれば、平衡膨潤圧が発生する。なぜならば飽和領域内部の膨潤圧は相殺されるため、飽和領域が形成されるかどうかで平衡膨潤圧が発揮されるかどうかが決まるからである。

図3.3.4-5には膨潤圧試験のイメージを示す。上述の通り、膨潤圧が平衡状態であるということが、供試体内の飽和度や均質化を意味しておらず、有意な飽和領域が形成されたことを意味しているに過ぎない。このことは、膨潤圧試験で膨潤圧の経時変化を取得すると、実験初期の供試体から排水がなされない段階から膨潤圧が平衡状態に達するという知見とも合致する。また、密度分布が膨潤によって均一化せず、また密度分布の有無によって平衡膨潤圧が異なることから、同じバルクの乾燥密度でも平衡膨潤圧が異なったり、逆に異なるバルクの乾燥密度でも平衡膨潤圧が同じになることもあり得る。

図3.3.12 密度分布を有する供試体の解体状況写真
図 3.3-13 膨潤圧試験の解釈

図 3.3-14 膨潤圧試験のイメージ
3.3.5 密度分布が膨潤圧に及ぼす影響の理論的考察

図3.3.5-1には平衡膨潤圧のばらつきに関する考察を示している。これまで、膨潤圧のばらつきについて、帰納的に調べられた事例はあるが、演繹的に検討された事例は少ない。そこでここでは、膨潤圧のばらつきに関して演繹的な考察を加える。

平成22年度実施した試験では、密度分布が膨潤圧のばらつきに影響を与える可能性が示された。図3.3.5-1には平衡膨潤圧のばらつきに関する考察を示している。これまで、膨潤圧のばらつきについて、帰納的に調べられた事例はあるが、演繹的に検討された事例は少ない。そこでここでは、膨潤圧のばらつきに関して演繹的な考察を加える。

図3.3.3-15にはこのばらつきの理由を力学的に示している。まず、図3.3.3-15の上図に示したように、平衡膨潤圧と乾燥密度の関係が線形関数として与えられるとすれば、供試体内に密度分布があっても、平均乾燥密度と計測される膨潤圧の平均値はその線形関数からずれない。しかしながら、図3.3.3-5と図3.3.3-6に示した平衡膨潤圧と乾燥密度の関係を眺めると、少なくとも平衡膨潤圧は乾燥密度に対して非線形であると言える。この場合、供試体の平均乾燥密度と計測される膨潤圧の平均値は非線形関数からずれる(図3.3.5-1下図)。膨潤圧試験において、多くの場合、平衡膨潤圧と乾燥密度の関係は下に凸の関数であるため、均質な場合の膨潤圧は密度分布がある供試体の平衡膨潤圧よりも低くなることも分かる。この傾向は、図3.3.3-1に示した試験結果とも整合する。尚、図3.3.5-2は小林ら[8]による正規圧密曲線と平衡膨潤圧の関係を示している。図から、正規圧密曲線は平衡膨潤圧の上限値を示していることから、密度分布を有する供試体の膨潤圧は正規圧密曲線よりも下側に位置していることが分かる。正規圧密曲線の下側は、弾塑性力学上、弾性域であることから、この膨潤圧の差は応力履歴の影響である可能性がある。

図3.3.5-2 平衡膨潤圧のばらつきに関する考察
3.4 密度分布が圧縮ベントナイトの膨潤量に及ぼす影響

3.4.1 試験ケース

密度分布が圧縮ベントナイトの膨潤量に及ぼす影響を評価する試験については、図 3.4-1 に示すような密度分布が圧縮ベントナイトの膨潤量に及ぼす影響を取得するための試験機（以下、直列膨潤試験機）を準備した。試験機を準備するに当たり、留意した試験条件は以下のとおりである。

- 供試体内に間隙の空気をトラップされないように、一方向、一次元に浸潤させる。
- 注水はシリンジポンプ（フローポンプ）によって行い、排水は集水瓶で集めイオン分析する。
- 1つの供試体内に密度の異なるブロックを混在させると、その界面の移動の観察が困難なることから、図 3.4-1 に示すように密度の異なる均質供試体の膨潤量試験機のピストンを直列に繋ぎ、ピストンの動きを計測することによって界面の膨潤量を計測する。
- 直列した膨潤試験機の下側に高密度供試体、上側に低密度供試体をセットする。この際、下側の供試体にはピストンの死荷重が作用するため、ピストンの荷重（3520g）を相殺するカウンターウェイトを配置する（図 3.4-2 参照）。

試験ケースをまとめると表 3.4.1-1 のようになる。表には、試験水として 0.5M の NaCl 水溶液を使用したケース 1s～3s も記載している。また、作製した高密度ブロックとの低密度ブロックの乾燥密度の実測値も示している。表に示すように、概ね、計画通りのブロックが製作できていることが分かる。ケース 1～3 とケース 1s～3s は、試験水が異なるだけで、他の試験条件はほぼ同じとした。両者を比較することによって、膨潤挙動に対して、間隙水のイオン強度が及ぼす影響も定量評価できる。

この試験によって得られる膨潤量の経時変化は、図 3.4-3 に示すように、高密度供試体が膨潤することによって低密度供試体を圧縮し均質化の傾向を示す。力学理論に照らせば、この傾向は膨潤圧が釣合うまで生じると考えられる。よって本試験では、この内部膨潤量の経時変化からベントナイトの密度が均質化するのに要する時間を取得するのではなく、膨潤圧が釣合うのに要する時間と膨潤圧が釣合った時点の密度は、締固め時の応力履歴（最大
圧縮圧力の違いによって一致しないと考えられる。このことが確認できれば、図3.3-8に示した不均質供試体の膨潤圧の解釈に役立つ。

図3.4-1 密度分布の差が存在する場合の圧縮ペントナイトの膨潤量

図3.4-2 密度分布圧縮ペントナイトの膨潤量に及ぼす直列膨重量試験
表 3.4.1-1 密度分布が圧縮ベントナイトの膨潤量に及ぼす影響試験条件

<table>
<thead>
<tr>
<th>試験ケース</th>
<th>高乾燥密度 (Mg/m³)</th>
<th>低乾燥密度 (Mg/m³)</th>
<th>有効ベントナイト乾燥密度 (Mg/m³)</th>
<th>初期含水比 (%)</th>
<th>膨潤方向</th>
<th>平均乾燥密度 (Mg/m³)</th>
<th>液種</th>
<th>記述</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.798(1.8)</td>
<td>1.399(1.4)</td>
<td>1.581</td>
<td>1.164</td>
<td>18.97</td>
<td>34.84</td>
<td>2.0</td>
<td>鉛直</td>
</tr>
<tr>
<td>2</td>
<td>1.984 (2.0)</td>
<td>1.190 (1.2)</td>
<td>1.792</td>
<td>0.963</td>
<td>13.41</td>
<td>46.74</td>
<td>30wt%混合Na型ベントナイト</td>
<td>鉛直</td>
</tr>
<tr>
<td>3</td>
<td>1.698(1.7)</td>
<td>1.493(1.5)</td>
<td>1.473</td>
<td>1.258</td>
<td>19.81</td>
<td>27.35</td>
<td>1.2</td>
<td>鉛直</td>
</tr>
<tr>
<td>1s</td>
<td>1.790(1.8)</td>
<td>1.426(1.4)</td>
<td>1.573</td>
<td>1.191</td>
<td>19.24</td>
<td>32.06</td>
<td>1.6</td>
<td>継続中</td>
</tr>
<tr>
<td>2s</td>
<td>1.991 (2.0)</td>
<td>1.187 (1.2)</td>
<td>1.801</td>
<td>0.960</td>
<td>13.54</td>
<td>47.96</td>
<td>NaCl 30wt%混合Na型ベントナイト</td>
<td>鉛直</td>
</tr>
<tr>
<td>3s</td>
<td>1.747(1.7)</td>
<td>1.550(1.5)</td>
<td>1.526</td>
<td>1.317</td>
<td>18.57</td>
<td>25.55</td>
<td>1.7</td>
<td>継続中</td>
</tr>
</tbody>
</table>

()は計画値

図 3.4-3 密度分布が圧縮ベントナイトの膨潤圧に及ぼす影響試験機

3.4.2 試験結果（蒸留水ケース）

(1) **膨潤量**

試験結果を図 3.4.2-1～図 3.4.1-2 に示す。試験結果は、比較のために既に終了している Case2 も示している。図 3.4.2-1 に膨潤量の経時変化を示す。図には Case1（高密度供試体（乾燥密度 1.8Mg/m³）、低密度供試体（乾燥密度 1.4Mg/m³））と Case2（高密度供試体（乾燥密度 2.0Mg/m³）、低密度供試体（乾燥密度 1.2Mg/m³））、さらに Case3（高密度供試体（乾燥密度 1.7Mg/m³）、低密度供試体（乾燥密度 1.5Mg/m³））の乾燥密度の経時変化を併せて示している。なお、ここで膨潤量は、下側の高密度供試体が上方向に膨潤する場を正として示している。
Case2 の膨潤変形は、当初フローポンプによる流量制御で飽和させたため、試験開始から早い段階で定常状態に至っているのに対して、Case1 と Case3 では、フローポンプを使用せずに圧力制御で給水しているため、膨潤挙動が緩慢であり、Case1 では約 1000 日以上経過した現在でも、まだ定常に達していない。未だに少しずつ変形が継続している。Case3 も同様に緩慢であるが、変形が継続している。Case2 では、変形は 100 日程度でほぼ定常になりそれ以降一定であることから、後述するように解体を行った。

図 3.4-4 膨潤量の経時変化

図 3.4-5 には、Case1 では加圧タンクによる圧力制御通水圧と膨潤圧の経時変化を、Case2 と Case3 にはフローポンプの通水圧と膨潤圧の経時変化をそれぞれ示している。図 3.4.2-2 に示すように、Case1 の場合、圧力制御で給水しているため、給水圧の経時変化が滑らかであるのに対して、Case2 の場合は、試験当初、破過による過流量を防ぐためにフローポンプによる流量制御で給水を行ったため、上下の供試体の通水圧に相違が発生した。このため、一旦給水を止めて上下に同じ給水圧となるようにフローポンプによる圧力制御で給水を行った。このような段取り替えのため、試験初期段階で大きな給水圧の増減があるが、その後の試験状況に影響は及んでいないものと考えられる。なお、給水圧の小刻みな振幅は、フローポンプの盛替えによるものである。Case3 では、フローポンプの通水圧を 0.01MPa 程度にして膨潤圧に有意な影響が及ばないように計測した。膨潤圧に関しては Case1 では 0.66MPa、Case2 では 0.45MPaであった。Case1 と Case3 に関しては、未だ平衡状態ではないものと考えられる。なお、本試験における膨潤圧を計測するロードセルは両供試体の間に設置しており、計測される膨潤圧は釣り合うまでは常に低乾燥密度の膨潤圧を計測することになることに注意すべきである。このため、低乾燥密度供試体の中で最も密度が高い Case3 の膨潤圧が増加傾向であり、Case1 の膨潤圧が低下傾向である。
図 3.4-5 フローポンプによる通水圧の経時変化

図 3.4-6 には、Case1 と Case3 のフローポンプによる制御流量の経時変化を示している。Case1 では、0.0001cc/min の流速で注水を行い、膨潤量がほぼ定常になった時点で流速を0.0005cc/min に増加させた。この際、通水圧が水圧計の計測範囲の上限値である 2MPa に近づいたため、流速を0.0002cc/min にして試験を継続している。なお、試験開始後 18 日目に通水が一時的に止まっているが、これは停電によるものである。停電復旧後速やかに試験を開始し、停電の前後で挙動に大きな差異が無いことを確認した上で試験を継続している。この点に関しては他の試験においても同様である。Case3 では、前述のように計測される膨潤圧に通水圧が有意な影響を及ぼさないようにするために、フローポンプの通水圧を 0.01MPa に制御したため、通水量が 0.00001cc/min 程度となっている。

図 3.4-6 フローポンプによる制御流量の経時変化
図 3.4-7 には、Case1、Case2、Case3 の膨潤に伴う高密度供試体と低密度供試体の密度の経時変化を示している。図から、どちらのケースも下部にある高密度供試体の膨潤圧が上部にある低密度供試体の乾燥密度よりも膨潤圧が大きいために、高密度供試体は膨潤しながら密度が下がり、低密度供試体は圧縮されながら密度が増加している。

Case1 に関しては、試験初期に排水が得られなかったことから、通水圧が相殺するように上下の両供試体にそれぞれ 0.2MPa の通水圧を作用させて飽和を促進させた。その結果、排水が確認された。高密度の供試体が 1.8→1.75 Mg/m³ へと減少し、その後定常化し、低密度の供試体は 1.4→1.45 Mg/m³ へと増加し、その後定常化した状況が継続している。今後、実験を継続することで、定常に至る過程でさらに密度差は低減すると考えられるが、均一化には至らないものと予想される。

Case2 に関しては、高密度の供試体が 2.0→1.69 Mg/m³ へ減少し、その後定常化し、低密度の供試体は 1.2→1.45 Mg/m³ へと増加し、その後、ほぼ定常になり、有意な密度差が残る結果となった。この密度差は、後述する土質力学 (弾塑性力学) に立脚した理論的な説明も可能であることから、試験は平成 23 年度で終了し、平成 24 年度には後述する供試体内部の密度分布、含水比などの諸量を取得した。

Case3 に関しては、高密度の供試体が 1.7→1.67 Mg/m³ へ減少し、その後定常化し、低密度の供試体は 1.5→1.53 Mg/m³ へと増加し、その後、平成 23 年度でほぼ定常になり、有意な密度差が残る結果となった。膨潤圧とベントナイトの乾燥密度が一意に対応しているのであれば、この膨潤圧の経時変化は両供試体の乾燥密度が 1.6Mg/m² になった時点で平衡状態に達するはずである。しかしながら力学的には、物体の変形は釣合いが満足されるまで生じるはずであり、乾燥密度が同じかどうかではなく、膨潤圧が釣合った時点で変形が止まると考えることのほうが自然である。この力学的な解釈が正しければ、図 3.4-3 に示したように、高密度供試体と低密度供試体の密度変化は互いに近づくが、密度差はゼロにはならないと考えられる。
(2) 供試体解体結果

本検討では、試験終了後の供試体の物理試験（密度計測、含水比計測）、および排水の化学分析（イオン分析）を実施する計画である。

図 3.4.2-5 に膨潤量供試体の模式図を示す。初期高さ H、面積 A、乾燥質量 W の供試体の乾燥密度 ρ_d とすると、

$$ \rho_d = \frac{W}{AH} $$

で表される。ここで、膨潤変形 d が発生したとすると、バルクの乾燥密度 ρ_d は

$$ \rho_d = \frac{W}{A(H + d)} $$

となる。

ここで、直列膨潤量試験について考える。直列膨潤量試験では、乾燥密度 $
ho_{L}$ の低密度供試体と乾燥密度 $
ho_{H}$ の高密度供試体がピストンを介して繋がっているため、高密度供試体に膨潤変形 d が発生したとすると、乾燥密度は

$$ \rho_{L} = \frac{W_L}{A(H + d)} $$

となる。この時の低密度供試体は、高密度供試体に膨潤変形によって d だけ圧縮される為、その乾燥密度は

$$ \rho_{L} = \frac{W_L}{A(H - d)} $$

となる。なお、添え字、H は高密度供試体、L は低密度供試体をそれぞれ表している。両供試体の初期形状は同じであり、直径 D、高さ H、面積 A である。ここで、両供試体の算術平均乾燥密度 $\overline{\rho}_d$ を、膨潤変形 d で与えて表すと、

$$ \overline{\rho}_d = \rho_{L} + \rho_{H} = \frac{W_L}{A(H + d)} + \frac{W_H}{A(H - d)} = \frac{W_H (H - d) + W_L (H + d)}{2A(H - d)(H + d)} $$

で表される。一方、両供試体を一体として考え、両供試体の総乾燥質量を両供試体の総体積で除して定義する平均密度 $\hat{\rho}_d$ は、

$$ \hat{\rho}_d = \frac{W_H + W_L}{A(H - d) + A(H + d)} = \frac{W_H + W_L}{2AH} $$

となり、膨潤量に無関係になる。

ここで、本検討の試験条件である、乾燥密度 $
ho_{L} = 1.2 \text{Mg/m}^3$ の低密度供試体と乾燥密度 $
ho_{H} = 2.0 \text{Mg/m}^3$ で初期供試体高さ 20mm、直径 60mm の場合の膨潤量に対する個々の供試体の乾燥密度と平均乾燥密度の変化を図示すると図 3.4.9 のようになる。両供試体の乾燥密度は、それぞれ、正と負の反比例のグラフとなり、算術平均乾燥密度 $\overline{\rho}_d$ も下に凸の関数となっている。
ことが分かる。両者が同じ乾燥密度になるのは乾燥密度が $\bar{\rho}_d = 1.6 \text{ Mg/m}^3$ の場合であり、この時に限り $\hat{\rho}_d = \tilde{\rho}_d$ となることが分かる。本試験の場合、解体時の膨潤変形量が 2.14mm であったため、高密度供試体の乾燥密度は 1.807 Mg/m3 （図中の赤丸）であり、低密度供試体の乾燥密度は 1.344 Mg/m3 （図中の青丸）である。図に示したように、低密度供試体と高密度供試体の初期乾燥密度の算術平均値が 1.6 Mg/m3 であっても、膨潤量が小さい場合には算術平均値 1.6 Mg/m3 よりも小さくなることが分かる。

図 3.4-9 膨潤量に対する個々の供試体の乾燥密度と平均乾燥密度の変化

図 3.4.2-7 に今年度解体した直列膨潤量試験のうち高密度供試体（初期乾燥密度：2.0 Mg/m3）と低密度供試体（初期乾燥密度 1.2 Mg/m3）の解体計画図を示す。膨潤方向に可能な限り分割して試験後の密度分布はノギス法で、含水比分布は炉乾燥法で計測した。

図 3.4-10 供試体の解体図

表 3.4.2-1 に直列膨潤量試験の解体後の乾燥密度を示す。表には、各供試体を分割して取得した密度分布を示している。計測された各分割供試体の乾燥密度は、図 3.4.2-6 に示した膨潤量と乾燥密度の関係から得られる乾燥密度とほぼ等しいことが分かる。図 3.4.2-8 に図 3.4.2-6 に示
した膨潤量に対する個々の供試体の乾燥密度と平均乾燥密度の変化に表 3.4.2-1 に示した分割した供試体の各乾燥密度を併せて示している。図からも、計測値が膨潤量から算出される乾燥密度とほぼ等しいことが分かった。

図 3.4.2-9 には、分割した供試体の乾燥密度分布を示している。図から、両供試体共に、上面側の密度が小さいことが分かる。上側の供試体（低密度供試体）は上面が給水面であるが、下側の供試体（高密度供試体）は下面が給水面である。このことから、解体時に給水面から水を吸って局所的に膨潤したのではなく、供試体の上部にあった水が解体時に供試体に流下して膨潤したものと考えられる。仮にこの解体時の膨潤がなければ、概ね均一な供試体分布となっており、両供試体とも給水側だけが膨潤しているという状況ではないことが分かる。

表 3.4.2-1 直列膨潤量試験の解体結果

<table>
<thead>
<tr>
<th>供試体</th>
<th>供試体番号</th>
<th>分割高さ ΔH (mm)</th>
<th>含水比 W (%)</th>
<th>乾燥密度 ρ_d (Mg/m^3)</th>
<th>飽和度 Sr %</th>
</tr>
</thead>
<tbody>
<tr>
<td>低密度供試体</td>
<td>①</td>
<td>0.483</td>
<td>45.79</td>
<td>1.224</td>
<td>102.3</td>
</tr>
<tr>
<td></td>
<td>②</td>
<td>0.416</td>
<td>37.69</td>
<td>1.382</td>
<td>106.4</td>
</tr>
<tr>
<td></td>
<td>③</td>
<td>0.294</td>
<td>36.25</td>
<td>1.434</td>
<td>110.6</td>
</tr>
<tr>
<td></td>
<td>④</td>
<td>0.583</td>
<td>39.08</td>
<td>1.374</td>
<td>109.1</td>
</tr>
<tr>
<td></td>
<td>平均値</td>
<td></td>
<td>39.70</td>
<td>1.354</td>
<td>107.1</td>
</tr>
<tr>
<td>高密度供試体</td>
<td>①</td>
<td>0.481</td>
<td>22.35</td>
<td>1.713</td>
<td>104.3</td>
</tr>
<tr>
<td></td>
<td>②</td>
<td>0.455</td>
<td>18.14</td>
<td>1.832</td>
<td>102.8</td>
</tr>
<tr>
<td></td>
<td>③</td>
<td>0.422</td>
<td>17.56</td>
<td>1.857</td>
<td>103.8</td>
</tr>
<tr>
<td></td>
<td>④</td>
<td>0.415</td>
<td>16.53</td>
<td>1.899</td>
<td>105.2</td>
</tr>
<tr>
<td></td>
<td>⑤</td>
<td>0.431</td>
<td>18.74</td>
<td>1.822</td>
<td>104.4</td>
</tr>
<tr>
<td></td>
<td>平均値</td>
<td></td>
<td>18.66</td>
<td>1.824</td>
<td>104.1</td>
</tr>
</tbody>
</table>

図 3.4.11 膨潤量に対する個々の供試体の乾燥密度と平均乾燥密度の変化(再掲)
3.4.3 試験結果（NaCl 水溶液ケース）

(1) 膨潤量

図 3.4.3-1 にイオン強度が 0.5 の NaCl 水溶液を用いて実施した直列膨潤量試験で取得した膨潤量の経時変化を示している。図には、前述の蒸留水のケースも比較のために併せて示している。本来、直列膨潤試験では、2つの供試体のうち、高乾燥密度供試体の乾燥密度の値が大きい程、膨潤量が大きくなると考えられるが、本試験においても蒸留水のケースとイオン強度が 0.5 の NaCl 水溶液を用いて実施した場合の試験結果は、どちらもこの考えに整合している。また、イオン強度の影響により、イオン強度が 0.5 の NaCl 水溶液を用いて実施した場合の方が、蒸留水のケースに比べ、膨潤量が小さくなっている。ただし、乾燥密度 1.4Mg/m³ と 1.8Mg/m³ の場合の蒸留水のケースは、他のケースに比べて膨潤挙動が非常に緩慢であるため、蒸留水のケースとイオン強度が 0.5 の NaCl 水溶液のケースの膨潤量の差異は、他のケースに比べて明確に小さいことが分かる。逆に言えば、他のケースの膨潤量の差異から、乾燥密度 1.4Mg/m³ と 1.8Mg/m³ の場合の差異は現状よりも大きくなることが予想される。そのため、定常になるにはさらに試験を継続する必要がある。

図 3.4-13 膨潤量の経時変化（NaCl 水溶液）
図 3.4.3-2 には、前述の膨潤量から算出した直列膨潤量試験中のイオン強度が 0.5 の NaCl 水溶液を用いて実施した場合の乾燥密度の経時変化を示す。この図も、同様に、前述の蒸留水のケースも比較のために併せて示している。図から、蒸留水のケースに比べて NaCl 水溶液のケースの方が、残留密度差は大きいことが分かる。さらに、初期の密度差が大きいものほど、残留密度差が、大きくなることが分かる。

図 3.4.3-3 には、NaCl 水溶液の場合の直列膨潤量試験中の膨潤圧の経時変化を示している。この図も、前述の蒸留水のケースを比較のために併せて示している。図から、イオン強度の影響により、蒸留水のケースに比べ、NaCl 水溶液ケースの方が膨潤圧は小さい傾向にある。

直列膨潤量試験の場合の膨潤圧は、2 つある供試体のうち、低乾燥密度供試体の乾燥密度が大きい程大きくなるものと考えられる。NaCl 水溶液ケースでは、この考え方を整合した結果が得られているのでに対して、蒸留水では、乾燥密度 1.5Mg/m³ と 1.7Mg/m³ の膨潤圧よりも乾燥密度 1.4Mg/m³ と 1.8Mg/m³の方が大きくなっている。前述の膨潤量試験の結果と併せて考えると、乾燥密度 1.4Mg/m³ と 1.8Mg/m³の場合において、乾燥密度 1.4Mg/m³のセルにおいて、ピストンの傾き、ピストンとセルの摩擦などの影響で、乾燥密度 1.8Mg/m³の供試体の膨潤量が乾燥密度 1.4Mg/m³の供試体に伝播されておらず、その反力として、膨潤圧が大きくなったものと考えられる。また、同様の原因で、乾燥密度 1.4Mg/m³ と 1.8Mg/m³の場合において膨潤量が小さくなっているものと考えられる。

図 3.4-14 膨潤に伴う乾燥密度の経時変化（NaCl 水溶液）
図 3.4-15 直列膨潤量試験中の膨潤圧の経時変化 (NaCl 水溶液)

図 3.4-16 には NaCl 水溶液のケースにおける直列膨潤量試験中の給排水量の経時変化を示す。図から、直列膨潤量試験の 2 つの供試体のうち、乾燥密度が大きい供試体の方が、給水量が大きいことが分かる。これは、乾燥密度が大きい供試体は吸水膨潤するためである。一方、乾燥密度が小さい供試体は、直列膨潤量試験では、高乾燥密度供試体の膨潤に伴って圧縮されるが、供試体の空隙やセルの隙間などへの給水分が計測されているものと考えられる。また、乾燥密度が 1.2Mg/m³ と 2.0Mg/m³ のケースでは、乾燥密度 2.0Mg/m³ の供試体の膨潤に伴って、乾燥密度 1.2Mg/m³ の供試体から排水が計測されている。これは、高密度領域の膨潤による低密度領域の圧密ともいえる。

図 3.4-16 直列膨潤量試験中の給排水量の経時変化 (NaCl 水溶液)
3.5 応力履歴が圧縮ベントナイトの膨潤量に及ぼす影響

3.5.1 試験ケース

これまでの試験から、密度と膨潤圧は必ずしも一意に対応しない可能性があることを示した。そこで、図3.5.1に示すように乾燥密度が同じであるが、膨潤による応力履歴が異なる供試体を直列に繋いだ膨潤量試験を実施した。この試験では、直列に繋いだ膨潤圧試験の供試体は密度差が無いため、密度と膨潤圧が一意に対応するのであれば膨潤変形は生じないはずである。試験条件は以下のとおりである。

- 供試体内に間隙の空気がトラップされないように、一方向、一次元に浸潤させる。
- 注水はシリンジポンプ（フローポンプ）によって行い、排水は集水瓶で集めイオン分析する。
- 図3.4.1と同様の試験機を用いて試験を実施する。先ず、上部供試体（乾燥密度1.6Mg/m\(^3\)）と下部供試体（乾燥密度1.8Mg/m\(^3\)）を試験機にセットし飽和させる（NaCl水溶液の場合は、上部供試体の乾燥密度：1.7Mg/m\(^3\)と下部供試体の乾燥密度：1.8Mg/m\(^3\)）。この際、上部供試体は体積拘束条件で密度が一定のままとなるようにして、下部供試体は乾燥密度が1.8Mg/m\(^3\)から1.6Mg/m\(^3\)(NaCl水溶液の場合は1.7Mg/m\(^3\))となるまで膨潤させる。両供試体の飽和後の乾燥密度が同じになったところでピストンを繋いで、直列の膨潤量試験を開始する。ただし、NaCl水溶液を用いた過圧密供試体と蒸留水を用いた再試験の過圧密供試体(Case2-2、Case2s、Case3s)に関しては、膨潤時の密度分布の発生を避けるために、十分に飽和させてから膨潤過程に移行することとする。
- 下側の供試体にはピストンの死荷重が作用するため、ピストンの荷重（3520g）を相殺するカウンタウェイトを配置する（図3.5.1-2）。

試験ケースを表3.5.1-1に示す。表には今年度から開始する試験水として、0.5MのNaCl水溶液を使用したケース1s～3sも記載している。また、製作した過圧密（高密度）ブロックとの正規圧密（低乾燥密度）ブロックの乾燥密度の実測値も示している。表に示すように、概ね、計画通りのブロックが作製できていることが分かる。

図3.5.1-3には応力履歴が圧縮ベントナイトの膨潤量に及ぼす影響試験の供試体の調整手順を示す。正規圧密供試体は、乾燥密度1.6Mg/m\(^3\)に静的に締固めた後に体積拘束条件で飽和したものであり、過圧密供試体は、乾燥密度1.8Mg/m\(^3\)に静的に締固めた後に乾燥密度1.6Mg/m\(^3\)まで膨潤させながら飽和したものである。このようにすることで、乾燥密度が同じであるが、膨潤による応力履歴が異なる供試体を直列に繋いだ膨潤量試験を実施可能になる。この試験によって膨潤量の経時変化が得られれば、図3.5.1-4に示すような力学的な解釈によるベントナイトの再冠水後の残留密度差を推定できる。なお、ベントナイトの吸水膨潤が力学的な除荷と同等であるかどうかは議論の余地があるが、供試体の特徴を端的に示す名前としてこの名称を採用した。また、直列膨潤量試験は、過圧密供試体と正規圧密供試体の場合のみとして、正規圧密/正規圧密、過圧密/過圧密のケースはそれぞれ直列膨潤量試験にする必要がないため、1供試体による通常の膨潤圧試験とした。蒸留水を用いた正規圧密供試体と過圧密供試体の直列膨潤量試験は、長期間に亘って定常状態となったため、後述する手順で解体を行った。また、再現性を確認する目的で、再度、
同条件の試験を実施した（Case2-2）。ただし、後述する解体の結果、過圧密供試体に大きな密度低下（不均一な膨潤）が観察されたため、Case2-2 の過圧密供試体の膨潤は、十分に飽和させてから行うこととした。この工程の変更は、NaCl 水溶液を用いた Case2s や Case3s の場合も同様である。

蒸留水を用いた正規圧密の試験ケースでは、乾燥密度 1.6Mg/m³ まで圧縮した供試体をそのまま膨潤試験に供したが、他のケースに比べて非常に早期に試験を終了したため、Case1-2 と再度試験を実施した。

過圧密の試験ケースに関しては、前述のように、一旦、乾燥密度 1.8Mg/m³ まで圧縮したものを 1.6Mg/m³ まで膨潤させ、その後に膨潤圧を計測した。その後、十分に飽和したことを確認した後に、体積拘束（乾燥密度 1.6Mg/m³ 以下にならない様に拘束している）を解除して、膨潤圧の計測を行っていた。しかしながら、給水と膨潤変形を同時に実施させると密度分布が発生する可能性があることから、後続で開始する試験は、体積拘束下で給水飽和させた後に膨潤させることがとった。よって、飽和中の膨潤圧は、乾燥密度 1.8Mg/m³ での値となることに注意が必要である。

表 3.5.1-1 応力履歴が圧縮ペントナイトの膨潤量に及ぼす影響試験条件

<table>
<thead>
<tr>
<th>試験ケース</th>
<th>高乾燥密度 (Mg/m³)</th>
<th>低乾燥密度 (Mg/m³)</th>
<th>有効ペントナイト乾燥密度 (Mg/m³)</th>
<th>初期含水比 (%)</th>
<th>応力履歴</th>
<th>平均乾燥密度 (Mg/m³)</th>
<th>液種</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.58(NC) (1.6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>終了</td>
</tr>
<tr>
<td>1-2</td>
<td>1.610(NC) (1.6)</td>
<td>1.351</td>
<td>25.91</td>
<td>正規</td>
<td></td>
<td></td>
<td></td>
<td>再現性確認中</td>
</tr>
<tr>
<td>2</td>
<td>1.794→1.596 (1.8→1.6)</td>
<td>1.589 (1.6)</td>
<td>1.576→1.368</td>
<td>1.357</td>
<td>25.91</td>
<td>18.97</td>
<td>正規+過圧密</td>
<td>蒸留水</td>
</tr>
<tr>
<td>2-2</td>
<td>1.803→※ (1.8→1.6)</td>
<td>1.582 (1.6)</td>
<td>1.587→※</td>
<td>1.350</td>
<td>25.59</td>
<td>17.32</td>
<td>正規+過圧密</td>
<td>解体実施</td>
</tr>
<tr>
<td>3</td>
<td>1.798→1.605 (OC) (1.8→1.6)</td>
<td>1.581→1.368</td>
<td>18.97</td>
<td>過圧密</td>
<td>1.6 (ケイ砂30wt%混合 Na型ペント)</td>
<td>再現性確認中</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1s</td>
<td>1.612(NC) (1.6)</td>
<td>1.381</td>
<td>24.69</td>
<td>正規</td>
<td></td>
<td></td>
<td></td>
<td>継続中</td>
</tr>
<tr>
<td>2s</td>
<td>1.800→※ (1.8→1.7)</td>
<td>1.475</td>
<td>21.60</td>
<td>正規+過圧密</td>
<td></td>
<td></td>
<td>NaCl水溶液</td>
<td>新規</td>
</tr>
<tr>
<td>3s</td>
<td>1.810→※ (OC) (1.8→1.7)</td>
<td>1.595→※</td>
<td>17.96</td>
<td>過圧密</td>
<td></td>
<td>0.5M</td>
<td>新規</td>
<td></td>
</tr>
</tbody>
</table>

*飽和終了後に膨潤過程に移行（ ）は計画値
図 3.5-1 応力履歴が圧縮ベントナイトの膨潤量に及ぼす影響試験の詳細図

図 3.5-2 応力履歴が圧縮ベントナイトの膨潤量に及ぼす影響試験機
3.5.2 試験結果（蒸留水のケース）

(1) 膨潤量

試験結果を図 3.5.2-1 ～図 3.5.2-2 に示す。図 3.5.2-1 には Case2（過圧密/正規圧密のケース）の膨潤量の経時変化を示している。ここで膨潤量は、下部の過圧密供試体が下向に膨潤する場合を正として取りまとめている。なお、試験初期には上部の正規圧密供試体は体積拘束条件で飽和するため膨潤量はゼロである。下部の過圧密供試体は、通水後 110 日目で乾燥密度がおよそ 1.6Mg/m³ に達したため、ピストンを介して上下の供試体を繋いで体積拘束条件を解除した。体積拘束条件を解除したところ、下部供試体は上部供試体に圧縮され、下方に変位していることが分かる。
Case2の通水は図3.5・2-2に示すように、上部供試体に関してはフローポンプにより実施している。下部供試体は自由に膨潤できる境界条件でありフローポンプで通水させた場合に浮き上がるなどの不具合が出ないようにするために、ビューレットで1m程度の水位差で飽和させている。図3.5・5に示すように、乾燥密度1.6Mg/m³に相当する膨潤量で一定値を示していることを確認してからフローポンプで排水を確認するまで通水を行い、その後ピストンを接続した。上下の供試体で異なる通水圧を作用させると通水圧の差で変形が発生することが考えられるため、通水から75日以降は、上下の通水圧が相殺するように上下にそれぞれ0.4MPaの通水圧を作用させた。

図3.5・5 膨潤量の経時変化

図3.5・6 フローポンプによる通水圧、膨潤圧の経時変化

図3.5・2-3には、Case2の上部供試体のフローポンプによる制御流量の経時変化を示している。試験当初は0.0001cc/minの流速で注水を行い、膨潤圧がほぼ定常になった時点で流速を0.005cc/minに増加させた。この際に通水圧が水圧計の計測範囲の上限値である2MPaに近づいたため、流速を0.0002cc/minにして試験を継続した。その後、上下の供試体に同じ通水量を作用させた場合、通水圧に優位な差が表れたため、通水圧の差による変位が発生しない様に、通水開始から75日目で上下供試体に同じ通水圧を作用させる圧力制御に切り替えて試験を継続して
いる。なお、75 日目以降の通水量は上下の供試体の通水量の総和であることに関注意が必要である。

図 3.5-7 フローポンプによる制御流量の経時変化

図 3.5.2-4 には、Case2 の乾燥に伴う高密度供試体と低密度供試体の密度の経時変化を示している。図から、下部にある高密度供試体が膨潤して、ほぼ乾燥密度が上部にある低密度供試体の乾燥密度（1.6Mg/m³）と同程度になっていることが分かる。さらに上下部の両供試体からの排水をもって十分に飽和したとみなして両供試体をピストンを介して接合した。

この試験では、膨潤量とベントナイトの乾燥密度が対応しているのでであれば、両供試体を接合しても密度が同じであるためほとんど膨潤変形が生じないはずである。しかしながら、図に示すようにピストンを介して接合し、体積拘束条件を解除したところ膨潤変形が生じている。これは、膨潤量とベントナイトの乾燥密度が対応しているのではないかことを示唆している。

ベントナイトに限らず、物体の変形は釣合いが満足されるまで生じるはずであり、乾燥密度が同じかどうかではなく、膨潤圧が釣合った時点で変形が止まると考えることのほうが自然である。この力学的な解釈が正しければ、図 3.5-4 に示したように、膨潤という応力履歴の違いによって、密度差は解消されないと考えられるため、残留密度差の力学的解釈を後述する。

図 3.5-9 に正規圧密（1.6Mg/m³）単体供試体、過圧密（1.6Mg/m³）と正規圧密（1.6Mg/m³）の直列供試体、および過圧密（1.6Mg/m³）単体供試体の膨潤圧を示す。正規圧密は 80 日後で 0.55MPa であり、この時点で試験を終了した。直列供試体は上下的体積拘束を除荷した 110 日以降は 0.5MPa であり、体積拘束除荷後 690 日まで定常状態である。一方、過圧密供試体は、試験開始後 1 か月から 1000 日の期間に 0.4MPa から 0.6MPa に上昇した。

直列膨潤量試験では、ロードセルが上下の供試体の中に設置されていることから、計測される膨潤圧は上下の供試体の内、小さい方の膨潤圧を計測することになる。その際、ロードセルは、大きな膨潤圧と小さな膨潤圧の差圧により、両者が釣り合うまで移動することになる。試験開始後 1 か月程度までの試験結果からは、直列膨潤量試験の結果は、過圧密供試体単体の膨潤圧とほぼ同等の値を示しているが、それ以降は過圧密供試体単体の膨潤圧が他のケースよりも大きくなっていることが分かる。直列膨潤量試験結果からは、正規圧密供試体の膨潤圧の
方が、過圧密供試体の膨潤圧よりも大きくなっており、この結果が正しいとすれば、正規圧密供試体単体は過圧密供試体単体の膨潤圧よりもかなり大きくなっていないなければならない。そこで、試験期間が他のケースよりも短かった正規圧密の供試体に関して、再現性確認の目的で再度膨潤圧試験を実施した（Case1-2）。過圧密の供試体の膨潤圧が上昇した理由については、再試験も含めて検討する必要がある。

図3.5-8 膨潤に伴う乾燥密度の経時変化

図3.5-9 応力履歴が膨潤挙動に及ぼす影響評価（膨潤圧の経時変化）

(2) 供試体解体結果
試験終了後は供試体の物理試験（密度計測、含水比計測）を実施した。図3.5-2-6に正規圧密供試体、過圧密供試体の解体計画図を示す。解体は、セルから供試体を5mm程度押し出した分だけスライスするやり方で行った。
表3.5.2-1に直列膨潤量試験の解体結果を示す。表には、各供試体を分割して取得した密度分布を示している。図3.5.2-7には、分割した供試体の乾燥密度分布を示している。図から、試験前に比べ、全体的に乾燥密度が低下していることが分かった。これは、供試体作製時にセルに投入した試料の乾燥質量90.84gが正規圧密供試体で2.26g、過圧密供試体で3.5g減少しているためである。この質量の低下は、排水中に含まれる水溶性の塩類によるものと考えられる。さらに、解体時の除荷による体積膨張も乾燥密度の低下の一因であると考えられる。

密度分布に着目すると、過圧密供試体の上下端が膨潤して試験開始時に比べ乾燥密度が低下していることが分かる。このことから、過圧密供試体が正規圧密供試体に圧縮された原因に、応力履歴が膨潤圧に及ぼす影響以外にも、直列膨潤試験前の膨潤過程による密度分布の影響も含まれる可能性がある。今後、再現性確認をする場合、過圧密供試体の膨潤過程には十分な時間をかける必要がある。

<table>
<thead>
<tr>
<th>供試体</th>
<th>供試体番号</th>
<th>分割高さ ΔH (mm)</th>
<th>含水比 Ｊ</th>
<th>乾燥密度 ρ_d (Mg/m^3)</th>
<th>飽和度 Sr (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>正規圧密供試体</td>
<td>①</td>
<td>4.84</td>
<td>27.14</td>
<td>1.560</td>
<td>99.7</td>
</tr>
<tr>
<td></td>
<td>②</td>
<td>4.85</td>
<td>26.33</td>
<td>1.580</td>
<td>99.7</td>
</tr>
<tr>
<td></td>
<td>③</td>
<td>4.89</td>
<td>26.76</td>
<td>1.570</td>
<td>99.7</td>
</tr>
<tr>
<td></td>
<td>④</td>
<td>6.48</td>
<td>28.03</td>
<td>1.539</td>
<td>99.7</td>
</tr>
<tr>
<td>平均値</td>
<td></td>
<td>27.07</td>
<td>27.07</td>
<td>1.562</td>
<td>99.7</td>
</tr>
<tr>
<td>過圧密供試体</td>
<td>⑤</td>
<td>5.54</td>
<td>28.55</td>
<td>1.527</td>
<td>99.7</td>
</tr>
<tr>
<td></td>
<td>⑥</td>
<td>4.92</td>
<td>24.03</td>
<td>1.640</td>
<td>99.7</td>
</tr>
<tr>
<td></td>
<td>⑦</td>
<td>4.97</td>
<td>26.25</td>
<td>1.583</td>
<td>99.7</td>
</tr>
<tr>
<td></td>
<td>⑧</td>
<td>5.13</td>
<td>34.04</td>
<td>1.409</td>
<td>99.7</td>
</tr>
<tr>
<td>平均値</td>
<td></td>
<td>28.22</td>
<td>28.22</td>
<td>1.540</td>
<td>99.7</td>
</tr>
</tbody>
</table>
(3) 再現性確認試験状況

前述のように解体した正規圧密供試体と過圧密供試体の直列膨潤量試験の再現性を確認する目的で、同様の試験条件で試験を実施した（試験ケース Case2-2）。ただし、Case2 の解体の結果、過圧密供試体の給水側に密度低下が見られたことから、給水と膨潤を同時に実施せずに、十分に飽和させた後に膨潤過程に移行する手順とした。

現状では、まだ供試体からの排水が確認できていないため、給水量しか計測できない状況である。図 3.5.2-8 に Case2-2 の給水量の経時変化を示す。正規圧密供試体と過圧密供試体の給水時間が異なるのは、過圧密供試体の作製精度の問題から作製をやり直したためである。また、給水時間を短縮するために両供試体共に、二重管ビューレットを用いて 0.2MPa の加圧通水に移行した。今後、排水が確認できた段階で膨潤過程に移行する予定である。

図 3.5-11 直列膨満量試験の乾燥密度分布

図 3.5-12 Case2-2 の給水量の経時変化
3.5.3 試験結果（NaCl水溶液ケース）

(1) 膨潤量の経時変化

図3.5.3-1に、イオン強度0.5のNaCl水溶液を用いて実施した直列膨潤量試験のうち、過圧密供試体の膨潤量の経時変化を示す。図には、前述の蒸留水を用いて実施した直列膨潤量試験の過圧密供試体の膨潤量の経時変化も比較のために併せて示している。図から、蒸留水のケースは1週間程度、NaCl水溶液のケースは2週間程度で膨潤量が平衡状態に達している。しかしながら、イオン強度の影響により、NaCl水溶液のケースの平衡膨潤量は、蒸留水のケースよりも小さい。そのため、図3.5.3-2に示すように、NaCl水溶液のケースにおける過圧密供試体の乾燥密度の平衡値は乾燥密度1.6Mg/m³に達していない。この結果から、イオン強度0.5のNaCl水溶液を用いて実施した直列膨潤量試験は、規律圧密供試体の乾燥密度は1.7Mg/m³、過圧密供試体の乾燥密度は1.8Mg/m³を飽和後に1.7Mg/m³に膨潤させた後に直列に繋ぐこととした。

図3.5.13 直列膨潤量試験の乾燥密度分布

図3.5.14 直列膨潤量試験の乾燥密度分布
(2) 膨潤圧の経時変化

図3.5.3-3には、NaCl水溶液を用いた場合の正規圧密供試体、過圧密供試体単体の膨潤圧の経時変化を示している。正規圧密供試体と過圧密供試体の直列膨潤量試験はピストンを連結するまで膨潤圧を計測できないため膨潤圧はほぼゼロである。また、図には、前述の蒸留水のケースの結果も併せて示している。

図から、NaClのケースの過圧密供試体単体の膨潤圧が他のケースに比べて大きいことが分かる。これは、蒸留水のケースの過圧密供試体の解体結果として密度分布が大きかったことから、NaCl水溶液のケースでは、なるべく過圧密供試体の密度分布を小さくするために、過圧密供試体を乾燥密度1.6Mg/m3まで膨潤させる前に十分に飽和させる過程を設けている。図中の膨潤圧は過圧密供試体の膨潤前の飽和段階のものである。この際の乾燥密度は1.8Mg/m3であるため、他のケースよりも膨潤圧が大きくなっている。正規圧密供試体単体の膨潤圧は、蒸留水のケースと概ね同等であり、この乾燥密度1.6Mg/m3程度の高密度では、イオン強度が膨潤圧に及ぼす影響は小さいものと考えられる。

\[
\begin{align*}
\text{NaCl水溶液(0.5M)} & \quad \text{NC } \rho_d=1.6 \text{ (Mg/m}^3) \\
\text{蒸留水} & \quad \text{NC } \rho_d=1.6 \text{ (Mg/m}^3) \\
\end{align*}
\]

図3.5-15 応力履歴の影響評価試験の乾燥密度分布

(3) 給水状況

図3.5.3-4には、NaCl水溶液を用いた場合の正規圧密供試体、過圧密供試体単体の膨潤圧試験中の給水量、さらに正規圧密供試体と過圧密供試体の直列膨潤量試験中の給水量を示している。

図から、過圧密供試体単体のケースと正規圧密供試体単体のケースの給水量はほぼ同等であり、直列膨潤量試験の正規圧密供試体と過圧密供試体の給水量が等同である。過圧密供試体は前述のように、膨潤させる前の飽和段階であるため、乾燥密度1.8Mg/m3の状態での給水量である。このため、不飽和状態では水の浸潤速度に初期乾燥密度の大きさはあまり影響しないと言える。なお、直列膨潤量試験の正規圧密供試体と過圧密供試体には、二重管ビューレットで0.2MPaの通水圧を作用させて飽和過程の促進を開始した。
図3.5・16 応力履歴の影響評価試験に用いた供試体の給水量

図表表示

NaCl水溶液（0.5M）

- NC $\rho_d = 1.6$ (Mg/m3)
- OC $\rho_d = 1.8 \rightarrow 1.6$ (Mg/m3)
- NC/OC $\rho_d = 1.8 \rightarrow 1.7$ (Mg/m3)
- NC/OC $\rho_d = 1.7$ (Mg/m3)

図3.5-16 応力履歴の影響評価試験に用いた供試体の給水量
3.6 力学に立脚した残留密度差の理論的解釈

3.6.1 概要

ベントナイト系材料は、再冠水によって膨潤するため、緩衝材の施工時の密度分布や隙間などがあっても、飽和後には均質化すると考えられている。そのため、過去に密度分布を有する供試体が均質化する様子を取得する試験は数多くなされてきた。しかしながら、これらの試験で密度分布がなくなるまで均質に膨潤した例は無い。いずれの結果も、均質化する傾向が若干見られるものの、最終的には密度差を残したままで膨潤変形が収束している。

ベントナイト系材料が均質化するということを積極的に説明できる理論はこれまでもなかった。熱力学や鉱物化学的なアプローチでは変形という概念を導入することは難しい。基底間隔を積み重ねた物が膨潤量であっても、境界条件を導入できないからである。このような状況で、暗黒のうちに乾燥密度と膨潤圧、膨潤量は一意の関係にあるという風に考えられてきたことは、力学的な観点が不十分であったためである。密度の異なるベントナイト系材料を接触させた膨潤による均質化試験を力学的に解釈すれば、先行圧密圧力（降伏点）と初期応力状態の異なる材料のサクションを開放させた場合の変形試験と考えられるであろう。当然、考慮すべき応力はこれだけではなく、浸透膨潤による膨潤応力も考慮しなければならない。この浸透膨潤応力は、熱力学的には、単位体積あたりのモンモリロナイトと水のモル数によって決まるものである。力学的には、物体の変形は、必ず、浸透膨潤応力を含む力が釣合う点で止まるものであることから、従来の解釈は、浸透膨潤応力のみを考えていたため、乾燥密度が同じ（単位体積あたりのモンモリロナイトと水のモル数が同じ）であれば同じ密度になるまで膨润変形すると考えられてきたものと考えられる。このような力学的な観点から、従来行われてきたベントナイト系材料の均質化試験を解釈することによって残留密度差を解釈できることが明らかとなった。

3.6.2 既往の成果による残留密度差の理論的解釈

図3.6.2-1に、Sasakuraら[9]が取得したクリゲルV1の一次元段階載荷圧密試験から得られる乾燥密度-logp関係（応力ひずみ関係）に、前述の3.4節で述べた乾燥密度1.8Mg/m³と1.4Mg/m³のケイ砂30wt%混合ベントナイトの直列均質化試験（Case1）の膨潤圧を有効ベントナイト乾燥密度に対してプロットしている。この有効ベントナイト乾燥密度\(\rho_{\text{ben}} \)は、ベントナイト部分の土粒子体積\(V_b \)と空隙\(V_v \)（全体の体積からベントナイト以外の鉱物を引いたもの）に対するベントナイト部分の土粒子質量\(W_b \)の割合で定義され\(\rho_{\text{ben}} = \frac{W_b}{V_v + V_b} \)で示される。

このケースの場合、両者が釣り合うと考えられる密度と現在の密度に差があることが分かる。但し、上部供試体（低密度供試体）が下部供試体（高密度供試体）の膨潤に従って圧縮され、両者の密度差が縮まり、膨潤圧も増加傾向にあることから、両供試体の膨潤圧が釣り合うところで均一化の傾向は止まり、残留密度差が残るものと考えられる。

3.39
図3.6.1 残留密度分布の力学的解釈(Case1)

図3.6.2-2には、Sasakuraら[9]が取得したクニゲル V1 の一次元段階載荷圧密試験から得られる乾燥密度-logp類関係（応力ひずみ関係）に、前述の3.4で述べた乾燥密度2.0 Mg/m3と1.2 Mg/m3のケイ砂30wt%混合ベントナイトの直列均質化試験（Case2）の膨潤圧を有効ベントナイト乾燥密度に対してプロットしている。

初期には高密度部と低密度部の応力状態は、両者とも正規圧密線上に存在している（図中●、●）。高密度部分は膨潤しながら乾燥密度が低下するので、膨潤線を辿って●まで至っている。一方、低密度部は高密度部の膨潤によって圧縮され、密度が増加する。そのため、●に至る。これに対して、両者の間に設置してあるピストンのロードセルから計測される膨潤圧は、図中の赤線で示してあるように、約0.64MPaである。これらの関係をみると、●の応力値と●の応力値はほぼ釣り合い状態にあり、その値はおおよそ0.6〜0.7MPa程度である。その時に得られる密度差は約0.22Mg/m3であり、実測が約0.25Mg/m3である。若干のずれの原因は、膨潤圧試験における摩擦の影響や圧密試験の材料の相違などが考えられるが、これらを勘案しても、力学的な解釈で、おおよその残留密度差の説明ができることが分かった。

さらに図3.6.2-3にはCase3の膨潤圧を有効ベントナイト乾燥密度に対してプロットしている。Case1、2の場合と同様に、初期には高密度部と低密度部の応力状態は、両者とも正規圧密線上に存在している（図中●、●）。高密度部分は膨潤しながら乾燥密度が低下するので、膨潤線を辿って●まで至っている。一方、低密度部は高密度部の膨潤によって圧縮され、密度が増加する。そのため、●に至る。これに対して、両者の間に設置してあるピストンのロードセルから計測される膨潤圧は、図中の赤線で示してあるように、約0.53MPaである。試験開始直後であるため、試験を継続し、工学的に均一化すると見なせる初期乾燥密度を取得する計画である。
図3.6.2 残留密度分布の力学的解釈(Case2)

図3.6.3 残留密度分布の力学的解釈(Case3)

図3.6.2-4には、Sasakuraら[9]が取得したクニゲルV1の一次元段階載荷圧密試験から得られる乾燥密度・logp関係（応力度関係）に、3.5節で述べた乾燥密度は上下共に1.6Mg/m³のケイ砂30wt%混合ベントナイトであるが応力履歴が異なる供試体の直列均質化試験の結果をプロットしている。なお、これも図3.6.1と同様に図中の縦軸は有効ベントナイト乾燥密度に換算してある。初期には上部の正規圧密供試体は応力状態が正規圧密線上に存在している（図中●）。一方、過圧密供試体は除荷線上で乾燥密度が1.6Mg/m³に相当する有効ベントナイト乾燥密度の点（図中●）に応力状態が存在している。よって、密度は同じであるが、応力状態が異なることになる。そこで、直列膨潤量試験を行うと、正規圧密供試体の方が、応力状態が大きいため、膨潤し（図中●）、過圧密供試体を圧縮する（図中●）。現時点では、まだ平衡状態に至っていないため定量的な議論は難しいが、応力点の移動はこの力学的な解釈と同じ傾向である。
図 3.6-4 応力履歴による密度差の発生に関する力学的解釈（右図：拡大図）

3.6.3 残留密度差の理論的解釈に資するデータ取得

(1) 試験ケース

前述のように、残留密度差を弾塑性力学に立脚して説明しようとする試みは、残留密度差の推定や緩衝材の許容される密度分布などの施工方法に対する仕様の決定につながる可能性があり、非常に重要である。しかしながら、本検討で実施している乾燥密度 1.2 〜 2.0 Mg/m³の緩衝材の膨潤挙動を説明できる非常に幅広い応力レベルで実施された圧密試験結果が存在しないため、現状では、比較的幅広い応力レベルで Sasakura ら [9]によって取得されたクニゲル V1 の一次元段階載荷圧密試験から得られる乾燥密度 - logp 関係（応力ひずみ関係）を用いるより他はない。ただし、この結果は 2002 年のクニゲル V1 を用いた試験結果であり材料ロットが異なることや、乾燥密度 1.2 Mg/m³ 付近の正規圧密曲線が不足していることなどから、本検討で実施した直列膨潤量試験から得られた残留密度差の結果を理論的に説明するためには、乾燥密度 - logp 関係を新たに取得することが望ましい。そこで、表 3.6.3-1 に試験ケースを示す。Case 1 は、あらかじめ不飽和で静的に締固めた供試体を圧密セル内で飽和させた後に圧密するものであり、Case 2 は圧密セル内に液性限界程度に調整したスラリー状のベントナイトをいれ、そのまま圧密に供するもの、Case 3 は、直径 500 ㎜×高さ 500 ㎜程度の予備圧密容器内に液性限界程度に調整したスラリー状のベントナイトをいれ、予備圧密した後に、サンプララーでコア抜きしたものを圧密試験に供するものである。Case 3 で予備圧密した試料は、今後、圧密以外の力学試験にも供することが可能である。

<table>
<thead>
<tr>
<th>ケース</th>
<th>初期乾燥密度 Mg/m³</th>
<th>含水比 %</th>
<th>高さ mm</th>
<th>直径 mm</th>
<th>試験手順</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0</td>
<td>10</td>
<td>20</td>
<td>60</td>
<td>乾燥密度 ≪ 1.2 Mg/m³ ⇒ 2.0 Mg/m³ 除荷: 2.0 Mg/m³ ⇒ 1.6 Mg/m³</td>
<td>新規試験セルで飽和</td>
</tr>
<tr>
<td>2</td>
<td>スラリー</td>
<td>液性限界程度</td>
<td>20</td>
<td>60</td>
<td>段階載荷により圧密</td>
<td>新規試験セルでスラリーから压密</td>
</tr>
<tr>
<td>3</td>
<td>スラリー</td>
<td>液性限界程度</td>
<td>500</td>
<td>500</td>
<td>Case 2 の結果に基づいて Case 3 の試験条件を決定する。</td>
<td>新規圧密終了後コア抜きして試験に供する</td>
</tr>
</tbody>
</table>
図 3.6.3-1 に Case1 の圧密試験装置を示す。本試験では一般土で用いられる圧密試験機を用いて試験を行う。排水条件は上下面の両面排水である。上面は大気に曝される機械構造となっているため、乾燥を防止するために濡れウェスなどによって対策を施している。下面からの排水量は、ビューレットで計測される。

図 3.6.3-2 には Case2 のペントナイトスラリーの圧密試験装置を示す。ペントナイトスラリーは通常の圧密試験容器では試験することが難しいため、膨潤圧試験容器を用いて試験を実施する。本試験も排水条件は両面排水であり、上下面からの排水量を採水した。

図 3.6.3-3 には Case3 のペントナイトスラリーの予備圧密試験装置を示す。本試験は、圧密容器として 500mm×600mm の半割れモールドを使用し、そのモールドの中でペントナイトスラリーを圧密した。所定の乾燥密度になった時点でコア抜きし、各種力学試験に供する予定である。
図 3.6-7 スラリーの予備圧密試験装置（Case3）

(2) 試験結果

表 3.6.3-2 に各ケースの供試体諸元を示す。Case1 では初期乾燥密度 1.194 kg/m³、Case2 では 0.282 kg/m³ である。ベントナイトは液性限界が 307.11 % と非常に高いため、Case2 の初期乾燥密度が非常に小さい。Case3 に関しては、含水比 332 % のベントナイトスラリーを 19 回に分けて、空気が入らないようにコテで均しながら所定の高さまで充填した。作製状況を図 3.6.3-4 に示す。

表 3.6.3-2 供試体諸元

<table>
<thead>
<tr>
<th>Case</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>土粒子密度 ρ_s</td>
<td>Mg/m³</td>
<td>2.707</td>
<td>2.707</td>
</tr>
<tr>
<td>初期含水比 w_0</td>
<td>%</td>
<td>40.76</td>
<td>307.11</td>
</tr>
<tr>
<td>供試体初期高さ</td>
<td>cm</td>
<td>1.970</td>
<td>3.760</td>
</tr>
<tr>
<td>供試体面積</td>
<td>cm²</td>
<td>28.27</td>
<td>28.27</td>
</tr>
<tr>
<td>供試体体積</td>
<td>cm³</td>
<td>55.70</td>
<td>106.31</td>
</tr>
<tr>
<td>初期湿潤質量</td>
<td>g</td>
<td>93.58</td>
<td>122.23</td>
</tr>
<tr>
<td>初期乾燥質量</td>
<td>g</td>
<td>66.48</td>
<td>30.02</td>
</tr>
<tr>
<td>初期湿潤密度</td>
<td>Mg/m³</td>
<td>1.680</td>
<td>1.150</td>
</tr>
<tr>
<td>初期乾燥密度</td>
<td>Mg/m³</td>
<td>1.194</td>
<td>0.282</td>
</tr>
<tr>
<td>初期飽和度</td>
<td>%</td>
<td>97.1</td>
<td>96.7</td>
</tr>
<tr>
<td>実質供試体高さ</td>
<td>cm</td>
<td>0.869</td>
<td>0.392</td>
</tr>
</tbody>
</table>
図 3.6-8 スラリーの予備圧密試験の供試体作製状況
図 3.6.3-5 には緩衝材の $e\log p$ 関係、図 3.6-6 緩衝材の $\rho_d\log p$ 関係を示す。両図には、小林ら[8]の完全飽和線も示してある。図から、Case1 の $e\log p$ 関係、$\rho_d\log p$ 関係は完全飽和線と整合していることが分かる。なお、Case1 で低応力レベルにおいて間隙比が一定なのは、Case1 の試験容器が膨潤しないような機構を有しているためである。

一方、Case2 は、同じ応力レベルで比較すると、完全飽和線よりも常に高めの間隙比となっているが、圧密圧力を増加するに従って急激に完全飽和線に接近する傾向を示していた。しかしながら、圧密圧力が 0.12 ～ 0.64MPa までの間に、荷重増加に対して沈下量（間隙比や乾燥密度の変化割合）がほとんど発生しないという結果となった。スラリー圧密の場合、供試体の剛性が極端に小さい割に沈下が大きいために載荷板の移動量が大きく、載荷板が偏芯して圧密セルに引っ掛かった可能性が高いと判断した。そのため、一旦 0.01MPa まで除荷を行い、再度 0.32MPa まで載荷を行った。この結果、引っ掛かりは解消され、その後の $e\log p$ 関係は Case1 と同様に完全飽和線と非常に良く整合していることが分かる。このことは、ある乾燥密度のブロック状態で飽和した供試体(Case1)とスラリー状態からある乾燥密度まで圧密して作製した供試体(Case2)、さらには粉体状態から飽和するまで排気圧縮され供試体(完全飽和線)まで、異なる応力履歴を経て作成された供試体でも、正規状態になれば同じ正規圧密曲線を辿ることを意味している。

Case3 に関しては第 1 段階の圧密圧力は、ピストンの自重(6.5kPa)である。第 1 段階の圧密終了後、第 2 段階としてピストン+ピストンの固定治具の自重 19.6kPa を作用させ、さらに圧密終了後第 3 段階として 46.3kPa の圧密圧力を作用させた。図 3.6.5、図 3.6-6 に示すように、Case2 の結果と整合する傾向を示している。図 3.6-7 には Case3 の圧密沈下曲線を示す。第 3 段階の圧密沈下曲線は、第 1 段階や第 2 段階の物に比べ直線的に圧密が進んでいるが、まだ圧密が終了する傾向は見られない。供試体作成方法の特殊性から、第 1 段階や 2 段階目の圧密沈下曲線には、供試体表面の不陸の解消などによる変形分も含まれるため早期に圧密が終了しているように見える。第 3 段階の圧密終了時間が判明すれば、今後の試験に要する時間も推察できるものと考えられる。

図 3.6-9 緩衝材の $e\log p$ 関係

\[
\begin{align*}
\frac{e}{G_0 - 0.156\ln\left(\frac{P_{\text{max}}}{P_{\text{min}}} - \frac{P_{\text{min}}}{P_{\text{max}}}
ight)} &= 0.156
\end{align*}
\]
図 3.6-10 緩衝材の$\rho_d \cdot \log p$関係

図 3.6-11 大型予圧密の圧密沈下曲線(Case3)
3.7 工学技術への反映

3.7.1 概要

本検討の試験の成果によって、応力履歴が緩衝材の均質化に及ぼす影響が定量的に評価できるようになった。さらに、応力履歴の影響を推定できる力学的な解釈が可能となった。これにより、図3.7.1に示すような工学技術への反映が期待できる。すなわち、
① ベントナイトの膨潤によって均質化が期待できる密度差が定量化的に与えられる。
② 緩衝材の施工方法に起因するベントナイトの密度分布（密度差）が施工試験などによって定量評価できる。
③ ①、②から施工方法毎に膨潤後の密度分布が推定できる。
④ この膨潤後密度分布と透水係数の要求性能を比較することによって、施工方法の選択における指標を示すことが可能となる。

図3.7.1 施工品質が再冠水時に発生する現象に及ぼす影響の調査のための試験の工学技術への反映イメージ
3.7.2 試験結果に基づく密度差の設計指針への反映

表3.7.2-1に、直列膨潤圧試験の結果として得られた残留密度分布にKozeny-Carman則を適用して得られる透水係数を示す。Kozeny-Carman則は、乾燥密度\(\rho_d\)(g/m\(^3\))を用いて下式で表される。

\[
k = \frac{\rho g}{5\mu} \frac{1}{S^2} \frac{e^3}{1 + e} = \frac{\rho g}{5\mu} \frac{1}{\left(\frac{36\omega^*}{\rho_d}\right)^2} \frac{\rho_d^3}{\rho_s^3}\]

ただし、土粒子密度\(\rho_s = 2.733 \times 10^6\)g/m\(^3\)、二層膨潤含水比\(\omega^*[10]\)を用いた。

二層膨潤含水比\(\omega^*\)は、液種やペントナイト毎に含水比をパラメータにしたXRDから取得するものであるが、本検討では、蒸留水とNaCl水溶液のケースの乾燥密度と透水係数の関係は、図3.7.2-1に示すように、既往の研究[11]から取得した乾燥密度と透水係数の関係に、二層膨潤含水比\(\omega^*\)をパラメータとしてKozeny-Carman則をフィッティングさせたものを使用した。

表3.7.2-1 直列膨潤圧試験結果に基づく残留密度分布と透水係数

<table>
<thead>
<tr>
<th>試験ケース</th>
<th>液種</th>
<th>初期状態 (施工直後)</th>
<th>膨潤後 (再冠水後)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>高乾燥密度 (Mg/m(^3))</td>
<td>低乾燥密度 (Mg/m(^3))</td>
<td>透水係数 (m/s)</td>
</tr>
<tr>
<td>1</td>
<td>蒸留水</td>
<td>1.798</td>
<td>1.399</td>
</tr>
<tr>
<td>2</td>
<td>1.984</td>
<td>1.190</td>
<td>4.56E-14</td>
</tr>
<tr>
<td>3</td>
<td>1.698</td>
<td>1.493</td>
<td>1.50E-13</td>
</tr>
<tr>
<td>1s</td>
<td>NaCl水溶液 (0.5M)</td>
<td>1.790</td>
<td>1.426</td>
</tr>
<tr>
<td>2s</td>
<td>1.991</td>
<td>1.187</td>
<td>1.03E-12</td>
</tr>
<tr>
<td>3s</td>
<td>1.747</td>
<td>1.550</td>
<td>2.76E-12</td>
</tr>
</tbody>
</table>

図3.7-2 JAEA DATABASEに対するKozeny-Carman則のフィッティング結果

図3.7.2-2には、表3.7.2-1に示した直列膨潤圧試験の結果として得られた残留密度分布に
Kozeny-Carman則を適用した結果を示す。図から、試験前の乾燥密度分布が最大で1.2Mg/m³から2.0Mg/m³程度であったが、試験後には、蒸留水のケースでは乾燥密度分布が1.45Mg/m³から1.69Mg/m³程度まで解消されていることが分かる。一方、NaCl水溶液のケースでは、乾燥密度分布が1.30Mg/m³から1.84Mg/m³程度までしか解消されていない。この結果をKozeny-Carman則に適用すると、試験後の透水係数は、蒸留水のケースでは、10⁻¹³m/sオーダーであるが、NaCl水溶液のケースでは、10⁻¹¹m/sから10⁻¹²m/s程度である。

ここで、試験前の密度分布を緩衝材施工直後の密度分布、試験後の密度分布を再冠水後の密度分布として考えると、仮に、処分サイトの地下水が0.5M程度の海水系地下水で緩衝材の要求性能が5×10⁻¹²m/s以下であるすると、膨潤後の乾燥密度は1.63Mg/m³以上でなければならない。この乾燥密度を満足するために許容される緩衝材の施工時の乾燥密度は試験結果から、1.55Mg/m³から1.75Mg/m³程度であることが分かる。

このように、本試験結果をまとめることで、緩衝材の施工方法の仕様を、再冠水後の緩衝材の性能を考慮して決定することが可能となる。

図3.7-3 Kozeny-Carman則を用いた残留密度差と透水係数の関係
3.8 解析技術への反映

3.8.1 解析技術への反映

本検討では、放射性廃棄物地層処分施設の建設操業時における緩衝材の構築後から再冠水絶え後までの期間（力学的事象が支配的な状態から化学的な事象が支配的な状態への過渡的段階）において緩衝材に発生する事象の定量評価を目的の一つに掲げている。このためには、ベントナイトの膨潤挙動を力学体系の中で説明できなければならず、従来のような現象論的な取り扱いを積み上げても予測能力や説明性を高める事は出来ない。

そこで本検討で実施した小規模試験を弾塑性力学に立脚した土水連成解析によって別途解析している。その解析では、緩衝材の膨潤挙動は、サクション圧の開放と比表面積の増加で表現した。このような土構造力学の力学とその間隙を満たす水の水理を連成させた解析によって、ベントナイトの膨潤挙動に関して次のような知見が得られた。膨潤圧試験のイメージ図を図3.8.1-1に示す。図に示すように、膨潤圧試験では、体積拘束したベントナイトを水で飽和させた際の膨潤圧を計測する。同じ密度で膨潤圧セルと供試体間に摩擦がない場合、供試体高さだけが異なる場合、取得される膨潤圧は同じである。なぜならば、内力が釣合う（相殺される）ためである。これは図に示したバネに例えるとわかりやすい。同じバネ定数のバネをいくつ直列に繋いでも、同じひずみを与えた場合の反力は同じである。

図3.8-1 膨潤圧試験のイメージ

次に、図3.8.1-2のような状態を考える。左図は膨潤圧試験の開始直後のイメージである。左図に示すように、給水側である底面に飽和領域があり、その上部に不飽和領域がある状態を考える。この場合でもやはり、飽和領域は、右図に示す完全に飽和した状態とほんの同じ膨潤圧を発揮する。なぜならば、ベントナイトの膨潤圧試験において、試験開始直後に最大膨潤圧が発揮される理由である。これが実際の膨潤圧試験において、試験開始直後に最大膨潤圧が発揮される理由である。

図3.8-3に示すように、高飽和度のベントナイトの膨潤圧試験と低飽
和度の膨潤圧試験で得られる膨潤圧の経時変化が異なることもサクションの開放である程度説明が出来る。すなわち、試験開始直後に底面に飽和領域が形成されると、最大膨潤圧が発揮される。その一方で、後述する長尺ベントナイトの一次元浸潤速度取得試験の試験結果からも明らかのように、飽和度領域ではサクションがなくなるため吸水速度が低下する。初期飽和度が高い供試体の場合、不飽和度領域のサクションは大きくなりないため、低下した吸水速度よりも供試体内部での浸透速度が遅ければ膨潤圧が低下せず一定値を保つ（図 3.8.1-3 左）。一方、初期飽和度が低い供試体の場合、不飽和度領域のサクションが大きいため、低下した吸水速度よりも供試体内部での浸透速度が速ければ飽和度領域が不飽和化するために膨潤圧が低下し、膨潤圧の経時変化においてピーク値を示す（図 3.8.1-3 右）。

図 3.8-2 膨潤圧試験開始直後のイメージ

図 3.8-3 高・低飽和度供試体の膨潤圧試験のイメージ

本検討では、このバネの反力がサクションの開放によって生じるというモデル化によってベントナイトの膨潤挙動がある程度表現できることは考えている。また、このサクションは水分特性曲線によって飽和度の関数として与えられており、言い換えれば、バネの反力は飽和度の関数となっている。本解析で用いた水分特性曲線では、サクションは飽和度が 100% になればゼロになるという、非膨潤性鉱物のモデルを用いているために、平衡膨潤圧がゼロとなり、ベントナイトの実験事実を表現できない。言い換えれば、ベントナイトのような膨潤性鉱物の水分特性曲線を取得できなければ力学と水理解析でも膨潤圧を取得できる。
ベントナイトのような膨潤性鉱物の水分特性曲線を取得する方法は、幾つか考えられるが、最も簡単な方法は、膨潤圧試験において平衡蒸気圧を制御した膨潤圧試験を実施し、平衡蒸気圧と飽和度の関係から、飽和度と膨潤圧の関係を取得する方法である。この際の膨潤圧が全てサクションの開放によるものと見做せば、図3.8-4に示すような膨潤性鉱物の水分特性曲線が得られる。この膨潤性鉱物の水分特性曲線を、不飽和挙動を考慮した土水連成解析に導入すれば、ベントナイトの膨潤挙動を精度良く表現可能と思われる。さらに、このような現象論的なアプローチではなく、例えば Komine and Ogata [12] による微視的考察による熱力学的な観点から得られた浸透膨潤圧の推定式を用いて、力学膨潤と浸透膨潤の和として膨潤挙動を表すというより高度なアプローチも考えられる。

本検討によってベントナイト系材料であっても、一般の地盤材料と同様に、応力履歴の影響を受け、その影響で均質化しない可能性があることを指摘できた。このことは、試験実施前から予想していた通りであるとは言え、力学試験結果と膨潤による均質化試験から得られる残留密度差が整合しているという実験事実から推測したに過ぎない。この推論の確度を高めるためには、再現性の確認や様々な初期条件からの膨潤圧、膨潤量試験を行う必要がある。

実施する膨潤圧、膨潤量試験は力学的解釈が可能なように、応力履歴を各実験段階で記録しておく必要がある。初期成形圧や初期含水比なども重要なパラメータとなる。また、応力ひずみ関係に相当する間隙比（乾燥密度）と圧密圧力の関係や水分特性曲線を取得することも不可欠である。これらを十分に取得できれば、ベントナイトの膨潤モデルの構築や解析コードの高度化などが実施可能となる。

図3.8-4 膨润性鉱物の水分特性曲線のイメージ
第3章参考文献

[1] (財)原子力環境整備促進・資金管理センター：平成19年度地層処分技術調査等委託費高レベル放射性廃棄物処分関連処分システム工学要素技術高度化開発報告書（第1分冊）－遠隔操作技術高度化開発－（2008）.
[10] (財)原子力環境整備促進・資金管理センター：平成23年度地層処分技術調査等事業TRU廃棄物処分技術人工バリア長期性能評価技術開発報告書（第1分冊）－人工バリアの長期挙動の評価－（2012）.
[11] (独)日本原子力研究開発機構：JAEA 緩衝材基本特製データベース，
http://bufferdb.jaea.go.jp/bmdb/
第4章 化学変質が緩衝材の膨潤挙動に及ぼす影響の調査

4.1 Ca型化と飽和の可逆性検討

4.1.1 試験の目的及び概要

放射性廃棄物処分施設の緩衝材は、再冠水の過程で、セメント系材料からの浸出液に含まれるCaイオンによってCa型化することが想定される。このCa型化は陽イオン交換反応と呼ばれる反応で、鉱物の溶解などに比べ、比較的速い化学変質と考えられている。その一方で、湧水が多い地盤の場合、セメント系材料からCaイオンが溶出するよりも速く緩衝材が湧水によって飽和し、その後、拡散によってCa型化することも考えられる。

本試験は、このような、Na型ベントナイトが飽和してからCa型化する場合とCa型化と飽和が同時に生じる場合、Ca型化してから飽和する場合など、化学変質と飽和の事象の順番によって緩衝材の性能に違いが生じるかどうかを調べることを目的としている。

田中ら[1]は、ベントナイト系人工バリア材料のCa型化が膨潤性能に及ぼす影響について調べている。田中らは、膨潤量試験において、Na型ベントナイトに水酸化カルシウム水溶液を通水した場合と、あらかじめCa型化させたベントナイトに水酸化カルシウム水溶液を通水した場合を比較し、その結果として、Na型ベントナイトに水酸化カルシウム水溶液を通水した場合の方が、膨潤量が大きいことを示している。さらに、Na型ベントナイトに水酸化カルシウム水溶液を通水した場合の膨潤量は、Na型ベントナイトに蒸留水を通水した場合の膨潤量よりも小さいことから、ベントナイトのCa型化は膨潤が同時に生じる場合、膨潤速度と比較してCa型化速度を瞬時と仮定できるほどの速くないことが分かる。また、微視的にはCaイオンは陽イオン交換反応によって消費され、交換されたNaイオンが間隙に放出されるため、通水方向の深部では、CaイオンよりもNaイオンの方が多い場合も予想されるため、Ca型化に時間があると考えられる可能性がある。

図 4.1.1-1 田中らの試験結果[1]
4.1.2 使用材料

本検討で使用する材料は山形県産の Na 型ベントナイト（クニゲル V1）に対して愛知県産のケイ砕 3 号とオーストラリア産のケイ砕 5 号を 7:1.5:1.5 の割合で混合したケイ砕 30wt%混合ベントナイトである。

ベントナイトの土粒子密度は 2.733Mg/m³ 程度であり、ケイ砕の土粒子密度は 2.65Mg/m³ 程度である。また、クニゲル V1 のモンモリロナイト含有率は 50~60%程度である。

また、Ca 型化ベントナイトは上記クニゲル V1 を CaCl₂ 水溶液で人為的に Ca 型化させたものを用いた。作成方法は下図の通りである。

図 4.1.2-1 Na 型化、Ca 型化ベントナイトの作製フロー
4.1.3 試験ケース

試験ケースを表 4.1.3-1 に示す。表には、作製した供試体の乾燥密度、有効ベントナイト乾燥密度の実測値も示している。表に示すように、概ね、計画通りの供試体が作製できていることが分かる。

表 4.1.3-1 可逆性確認試験ケース案

<table>
<thead>
<tr>
<th>試験ケース</th>
<th>ベントナイト</th>
<th>乾燥密度 Mg/m³</th>
<th>有効ベントナイト 乾燥密度 Mg/m³</th>
<th>CaCl₂ 水溶液濃度 mol/l</th>
<th>試験手順（今後の予定も含む）</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Na 型 (ケイ砂 30wt%)</td>
<td>1.593</td>
<td>1.361</td>
<td></td>
<td>① 蒸留水で飽和後、CaCl₂水溶液を通水する。 ② 透水係数も取得する。 ③ 試験後に含水比、密度計測、化学分析*を実施。</td>
<td>継続中</td>
</tr>
<tr>
<td>2</td>
<td>Ca 型化 (ケイ砂 30wt%)</td>
<td>1.595</td>
<td>1.363</td>
<td>1</td>
<td>① 初期の不飽和状態でCaCl₂水溶液を通水する。 ② 平衡膨潤圧に達したら通水液を蒸留水に交換する。 ③ CaCl₂水溶液を再度、通水する。 ④ 透水係数も取得する。 ⑤ 試験後に含水比、密度計測、化学分析*を実施。</td>
<td>継続中</td>
</tr>
<tr>
<td>3</td>
<td>Ca 型化 (ケイ砂 30wt%)</td>
<td>1.595</td>
<td>1.363</td>
<td></td>
<td>① 初期の不飽和状態でCaCl₂水溶液を通水する。 ② 平衡膨潤圧に達したら通水液を蒸留水に交換する。 ③ CaCl₂水溶液を再度、通水する。 ④ 透水係数も取得する。 ⑤ 試験後に含水比、密度計測、化学分析*を実施。</td>
<td>継続中</td>
</tr>
</tbody>
</table>

【土壌環境分析法第 V.7】に則り溶出陽イオン (Ca²⁺、Mg²⁺、K⁺、Na⁺) 分析を実施、陽イオン交換容量 (CEC) も計測

4.1.4 供試体作成方法及び試験方法

平成 22 年度に示した Ca 型化が圧縮ベントナイトの膨潤挙動に及ぼす影響を評価する試験のイメージ図を元に、図 4.1.4-1 に示すような試験機を準備した。試験機を準備するに当たり、設定した試験条件は以下のとおりである。

- 供試体内に間隙の空気がトラップされないように、一方向、一次元に浸潤させる。
- 注水はビューレットによる 1m 程度の水位差で行い、排水は集水瓶で集めてイオン分析する。
- 供試体は、乾燥密度 1.6Mg/m³ のケイ砂 30wt% 混合 Na 型ベントナイトとケイ砂 30wt% 混合 Ca 型化ベントナイトであり、注水する液体は、1 mol/l の CaCl₂水溶液と蒸留水である。
- ケイ砂 30wt%混合 Na 型ベントナイトに CaCl₂水溶液を適用すると、膨潤しながら Ca 型化が生じるが、ケイ砂 30wt%混合 Ca 型化ベントナイトに CaCl₂水溶液を通水しても何も変質は生じない。そのため、最終的には、両ケースともケイ砂 30wt%混合 Ca 型化ベントナイトに CaCl₂水溶液を通水している状態になる。この最終状態に至る膨潤圧の推移を取得する（図 4.1.4-2 参照）。
- 全てのケースで平衡状態になった時点で、通水液を蒸留水のケースは CaCl₂水溶液に、CaCl₂水溶液のケースは蒸留水に交換する。
- ケイ砂 30wt%混合 Na 型ベントナイトを蒸留水で飽和させた後に CaCl₂水溶液に切り替えるケースも実施する。このようにする事により、膨潤履歴の有無と Ca 型化の影響の関係を取得できる（プレハイドレーション効果、図 4.1.4-2 参照）。
図 4.1.4-1 Ca型化が圧縮ベントナイトの膨潤量に及ぼす影響試験の詳細図

図 4.1.4-2 Ca型化が圧縮ベントナイトの膨潤量に及ぼす影響のイメージ

4.1.5 試験結果

(1) 実験初期

試験結果を図 4.1.5-1 に示す。図 4.1.5-1 右図には定常状態かどうかの判断のための時間を対数軸にしたものも併記している。Na型ベントナイトに蒸留水を通水したケース(Case1)に着目すると、膨潤圧は 0.52MPa であるが、若干、増加傾向にあり、Ca型化ベントナイトにCaCl2水溶液を通水した場合とほぼ同等の値を示した。Ca型化ベントナイトにCaCl2水溶液を通水した場合(Case3)の膨潤圧は既に平衡状態であり、その値も最も大きく平衡膨潤圧は 0.56MPa であった。一方、Na型ベントナイトにCaCl2水溶液を通水した場合(Case2)の膨潤圧は最も小さく、0.31MPa であった。Na型ベントナイトにCaCl2水溶液を通水したケースは既に平衡状態にあるが、平衡膨潤圧が異なる結果となった。全てのケースで膨潤圧がほぼ平衡状態に至ったと見積もり通水開始から 110 日後に、それぞれ通水液の種類を切り替えた。

(2) 初期~第1回液種交換後

Na型ベントナイトを蒸留水で飽和させた後にCaCl2水溶液を通水したケース(Case1)では、膨潤圧が漸減傾向を示した。これはイオン強度が増加したことが理由として考えられる。さらに、後述するCa型化率の計算結果から、本ケースで液種を交換した後 300 日の時点のCa型化率は2.7%程度であったため、CaCl2水溶液に0.2MPaを作用させて、Ca型化を促進させた。
その結果、図に示すように、0.2MPa の通水圧を作用させた場合、膨潤圧を計測値から通水圧を差し引いて有効応力として整理すると、膨潤圧はほとんどゼロとなった。ここで注意が必要なのは、通水圧は必ずしも間隙水圧と同等ではないため、実際の膨潤圧は算出値よりも大きいものと予想される。

Na 型ベントナイトに直接 CaCl₂ 水溶液を通水したケース(Case2)は、蒸留水に切り替えたところ膨潤圧が漸増傾向を示した。これはイオン強度が低下したことなどの理由が考えられる。膨潤圧は 0.5MPa 弱であり、Ca 型化ベントナイトに CaCl₂ 水溶液を通水したケースに漸近している。

後述する Ca 型化率の計算結果から、本ケースで液種を交換した時点の Ca 型化率は 46.1%程度であった。Ca 型化ベントナイトに CaCl₂ 水溶液を通水した場合は、蒸留水に切り替えても殆ど平衡状態は変化しなかった。

さらに、これらの通水過程で給水量から算出される透水係数の経時変化を図 4.1.5-2 に示す。塗りつぶしプロットは液種変更前、白抜きのプロットが液種交換後の結果である。図から、どのケースも通水液の変更前後で透水係数がドラスティックに変化していないことが分かる。

Case1 と Case2 では、平衡膨潤圧はほとんど変化しなかったが、Case1 の方が透水係数は小さかった。しかしながら Ca 型化の進行が非常に遅かったために、0.2MPa の通水圧作用させた後は、有効応力として整埋した膨潤圧がほぼゼロとなり、さらに Ca 型化の進行に伴って透水係数は徐々に大きくなった。最終的には Case2, Case3 の透水係数とほぼ一致する見込みである。なお、Case1 において過圧給水中は給水量が計測できないため、排水量で透水係数を算出している(図中▽)。

これらの結果から、緩衝材の止水性は、蒸留水による飽和と Ca 型化の順序に依らず、最終的な透水係数は可逆的であると言える。また、膨潤圧に関しては、膨潤圧の有効応力としての整理方法に議論の余地があるが、蒸留水による飽和と Ca 型化の順序に依存する結果となった。前述の止水性能よりも膨潤性能の方が密度分布に対して非線形性が強いという結果に鑑みて、供試体内に Ca 型化率の分布が発生しているとすると、その影響は止水性能よりも膨潤性能に強く表れるものと考えられる。今後、試験を継続し、十分に Ca 型化させた上で議論をする必要がある。
(3) 第2回液種交換までの変質状況評価

本試験の各ケースの供給液から変質の度合いを調べた。結果を表4.1.5-1に示す。これらの算出には、表4.1.5-2に示すベントナイト系人工バリア材料の陽イオン交換容量一覧を用いた。

Ca型化率の算出方法は、表4.1.5-2に示したベントナイト100g当たりの陽イオン交換容量から供試体1つ当たりの陽イオン交換容量を算出し、Caイオンが全て陽イオン交換で消費されるとして算出した。なお、実際のCa型化率は、後述するように、試験終了後に供試体の層間用イオンを直接計測する予定である。

表4.1.5-1から、Na型ベントナイトに蒸留水を通水した後にCaCl₂水溶液を通水したケースは、現状では、CaCl₂水溶液を通水300日後でもCa型化が2.7%しか進んでいない。これは排水が集水瓶に集まったものだけで算出しており、多孔質板やシンフレックスチューブ中の排水
は考慮していないため、実際ににはCa型化を過小評価している可能性があるものの、膨潤圧が軸方向に一次元的に変質した場合、僅かな領域でもCa型化すれば膨潤圧が大きく変化することを示している。そこで、前述のようにCa型化を促進させる目的でCaCl₂水溶液に0.2MPaの通水圧を作用させたところ、計算上、127.7%のCa型化率となった。これは、供試体が持つ陽イオン交換容量の1.27倍のCaイオンを供給することを意味する。

一方、不飽和状態のNa型ベントナイトにCaCl₂水溶液を通水した後に蒸留水を通水したケースでは、Ca型化率が46.1%であった。すなわちCaCl₂水溶液を通水開始110日でCa型化が46.1%進んでいるのに対して、Na型ベントナイトを一旦蒸留水で膨潤させたの後にCaCl₂水溶液を通水させたケースは300日の通水期間で2.7%のCa型化率という結果であった。このことから、事前に蒸留水で飽和させるとCa型化などの変質を抑制する効果が期待できる。これは、飽和したベントナイトではCaイオンなどの陽イオン交換反応を生じさせるイオンが拡散現象で供給されるのに対して、不飽和状態では毛細管現象や陽イオン交換反応を生じさせるイオンを含む水溶液の自己拡散現象などで供給されることに起因するものと考えられる。

以上から、膨潤圧は十分に飽和した供試体の軸方向に一次元的にCa型化が生じる場合、変質領域と未変質領域のうち小さい方の膨潤圧によって変質方向の全体の膨潤圧が決まる。一方、透水係数の場合、変質領域と未変質領域のうち小さい方の透水係数によって変質方向の全体の透水係数が決まる。このため、Ca型化が再冠水中に緩衝材の止水性能に及ぼす影響は小さいものと考えられる（図4.1.5-3参照）。

<table>
<thead>
<tr>
<th>試験ケース</th>
<th>ケイ砂30wt%混合ベントナイト乾燥密度Mg/m³</th>
<th>有効ベントナイト乾燥密度Mg/m³</th>
<th>CaCl₂水溶液モル濃度(mmol/mL)</th>
<th>交換性Naイオン量(meq/100g)</th>
<th>CEC※(meq/供試体)</th>
<th>CaCl₂給水量(mL)</th>
<th>Ca型化率(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Na型</td>
<td>1.593</td>
<td>1.361</td>
<td>0.333</td>
<td>64.2</td>
<td>40.66</td>
<td>1.65</td>
<td>2.7⇒127.7</td>
</tr>
<tr>
<td>2</td>
<td>1.595</td>
<td>1.363</td>
<td></td>
<td>64.2</td>
<td>40.66</td>
<td>28.15</td>
<td>18.75</td>
</tr>
<tr>
<td>3 Ca型化</td>
<td>1.595</td>
<td>1.363</td>
<td></td>
<td>5.47</td>
<td>3.46</td>
<td>21.7</td>
<td>14.45</td>
</tr>
</tbody>
</table>

※ 交換性NaイオンのみがCaイオンと陽イオン交換反応するとして算出した1供試体当たりのCEC

表4.1.5-1 排水から算出したCa型化率

<table>
<thead>
<tr>
<th>試料名</th>
<th>CEC meq/100g</th>
<th>交換性 Na meq/100g</th>
<th>交換性 Ca meq/100g</th>
<th>交換性 Mg meq/100g</th>
<th>交換性 K meq/100g</th>
</tr>
</thead>
<tbody>
<tr>
<td>クニピアF</td>
<td>-</td>
<td>111</td>
<td>101</td>
<td>21.5</td>
<td>2.87</td>
</tr>
<tr>
<td>Ca型化クニピアF</td>
<td>-</td>
<td>107.71</td>
<td>2.98</td>
<td>98.46</td>
<td>3.08</td>
</tr>
<tr>
<td>クニゲルV1</td>
<td>-</td>
<td>101</td>
<td>64.2</td>
<td>50.1</td>
<td>3.05</td>
</tr>
<tr>
<td>Ca型化クニゲルV1</td>
<td>-</td>
<td>72.64</td>
<td>5.47</td>
<td>114.86</td>
<td>3.86</td>
</tr>
</tbody>
</table>

表4.1.5-2 ベントナイト系人工バリア材料の陽イオン交換容量一覧
未変質領域の膨潤圧と変質領域の膨潤圧が直列となるため、変質領域の膨潤圧と未変質領域の膨潤圧は変質領域の厚さのうち小さい方の膨潤圧によって決まる。

変質領域の厚さh_1、透水係数k_1と未変質領域の厚さh_2、透水係数k_2が直列となるため、全体の透水係数k_vは

$$\frac{1}{k_v} = \frac{1}{k_1(h_1/h)} + \frac{1}{k_2(h_2/h)}$$

となり、全体の透水係数は小さい方の透水係数によって決まる。

図 4.1.5-3 局所的変質が膨潤圧と透水係数に及ぼす影響のイメージ

(4) 第 1 回液種交換後～第 2 回液種交換後

第 1 回液種交換後の変質状況評価によって、不飽和状態の Na 型ベントナイトに直接 CaCl₂水溶液を通水した後に通水液を蒸留水に切り替えたケース（Case2）は十分に Ca 型化されていない可能性が高いことが分かった。また、Ca 型化ベントナイトに CaCl₂水溶液を通水したケース（Case3）も蒸留水を通水しており、十分に Ca 型化されていると考えられる Case1 と Case2、Case3 の全てのケースでベントナイトと通水液の組み合わせが整合していない状態であることかかった。そこで、Case2 も十分に Ca 型化させ、全てのケースで Ca 型化ベントナイトに CaCl₂水溶液を通水する試験条件にすべく、再度、全てのケースで CaCl₂水溶液を通水した。

図 4.1.5-1 には、Case2 と Case3 で CaCl₂水溶液に切り替えた後の膨潤圧の経時変化も併せて示している。Case2 と Case3 で CaCl₂水溶液に再度切り替えたのは、試験開始から 1437 日目であり、第一回目の通水液の切り替えから 1327 日目である。

現状では、膨潤圧への影響を避けるために通水圧を作用させていないため、CaCl₂水溶液は拡散で供試体内に移動している。拡散で変質させるとのは時間がかかるため、ある程度の時間、通水液の切り替えによる膨潤圧の変動を観察した後に Case1 と同様に、0.2MPa 程度の通水圧を作用させる計画である。

さらに、前述の図 4.1.5-2 には、第 2 回目の通水液切り替え後の透水係数の経時変化を併せて示している。図中の塗りつぶしのプロットは液種変更前、白抜きのプロットが第 1 回液種交換後、さらに白抜きの塗りつぶしのプロットは第 2 回液種交換後の結果である。図から、第 2 回液種交換後に透水係数が増加する傾向を示している。ただし、透水係数の経時変化は変動が大きいため、今後の推移を静観した上で判断する必要がある。

4.1.6 供試体解体後の物性試験

試験終了後の供試体の物理試験（密度計測、含水比計測）、および排水の化学分析（イオン分析）を実施する計画である。図 4.1.6-1 に供試体の解体計画図を示す。密度分布を設定した方向に可能限分割して密度分布はパラフィン法などで、含水比分布は乾燥法で計測する計画である。
4.1.7 通水圧を付与した場合の膨潤圧の算出方法

本試験のように膨潤圧試験中に供試体に有意な通水圧を作用させて、迅速に平衡膨潤圧に達するように促進させる方法がある。しかしながら、本試験のように、通水圧全てが間隙水圧として取り扱うと、有効応力としての膨潤圧がほとんどゼロとなる。これは、実際には、通水圧の全て間隙水圧となるわけではないためである。水が多孔質媒体に浸透・排水するなどによって、付与した通水圧のうち間隙水圧の上昇に寄与するのはある割合\(B \times 100\%\)であると考えられる。

仮に、通水圧\(U\)をパラメータとした膨潤圧試験を実施したとすると、ロードセルで計測される値\(A\)は、膨満圧を\(Ps\)として膨満圧\(Ps\)が水圧に無関係に決まるとすると、

\[A = UB + Ps \]

となる。すなわち、\(B\)値が分からなければ真の膨満圧\(Ps\)は取得できない。本試験も含めて、多くの場合\(B\)値が不明であるため、\(B=1\)として

\[Ps = A - U \]

として膨潤圧を算出している。なお、\(B\)値は、供試体の飽和度や通水圧によって変化することが予想されるため、実際には、上式のように単純ではない。

そこで、通水圧を付与した場合の膨満圧の算出方法として、図4.1.6-1に示すように、通水圧\(U\)をパラメータとした膨満圧試験を飽和した供試体に対して実施して、その\(Y\)切片を膨満圧として求めればよい。飽和した供試体に対してこのような試験を行えば、不明な点は\(B\)値の通水圧依存性だけであるが、グラフから\(Y\)切片を外挿して読めば、\(B\)値の通水圧依存性の関数形も取得する必要はない。前述のCase1の膨満圧の解釈もこの手法を使えば、正味の膨満圧を推定できるものと考えられる。
4.1.7 通水圧を付与した場合の膨潤圧の算出方法のイメージ

4.1.8 工学技術への反映

今後、液種を変化させた試験の結果が得られ成果がまとまれば、Ca型化と膨潤挙動の発生時期やその可逆性を定量的に評価できる。この成果の反映先としては、パイピング・エロージョン現象への対策工が挙げられる（図 4.1.8-1 参照）。

後述の緩衝材表面近傍の止水性能評価では、パイピング・エロージョン現象が緩衝材の表面に発生することが示されている。この緩衝材は、処分概念によっては、セメント系材料と接触するため、膨潤と同時に Ca型化するのであれば、パイピング・エロージョン現象への対策を検討する際に考慮しなければならない。

例えば、パイピング・エロージョン現象に対する対策として、人工給水を行った場合を考えれば、人工給水によって緩衝材が十分に膨潤して拡散場が形成されたとしても、セメント系人工バリアとの接触面において処分坑道の閉鎖前に Ca型化が発生し、緩衝材表面だけが十分な止水性を発揮できない状態になるのであれば、人工給水はパイピング・エロージョン現象への十分な対策とはならない可能性がある。

その一方で、清水で膨潤させた後に Ca型化させることで、処分坑道の閉鎖まで Ca型化を抑制できるのであれば、清水で人工給水させることは、膨潤による拡散場の構築だけでなく、Ca型化の影響を閉鎖までの間抑制させる対策として有効であるという結果になる可能性もある。

このように本試験結果は、Ca型化がパイピング・エロージョン現象に及ぼす影響を定量的に評価するために膨潤圧の観点から有用な情報を与えるものである。

図 4.1.7-1 通水圧を付与した場合の膨潤圧の算出方法のイメージ
4.1.9 解析技術への反映

本検討では、Ca 化と膨潤挙動のどちらが再冠水初期に緩衝材の挙動に対して支配的か、さらに Ca 化と膨潤挙動の発生順序の可逆性を定量的に評価している。これらの成果は、化学変質解析だけでなく、力学や間隙水の移流や拡散などのモデル化、ベンチマーク試験として役立つものである。

特に、後述する排水の分析では、蒸留水で飽和させた緩衝材(Case1)と不飽和状態の緩衝材(Case2)にそれぞれ CaCl₂ 水溶液を流した場合、Case1 よりも Case2 の方が、その排水に含まれる陽イオン濃度が高いという結果が得られている。通常、化学解析における不飽和状態は、水と鉱物の接触面積の低下など、化学反応を低減させる要因として取り扱われる。しかしながら、本試験結果は、不飽和状態であっても十分に陽イオン交換反応が発生するため、Ca イオンリッチ水の不飽和浸潤挙動の把握が重要であることを示している。このような、不飽和状態の化学変質に関しては、今後、検討や考察を深め、化学解析を不飽和状態から実施できるモデル化へ反映させる予定である。
第4章参考文献

第5章 緩衝材への地下水浸潤状況の評価

5.1 長尺ベントナイト供試体を用いた一次元浸潤速度取得試験

5.1.1 試験の目的及び概要

ベントナイト系人工バリア材料は不飽和締固め膨潤性粘性土である。このような材料に水が浸潤する場合の不飽和領域と飽和領域の境界線である浸潤フロントの移動速度を推定することは、非常に難しい。これは、ベントナイトは浸潤に伴う飽和度の変化で土骨格構造が変化するためである。一方で、この浸潤フロントの移動速度を取得することは、再冠水中の緩衝材内で化学変化が開始される時期を推定する上で非常に重要である。そこで本検討では、一次元が成り立つと考えられる簡単な境界条件における水と海水相当のイオン強度のNaCl水溶液(0.5M)が緩衝材に浸潤する際の浸潤フロントの移動速度を取得することを目的としている。

同様の研究は、これまでにも幾つかなされていた。鈴木ら[1]は、ベントナイト系人工バリア材料で作製した乾燥密度1.6Mg/m³の供試体(φ20mm×h20mm)を乾燥状態にした後に、純水に浸漬させ、供試体内の飽和度分布の経時変化を取得している。この不飽和浸潤試験では、浸漬した供試体を一定時間後に解体し、浸潤方向に2mm厚に輪切りにし含水比を計測するというやり方で不飽和浸潤挙動を取得している。その他の試験条件は、表5.1.1-1に示すように、材料がベンチナイト単体(乾燥密度1.8Mg/m³)、ケイ砂30wt%混合ベントナイト(乾燥密度1.6Mg/m³)であり、試験温度もパラメータとしている。鈴木らの試験結果から、本試験と同様にケイ砂30wt%混合ベントナイトで乾燥密度1.6Mg/m³の場合を例に取れば、供試体が飽和する体積含水率(水の体積/全体積)が0.403cm³/cm³であるため、供試体の下面付近と中央付近の飽和度が0.403cm³/cm³に近づく様子を求めると図5.1.1-2のようになる。なお、供試体体積が6.283cm³であるため、供試体が飽和するのに必要な水分量は2.532cm³である。図5.1.1-2に示した浸潤フロントの経時変化から飽和に要する時間を算出すると、底面から3mmの地点で88.9hr、9mmの地点で236.5hrとなる。浸透速度は、図に示すように、時間に反比例しており、浸潤が進むほど浸潤速度は遅くなる傾向になる。

この方法では、数多くの供試体を準備する必要があるため、供試体サイズを大きくできないという欠点がある。また、供試体を解体する際の乱れなども考慮する必要があると考えられる。
図 5.1.1-1 鈴木らの試験結果[1]

表 5.1.1-1 鈴木らの試験条件[1]

<table>
<thead>
<tr>
<th></th>
<th>ベントナイト単体</th>
<th>ケイ砂 30wt%混合体</th>
</tr>
</thead>
<tbody>
<tr>
<td>乾燥密度(Mg/m³)</td>
<td>1.8</td>
<td>1.6</td>
</tr>
<tr>
<td>初期体積含水率（%）</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>供試体寸法(mm)</td>
<td>φ20mm×H20mm</td>
<td></td>
</tr>
<tr>
<td>試験温度(℃)</td>
<td></td>
<td>25,40,80</td>
</tr>
<tr>
<td>浸潤液</td>
<td>純水</td>
<td></td>
</tr>
<tr>
<td>繰り返し回数（回）</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

図 5.1.1-2 鈴木らの試験結果による浸潤フロントの経時変化[1]

5.1.2 試験ケース

平成 22 年度示した一次元浸潤速度取得試験のイメージ図を元に、図 5.1.2-1 に示すような試験機を準備した。試験機を準備するに当たり、設定した試験条件は以下のとおりである。

- 供試体内に間隙の空気がトラップされないように、一方向、一次元に浸潤させる。
注水はフローポンプで行い、排水は集水瓶で集めイオン分析する。

フローポンプによる注水は圧力一定となるように流量を制御する。

注入する液体は、イオン交換水とイオン強度 0.5mol/l の NaCl 水溶液である。

浸潤フロントの計測は、比抵抗の変化によって計測する。

供試体上端にはヒーターを配置し、必要に応じて熱勾配を与えることができる。

必要に応じて排水側もフローポンプによる圧力、流量制御が可能である。

以上をまとめると表 5.1.2-1 のようになる。
図 5.1.2-1 長尺ベントナイト供試体を用いた一次元浸潤速度取得試験

表 5.1.2-1 長尺ベントナイト供試体を用いた一次元浸潤速度取得試験のケース

<table>
<thead>
<tr>
<th>試験ケース</th>
<th>ベントナイト乾燥密度</th>
<th>初期含水比(%)</th>
<th>液種</th>
<th>計測項目</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.6Mg/m³ (Na型ケイ砂 30wt%混和)</td>
<td>10</td>
<td>蒸留水</td>
<td>注水量・注水圧比抵抗（浸潤速度）</td>
<td>継続中</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>塩水</td>
<td>試験後：含水比、密度計測</td>
<td>継続中</td>
</tr>
</tbody>
</table>
5.1.3 供試体作成方法及び試験方法

供試体は仕上がり層厚5mmとなるように撒き出し（図5.1.3-1）と静的締固めを200回繰り返して作製した。この供試体作製の際には、図5.1.3-2に示したアクリル製セルに図5.1.3-3に示した比抵抗計測用の電極を設置した状態で（図5.1.3-4）直接、静的締固めを実施した。このようにすることによって、アクリルセルと供試体の界面が水みちになること、供試体と電極の接触不良となることを防いだ。締固めによってアクリルセルが破損することを防ぐためにダンパーを配置した圧縮機で図5.1.3-5、図5.1.3-6に示すように高さ5mmとなるように締固めを行った。締固め終わった供試体に図5.1.3-7に示すように頂部にヒーター付きピストンを設置し、膨潤圧を測定できる試験機とした（図5.1.3-8）。

また、注水方法はフローポンプによって圧力一定となるように流量を制御することを基本とするが、試験初期に通水圧によってアクリルセルが変形し、供試体との界面が水みちになることを防ぐために、試験当初は流量制御である程度供試体を膨潤させておいて、その後、圧力制御に切り替えることとした。
図 5.1.3-3 比抵抗測定用電極

図 5.1.3-4 比抵抗測定用電極の設置

図 5.1.3-5 締め固め時のアクリルセル保護用ダンパー

図 5.1.3-6 締め固め時の高さ管理方法
5.1.4 飽和度と比抵抗の関係取得

放射性廃棄物処分施設の再冠水期間中にその緩衝材に発生する事象について検討する場合、緩衝材中の浸潤面の移動や飽和度変化などが重要なパラメータとなる。この緩衝材中の浸潤面の移動や飽和度変化を、供試体を乱すことなく計測する方法として比抵抗計測がある。この比抵抗計測は、緩衝材に接触している電極間に電流を流し、その電極間の抵抗値を計測するものである。この抵抗は、電極間の緩衝材の飽和度が大きい程小さくなるため、事前に飽和度と比抵抗の関係を取得していれば、比抵抗計測から飽和度変化を同定できることになる。この比抵抗による浸潤状況の観察は、本試験並びに、後述する土槽規模試験、さらに浸潤による間隙空気移行調査においても実施しており、比抵抗値から飽和度を換算することは有用である。

そこで、本検討では、図5.1.4-1に示すような試験装置を用いて、飽和度と比抵抗の関係を取得した。図5.1.4-2には、飽和度と比抵抗の関係取得試験装置を示している。締固めは高さ100mmの供試体を20回分けて締め固めて作製した。ここで、飽和度と比抵抗の関係は一意ではなく、その乾燥密度によって変化するものと考えられる。そこで試験では、乾燥密度1.2、1.6、1.8、2.0Mg/m³の場合について飽和度をパラメータとして取得した。表5.1.4-1と表5.1.4-2に蒸留水とNaCl水溶液を用いた場合の飽和度と比抵抗の関係取得試験ケースとその結果の一覧を示す。
ベントナイト試料

25.0

絶縁ベース

ジュラコン

50.0

圧縮容器ジュラコン

電極

M8程度

・先端

2Φ白金

・先端は

3mm突出

補強ライナー

SUS

t=10mm程度

12.5

载荷ピストン

ジュラコン

50.0

10.0

130.0

補強ライナーに圧縮容器を圧入

その後

50mmの穴加工

電極が貫通する孔

10〜12mm程度

【比抵抗飽和度校正セル】

2φ10mm

3.5φ10mm

比抵抗

R(Ωm)

1.200

含水比

w (%) 間隙比

e 飽和度

Sr (%) 体積含水率

θ (%) 乾燥密度

ρd (Mg/m³)

設計値

実測値

1.200

13.92 1.256 30.0 16.70 1.899 13.56 1.258 29.17 16.25 28.23

20.87 1.256 45.0 25.04 1.205 19.97 1.246 43.37 24.07 9.88

27.83 1.256 60.0 33.40 1.209 26.66 1.240 58.21 32.22 5.67

34.79 1.256 75.0 41.75 1.201 33.74 1.253 72.88 40.54 4.12

41.75 1.256 90.0 50.10 1.208 40.56 1.242 88.43 48.98 3.13

1.600

7.67 0.692 30.0 12.27 1.602 7.52 0.690 29.5 12.05 37.51

11.50 0.692 45.0 18.40 1.600 11.30 0.692 44.2 18.09 16.98

15.33 0.692 60.0 24.53 1.603 14.95 0.688 58.8 23.97 6.41

19.17 0.692 75.0 30.67 1.584 19.96 0.709 76.3 31.63 4.53

23.00 0.692 90.0 36.80 1.588 23.68 0.705 91.0 37.61 3.35

1.800

5.58 0.504 30.0 10.04 1.797 5.51 0.506 29.48 9.91 53.62

8.37 0.504 45.0 15.07 1.802 7.92 0.502 42.72 14.28 21.38

11.17 0.504 60.0 20.11 1.803 10.71 0.502 57.82 19.31 9.67

13.96 0.504 75.0 25.13 1.806 13.61 0.499 73.82 24.58 4.56

16.75 0.504 90.0 30.15 1.804 16.35 0.501 88.38 29.49 4.02

2.000

3.92 0.354 30.0 7.84 1.992 3.73 0.359 28.12 7.43 76.89

9.79 0.354 75.0 19.58 2.020 9.40 0.340 74.76 18.98 8.87

図 5.1.4-1 飽和度と比抵抗の関係取得試験装置

図 5.1.4-2 飽和度と比抵抗の関係取得試験装置

表 5.1.4-1 飽和度と比抵抗の関係取得試験ケースと試験結果一覧（蒸留水）
表 5.1.4-2 飽和度と比抵抗の関係取得試験ケースと試験結果一覧（NaCl 水溶液）

<table>
<thead>
<tr>
<th>バルクの土粒子密度 $\rho = 2.707 \text{ (Mg/m}^3\text{)}$</th>
<th>(\text{設計値})</th>
<th>(\text{実測値})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>乾燥密度</td>
<td>含水比</td>
</tr>
<tr>
<td>1.200</td>
<td>1.200</td>
<td>14.31</td>
</tr>
<tr>
<td>20.87</td>
<td>20.28</td>
<td>1.256</td>
</tr>
<tr>
<td>27.63</td>
<td>34.79</td>
<td>21.35</td>
</tr>
<tr>
<td>41.75</td>
<td>1.256</td>
<td>90.10</td>
</tr>
<tr>
<td>7.67</td>
<td>7.67</td>
<td>0.692</td>
</tr>
<tr>
<td>19.17</td>
<td>1.256</td>
<td>75.0</td>
</tr>
<tr>
<td>15.33</td>
<td>1.256</td>
<td>90.10</td>
</tr>
<tr>
<td>11.5</td>
<td>1.600</td>
<td>11.32</td>
</tr>
<tr>
<td>19.17</td>
<td>0.692</td>
<td>45</td>
</tr>
<tr>
<td>11.5</td>
<td>0.692</td>
<td>45</td>
</tr>
<tr>
<td>19.17</td>
<td>1.256</td>
<td>90.10</td>
</tr>
<tr>
<td>15.33</td>
<td>1.256</td>
<td>90.10</td>
</tr>
<tr>
<td>19.17</td>
<td>0.692</td>
<td>45</td>
</tr>
<tr>
<td>11.5</td>
<td>0.692</td>
<td>45</td>
</tr>
<tr>
<td>11.5</td>
<td>0.692</td>
<td>45</td>
</tr>
<tr>
<td>19.17</td>
<td>1.256</td>
<td>90.10</td>
</tr>
<tr>
<td>15.33</td>
<td>1.256</td>
<td>90.10</td>
</tr>
<tr>
<td>19.17</td>
<td>0.692</td>
<td>45</td>
</tr>
<tr>
<td>11.5</td>
<td>0.692</td>
<td>45</td>
</tr>
<tr>
<td>19.17</td>
<td>1.256</td>
<td>90.10</td>
</tr>
<tr>
<td>15.33</td>
<td>1.256</td>
<td>90.10</td>
</tr>
<tr>
<td>19.17</td>
<td>0.692</td>
<td>45</td>
</tr>
<tr>
<td>11.5</td>
<td>0.692</td>
<td>45</td>
</tr>
<tr>
<td>19.17</td>
<td>1.256</td>
<td>90.10</td>
</tr>
<tr>
<td>15.33</td>
<td>1.256</td>
<td>90.10</td>
</tr>
<tr>
<td>19.17</td>
<td>0.692</td>
<td>45</td>
</tr>
<tr>
<td>11.5</td>
<td>0.692</td>
<td>45</td>
</tr>
<tr>
<td>19.17</td>
<td>1.256</td>
<td>90.10</td>
</tr>
<tr>
<td>15.33</td>
<td>1.256</td>
<td>90.10</td>
</tr>
<tr>
<td>19.17</td>
<td>0.692</td>
<td>45</td>
</tr>
<tr>
<td>11.5</td>
<td>0.692</td>
<td>45</td>
</tr>
<tr>
<td>19.17</td>
<td>1.256</td>
<td>90.10</td>
</tr>
<tr>
<td>15.33</td>
<td>1.256</td>
<td>90.10</td>
</tr>
<tr>
<td>19.17</td>
<td>0.692</td>
<td>45</td>
</tr>
<tr>
<td>11.5</td>
<td>0.692</td>
<td>45</td>
</tr>
<tr>
<td>19.17</td>
<td>1.256</td>
<td>90.10</td>
</tr>
<tr>
<td>15.33</td>
<td>1.256</td>
<td>90.10</td>
</tr>
<tr>
<td>19.17</td>
<td>0.692</td>
<td>45</td>
</tr>
<tr>
<td>11.5</td>
<td>0.692</td>
<td>45</td>
</tr>
<tr>
<td>19.17</td>
<td>1.256</td>
<td>90.10</td>
</tr>
<tr>
<td>15.33</td>
<td>1.256</td>
<td>90.10</td>
</tr>
<tr>
<td>19.17</td>
<td>0.692</td>
<td>45</td>
</tr>
<tr>
<td>11.5</td>
<td>0.692</td>
<td>45</td>
</tr>
</tbody>
</table>
ただし、\(\rho_d \) は乾燥密度、\(\rho_s \) は間隙液の単位体積質量、\(S_r \)（×100%）は飽和度、\(\varepsilon \) は間隙比、\(a \) は土粒子比重である。さらに、\(a(\Omega m) \) は液種の違いによる補正係数であり、試験結果に対するフィッティングから蒸留水の場合は 1.0、0.5M の NaCl 水溶液の場合 0.6 となった。

図 5.1.4-3 に表 5.1.4-1 と表 5.1.4-2 に示した蒸留水と NaCl 水溶液を用いた場合の飽和度と比抵抗の関係取得試験結果に（式 5-3）を用いてフィッティングした結果を示す。図から、この近似式が試験結果と非常に良く整合していることが分かる。この式を用いれば、ベントナイト系人工バリア材料であれど、幅広い乾燥密度で適用可能であると考えられる。

\[
R = a \left(\frac{\rho_d}{\rho_s} \right)^{22} = a \left(\frac{e}{s(1+\varepsilon)} \right)^{22}
\]

\(H_2O: a = 1.0 \)
\(NaCl: a = 0.6 \)

図 5.1.4-3 飽和度と比抵抗の関係
5.1.5 試験結果

写真 5.1.5-1 に、浸潤状況の写真を示す。写真から分かるように、浸潤フロントの位置を目視で推定するのは困難である。

写真 5.1.5-1 液体の浸潤状況（左：蒸留水、右：NaCl 水溶液（0.5M））

約 5 年間に亘る比抵抗値による浸潤状況の計測結果を示す。図の横軸は、比抵抗値を初期比抵抗値で無次元化して、比抵抗値の浸润に伴う低下割合を示している。なお、1 カ所の比抵抗計測で 4 つの電極を使用するため、供試体の上下端 75mm 分は計測ができない。

図から、浸潤に伴って比抵抗が注水側から徐々に低下していることが分かる。また、蒸留水に比べ NaCl 水溶液の方が、給水圧が小さいにも拘らず浸透距離が大きく、更に比抵抗の低下割合が大きいことが分かる。しかしながら、どちらのケースも比抵抗が変化しているフロントは、給水時間 1500 日に対して 900mm 程度であり、さらには水開始から約 1600 日に最上部の比抵抗値が急に低下した。このため、1600 日程度で浸潤フロントが最上部にまで達したものと判断した。ただし、蒸留水のケースと NaCl 水溶液のケースで給水圧が異なることに注意が必要である。

ここで、図 5.1.5-1 に示した比抵抗値の経時変化のうち幾つかについて、（式 5-3）のベントナイトの飽和度と比抵抗の関係式を用いて比抵抗値を飽和度に換算したものを図 5.1.5-2 に示す。図から、比抵抗値と飽和度の分布は概ね同様であるが、飽和度分布の方が蒸留水と NaCl 水溶液の違いが顕著である。これは、図 5.1.4-3 に示したように、ベントナイトの飽和度と比抵抗関係の非線形性が強く、低飽和度領域では比抵抗値の変化に対して比抵抗の変化が敏で、逆に、高飽和度領域では飽和度の変化に対して比抵抗の変化が鈍感であるためである。また、飽和度分布から、蒸留水の場合、浸潤した水の多くが毛細管現象により供試体上部に拡散し飽和度の遷移領域を形成しているが、NaCl 水溶液の場合、遷移領域が気体に形成されていないことが分かる。これは、NaCl 水溶液の場合、モンモリロナイトの膨潤度合が蒸留水の場合に比べて小さく、外間隙が十分に小さくなれば、毛管力が相対的に小さいためであると考えられる。なお、NaCl 水溶液のケース
で初期飽和度が39%ではなく、31%となっているのは、供試体作製時の含水比調整を蒸留水で行っているが、（式5-3）の補正係数は0.6と固定しているためである。実際には、供試体作製時の間隙水と供給された0.5MのNaCl水溶液が混合しながら浸潤するため、（式5-3）の補正係数が経時変化するものと考えられる。

図5.15-1浸潤に伴う比抵抗の変化
（上：蒸留水、下：NaCl水溶液（0.5M））
さらに、図 5.1.5-2 の NaCl 水溶液の場合では、供試体底面から 400mm 付近で飽和度の逆転現象が発生している。図 5.1.5-3 に示すように、目視観察では、供試体の当該箇所付近が他の部分に比べて異なるなどの状況は確認できなかった。ただし、電極の腐食状況が、他の箇所よりも進行している可能性があるため、今後、試験を解体する際に、実際の飽和度分布と計測値の整合性を確認する予定である。

図 5.1.5-2 浸潤に伴う飽和度の変化
（上：蒸留水、下：NaCl 水溶液（0.5M））
図 5.1.5-3 には、供試体底部付近の浸調状況の目視観察写真を示す。図から、試験開始直後と現在とで、目視観察では大きな変化をとらえることが難しいことが分かる。

図 5.1.5-3 液体の浸調状況（左：蒸留水、右：NaCl 水溶液（0.5M））

図 5.1.5-4 には、図 5.1.5-2 に示した飽和度分布において、飽和度が初期値から 1% 増加した時点での浸調フロントが到達したと見なした場合の浸調フロントの進展状況を示す。比抵抗計測のための電極が 50mm 間隔で設置されているため、浸調フロントの進展状況は階段状になっていることに注意が必要である。

蒸留水の場合、浸調フロントの位置 d(mm) は、給水時間 t(day) の指数関数として
$d = 60t^{0.35}$ で近似できる。この関係式に基づいて浸潤フロントが供試体上部(浸潤距離 1000mm)まで到達する時間を算出すると、約 8.5 年となる。この結果は、浸潤フロント位置 d(mm)が給水時間 t(day)の平方根に比例するという毛細管現象による水の拡散速度の理論式である Washburn 式(図 5.1.5-4 の破線)。

$$d = c\times t^{0.5}$$

（式 5-4）

よりも緩慢である。ここに、c は濡れ角などの関数で表される材料と液種によって決まる係数である。

理論式と実測値を比較すると、浸潤フロントが 650mm 以下では実測値と理論式は良く整合するが、650mm 以上では、理論式に比べ実測位置が徐々に遅くなる傾向を示している。これは、浸潤に伴うモンモリロナイトの基底間隔の変化によって、間隙構造が徐々に変化したためではないかと考えられる。さらに、初期飽和度から飽和度が 1%増加した時点を浸潤フロントと定義したこと、比抵抗値の計測位置が 50 mm 間隔であることなども原因として挙げられる。一方、NaCl 水溶液の場合、浸潤フロントの位置 d(mm)と給水時間 t(day)の関係は $d = 14t^{0.5}$ と近似でき、給水時間 t(day)の平方根に比例するという Washburn 式と整合する結果であるが、浸潤フロントの進展状況は蒸留水の場合よりも遅い。

図 5.1.5-4 浸潤フロントの進展状況
（初期飽和度からの増分が 1%で定義）

次に、飽和度が 95%以上となる場所を飽和フロントと定義して、その進展状況をまとめると図 5.1.5-5 のようになる。図から、飽和フロントの進展状況は、蒸留水の場合に比べ NaCl 水溶液の場合の方が速いことが分かる。このことから、蒸留水の場合、ベントナイトに供給された水は、比較的速やかに供試体上部に拡散するため浸潤フロントは移動するが、NaCl 水溶液の場合では供給された NaCl 水溶液はあまり供試体内部に拡散されずに給水側に留まっているものと考えられる。これは、NaCl 水溶液の場合、そのイオン濃度の影響でモンモリロナイトが蒸散し、毛細管現象に寄与する微小な空隙が形成され難いためと考えられる。
なお、飽和フロントが供試体上部（浸潤距離 1000mm）まで到達する時間を近似式から計算すると、蒸留水の場合で約 78 年、NaCl 水溶液の場合で約 21 年となった。

図 5.1.5-5 飽和フロントの進展状況
（飽和度 95%以上で定義）

図 5.1.5-6 には、給水量を間隙面積で除して算出した注水距離を示している。フローポンプによって流量制御で給水していた試験当初は、ほぼ一定速度で浸潤している。圧力制御に変更した後は、図 5.1.5-4 や図 5.1.5-5 と同様に徐々に浸透し難くなっていることが分かる。図 5.1.5-6 と図 5.1.5-4 や図 5.1.5-5 は飽和フロントの距離が異なるが、これは図 5.1.5-4 や図 5.1.5-5 が飽和度の遷移領域を含んだ浸潤のフロントであるのに対し、図 5.1.5-6 は供試体下面から遷移領域を考慮しない浸潤フロントであるためである。なお、実際の飽和領域は図 5.1.5-5 や図 5.1.5-6 のフロントの距離よりは小さいため、実際の飽和度の遷移領域は図 5.1.5-6 と図 5.1.5-4 のフロントの差よりも大きいと考えられる。

図 5.1.5-6 液体の浸透状況
図 5.1.5-7 には、流量制御で注水している最中の通水圧変化を示している。蒸留水の場合（図 5.1.5-7 左）、通水初期は通水圧が負値であるが、通水量が増加すると従って徐々に通水圧が増加した。この通水初期の通水圧の負値は、図 5.1.5-8 に示すように、圧力計と浸潤面の位置の差（水頭差）が 76cm あり、水圧は 7kPa 程度の負値になる。浸潤面が進行すると飽和領域のベントナイトが膨润して、吸水し難くなることから、徐々に通水圧が上がったものと考えられる。

一方、NaCl 水溶液の場合、通水初期からずっと通水圧が負値のままであることが分かる。通水圧は -17kPa 程度である。これは、圧力計と浸潤面の位置の差以上の水頭差に相当する。このことから、NaCl 水溶液の場合、制御流量よりも供試体の吸水速度の方が大きく、1.7m 程度の水位差に相当する負圧が計測されているものと考えられる。また、NaCl 水溶液が浸潤した領域のベントナイトは、膨潤が抑制される為、浸潤領域の止水性向上の様子は見られない。そのため、蒸留水の場合に比べて小さな給水圧であるが、供試体に供給された流量は NaCl 水溶液の方が大きい。

図 5.1.5-7 液体の浸潤状況（左：蒸留水、右：NaCl 水溶液（0.5M））
5.1.6 工学技術への反映

本試験の結果によって、ベントナイト系人工バリアへの浸潤速度が取得できる。この浸潤速度が把握できれば、様々な境界条件を考慮できる解析技術に本試験結果を反映させることによって化学的な変質挙動が施設閉鎖後の何時から始まるのかを推定できる。また、今後の浸潤状況を把握することによって浸潤が一次元的に推移するのか、それとも界面を卓越的に浸潤していくのかが分かる。

現在の緩衝材の施工方法は、緩衝材と天然バリアの間は隙間、若しくはペレットを充填する方法か、原位置締固めや吹付けのように界面に隙間なく施工出来る方法とが想定されており、施工方法の選択において界面の水理場は施工方法を特徴付けるポイントである。

本試験では、供試体をアクリルセル内で締固めて作製したため、緩衝材は界面には隙間がない施工方法で構築したものに相当する。言い換えれば最も浸潤し難しい施工方法における浸潤速度を取得していることになる。よって、今後実施予定である土槽試験の試験ケースの実験条件の設定や試験期間の推定などにも本試験結果が反映できる。

5.1.7 解析技術への反映

本試験結果では、一次元で不飽和状態の緩衝材に蒸留水や NaCl 水溶液浸潤させた場合、浸潤フロントの進展速度を実験的に取得した。これは、拡散方程式の解が時間の平方根に比例することにより概ね整合する結果であり、この試験結果は、従来の不飽和状態の緩衝材の水の浸潤に対して、水分濃度の異なる場の水自身の拡散運動として捉えるやり方の妥当性の裏付けになるものである。この不飽和状態の水の移動は、不飽和状態の化学変質や膨潤挙動評価にも重要な事象であるため、緩衝材の化学、水理、力学挙動を精密にモデル化するために不可欠なものである。

第5章参考文献

