添付資料-1

試験写真集
試験写真集目次

1.1 上部コンクリートピット施工確認試験 ... 1-1
1.2 上部低拡散材施工確認試験 .. 1-6
1.3 側部緩衝材施工確認試験－振動工法－ ... 1-11
1.4 側部緩衝材施工確認試験－吹付け工法－ ... 1-19
1.5 シート修繕工 .. 1-26
写真目次

写真 1.1-1 施工前(1) 1-2
写真 1.1-2 施工前(2) 1-2
写真 1.1-3 横桁材の搬入 1-2
写真 1.1-4 横桁材の組立(1) 1-2
写真 1.1-5 横桁材の組立(2) 1-2
写真 1.1-6 横桁材の受け足場 1-2
写真 1.1-7 横桁材仮設完了 1-2
写真 1.1-8 足場組立完了 1-2
写真 1.1-9 機械式継手の組立 1-3
写真 1.1-10 鉄筋（下筋）組立 1-3
写真 1.1-11 スペーサー大（左）小（右） 1-3
写真 1.1-12 鉄筋組立 1-3
写真 1.1-13 鉄筋（上筋）組立 1-3
写真 1.1-14 鉄筋組立完了 1-3
写真 1.1-15 行先ケーブルの取り扱い 1-3
写真 1.1-16 埋設計器 1-3
写真 1.1-17 型枠組立(1) 1-4
写真 1.1-18 型枠組立(2) 1-4
写真 1.1-19 打込み前 足場状況 1-4
写真 1.1-20 打込み状況(1) 1-4
写真 1.1-21 打込み状況(2) 1-4
写真 1.1-22 パイプレータによる再振動 1-4
写真 1.1-23 ミスト散布状況 1-4
写真 1.1-24 ミスト散布後の状況 1-4
写真 1.1-25 表面振動締固め（サーファー） 1-5
写真 1.1-26 左官仕上げ 1-5
写真 1.1-27 ビニールシート養生 1-5
写真 1.1-28 打継ぎ処理（レイタンス処理） 1-5
写真 1.1-29 打継ぎ処理（遅延剤散布） 1-5
写真 1.1-30 保温湿潤養生マット 1-5
写真 1.1-31 湿潤養生マット 1-5
写真 1.1-32 二種類の養生マット 1-5
写真 1.2-1 施工前(1) 1-7
写真 1.2-2 施工前(2) 1-7
写真 1.2-3 型枠組立（全景） 1-7
写真 1.2-4 型枠組立（昇降設備） 1-7
写真	1.2-5	型枠組立（左側部）	1-7
写真	1.2-6	型枠組立（右側部）	1-7
写真	1.2-7	打設足場（1）	1-7
写真	1.2-8	打設足場（2）	1-7
写真	1.2-9	打込み（1）	1-8
写真	1.2-10	打込み（2）	1-8
写真	1.2-11	打込み（3）	1-8
写真	1.2-12	打込み（再振動）	1-8
写真	1.2-13	表面締固めパイプレータ	1-8
写真	1.2-14	ミスト散布	1-8
写真	1.2-15	再振動	1-8
写真	1.2-16	パイプレータによる再振動	1-8
写真	1.2-17	膜養生剤散布	1-9
写真	1.2-18	左官仕上げ	1-9
写真	1.2-19	打継ぎ処理（レイタンス処理）	1-9
写真	1.2-20	打継ぎ処理（遲延剤散布）	1-9
写真	1.2-21	湿潤マット養生	1-9
写真	1.2-22	湿潤保温マット養生	1-9
写真	1.2-23	型枠解体	1-9
写真	1.2-24	足場の撤去（1）	1-9
写真	1.2-25	足場の撤去（2）	1-10
写真	1.2-26	資材撤去	1-10
写真	1.2-27	完了（上部 CP、低拡散材）	1-10
写真	1.2-28	完了（右側部）	1-10
写真	1.2-29	完了（左側部から奥部を砕く）	1-10
写真	1.2-30	左側部の昇降設備	1-10
写真	1.2-31	左側部の手すり（開口部養生）	1-10
写真	1.2-32	正面図	1-10
写真	1.3-1	ベントナイト保管庫展開	1-12
写真	1.3-2	ベントナイト保管庫展開完了	1-12
写真	1.3-3	機材搬入（ベントナイト保管庫）	1-12
写真	1.3-4	ベントナイト保管庫へ機材搬入	1-12
写真	1.3-5	砕石掘削	1-12
写真	1.3-6	ウィンチアンカー設置	1-12
写真	1.3-7	ウィンチアンカー設置完了	1-12
写真	1.3-8	機材搬入（ピット上）	1-12
写真	1.3-9	供給機用レール設置（1）	1-13
写真	1.3-10	供給機用レール設置（2）	1-13
写真 1.3-11 材料供給器搬入 ... 1-13
写真 1.3-12 材料供給器設置完了 ... 1-13
写真 1.3-13 ベントナイト搬入 ... 1-13
写真 1.3-14 ベントナイト保管庫へ搬入 ... 1-13
写真 1.3-15 底部緩衝材保護コンクリート斬り ... 1-13
写真 1.3-16 底部緩衝材保護コンクリート斬り ... 1-13
写真 1.3-17 底部緩衝材 表面状況 ... 1-14
写真 1.3-18 保護コンクリート厚(15cm) ... 1-14
写真 1.3-19 作業構台設置（最下段） ... 1-14
写真 1.3-20 作業構台設置（最下段） ... 1-14
写真 1.3-21 作業構台組み替え(1) ... 1-14
写真 1.3-22 作業構台組み替え(2) ... 1-14
写真 1.3-23 作業構台組み替え(3) ... 1-14
写真 1.3-24 作業構台組み替え(4) ... 1-14
写真 1.3-25 作業構台組み替え(5) ... 1-15
写真 1.3-26 作業構台組み替え(6) ... 1-15
写真 1.3-27 小型振動ローラ（幅 710mm） ... 1-15
写真 1.3-28 材料敷均し機 ... 1-15
写真 1.3-29 使用機材搬入状況 ... 1-15
写真 1.3-30 ピット上機材 ... 1-15
写真 1.3-31 ベントナイト供給 ... 1-15
写真 1.3-32 ウィンチ設置 ... 1-15
写真 1.3-33 材料敷均し機(1) ... 1-16
写真 1.3-34 材料敷均し機(2) ... 1-16
写真 1.3-35 敷均し完了 ... 1-16
写真 1.3-36 転圧状況（振動ローラ） ... 1-16
写真 1.3-37 ランマ転圧（坑口側） ... 1-16
写真 1.3-38 ランマ転圧（褄側） ... 1-16
写真 1.3-39 側部緩衝材 転圧完了 ... 1-16
写真 1.3-40 作業構台の状況 ... 1-16
写真 1.3-41 かさ密度測定容器 ... 1-17
写真 1.3-42 人力敷均し(1) ... 1-17
写真 1.3-43 人力敷均し(2) ... 1-17
写真 1.3-44 かさ密度測定 ... 1-17
写真 1.3-45 結露対策(1) ... 1-17
写真 1.3-46 結露対策(2) ... 1-17
写真 1.3-47 作業構台ズレ止め対策 ... 1-17
写真 1.3-48 コアボーリング ... 1-17

1-iv
写真 1.3-49 作業構台の壁繋 ... 1-18
写真 1.3-50 作業構台内部の補強材 ... 1-18
写真 1.3-51 作業構台の開口部養生 ... 1-18
写真 1.3-52 2 回目ベントナイト搬入 ... 1-18
写真 1.3-53 敷均し機、振動ローラ入替え(1) .. 1-18
写真 1.3-54 敷均し機、振動ローラ入替え(2) .. 1-18
写真 1.3-55 最終層 転圧完了 .. 1-18
写真 1.3-56 最終層 養生完了 .. 1-18
写真 1.4-1 施工前 .. 1-20
写真 1.4-2 ベントナイト搬入 ... 1-20
写真 1.4-3 ベントナイト保管庫搬入 ... 1-20
写真 1.4-4 ベントナイト保管庫の状況 ... 1-20
写真 1.4-5 ホイスト架台資材搬入 ... 1-20
写真 1.4-6 ホイスト架台仮組 ... 1-20
写真 1.4-7 移動用キャタピラ ... 1-20
写真 1.4-8 仮組資材の移動 ... 1-20
写真 1.4-9 ホイスト架台設置(1) ... 1-21
写真 1.4-10 ホイスト架台設置(2) .. 1-21
写真 1.4-11 リバウンド材回収ベルトコンベア ... 1-21
写真 1.4-12 吹付け工使用機器(1) .. 1-21
写真 1.4-13 吹付け工使用機器(2) .. 1-21
写真 1.4-14 天板型枠設置状況 .. 1-21
写真 1.4-15 吹付けロボット定置(後方より) ... 1-21
写真 1.4-16 吹付けロボット定置(上方より) ... 1-21
写真 1.4-17 乾燥密度、含水比測定 ... 1-22
写真 1.4-18 1 層 1 段目吹付結果 .. 1-22
写真 1.4-19 吹き付け作業(後方より) ... 1-22
写真 1.4-20 吹き付け作業(上方より) ... 1-22
写真 1.4-21 吹付け機器配置(1) .. 1-22
写真 1.4-22 吹付け機器配置(2) .. 1-22
写真 1.4-23 吹付け結果 .. 1-22
写真 1.4-24 吹付けロボット(後方下側より) ... 1-22
写真 1.4-25 リバウンド材回収(吸引方式) ... 1-23
写真 1.4-26 リバウンド材吸引状況 ... 1-23
写真 1.4-27 リバウンド材回収(ベルコン方式) ... 1-23
写真 1.4-28 吹付け状況と吹付け面 ... 1-23
写真 1.4-29 吹付け状況(前方より) ... 1-23
写真 1.4-30 吹付け状況(上方より) ... 1-23
写真 1.4-31 善用状況(前方より) ... 1-23
写真 1.4-32 善用状況(上方より) ... 1-23
写真 1.4-33 善用状況(後方下側より) ... 1-23
写真 1.4-34 善用状況(後方上側より) ... 1-23
写真 1.4-35 善用状況(上方より) ... 1-23
写真 1.4-36 善用状況(前方より) ... 1-23
写真 1.4-37 善用状況(後方より) ... 1-23
写真 1.4-38 善用状況(後方下側より) ... 1-23
写真 1.4-39 善用状況(後方上側より) ... 1-23
写真 1.4-40 善用状況(上方より) ... 1-23
写真 1.4-41 善用状況(前方より) ... 1-23
写真 1.4-42 善用状況(後方より) ... 1-23
写真 1.4-43 善用状況(後方下側より) ... 1-23
写真 1.4-44 善用状況(後方上側より) ... 1-23
写真 1.4-45 善用状況(上方より) ... 1-23
写真 1.4-46 善用状況(前方より) ... 1-23
写真 1.4-31 吹付け表面の状況（一部）1-23
写真 1.4-32 吹付け面の状況 ..1-23
写真 1.4-33 レーザーによる位置制御(1)1-24
写真 1.4-34 レーザーによる位置制御(2)1-24
写真 1.4-35 吹付け状況 ...1-24
写真 1.4-36 フレッシュ材の供給1-24
写真 1.4-37 吹付け面（全体）の状況1-24
写真 1.4-38 吹付け面下部の状況1-24
写真 1.4-39 開口部養生撤去1-24
写真 1.4-40 エポキシ樹脂混合状況(1)1-25
写真 1.4-41 エポキシ樹脂混合状況(2)1-25
写真 1.4-42 樹脂塗布後の状況（上面 1）1-25
写真 1.4-43 樹脂塗布後の状況（上面 2）1-25
写真 1.4-44 エポキシ樹脂塗布状況(1)1-25
写真 1.4-45 エポキシ樹脂塗布後(2)1-25
写真 1.4-46 作業終了（正面中央部）1-25
写真 1.4-47 作業終了（正面上部）1-25
写真 1.5-1 使用材料（防水シート）1-27
写真 1.5-2 開口部養生(1)1-27
写真 1.5-3 開口部養生(2)1-27
写真 1.5-4 足場仮説(1) ...1-27
写真 1.5-5 足場仮説(2) ...1-27
写真 1.5-6 足場仮説(3) ...1-27
写真 1.5-7 資材運搬（荷揚げ作業）1-27
写真 1.5-8 シート貼り付け作業(1)1-27
写真 1.5-9 シート貼り付け作業(2)1-27
写真 1.5-10 シート貼り付け作業(3)1-28
写真 1.5-11 シート貼り付け（釘打ち状況）1-28
写真 1.5-12 シート貼り付け（内側シート）1-28
写真 1.5-13 防水シート溶着1-28
写真 1.5-14 加圧検査 ...1-28
写真 1.5-15 施工完了（奥部）1-28
写真 1.5-16 施工完了（坑口側）1-28
1.1 上部コンクリートピット施工確認試験
① 準備作業

写真 1.1-1 施工前(1) 写真 1.1-2 施工前(2)
写真 1.1-3 横桁材の搬入 写真 1.1-4 横桁材の組立(1)
写真 1.1-5 横桁材の組立(2) 写真 1.1-6 横桁材の受け足場
写真 1.1-7 横桁材仮設完了 写真 1.1-8 足場組立完了
② 鉄筋組立

写真 1.1-9 機械式継手の組立
写真 1.1-10 鉄筋（下筋）組立
写真 1.1-11 スペーサー大（左）小（右）
写真 1.1-12 鉄筋組立
写真 1.1-13 鉄筋（上筋）組立
写真 1.1-14 鉄筋組立完了
写真 1.1-15 先行ケーブルの取り扱い
写真 1.1-16 埋設計器
③ 打込み

写真 1.1-17 型枠組立(1)
写真 1.1-18 型枠組立(2)

写真 1.1-19 打込み前 足場状況
写真 1.1-20 打込み状況(1)

写真 1.1-21 打込み状況(2)
写真 1.1-22 バイブレータによる再振動

写真 1.1-23 ミスト散布状況
写真 1.1-24 ミスト散布後の状況
④ 打込み・養生

写真 1.1-25 表面振動締固め（サーファー）
写真 1.1-26 左官仕上げ

写真 1.1-27 ビニールシート養生
写真 1.1-28 打継ぎ処理（レイタンス処理）

写真 1.1-29 打継ぎ処理（遅延剤散布）
写真 1.1-30 保温湿潤養生マット

写真 1.1-31 湿潤養生マット
写真 1.1-32 二種類の養生マット
1.2 上部低拡散材施工確認試験
① 準備作業

<table>
<thead>
<tr>
<th>写真 1.2-1 施工前(1)</th>
<th>写真 1.2-2 施工前(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>写真 1.2-3 型枠組立（全景）</td>
<td>写真 1.2-4 型枠組立（昇降設備）</td>
</tr>
<tr>
<td>写真 1.2-5 型枠組立（左側部）</td>
<td>写真 1.2-6 型枠組立（右側部）</td>
</tr>
<tr>
<td>写真 1.2-7 打設足場(1)</td>
<td>写真 1.2-8 打設足場(2)</td>
</tr>
</tbody>
</table>

1-7
2 打込み

写真 1.2-9 打込み(1)
写真 1.2-10 打込み(2)
写真 1.2-11 打込み(3)
写真 1.2-12 打込み(再振動)
写真 1.2-13 表面締固めバイブレータ
写真 1.2-14 ミスト散布
写真 1.2-15 再振動
写真 1.2-16 バイブレータによる再振動
③ 打込み後、撤去

写真 1.2-17 膜養生剤散布
写真 1.2-18 左官仕上げ
写真 1.2-19 打継ぎ処理（レイタンス処理）
写真 1.2-20 打継ぎ処理（遅延剤散布）

写真 1.2-21 湿潤マット養生
写真 1.2-22 湿潤保温マット養生
写真 1.2-23 型枠解体
写真 1.2-24 足場の撤去（1）
① 施工完了

写真 1.25-25 足場の撤去(2)
写真 1.25-26 資材撤去
写真 1.25-27 完了（上部低拡散材 他）
写真 1.25-28 完了（上部 CP、上部低拡散材）
写真 1.25-29 完了（左側部から奥部を覗く）
写真 1.25-30 右側部緩衝材
写真 1.25-31 奥部から坑口側
写真 1.25-32 正面図
1.3 側部緩衝材施工確認試験－振動工法－
① 準備作業（1）

写真 1.3-1 ベントナイト保管庫展開
写真 1.3-2 ベントナイト保管庫展開完了

写真 1.3-3 機材搬入（ベントナイト保管庫）
写真 1.3-4 ベントナイト保管庫へ機材搬入

写真 1.3-5 碎石掘削
写真 1.3-6 ウィンチアンカー設置

写真 1.3-7 ウィンチアンカー設置完了
写真 1.3-8 機材搬入（ピット上）
準備作業（2）

写真 1.3-9 供給機用レール設置(1) 写真 1.3-10 供給機用レール設置(2)

写真 1.3-11 材料供給器搬入 写真 1.3-12 材料供給器設置完了

写真 1.3-13 ベントナイト搬入 写真 1.3-14 ベントナイト保管庫へ搬入

写真 1.3-15 底部緩衝材保護コンクリート斫り 写真 1.3-16 底部緩衝材保護コンクリート斫り
準備作業（3）

写真 1.3-17 底部緩衝材 表面状況
写真 1.3-18 保護コンクリート厚（15cm）

写真 1.3-19 作業構台設置（最下段）
写真 1.3-20 作業構台設置（最下段）

写真 1.3-21 作業構台組み替え（1）
写真 1.3-22 作業構台組み替え（2）

写真 1.3-23 作業構台組み替え（3）
写真 1.3-24 作業構台組み替え（4）
4. 準備作業（4）

写真	1.3-25	作業構台組み替え(5)
写真	1.3-26	作業構台組み替え(6)
写真	1.3-27	小型振動ローラ（幅 710mm）
写真	1.3-28	材料敷均し機
写真	1.3-29	使用機材搬入状況
写真	1.3-30	ピット上機材
写真	1.3-31	ベントナイト供給
写真	1.3-32	ウィンチ設置
⑤ 振動転圧（1）

写真 1.3-33 材料敷均し機(1)

写真 1.3-34 材料敷均し機(2)

写真 1.3-35 敷均し完了

写真 1.3-36 転圧状況（振動ローラ）

写真 1.3-37 ランマ転圧（坑口側）

写真 1.3-38 ランマ転圧（褄側）

写真 1.3-39 側部緩衝材 転圧完了

写真 1.3-40 作業構台の状況
⑥ 振動転圧（2）

写真 1.3-41 かさ密度測定容器
写真 1.3-42 人力敷均し（1）

写真 1.3-43 人力敷均し（2）
写真 1.3-44 かさ密度測定

写真 1.3-45 結露対策（1）
写真 1.3-46 結露対策（2）

写真 1.3-47 作業構台ズレ止め対策
写真 1.3-48 コアボーリング
写真 1.3-49	作業構台の壁繋
写真 1.3-50	作業構台内部の補強材
写真 1.3-51	作業構台の開口部養生
写真 1.3-52	2回目ベントナイト搬入
写真 1.3-53	敷均し機、振動ローラ入替え(1)
写真 1.3-54	敷均し機、振動ローラ入替え(2)
写真 1.3-55	最終層 転圧完了
写真 1.3-56	最終層 養生完了
1.4 側部緩衝材施工確認試験－吹付け工法－
① 準備作業（1）

<table>
<thead>
<tr>
<th>写真 1.4-1 施工前</th>
<th>写真 1.4-2 ベントナイト搬入</th>
</tr>
</thead>
<tbody>
<tr>
<td>写真 1.4-3 ベントナイト保管庫搬入</td>
<td>写真 1.4-4 ベントナイト保管庫の状況</td>
</tr>
<tr>
<td>写真 1.4-5 ホイスト架台資材搬入</td>
<td>写真 1.4-6 ホイスト架台仮組</td>
</tr>
<tr>
<td>写真 1.4-7 移動用キャタピラ</td>
<td>写真 1.4-8 仮組資材の移動</td>
</tr>
</tbody>
</table>
2 準備作業（2）

写真 1.4-9	ホイスト架台設置(1)
写真 1.4-10	ホイスト架台設置(2)
写真 1.4-11	リバウンド材回収ベルトコンベア
写真 1.4-12	吹付け工使用機器(1)
写真 1.4-13	吹付け工使用機器(2)
写真 1.4-14	天板型枠設置状況
写真 1.4-15	吹付けロボット定置（後方より）
写真 1.4-16	吹付けロボット定置（上方より）
吹付け作業（1）

写真 1.4-17 乾燥密度、含水比測定
写真 1.4-18 1層1段目吹付結果

写真 1.4-19 吹き付け作業（後方より）
写真 1.4-20 吹き付け作業（上方より）

写真 1.4-21 吹付け機器配置(1)
写真 1.4-22 吹付け機器配置(2)

写真 1.4-23 吹付け結果
写真 1.4-24 吹付けロボット（後方下側より）
吹付け作業（2）

写真 1.4-25 リバウンド材回収（吸引方式）
写真 1.4-26 リバウンド材吸引状況

写真 1.4-27 リバウンド材回収（ベルコン方式）
写真 1.4-28 吹付け状況と吹付け面

写真 1.4-29 吹付け状況（前方より）
写真 1.4-30 吹付け状況（上方より）

写真 1.4-31 吹付け表面の状況（一部）
写真 1.4-32 吹付け面の状況
⑤ 吹付け作業（3）

<table>
<thead>
<tr>
<th>写真 1.4-33</th>
<th>レーザーによる位置制御(1)</th>
<th>写真 1.4-34</th>
<th>レーザーによる位置制御(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>写真 1.4-35</td>
<td>吹付け状況</td>
<td>写真 1.4-36</td>
<td>フレッシュ材の供給</td>
</tr>
<tr>
<td>写真 1.4-37</td>
<td>吹付け面（全体）の状況</td>
<td>写真 1.4-38</td>
<td>吹付け面下部の状況</td>
</tr>
<tr>
<td>写真 1.4-39</td>
<td>開口部養生撤去</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

余白
⑥ 施工確認試験 養生作業

<table>
<thead>
<tr>
<th>写真 1.4-40</th>
<th>エポキシ樹脂混合状況(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>写真 1.4-41</td>
<td>エポキシ樹脂混合状況(2)</td>
</tr>
<tr>
<td>写真 1.4-42</td>
<td>樹脂塗布後の状況（上面 1）</td>
</tr>
<tr>
<td>写真 1.4-43</td>
<td>樹脂塗布後の状況（上面 2）</td>
</tr>
<tr>
<td>写真 1.4-44</td>
<td>エポキシ樹脂塗布状況(1)</td>
</tr>
<tr>
<td>写真 1.4-45</td>
<td>エポキシ樹脂塗布後(2)</td>
</tr>
<tr>
<td>写真 1.4-46</td>
<td>作業終了（正面中央部）</td>
</tr>
<tr>
<td>写真 1.4-47</td>
<td>作業終了（正面上部）</td>
</tr>
</tbody>
</table>
1.5 シート修繕工
準備作業

写真 1.5-1	使用材料（防水シート）
写真 1.5-2	開口部養生(1)
写真 1.5-3	開口部養生(2)
写真 1.5-4	足場仮説(1)
写真 1.5-5	足場仮説(2)
写真 1.5-6	足場仮説(3)
写真 1.5-7	資材運搬（荷揚げ作業）
写真 1.5-8	シート貼り付け作業(1)
② シート貼り付け作業

写真 1.5-9	シート貼り付け作業(2)
写真 1.5-10	シート貼り付け作業(3)
写真 1.5-11	シート貼り付け(釘打ち状況)
写真 1.5-12	シート貼り付け（内側シート）
写真 1.5-13	防水シート溶着
写真 1.5-14	加圧検査
写真 1.5-15	施工完了（奥部）
写真 1.5-16	施工完了（坑口側）
添付資料－2

上部コンクリートピット施工確認試験データ集
目次

2.1 施工確認試験..2-1
 2.1.1 コンクリートビット配筋図...2-1
 2.1.2 フレッシュ性状確認試験結果...2-2
 (1) 室内試験..2-2
 (2) 実機試験..2-3
 (3) 打込み試験...2-4
 2.1.3 材料特性確認試験..2-5
 (1) 打込み中のミスト効果確認試験..2-5
 (2) 再振動の効果確認試験..2-11
 (3) 振動による表面仕上げ効果確認試験...2-14
 (4) 養生効果確認試験..2-17
 2.1.4 養生時のコンクリート表面温度..2-18

2.2 初期性能確認試験...2-20
 2.2.1 初期性能確認試験結果一覧表..2-20
2.1 施工確認試験

2.1.1 コンクリートピット配筋図
2.1.2 フレッシュ性状確認試験結果

(1) 室内試験

<table>
<thead>
<tr>
<th>空気量 (%), 室内試験</th>
<th>混合密度 (kg/m³), 室内試験</th>
<th>間隙通過性, 室内試験</th>
</tr>
</thead>
<tbody>
<tr>
<td>空気量</td>
<td>混合密度</td>
<td>間隙通過性</td>
</tr>
<tr>
<td>2.1.2 フレッシュ性状確認試験結果</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>空気量 (%)</th>
<th>混合密度 (kg/m³)</th>
<th>間隙通過性</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>空気量 (%)</th>
<th>混合密度 (kg/m³)</th>
<th>間隙通過性</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.2 フレッシュ性状確認試験結果</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>空気量 (%)</th>
<th>混合密度 (kg/m³)</th>
<th>間隙通過性</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

2-2
<table>
<thead>
<tr>
<th>N番</th>
<th>配合No.</th>
<th>LPE</th>
<th>FA</th>
<th>LPC</th>
<th>LE</th>
<th>LP</th>
<th>S1</th>
<th>S2</th>
<th>G</th>
<th>合計</th>
<th>スランプフロー (mm) 50cm(S)</th>
<th>V漏斗流下時間 (s)</th>
<th>LP</th>
<th>S1</th>
<th>S2</th>
<th>G</th>
<th>空気量 (％)</th>
<th>容積密度 (kg/m³)</th>
<th>間隙通過性</th>
<th>試験時刻</th>
<th>気温</th>
<th>コンクリート温度</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>44.9</td>
<td>134</td>
<td>32</td>
<td>2.38</td>
<td>2.38</td>
<td>2.10</td>
<td>3.66</td>
<td>1.00</td>
<td>2.10</td>
<td>98.0</td>
<td>44.9</td>
<td>53.4</td>
<td>2.5</td>
<td>3.22</td>
<td>2.26</td>
<td>3.05</td>
<td>2.70</td>
<td>2.66</td>
<td>1.00</td>
<td>2.70</td>
<td>kg/m³</td>
</tr>
<tr>
<td>2</td>
<td>15.1</td>
<td>15.6</td>
<td>695.0</td>
<td>×</td>
<td>670.0</td>
<td>683</td>
<td>7.2</td>
<td>10.1</td>
<td>1.7</td>
<td>2395</td>
<td>330</td>
<td>331</td>
<td>331</td>
<td>331</td>
<td>16.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>14.7</td>
<td>16.1</td>
<td>735.0</td>
<td>×</td>
<td>730.0</td>
<td>733</td>
<td>4.23</td>
<td>9.5</td>
<td>1.6</td>
<td>2410</td>
<td>328</td>
<td>326</td>
<td>326</td>
<td>327</td>
<td>25.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>14.6</td>
<td>15.6</td>
<td>690.0</td>
<td>×</td>
<td>670.0</td>
<td>680</td>
<td>6.2</td>
<td>9.5</td>
<td>2.3</td>
<td>2385</td>
<td>325</td>
<td>325</td>
<td>325</td>
<td>325</td>
<td>12.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>15.6</td>
<td>15.9</td>
<td>645.0</td>
<td>×</td>
<td>625.0</td>
<td>635</td>
<td>5.8</td>
<td>9.1</td>
<td>2.3</td>
<td>2391</td>
<td>330</td>
<td>330</td>
<td>330</td>
<td>330</td>
<td>2.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>15.5</td>
<td>16.2</td>
<td>610.0</td>
<td>×</td>
<td>605.0</td>
<td>608</td>
<td>6.5</td>
<td>7.2</td>
<td>2.6</td>
<td>2379</td>
<td>331</td>
<td>331</td>
<td>331</td>
<td>331</td>
<td>11.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

備考:
- 配合フレッシュ性状試験結果
- 試験No. 配合フレッシュ性状試験結果
- 気温 コンクリート温度
- スランプフロー(mm) 50cm(S)
- V漏斗流下時間 (s)
- LP S1 S2 G 合計
- 容積密度 (kg/m³)
- 間隙通過性
(3) 打込み試験

<table>
<thead>
<tr>
<th>No.</th>
<th>1台目</th>
<th>2台目</th>
<th>3台目</th>
<th>4台目</th>
<th>5台目</th>
<th>6台目</th>
<th>7台目</th>
<th>8台目</th>
<th>9台目</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP</td>
<td>S1</td>
<td>G</td>
<td>LP</td>
<td>S1</td>
<td>G</td>
<td>LP</td>
<td>S1</td>
<td>G</td>
<td>LP</td>
</tr>
<tr>
<td>S</td>
<td>W/B</td>
<td>s/a</td>
<td>Air</td>
<td>W/B</td>
<td>s/a</td>
<td>Air</td>
<td>W/B</td>
<td>s/a</td>
<td>Air</td>
</tr>
<tr>
<td>タイミー</td>
<td>品質</td>
<td>品質</td>
<td>品質</td>
<td>品質</td>
<td>品質</td>
<td>品質</td>
<td>品質</td>
<td>品質</td>
<td>品質</td>
</tr>
<tr>
<td>1.00</td>
<td>2.00</td>
<td>3.00</td>
<td>4.00</td>
<td>5.00</td>
<td>6.00</td>
<td>7.00</td>
<td>8.00</td>
<td>9.00</td>
<td>10.00</td>
</tr>
<tr>
<td>A</td>
<td>44.9</td>
<td>53.4</td>
<td>2.5</td>
<td>3.22</td>
<td>2.26</td>
<td>3.04</td>
<td>2.70</td>
<td>2.66</td>
<td>2.70</td>
</tr>
<tr>
<td>B</td>
<td>2000</td>
<td>44.9</td>
<td>53.4</td>
<td>2.5</td>
<td>3.22</td>
<td>2.26</td>
<td>3.04</td>
<td>2.70</td>
<td>2.66</td>
</tr>
<tr>
<td>C</td>
<td>160</td>
<td>229</td>
<td>107</td>
<td>20</td>
<td>178</td>
<td>886</td>
<td>785</td>
<td>3000H</td>
<td>404</td>
</tr>
<tr>
<td>D</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>E</td>
<td>0.75%</td>
<td>0.020%</td>
<td>0.71%</td>
<td>0.36%</td>
<td>0.13%</td>
<td>0.02%</td>
<td>0.01%</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>F</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>G</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>H</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>I</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>J</td>
<td>0.7%</td>
<td>0.7%</td>
<td>0.7%</td>
<td>0.7%</td>
<td>0.7%</td>
<td>0.7%</td>
<td>0.7%</td>
<td>0.7%</td>
<td>0.7%</td>
</tr>
<tr>
<td>K</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>L</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>M</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>N</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>O</td>
<td>0.7%</td>
<td>0.7%</td>
<td>0.7%</td>
<td>0.7%</td>
<td>0.7%</td>
<td>0.7%</td>
<td>0.7%</td>
<td>0.7%</td>
<td>0.7%</td>
</tr>
<tr>
<td>P</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>Q</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>R</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>S</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>T</td>
<td>0.7%</td>
<td>0.7%</td>
<td>0.7%</td>
<td>0.7%</td>
<td>0.7%</td>
<td>0.7%</td>
<td>0.7%</td>
<td>0.7%</td>
<td>0.7%</td>
</tr>
<tr>
<td>U</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>V</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>W</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>X</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Y</td>
<td>0.7%</td>
<td>0.7%</td>
<td>0.7%</td>
<td>0.7%</td>
<td>0.7%</td>
<td>0.7%</td>
<td>0.7%</td>
<td>0.7%</td>
<td>0.7%</td>
</tr>
<tr>
<td>Z</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
</tbody>
</table>

備考:
配 合 フレッシュ性状試験結果

V漏斗 流下時 間
空気量 (%)
単位容積質量 (kg/m3)
間隙通過性 単位水量 (kg/m3)
2.1.3 材料特性確認試験

(1) 打込み中のミスト効果確認試験

① ブリーディング試験結果

<table>
<thead>
<tr>
<th>経過時間（分）</th>
<th>時刻</th>
<th>浮水の量（cm³）</th>
<th>累計（cm³）</th>
<th>試験日</th>
<th>試験方法</th>
<th>容器No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>11:45</td>
<td>0.0</td>
<td>0.0</td>
<td>平成24年10月24日</td>
<td>50ℓ二軸ミキサー</td>
<td>No.2</td>
</tr>
<tr>
<td>10</td>
<td>11:55</td>
<td>0.0</td>
<td>0.0</td>
<td>容器No.</td>
<td>No.2</td>
<td>0.0</td>
</tr>
<tr>
<td>20</td>
<td>12:05</td>
<td>0.0</td>
<td>0.0</td>
<td>容器の重量</td>
<td>20.03 kg</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>12:15</td>
<td>0.0</td>
<td>0.0</td>
<td>容器の上面の平均直径</td>
<td>249.425 mm</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>12:25</td>
<td>0.0</td>
<td>0.0</td>
<td>容器の上面の面積【A】</td>
<td>488.618 cm²</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>12:35</td>
<td>0.0</td>
<td>0.0</td>
<td>吸い取った浮水の全量【V】</td>
<td>10.5 cm³</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>12:45</td>
<td>0.0</td>
<td>0.0</td>
<td>試験後の試料の重量</td>
<td>29.83 kg</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>13:15</td>
<td>表面うっすら採取不可</td>
<td>1.1 1.1</td>
<td>試料の重量【S】</td>
<td>29.84 kg</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>13:45</td>
<td>1.1 1.1</td>
<td>3.3</td>
<td>1m³あたりの材料の総重量【W】</td>
<td>2363 kg</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>14:15</td>
<td>2.2 2.2</td>
<td>5.6</td>
<td>ブリーディング量【V/A】</td>
<td>0.21 cm³/㎝³</td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>14:45</td>
<td>1.5 1.5</td>
<td>4.8</td>
<td>練上がり時のコンクリート温度</td>
<td>21.4 ℃</td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>15:15</td>
<td>0.8 0.8</td>
<td>5.6</td>
<td>室温【CT】</td>
<td>20.2 ℃</td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>15:45</td>
<td>2.4 2.4</td>
<td>8.0</td>
<td>【CT係数】</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>270</td>
<td>16:15</td>
<td>0.3 0.3</td>
<td>8.3</td>
<td>試験後の試料の重量</td>
<td>29.83 kg</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>16:45</td>
<td>0.8 0.8</td>
<td>9.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>330</td>
<td>17:15</td>
<td>0.7 0.7</td>
<td>9.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>360</td>
<td>17:45</td>
<td>0.6 0.6</td>
<td>10.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>390</td>
<td>18:15</td>
<td>0.1 0.1</td>
<td>10.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>420</td>
<td>18:45</td>
<td>0.0 0.0</td>
<td>10.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>450</td>
<td>19:15</td>
<td>0.0 0.0</td>
<td>10.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>480</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>510</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>540</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>570</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![グラフ](image)
2-6 ② 凝結試験結果

20℃環境における凝結時間

<table>
<thead>
<tr>
<th>計測時間</th>
<th>経過時間</th>
<th>貫入抵抗</th>
<th>計測時間</th>
<th>経過時間</th>
<th>貫入抵抗</th>
</tr>
</thead>
<tbody>
<tr>
<td>18:56</td>
<td>11:25</td>
<td>0:00</td>
<td>16:27</td>
<td>5:02</td>
<td>0.5</td>
</tr>
<tr>
<td>1:56</td>
<td>7:00</td>
<td>2.65</td>
<td>16:57</td>
<td>5:32</td>
<td>1.4</td>
</tr>
<tr>
<td>2:26</td>
<td>7:30</td>
<td>3.57</td>
<td>17:27</td>
<td>6:02</td>
<td>2.5</td>
</tr>
<tr>
<td>2:56</td>
<td>8:00</td>
<td>6.12</td>
<td>17:57</td>
<td>6:32</td>
<td>4.0</td>
</tr>
<tr>
<td>3:26</td>
<td>8:30</td>
<td>7.75</td>
<td>18:29</td>
<td>7:04</td>
<td>5.2</td>
</tr>
<tr>
<td>4:06</td>
<td>9:10</td>
<td>13.87</td>
<td>18:59</td>
<td>7:34</td>
<td>8.2</td>
</tr>
<tr>
<td>4:36</td>
<td>9:40</td>
<td>17.95</td>
<td>19:29</td>
<td>8:04</td>
<td>11.4</td>
</tr>
<tr>
<td>5:26</td>
<td>10:30</td>
<td>24.47</td>
<td>19:51</td>
<td>8:26</td>
<td>14.1</td>
</tr>
<tr>
<td>5:56</td>
<td>11:00</td>
<td>34.26</td>
<td>20:31</td>
<td>9:06</td>
<td>18.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20:39</td>
<td>9:14</td>
<td>19.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20:47</td>
<td>9:22</td>
<td>20.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20:55</td>
<td>9:30</td>
<td>23.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>21:03</td>
<td>9:38</td>
<td>29.1</td>
</tr>
</tbody>
</table>

10℃環境における凝結時間

<table>
<thead>
<tr>
<th>配合名</th>
<th>上部コンクリートピット 10℃</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>加水時刻</td>
</tr>
<tr>
<td></td>
<td>貫入時刻及び貫入針断面積(mm²)</td>
</tr>
<tr>
<td>5:32</td>
<td>22</td>
</tr>
</tbody>
</table>

2-6
③ 支持強度測定結果

<table>
<thead>
<tr>
<th>試験ケース : 上部コンクリートピット ケース 1</th>
<th>試験ケース : 上部コンクリートピット ケース 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>土壌高度計 表面支持力</td>
<td>土壌高度計 表面支持力</td>
</tr>
<tr>
<td>mm</td>
<td>kg/cm²</td>
</tr>
<tr>
<td>0.00 10:55</td>
<td>0</td>
</tr>
<tr>
<td>0.30 11:25</td>
<td>0</td>
</tr>
<tr>
<td>1.00 11:55</td>
<td>0</td>
</tr>
<tr>
<td>1.30 12:25</td>
<td>0</td>
</tr>
<tr>
<td>2.00 12:55</td>
<td>0</td>
</tr>
<tr>
<td>2.30 13:25</td>
<td>0</td>
</tr>
<tr>
<td>3.00 13:55</td>
<td>0</td>
</tr>
<tr>
<td>3.30 14:25</td>
<td>4.0</td>
</tr>
<tr>
<td>4.00 14:55</td>
<td>12.0</td>
</tr>
<tr>
<td>4.30 15:25</td>
<td>13.5</td>
</tr>
<tr>
<td>5.00 15:55</td>
<td>18.5</td>
</tr>
<tr>
<td>5.30 16:25</td>
<td>22.5</td>
</tr>
<tr>
<td>6.00 16:55</td>
<td>26.0</td>
</tr>
<tr>
<td>6.30 17:25</td>
<td>27.0</td>
</tr>
<tr>
<td>7.00 17:55</td>
<td>28.5</td>
</tr>
<tr>
<td>7.30 18:25</td>
<td>30.5</td>
</tr>
<tr>
<td>8.00 18:55</td>
<td>32.0</td>
</tr>
<tr>
<td>8.30 19:25</td>
<td>33.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>試験ケース : 上部コンクリートピット ケース 3</th>
<th>試験ケース : 上部コンクリートピット ケース 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>土壌高度計 表面支持力</td>
<td>土壌高度計 表面支持力</td>
</tr>
<tr>
<td>mm</td>
<td>kg/cm²</td>
</tr>
<tr>
<td>0.00 9:55</td>
<td>0</td>
</tr>
<tr>
<td>0.30 10:25</td>
<td>0</td>
</tr>
<tr>
<td>1.00 10:55</td>
<td>0</td>
</tr>
<tr>
<td>1.30 11:25</td>
<td>0</td>
</tr>
<tr>
<td>2.00 11:55</td>
<td>0</td>
</tr>
<tr>
<td>2.30 12:25</td>
<td>0</td>
</tr>
<tr>
<td>3.00 12:55</td>
<td>0</td>
</tr>
<tr>
<td>3.30 13:25</td>
<td>0</td>
</tr>
<tr>
<td>4.00 13:55</td>
<td>2.0</td>
</tr>
<tr>
<td>4.30 14:25</td>
<td>7.5</td>
</tr>
<tr>
<td>5.00 14:55</td>
<td>13.0</td>
</tr>
<tr>
<td>5.30 15:25</td>
<td>18.0</td>
</tr>
<tr>
<td>6.00 15:55</td>
<td>22.0</td>
</tr>
<tr>
<td>6.30 16:25</td>
<td>24.0</td>
</tr>
<tr>
<td>7.00 16:55</td>
<td>27.0</td>
</tr>
<tr>
<td>7.30 17:25</td>
<td>28.5</td>
</tr>
<tr>
<td>8.00 17:55</td>
<td>31.0</td>
</tr>
<tr>
<td>8.30 18:25</td>
<td>32.0</td>
</tr>
<tr>
<td>9.00 18:55</td>
<td>33.0</td>
</tr>
</tbody>
</table>
試験ケース：上部コンクリートピット 20℃環境

<table>
<thead>
<tr>
<th>過去時間</th>
<th>時刻</th>
<th>土壌高度計</th>
<th>表面支持力</th>
<th>土壌高度計</th>
<th>表面支持力</th>
<th>土壌高度計</th>
<th>表面支持力</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>mm kg/cm²</td>
<td>mm kg/cm²</td>
<td>mm kg/cm²</td>
<td>mm kg/cm²</td>
<td>mm kg/cm²</td>
<td>mm kg/cm²</td>
</tr>
<tr>
<td>0:00</td>
<td>10:40</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0:30</td>
<td>11:10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1:00</td>
<td>11:40</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1:30</td>
<td>12:10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2:00</td>
<td>12:40</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2:30</td>
<td>13:10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3:00</td>
<td>13:40</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3:30</td>
<td>14:05</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>4:00</td>
<td>14:40</td>
<td>0.0</td>
<td>0.4</td>
<td>1.5</td>
<td>0.1</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>4:30</td>
<td>15:05</td>
<td>4.0</td>
<td>0.2</td>
<td>2.9</td>
<td>0.3</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>5:00</td>
<td>15:40</td>
<td>9.0</td>
<td>0.6</td>
<td>8.7</td>
<td>1.1</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>5:30</td>
<td>16:05</td>
<td>13.5</td>
<td>1.4</td>
<td>10.0</td>
<td>1.3</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>6:00</td>
<td>16:40</td>
<td>17.0</td>
<td>3.0</td>
<td>16.5</td>
<td>3.3</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>6:30</td>
<td>17:05</td>
<td>20.5</td>
<td>3.5</td>
<td>19.0</td>
<td>3.7</td>
<td>1.6</td>
<td>1.6</td>
</tr>
<tr>
<td>7:00</td>
<td>17:40</td>
<td>27.0</td>
<td>4.0</td>
<td>24.5</td>
<td>4.0</td>
<td>1.7</td>
<td>1.7</td>
</tr>
<tr>
<td>7:30</td>
<td>18:10</td>
<td>30.5</td>
<td>4.5</td>
<td>27.3</td>
<td>4.5</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>8:00</td>
<td>18:40</td>
<td>33.0</td>
<td>5.1</td>
<td>28.8</td>
<td>5.2</td>
<td>1.9</td>
<td>1.9</td>
</tr>
<tr>
<td>8:30</td>
<td>19:10</td>
<td>35.0</td>
<td>5.6</td>
<td>30.5</td>
<td>5.7</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>9:00</td>
<td>19:40</td>
<td>36.5</td>
<td>6.2</td>
<td>32.2</td>
<td>6.3</td>
<td>2.1</td>
<td>2.1</td>
</tr>
</tbody>
</table>

空隙率試験結果

<table>
<thead>
<tr>
<th>パラメータ</th>
<th>ケース1</th>
<th>ケース3</th>
<th>ケース4</th>
</tr>
</thead>
<tbody>
<tr>
<td>空隙率</td>
<td>20.2</td>
<td>18.6</td>
<td>20.3</td>
</tr>
</tbody>
</table>

空隙率グラフ

![空隙率グラフ](image-url)
⑤ 表面透気試験結果

<table>
<thead>
<tr>
<th>透気係数</th>
<th>ケース1</th>
<th>ケース3</th>
<th>ケース4</th>
</tr>
</thead>
<tbody>
<tr>
<td>上部コンクリートピット</td>
<td>16.3</td>
<td>5.4</td>
<td>13.0</td>
</tr>
</tbody>
</table>

⑥ 表面水分量試験結果

<table>
<thead>
<tr>
<th>上部コンクリートピット</th>
<th>材齢</th>
<th>ミスト少</th>
<th>ミスト多</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>33.0</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>2</td>
<td>32.0</td>
<td>30.6</td>
<td>------</td>
</tr>
<tr>
<td>3</td>
<td>27.9</td>
<td>31.7</td>
<td>------</td>
</tr>
<tr>
<td>4</td>
<td>24.8</td>
<td>30.6</td>
<td>------</td>
</tr>
<tr>
<td>5</td>
<td>22.4</td>
<td>27.6</td>
<td>------</td>
</tr>
<tr>
<td>6</td>
<td>18.5</td>
<td>26.3</td>
<td>------</td>
</tr>
<tr>
<td>7</td>
<td>13.8</td>
<td>21.9</td>
<td>------</td>
</tr>
<tr>
<td>8</td>
<td>12.0</td>
<td>19.7</td>
<td>------</td>
</tr>
<tr>
<td>9</td>
<td>10.0</td>
<td>15.8</td>
<td>------</td>
</tr>
<tr>
<td>10</td>
<td>6.5</td>
<td>13.0</td>
<td>------</td>
</tr>
<tr>
<td>11</td>
<td>6.0</td>
<td>11.0</td>
<td>------</td>
</tr>
<tr>
<td>12</td>
<td>5.9</td>
<td>8.5</td>
<td>------</td>
</tr>
<tr>
<td>13</td>
<td>4.5</td>
<td>7.5</td>
<td>------</td>
</tr>
<tr>
<td>14</td>
<td>4.3</td>
<td>7.3</td>
<td>------</td>
</tr>
<tr>
<td>15</td>
<td>4.1</td>
<td>6.8</td>
<td>------</td>
</tr>
<tr>
<td>16</td>
<td>3.8</td>
<td>6.5</td>
<td>------</td>
</tr>
<tr>
<td>17</td>
<td>3.7</td>
<td>6.3</td>
<td>------</td>
</tr>
<tr>
<td>18</td>
<td>3.7</td>
<td>6.2</td>
<td>------</td>
</tr>
<tr>
<td>19</td>
<td>3.8</td>
<td>6.2</td>
<td>------</td>
</tr>
<tr>
<td>20</td>
<td>3.9</td>
<td>6.2</td>
<td>------</td>
</tr>
<tr>
<td>21</td>
<td>2.9</td>
<td>4.8</td>
<td>------</td>
</tr>
<tr>
<td>22</td>
<td>2.5</td>
<td>4.1</td>
<td>------</td>
</tr>
<tr>
<td>23</td>
<td>2.5</td>
<td>3.8</td>
<td>------</td>
</tr>
<tr>
<td>24</td>
<td>2.3</td>
<td>3.3</td>
<td>------</td>
</tr>
<tr>
<td>25</td>
<td>2.4</td>
<td>3.2</td>
<td>------</td>
</tr>
<tr>
<td>26</td>
<td>2.2</td>
<td>3.1</td>
<td>------</td>
</tr>
<tr>
<td>27</td>
<td>2.2</td>
<td>3.0</td>
<td>------</td>
</tr>
<tr>
<td>28</td>
<td>1.7</td>
<td>3.1</td>
<td>------</td>
</tr>
</tbody>
</table>
⑦ 不陸測定結果

<table>
<thead>
<tr>
<th>部位</th>
<th>ケース</th>
<th>沈下量(mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>上部コンクリートピット</td>
<td>ケース3</td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td>ミスト少</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ケース4</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td>ミスト多</td>
<td></td>
</tr>
</tbody>
</table>

振動前後の沈下量の平均値(mm)

![グラフ](#)
(2) 再振動の効果確認試験

① 表面沈下測定結果

<table>
<thead>
<tr>
<th>打込みから60分 再振動無し</th>
<th>打込みから90分 再振動無し</th>
</tr>
</thead>
<tbody>
<tr>
<td>I 1 1 0 0 0 0</td>
<td>I 1 1 0 0 0 1 0</td>
</tr>
<tr>
<td>II 0 0 0 0 0 0</td>
<td>II 0 0 0 0 0 0</td>
</tr>
<tr>
<td>III 0 0 0 0 0 0</td>
<td>III 1 0 0 0 0 0</td>
</tr>
<tr>
<td>IV 0 0 0 0 0 0</td>
<td>IV 0 0 0 1 0 0</td>
</tr>
<tr>
<td>V 0 0 0 0 0 0</td>
<td>V 0 0 0 0 0 0</td>
</tr>
<tr>
<td>VI 0 0 0 0 0 0</td>
<td>VI 0 0 0 0 0 0</td>
</tr>
</tbody>
</table>

打込みから60分 再振動後 | 打込みから90分 再振動後
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I 1 2 1 1 0 0</td>
<td>I 0 0 0 0 0 0</td>
</tr>
<tr>
<td>II 2 1 1 1 1 1</td>
<td>II 0 0 1 1 1 0</td>
</tr>
<tr>
<td>III 0 1 2 1 1 0</td>
<td>III 1 1 2 2 1 1</td>
</tr>
<tr>
<td>IV 0 1 2 2 2 1</td>
<td>IV 0 1 2 2 2 1</td>
</tr>
<tr>
<td>V 1 0 2 2 2 1</td>
<td>V 0 0 1 1 0 1</td>
</tr>
<tr>
<td>VI 0 1 0 1 0 1</td>
<td>VI 0 1 0 0 0 0</td>
</tr>
</tbody>
</table>

② 表層透気試験結果

<table>
<thead>
<tr>
<th>試験条件</th>
<th>透気係数（×10^{-16}m^2）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>中心部</td>
</tr>
<tr>
<td>再振動無</td>
<td>4.3</td>
</tr>
<tr>
<td>打込みから60分後（練上り120分後）</td>
<td>2.0</td>
</tr>
<tr>
<td>打込みから90分後（練上り150分後）</td>
<td>1.4</td>
</tr>
</tbody>
</table>
② 圧縮試験結果

(N/mm²)

<table>
<thead>
<tr>
<th>No.</th>
<th>再振動無し</th>
<th>打込みから60分後 (練上り120分後)</th>
<th>打込みから90分後 (練上り150分後)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N 平均</td>
<td>N 平均</td>
<td>N 平均</td>
</tr>
<tr>
<td>上部</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>①</td>
<td>41.330</td>
<td>44.228</td>
<td>44.422</td>
</tr>
<tr>
<td>②</td>
<td>41.173</td>
<td>45.335</td>
<td>45.043</td>
</tr>
<tr>
<td>③</td>
<td>42.289</td>
<td>45.490</td>
<td>44.734</td>
</tr>
<tr>
<td>下部</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>④</td>
<td>41.248</td>
<td>43.904</td>
<td>42.944</td>
</tr>
<tr>
<td>⑤</td>
<td>43.823</td>
<td>44.304</td>
<td>43.360</td>
</tr>
<tr>
<td>⑥</td>
<td>42.204</td>
<td>44.858</td>
<td>43.485</td>
</tr>
<tr>
<td>差 (上部-下部)</td>
<td>-0.8</td>
<td>0.7</td>
<td>1.5</td>
</tr>
</tbody>
</table>

③ 空隙率測定結果

<table>
<thead>
<tr>
<th>部位</th>
<th>空隙率(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>上部</td>
<td>下部</td>
</tr>
<tr>
<td>再振動無</td>
<td>16.5</td>
</tr>
<tr>
<td>打込みから60分後 (練上り120分後)</td>
<td>14.3</td>
</tr>
<tr>
<td>打込みから90分後 (練上り150分後)</td>
<td>14.9</td>
</tr>
</tbody>
</table>
③ 骨材分布測定結果

<table>
<thead>
<tr>
<th></th>
<th>振動無し (練上り120分後)</th>
<th>打込みから60分後 (練上り150分後)</th>
<th>打込みから90分後 (練上り150分後)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>平均</td>
<td>n</td>
</tr>
<tr>
<td>上部</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>①</td>
<td></td>
<td>22.1%</td>
<td></td>
</tr>
<tr>
<td>②</td>
<td></td>
<td>29.5%</td>
<td></td>
</tr>
<tr>
<td>③</td>
<td></td>
<td>22.8%</td>
<td></td>
</tr>
<tr>
<td>下部</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>④</td>
<td></td>
<td>20.6%</td>
<td></td>
</tr>
<tr>
<td>⑤</td>
<td></td>
<td>30.6%</td>
<td></td>
</tr>
<tr>
<td>⑥</td>
<td></td>
<td>20.9%</td>
<td></td>
</tr>
<tr>
<td>差(下部-上部)</td>
<td>-</td>
<td>0.8%</td>
<td>-</td>
</tr>
</tbody>
</table>

単位容積質量の差

(\(\text{kg/m}^3\))

<table>
<thead>
<tr>
<th>試験ケース</th>
<th>再振動無</th>
<th>打込み後60分後 (練上り120分後)</th>
<th>打込み後90分後 (練上り150分後)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>平均</td>
<td>N</td>
</tr>
<tr>
<td>上部</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>①</td>
<td>2398.8</td>
<td></td>
<td>2402.8</td>
</tr>
<tr>
<td>②</td>
<td>2411.9</td>
<td>2399.2</td>
<td>2408.3</td>
</tr>
<tr>
<td>③</td>
<td>2386.8</td>
<td></td>
<td>2412.3</td>
</tr>
<tr>
<td>下部</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>④</td>
<td>2406.9</td>
<td></td>
<td>2404.4</td>
</tr>
<tr>
<td>⑤</td>
<td>2402.6</td>
<td>2401.7</td>
<td>2404.2</td>
</tr>
<tr>
<td>⑥</td>
<td>2395.5</td>
<td></td>
<td>2405.1</td>
</tr>
<tr>
<td>差(下部-上部)</td>
<td>—</td>
<td>-2.50</td>
<td>—</td>
</tr>
</tbody>
</table>

設計単位体積質量に対する差（％）

\[\frac{7}{8}\times 100\]

<table>
<thead>
<tr>
<th>設計単位体積質量</th>
<th>2365</th>
</tr>
</thead>
<tbody>
<tr>
<td>設計単位体積質量に対する差（％）</td>
<td>—</td>
</tr>
</tbody>
</table>
（3）振動による表面仕上げ効果確認試験
① 支持強度測定結果

<table>
<thead>
<tr>
<th>試験ケース：上部コンクリートピット 再振動無し</th>
<th>平均表面支持力 mm kg/cm²</th>
<th>試験ケース：表面締固めバイブレータ</th>
<th>平均表面支持力 mm kg/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>過経時間</td>
<td>時刻</td>
<td>測定値①</td>
<td>測定値②</td>
</tr>
<tr>
<td>0:00</td>
<td>9:55</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0:30</td>
<td>10:25</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1:00</td>
<td>10:55</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1:30</td>
<td>11:25</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2:00</td>
<td>11:55</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2:30</td>
<td>12:25</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3:00</td>
<td>12:55</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3:30</td>
<td>13:25</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>4:00</td>
<td>13:55</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>4:30</td>
<td>14:25</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>5:00</td>
<td>14:55</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>5:30</td>
<td>15:25</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>6:00</td>
<td>15:55</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>6:30</td>
<td>16:25</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>7:00</td>
<td>16:55</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>7:30</td>
<td>17:25</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>8:00</td>
<td>17:55</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>8:30</td>
<td>18:25</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>9:00</td>
<td>18:55</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

試験ケース：上部低拡散材 トロウェル

| 過経時間 | 時刻 | 測定値① | 測定値② | 増高計 | 表面支持力 | 増高計 | 表面支持力 |
|---|---------------------------|---------------------------|---------------------------|
| 0:00 | 11:55 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0:30 | 12:25 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1:00 | 12:55 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1:30 | 13:25 | 0.0 | 0.0 | 0.0 | 0.0 |
| 2:00 | 13:55 | 0.0 | 0.0 | 0.0 | 0.0 |
| 2:30 | 14:25 | 0.0 | 0.0 | 0.0 | 0.0 |
| 3:00 | 14:55 | 0.0 | 0.0 | 0.0 | 0.0 |
| 3:30 | 15:25 | 0.0 | 0.0 | 0.0 | 0.0 |
| 4:00 | 15:55 | 0.0 | 0.0 | 0.0 | 0.0 |
| 4:30 | 16:25 | 0.0 | 0.0 | 0.0 | 0.0 |
| 5:00 | 16:55 | 0.0 | 0.0 | 0.0 | 0.0 |
| 5:30 | 17:25 | 0.0 | 0.0 | 0.0 | 0.0 |
| 6:00 | 17:55 | 0.0 | 0.0 | 0.0 | 0.0 |
| 6:30 | 18:25 | 0.0 | 0.0 | 0.0 | 0.0 |
| 7:00 | 18:55 | 0.0 | 0.0 | 0.0 | 0.0 |
| 7:30 | 19:25 | 0.0 | 0.0 | 0.0 | 0.0 |
| 8:00 | 19:55 | 0.0 | 0.0 | 0.0 | 0.0 |
| 8:30 | 20:25 | 0.0 | 0.0 | 0.0 | 0.0 |
| 9:00 | 20:55 | 0.0 | 0.0 | 0.0 | 0.0 |
| 9:30 | 21:25 | 0.0 | 0.0 | 0.0 | 0.0 |
| 10:00 | 21:55 | 0.0 | 0.0 | 0.0 | 0.0 |
| 10:30 | 22:25 | 0.0 | 0.0 | 0.0 | 0.0 |
| 11:00 | 22:55 | 0.0 | 0.0 | 0.0 | 0.0 |
| 11:30 | 23:25 | 0.0 | 0.0 | 0.0 | 0.0 |
| 12:00 | 23:55 | 0.0 | 0.0 | 0.0 | 0.0 |
| 12:30 | 0:25 | 0.0 | 0.0 | 0.0 | 0.0 |
② 表層透気試験結果

<table>
<thead>
<tr>
<th>仕上げ方法</th>
<th>振動による表面仕上げ無し</th>
<th>表面締固めバイブレータ</th>
<th>トロウェル</th>
</tr>
</thead>
<tbody>
<tr>
<td>透気係数 ((\times 10^{-16} \text{m}^2))</td>
<td>5.4</td>
<td>4.5</td>
<td>4.6</td>
</tr>
</tbody>
</table>

③ 空隙率測定結果

<table>
<thead>
<tr>
<th>部位</th>
<th>回数</th>
<th>振動による表面仕上げ無し</th>
<th>表面締固めバイブレータ</th>
<th>トロウェル</th>
</tr>
</thead>
<tbody>
<tr>
<td>上部コンクリートピット</td>
<td>実施無し</td>
<td>18.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1回実施</td>
<td>15.4</td>
<td>17.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2回実施</td>
<td>13.2</td>
<td>17.5</td>
<td></td>
</tr>
</tbody>
</table>

④ 表面水分量測定結果

<table>
<thead>
<tr>
<th>材齢</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>再振動無し</td>
<td>32.0</td>
<td>29.0</td>
<td>27.9</td>
<td>24.8</td>
<td>22.4</td>
<td>18.5</td>
<td>13.8</td>
<td>12.0</td>
<td>9.5</td>
<td>6.5</td>
<td>6.0</td>
<td>5.9</td>
<td>4.5</td>
<td>4.3</td>
</tr>
<tr>
<td>表面締固めバイブレータ</td>
<td>31.6</td>
<td>30.0</td>
<td>27.9</td>
<td>24.8</td>
<td>22.4</td>
<td>18.5</td>
<td>13.8</td>
<td>12.0</td>
<td>10.0</td>
<td>8.1</td>
<td>7.5</td>
<td>6.5</td>
<td>6.3</td>
<td>5.7</td>
</tr>
<tr>
<td>トロウェル</td>
<td>29.0</td>
<td>27.8</td>
<td>26.0</td>
<td>23.0</td>
<td>17.0</td>
<td>13.0</td>
<td>11.9</td>
<td>11.0</td>
<td>8.8</td>
<td>6.2</td>
<td>6.3</td>
<td>6.1</td>
<td>6.0</td>
<td>5.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>3.8</td>
<td>3.7</td>
<td>3.7</td>
<td>3.8</td>
<td>3.9</td>
<td>2.9</td>
<td>2.5</td>
<td>2.5</td>
<td>2.3</td>
<td>2.4</td>
<td>2.2</td>
<td>2.2</td>
<td>1.7</td>
</tr>
<tr>
<td>5.1</td>
<td>5.3</td>
<td>5.2</td>
<td>5.1</td>
<td>5.2</td>
<td>4.4</td>
<td>3.7</td>
<td>1.9</td>
<td>1.9</td>
<td>1.7</td>
<td>1.7</td>
<td>1.9</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td>4.9</td>
<td>4.7</td>
<td>4.7</td>
<td>4.4</td>
<td>4.4</td>
<td>4.3</td>
<td>3.1</td>
<td>3.0</td>
<td>2.9</td>
<td>2.9</td>
<td>2.4</td>
<td>2.4</td>
<td>2.0</td>
</tr>
</tbody>
</table>
⑤ 不陸測定結果

<table>
<thead>
<tr>
<th>上部コンクリートピット</th>
<th>沈下量平均値 (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>振動による</td>
<td>0.22</td>
</tr>
<tr>
<td>表面仕上げ無し</td>
<td></td>
</tr>
<tr>
<td>表面締固めバイブレータ</td>
<td>1.66</td>
</tr>
<tr>
<td>トロウェル</td>
<td>0.43</td>
</tr>
</tbody>
</table>

⑥ 表面気泡測定結果

<table>
<thead>
<tr>
<th>表面気泡数（個）</th>
<th>ミスト少</th>
<th>表面締固めバイブレータ</th>
<th>トロウェル</th>
</tr>
</thead>
<tbody>
<tr>
<td>上部コンクリートピット</td>
<td>73</td>
<td>38</td>
<td>53</td>
</tr>
</tbody>
</table>
（4）養生効果確認試験

① 水分量測定結果

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>材令（日）</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>無養生</td>
<td>32.00</td>
<td>27.95</td>
<td>24.79</td>
<td>22.38</td>
<td>18.46</td>
<td>13.76</td>
<td>12.04</td>
<td>11.09</td>
<td>9.00</td>
<td>7.94</td>
<td>7.03</td>
<td>6.45</td>
<td>5.72</td>
</tr>
<tr>
<td>湿潤・保温養生マット</td>
<td>32.41</td>
<td>31.41</td>
<td>30.77</td>
<td>29.40</td>
<td>29.23</td>
<td>27.76</td>
<td>27.91</td>
<td>27.21</td>
<td>26.43</td>
<td>26.01</td>
<td>25.55</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>材令（日）</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>無養生</td>
<td>5.09</td>
<td>4.57</td>
<td>4.24</td>
<td>3.85</td>
<td>3.83</td>
<td>3.45</td>
<td>2.95</td>
<td>2.79</td>
<td>2.69</td>
<td>2.51</td>
<td>2.29</td>
<td>2.08</td>
<td>2.02</td>
</tr>
<tr>
<td>湿潤養生マット</td>
<td>7.82</td>
<td>7.26</td>
<td>6.83</td>
<td>6.18</td>
<td>5.91</td>
<td>5.09</td>
<td>4.95</td>
<td>4.67</td>
<td>4.49</td>
<td>4.18</td>
<td>3.85</td>
<td>3.72</td>
<td>3.58</td>
</tr>
<tr>
<td>湿潤・保温養生マット</td>
<td>25.27</td>
<td>24.58</td>
<td>24.36</td>
<td>22.67</td>
<td>22.64</td>
<td>22.59</td>
<td>22.42</td>
<td>22.29</td>
<td>22.16</td>
<td>21.75</td>
<td>21.22</td>
<td>21.00</td>
<td>20.87</td>
</tr>
</tbody>
</table>
2.1.4 養生時のコンクリート表面温度

<table>
<thead>
<tr>
<th>測定日・時間</th>
<th>測定日・時間</th>
<th>測定日・時間</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012/11/22 17:00</td>
<td>20.2</td>
<td>21.3</td>
</tr>
<tr>
<td>2012/11/22 18:00</td>
<td>20.0</td>
<td>23.3</td>
</tr>
<tr>
<td>2012/11/22 19:00</td>
<td>20.2</td>
<td>24.3</td>
</tr>
<tr>
<td>2012/11/22 20:00</td>
<td>20.2</td>
<td>25.1</td>
</tr>
<tr>
<td>2012/11/22 21:00</td>
<td>20.3</td>
<td>25.6</td>
</tr>
<tr>
<td>2012/11/22 22:00</td>
<td>20.3</td>
<td>26.1</td>
</tr>
<tr>
<td>2012/11/22 23:00</td>
<td>20.4</td>
<td>26.6</td>
</tr>
<tr>
<td>2012/11/23 0:00</td>
<td>20.5</td>
<td>27.0</td>
</tr>
<tr>
<td>2012/11/23 1:00</td>
<td>20.6</td>
<td>27.4</td>
</tr>
<tr>
<td>2012/11/23 2:00</td>
<td>20.7</td>
<td>27.8</td>
</tr>
<tr>
<td>2012/11/23 3:00</td>
<td>20.7</td>
<td>28.1</td>
</tr>
<tr>
<td>2012/11/23 4:00</td>
<td>20.7</td>
<td>28.3</td>
</tr>
<tr>
<td>2012/11/23 5:00</td>
<td>20.7</td>
<td>28.5</td>
</tr>
<tr>
<td>2012/11/23 6:00</td>
<td>20.7</td>
<td>28.7</td>
</tr>
<tr>
<td>2012/11/23 7:00</td>
<td>20.7</td>
<td>28.8</td>
</tr>
<tr>
<td>2012/11/23 8:00</td>
<td>20.8</td>
<td>29.0</td>
</tr>
<tr>
<td>2012/11/23 9:00</td>
<td>20.6</td>
<td>29.0</td>
</tr>
<tr>
<td>2012/11/23 10:00</td>
<td>20.1</td>
<td>29.2</td>
</tr>
<tr>
<td>2012/11/23 11:00</td>
<td>20.3</td>
<td>29.3</td>
</tr>
<tr>
<td>2012/11/23 12:00</td>
<td>20.2</td>
<td>29.4</td>
</tr>
<tr>
<td>2012/11/23 13:00</td>
<td>20.2</td>
<td>29.3</td>
</tr>
<tr>
<td>2012/11/23 14:00</td>
<td>20.0</td>
<td>29.4</td>
</tr>
<tr>
<td>2012/11/23 15:00</td>
<td>19.9</td>
<td>29.5</td>
</tr>
<tr>
<td>2012/11/23 16:00</td>
<td>19.7</td>
<td>29.5</td>
</tr>
<tr>
<td>2012/11/23 17:00</td>
<td>19.6</td>
<td>29.5</td>
</tr>
<tr>
<td>2012/11/23 18:00</td>
<td>19.4</td>
<td>29.5</td>
</tr>
<tr>
<td>2012/11/23 19:00</td>
<td>19.3</td>
<td>29.5</td>
</tr>
<tr>
<td>2012/11/23 20:00</td>
<td>19.1</td>
<td>29.4</td>
</tr>
<tr>
<td>2012/11/23 21:00</td>
<td>19.0</td>
<td>29.5</td>
</tr>
<tr>
<td>2012/11/23 22:00</td>
<td>18.9</td>
<td>29.5</td>
</tr>
<tr>
<td>2012/11/23 23:00</td>
<td>18.8</td>
<td>29.5</td>
</tr>
<tr>
<td>2012/11/24 0:00</td>
<td>18.2</td>
<td>29.5</td>
</tr>
<tr>
<td>2012/11/24 1:00</td>
<td>18.2</td>
<td>29.4</td>
</tr>
<tr>
<td>2012/11/24 2:00</td>
<td>18.1</td>
<td>29.4</td>
</tr>
<tr>
<td>2012/11/24 3:00</td>
<td>18.1</td>
<td>29.4</td>
</tr>
<tr>
<td>2012/11/24 4:00</td>
<td>18.0</td>
<td>29.4</td>
</tr>
<tr>
<td>2012/11/24 5:00</td>
<td>18.0</td>
<td>29.4</td>
</tr>
<tr>
<td>2012/11/24 6:00</td>
<td>17.8</td>
<td>29.3</td>
</tr>
<tr>
<td>2012/11/24 7:00</td>
<td>17.8</td>
<td>29.3</td>
</tr>
<tr>
<td>2012/11/24 8:00</td>
<td>17.8</td>
<td>29.3</td>
</tr>
<tr>
<td>2012/11/24 9:00</td>
<td>17.8</td>
<td>29.3</td>
</tr>
<tr>
<td>2012/11/24 10:00</td>
<td>17.7</td>
<td>29.3</td>
</tr>
<tr>
<td>2012/11/24 11:00</td>
<td>17.7</td>
<td>29.3</td>
</tr>
<tr>
<td>2012/11/24 12:00</td>
<td>17.6</td>
<td>29.3</td>
</tr>
<tr>
<td>2012/11/24 13:00</td>
<td>17.6</td>
<td>29.2</td>
</tr>
<tr>
<td>2012/11/24 14:00</td>
<td>17.6</td>
<td>29.2</td>
</tr>
<tr>
<td>2012/11/24 15:00</td>
<td>17.5</td>
<td>29.1</td>
</tr>
<tr>
<td>2012/11/24 16:00</td>
<td>17.5</td>
<td>29.1</td>
</tr>
<tr>
<td>2012/11/24 17:00</td>
<td>17.5</td>
<td>29.1</td>
</tr>
<tr>
<td>2012/11/24 18:00</td>
<td>17.3</td>
<td>29.0</td>
</tr>
<tr>
<td>2012/11/24 19:00</td>
<td>17.4</td>
<td>29.0</td>
</tr>
<tr>
<td>2012/11/24 20:00</td>
<td>17.3</td>
<td>29.0</td>
</tr>
<tr>
<td>2012/11/24 21:00</td>
<td>17.3</td>
<td>29.0</td>
</tr>
<tr>
<td>2012/11/24 22:00</td>
<td>17.3</td>
<td>29.0</td>
</tr>
<tr>
<td>2012/11/24 23:00</td>
<td>17.3</td>
<td>28.9</td>
</tr>
<tr>
<td>2012/11/25 0:00</td>
<td>17.2</td>
<td>28.9</td>
</tr>
<tr>
<td>2012/11/25 1:00</td>
<td>17.1</td>
<td>28.9</td>
</tr>
<tr>
<td>2012/11/25 2:00</td>
<td>17.2</td>
<td>28.9</td>
</tr>
<tr>
<td>2012/11/25 3:00</td>
<td>17.2</td>
<td>28.8</td>
</tr>
<tr>
<td>2012/11/25 4:00</td>
<td>17.1</td>
<td>28.8</td>
</tr>
<tr>
<td>2012/11/25 5:00</td>
<td>17.1</td>
<td>28.8</td>
</tr>
<tr>
<td>2012/11/25 6:00</td>
<td>17.1</td>
<td>28.6</td>
</tr>
<tr>
<td>2012/11/25 7:00</td>
<td>17.2</td>
<td>28.6</td>
</tr>
<tr>
<td>2012/11/25 8:00</td>
<td>17.4</td>
<td>28.7</td>
</tr>
<tr>
<td>2012/11/25 9:00</td>
<td>17.6</td>
<td>28.6</td>
</tr>
<tr>
<td>2012/11/25 10:00</td>
<td>17.8</td>
<td>28.6</td>
</tr>
<tr>
<td>2012/11/25 11:00</td>
<td>17.8</td>
<td>28.6</td>
</tr>
<tr>
<td>2012/11/25 12:00</td>
<td>17.8</td>
<td>28.5</td>
</tr>
<tr>
<td>2012/11/25 13:00</td>
<td>17.9</td>
<td>28.5</td>
</tr>
<tr>
<td>2012/11/25 14:00</td>
<td>17.9</td>
<td>28.5</td>
</tr>
<tr>
<td>2012/11/25 15:00</td>
<td>17.8</td>
<td>27.3</td>
</tr>
</tbody>
</table>
2.2 初期性能確認試験

2.2.1 初期性能確認試験結果一覧表

<table>
<thead>
<tr>
<th>部位</th>
<th>打設日</th>
<th>梱材</th>
<th>等級</th>
<th>材齢</th>
<th>壓縮強度</th>
<th>静弾性係数</th>
<th>引張強度</th>
</tr>
</thead>
<tbody>
<tr>
<td>上部コンクリートピット</td>
<td>2012.10.9</td>
<td>室内</td>
<td>7日</td>
<td>18.38</td>
<td>24.76</td>
<td>1.64</td>
<td>1.67 N/mm²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9日</td>
<td>17.87</td>
<td>23.79</td>
<td>1.68</td>
<td>1.70 N/mm²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>28日</td>
<td>43.50</td>
<td>33.60</td>
<td>3.68</td>
<td>3.68 N/mm²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>91日</td>
<td>42.79</td>
<td>33.10</td>
<td>3.71</td>
<td>3.71 N/mm²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>43.73</td>
<td>34.05</td>
<td>3.76</td>
<td>3.76 N/mm²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>68.04</td>
<td>39.06</td>
<td>3.89</td>
<td>3.89 N/mm²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>67.83</td>
<td>39.66</td>
<td>3.94</td>
<td>3.94 N/mm²</td>
</tr>
<tr>
<td></td>
<td></td>
<td>品質管理</td>
<td>7日</td>
<td>73.00</td>
<td>40.60</td>
<td>4.99</td>
<td>4.99 N/mm²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>28日</td>
<td>71.85</td>
<td>40.70</td>
<td>5.04</td>
<td>5.04 N/mm²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>91日</td>
<td>71.40</td>
<td>40.20</td>
<td>5.09</td>
<td>5.09 N/mm²</td>
</tr>
<tr>
<td></td>
<td>2012.11.21</td>
<td>現場水中</td>
<td>7日</td>
<td>34.30</td>
<td>34.96</td>
<td>3.94</td>
<td>3.94 N/mm²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>28日</td>
<td>34.31</td>
<td>34.96</td>
<td>3.94</td>
<td>3.94 N/mm²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>91日</td>
<td>35.00</td>
<td>34.96</td>
<td>3.94</td>
<td>3.94 N/mm²</td>
</tr>
<tr>
<td></td>
<td></td>
<td>コア</td>
<td>9日</td>
<td>58.70</td>
<td>38.10</td>
<td>4.31</td>
<td>4.31 N/mm²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>28日</td>
<td>56.96</td>
<td>38.40</td>
<td>4.34</td>
<td>4.34 N/mm²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>91日</td>
<td>59.40</td>
<td>37.30</td>
<td>4.37</td>
<td>4.37 N/mm²</td>
</tr>
<tr>
<td></td>
<td></td>
<td>湿潤-保湿養生マット</td>
<td>9日</td>
<td>25.33</td>
<td>27.89</td>
<td>4.61</td>
<td>4.61 N/mm²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>28日</td>
<td>25.82</td>
<td>28.24</td>
<td>4.64</td>
<td>4.64 N/mm²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24.4 KN/mm²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23.4 KN/mm²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>33.7 KN/mm²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>39.3 KN/mm²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40.4 KN/mm²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>44.5 KN/mm²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>47.3 KN/mm²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>58.3 KN/mm²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>68.3 KN/mm²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>71.8 KN/mm²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>72.1 KN/mm²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>73.0 KN/mm²</td>
</tr>
</tbody>
</table>

(未完)
圧縮強度試験結果

性弾性係数試験結果

割裂引張試験結果
添付資料－3

上部低拡散材施工確認試験データ集
目次

3.1 施工確認試験..3-1
3.1.1 フレッシュ性状確認試験結果...3-1
 (1) 室内試験...3-1
 (2) 実機試験...3-2
 (3) 打込み時試験...3-3
3.1.2 材料特性確認試験..3-4
 (1) 打込み中のミスト効果確認試験...3-4
 (2) 再振動の効果確認試験..3-10
 (3) 振動による表面仕上げ効果確認試験...3-13
 (4) 養生効果確認試験...3-16
3.1.3 温度応力解析による上部低拡散材のひび割れに関する検討.................................3-17
 (1) 現状解析...3-17
 (2) 養生期間を延長した場合の温度ひび割れ...3-31
3.2 初期性能確認試験..3-33
3.2.1 初期性能確認試験結果一覧表...3-33
3.1 施工確認試験

3.1.1 フレッシュ性状確認試験結果

(1) 室内試験

<table>
<thead>
<tr>
<th>No.</th>
<th>LPC</th>
<th>FA</th>
<th>LEX</th>
<th>グループ</th>
<th>漏斗容積</th>
<th>容積密度</th>
<th>W/B</th>
<th>縮混ぜ量</th>
<th>配合</th>
<th>時間</th>
<th>もの</th>
<th>温度</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>105.0</td>
<td>67.7</td>
<td>6.6</td>
<td>85.2</td>
<td>480.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.68%</td>
<td>0.006%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>100.0</td>
<td>60.0</td>
<td>5.2</td>
<td>75.2</td>
<td>402.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.52%</td>
<td>0.003%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>105.0</td>
<td>67.7</td>
<td>6.6</td>
<td>85.2</td>
<td>480.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.68%</td>
<td>0.006%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>100.0</td>
<td>60.0</td>
<td>5.2</td>
<td>75.2</td>
<td>402.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.52%</td>
<td>0.003%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>105.0</td>
<td>67.7</td>
<td>6.6</td>
<td>85.2</td>
<td>480.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.68%</td>
<td>0.006%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>100.0</td>
<td>60.0</td>
<td>5.2</td>
<td>75.2</td>
<td>402.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.52%</td>
<td>0.003%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>105.0</td>
<td>67.7</td>
<td>6.6</td>
<td>85.2</td>
<td>480.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.68%</td>
<td>0.006%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>100.0</td>
<td>60.0</td>
<td>5.2</td>
<td>75.2</td>
<td>402.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.52%</td>
<td>0.003%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>105.0</td>
<td>67.7</td>
<td>6.6</td>
<td>85.2</td>
<td>480.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.68%</td>
<td>0.006%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

備考：
- すべての試験は規定の方法で実施した。
- すべての試験結果は精度よく測定された。
- 使用した材料は高品質のものでした。
(2) 実機試験

| 配合 | フレッシュ性状試験結果 | 試験時刻 | 気温 | コンクリート温度 | スランプフロー（50cm） | 50cmスランプフロー
流下時間（s） | V漏斗流下時間（s） | LP | S1 | S2 | G | 合計容積 | 単位容積質量（kg/m³） | 間隙通過性 |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
打込み時試験

No.	LP	PC	FA	LEX	No.	LP	PC	FA	LEX	LP	PC	FA	LEX	
1	45	100	2.5	3.2	2.2	3.0	2.7	2.6	2.7	2.5	100	2.5	3.2	2.8
2	45	100	2.5	3.2	2.2	3.0	2.7	2.6	2.7	2.5	100	2.5	3.2	2.8
3	45	100	2.5	3.2	2.2	3.0	2.7	2.6	2.7	2.5	100	2.5	3.2	2.8
4	45	100	2.5	3.2	2.2	3.0	2.7	2.6	2.7	2.5	100	2.5	3.2	2.8

配合

<table>
<thead>
<tr>
<th>配合</th>
<th>フレッシュ性状確認試験結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>V漏斗流下時間</td>
<td>50cm (s)</td>
</tr>
<tr>
<td>空気量</td>
<td>%</td>
</tr>
<tr>
<td>単位容積質量</td>
<td>kg/m³</td>
</tr>
<tr>
<td>間隙通過性</td>
<td>単位水量(kg/m³)</td>
</tr>
<tr>
<td>経過時間</td>
<td>気温</td>
</tr>
<tr>
<td>スランプフロー(cm)</td>
<td>停止(s)</td>
</tr>
<tr>
<td>LP</td>
<td>S1</td>
</tr>
<tr>
<td>WL</td>
<td>P</td>
</tr>
</tbody>
</table>

練混ぜ量 W/B s/a Air

<table>
<thead>
<tr>
<th>練混ぜ量 W/B</th>
<th>s/a Air</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>100</td>
</tr>
</tbody>
</table>

容積 | 密度

<table>
<thead>
<tr>
<th>容積</th>
<th>密度</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>100</td>
</tr>
</tbody>
</table>

WL | P | C | F | A | L | E | X | No. | 練混ぜ量 W/B | s/a Air |

<table>
<thead>
<tr>
<th>WL</th>
<th>P</th>
<th>C</th>
<th>F</th>
<th>A</th>
<th>L</th>
<th>E</th>
<th>X</th>
<th>No.</th>
<th>練混ぜ量 W/B</th>
<th>s/a Air</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>100</td>
<td>2.5</td>
<td>3.2</td>
<td>2.2</td>
<td>3.0</td>
<td>2.7</td>
<td>2.6</td>
<td>2.7</td>
<td>2.5</td>
<td>100</td>
</tr>
</tbody>
</table>

3-3

(3) 打込み時試験
3.1.2 材料特性確認試験

(1) 打込み中のミスト効果確認試験

① ブリーディング試験結果

<table>
<thead>
<tr>
<th>経過時間 (分)</th>
<th>時刻</th>
<th>浮水の量 (cm³)</th>
<th>累計 (cm³)</th>
<th>試験日</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>11:00</td>
<td>0.0</td>
<td>0.0</td>
<td>50ℓ二軸ミキサー</td>
</tr>
<tr>
<td>10</td>
<td>11:10</td>
<td>0.0</td>
<td>0.0</td>
<td>容器No. No.1</td>
</tr>
<tr>
<td>20</td>
<td>11:20</td>
<td>0.0</td>
<td>0.0</td>
<td>容器の重量 20.44 kg</td>
</tr>
<tr>
<td>30</td>
<td>11:30</td>
<td>0.0</td>
<td>0.0</td>
<td>容器の上面の平均直径 249.540 mm</td>
</tr>
<tr>
<td>40</td>
<td>11:40</td>
<td>0.0</td>
<td>0.0</td>
<td>容器の上面の面積【A】 489.069 cm²</td>
</tr>
<tr>
<td>50</td>
<td>11:50</td>
<td>0.0</td>
<td>0.0</td>
<td>うっすら採取不可</td>
</tr>
<tr>
<td>60</td>
<td>12:00</td>
<td>吸い取った浮水の全量【V】 19.2 cm³</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>12:30</td>
<td>1.2</td>
<td>1.2</td>
<td>容器の上面の面積【A】</td>
</tr>
<tr>
<td>120</td>
<td>13:00</td>
<td>1.5</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>13:30</td>
<td>2.6</td>
<td>5.3</td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>14:00</td>
<td>3.4</td>
<td>8.7</td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>14:30</td>
<td>2.2</td>
<td>10.9</td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>15:00</td>
<td>3.3</td>
<td>14.2</td>
<td></td>
</tr>
<tr>
<td>270</td>
<td>15:30</td>
<td>2.1</td>
<td>16.3</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>16:00</td>
<td>1.9</td>
<td>18.2</td>
<td></td>
</tr>
<tr>
<td>330</td>
<td>16:30</td>
<td>1.0</td>
<td>19.2</td>
<td></td>
</tr>
<tr>
<td>360</td>
<td>17:00</td>
<td>0.0</td>
<td>19.2</td>
<td></td>
</tr>
<tr>
<td>390</td>
<td>17:30</td>
<td>0.0</td>
<td>19.2</td>
<td></td>
</tr>
<tr>
<td>420</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>450</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>480</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>510</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>540</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>570</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>600</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

試験後の試料の重量 27.74 kg

室温 【CT】 20.2 ℃

ブリーディング量【V/A】 0.039 cm³/cm²

ブリーディング率【V/CTの係数・W/10ω・S】 0.675 %

練上り時のコンクリート温度 22.2 ℃

試料の重量【S】 27.74 kg

1m³あたりの材料の総重量【W】 2243 kg

1m³あたりのコンクリートの水量 230 kg

試験後の試料の重量 27.74 kg

容器の上面の面積【A】
20℃環境における凝結時間

<table>
<thead>
<tr>
<th>時刻</th>
<th>測定時間</th>
<th>経過時間</th>
<th>貫入抵抗</th>
<th>時刻</th>
<th>測定時間</th>
<th>経過時間</th>
<th>貫入抵抗</th>
</tr>
</thead>
<tbody>
<tr>
<td>13:12</td>
<td>10:00</td>
<td>0:00</td>
<td>-</td>
<td>10:00</td>
<td>0:00</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>18:42</td>
<td>5:30</td>
<td>1.84</td>
<td></td>
<td>15:02</td>
<td>5:02</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>19:12</td>
<td>6:00</td>
<td>3.16</td>
<td></td>
<td>15:47</td>
<td>5:47</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>19:52</td>
<td>6:40</td>
<td>5.10</td>
<td></td>
<td>16:02</td>
<td>6:02</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>20:42</td>
<td>7:30</td>
<td>8.97</td>
<td></td>
<td>16:33</td>
<td>6:33</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>21:42</td>
<td>8:30</td>
<td>18.76</td>
<td></td>
<td>17:03</td>
<td>7:03</td>
<td>5.4</td>
<td></td>
</tr>
<tr>
<td>22:12</td>
<td>9:00</td>
<td>24.47</td>
<td></td>
<td>17:35</td>
<td>7:35</td>
<td>9.8</td>
<td></td>
</tr>
<tr>
<td>22:42</td>
<td>9:30</td>
<td>29.37</td>
<td></td>
<td>18:05</td>
<td>8:05</td>
<td>12.3</td>
<td></td>
</tr>
<tr>
<td>18:35</td>
<td>8:35</td>
<td>17.4</td>
<td></td>
<td>18:35</td>
<td>8:35</td>
<td>17.4</td>
<td></td>
</tr>
<tr>
<td>18:50</td>
<td>8:50</td>
<td>19.2</td>
<td></td>
<td>18:50</td>
<td>8:50</td>
<td>19.2</td>
<td></td>
</tr>
<tr>
<td>19:05</td>
<td>9:05</td>
<td>22.3</td>
<td></td>
<td>19:05</td>
<td>9:05</td>
<td>22.3</td>
<td></td>
</tr>
<tr>
<td>19:35</td>
<td>9:35</td>
<td>27.4</td>
<td></td>
<td>19:35</td>
<td>9:35</td>
<td>27.4</td>
<td></td>
</tr>
</tbody>
</table>

10℃環境における凝結時間

<table>
<thead>
<tr>
<th>配合名</th>
<th>上部低拡散材 10℃</th>
</tr>
</thead>
<tbody>
<tr>
<td>加水時刻</td>
<td>2012/11/9 11:25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>貫入時刻及び貫入針断面積 (mm²)</th>
<th>貫入値 (N)</th>
<th>貫入抵抗値 (N/mm²)</th>
<th>加水からの時間 (h.m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16:57 100</td>
<td>2</td>
<td>0.02</td>
<td>5:32</td>
</tr>
<tr>
<td>17:27 100</td>
<td>19</td>
<td>0.19</td>
<td>6:02</td>
</tr>
<tr>
<td>17:57 100</td>
<td>30</td>
<td>0.30</td>
<td>6:32</td>
</tr>
<tr>
<td>18:27 100</td>
<td>59</td>
<td>0.59</td>
<td>7:02</td>
</tr>
<tr>
<td>18:57 100</td>
<td>94</td>
<td>0.94</td>
<td>7:32</td>
</tr>
<tr>
<td>19:27 100</td>
<td>157</td>
<td>1.57</td>
<td>8:02</td>
</tr>
<tr>
<td>19:57 100</td>
<td>228</td>
<td>2.28</td>
<td>8:32</td>
</tr>
<tr>
<td>20:27 100</td>
<td>350</td>
<td>3.50</td>
<td>9:02</td>
</tr>
<tr>
<td>20:57 100</td>
<td>518</td>
<td>5.18</td>
<td>9:32</td>
</tr>
<tr>
<td>21:27 100</td>
<td>729</td>
<td>7.29</td>
<td>10:02</td>
</tr>
<tr>
<td>21:57 100</td>
<td>899</td>
<td>8.99</td>
<td>10:32</td>
</tr>
<tr>
<td>22:27 100</td>
<td>1189</td>
<td>11.89</td>
<td>11:02</td>
</tr>
<tr>
<td>22:57 100</td>
<td>1684</td>
<td>16.84</td>
<td>11:32</td>
</tr>
<tr>
<td>23:27 50</td>
<td>1045</td>
<td>20.90</td>
<td>12:02</td>
</tr>
<tr>
<td>23:57 50</td>
<td>1179</td>
<td>23.58</td>
<td>12:32</td>
</tr>
<tr>
<td>0:27 50</td>
<td>1367</td>
<td>27.34</td>
<td>13:02</td>
</tr>
<tr>
<td>試験ケース</td>
<td>上部低拡散材 ケース 1</td>
<td></td>
<td>試験ケース</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------</td>
<td>----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>時刻</td>
<td>測定値 ① 土壌高度計 表面支持力</td>
<td>測定値 ② 土壌高度計 表面支持力</td>
<td>平均表面支持力</td>
</tr>
<tr>
<td>0:00</td>
<td>10:40</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0:30</td>
<td>11:10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1:00</td>
<td>11:40</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1:30</td>
<td>12:10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2:00</td>
<td>12:40</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2:30</td>
<td>13:10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3:00</td>
<td>13:40</td>
<td>4.0</td>
<td>0.4</td>
</tr>
<tr>
<td>3:30</td>
<td>14:10</td>
<td>9.0</td>
<td>1.2</td>
</tr>
<tr>
<td>4:00</td>
<td>14:40</td>
<td>13.5</td>
<td>2.4</td>
</tr>
<tr>
<td>4:30</td>
<td>15:10</td>
<td>18.0</td>
<td>3.0</td>
</tr>
<tr>
<td>5:00</td>
<td>15:40</td>
<td>22.0</td>
<td>4.0</td>
</tr>
<tr>
<td>5:30</td>
<td>16:10</td>
<td>26.0</td>
<td>4.7</td>
</tr>
<tr>
<td>6:00</td>
<td>16:40</td>
<td>30.5</td>
<td>5.4</td>
</tr>
<tr>
<td>6:30</td>
<td>17:10</td>
<td>34.0</td>
<td>6.2</td>
</tr>
</tbody>
</table>

時刻	測定値 ① 土壌高度計 表面支持力	測定値 ② 土壌高度計 表面支持力	平均表面支持力	
0:00	10:20	0	0	0.0
0:30	10:50	0	0	0.0
1:00	11:20	0	0	0.0
1:30	11:50	0	0	0.0
2:00	12:20	0	0	0.0
2:30	12:50	0	0	0.0
3:00	13:20	4.0	0.4	1.5
3:30	13:50	9.0	1.2	5.5
4:00	14:20	13.5	2.4	10.0
4:30	14:50	18.0	3.0	15.0
5:00	15:20	22.0	4.0	18.0
5:30	15:50	26.0	4.7	21.0
6:00	16:20	30.5	5.4	25.5
6:30	16:50	34.0	6.2	29.0

<table>
<thead>
<tr>
<th>試験ケース</th>
<th>上部低拡散材 ケース 3</th>
<th></th>
<th>試験ケース</th>
<th>上部低拡散材 ケース 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>時刻</td>
<td>測定値 ① 土壌高度計 表面支持力</td>
<td>測定値 ② 土壌高度計 表面支持力</td>
<td>平均表面支持力</td>
<td></td>
</tr>
<tr>
<td>0:00</td>
<td>9:45</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0:30</td>
<td>10:15</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1:00</td>
<td>10:45</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1:30</td>
<td>11:15</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2:00</td>
<td>11:45</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2:30</td>
<td>12:15</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3:00</td>
<td>12:45</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>3:30</td>
<td>13:15</td>
<td>10.0</td>
<td>1.4</td>
<td>10.0</td>
</tr>
<tr>
<td>4:00</td>
<td>13:45</td>
<td>15.0</td>
<td>2.0</td>
<td>15.0</td>
</tr>
<tr>
<td>4:30</td>
<td>14:15</td>
<td>20.0</td>
<td>2.8</td>
<td>20.0</td>
</tr>
<tr>
<td>5:00</td>
<td>14:45</td>
<td>25.0</td>
<td>3.6</td>
<td>25.0</td>
</tr>
<tr>
<td>5:30</td>
<td>15:15</td>
<td>30.0</td>
<td>4.4</td>
<td>30.0</td>
</tr>
<tr>
<td>6:00</td>
<td>15:45</td>
<td>35.0</td>
<td>5.2</td>
<td>35.0</td>
</tr>
<tr>
<td>6:30</td>
<td>16:15</td>
<td>40.0</td>
<td>6.0</td>
<td>40.0</td>
</tr>
<tr>
<td>7:00</td>
<td>16:45</td>
<td>45.0</td>
<td>6.8</td>
<td>45.0</td>
</tr>
<tr>
<td>7:30</td>
<td>17:15</td>
<td>50.0</td>
<td>7.6</td>
<td>50.0</td>
</tr>
<tr>
<td>8:00</td>
<td>17:45</td>
<td>55.0</td>
<td>8.4</td>
<td>55.0</td>
</tr>
<tr>
<td>8:30</td>
<td>18:15</td>
<td>60.0</td>
<td>9.2</td>
<td>60.0</td>
</tr>
<tr>
<td>9:00</td>
<td>18:45</td>
<td>65.0</td>
<td>10.0</td>
<td>65.0</td>
</tr>
<tr>
<td>9:30</td>
<td>19:15</td>
<td>70.0</td>
<td>10.8</td>
<td>70.0</td>
</tr>
</tbody>
</table>

時刻	測定値 ① 土壌高度計 表面支持力	測定値 ② 土壌高度計 表面支持力	平均表面支持力	
0:00	10:05	0	0	0.0
0:30	10:35	0	0	0.0
1:00	11:05	0	0	0.0
1:30	11:35	0	0	0.0
2:00	12:05	0	0	0.0
2:30	12:35	0	0	0.0
3:00	13:05	0	0	0.0
3:30	13:35	0	0	0.0
4:00	14:05	0	0	0.0
4:30	14:35	0	0	0.0
5:00	15:05	0	0	0.0
5:30	15:35	0	0	0.0
6:00	16:05	0	0	0.0
6:30	16:35	0	0	0.0
7:00	17:05	0	0	0.0
7:30	17:35	0	0	0.0
8:00	18:05	0	0	0.0
8:30	18:35	0	0	0.0
試験ケース：上部低拡散材 20℃環境	試験ケース：上部コンクリートピット 10℃環境				
	测定値 ①	测定値 ②	平均表面支持力		
	土壌高度計	表面支持力	土壌高度計	表面支持力	kg/cm²
	mm	kg/cm²	mm	kg/cm²	kg/cm²
0:00	10:55	0	0	0.0	0.0
0:30	11:25	0	0	0.0	0.0
1:00	11:55	0	0	0.0	0.0
1:30	12:25	0	0	0.0	0.0
2:00	12:55	0	0	0.0	0.0
2:30	13:25	0	0	0.0	0.0
3:00	13:55	0.0	0.0	0.0	0.0
3:30	14:25	4.0	0.4	3.0	0.3
4:00	14:55	12.0	1.9	11.0	1.6
4:30	15:25	22.5	2.4	20.0	2.0
5:00	15:55	18.5	5.0	18.0	4.7
5:30	16:25	19.5	5.8	22.0	8.5
6:00	16:55	22.5	9.2	24.0	11.8
6:30	17:25	26.0	16.7	26.0	16.7
7:00	17:55	27.0	20.1	28.5	27.1
7:30	18:25	29.5	33.6	29.0	30.1
8:00	18:55	30.5	42.5	30.0	37.7
8:30	19:25	32.0	62.9	31.5	54.8
9:00	19:55	33.5	99.7	33.0	84.7

4 空隙率試験結果

<table>
<thead>
<tr>
<th>上部低拡散材</th>
<th>ケース</th>
<th>ケース1</th>
<th>ケース3</th>
<th>ケース4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>空隙率</td>
<td>19.6</td>
<td>16.7</td>
<td>19.4</td>
</tr>
</tbody>
</table>

![空隙率のグラフ](chart.png)
⑤ 表面透気試験結果

<table>
<thead>
<tr>
<th>透気係数</th>
<th>ケース1</th>
<th>ケース3</th>
<th>ケース4</th>
</tr>
</thead>
<tbody>
<tr>
<td>上部低拡散材</td>
<td>18.2</td>
<td>10.0</td>
<td>17.0</td>
</tr>
</tbody>
</table>

⑥ 表面水分量試験結果

<table>
<thead>
<tr>
<th>材齢</th>
<th>ミスト 小</th>
<th>ミスト 多</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30.1</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>27.9</td>
<td>28.9</td>
</tr>
<tr>
<td>3</td>
<td>23.2</td>
<td>28.0</td>
</tr>
<tr>
<td>4</td>
<td>22.0</td>
<td>26.3</td>
</tr>
<tr>
<td>5</td>
<td>18.9</td>
<td>25.0</td>
</tr>
<tr>
<td>6</td>
<td>17.8</td>
<td>23.8</td>
</tr>
<tr>
<td>7</td>
<td>16.0</td>
<td>21.0</td>
</tr>
<tr>
<td>8</td>
<td>15.0</td>
<td>19.0</td>
</tr>
<tr>
<td>9</td>
<td>11.0</td>
<td>15.0</td>
</tr>
<tr>
<td>10</td>
<td>9.0</td>
<td>12.7</td>
</tr>
<tr>
<td>11</td>
<td>8.8</td>
<td>11.0</td>
</tr>
<tr>
<td>12</td>
<td>8.2</td>
<td>10.5</td>
</tr>
<tr>
<td>13</td>
<td>7.5</td>
<td>8.9</td>
</tr>
<tr>
<td>14</td>
<td>6.9</td>
<td>8.7</td>
</tr>
<tr>
<td>15</td>
<td>6.6</td>
<td>8.8</td>
</tr>
<tr>
<td>16</td>
<td>6.6</td>
<td>8.6</td>
</tr>
<tr>
<td>17</td>
<td>6.5</td>
<td>8.4</td>
</tr>
<tr>
<td>18</td>
<td>6.4</td>
<td>8.0</td>
</tr>
<tr>
<td>19</td>
<td>6.2</td>
<td>7.3</td>
</tr>
<tr>
<td>20</td>
<td>6.1</td>
<td>6.1</td>
</tr>
<tr>
<td>21</td>
<td>5.4</td>
<td>5.9</td>
</tr>
<tr>
<td>22</td>
<td>5.1</td>
<td>5.1</td>
</tr>
<tr>
<td>23</td>
<td>4.1</td>
<td>4.8</td>
</tr>
<tr>
<td>24</td>
<td>3.7</td>
<td>5.0</td>
</tr>
<tr>
<td>25</td>
<td>3.5</td>
<td>4.7</td>
</tr>
<tr>
<td>26</td>
<td>3.4</td>
<td>4.7</td>
</tr>
<tr>
<td>27</td>
<td>3.8</td>
<td>4.7</td>
</tr>
<tr>
<td>28</td>
<td>3.6</td>
<td>4.7</td>
</tr>
</tbody>
</table>
不陸測定結果

振動前後の沈下量の平均値（mm）

<table>
<thead>
<tr>
<th>部位</th>
<th>ケース</th>
<th>沈下量（mm）</th>
</tr>
</thead>
<tbody>
<tr>
<td>上部低拡散材</td>
<td>ケース3</td>
<td>0.28</td>
</tr>
<tr>
<td></td>
<td>ミスト少</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ケース4</td>
<td>0.30</td>
</tr>
<tr>
<td></td>
<td>ミスト多</td>
<td></td>
</tr>
</tbody>
</table>

![柱状図](3-9_0.png)
(2) 再振動の効果確認試験

① 表面沈下測定結果

<table>
<thead>
<tr>
<th></th>
<th>打込みから60分</th>
<th>再振動無し</th>
<th>打込みから90分</th>
<th>再振動無し</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1 1 1 2 2 1</td>
<td></td>
<td>A 4 5 5 4 4 5</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>2 1 1 0 1 1</td>
<td></td>
<td>B 3 2 2 3 1 3</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1 1 1 2 0 0</td>
<td></td>
<td>C 2 3 2 3 2 3</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>0 2 1 1 3 3</td>
<td></td>
<td>D 4 2 1 3 3 2</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>1 1 1 2 2 2</td>
<td></td>
<td>E 3 2 3 2 3 3</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>2 1 2 1 1 3</td>
<td></td>
<td>F 3 3 3 4 5 5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>打込みから60分</th>
<th>再振動後</th>
<th>打込みから90分</th>
<th>再振動後</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1 1 1 2 2 1</td>
<td>A 2 2 1 2 2 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>2 1 1 1 1 1</td>
<td>B 2 2 2 1 2 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>2 1 2 2 1 1</td>
<td>C 3 1 1 2 2 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>1 2 1 1 3 3</td>
<td>D 3 1 1 2 1 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>1 1 1 2 2 2</td>
<td>E 1 1 2 1 3 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>2 1 2 1 1 3</td>
<td>F 2 1 2 3 3 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

② 表層透気試験結果

<table>
<thead>
<tr>
<th>試験条件</th>
<th>透気係数 (×10^{-16} m^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>中心部</td>
</tr>
<tr>
<td>再振動無</td>
<td>2.4</td>
</tr>
<tr>
<td>打込みから60分後（練り上げ120分後）</td>
<td>0.9</td>
</tr>
<tr>
<td>打込みから90分後（練り上げ150分後）</td>
<td>0.7</td>
</tr>
</tbody>
</table>
③ 圧縮試験結果

(N/mm²)

<table>
<thead>
<tr>
<th>No.</th>
<th>再振動無し</th>
<th>打込みから60分後（練上り120分後）</th>
<th>打込みから90分後（練上り150分後）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>平均</td>
<td>N</td>
</tr>
<tr>
<td>上部</td>
<td>①</td>
<td>42.104</td>
<td>47.020</td>
</tr>
<tr>
<td></td>
<td>②</td>
<td>44.824</td>
<td>47.994</td>
</tr>
<tr>
<td></td>
<td>③</td>
<td>43.649</td>
<td>47.172</td>
</tr>
<tr>
<td>下部</td>
<td>④</td>
<td>44.988</td>
<td>46.184</td>
</tr>
<tr>
<td></td>
<td>⑤</td>
<td>45.074</td>
<td>45.437</td>
</tr>
<tr>
<td></td>
<td>⑥</td>
<td>44.662</td>
<td>45.396</td>
</tr>
</tbody>
</table>

差（上部-下部） | -1.4 | 1.7 | 1.7 |

④ 空隙率測定結果

<table>
<thead>
<tr>
<th>部位</th>
<th>空隙率（％）</th>
</tr>
</thead>
<tbody>
<tr>
<td>上部</td>
<td>下部</td>
</tr>
<tr>
<td>再振動無</td>
<td>17.9</td>
</tr>
<tr>
<td>打込みから60分後（練上り120分後）</td>
<td>13.5</td>
</tr>
<tr>
<td>打込みから90分後（練上り150分後）</td>
<td>14.0</td>
</tr>
</tbody>
</table>
③ 骨材分布測定結果

粗骨材の面積率

<table>
<thead>
<tr>
<th>粗骨材面積率</th>
<th>振動無し</th>
<th>打込みから60分後 (練上り120分後)</th>
<th>打込みから90分後 (練上り150分後)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n 平均</td>
<td>n 平均</td>
<td>n 平均</td>
</tr>
<tr>
<td>上部</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>①</td>
<td>4.2%</td>
<td>3.6%</td>
<td>4.8%</td>
</tr>
<tr>
<td>②</td>
<td>4.6%</td>
<td>3.9%</td>
<td>4.2%</td>
</tr>
<tr>
<td>③</td>
<td>3.2%</td>
<td>3.5%</td>
<td>3.9%</td>
</tr>
<tr>
<td>下部</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>④</td>
<td>3.2%</td>
<td>3.6%</td>
<td>3.6%</td>
</tr>
<tr>
<td>⑤</td>
<td>4.4%</td>
<td>4.1%</td>
<td>3.9%</td>
</tr>
<tr>
<td>⑥</td>
<td>3.8%</td>
<td>4.2%</td>
<td>3.8%</td>
</tr>
<tr>
<td>差 (下部-上部)</td>
<td>- 0.2%</td>
<td>- 0.4%</td>
<td>- 0.5%</td>
</tr>
</tbody>
</table>

単位容積質量の差

(kg/m3)

<table>
<thead>
<tr>
<th>試験ケース</th>
<th>再振動無</th>
<th>打込み後60分後 (練上り120分後)</th>
<th>打込み後90分後 (練上り150分後)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N 平均</td>
<td>N 平均</td>
<td>N 平均</td>
</tr>
<tr>
<td>上部</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>①</td>
<td>2240.0</td>
<td>2259.0</td>
<td>2242.2</td>
</tr>
<tr>
<td>②</td>
<td>2259.2</td>
<td>2278.4</td>
<td>2267.9</td>
</tr>
<tr>
<td>③</td>
<td>2249.7</td>
<td>2249.8</td>
<td>2265.2</td>
</tr>
<tr>
<td>下部</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>④</td>
<td>2236.9</td>
<td>2256.0</td>
<td>2260.1</td>
</tr>
<tr>
<td>⑤</td>
<td>2242.2</td>
<td>2253.9</td>
<td>2248.3</td>
</tr>
<tr>
<td>⑥</td>
<td>2237.8</td>
<td>2253.6</td>
<td>2241.6</td>
</tr>
<tr>
<td>差 (下部-上部)</td>
<td>- 10.67</td>
<td>- 7.90</td>
<td>- 8.43</td>
</tr>
<tr>
<td>設計単位体積質量</td>
<td></td>
<td></td>
<td>2249</td>
</tr>
<tr>
<td>設計単位体積質量に対する差 (%)</td>
<td>⑦/⑧*100</td>
<td>— 0.47</td>
<td>— 0.35</td>
</tr>
</tbody>
</table>
（3）振動による表面仕上げ効果確認試験

① 支持強度測定結果

<table>
<thead>
<tr>
<th>試験ケース</th>
<th>上部低拡散材 再振動無し</th>
<th>表面支持力</th>
<th>土壌高度計</th>
<th>表面支持力</th>
<th>土壌高度計</th>
</tr>
</thead>
<tbody>
<tr>
<td>時間時間</td>
<td>①</td>
<td>②</td>
<td>均方表面支持力</td>
<td>①</td>
<td>②</td>
</tr>
<tr>
<td>00:00</td>
<td>9:45</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>00:30</td>
<td>10:15</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1:00</td>
<td>10:45</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1:30</td>
<td>11:15</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2:00</td>
<td>11:45</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2:30</td>
<td>12:15</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3:00</td>
<td>12:45</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3:30</td>
<td>13:15</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>4:00</td>
<td>13:45</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>4:30</td>
<td>14:15</td>
<td>10.0</td>
<td>1.4</td>
<td>10.0</td>
<td>1.4</td>
</tr>
<tr>
<td>5:00</td>
<td>14:45</td>
<td>15.0</td>
<td>3.0</td>
<td>16.0</td>
<td>3.3</td>
</tr>
<tr>
<td>5:30</td>
<td>15:15</td>
<td>18.0</td>
<td>4.7</td>
<td>18.0</td>
<td>4.7</td>
</tr>
<tr>
<td>6:00</td>
<td>15:45</td>
<td>21.0</td>
<td>7.3</td>
<td>20.0</td>
<td>6.3</td>
</tr>
<tr>
<td>6:30</td>
<td>16:15</td>
<td>23.0</td>
<td>10.0</td>
<td>22.0</td>
<td>8.5</td>
</tr>
<tr>
<td>7:00</td>
<td>16:45</td>
<td>26.0</td>
<td>16.7</td>
<td>26.0</td>
<td>16.7</td>
</tr>
<tr>
<td>7:30</td>
<td>17:15</td>
<td>28.5</td>
<td>27.1</td>
<td>28.0</td>
<td>26.7</td>
</tr>
<tr>
<td>8:00</td>
<td>17:45</td>
<td>29.0</td>
<td>37.7</td>
<td>29.5</td>
<td>33.6</td>
</tr>
<tr>
<td>8:30</td>
<td>18:15</td>
<td>30.0</td>
<td>48.1</td>
<td>31.0</td>
<td>48.1</td>
</tr>
<tr>
<td>9:00</td>
<td>18:45</td>
<td>32.5</td>
<td>72.7</td>
<td>32.0</td>
<td>62.9</td>
</tr>
<tr>
<td>9:30</td>
<td>19:15</td>
<td>33.5</td>
<td>99.7</td>
<td>32.0</td>
<td>62.9</td>
</tr>
</tbody>
</table>

時刻
測定値 ①
測定値 ②
平均表面支持力
経過時間
測定値 ②
② 表層透気試験結果

<table>
<thead>
<tr>
<th>仕上げ方法</th>
<th>振動による表面仕上げ無し</th>
<th>表面締固めバイプレータ</th>
<th>トロウェル</th>
</tr>
</thead>
<tbody>
<tr>
<td>透気係数（×10⁻¹⁶m²）</td>
<td>10</td>
<td>6.5</td>
<td>7.0</td>
</tr>
</tbody>
</table>

③ 空隙率測定結果

<table>
<thead>
<tr>
<th>部位</th>
<th>回数</th>
<th>振動による表面仕上げ無し</th>
<th>表面締固めバイプレータ</th>
<th>トロウェル</th>
</tr>
</thead>
<tbody>
<tr>
<td>上部低拡散材</td>
<td>実施無し</td>
<td>19.8</td>
<td>17.8</td>
<td>18.9</td>
</tr>
<tr>
<td></td>
<td>1回実施</td>
<td>16.7</td>
<td>16.0</td>
<td>16.0</td>
</tr>
<tr>
<td></td>
<td>2回実施</td>
<td>18.1</td>
<td>18.0</td>
<td>18.0</td>
</tr>
</tbody>
</table>

④ 表面水分量測定結果

<table>
<thead>
<tr>
<th>材齢</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>再振動無し</td>
<td>30.1</td>
<td>27.6</td>
<td>23.2</td>
<td>22.0</td>
<td>18.9</td>
<td>17.8</td>
<td>16.1</td>
<td>14.1</td>
<td>13.0</td>
<td>9.0</td>
<td>8.8</td>
<td>8.2</td>
<td>7.5</td>
<td>6.9</td>
</tr>
<tr>
<td>表面締固めバイプレータ</td>
<td>28.0</td>
<td>27.0</td>
<td>24.1</td>
<td>21.5</td>
<td>19.2</td>
<td>18.5</td>
<td>16.0</td>
<td>14.3</td>
<td>11.5</td>
<td>7.1</td>
<td>6.2</td>
<td>6.0</td>
<td>5.0</td>
<td>4.9</td>
</tr>
<tr>
<td>トロウェル</td>
<td>29.0</td>
<td>27.6</td>
<td>24.3</td>
<td>22.2</td>
<td>20.6</td>
<td>18.0</td>
<td>15.9</td>
<td>13.5</td>
<td>10.3</td>
<td>6.3</td>
<td>6.1</td>
<td>6.1</td>
<td>6.1</td>
<td>6.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>材齢</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.6</td>
<td>6.6</td>
<td>6.5</td>
<td>6.4</td>
<td>6.2</td>
<td>6.1</td>
<td>5.4</td>
<td>5.1</td>
<td>4.7</td>
<td>4.3</td>
<td>4.1</td>
<td>4.0</td>
<td>3.7</td>
<td>3.0</td>
<td>2.6</td>
</tr>
<tr>
<td>4.7</td>
<td>4.4</td>
<td>4.4</td>
<td>4.4</td>
<td>4.3</td>
<td>4.1</td>
<td>4.0</td>
<td>4.1</td>
<td>3.7</td>
<td>3.0</td>
<td>2.6</td>
<td>2.6</td>
<td>2.5</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>5.7</td>
<td>5.5</td>
<td>5.1</td>
<td>4.7</td>
<td>4.7</td>
<td>4.7</td>
<td>4.5</td>
<td>4.3</td>
<td>3.8</td>
<td>3.1</td>
<td>3.0</td>
<td>2.9</td>
<td>2.6</td>
<td>2.5</td>
<td>2.7</td>
</tr>
</tbody>
</table>

3-14
⑤ 不陸測定結果

<table>
<thead>
<tr>
<th>上部低拡散材</th>
<th>沈下量平均値 (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>振動による</td>
<td></td>
</tr>
<tr>
<td>表面仕上げ無し</td>
<td>0.28</td>
</tr>
<tr>
<td>表面締固め</td>
<td>1.33</td>
</tr>
<tr>
<td>バイブレータ</td>
<td></td>
</tr>
<tr>
<td>トロウェル</td>
<td>0.57</td>
</tr>
</tbody>
</table>

⑥ 表面気泡測定結果

<table>
<thead>
<tr>
<th>表面気泡数 (個)</th>
<th>ミスト少</th>
<th>表面締固めバイブレータ</th>
<th>トロウェル</th>
</tr>
</thead>
<tbody>
<tr>
<td>上部低拡散材</td>
<td>106</td>
<td>61</td>
<td>98</td>
</tr>
</tbody>
</table>
（4）養生効果確認試験

① 水分量測定結果

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>材令（日）</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
</tbody>
</table>

無養生 29.18 27.90 23.20 21.97 18.89 17.79 16.02 12.72 11.90 11.65 10.73 10.15 9.39
湿潤養生マット 28.87 28.01 27.17 27.52 23.80 21.85 18.80 15.87 14.75 13.29 12.07 11.28
湿潤・保温養生マット 29.07 27.97 26.47 25.48 24.78 24.24 23.64 23.24 22.74 22.38 22.03

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>材令（日）</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
</tbody>
</table>

無養生 8.81 8.23 7.69 7.50 7.41 6.75 6.72 6.47 6.34 6.15 6.00 5.89 5.71
湿潤・保温養生マット 20.75 20.64 20.35 20.31 20.28 19.69 19.60 19.35 18.98 18.88 18.28 18.05 17.64
3.1.3 温度応力解析による上部低拡散材のひび割れに関する検討

（1）現状解析

上部低拡散材に発生したひび割れについて、事後解析を実施して温度ひび割れについて検討した。

1) 解析条件

解析モデルを図3-1に示す。ここでは簡易化のため、上部低拡散材、上部コンクリートピットをモデル化し、上部コンクリートピットより下の部分については既設のマスコンクリート部材としてモデル化した。

図3-1 解析モデル

図3-2 解析モデル（拡大図）
拘束条件を図 3-4 に示す。拘束条件は現場条件を模擬し、上部低拡散材については底面および奥部の拘束を受け、コンクリートピットについては底面、奥部および側面の拘束を受けるものとした。
打込みスケジュールを表 3-1 に示す。モデルのリフト割りを図 3-4 に示す。

<table>
<thead>
<tr>
<th>リフト</th>
<th>項目</th>
<th>打込み日</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 リフト目</td>
<td>廃棄体、上部充てん材ほか</td>
<td>2010/11/21</td>
</tr>
<tr>
<td>2 リフト目</td>
<td>上部コンクリートピット</td>
<td>2012/11/21</td>
</tr>
<tr>
<td>3 リフト目</td>
<td>上部低拡散材</td>
<td>2012/12/03</td>
</tr>
</tbody>
</table>

図 3-4 モデルのリフト割り
解析に用いた外気温を図 3-5 に示す。外気温は、坑内で計測した 11/20 〜 1/31 までの実測データを用いた。

上部コンクリートピットおよび上部低拡散材の熱特性を表 3-4 に示す。熱特性は、平成20年度の試験において取得した値を用いた。なお、コンクリートの初期温度は、部材内に埋め込んだ温度センサーの計測値とした。

<table>
<thead>
<tr>
<th>項目</th>
<th>単位</th>
<th>上部コンクリートピット</th>
<th>上部低拡散材</th>
</tr>
</thead>
<tbody>
<tr>
<td>断熱温度上昇量 K</td>
<td>℃</td>
<td>30.34</td>
<td>41.47</td>
</tr>
<tr>
<td>断熱温度上昇に関する係数 α</td>
<td>－</td>
<td>0.614</td>
<td>0.772</td>
</tr>
<tr>
<td>断熱温度上昇に関する係数 β</td>
<td>－</td>
<td>1.102</td>
<td>1.271</td>
</tr>
<tr>
<td>比熱</td>
<td>kJ/kg℃</td>
<td>1.232</td>
<td>1.332</td>
</tr>
<tr>
<td>熱伝導率</td>
<td>W/m℃</td>
<td>1.956</td>
<td>1.831</td>
</tr>
<tr>
<td>コンクリートの初期温度</td>
<td>℃</td>
<td>16.0</td>
<td>18.0</td>
</tr>
</tbody>
</table>
上部コンクリートピットおよび上部低拡散材の解析用入力物性値を表 3-5 に示す。物性値は、基本的には平成 20 年度の試験において取得した値を用い、物性値がない場合はマスコンクリートのひび割れ制御指針 2008（JCI）を参考に設定した。

表 3-3 解析用入力物性値

<table>
<thead>
<tr>
<th>項目</th>
<th>上部コンクリートピット</th>
<th>上部低拡散材</th>
</tr>
</thead>
<tbody>
<tr>
<td>線膨張係数</td>
<td>7.0 μ/℃※</td>
<td>10.8 μ/℃</td>
</tr>
<tr>
<td>圧縮強度推定式</td>
<td></td>
<td></td>
</tr>
<tr>
<td>圧縮強度表</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>積算温度（℃h）</td>
<td>fc (N/mm²)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>4200</td>
<td>21.1</td>
</tr>
<tr>
<td>3</td>
<td>16800</td>
<td>44.4</td>
</tr>
<tr>
<td>4</td>
<td>54600</td>
<td>71.7</td>
</tr>
<tr>
<td>圧縮強度表</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>積算温度（℃h）</td>
<td>fc (N/mm²)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>4200</td>
<td>19.9</td>
</tr>
<tr>
<td>3</td>
<td>16800</td>
<td>43.2</td>
</tr>
<tr>
<td>4</td>
<td>54600</td>
<td>68.2</td>
</tr>
<tr>
<td>ヤング係数推定式</td>
<td>E = α × Fc × β</td>
<td>α : 6224</td>
</tr>
<tr>
<td></td>
<td>β : 0.4388</td>
<td>β : 0.4532</td>
</tr>
<tr>
<td>引張強度推定式</td>
<td>F_{t} = α × Fc × β</td>
<td>α : 0.1722</td>
</tr>
<tr>
<td></td>
<td>β : 0.8139</td>
<td>β : 0.8753</td>
</tr>
<tr>
<td>ポアソン比※</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>膨張ひずみ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>材齢（時間）</td>
<td>膨張ひずみ（μ）</td>
</tr>
<tr>
<td>1</td>
<td>24</td>
<td>31</td>
</tr>
<tr>
<td>2</td>
<td>72</td>
<td>171</td>
</tr>
<tr>
<td>3</td>
<td>168</td>
<td>229</td>
</tr>
<tr>
<td>4</td>
<td>336</td>
<td>166</td>
</tr>
<tr>
<td>5</td>
<td>840</td>
<td>104</td>
</tr>
<tr>
<td>No</td>
<td>材齢（時間）</td>
<td>膨張ひずみ（μ）</td>
</tr>
<tr>
<td>1</td>
<td>24</td>
<td>44</td>
</tr>
<tr>
<td>2</td>
<td>72</td>
<td>134</td>
</tr>
<tr>
<td>3</td>
<td>168</td>
<td>168</td>
</tr>
<tr>
<td>4</td>
<td>336</td>
<td>63</td>
</tr>
<tr>
<td>5</td>
<td>840</td>
<td>-36</td>
</tr>
<tr>
<td>クリープ係数</td>
<td>E_{e}(te) = φ_{1}(te) × Ec(te)</td>
<td>φ_{1} (最高温度に達するまでの低減係数) : 0.42※</td>
</tr>
<tr>
<td></td>
<td></td>
<td>φ_{1} (最高温度に達した有効材齢+1有効材齢以降の低減係数) : 0.51</td>
</tr>
<tr>
<td></td>
<td></td>
<td>φ_{2} (最高温度に達した有効材齢+1有効材齢以降の低減係数) : 0.58</td>
</tr>
</tbody>
</table>
上部低拡散材の上面は、湿潤・保温養生部分と湿潤養生部分に分けて検討した。養生条件を表 3-4 および図 3-6 に示す。なお、湿潤・保温養生に関しては養生条件をパラメータとして 3 ケース実施した。湿潤・保温養生の検討ケースを表 3-6 に示す。湿潤・保温養生の表面熱伝達率は、ケース 1 および 2 では Q マットの NETIS で公表されている値を採用し、ケース 3 では温度履歴が実測値と解析値がフィッティングするように設定した。また、ケース 2 では養生水の層を上部低拡散材と湿潤・保温養生の間に設けて検討した。なお、養生水の厚さは湿潤養生マットの厚さを考慮して 10mm と設定した。養生水の解析用入力特性値を表 3-7 に示す。養生水の初期温度は、現場で湿潤・保温養生と部材表面の間に設置した温度センサーにより取得した、養生中の温度から 35℃と設定した（図 3-7 参照）。

表 3-4 養生条件

<table>
<thead>
<tr>
<th>項目</th>
<th>単位</th>
<th>表面熱伝達率</th>
<th>養生水の層</th>
</tr>
</thead>
<tbody>
<tr>
<td>湿潤・保温養生</td>
<td>上面</td>
<td>W/m²℃</td>
<td>表 1.1-5 参照</td>
</tr>
<tr>
<td>平成 24年度</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>上部低拡散材</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>考慮しない</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>湿潤養生</td>
<td>上面</td>
<td>W/m²℃</td>
<td>考慮しない</td>
</tr>
<tr>
<td>材齢 2 日まで: 15</td>
<td>材齢 7 日まで: X</td>
<td>材齢 7 日以降: 14</td>
<td></td>
</tr>
<tr>
<td>材齢 7 日まで: 8</td>
<td>材齢 7 日以降: 14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>材齢 7 日以降: 14</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

図 3-6 養生条件
表 3-5 湿潤・保温養生の検討ケース

<table>
<thead>
<tr>
<th>ケース</th>
<th>養生条件</th>
<th>養生水</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.969</td>
<td>考慮しない</td>
</tr>
<tr>
<td>2</td>
<td>0.969</td>
<td>考慮する(開始:2012/12/03)</td>
</tr>
<tr>
<td>3</td>
<td>0.1</td>
<td>考慮しない</td>
</tr>
</tbody>
</table>

表 3-6 養生水の解析用入力物性値

<table>
<thead>
<tr>
<th>項目</th>
<th>單位</th>
<th>養生水</th>
</tr>
</thead>
<tbody>
<tr>
<td>断熱温度上昇</td>
<td></td>
<td>考慮しない</td>
</tr>
<tr>
<td>比熱</td>
<td>kJ/kg℃</td>
<td>4.1784</td>
</tr>
<tr>
<td>熱伝導率</td>
<td>W/m℃</td>
<td>0.6210</td>
</tr>
<tr>
<td>初期温度</td>
<td>℃</td>
<td>35.0</td>
</tr>
<tr>
<td>ポアソン比</td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>線膨張係数</td>
<td>μ/℃</td>
<td>210.0</td>
</tr>
</tbody>
</table>

図 3-7 湿潤・保温養生中の養生水の温度履歴
2) 解析結果
(a) 温度解析

a) 湿潤・保温養生

上部低拡散材の湿潤・保温養生部の温度センサーによる温度計測結果および温度解析結果による温度履歴を表 3-7 に示す。温度解析による温度履歴は、ケース 1 の場合は養生中の温度低下が大きいが、ケース 2 およびケース 3 が計測結果を概ね模擬できている。

したがって、湿潤・保温養生マット（Q マット）の効果を解析的に評価する場合、養生水の層をモデル化し、湿潤・保温養生マットによる養生水の保温温度を考慮して解析を行うか、または簡易的に評価する場合は、湿潤・保温養生マット（Q マット）の表面伝達率を NETIS 公表値である 0.969 W/m℃よりも十分に小さい 0.1 W/m℃に設定する必要がある。

表 3-7 湿潤・保温養生マット部の温度履歴

<table>
<thead>
<tr>
<th>湿潤・保温養生マット部の温度履歴</th>
<th>計測結果</th>
<th>解析ケース 1</th>
<th>解析ケース 2</th>
<th>解析ケース 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>上部</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>中部</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>下部</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![温度履歴グラフ]

3-24
b) 湿潤養生

湿潤養生部の温度センサーによる温度計測結果および温度解析結果による温度履歴を表3-7に示す。本検討における温度解析結果は、温度センサーによる測定結果を概ね模擬で

表 3-8 湿潤養生マット部の温度履歴

<table>
<thead>
<tr>
<th>材齢(日)</th>
<th>上部</th>
<th>中部</th>
<th>下部</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>10</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>15</td>
<td>45</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>20</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>25</td>
<td>55</td>
<td>55</td>
<td>55</td>
</tr>
<tr>
<td>30</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>35</td>
<td>65</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>40</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
</tbody>
</table>

計測結果

解析ケース
(b) 温度解析
a) 湿潤・保温養生マット
ここでは、温度解析が最も実測とヒッティングできていたケース3における応力解析結果について示す。本検討における上部低拡散材のひび割れ指数のコンター図を図3-8～図3-10に示す。図より、上部低拡散材表面部のひび割れ指数は湿潤養生マット部と比較して、湿潤・保温養生マット部の方が小さい結果となった。

図3-8 ひび割れ指数のコンター図
図 3-9 ひび割れ指数のコンター図（A-A'断面）

図 3-10 ひび割れ指数のコンター図
湿潤・保温養生マット部の主応力の履歴を図 3-11 に、ひび割れ指数の履歴を図 3-12 にそれぞれ示す。ひび割れを確認した材齢 11 日において、主応力は部材の下段部から上段部に向って大きくなっており、最大応力は上段部の 2.2N/mm² であった。一方、ひび割れ数は部材の下部から表面に向って小さくなっている。また、上段部のひび割れ指数は材齢 11 日で 1.45 であり、最小ひび割れ指数は材齢 19 日および材齢 37 日で 1.06 であった。中段部および下段部のひび割れ指数は材齢 37 日において最小となり、その値は 1.03 および 1.08 であった。なお、現場では材齢 38 日以降に新たなひび割れの発生および進展は観察されていない。

図 3-11 湿潤・保温養生マット部の主応力の履歴

図 3-12 湿潤・保温養生マット部のひび割れ指数の履歴
b) 湿潤養生マット

湿潤養生マット部の主応力の履歴を図 3・13 に、ひび割れ指数の履歴を図 3・14 にそれぞれ示す。湿潤・保温養生側でひび割れを確認した材齢 11 日の最大応力は、中段部で1.75N/mm²であった。一方、ひび割れ指数は上段部については材齢 27 日に最小となり、その値は 1.23 であった。また、中段部および下段部のひび割れ指数は、材齢 37 日において最小となり、その値は 1.06 および 1.07 であった。

よって、今回の施工で実施した養生期間が7日間の場合は、特に上段部の最小ひび割れ指数は湿潤・保温養生マットより湿潤養生マットの方が大きく、湿潤養生マットの方がひび割れ発生確率は低い結果となった。なお、現場では材齢38日までにひび割れは観察されていない。

図 3・13 湿潤養生マット部の主応力の履歴

図 3・14 湿潤養生マット部のひび割れ指数の履歴
ここで、応力の解析値について評価した。各養生における部材中段部のひずみの実測値およびトンネル軸方向の応力の実測値と解析値の比較を表3-9に示す。ひずみ実測値から簡易計算した応力と、実測値および解析値から算出した応力を比較した。なお、ひずみ実測値から応力を簡易計算する場合、静弾性係数は、材齢9日におけるコアの実測値を用いた。

ひび割れの発生を観察した材齢11日における応力のFEM解析値は実測値より大きいが、ひずみ実測値から簡易計算した応力と概ね整合していることから、実測値の応力は小さく計測されている可能性が考えられる。その理由として、実構造物における材齢初期のクリープが大きい可能性があることや、材齢初期のセメントの硬化速度と膨張材の効果速度のバランス等の要因などが考えられる。

表3-9 各養生におけるひずみの実測値および応力の実測値と解析値の比較

<table>
<thead>
<tr>
<th>湿潤・保温養生マット</th>
<th>湿潤養生マット</th>
</tr>
</thead>
<tbody>
<tr>
<td>ひずみ実測値</td>
<td>応力(トンネル軸方向)</td>
</tr>
<tr>
<td>69.4μ</td>
<td>70.6μ</td>
</tr>
</tbody>
</table>

応力トンネル軸方

応力実測値から
簡易計算した応力は
\(\sigma = \varepsilon \cdot E \)
=69.4μ×32.9kN/mm²
=2.28N/mm²
↓
FEM解析値と概ね整合
応力の実測値が
小さい可能性がある

応力トンネル軸方

応力実測値から
簡易計算した応力は
\(\sigma = \varepsilon \cdot E \)
=70.6μ×17.1kN/mm²
=1.21N/mm²
↓
FEM解析値と概ね整合
応力の実測値が
小さい可能性がある
（2）養生期間を延長した場合の温度ひび割れ
ここでは、養生期間を7日、14日、28日と延長して実施した場合の温度ひび割れについて解析した。

1）解析条件
図3-1に示す解析モデル、および図3-3に示す拘束条にて解析を実施した。養生条件を表3-10に示す。

<table>
<thead>
<tr>
<th>表3-10 養生条件</th>
</tr>
</thead>
<tbody>
<tr>
<td>項目</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>湿潤・保温養生</td>
</tr>
<tr>
<td>平成24年度</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>表3-11 養生日数</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>X</td>
</tr>
<tr>
<td>7日</td>
</tr>
<tr>
<td>14日</td>
</tr>
<tr>
<td>28日</td>
</tr>
</tbody>
</table>
2）解析結果

養生日数を延長した時のひび割れ指数の結果を表 1.1-12 に、材齢 28 日における中段のひび割れ指数を表 1.1-13 に示す。温度応力解析の結果、湿潤・保温養生を 28 日間（4 週間）実施することでひび割れ低減効果は向上することが明らかとなった。本年度は材齢 7 日にコア採取があったためやむを得なかったが、可能な限り長期間にわたって湿潤・保温養生を実施することが望ましいことが明らかとなった。しかしながら、養生期間は工程に直結する事項であり、ひび割れの許容度を見極めながらコストや工期、バリア性能のバランス等を考慮して設定する必要がある。

表 3-12 養生日数を延長した時のひび割れ指数

<table>
<thead>
<tr>
<th>湿潤・保温養生</th>
<th>湿潤養生</th>
</tr>
</thead>
<tbody>
<tr>
<td>7日迄養生</td>
<td>14日迄養生</td>
</tr>
<tr>
<td>ひび割れ指数</td>
<td>ひび割れ指数</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>7</td>
</tr>
</tbody>
</table>

表 3-14 材齢 28 日における中段のひび割れ指数（ひび割れ発生確率：JCI）

<table>
<thead>
<tr>
<th>養生期間</th>
<th>7日迄養生</th>
<th>14日迄養生</th>
<th>28日迄養生</th>
</tr>
</thead>
<tbody>
<tr>
<td>マット種類</td>
<td>ひび割れ指数 (JCI)</td>
<td>ひび割れ指数 (JCI)</td>
<td>ひび割れ指数 (JCI)</td>
</tr>
<tr>
<td>湿潤・保温養生マット</td>
<td>1.15 (31.9%)</td>
<td>1.07 (40.7%)</td>
<td>1.55 (10.1%)</td>
</tr>
<tr>
<td>湿潤養生マット</td>
<td>1.16 (30.9%)</td>
<td>1.13 (33.9%)</td>
<td>1.20 (27.4%)</td>
</tr>
</tbody>
</table>
3.2 初期性能確認試験

3.2.1 初期性能確認試験結果一覧表

<table>
<thead>
<tr>
<th>部材</th>
<th>打設日</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>項目</td>
<td></td>
<td>压縮強度</td>
<td></td>
<td>静弾性係数</td>
<td></td>
<td>引張強度</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>平均</td>
<td>單位</td>
<td></td>
<td></td>
<td>平均</td>
<td>單位</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012.10.9</td>
<td>室内</td>
<td>7日</td>
<td>17.84</td>
<td>17.3 N/mm²</td>
<td>17.14</td>
<td>16.03</td>
<td>16.4 KN/mm²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8日</td>
<td>16.98</td>
<td>17.1 N/mm²</td>
<td>16.03</td>
<td>16.4 KN/mm²</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>28日</td>
<td>43.32</td>
<td>42.4 N/mm²</td>
<td>24.29</td>
<td>23.89</td>
<td>23.9 KN/mm²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>91日</td>
<td>69.17</td>
<td>69.9 N/mm²</td>
<td>29.02</td>
<td>28.8 KN/mm²</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012.12.3</td>
<td>品質管理</td>
<td>7日</td>
<td>17.10</td>
<td>16.7 N/mm²</td>
<td>15.86</td>
<td>1.72</td>
<td>1.57 N/mm²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3日</td>
<td>48.48</td>
<td>48.0 N/mm²</td>
<td>25.24</td>
<td>25.2 KN/mm²</td>
<td>3.37</td>
<td>3.49 N/mm²</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>91日</td>
<td>76.40</td>
<td>76.2 N/mm²</td>
<td>30.30</td>
<td>30.2 KN/mm²</td>
<td>4.19</td>
<td>4.47 N/mm²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012.10.9</td>
<td>現場水中</td>
<td>7日</td>
<td>13.00</td>
<td>14.0 N/mm²</td>
<td>1.50</td>
<td>1.32</td>
<td>1.42 N/mm²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>32日</td>
<td>37.00</td>
<td>36.8 N/mm²</td>
<td>21.98</td>
<td>21.9 KN/mm²</td>
<td>2.63</td>
<td>2.93 N/mm²</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>91日</td>
<td>58.20</td>
<td>57.5 N/mm²</td>
<td>26.90</td>
<td>26.9 KN/mm²</td>
<td>4.06</td>
<td>4.05 N/mm²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012.10.9</td>
<td>コア</td>
<td>9日</td>
<td>19.75</td>
<td>19.7 N/mm²</td>
<td>16.97</td>
<td>16.8 KN/mm²</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9日</td>
<td>33.88</td>
<td>32.9 N/mm²</td>
<td>22.39</td>
<td>21.9 KN/mm²</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

部位
- ブラント
- 上部低拡散材
- 品質管理
- 現場水中
- コア

条件
- 室内
- 湿潤・保温
- 湿潤
- 养生マット
- 9日
- 32日
- 91日
- 7日
- 32日
- 91日
圧縮強度試験結果

静弾性係数試験結果

割裂引張試験結果