

2020年版 エネルギー白書 (概要)

令和2年6月 資源エネルギー庁

エネルギー白書について

- エネルギー白書は、エネルギー政策基本法に基づく年次報告(法定白書)。今年で17回目。
- 白書は例年、3部構成。第1部はその年の動向を踏まえた分析、第2部は内外エネルギーデータ集、第3部は施策集。2020年版の構成は以下の通り。

■2020年版の構成

第1部 エネルギーをめぐる状況と主な対策

第1章 福島復興の進捗

第1節 東日本大震災・東京電力福島第一原子力発電所事故への取組

第2節 原子力被災者支援

第3節 福島新工
社会構想

第4節 原子力損害賠償

第2章 災害・地政学リスクを踏まえたエネルギーシステム強靱化

第1節 災害・地政学リスクを踏まえた国際資源戦略

第2節 持続可能な電力システム構築

第3節 再生可能エネルギーの主力電源化

第4節 エネルギーレジリエンスの強化

第3章 運用開始となるパリ協定への対応

第1節 温暖化をめぐる動き

第2節 エネルギーファイナンスをめぐる動き

第3節 革新的環境イノベーション戦略の策定・実行

第2部 エネルギー動向

第1章 国内エネルギー動向

第1節 エネルギー需給の概要 第2節 部門別エネルギー消費 の動向

第3節 一次エネルギーの動向

第4節 二次エネルギーの動向

第2章 国際エネルギー動向

第1節 エネルギー需給の概要 第2節 一次エネルギーの動向 第3節 二次エネルギーの動向 第4節 国際的なエネルギーコス

トの比較

第3部 2019(令和元)年度においてエネルギー需給に関して講じた施策の状況

第1章 安定的な資源確保のための総合的な施策の推進

第2章 徹底した省エネルギー社会の実現とスマートで柔軟な消費活動の推進

第3章 再生可能エネルギーの導入加速~主力電源化に向けて~

第4章 原子力政策の展開

第5章 化石燃料の効率的・安定的な利用のための環境の整備

第6章 市場の垣根を外していく供給構造改革等の推進

第7章 国内エネルギー供給網の強靱化

第8章 エネルギーシステム強靱化と水素等の新たな二次エネルギー構造への変革

第9章 総合的なエネルギー国際協力の展開

第10章 戦略的な技術開発の推進

第11章 国民各層とのコミュニケーションとエネルギーに関する理解の変化

(参考) エネルギー白書 第1部のテーマの変遷

● 毎年の動向を踏まえた分析を行う**第1部の内容が、その年の白書を特徴付ける**ものとなる。

第1部	第1章	第2章	第3章		
2020 (案)	福島復興の進捗	災害・地政学リスクを踏まえ たエネルギーシステム強靱化	運用開始となるパリ協定への 対応		
2019	福島復興	パリ協定を踏まえた地球温暖化 対策・エネルギー政策 (長期戦略)	昨今の災害への対応とレジリエン ス強化に向けた取組		
2018	明治維新後のエネルギーをめぐる 我が国の歴史	福島復興の進捗	エネルギーをめぐる内外の情勢と課 題変化 (エネ基・情勢懇)		
2017	福島復興の進捗	エネルギー政策の新たな展開 (JOG法、FIT法、小売自由化)	エネルギー制度改革等と エネルギー産業の競争力強化		
2016	原油安時代におけるエネルギー 安全保障への寄与	福島事故への対応とその教訓を踏まえた原子力政策のありかた	パリ協定を踏まえたエネルギー 政策の変革 (エネルギーミックス)		
2015	「シェール革命」と世界の エネルギー事情の変化	東日本大震災・東京電力福島第一原子力発電所事故への対応	エネルギーコストへの対応 2		

未来

復興

持続 可能 な対策

廃 炉 の実行

2011年 (事故直後)

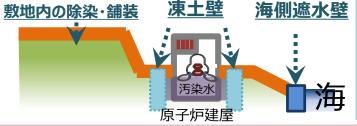
2020年 (事故後9年)

帰還に向けた環境整備

オフ サイト

- ・2020年3月に、帰還困難区域とし ては初めて、双葉町・大熊町・富岡町 の一部地域の避難指示を解除。
- ・また、帰還困難区域以外全ての地域 の避難指示を解除した。

2022年、23年の「特定復興再生拠 点区域 |全域の避難指示解除を目標


- ・福島イノベーション・コースト構想の推進
- ・浜通りでの企業立地等の促進
- ・事業・なりわいの再建
- ・農林水産物等の風評被害の払拭
- 「特定復興再生拠点区域」の整備 等 に向けた取組

汚染水

約1万Bq/L (2011年3月時点)

※周辺海域の 放射性物質(セシウム137)濃度

汚染水対策

汚染水対策により 1万分の1以下へ 減少

廃炉

中長期 ロードマップ (初版)

IRID

廃炉の 研究開発機関 (IRID)の創設 (2011年12月) (2013年8月)

(2014年8月)

廃炉に向けた 燃料デブリ取り 公的支援機関 出し方針を決定 (原賠·廃炉機構) (2017年9月) の創設

廃炉に向けた具体的なアクションの継続

2号機内部調査 で堆積物に接触 (2019年2月)

初号機からの燃 料デブリ取り出し 方法の確定

(2019年12月)

福島の復興・再生に向けた直近の取組

オンサイト

✓ 中長期ロードマップの改訂

▶ 2019年12月に改訂。「復興と廃炉の両立」を大原則に掲げ、燃料デブリ取り出しの初号機を2号機とすること等を決定。

✓ 予防的・重層的な汚染水対策が進展

凍土壁やサブドレン等の機能により、汚染水発生量は、対策前の日量約540㎡ (2014年5月)から約180㎡(2019年度)まで減少。

✓ 燃料取り出しに向けた作業が進展

▶ 3号機では、2019年4月から燃料取り出しを開始し作業中。

✓ 燃料デブリ取り出しに向けた内部調査

> 2号機では、2018年1月に原子炉格納容器内の内部調査を実施し、燃料デブリと思われる堆積物を確認。2019年2月には、燃料デブリと思われる堆積物に調査装置を接触させ、小石状の堆積物をつかんで動かせること等を確認。

✓ 1/2号排気筒の解体作業が進捗

▶ 耐震上の裕度を確保することを目的に、2019年8月より排気筒の上部約60 メートルの解体作業を実施し、2020年5月1日に完了。

✓ 国際機関(IAEA)による進捗確認

- ▶ 2018年11月に、国際原子力機関(IAEA)専門家チームによる第4回目の レビューミッションを受け入れ。
- ▶ 「福島第一原発において緊急事態から安定状態への移行が達成され、前回 (2015年2月)以降数多くの改善が見られる」との評価を受けた。
- ▶ タンクに貯蔵されているALPS処理水の取扱いについても、2020年4月、ALPS 小委員会の報告書を対象としたレビューを受けた。

オフサイト

✓ 避難指示解除·特定復興再生拠点の整備

- ▶ 2020年3月に、帰還困難区域としては初めて、双葉町・大熊町・富岡町の一部地域の避難指示を解除。
- ▶ また、帰還困難区域以外全ての地域の避難指示を解除した。
- ▶ 2022年、2023年の「特定復興再生拠点区域」全域 の避難指示解除を目指し、帰還環境を整備中。

✓ 福島ロボットテストフィールドの全面開所

▶ 2018年7月以降、研究棟、試験用プラント、試験用トンネル、緩衝ネット付飛行場等が順次開所。2020年3月に全面開所。

✓ 生活環境の整備が進展

- ▶ 2018年4月から、小中学校等が開設・再開され、避難 指示が解除された多くの市町村内にて学校が再開。
- ▶ 第二次救急医療機関の開院や消防署の再開など、帰還に向けた環境整備が進展。

✓ 再エネ由来水素実証拠点の開所

- 浪江町において、世界最大級となる水電解装置により、 再生可能エネルギーから水素を製造する実証を実施。
- ▶ 2020年3月に「福島水素エネルギー研究フィールド」が 開所。

第2章 災害・地政学リスクを踏まえたエネルギーシステム強靱化

第1節

災害・地政学リスクを踏まえた国際資源戦略

(資源情勢の変化)

- LNG・LPG・・・・米露など新たな生産国の存在 感・アジア需要の拡大(日本の市場影響力 の相対的低下)
- 石油…中東情勢の更なる緊迫化
- <u>金属・鉱物</u>: レアメタル需要の更なる拡大や 中国による寡占化/輸出制限

- 燃料調達先(中東外)の更なる多角化
- LNG/LPGのアジア需要取り込み・国際市場の拡大を通じたセキュリティ強化
- 石油の備蓄制度充実
- 産業競争力を左右するレアメタル確保・備蓄強化
- アジア大での備蓄協力や第三国貿易の拡大等による アジア全体のセキュリティ強化

第2節

持続可能な電力システム構築

(電力ネットワークを取り巻く構造的変化)

- 再生可能エネルギーの主力電源化(地域偏在)
- 災害に対するレジリエンスの強化
- 設備の老朽化
- デジタル化の進展(電気の流れの双方向化)
- 人口減少等による、需要見通しの不透明化

- ネットワーク形成の在り方の改革(プッシュ型の系統形成、 北本連系線の更なる増強、需要側コネクト&マネージ)
- 国民負担の抑制と平準化
- 託送料金制度改革(コスト抑制・投資環境整備)
- 次世代型の発送電への転換
- 災害への対応強化(対策費用の確保・役割分担)

第3節

第4節

再生可能エネルギーの主力電源化に向けて

(主力電源化に向けた課題)

- 国際水準と比較して高い発電コストの 低減加速化・FITからの自立化
- 長期安定的な事業運営の確保
- 適地偏在性対応・ネットワーク整備運用・出 力変動への対応
- 電源の特性に応じた制度構築(需給一体型再エネ活用モデルの 促進・既認定案件の適正導入・国民負担抑制)
- 適正な事業規律の確保(太陽光発電設備廃棄費用の外部積立制度・安全確保に向けた規律強化)
- 大量導入を支える次世代電力NW(プッシュ型の計画的系統形成・系統増強の負担制度・出力制御対象の拡大)

エネルギーレジリエンスの強化

(エネルギーレジリエンスを取り巻く情勢)

- 自然災害の頻発(激甚化・広域化)
- 地政学リスクの顕在化・需給構造の変化
- 再エネの主力電源化 (最大限導入と国民負担抑制の両立)
- 世界的な自然災害の多発・激甚化

エネルギー供給強靱化法案

- ▶ 電気事業法(災害時の連携強化・送配電網強靱化・災害に強い 分散型電力システム等)
- ➤ 再工ネ特措法(FIP制度の創設、再エネポテンシャルを活かす系統整備、再エネ発電設備の適切な廃棄等)
- ▶ JOGMEC法(緊急時発電用燃料調達・リスクマネー供給強化)
- 国際的なレジリエンス強化の議論の進展(APEC等)

(トピック)変化する国際資源情勢

- 地球温暖化への関心が高まる中、
国際機関の長期予測で化石燃料の見通しにバラつきが生じるなど エネルギーの長期的な将来像は不確実に。
- 2014年の油価下落以降、**エネルギー市場の不安定さが増大**。化石燃料への**投資は縮小・低迷**。
- 他方で、新興国の成長で拡大する世界のエネルギー需要を賄うには、**化石燃料が引き続き必要。** 化石燃料の開発には巨額の長期投資が必要(燃料分野は、今後30年で約3000兆円必要との試 算も)とされるなか、**投資予見性が低い現状**は、企業にとって判断が極めて難しい</u>状況。
- 2019年9月には、<u>米国</u>が月次統計上<u>初めて原油・石油製品の純輸出国</u>に。米国の中東への関与が 減り、**地経学的バランスが変化**。原油の中東依存度88%の**日本のエネルギーセキュリティにも影響**。
- アジアや産油国との共同備蓄、国際LNG市場の取引量拡大による流動性・柔軟性確保等、大きく 変化する国際資源情勢をにらんだ資源戦略の強化が必要。

国際機関の化石燃料需要比率の長期見通し ~温暖化関心の高まりで、予測値にバラつき

世界の一次エネルギー需要に占める化石燃料比率の見通し										
		化石		石炭		石油		天然ガス		
機関	シナリオ	足元*	2040	足元*	2040	足元*	2040	足元*	2040	
IEA	ベース	81%	74%	27%	21%	31%	28%	23%	25%	
	持続可能		58%		11%		23%		24%	
ВР	ベース	85%	73%	28%	20%	34%	27%	23%	26%	
	迅速移行		57%		7%		23%		26%	
Exxon Mobil	ベース	010/	76% 61%	26%	20%	32%	30%	23%	26%	
	2℃	O 1 70	61%		11%		24%		25%	
本Iネルギー 済研究所	ベース	ベース 81%	80% 72%	27%	24%	32%	30%	22%	26%	
	技術進展		72%		19%		29%		25%	
出所:IFA「World Energy Outlook 2019 ほか										

各機関の長期エネルギー需給見通し資料から作成

石油・ガス上流投資額の推移 (10億USD) (USD/BBL) 1,000 120 100 800 80 600 60 400 200 2018 (年) 2012 2014 2016 2010 油価 (ブレント・年平均) ■石油・ガス上流投資額

出所: IEA「World Energy Investment 2020」

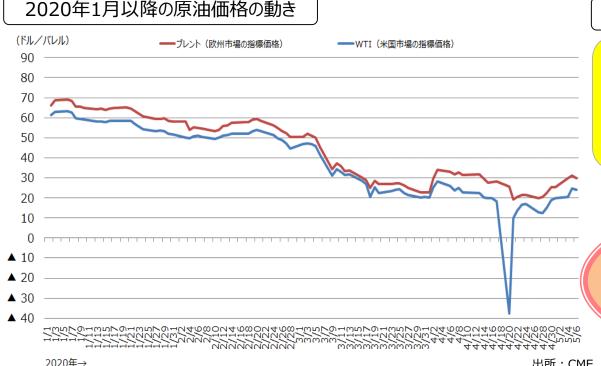
2014年の油価下落以降、投資は縮小・低迷

~エネルギー市場の安定、将来への投資が必要

米国の原油・石油製品純輸入量 (千バレル

米国は原油・石油製品の純輸出国に

~地経学バランス変化、日本も備えが必要



※ 2020年までは年次データ。2020年1~9月は月次

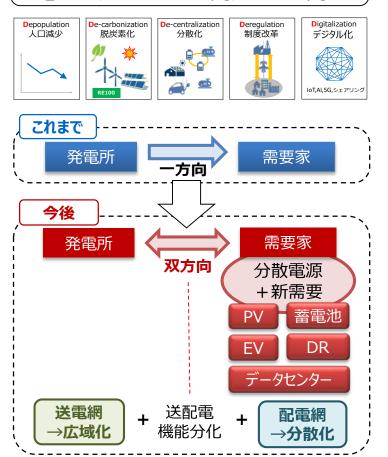
データ。それ以降は週次データを合計して算出。

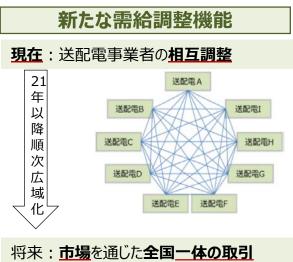
(トピック) 新型コロナウイルス感染拡大等による国際原油市場への影響

- 2020年1月から2月にかけて、新型コロナウイルス感染拡大による需要減少で油価が下落。
- 3月6日のOPECプラス閣僚会合では、**各国の意見が鋭く対立し協調減産の交渉は決裂**。さらに、そ の直後に一部産油国は大幅な増産を表明し、価格競争が激化。
- 4月10日、**国際原油・ガス市場の安定化等に向けた協力を促進するため、G20臨時エネルギー大 臣会合を開催**。4月12日、OPECプラス閣僚会合において、**原油の大幅な減産に合意**。
- 4月中旬、**原油需要が一層減少**する中、**原油価格は再び下落**。なお、米国の代表的な原油価格 指標であるWTIの先物価格については、米国における貯蔵容量逼迫の懸念などから、マイナス37.63ド ルとなり、史上最安値を更新。
- その後、欧米諸国による経済活動再開の動きなどが見られる中、5月初旬頃から、原油価格は上昇。

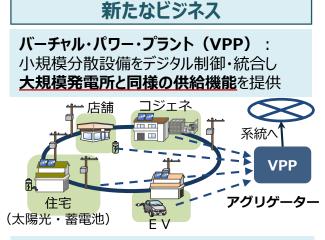
国際原油市場安定化の重要性

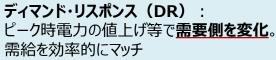
- 低油価は、原油消費国にとって貿易収支の改善や 燃料価格の低下が見込まれる
- 一方、油価の急激な下落は、エネルギー企業の収 益や産油国経済への悪影響などを及ぼし、石油や ガスの中長期的な安定供給に影響する可能性も。

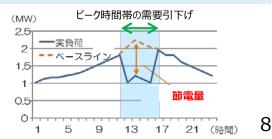

- 世界経済が悪化している中、エネルギーの安 定供給は経済回復に必要不可欠。
- 原油の生産国・消費国双方が、国際原油市 場の安定化に協力して取り組むことが重要。


出所: CME

(トピック) 電気の流れの双方向化と新エネルギービジネスの胎動


- 自然災害に対する電力システム強靱化のためにも、分散電源の活用は有効な手段の一つ。
- 今後、**電気の流れは双方向に**。電気自動車、データセンターなど新たな電力需要が拡大。FIT対象を外れる住宅用太陽光含め、これらを束ねることにより新たな需給調整機能も実現可能に。
- デジタル制御技術の高度化(VPP、DR等)により、他業界を巻き込んだ新ビジネスの可能性も。


5つの構造変化(5D)で 電気の流れは、一方向から双方向に 分散電源のデジタル制御による 調整力の高度化・新ビジネスの胎動



第3章 運用開始となるパリ協定への対応

第1節

温暖化をめぐる動き

- 2019年6月に「パリ協定に基づく成長戦略としての長期戦略」を、2020年3月に「NDC」を国連提出。 2030年度の26%削減目標にとどまることなく更なる削減努力を追求。
- 世界全体のGHG排出の2/3を占める新興国等の排出削減が、実効的な温暖化対策にとって重要。 日本は高効率・低炭素技術やカーボンリサイクル等のイノベーションで貢献。

第2節

エネルギーファイナンスをめぐる動き

- パリ協定の実現には、2040年までに約8000兆円もの投資が必要(国際エネルギー機関試算)。投資先は、省エネ、再エネ、燃料転換、原子力、カーボンリサイクル等のあらゆる分野に及ぶ。
- 気候変動対策やイノベーションに取り組む企業に対し、資金を集中する必要。 2019年10月に世界の産業界・金融界トップを集めた「TCFDサミット」を東京で開催。 アジアの経済発展を促し、「移行(トラジション)」に貢献する技術群を示す必要性を確認。

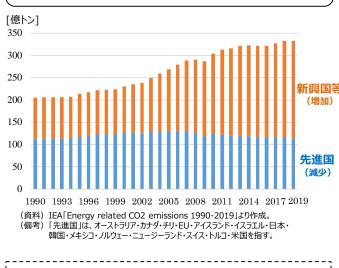
第3節

革新的環境イノベーション戦略の策定・実行

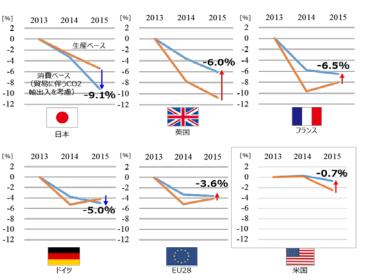
- 2020年1月に「革新的環境イノベーション戦略」を策定
- 内容は以下の3部構成
 - ①イノベーション・アクションプラン : GHG削減につながる5分野・16技術課題・39テーマについて

コスト目標、技術ロードマップ、実施体制等を明確化

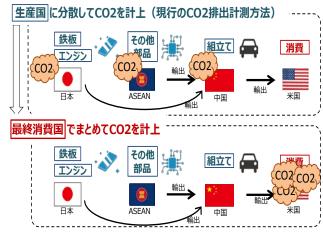
- ②アクセラレーションプラン: ①を実現するための研究体制や投資促進策等提示
- ③ゼロエミッション・イニシアティブズ:社会実装に向けてグローバルリーダーとともに発信し共創
- 本戦略で過去のストックベースでCO2削減(ビヨンド・ゼロ)の実現を目指す


(トピック)世界のGHGの実効的削減を進めるための新たな視点の必要性

- 先進国では、CO2排出減が着実に進むが、新興国は増加の一途であり、世界全体では減っていない。
- **国内に製造業を有さない先進国**が、炭素集約製品を新興国等から輸入することでCO2排出を誘発している側面があり、その規模は世界の排出量の1~2割にも相当(~60億トン、EU排出量の2倍)。
- 現行のCO2排出量推計では製品「生産国」でCO2を計上するが、これを製品「消費国」の計上に変えると、 欧州の削減率は縮小。一方で、日本はG7で削減率1位に (2013年比、2015年時点)。
- 世界の実効的なCO2排出減には、国内対策だけでなく、**輸入元である新興国等の低炭素化**が必須。 日本は、**高効率・低炭素技術**やカーボンリサイクル等の**イノベーション**を展開し、**世界の排出削減に貢献**。


世界のエネルギー起源CO2排出量の推移 先進国では削減が進むが、世界全体では減っていない

計上方法を変えると、欧州の削減率は縮小 (2015年時点(※)、2013年比) ______ CO2計上方法の比較


自動車の国際サプライチェーンのイメージ

- 新興国等からの製品輸出に伴って生じている CO2は、世界の排出量の22%[1]~7% [2]。
- [1] Peters, G. P. et al., "A synthesis of carbon in international trade", Biogeosciences, 9, 3247–3276, 2012.
- [2] OECD, "CO2 emissions embodied in international trade",

出典: OECD「CO2 emissions embodied in international trade」 (2019) から作成

 資料: OECD「OECD CO2 emissions embodied in consumption」(2016)を参考に作成。