平成29年度

高レベル放射性廃棄物等の地層処分に 関する技術開発事業

TRU廃棄物処理・処分技術高度化開発 報告書 (第1分冊)

-ヨウ素129対策技術の信頼性向上-

平成30年3月

公益財団法人 原子力環境整備促進・資金管理センター

本報告書は、経済産業省からの委託研究として、公 益財団法人 原子力環境整備促進・資金管理センターが 実施した平成29年度高レベル放射性廃棄物等の地層処 分に関する技術開発事業 TRU 廃棄物処理・処分技術高 度化開発のうちヨウ素 129 対策技術の信頼性向上の成 果を取りまとめたものです。

報告書の構成

平成 29 年度高レベル放射性廃棄物等の地層処分に関する技術開発事業 TRU 廃棄物処 理・処分技術高度化開発-ヨウ素 129 対策技術の信頼性向上-は、以下の分冊により構成 されている。

当該報告書	分冊名	報告書の標題
		平成 29 年度高レベル放射性廃棄物等の地層処分に関する技
Ô	第1分冊	術開発事業 TRU 廃棄物処理・処分技術高度化開発-ヨウ素
		129対策技術の信頼性向上-
		平成 29 年度高レベル放射性廃棄物等の地層処分に関する技
	第2分冊	術開発事業 TRU 廃棄物処理・処分技術高度化開発-炭素 14
		長期放出挙動評価-
		平成 29 年度高レベル放射性廃棄物等の地層処分に関する技
	第3分冊	術開発事業 TRU 廃棄物処理・処分技術高度化開発-ナチュ
		ラルアナログ調査-
		平成 29 年度高レベル放射性廃棄物等の地層処分に関する技
	第4分冊	術開発事業 TRU 廃棄物処理・処分技術高度化開発-人工バ
		リア材料長期挙動評価・人工バリア評価の初期条件の設定-
		平成 29 年度高レベル放射性廃棄物等の地層処分に関する技
	第5分冊	術開発事業 TRU 廃棄物処分技術 人工バリア長期性能評価
		技術開発-ガス移行連成挙動評価手法の開発-

はじめに

長半減期低発熱放射性廃棄物(以下、TRU 廃棄物という。)の処分方策については、原子力委 員会での方針等 (平成6年の原子力長期計画等) を受けて、「TRU 廃棄物処分概念検討書」(以下、 第1次 TRU レポート)、「TRU 廃棄物処分技術検討書-第2次 TRU 廃棄物処分研究開発取りま とめー」(以下、第2次TRUレポート)によって、その地層処分の技術的成立性が示され、平成 19年6月には最終処分法の一部の改正により、地層処分の対象廃棄物に追加された。これに伴い、 平成20年3月に「特定放射性廃棄物の最終処分に関する基本方針」及び「特定放射性廃棄物の最 終処分に関する計画」が改定され、併置処分の実施も念頭に、TRU 廃棄物と高レベル放射性廃棄 物は地層処分事業という統合された計画の中で、平成 40 年代後半を目途に最終処分事業を開始 するというスケジュールが示されている。また、同改正法は平成 20 年 4 月より施行され、NUMO が高レベル放射性廃棄物の地層処分に加え、TRU 廃棄物の地層処分の実施主体としての認可を受 けた。これらの背景を踏まえて、TRU 廃棄物の処分に向けた技術開発については、TRU 廃棄物 の地層処分に関する全体基本計画(以下、基盤研究開発計画)に示されるように、高レベル放射 性廃棄物処分の技術開発との整合を図りつつ、併置処分の技術的成立性をより確実にするための 検討を含め、地層処分事業のスケジュールを考慮して進める必要がある。そして、NUMO が必要 な技術開発等へ直接的に反映させるために、処分事業に先行して技術基盤の整備を進めることに 加え、科学的知見の拡充による技術的信頼性や安全性の向上を図るために、国の基盤研究開発と して実施することが期待されている。

平成 27 年 5 月には、平成 26 年 4 月に閣議決定されたエネルギー基本計画や、同年 5 月に公表 された放射性廃棄物 WG の「中間とりまとめ」を踏まえ、最終処分法に基づく基本方針の改定(閣 議決定)が行われた。改定のポイントは、①現世代の責任と将来世代の選択可能性、②全国的な 国民理解、地域理解の醸成、③国が前面に立った取組、④事業に貢献する地域に対する支援、⑤ 推進体制の改善等である。その国が前面に立った取組として、平成 29 年 7 月には地層処分に関係 する地域の科学的特性が整理された科学的特性マップが公表された。これにより処分地選定調査 を進めるために地層処分に関する広範な国民理解を得る重要性が改めて認識されるとともに、今 後処分地の選定プロセスが進むことが予想され、TRU 廃棄物特有の問題が地層処分の安全評価に おいて大きな障壁とならないよう、技術開発を着実に進める必要がある。

このような TRU 廃棄物特有の重要課題として、人工バリア材および地質媒体への収着分配係 数が小さく、レファレンスケースの被ばく線量評価では高レベル放射性廃棄物に比べ 2 桁以上高 いことが示されている(第2次TRUレポートのレファレンスケースでは最大線量が処分後 10,000 年で 2µSv/y とされている) ヨウ素 129 および炭素 14 の低減対策に加え、多様な廃棄体が存在 し、HLW のようなオーバーパックの機能がない、坑道集積型の処分場概念である TRU 廃棄物の 処分では、大量のセメント系材料を使用することや金属腐食等によるガス発生による人工バリア の長期挙動への影響があげられる。

これらの重要課題に対して、TRU 廃棄物処分の技術開発において、TRU 廃棄物処分の重要核

種であるヨウ素 129 (グループ 1) および炭素 14 (グループ 2) の影響を低減するための代替技 術の開発として、10万年以上のヨウ素閉じ込め性能を目標とした複数のヨウ素固化体開発に関し て、その処理プロセスの成立性の見通しを示すとともに、長期評価のためのヨウ素放出の評価モ デルを提案した。一方、炭素 14 対策としては、ソースタームの現実的な評価として、インベント リ設定方法の基本的な考え方を示すとともに、金属の腐食や炭素 14 浸出率のデータを一部取得 して、長期予測のためのモデル化を検討した。さらに、炭素 14 の 10 半減期に相当する 6万年間 の閉じ込めのための容器を開発し、その実現性を示した。これらの成果により、環境条件に応じ た評価・概念設計に対応できる基礎的な技術・手法を整備することができたが、それらを用いた 長期安全性評価の信頼性を確保するためには、これまでに提案、構築した評価手法、評価モデル

また、精密調査地区の選定時に、対象となる地質環境に応じた予備的安全評価や施設の概念設 計を実現可能な現実的な条件で実施可能とするため、材料および地質環境の多様性に対応した、 人工バリアの長期挙動に係わるデータ取得ならびに評価モデルの開発が行われたが、さらにその 精緻化、信頼性向上が必要である。

長期安全性評価の信頼性を確保するためには、これまでに提案、構築した評価手法、評価モデルの信頼性を向上させるとともに、その説明の妥当性を示すための根拠を示すことが重要であり、 そのためには、長期試験による評価モデルの確証に加え、類似の天然事例等による説明性の確保 が必要である。

本開発では、TRU 廃棄物の地層処分における人工バリア材の特性ならびに重要核種の影響について、特に長期評価の信頼性確保の観点から、これまでに明らかになった課題を解決し、安全評価の信頼性を向上させることを目的とし、平成 25 年度から以下の各技術開発に取り組んできた。

(1) ヨウ素 129 対策技術の信頼性向上

(2) 炭素 14 長期放出挙動評価

(3) ナチュラルアナログ調査

(4)人工バリア材料長期挙動評価・人工バリア評価の初期条件の設定

(5) ガス移行連成挙動評価手法の開発

本分冊(第1分冊)では、ヨウ素 129 対策技術の信頼性向上に関する平成 29 年度の成果を取 り纏めた。

第1章 事業概要	1-1
1.1 背景	1-1
1.2 目的	1-1
1.3 本技術開発のこれまでの成果概要	1-3
1.3.1 開発経緯	1-3
1.3.2 これまでの成果と課題	1-5
1.4 実施概要	1-7
1.4.1 全体計画	1-7
1.4.2 平成 29 年度の実施事項	1-9
参考文献	1-11
第2章 アルミナ固化技術	2-1
2.1 緒言	2-1
2.2 アルミナ固化技術の概要	2-3
2.2.1 アルミナ固化体の製造	2-3
2.2.2 アルミナ固化体	2-4
2.2.3 これまでの開発経緯	2-6
2.2.4 残された課題	2-14
2.3 アルミナ固化体の環境影響の検討	2-16
2.3.1 目的	2-16
2.3.2 試験方法	2-16
2.3.3 結果	2-21
2.4 アルミナ固化体の HS ⁻ 還元環境におけるヨウ素溶出挙動の評価	2-47
2.4.1 目的	2-47
2.4.2 実験方法	2-47
2.4.3 実験結果	2-50
2.4.4 考察	2-57
2.4.5 まとめと今後の課題	2-63
2.5 長期ヨウ素放出挙動モデルの検証	2-64
2.5.1 目的	2-64
2.5.2 検討内容	2-64
2.6 まとめと今後の課題整理	2-77
2.6.1 まとめ	2-77
2.6.2 今後の課題	2-78
参考文献	2-79

第	3章 BPI ガラス固化技術	3-1
	3.1 諸 言	3-1
	3.2 BPI ガラス固定化技術の概要	3-2
	3.3 平成 29 年度の実施内容	3-5
	3.3.1 BPI ガラス固化体の化学構造の詳細検討	3-5
	3.3.2 BPI ガラス固化体からのヨウ素浸出機構の検討	3-5
	3.3.3 BPI ガラス固化体からのヨウ素放出モデルの検討	3-7
	3.4 BPI ガラス固化体の化学構造の詳細検討	3-9
	3.4.1 モンテカルロシミュレーションにおける結合エネルギーについて	3-9
	3.4.2 BPI ガラス固化体の溶出モデルに関する基礎的検討	
	3.5 BPI ガラス固化体からのヨウ素浸出機構の解明	3-15
	3.5.1 地球化学計算に基づく試験条件の検討	3-15
	3.5.2 多様な環境条件における浸漬試験	3-23
	3.5.3 変質層の固相分析	3-54
	3.5.4 鉛丹をガラス原料とした 2.5L サイズの BPI ガラス固化体による浸漬試験.	
	3.5.5 長期浸漬試験	
	3.6 BPI ガラス固化体からのヨウ素放出モデルの検討	3-85
	3.6.1 Monte Carlo シミュレーションの高度化検討	
	3.6.2 反応移動連続体モデルに関する調査検討	
	3.7 まとめ	3-100
	3.7.1 BPI ガラス固化体の化学構造の詳細検討	3-100
	3.7.2 BPI ガラス固化体からのヨウ素浸出機構の解明	3-100
	3.7.3 BPI ガラス固化体からのヨウ素放出モデルの検討	3-102
	参考文献	3-103

第4章	f セメント固化技術	4-1
4.1	緒言	4-1
4.2	セメント固化技術の概要	4-1
4.3	技術開発課題	4-5
4.	3.1 発熱影響による固定化コンセプトの変化	4-5
4.	3.2 ハイドロガーネット固化体の評価	4-6
4.	3.3 ヨウ素放出モデルの検証	4-7
4.	3.4 セメント固化体の優位性評価	4-8
4.4	まとめ	4-9
参考	文献4	-10

第5章 まとめ	5-1
5.1 アルミナ固化技術のまとめ	5-1
5.2 BPI ガラス固化技術のまとめ	5-2
5.3 セメント固化技術のまとめ	5-2
5.4 ヨウ素 129 対策技術の総合評価	5-3

図目次

义	1.2.1-1	ヨウ素固定化技術による I-129 被ばく線量低減概略図1-2
义	1.2.1-2	I-129の最大被ばく線量と浸出期間の関係1-3
义	1.3.1-1	開発経緯の概要1-3
义	1.4.1-1	計画概要1-9
义	2.2.1-1	廃銀吸着材(左:外観、右:一粒子の断面の EPMA 分析結果)2·3
义	2.2.1-2	アルミナ固化体作製フロー2-4
义	2.2.2-1	アルミナ固化体の外観2-4
义	2.2.2-2	アルミナ固化体表面の SEM 像2·5
义	2.2.2-3	固化体断面 SEM 観察結果2-5
义	2.2.2-4	固化体の組成分析結果2-6
义	$2.2.2^{-5}$	元素分布分析結果(EPMA分析)2-6
义	2.2.3-1	固化体からの Al とヨウ素の放出挙動の pH 影響
义	2.2.3-2	アルミナ固化体の緻密化に及ぼす水分の影響、脱気条件の検討2-8
义	2.2.3-3	アルミナ混合固化体中の AgI の分布イメージ
义	2.2.3-4	ヨウ素の規格化浸出量 NLiの時間の平方根依存性
义	2.2.3-5	各種条件下での浸漬試験結果の√tプロット2-12
义	2.2.3-6	透過拡散試験後の固化体断面の EPMA による塩素プロファイルの分析
义	2.3.3-1	純水を用いた浸漬試験結果その1 試験 No.10-1:50%アルミナ混合固化体2-22
义	2.3.3-2	純水を用いた浸漬試験結果その2 試験 No.12-1:90%アルミナ混合固化体2-23
义	2.3.3-3	模擬降水系地下水を用いた浸漬試験結果 試験 No.12-2 : 90%アルミナ混合固
		化体2-24
义	2.3.3-4	ベントナイト平衡水を用いた浸漬試験結果 試験 No.12-4:90%アルミナ混合
		固化体2-25
义	$2.3.3 \cdot 5$	Ca(OH)2共存下での高 HS ⁻ 濃度試験の結果 試験 No.12 ⁻ 3(3×10 ⁻³ mol·dm ⁻³)
		および 12-3b $(3 \times 10^{-2} \text{ mol} \cdot \text{dm}^{-3})$
义	2.3.3-6	低 HS ⁻ 濃度下における浸漬試験の結果(試験 No.15-1)
义	2.3.3-7	Ca 添加量の効果確認試験結果(試験 No.15-2)2-29
义	2.3.3-8	観察した固化体の浸漬試験時のヨウ素規格化浸出量2-30
义	2.3.3-9	固化体における表面積 S および深さ d の関係2-31
义	2.3.3-10	溶液浸入距離と溶液浸入距離の関係2-32
义	2.3.3-11	観察部位2-33
义	2.3.3-12	溶液浸入境界付近の SEM 画像(試験 No.9-1)2-34
义	2.3.3-13	溶液浸入境界の SEM 画像(試験 No.9-2)2-35
义	2.3.3-14	溶液浸入境界の SEM 画像(試験 No.9-3)その 1

义	$2.3.3 \cdot 15$	溶液浸入境界の SEM 画像(試験 No.9·3)その 2	2-37
図	$2.3.3 \cdot 16$	EDX による元素分析(試験 No.9·1 と試験 No.9·2)	2-37
义	$2.3.3 \cdot 17$	EDX による元素分析(試験 No.9-3)	2-38
义	2.3.3-18	固化体最表面の断面観察部位	2-40
义	$2.3.3 \cdot 19$	固化体最表面の SEM 観察 (試験 No.9-1 : 90%アルミナ混合固化体の	
		浸漬後)	2-40
义	2.3.3-20	固化体最表面の SEM 観察 (試験 No.9-3 100%廃銀吸着材(アルミナ未混	
		固化体の浸漬後)	2-41
义	2.3.3-21	黒変領域について観察した X 線 CT 像と 3 次元再構築イメージ像	2-42
义	2.3.3-22	X 線観察像と SEM 観察像の比較	2-44
义	2.3.3-23	黒変領域での X 線 CT スライス像における空隙抽出結果	2-45
义	2.3.3-24	黒変領域の平均的な部分での空隙分布	2-46
义	2.4.2-1	AgI 溶解試験のフローチャート	2-49
义	2.4.2-2	テフロン製試料固定治具に固定された固化体試料	2-49
义	2.4.3-1	溶液 pH/Eh の経時変化(試験 3 (~100 日))	2-50
义	2.4.3-2	溶液中の各元素濃度の経時変化と溶解量(溶液交換毎の濃度の積算値)	
		(試験 1)	2-52
义	2.4.3-3	溶液中の各元素濃度の経時変化と溶解量(溶液交換毎の濃度の積算値)	
		(試験 2)	2-53
义	2.4.3-4	溶液中の各元素濃度の経時変化と溶解量(溶液交換毎の濃度の積算値)	
		(試験 3)	2-54
义	2.4.3-5	I および Al の規格化溶解量 <i>NLi</i> の経時変化(試験 3)	
		(リニア及び対数プロット)	2-55
义	2.4.3-6	試験後固化体試料の外観:(a)試験1(20日)、(b)試験2(50日)、(c)試験3	
		(100 日)	2-56
义	2.4.3-7	試験後固化体試料表面の XRD 分析結果(試験 2(50日))	2-56
义	2.4.3-8	試験後固化体試料断面の SEM 観察結果(試験 2(50 日))	2-57
义	2.4.3-9	試験後固化体試料断面の EDX 分析結果の一例(試験 2(50 日))	2-57
义	2.4.4-1	I および Al の規格化溶解量 NLiの経時変化 (試験 1,試験 2,試験 3,平成 28 年月	芰
		試験)	2-58
义	2.4.4-2	I および Al の規格化溶解速度 NRi の経時変化 (試験 1、試験 2、試験 3、平向	戈
		28 年度試験)	2-59
义	2.4.4-3	試験後固化体試料中の I,S,Ag 濃度の表面からの深さ方向の濃度分布(試験 1、2	2、
		3)	2-60
义	2.4.4-4	固化体試料からの I 溶解深さ(S 進入深さ)の経時変化 (固相分析(EDX)	
		結果と液相分析結果(NLiから換算))	2-61
汊	2.4.4-5	Iの規格化溶解量 NLiの時間の平方根依存性(試験 3、平成 28 年度試験)	2-62

义	2.5.2-1	Higuchi 式よる浸出率係数 k'の推算と実測値の関係	2-66
义	2.5.2-2	Higuchi 式によるヨウ素放出量の計算値と実験値(浸漬試験結果)との比較	2-67
义	2.5.2-3	Higuchi 式による理論式と実験値の比較([HS-]=3×10 ⁻³ および 3×10 ⁻⁴ mol・	
		dm ⁻³)	2-67
义	2.5.2-4	空隙率の異なる固化体の浸漬試験結果の比較	2-68
义	2.5.2-5	アルミナ混合率に対するヨウ素放出挙動の変化の推算	2-70
义	2.5.2-6	固化体内部単純化モデル(100x3000 セル)	2-73
义	2.5.2-7	SEM 画像を基にしてモデル化した内部構造	2-73
义	2.5.2-8	固化体内部単純化モデルによる計算結果と実験値の比較	2-75
义	2.5.2-9	SEM 画像から作成したモデルによる計算結果	2-75
図	2.5.2-10	SEM 画像から作成したモデルによる計算結果(溶液浸入深さの時間変化)	2-76
図	3.2.1-1	BPI ガラス固化プロセス技術の概要	3-2
义	3.2.1-2	BiPbO ₂ I (BPI) の結晶構造	3-2
义	3.2.1-3	対象とした低溶融鉛ガラスの基本組成	3-3
义	3.2.1-4	BPI ガラス固化体の概念	3-4
义	3.4.1-1	Pbの結合パラメータに関する解析結果の比較:液相中濃度	3-11
义	3.4.1-2	Pbの結合パラメータに関する解析結果の比較:BPIガラス及び変質層断面(Pb	
		の溶解度 1E-6M、SV=0.1 とした場合)	3-12
义	3.4.2-1	2成分ガラスの切断面(切りっ放し(左)とBO3、BO4多面体を保持した表面	
		処理後(右))	3 - 13
义	3.4.2-2	ガラス構造モデルを用いた2成分ガラスの溶出挙動(左から1000,2000,3000,	
		4000, 5000 ステップ後)	3-14
义	$3.5.1 \cdot 1$	ベントナイト平衡水における平衡計算結果	3-16
义	3.5.1-2	降水系地下水及び海水系地下水における平衡計算結果	3-16
义	$3.5.1^{-3}$	ベントナイト平衡水に NaH2PO4 を添加した場合の浸漬試験結果	3-18
义	3.5.1-4	ベントナイト平衡水中にH2PO4 ⁻ が存在する場合の地球化学解析結果	3-19
义	$3.5.1^{-5}$	ベントナイト平衡水に NaH2PO4 を添加した場合の浸漬試験結果	3-20
义	3.5.1-6	ベントナイト平衡水中に HS ⁻ が存在する場合の地球化学解析結果(1/2)	3-21
义	3.5.1-6	ベントナイト平衡水中に HS-が存在する場合の地球化学解析結果(2/2)	3-22
义	3.5.2-1	模擬海水/ベントナイト平衡水中での規格化浸出量	3-29
义	3.5.2-2	模擬海水/ベントナイト平衡水中での規格化浸出率	3-31
义	3.5.2 - 3	炭酸イオン影響試験結果(模擬海水:ホウ素とヨウ素の規格化浸出量の	
		比較)	3-33
図	3.5.2-4	模擬海水/ベントナイト平衡水中の Eh 変化	3-33
図	$3.5.2 \cdot 5$	模擬海水/ベントナイト平衡水中の pH 変化	3-33
図	3.5.2-6	NaHCO3を添加したベントナイト平衡水中での規格化浸出量	3-35

义	3.5.2-7	NaHCO3を添加したベントナイト平衡水中での規格化浸出率	3-37
义	3.5.2-8	炭酸イオン影響試験結果(ベントナイト平衡水:ホウ素とヨウ素の規格化浸出	
		量の比較)	3-39
义	3.5.2-9	0.07M NaHCO3を添加した/ベントナイト平衡水中の Eh 変化	3-39
义	$3.5.2 \cdot 10$	0.05M NaHCO3を添加した/ベントナイト平衡水中の Eh 変化	3-39
义	$3.5.2 \cdot 11$	0.07M NaHCO3を添加した/ベントナイト平衡水中の pH 変化	3-40
义	$3.5.2 \cdot 12$	0.05M NaHCO ₃ を添加した/ベントナイト平衡水中の pH 変化	3-40
义	$3.5.2 \cdot 13$	初期炭酸イオン濃度とホウ素浸出量の関係(120 日)	3-41
义	$3.5.2 \cdot 14$	初期炭酸イオン濃度とヨウ素浸出量の関係(120 日)	3-41
义	$3.5.2 \cdot 15$	初期炭酸イオン濃度とホウ素浸出量の関係(200 日)	3-41
义	$3.5.2 \cdot 16$	初期炭酸イオン濃度とヨウ素浸出量の関係(200 日)	3-42
义	$3.5.2 \cdot 17$	初期炭酸イオン濃度とホウ素浸出量の関係(400 日)	3-42
义	$3.5.2 \cdot 18$	初期炭酸イオン濃度とヨウ素浸出量の関係(400 日)	3-42
义	$3.5.2 \cdot 19$	IC の経時変化	3 - 43
义	3.5.2-20	Ca(OH) ₂ (pH=9)での規格化浸出量(Pb ₃ O ₄ 原料)	3-45
义	$3.5.2 \cdot 21$	Ca(OH) ₂ (pH=9)での規格化浸出率(Pb ₃ O ₄ 原料)	3-47
义	3.5.2-22	Ca(OH)2(pH=9)でのホウ素とヨウ素の規格化浸出量の比較	3-49
义	$3.5.2 \cdot 23$	Ca(OH) ₂ (pH=9)での Eh 変化(Pb ₃ O ₄ 原料)	3-49
义	$3.5.2 \cdot 24$	Ca(OH) ₂ (pH=9)での pH 変化(Pb ₃ O ₄ 原料)	3-50
义	$3.5.2 \cdot 25$	ホウ素・ヨウ素の規格化浸出量の温度依存性(ベントナイト平衡水)	3-52
义	3.5.2-26	ホウ素とヨウ素の規格化浸出量の比較	3-54
义	3.5.2-27	254 日浸漬後の固化体の外観	3-54
义	$3.5.3^{-1}$	ベントナイト平衡水に浸漬後の試料 (800 日)	3-54
义	3.5.3-2	変質層の SEM 画像と変質層の厚さ	3-55
义	$3.5.3^{-3}$	ベントナイト平衡水に浸漬した BPI ガラス変質層の XRD パターン	3-55
义	3.5.3-4	254 日浸漬後の BPI ガラス固化体変質層の XRD 分析結果	3-56
义	3.5.3 - 5	ベントナイト平衡水に 254 日浸漬した BPI ガラス表面の SEM 画像(左上	
		60°C、右上 40°C、左下 10°C)	3-57
义	3.5.3-6	模擬海水のベントナイト平衡水に浸漬した試料の変質層の XRD(120 日)	3-58
义	3.5.3-7	模擬海水のベントナイト平衡水に浸漬した試料の SEM 画像(120 日)	3-58
义	3.5.3-8	Ca(OH) ₂ (pH=9) に浸漬した固化体の SEM 画像(800 日)	3-59
义	3.5.3-9	Ca(OH) ₂ (pH=9) に浸漬した固化体の SEM-EDS(800 日)	3-59
义	$3.5.3 \cdot 10$	Ca(OH)2 (pH=9) に浸漬した固化体の変質層の XRD(800 日)	3-60
义	$3.5.3 \cdot 11$	純水+Na2S に浸漬した固化体の外観(120 日)	3 - 61
义	$3.5.3 \cdot 12$	白色部の SEM-EDS	3 - 61
义	3.5.3-13	茶色部の SEM-EDS(左)および電子線回折(右上)、XRD パターン	
		(右下)	3-61

义	$3.5.3 \cdot 14$	茶色部の層から EELS スペクトル(CKαの損失ピーク)	3-62
义	$3.5.4 \cdot 1$	ベントナイト平衡水中での規格化浸出量(Pb3O4原料)	3-64
义	3.5.4-2	ベントナイト平衡水中での規格化浸出率(Pb3O4原料)	3-66
义	3.5.4-3	ベントナイト平衡水中での Eh 変化 (Pb ₃ O ₄ 原料)	3-68
义	3.5.4-4	ベントナイト平衡水中での pH 変化 (Pb3O4 原料)	3-68
义	3.5.4-5	模擬降水系地下水中での規格化浸出量(Pb3O4原料)	3-69
义	3.5.4-6	模擬降水系地下水中での規格化浸出率(Pb3O4原料)	3-71
义	3.5.4-7	模擬降水系地下水中での Eh 変化(Pb ₃ O ₄ 原料)	3-73
义	3.5.4-8	模擬降水系地下水中での pH 変化(Pb ₃ O ₄ 原料)	3-73
义	3.5.4-9	模擬海水中での規格化浸出量(Pb3O4原料)	3-74
义	3.5.4-10	模擬海水中での規格化浸出率(Pb3O4原料)	3-76
义	3.5.4-11	模擬海水中での Eh 変化(Pb ₃ O ₄ 原料)	3-78
义	$3.5.4 \cdot 12$	模擬海中での pH 変化(Pb3O4 原料)	3-78
义	$3.5.4 \cdot 13$	ホウ素とヨウ素の規格化浸出量の比較(Pb3O4原料)	3-78
义	$3.5.5 \cdot 1$	ベントナイト平衡水中での規格化浸出量の経時変化	3-80
义	$3.5.5 \cdot 2$	ベントナイト平衡水中での規格化浸出率の経時変化	3-82
义	3.5.5 - 3	ヨウ素の規格化浸出量と平方根則の関係	3-84
义	$3.5.5 \cdot 4$	ベントナイト平衡水中での Eh 変化	3-84
义	$3.5.5 \cdot 5$	ベントナイト平衡水中での pH 変化	3-84
义	3.6.1-1	ベントナイト平衡水と模擬海水の浸漬試験結果とモンテカルロシミュレーシ	
		ョン結果の比較	3-88
义	3.6.1 - 2	ベントナイト平衡水と模擬海水の各種固化体の浸漬試験とモンテカルロシミ	
		ュレーション結果の比較	3-89
义	3.6.1-3	ベントナイト平衡水+NaHCO3 0.01M 浸漬試験の再現	3-90
义	3.6.1-4	ベントナイト平衡水+NaHCO3 0.1M 浸漬試験の再現	3-91
义	3.6.1-5	ホウ素濃度に関する Monte Carlo シミュレーション結果	3-92
义	3.6.1-6	ヨウ素、鉛、ビスマス及び鉛濃度に関する Monte Carlo シミュレーション結	
		果	3-93
义	3.6.1-7	変質層厚さと組成割合に関する Monte Carlo シミュレーション結果	3-94
义	3.6.2-1	性能評価モデルの構築に必要な構成要素と相互補完的な組合せの概念図	3-95
义	3.6.2-2	BPI ガラスの一次元簡易モデル	3-95
义	3.6.2-3	BPI ガラスの一次元差分モデル	3-96
义	3.6.2-4	反応移動連続体モデルにおける計算例	3-99

図 4.2.1-1	セメント固化体の SEM 像	4- 3
図 4.2.1-2	セメント固化体中での IO3 ⁻ 存在状態の想定	4 - 4
図 4.2.1-3	廃銀吸着材中のヨウ素のセメント固化プロセスの概要	4-5

- 図 4.3.1-1 固化体サイズのスケールアップと発熱の課題......4-6

- 図 4.3.4-1 セメント固化体とリファレンス OPC 固化体のヨウ素放出のモデル比較.......4-9

表目次

表	1.3.1-1	平成 12 年度に調査したヨウ素固定化技術	1-4
表	$1.3.1 \cdot 2$	候補となる代替固化技術の概要	1-5
表	2.2.2-1	マトリクス物性分析結果	2-5
表	2.2.4-1	アルミナ固化体の現状と課題	2-15
表	$2.3.2 \cdot 1$	浸漬試験条件	2-17
表	2.3.2-2	浸漬条件一覧表	2-19
表	2.3.2-3	SEM 観察および EDX 分析	2-20
表	2.3.2-4	観察に用いた固化体	2-21
表	$2.3.3 \cdot 1$	HS ⁻ 濃度と Ca(OH)2の影響の関係整理	2-30
表	2.3.3-2	溶液の浸入距離の計測結果	2-30
表	2.3.3-3	規格化浸出量と溶液侵入距離の比較	2-31
表	2.3.3-4	EDX 分析結果のまとめ	2-38
表	2.4.2-1	アルミナ固化体試料の組成	2-48
表	2.4.2-2	試験条件	2-50
表	2.4.4-1	アルミナ (α-Al ₂ O ₃) およびギブサイト (Al(OH) ₃) の溶解平衡濃度	2-58
表	2.4.4-2	時間の平方根則に基づく速度式における反応速度定数 k の値(60℃)	2-63
表	$2.5.2 \cdot 1$	検討するパラメータ影響	2-65
表	2.5.2-2	Higuchi 式による空隙率とヨウ素放出挙動の関係の推算	2-69
表	2.5.2-3	Higuchi 式によるアルミナ混合率とヨウ素放出挙動の関係の推算	2-70
表	2.5.2-4	拡張セルオートマトンモデルのルール	2-72
表	2.5.2-5	素過程の溶解速度式	2-72
表	3.2.1-1	BPI ガラスフリットの化学組成	3-3
表	3.2.1-2	BPI ガラス固化体の化学組成	3-3
表	3.2.1 - 3	BPI ガラス固化体の仕様及び数量	3-4
表	3.2.1-4	BPI ガラス固化体の物理・化学的特性	3-4
表	$3.5.1 \cdot 1$	ベントナイト平衡水の代表組成	3-15
表	3.5.1-2	第2次取りまとめの性能評価のために設定されたモデル地下水水質	3-17
表	$3.5.2 \cdot 1$	多様な環境条件における浸漬試験一覧	3-23
表	3.5.2-2	多様な環境条件における浸漬試験一覧(平成 29 年度)	3-25
表	$3.5.2 \cdot 3$	炭酸塩影響試験条件	3-25
表	3.5.2-4	模擬海水/ベントナイト平衡水の組成	3-26
表	$3.5.2 \cdot 5$	NaHCO3を添加したベントナイト平衡水の組成	3-27
表	3.5.2-6	模擬海水/ベントナイト平衡水中での規格化浸出量	3-30

表	3.5.2-7	模擬海水/ベントナイト平衡水中での規格化浸出率	3-32
表	3.5.2-8	NaHCO3を添加したベントナイト平衡水中での規格化浸出量	3-36
表	3.5.2-9	NaHCO3を添加したベントナイト平衡水中での規格化浸出率	3-38
表	$3.5.2 \cdot 10$	非調和条件での浸漬試験条件	3-43
表	$3.5.2 \cdot 11$	Ca(OH)2(pH=9)での規格化浸出量(Pb3O4原料)	3-46
表	$3.5.2 \cdot 12$	Ca(OH) ₂ (pH=9)での規格化浸出率(Pb ₃ O ₄ 原料)	3-48
表	$3.5.2 \cdot 13$	温度依存性取得試験条件	3-50
表	$3.5.2 \cdot 14$	ホウ素・ヨウ素の規格化浸出量の温度依存性(ベントナイト平衡水)	3-53
表	3.5.4-1	Pb ₃ O ₄ をガラス原料とした 2.5L サイズ BPI ガラス固化体による浸漬試	験
		条件	3-62
表	3.5.4-2	浸漬液の組成	3-63
表	3.5.4-3	ベントナイト平衡水中での規格化浸出量(Pb3O4原料)	3-65
表	3.5.4-4	ベントナイト平衡水中での規格化浸出率(Pb3O4原料)	3-67
表	3.5.4-5	模擬降水系地下水中での規格化浸出量(Pb3O4原料)	3-70
表	3.5.4-6	模擬降水系地下水中での規格化浸出率(Pb3O4原料)	3-72
表	3.5.4-7	模擬海水中での規格化浸出量(Pb3O4原料)	3-75
表	3.5.4-8	模擬海水中での規格化浸出率(Pb3O4原料)	3-77
表	$3.5.5 \cdot 1$	ベントナイト平衡水中での規格化浸出量の経時変化	3-81
表	$3.5.5 \cdot 2$	ベントナイト平衡水中での規格化浸出率の経時変化	3-83
表	3.6.1-1	Monte Carlo シミュレーションに使用した数値	3-92
表	$3.6.2 \cdot 1$	現時点において考慮している液相中の化学種	3-98
表	3.6.2-2	現時点において考慮している固相	3-98
表	4.2.1-1	普通ポルトランドセメントとアルミナセメントの化学組成	4-2
表	4.2.1-2	普通ポルトランドセメントとアルミナセメントの特徴の比較	4-2
表	4.2.1-3	セメント固化体の組成	4-3
表	4.2.1-4	セメント固化体の物理性状の一例	4-3

第1章 事業概要

1.1 背景

放射性廃棄物の地層処分のうち、超ウラン核種を含む廃棄物(以下、TRU 廃棄物という)の 処分対策や技術的検討について、核燃料サイクル開発機構と電気事業連合会により平成 12 年 3 月「TRU 廃棄物処分概念検討書」[1](以下、「第 1 次 TRU レポート」という)や平成 17 年 3 月「TRU 廃棄物処分技術検討書」[2](以下、「第 2 次 TRU レポート」という)において技術的 検討が公開されている。グループ 1 の廃銀吸着材に含有されるヨウ素 129(以下、I-129 とい う)は、長半減期核種(1,570 万年)であり、易溶性でバリア材への吸着性が低い。これにより、 人工バリアおよび天然バリアでの移行遅延やそれにともなう減衰効果が見込めない。このため、 地層処分後、線量を支配する核種は I-129 となり、107 年まで線量を支配する核種と考えられた [2]。それゆえ、I-129 は被ばく線量評価上の重要核種となっている。平成 17 年 7 月に資源エネ ルギー庁の統括の下に、放射性廃棄物地層処分に関する国の基盤的研究開発を進める関係機関に よって組織された「地層処分基盤研究開発調整会議」等において検討された成果をまとめた

「TRU 廃棄物の地層処分基盤研究開発に関する全体基本計画」(資源エネルギー庁・(独)日本 原子力研究開発機構、2009)[3]においても、I-129の影響低減のための代替技術の開発について、 検討すべき課題として挙げられている。また、「地層処分低レベル放射性廃棄物に関わる処分の 技術と安全性」(原子力発電環境整備機構、2011)[4]においても、I-129 や C-14 に対して十分 な安全性を確保するための高度化対策の必要性が示されている。

一方、使用済燃料の直接処分を予定している諸外国では、廃銀吸着材といったヨウ素フィル ターに代表される、特別に濃縮して I-129 を含有する廃棄物は発生しない。また、使用済燃料の 再処理を行っている国では、環境面への配慮を考えると将来的に回収される可能性も否定できな いものの、現状では主に I-129 は大気および海洋へ放出を行っており、積極的な回収や処理は行 われていない。したがって、一部の基礎的な研究例を除き、ヨウ素固定化技術について諸外国か らの技術導入はほとんど期待できないのが現状であり、主体として日本が取り組まなくてはなら ない技術である。

1.2 目的

本技術開発では、現段階で処分サイトが特定されていないことを考慮し、より幅広い地質環境 においても安全性を見通すことができるヨウ素固定化の代替技術として、I-129の被ばく線量の 低減、固化体からの長期的なヨウ素放出挙動評価の信頼性、及びヨウ素固定化処理プロセスの成 立性やコスト等の観点から、ヨウ素固定化技術を開発することを目的とする。

I-129は上述のように長半減期核種であり、移行遅延の効果は大きく期待できない。特に、第2 次TRUレポート[2]では、レファレンスの地質環境条件において最大被ばく線量は10 μSv/y以下 と評価されているが、レファレンスの地質環境よりも水理物質移行の観点から良好とされない条 件においては、より大きな被ばく線量となる可能性が指摘されている。また、図1.2.1-1に概略図 を示すように廃棄体容器等の人工バリアへの完全閉じ込めによる放射能減衰に期待することは困 難である。このため、固化体からのヨウ素の放出を長期的に抑制可能なヨウ素固定化技術を開発 することで被ばく線量ピークの低減を目指している。

図 1.2.1-1 ヨウ素固定化技術による I-129 被ばく線量低減概略図

目標とするヨウ素放出抑制能について検討を行うため、固化体からのヨウ素放出期間をパラ メータとした核種移行/被ばく線量の感度解析を行った(図1.2.1-2)[5]。この解析結果から、 地下水流速が速い条件であっても、固化体からのヨウ素放出期間が10万年以上であれば最大被 ばく線量を10 µSv/yよりも1桁低減できることがわかった。したがって、処分場設計等における 安全裕度確保の観点(10 µSv/yよりも約1桁低減)から、本技術開発における固化体からのヨウ 素放出抑制能の目標値をヨウ素放出期間10万年以上に設定した。また、ヨウ素処理プロセスに おけるヨウ素回収率は、未回収のヨウ素すなわち2次廃棄物の発生抑制の観点から、工学的な 尤度も考慮し、目標値を95%以上と設定した。

1.3 本技術開発のこれまでの成果概要

1.3.1 開発経緯

平成12年度よりI-129の被ばく線量の低減に期待出来るヨウ素固定化技術開発を開始した。開 発経緯の概要を図1.3.1-1に示す。

図 1.3.1-1 開発経緯の概要

平成12年度には、我が国で開発されたヨウ素固定化技術を網羅的に調査[6]し、その結果、表 1.3.1-1に示す7技術について、策定した開発計画に従い開発が進められた。ここで、アルミナ固

	田安心井准	固化体中での	化学	組成	っ古書田会仏輝政団	性能評価 モデル
	固正化技術	ヨウ素固定化	原 料	固化体	コリ茶回足化熌哈凶	
結晶質マトリクス	アルミナ固化体 (*旧:岩石固化体)	アルミナマトリクスにAgI を固定 (*SiO ₂ 粒間にAgIを固定)	廃銀吸着材(Al ₂ O ₃ +AgI) (*シリカゲル+AgI) (* si0,(石英),AgI (* si7素含有率: Hwt%)		Al ₂ O ₃ (^e 石英) AgI	マトリクス溶解 モデル (* 石英粒間拡散モデル)
	アパタイト 固化体	フッ素アパタイト (Ca ₁₀ (PO ₄) ₆ F ₂)マトリクス中 にヨウ素吸着ゼオライトを固 定	フッ素アハ ⁵ タイト (Ca ₁₀ (PO ₄) ₆ F ₂): ゼオライト (ヨウ素吸着) = 85:15 (wt%)	フッ素7 ハ ⁵ タイト (Ca ₁₀ (PO ₄) ₆ F ₂): セ [*] オライト(ヨウ素吸着) (ヨウ素含有率: 2wt%)	フッ素アハ [*] タイト ************************************	浸出モデル
ガラス	AgIガラス固化体	ガラス(3AgI-2AgI ₂ O-P ₂ O ₅) 構成成分として固定	AgI:Ag ₄ P ₂ O ₇ =3:1(モル比)	3AgI-2Ag2O-P2O5 ガラ ス (ヨウ素含有率: 30wt%)	Ag C C C C C C C C C C C C C C C C C C C	浸出モデル
	BPIガラス固化体	ガラス(6.5PbO-3B2O3- 0.5ZnO)マトリクス中にIを固 定	・カ [*] ラスフリット:BPI =91:9 (wt %)	6.5PbO-3B ₂ O ₃ -0.5ZnO ガ [·] ラス, BiPbO ₂ I (ヨウ素含率: 2wt%)	均質なガラスマトリクス	浸出モデル
セメント	セメント固化体 エトリンガイトとモノサル フェートに103を吸着		・アルミナセメント/CaSO ₄ 2H ₂ O =100/155 ・NaIO ₃ 0.4mol/L ・NaIO ₃ 溶液/セメント=0.56	AFm:10wt%, AFt :46wt% Al(OH) ₃ :44wt% (ヨウ素含率:1.85wt%)	AFm or IO₃-AFm AFt or IO₃-AFt	分配平衡 モデル
合成鉱物	合成ソーダライト (難溶性鉱物化)	合成ソーダライト (Na ₈ (AlSiO ₄) ₆ I ₂)成分として Iを固定	NaAlO ₂ :SiO ₂ :NaI = 3:3:1(モル比)	Na ₈ (AlSiO ₄) ₆ I ₂ (ヨウ素含有率: 11wt%)	Na Si Al I	溶解度制限 モデル
	合成鉛アパタイト (難溶性鉱物化)		PbO:V ₂ O ₅ :PbI ₂ =9:3:1 (モル比)	Pb10(VO4)6I2 (ヨウ素含有率7.2wt%)	Pb V 0 1	収着モデル (イオン交換)

表 1.3.1-1 平成 12 年度に調査したヨウ素固定化技術

平成 16 年度に中間技術評価を実施[7]し、以下に示す開発状況が整理され開発課題を抽出した。

- ・固化体性状(物理特性、ヨウ素固定化構造)
- ・ヨウ素放出メカニズム
- ・長期的なヨウ素放出抑制能の理解
- ・性能評価モデル
- ・固化処理プロセスの成立性(ヨウ素回収率等)

開発状況を整理した結果に基づき、各固定化技術の開発方針の見直しを行い、平成 17 年度以降について、アルミナ固化技術、AgI ガラス固化技術、及びセメント固化技術は長期性能の明確 化と全体固化処理プロセスの検討(実用的な固化体サイズの検討等)の開発を中心に行い、BPI ガラス固化技術及び合成ソーダライト化技術については固化体性能を定量的に示すには至ってい ないため、ヨウ素放出機構を把握するための各種試験を中心に実施することとした。また、アパ タイト固化技術と合成鉛アパタイト化技術については開発目標達成が困難と判断し開発を中止し、 平成 17 年度当初の段階で7 技術から5 技術への絞り込みを実施した。

平成 18 年度には固化体長期性能と固定化技術に基づく技術評価を行い[8]、AgI ガラス固化技術及び合成ソーダライト固化技術は、固化処理プロセスについての開発目標に達成の見通しが得られていないため、平成 19 年度以降の開発を凍結するものとし、5 技術から 3 技術への絞り込みを行い、アルミナ固化技術、BPI ガラス固化技術、及びセメント固化技術について開発を継続することとした[9]。

	概略図	組成	固体化 原理	特徴	環境の影響	マトリクス	放出 モデル
アルミナ固化体	アルミナ	・Al ₂ O ₃ (コランダム) ・AgI (14wt%)	アルミナ マトリクス 中に物理 的に閉じ 込める	・核種分離が不要 ・吸着材が二次廃棄物に ならない ・処分後の地圧に耐え得 る強度 ・均質なマトリクス、ヨウ素 分布(一定のヨウ素放出 速度)	・一般に幅広いpH、海 水等の溶存成分に対し て高い閉じ込め性(アル ミナマトリクスの物理・化 学的安定性)を期待でき る ・強アルカリ、強HS・環境 はやや劣る	コランダムマトリクスの頑 健性(低溶解性、高硬 度)は高く、天然鉱物とし て安定的に存在する	マトリクス 溶解 モデル
BP I 固 化 体	約質な ガラスマトリクス	・PbO -B ₂ O ₃ -ZnOガラス ・BiPbO ₂ I (ヨウ素: 2wt%)	BiPbO ₂ I を鉛ガラ ス中に均 一に固化 する	 ・AgIをBiPbO_I (BPI) に転換し、PbO-B₂O₃- ZnOガラスフリットと混合 溶融することにより均一 なガラス固化体が作製で きる ・溶融温度は540 °Cと低 いことから、溶融中のヨウ 素の揮発率は低い 	 ・アルカリに弱くOPCとの 共存は不可 (低アルカリセメントで対応可) ただし、ベントナイトの緩 衝作用によって影響が 抑えられる ・海水系での浸出特性は やや劣る 	 ・鉛・ホウ素(Bi, Zn)を主 成分とした均質なガラス マトリクス ・圧縮強度40.8MPa以 上 ・化学的安定性はガラス 溶解特性で評価される 	ガラス 溶解 モデル
セメント固化体	IO3-AFm IO3-AFt	・AFm, AFt ・AI(OH) ₃ (ヨウ素 1.7wt%)	ョウ素酸 の形態で AFm、 AFt鉱物 に固定化 する	ヨウ素固定化性能の高い セメント系水和物 (アルミン酸硫酸カルシウ ム系化合物)を増量した セメント	 ・海水 (ベントナイト由来など) 炭酸成分によっても変質 が進む可能性がある。 	・地下水との接触による 自己膨潤により割れが発 生する ・評価上マトリクスの頑健 性は期待していないが、 熱力学的に構成鉱物を 評価	鉱物溶解 ・ 分配平衡 モデル

表 1.3.1-2 候補となる代替固化技術の概要

候補となる代替固化技術の概要を表 1.3.1-2 に示す。アルミナ固化体は、アルミナマトリクス にヨウ素(AgI)を閉じ込める技術であり、廃銀吸着材を直接 HIP 処理するため、処理プロセス は比較的単純であり、マトリクスの頑健性により固化体性能の処分環境に対する汎用性が高いと 考えられる。BPI ガラス固化体は、ヨウ素を鉛とホウ素を主成分とする低温溶融ガラスに均質に 固化する。ガラス溶解モデルが提案されており、HLW ガラスの性能評価研究の一部について応 用が期待されている。セメント固化体は、エトリンガイト等のヨウ素と親和性の高い成分比率を 高めたアルミナセメントであり、ヨウ素を含有する鉱物の溶解平衡(地球化学解析)によってヨ ウ素を放出するモデルが提案されている。既存の廃棄物処理プロセス技術の転用が可能である。

なお、今後の技術選定を含めた開発スケジュールについては、地層処分のサイト選定や再処理 事業の進展・施設の設計などの計画に基づき、事業者のニーズを反映させたうえでマイルストー ンを設けるべきであるが、昨今、原子力を取り巻く状況が甚だしく不透明であり、具体的な計画 や見通しを明示することは難しい。このため、事業の進捗等に応じて、開発の進捗状況や将来の 工学規模試験を反映した計画を検討する必要がある。

1.3.2 これまでの成果と課題

これまでの成果と課題については、平成 24 年度に取りまとめを行っている[10]。ここでは、 その概要を踏まえつつ、平成 27 年度までの成果概要[11]~[13]を記載する。

(1) 固化体の性能調査およびヨウ素放出のモデル化検討

アルミナ固化体はアルミナマトリクスの粒界(粒径は数ミクロン程度)にヨウ素が AgI の形 態で均一に分布し、物理的に閉じ込められている固化体である。これまで、処理プロセスの最 適化や試薬アルミナの添加によって固化体の空隙率を低下させ、固化体性能の向上に成功した。 そのヨウ素放出の素過程は、マトリクスおよび AgI の溶解が想定され、それぞれ速度論的に 検討することで、ヨウ素放出の概念的なモデル式を構築した。また、マトリクスの溶解に影響 を与える pH、AgI の溶解に影響を与える HS⁻濃度(地下処分環境において HS⁻が Ag₂S に還 元して I を溶出)をパラメータとした固化体の浸漬試験の結果などから、概念モデルの妥当性 がおおむね確認できているが、今後はヨウ素放出挙動の理解を深め、説明性(科学的論拠)を 向上させることが求められる。

BPI ガラス固化体では、各種浸出試験によってヨウ素およびガラス構成元素の規格化浸出率 を得て、ガラスマトリクスとの調和性など基本的なヨウ素放出特性を把握した。一方、長期的 な評価やモデル化のため、ガラスの化学構造からヨウ素放出を説明するモデル化について検討 を着手した。分光学的な手法等の各種試験と、リバースモンテカルロ法等による解析によって 化学構造が明らかになりつつある。さらに、ガラスの表面変質層の化学構造などキャラクタリ ゼーションが進み、浸漬環境との関係から、地球化学的な説明性も今後期待される。このよう なガラスの変質過程やヨウ素放出挙動について、多角的な説明によって、より長期的な評価の 信頼性向上が今後求められる。

セメント固化体については構成する鉱物組成と各鉱物へのヨウ素含有率をおおむね把握する ことができ、液交換による加速的な浸漬試験によって、各鉱物の溶解変質とヨウ素放出の関連 性についてデータが取得された。また、いくつかの仮定・想定はあるものの、熱力学パラメー タをもちいた溶解平衡の計算によって、ヨウ素放出や固化体寿命がおおむね説明できることが 分かった。特に、海水等の浸漬液の環境条件による固化体性能を明確にすることができた。

個別技術の詳細な課題については第2章以降に記載するとして、ここでは、各固化体に共通 的な今後の課題について記載する。いずれの技術においても、ヨウ素固定化技術を実用化する ためには、想定される地質環境条件下において、長期的なヨウ素放出挙動を予測する必要があ る。また、目標である 10 万年以上の長期挙動を予測するためには、試験結果の単純な外挿だ けでは、その性能及び根拠を示すには不十分であり、ヨウ素放出の評価モデルを構築し、その 求められる科学的根拠を十分に説明する必要がある。現状、3 つの代替固化体のヨウ素放出モ デルは、短期のデータや加速条件におけるデータを用いることで構築することが可能となって いる。初期段階のモデルとして当初の目的達成が為されているが、より深いニーズや長期予測 の適応性に対して十分なコンセンサスを得る必要がある。そのため、各モデルの説明性をより 高めるためには、多角的な観点からの説明オプション、新しい解析・評価手法の提示を継続的 に進めるとともに、長期浸出試験や多様な処分環境条件におけるヨウ素浸出特性データの取 得・蓄積を継続し適宜モデルへ反映させることが重要である。

一方、各ヨウ素放出モデルを処分システムの全体評価(TSPA)へと応用させるためには、 固化体材料(成分)と人工バリア材との相互作用や地質環境条件の適切な反映方法など、地球 化学解析や核種移行解析との連性への課題がある。また、モデル検討において実施した試験条 件は、特に還元条件など処分環境の想定に比べ、過度に保守的な条件設定である可能性が高い。 評価の保守性を明確にするためにも、より現実的な処分環境を想定し、固化体の実力寿命(性能)としての評価が今後期待される。

(2) 固定化処理プロセスの成立性

ヨウ素固定化処理施設設計の概念検討に反映するため、取得したプロセスデータや各処理工 程の条件等の検討結果を整理した。処理条件等から、処理フローや運転条件の設定、主要機器 リストの検討、施設の配置計画等について検討した。その際、2 次廃棄物を含めて廃棄物発生 量について検討した。いずれの固化技術においても、廃棄物発生量は第 2 次 TRU レポートに おける想定よりも少なくなったが、2 次廃棄物の取り扱いについては今後具体的な検討を要す る。また、工学規模試験に必要な課題を抽出するとともに、主要設備や運転管理条件などから、 経済的な観点も踏まえた整理を行った。上記を踏まえ、処理プロセスの成立性について検討し た。いずれの固化技術においても、重大な欠陥など処理プロセスにおける成立性を阻害する要 因は抽出されず、成立性の見込みは得られた。ただし、実廃銀吸着材の性状(放射性核種や放 射能)によっては、プロセスの見直しなどが必要になる可能性がある。

今後は、処理プロセスの工業的成立性を示すため、特にスケールアップの観点から抽出され る検討項目に対し、対応策の検討およびその合理的な進め方を検討する必要がある。また、実 廃銀吸着材の特性の把握を行い、ハンドリングを含めて品質管理方策に反映させる必要がある。 さらに、原子力施設・活動としては、廃棄物のハンドリング、保管、輸送など全プロセスを通 じ、従来は想定外とされた事象等も考慮し、すべての有意な影響についてリスク抑制とその継 続的な取り組みが今後求められる。

(3) 技術選定に向けた準備・検討

3 つの代替固化技術に対する技術開発は、実用化やスケールアップを見据えた段階にむけて 進みつつある。開発事業の合理化のためには、近い将来、候補技術を選定し、特に処理プロセ スの工学的成立性などの検証を行っていく必要がある。したがって、技術選定にあたってはこ れまでの検討を踏まえ、処理プロセスと処分の安全性の両面からの検討・調整が必要であり、 廃棄物発生者や処分実施主体など関係者との調整を行った。その結果、処分環境に対する各固 化体の適性の範囲について明確にすることの重要性が挙げられたため、各固化体の検討におい て評価することとした。今後は、今後の処分事業の進展を鑑みて、精密調査地区の選定や予備 的安全評価などの段階において必要な固化体特性と性能目標、品質管理方策を含めた検討項目 を整理するなど、技術選定へ向けた準備が今後必要である。ただし、1.3.1 に記載したように、 現状の処分事業や再処理事業は不透明である。見通しが得られ次第、具体的に取り組めるよう、 事前の準備が必要である。 1.4 実施概要

1.4.1 全体計画

本技術開発では、現段階で処分サイトが特定されていないことを考慮し、より幅広い地質環境 においても安全性を見通すことができるヨウ素固定化の代替技術の実用化について検討する。上 記3つの固化技術を対象とした研究開発を継続する。計画概要を図1.4.1・1に示す。

(1) ヨウ素固化体の性能評価

3 つのヨウ素固定化技術を対象として、安全性評価に資する固化体性能の長期評価モデルを 確立する。各固化体の長期挙動モデルの信頼性を確保するためには、固化体特性の評価や長期 試験によるヨウ素放出挙動確認、さらに海水系地下水等の影響因子の特定およびその影響の評 価が必要であることから、これらを整備し、モデル化へ反映させる。

なお、仮に固化技術が1つに選定された場合においても、処分事業は安全性を常に評価・向 上させる必要があることから、固化体性能の評価検討などについては継続的に取り組むべきで ある。

(2) 工学規模試験計画の検討

平成 24 年度までに実施したプロセス情報等を基盤に、3 つの固化技術について、ヨウ素固 定化技術の工学規模試験計画を検討する。その際、一部のプロセス情報については、上記(1) で得られるデータの活用も検討する。なお、計画については再処理事業の進展や再処理施設の 設計・計画などを考慮し、適切な時期や規模などについて判断する必要があるが、昨今の事業 環境を考慮し検討を延期する必要がある。

(3) 技術選定の検討・準備

工学規模試験などの実証は、再処理事業者が実施することが適当と考えられるが、その前提 となる固化体の絞り込みに当たってはこれまでの成果を整理した上で、それぞれの固化体の特 性と、今後想定される処分地選定プロセスをにらみつつ、処分実施主体および再処理事業者を 交えて進めていく必要がある。技術選定のために考え方や必要な評価項目など適宜整理し、必 要な R&D について抽出・反映する必要があるが、昨今の事業環境を考慮し、技術選定はその 時期など含めて将来の課題とし、本技術開発では各固化体の評価において、想定される地下水 環境に対する適性の検討を中心に行うこととする。

事業項目	~ 平成 24 年度	平成 25 年度	平成 26 年度	平成 27 年度	平成 28 年度	平成 29 年度	平成30年度以降
1. 実施計画策定	(平成24年度ま での「ヨウ素・炭 	全体計画の策定	年度計画の策定	年度計画の策定	年度計画の策定	年度計画の策定	(技術選定され た場合でも)モデ
	第204年 2017) 術高度化開発の 成果を反映)						ルの信頼性向上 のためのR&D
2.ヨウ素固化体の性能評価							は継続する必要 がある
21 アルミナ固化技術		緻密化固化体の処理	ロセスの最適化検討				
		र	<u>i</u>	環境の多様性(一部)、	織密化固化体によるヨウ	素放出モデルの高度化	i. I
		和密化の条件を 把握	織密化固化体の特 性把握	▲ 稠密化によるマトリクス ※解答軸の部分理解	稠密化による構造 8 特性の抽損	稠密化による放出	モデルの信頼性確認
2.2 BPIガラス固化技術	ガラス均質性の	確認手法等の処理ブロt	スの反映手法の検討		* 141±001G1/a	モナルの検討	· ·
		ガラスの構造および変加 にシュミレーション手	「層特性の理解、さら 法への反映方法検討	環境の多様性(一部)	シュミレーション手法に、	は まる∃ウ素放出モデルの高	度化
		MD法適応性の確認	MD法を反映した構 造モデルの提示	表面変質層の特性 (一部)データ提示	表面変質層の 特性理解	構造モデルや変質層の 特性を取り込んだ検討	モデルの信頼性確認
2.3 セメント固化技術				ヨウ素放出量の解析	発熱特性を踏まえ	た技術開発の課題整理	
	発熱物	性を踏まえた処理プロセ	ス・固化体特性の検討	NI I			
		・基礎データの取得	・発熱特性の把握	17			
				1/ C			フロセス条件の反映
3.工学規模試験計画の策			1	6/ 1	対象技術と精緻度に	ついて、技術選定の動向等	を勘案しながら、検討を進める
足			ニーズの反映				・(事業の進展を見極め
4.技術選定の検討・準備			/				たつえでノエ子規模試験 の具体化
		技術選定に 理(事業者)	必要な評価項目の整 ーズの明確な反映)				
		-1.1-30-8-					・事業の進展等によって 技術研究を実施
総合評価(目標)							DOM DEAC CARE/IS

図 1.4.1-1 計画概要

1.4.2 平成 29 年度の実施事項

平成 29 年度は 3 つの固化技術を対象に、固化体の長期評価モデルの確立や安全性評価における信頼性の確保のための検討を継続し、多様な処分環境に対する浸出モデルの高度化に取り組んだ。

(1) アルミナ固化技術

アルミナ固化体の構造を明らかにするため、これまで固化体内部の 3 次元構造を 3D-SEM を用いて再現することができた。そこで、より広い視野におけるアルミナ混合固化体の均質性 を調査し、内部構造を評価した。また、アルミナ試薬の種類による変化を調べるとともに浸漬 試験結果とも合わせて固化体の性能を評価した。

ョウ素放出挙動のモデルとして、AgI とアルミナと空隙を含む挙動シミュレーションによる 構造モデルと、固化体内部を反がともなう拡散場としたモデルを検討してきた。一方で、浸漬 試験結果は時間の平方根によく従い、それぞれの視点において現象をよく捉えているものの、 モデルと実験結果を相互に良く整理できるまでには至っていなかった。そこで、長期のヨウ素 放出挙動や放出モデルを検討し、実際の浸漬試験などを通じてモデルおよびモデル式の検証を 行った。

(2) BPI ガラス固化技術

BPI ガラス固化体の性能を評価するためには、その構造や物理・化学的な特性に関する理解 が不可欠である。これまで様々な分析を行い、ヨウ素の結合状態をリバースモンテカルロ法に よって示し、構造の修正に取り組んできた。そこで、平成 28 年度は BPI ガラスの配置構造の 精密化を進め、配置構造の妥当性を有する分子動力学(MD)モデルの構築に取り組んだ。 MD モデルとヨウ素溶出モデルとの接点を探り、溶出パラメータの予測に結び付けることを目 的に、ヨウ素に関する原子間ポテンシャルを最適化した。

BPI ガラス固化体からのヨウ素放出挙動の解明するため、表面変質層の形成過程の詳細な観 察や地球化学シミュレーションを用いた鉛鉱物の生成可能性を検討してきた。平成 28 年度は この地球化学シミュレーションを継続し、表面変質層の固相分析結果と対比しながら、溶液化 学および二次鉱物について検討した。また、炭酸塩、硫黄およびリン酸等の影響確認試験を継 続し、これらが BPI ガラスの溶解挙動と主要元素の溶出挙動に与える影響について評価した。

さらに、ヨウ素放出モデルの検討として、反応移動連続体モデルによる浸漬試験の再現について試みるとともに、諸外国の事例を調査した。

(3) セメント固化技術

10 万年以上の放出抑制期間を持つことを検証するため、セメント固化体のヨウ素閉じ込め 性能に関して検討してきた。これまで、セメント固化体からのヨウ素放出を検討するために、 放出の機構、ヨウ素の存在形態、セメント固化体中の水和物および評価上必要な物理量データ の取得についての研究を進めてきた。得られた結果からヨウ素放出挙動評価モデルを構築し、 幅広い環境条件下で適用できる可能性を示した。一方で、実際に固化体を作製する処理プロセ スの成立性も重要であり、システムの成立性を机上検討してきた。

これらを踏まえ、セメント固化技術の実用化に向けた大型化による温度影響評価に着手した。 しかし、スケールアップにともなってセメント内部温度が上昇し、ヨウ素固定相が AFt から ハイドロガーネット (HG) へ変化した。つまり、発熱影響を考慮した処理プロセスや固化体 の評価など難しい課題が実用化のためには残った。そこで平成 29 年度は、これまでに挙げら れた熱影響等の評価を踏まえて、スケールアップや処理プロセス、さらには、これまでに構築 した評価モデルの観点から、技術開発の課題を整理した。 参考文献

- [1] 核燃料サイクル開発機構,電気事業連合会:TRU 廃棄物処分概念検討書,JNC TY1400 2000-001, TRU TR-2000-01 (2000).
- [2] 電気事業連合,核燃料サイクル開発機構:TRU 廃棄物処分技術検討書-第2次TRU 廃棄物 処分研究開発取りまとめ-,JNC TY1400 2005-013,FEPC TRU-TR2-2005-02,2005 年 9月 (2005).
- [3] 資源エネルギー庁・(独) 日本原子力研究開発機構:TRU 廃棄物の地層処分基盤研究開発に 関する全体基本計画、2009 年 7 月 (2009).
- [4] 原子力発電環境整備機構:地層処分低レベル放射性廃棄物に関わる処分の技術と安全性、 NUMO-TR-10-03、2011年1月(2011).
- [5] (財)原子力環境整備促進・資金管理センター,平成 17 年度地層処分技術調査等 TRU 廃 棄物関連処分技術調査 ヨウ素固定化技術調査報告書,平成 18 年 3 月 (2006).
- [6] (財)原子力環境整備促進・資金管理センター,平成 12 年度地層処分経済性向上調査 地層 処分システム開発調査報告書,平成 13 年 3 月 (2001).
- [7] (財)原子力環境整備促進・資金管理センター,平成 16 年度地層処分技術調査等 TRU 廃棄 物関連処分技術調査 ヨウ素固定化技術調査報告書,平成 17 年 3 月 (2005).
- [8] (財)原子力環境整備促進・資金管理センター,平成 18 年度 地層処分技術調査等 TRU 廃 棄物関連処分技術調査 ヨウ素固定化技術調査 報告書,平成 19 年 3 月 (2007).
- [9] (財)原子力環境整備促進・資金管理センター,ヨウ素固定化技術調査,平成19年3月
- [10] (公財)原子力環境整備促進・資金管理センター:平成 24 年度地層処分技術調査等 TRU 廃棄物処分技術 ヨウ素・炭素処理・処分技術高度化開発-平成 19 年度~平成 24 年度の 取りまとめ報告書-平成 25 年 3 月 (2013).
- [11] (公財)原子力環境整備促進・資金管理センター,平成25年度地層処分技術調査等TRU 廃棄物処理・処分技術高度化開発 ヨウ素129対策技術の信頼性向上 報告書,平成26年 3月(2014).
- [12] (公財)原子力環境整備促進・資金管理センター,平成26年度地層処分技術調査等TRU 廃棄物処理・処分技術高度化開発 ヨウ素129対策技術の信頼性向上 報告書,平成27年 3月(2015).
- [13] (公財) 原子力環境整備促進・資金管理センター,平成 27 年度 地層処分技術調査等 TRU 廃棄物処理・処分技術高度化開発 ヨウ素 129 対策技術の信頼性向上 報告書,平成 28 年 3 月 (2016).
- [14] (公財)原子力環境整備促進・資金管理センター,平成28年度 地層処分技術調査等TRU 廃棄物処理・処分技術高度化開発 ヨウ素129対策技術の信頼性向上 報告書,平成29年 3月(2017).

第2章 アルミナ固化技術

2.1 緒言

本開発は、超ウラン核種を含む放射性廃棄物のうち、安全評価における被ばく線量への寄与が 最も大きいとされている廃銀吸着材に含有されるヨウ素 129[1]について、被ばく線量を低減し地 層処分の安全性を向上させることを目的として、固定化技術の開発を行うものである。

ヨウ素 129 は半減期が極めて長いため、廃棄体からの放出期間を 10 万年以上とする固化体性 能目標が設定されている[2]。このため、長期間の閉じ込め性能を有するヨウ素固定化技術が必 要とされる。ここでは、ヨウ素固定化処理技術の候補の一つであるアルミナ固化技術に関する固 定化処理技術開発について取りまとめる。

アルミナ固化技術とは、活性アルミナに銀を添着した銀アルミナ吸着材にヨウ素が吸着された もの(廃銀吸着材)を、HIP(Hot Isostatic Pressing:熱間等方圧加圧)処理によって焼結し、 廃銀吸着材をアルミナ結晶の固化体にする技術である[3]。この方法によって作製された固化体 をアルミナ固化体と称するものとする。

アルミナ固化体は、幅広い環境に対して化学的に安定なアルミナマトリクス中にヨウ素を物理 的に閉じ込めるものであるため、地層処分後においても長期に健全性を保つことが期待できる。 また、ヨウ素を分離せずそのまま処理することができるため、二次廃棄物の発生を抑えることが できる。さらに、乾式処理であることから廃液などの処理が必要なく、シンプルなプロセスとす ることができる。

アルミナ固化体において、長期にわたるヨウ素閉じ込め性を確保するには、物理的な閉じ込め 性に優れた固化体を作製する必要がある。また、長期の閉じ込め性能を評価する必要があること からヨウ素放出挙動評価モデルの構築が必要となる。ヨウ素放出挙動評価モデルを構築するには、 ヨウ素の閉じ込め機構及び放出機構を理解することが求められる。そこで、これまでヨウ素を長 期にわたり保持することが可能と考えられる緻密なマトリクスを持つ固化体の作製と、作製した アルミナ固化体からのヨウ素放出挙動を把握するための研究を実施してきた [4]。

緻密なマトリクスを持つ固化体の作製において、HIP 処理時の温度や圧力をパラメータにした 試験を行った。その結果、温度や圧力を上げるほど空隙の少ない固化体となることが分かった。 そこで、装置等の制約も考慮して HIP 処理条件を、温度 1200 ℃~1325℃、圧力 175 MPa と設 定した。設定した条件で HIP 処理し、作製した固化体は、ヨウ素はマトリクスであるα-アルミ ナの結晶粒間にヨウ化銀(AgI)の化学形で保持されていることが分かった。また、固化体組成 は、α-アルミナ、AgI 及び銀(Ag)から成ることが分かった[5]。

アルミナ固化体のヨウ素放出挙動評価においては、下記の3つの素過程が関与していると想定 され、これらの反応機構や反応速度の取得がヨウ素放出挙動評価モデルの構築に必要と考えられ た[6]。

- ① 固化体マトリクスの溶解
- ヨウ化銀(AgI)の溶解
- ③ マトリクス空隙中の拡散

これまでの開発で、これら3つの素過程の反応機構の理解や反応速度の取得のための試験を実施し、固化体からのヨウ素の放出には固化体マトリクスの溶解が大きく寄与していると考えた[7]。

そこで、固化体からのヨウ素放出について長期浸漬試験を行い、その結果から浸出挙動の評価 を行った。

アルミナ固化体からのヨウ素の放出は、アルミナの結晶粒間のわずかな溶解によって生じた通路を通じて溶液が浸透し、溶液中の硫化水素(HS⁻)と AgI による Ag₂S 析出反応により起こると考えられた。これらの挙動を把握し、固化体に求められる 10 万年に亘る長期間の信頼性の担保が課題と考えられた。

また、長期信頼性のあるヨウ素放出モデルとなるよう、モデルを単純化できるような理想的な 緻密化固化体の製造条件を確立し、固化体の構造を詳細に把握すると共に、その固化体からのヨ ウ素放出挙動データなどを取得してきた。さらにこれらのデータから、アルミナ固化体からのヨ ウ素放出モデルの検討を行ってきた。

ここでは、ベントナイト平衡水など各種地下水環境に対するデータを継続して取得する。また、 一定期間経過後の固化体内部の観察を行い、ヨウ素の浸出挙動を評価する。

これらの結果から、アルミナ固化体の長期のヨウ素放出挙動評価及び放出モデルを検討する。固 化体構造の評価を行い、アルミナ固化体の構造モデル作成し、アルミナ固化体からのヨウ素放出 挙動のシミュレーションを行う。これにより、実際の浸漬試験などを通じてモデル及びモデル式 の検証を行い、モデルの信頼性の向上を図る。

2.2 アルミナ固化技術の概要

2.2.1 アルミナ固化体の製造

ヨウ素 129 は使用済み燃料の再処理工場のオフガスからヨウ素吸着材により回収される。現在、 ヨウ素吸着材はアルミナ(Al₂O₃)を担体として硝酸銀(AgNO₃)が担持されたものであり、ヨ ウ素は主にヨウ化銀(AgI)の形で吸着回収される。このように、アルミナに AgIの形でヨウ素 が吸着したものが、廃棄物として処分の対象になる。これを銀アルミナ系廃銀吸着材(AgA)と 呼ぶ(以下、廃銀吸着材)。図 2.2.1-1 に廃銀吸着材及びその断面の EPMA 分析結果を示す。

図 2.2.1-1 廃銀吸着材(左:外観、右:一粒子の断面の EPMA 分析結果)

図 2.2.1-2 にアルミナ固化体の作製フローを示す。固化体の作製は、加熱処理工程、カプセル への充填・密封工程、HIP 処理工程の3つの工程からなるシンプルなプロセスである。

廃銀吸着材は、加熱工程において HIP 処理時のガス発生による割れを防ぐため、NOx や酸素 ガス成分を除去する。次のカプセルへの充填・密封工程では、加熱処理した廃銀吸着材をステン レス製のカプセルに充填し、内部を脱気した後溶接により密封する。最後に HIP 処理工程にて 処理を行いアルミナ固化体とする。

アルミナ固化体のプロセスの面の特徴は以下の通りである。

- 高いヨウ素回収率:ヨウ素脱離・回収工程を経ずに廃銀吸着材をそのまま処理するため、 ヨウ素回収率はほぼ100%となる。
- ② 高い体積減容化率: HIP 処理によって廃銀吸着材は圧縮・緻密化されるため、大きな体 積減容化率(約65%)が得られる。
- ③ 二次廃棄物低減:加熱工程での揮発ヨウ素は再び銀吸着材で回収し、プロセスのハンド リング工程でロスする微粉等を再回収する。これらの量は非常に少なく、また、同じプ ロセスにフィードバックできるため二次廃棄物をほとんど発生させない。

図 2.2.1-2 アルミナ固化体作製フロー

2.2.2 アルミナ固化体

平成 26 年度までの開発[8]で得られた標準的な HIP 処理条件は、温度 1200℃~1325℃、圧力 175MPa、保持時間 3h である。その条件で作製した典型的なアルミナ固化体の外観を図 2.2.2-1 に、固化体表面の SEM 観察結果の例を図 2.2.2-2 に示す。また、物性を表 2.2.2-1 に示す[5]。

図 2.2.2-1 アルミナ固化体の外観

図 2.2.2-2 アルミナ固化体表面の SEM 像

項目		物性值		
真密度	g/cm ³	4.40 ± 0.07		
一軸圧縮強度	N/cm ²	$(1.0\pm0.3)\! imes\!10^5$		
開気孔率	%	1.9 ± 0.6		
空隙率	%	$2{\sim}5$		

表 2.2.2-1 マトリクス物性分析結果

図 2.2.2-3 に断面の SEM 観察結果を示す。図 2.2.2-4 に XRD による組成分析結果を示す。固 化体中のヨウ素は、α-アルミナ(α-Al₂O₃)結晶であるマトリクス中にヨウ化銀(AgI)の形で 閉じ込められている。図 2.2.2-5 に EPMA による固化体を構成する元素である、Al、I、Ag 分布 の分析結果を示す。各元素は均一に分布している。

図 2.2.2-3 固化体断面 SEM 観察結果

図 2.2.2-5 元素分布分析結果(EPMA分析)

以上、アルミナ固化体の特徴をまとめると下記の通りになる。

- ① 緻密なマトリクスを持つ
- ② ヨウ素をヨウ化銀(AgI)の化学形で保持する
- ③ 処分後の地圧に耐え得る強度を有する(割れ難いことより表面積の増加を防ぐ)
- ④ ヨウ素が均一に分布している
- ⑤ α -Al₂O₃、AgI からなるシンプルな組成を持つ(マトリクス溶解挙動評価の単純化が可
 能)

2.2.3 これまでの開発経緯

(1) アルミナ固化体からのヨウ素放出挙動

アルミナ固化体は、 α -Al₂O₃と AgI からなるシンプルな組成であり、固化体からのヨウ素放 出挙動は、これら構成成分の溶解挙動と固化体の構造に関係している。温度一定のもと、 α -Al₂O₃の溶解度および溶解速度は pH によって変化し、処分環境として想定される中性から高 pH 環境下では、pH が高いほど溶解度は高く、溶解速度は速い。また、いずれも温度が高いほ ど溶解速度が上昇した。

AgI については、溶解度積が非常に低いため純水への溶解度は非常に低いが、Fe²⁺等の還元 剤や Ag+と反応する HS⁻等の化学種の影響により溶解速度は上昇した。特に、HS⁻は、Ag+と
反応して、 Ag_2S を生成し、AgIから I⁻を放出するため、AgIの溶解を促進する非常に重要な 化学種であった。一方、還元剤としての Fe²⁺も溶解を促進するが、生成する Ag^0 が AgIの表面 を覆い溶解速度を制限し、 HS^- に比べて溶解促進効果が低いことが分かった。

上記のようなアルミナ固化体の構成成分の素過程に関する知見をもとに、アルミナ固化体からのヨウ素放出挙動を HS⁻存在下、pH を変化させた条件で取得した。1 例として、図 2.2.3-1 に、pH の異なる浸漬試験における固化体からの Al とヨウ素の放出挙動を比較した結果を示す。 pH8~12.5、HS⁻濃度 $3 \times 10^{-7} \sim 3 \times 10^{-3}$ mol·dm⁻³、温度 $25 \sim 75^{\circ}$ Cの範囲において、pH、HS⁻濃度、温度が高いほど、固化体からのヨウ素放出速度は上昇した。

これらより、ヨウ素の放出は AgI と HS⁻の反応に伴う I⁻の遊離反応に影響を受けることが 分かった。また、高 HS⁻濃度であってもマトリクスの溶解速度が遅くなる低 pH 条件下では、 ヨウ素の放出が抑制されることから、マトリクスがバリアとなって AgI の溶解を抑制している と考えられた。

図 2.2.3-1 固化体からの Al とヨウ素の放出挙動の pH 影響

ただし、固化体のマトリクスからのアルミナ溶解量と AgI からのヨウ素の放出量の関係を規 格化浸出率で比較すると、アルミナに対してヨウ素の規格化浸出量が 1000 倍以上となり、マ トリクス溶解と AgI 溶解は調和的ではなかった。また、上記検討を行った際には、これらの挙 動の差は、浸漬試験 100 日以降の挙動について見られた傾向であり、浸漬試験はいずれの条件 であっても、100 日程度までの浸漬期間では、ヨウ素の放出挙動に差がなかった。その原因と して、これらの試験を行った際のアルミナ固化体の空隙率が 12~15%程度であったこと、そ れに伴い開気孔も 5~10%程度存在していたことがあり、その影響が大きいと考えられた。

そこで、アルミナ固化体の性能向上、ヨウ素放出モデルの単純化による信頼性向上のために、 アルミナ固化体の緻密化が必要であると考え、緻密化のための検討を行った。

(2) 緻密化固化体の製造と性能評価

アルミナ固化体の製造条件として HIP の温度、圧力、時間の影響を検討したところ、HIP 処理温度は高温であるほど、圧力は高いほど空隙率の低い固化体が得られ、時間は3時間程度

で飽和することが分かったが、空隙率は12~15%程度に留まっていた。空隙率が下がらない原因として、銀吸着材中のアルミナは多孔質やγ·アルミナ等の多種のアルミナを含むため水分が吸着されやすく、それが HIP 処理工程において空隙形成の原因となっている可能性が考えられた。

そこで、廃銀吸着材をカプセルに充填した後、HIP 処理を行う前に高温かつ真空条件で脱気 処理をし、脱水する方法の適用を検討した。図 2.2.3-2 に各処理条件に対する固化体の空隙率 の試験結果を示す。この結果から分かるように、温度 450℃、真空度を 5×10⁻⁴ torr 以下にす ることで、5%を下回る空隙率の固化体を得ることができた。また、同図に示すように水分量 が空隙率に影響することも分かった[8]。

空隙率の低下と共に開気孔率の低下も確認され、高濃度 HS⁻環境下でのヨウ素放出挙動は、 従来の固化体(空隙率~15%)のものよりも改善された[8]。

図 2.2.3-2 アルミナ固化体の緻密化に及ぼす水分の影響、脱気条件の検討

この空隙率が低下した固化体のヨウ素放出挙動について、浸漬試験により確認した[9]。空 隙率の低下によりヨウ素放出速度は低下したが、アルミナの溶解とは調和的とはならなかった。

これは、AgI は HS⁻と反応すると Ag₂S に変化するが、その際に体積収縮するため空隙を小 さくしても、AgI の溶解が新たな空隙を作るためと考えられ、アルミナ固化体中の AgI の孤立 化をさらに向上させることが必要と考えられた。空隙を小さくした上でさらに AgI を孤立化さ せるため、廃銀吸着材にアルミナを添加するアルミナ固化体(アルミナ混合固化体)の検討を 行った[8]。図 2.2.3-3 に AgI を孤立化させるアルミナ混合固化体のイメージを示す。

これまでのアルミナ固化体は、左図に示すように AgI(黒)とアルミナ(白)がほぼ 1:5 の体積比で存在していた。ここに新たにアルミナを添加することにより AgIを疎として孤立化 させた。

図 2.2.3-3 アルミナ混合固化体中の AgI の分布イメージ

(3) アルミナ混合固化体の製造と性能評価

固化体中の AgI 濃度を下げて、AgI の孤立化を図るためにアルミナを添加した固化体を製造 した。添加するアルミナとして、市販のアルミナや廃銀吸着材由来のアルミナ(銀吸着材から AgNO₃ を酸洗浄で除去したもの)を検討した。市販のアルミナ(大明化学製 TM-DAR)を添 加すると、混合率の増加に伴って AgI の孤立化、マトリクス粒径の増大が確認された[8]。一 方、銀吸着材のアルミナを添加すると空隙率は下がらず、添加は逆効果と考えられた。

アルミナ/廃銀吸着材=90/10の混合比で HIP 処理したアルミナ固化体(90%アルミナ混合固 化体)について浸漬試験を行ったところ、廃銀吸着材のみで製造した固化体よりも Al 及びヨ ウ素(I)の規格化浸出率が低下した。また、ヨウ素の規格化浸出率は時間の平方根に比例し拡散 律速となっていると考えられた [8]。

このように、市販のアルミナ添加によって固化体中の AgI の孤立化が促進された。そこで、 アルミナ混合率を最適化するため、アルミナ混合率と混合固化体の内部構造についての関係を 評価した[9]。この結果、アルミナ混合率は 99%と 90%のものとほぼ変わらず、空隙率は少な くとも 90%で十分であった。固化体の内部構造は、市販アルミナ 100%のものでは粗大な結晶 粒に成長しているのに対して、廃銀吸着材を 1%混合する(99%アルミナ固化体)だけでも結 晶粒が小さくなった。さらに、廃銀吸着材を少しでも混合するとアルミナ 100%では見られな い棒状の異方性のある結晶粒子が生成し、銀吸着材に配合されている成分の影響と推察された。

アルミナ混合固化体の内部構造を、3D-SEM 等を用いて分析・評価した結果からもその傾向 が認められた。高濃度 HS⁻環境下では、AgI は速い速度で Ag₂S となり体積収縮をするため、 高濃度 HS⁻環境下では AgI も疑似的に空隙と考える必要がある。それを考慮した観察結果お よび画像解析結果により、アルミナ混合を行わない 100%廃銀吸着材の固化体は、空隙率が低 くても空隙と AgI を合わせて考えた疑似空隙には、 $(25 \mu m)^3$ 程度の立方体の、一方の表面から 他方の表面へ貫通する経路が多く存在することが分かった。それに対して、90%アルミナ混合 固化体では貫通路は一部の AgI の密集している領域以外は殆どなかった。この傾向は、製造バ ッチの異なる固化体[10]においても同様の結果を確かめることができた。

ー方、アルミナを 90%あるいは 99%混合した固化体では、SEM や 3D-SEM で観察した数 $10 \,\mu$ m の視野において、ヨウ素 (AgI) の分布に粗密があった[9]。これまで 100%廃銀吸着材 の固化体では見られなかったこの現象が、数 $10 \,\mu$ m の範囲のものか、マクロスケールでのも のかを確認しておく必要があると考えられた。そこで、もし粗密が生じるとすれば、廃銀吸着

材とアルミナの混合時に生じる可能性が高いため、両者を混合する際の粒径と必要混合時間を 評価した。この結果、平均粒径 3μ m または 13μ m に粉砕した廃銀吸着材とアルミナの撹拌混 合を 20 分行うことにより、数 cm スケールでの均一性を EPMA 観察での元素分布により確認 し、100 μ m スケールでの均一性を SEM 観察および 3D-SEM 観察により確認した。

混合アルミナには大明化学製 TM-DAR (純度 99.99%) のαアルミナ試薬を用いているが、 固化体製造における汎用性を広げるため、種類の異なる市販アルミナを用いて固化体の製造を 検討した。その結果、アルミナ純度が 99.5%で他に Na, Mg 等の成分が含まれているアルミナ を混合すると、HIP 処理により緻密化が進むことがわかった[9]。このアルミナを廃銀吸着材 に混合したアルミナ固化体を製造して浸漬試験を行ったところ、純アルミナである TM-DAR を混合したアルミナ混合固化体とほとんど同じョウ素放出挙動を示した。代替アルミナとして 使えることは確認できたが、著しく性能が向上することはなかった。

(4) アルミナ混合固化体のヨウ素放出挙動への影響

これまでの研究では、HIP 固化処理時の水分量の制御等により空隙率を低減したアルミナ固 化体試料(100%廃銀吸着材固化体)[11]と、アルミナ試薬を混合した AgI 含有率が小さく Al₂O₃の結晶性が高いアルミナ混合固化体試料[8]について、HS⁻還元環境における浸漬試験を 行った[8]。アルミナ混合率の異なる固化体について、ヨウ素の規格化浸出率の時間の平方根 依存性を図 2.2.3-4 に示す。

図 2.2.3-4 ヨウ素の規格化浸出量 NLiの時間の平方根依存性 (99%アルミナ混合固化体[9]、90%アルミナ混合固化体[8]、100%廃銀吸着材固化体[11])

いずれの固化体試料でもヨウ素の規格化浸出速度は、マトリクスである Al に比較して 2~3 桁速くヨウ素が選択的に溶解した。また、より空隙率が低いアルミナ混合固化体ではヨウ素の 浸出速度が遅く、時間とともに減少する傾向が見られた。固化体内部に存在する AgI の溶解は、 反応物(I または S または H₂O)の拡散移行過程または移行経路(Al₂O₃の結晶粒界に沿って 連結した空隙等)の形成過程に支配されて、ゆっくりと進行することが考えられた。これは、 アルミナの添加が AgI 溶解に関わる反応物の移行経路を減少させると推測された。 従来よりもさらに AgI 含有率を小さく(0.2wt%)した固化体試料(99%アルミナ混合固化 体)について、HS⁻還元環境における浸漬試験を行った[9]。pH11、[HS⁻] = 10⁻³ mol・dm⁻³の浸漬条件において、99%アルミナ混合固化体のヨウ素の規格化浸出量は、試験初期を除い て時間の平方根に対して良い直線性を示した。固化体最表面(深さ数十µm 程度)に存在する AgI は、AgI 溶解/Ag₂S 析出反応(2AgI + HS⁻ = Ag₂S + 2I⁻ + H⁺)によって速やかに溶解す るが、固化体内部に存在する AgI の溶解は反応物(I または S または H₂O)の拡散移行過程ま たは移行経路(Al₂O₃の結晶粒界に沿った空隙等)の形成過程に支配されていると考えられた。 また、固化体のアルミナ混合量を増やすことにより、固化体内部に存在する AgI の溶解に伴う 移行経路(Al₂O₃の結晶粒界に沿った空隙等)が減少し、ヨウ素の浸出速度が抑制されること が推定された。

(5) 現実的な地下環境での浸漬試験

これまでの浸漬試験は、高 HS⁻濃度条件を中心に行ってきた。これはヨウ素の放出を加速 させて固化体の性能を評価すること、また放出されたヨウ素の(定量)下限値の制約があるこ とである。しかし実際の地下水環境では、HS⁻はより低濃度であると考えられる[1]。そこで、 より実際の地下環境に近い低硫黄 (HS⁻) 濃度環境において、アルミナ固化体からのヨウ素放 出挙動データを取得した。

50%アルミナ混合固化体を用いた純水系での浸漬試験を予備的に進めていたが、その後 90%アルミナ混合固化体を用いて、純水系、降水系地下水およびベントナイト平衡水による浸 漬試験を実施した。その結果、2 価の硫黄のない条件では、ヨウ素の放出量は非常に少ないこ とを示した。ヨウ素の規格化浸出量は、比較的長期間で実施している 50%アルミナ混合固化体 の試験結果は√t に従うカーブにフィッティングすることができるものとなった[9]。

また、人工バリアも含めた現実的な地下処分環境を想定して、セメント環境下を模擬した条件での浸出挙動を評価した。約 300 日の試験期間が経過したが、飽和 Ca(OH)₂で pH を 12.5 に調整した浸漬試験では、HS・濃度を 3×10⁻³ mol·dm⁻³ レベルの高 HS・濃度環境で試験した 他の実験例に比べ、ヨウ素の規格化浸出率が明らかに低下している傾向が見られた。

さらに、海水系地下水中の硫黄(自然海水中ではほとんどが6価の硫酸イオン)がすべて還 元形である2価の硫黄(HS・、S²)に変化したと想定した最大の還元的硫黄雰囲気として、 HS⁻濃度を3×10⁻² mol・dm⁻³の条件にした試験を実施し、ヨウ素放出挙動データを取得する。

(6) ヨウ素放出挙動評価モデルの検討

これまでに、各種条件での浸漬試験を行ってきた。アルミナ固化体からのヨウ素の規格化浸 出量の絶対値は、試験条件によって様々である。例えば、HS⁻濃度3×10⁻³mol・dm⁻³の条件 では、規格化浸出量は1年後に10³g・m⁻²のオーダとなるが、純水や降水系地下水の系では、 1年後も10g・m⁻²のオーダであった。一方で、規格化浸出量の増加速度は時間経過ととも鈍 化する傾向がある。そこで図 2.2.3-5 に示した結果を、規格化浸出量を時間の平方根に対して プロット、これより拡散過程に基づいたモデルで整理できる可能性があると考えられる。

2-11

図 2.2.3-5 各種条件下での浸漬試験結果の√tプロット

異なる試験方法で調べた固化体の試験からも、拡散過程が関与していることを示唆する結果 を得た。第1の試験結果は、浸漬試験の異なる固化体を浸漬試験後に取出し、断面の SEM お よび EPMA 観察を行って、表面付近の元素分布を調べた試験の結果である。固化体表面では ョウ素が消失し、硫黄が検出されている。またヨウ素および硫黄の分布は階段状になって、ヨ ウ素が消失して硫黄が出現、あるいは硫黄が浸入してヨウ素が放出される状況が示された。こ のプロファイルから、浸漬液が浸入した距離を測定した。その距離の時間変化は、 $\int t$ 則に従 っていた。また、第2の試験結果は、図 2.2.3-6 に示すもので、アルミナ固化体を 1mm 厚さ の薄片に加工して、両端に塩化セシウム溶液と純水を接触させて、透過拡散試験を行ったもの である。約 150 日の試験を行っても 1mm 厚を透過拡散しなかった。そこで、透過拡散試験後 の固化体断面の EPMA による塩素プロファイルの分析を行い、非常に低濃度でばらつきが大 きいが、平均化すると濃度プロファイルが見られた。固化体断面の深さ方向の元素分布は表面 から奥に向かって指数関数的に減少する拡散挙動を示唆するプロファイルを示した。

図 2.2.3-6 透過拡散試験後の固化体断面の EPMA による塩素プロファイルの分析

以上の結果から、アルミナ固化体からのヨウ素放出には拡散過程が関与していると考えられる。ただし固化体の空隙は5%以下に低下し、3D-SEM での解析からもこれらの連結が無いことがわかっている。単に空隙を通しての拡散ではなく、アルミナ結晶粒子の粒間が拡散を律速する場であると考えられる。したがって、図 2.2.3・6 で評価したように、拡散係数も自由水の拡散係数 10⁻⁹ m²・s⁻¹に比べ、数桁低い 10⁻¹⁵~10⁻¹⁴ m²・s⁻¹というような値を示すものと考えられる。またヨウ素は AgI として固定されているため、AgI が浸入してきた溶液に溶解しないと拡散ができない。したがって、全体的には溶解反応を伴う拡散現象で表されるとの仮設を立てて、モデル構築を検討することとした。

溶解反応を伴う拡散現象でマトリクスからの物質放出現象を扱った既往のモデルとして、薬 剤マトリクス中からの薬剤の放出挙動を理論的に検討した Higuchi の式がある[12]。Higuchi 式の前提条件である表面での Perfect Sink 条件、溶液フロントでの薬剤濃度一定(飽和濃度) 条件等から、アルミナ固化体からのヨウ素放出にも適用でき、この式もほぼ満足していると考 えられた。また固化体中で溶解したヨウ素が空隙を拡散するモデルを、物質移行計算プログラ ムを使って計算したところ、固化体の分析結果や浸漬結果で見られるような挙動を示すこと、 またヨウ素放出量が時間の平方根に比例することを示す結果を得た[9]。

また、この方法で実サイズの固化体を想定して寿命評価を行った結果、アルミナ固化体にとって最も厳しい条件(NaOH で pH12.5 とし、[HS⁻]を $3x10^{-3}$ mol・dm⁻³に設定した試験)では、固化体からのヨウ素の放出は数万年であった。しかし同じ高 HS⁻濃度でも、pH が 8 まで下がれば寿命は 10 万年、セメント環境を模擬して Ca 系で pH 調整した系では 1 億年、[HS⁻]がほとんどゼロの場合は、さらにその 10~100 倍程度と推定された。

2.2.4 残された課題

これまでの経緯を踏まえて、アルミナ固化体の製造・評価、ヨウ素放出挙動およびそのモデル に関しての状況と課題を表 2.2.4-1 に示す。以下で、それぞれについて説明する。

(1) アルミナ混合固化体製造に関する検討

平成 27~28 年度の検討結果における浸漬試験により、アルミナ混合率 90%以上のアルミナ 混合固化体は、100%廃銀吸着材に比べヨウ素の放出を大きく抑制すると考えられた。また、 3D-SEM 測定結果をもとに解析した固化体内部構造の3次元モデルから、90%アルミナ固化体 において空隙と AgI の連続性は非常に限定的になることが分かった。この 90%アルミナ固化 体の AgI の分布はマクロ的には均一に分布していたが、SEM 観察のミクロスケールでは稀に 濃淡が認められ、固化体の性能評価に誤認を生じさせることがあったが、廃銀吸着材と添加ア ルミナの混合方法について検討し、ミクロスケールでもほぼ均一な固化体が製造できることを 確認した。またアルミナを 90%以上添加すれば AgI はアルミナによって孤立化され、AgI 溶解 に伴う空隙の生成が連続的に起こることはないと評価された。

アルミナ混合率は、廃棄体数に影響を及ぼすため 90%以下における限界を見極めておく必要があるものの、現フェーズにての優先順位は低いと考え、今後の課題とするものとした。

(2) アルミナ固化体の環境影響の検討

アルミナ固化体は、ヨウ素吸着材の基材である(多孔質)アルミナを HIP 処理によって緻密なα-アルミナ(コランダム)にし、低溶解性のアルミナマトリクス中にヨウ素を保持する ことを特徴としている。このため、その結晶性や空隙、および粒径・粒界などの状態は、ヨウ 素の放出挙動や固化体の長期安定性において重要な役割を果たしている。

これまで、当初固化体の空隙率は 10~15%程度であったが、前処理条件や HIP 処理条件の 改善により空隙率 5%以下となる固化体を得ることができた。さらに、市販のα-アルミナを廃 銀吸着材に添加して固化体を作製したところ、AgI の孤立化やマトリクス粒径の増大が確認さ れ、その固化体の浸漬試験により、廃銀吸着材のみで製造した固化体よりも Al およびヨウ素 の規格化浸出量を低下させることが確認された。また固化体からのヨウ素放出挙動の評価は、 ヨウ素の放出を加速させるため高 HS⁻環境を中心に実施してきた。しかし、実際の処分環境 では低 HS⁻環境も考えられる。そこで、ベントナイト平衡水下での浸漬試験などを実施して いる。

AgI の溶解反応は、それに寄与する 2 価の硫黄(HS⁻) 濃度に最も影響を受ける。純水や降 水系地下水等、無添加あるいは 10⁻⁵ mol·dm⁻³程度の HS⁻濃度であれば、ヨウ素の規格化浸出 量は 1 年後でも 10 g·m⁻²·y^{-0.5}のオーダであり、非常に遅い。pH12.5 において、HS⁻が 3×10 ⁻³ mol·dm⁻³まで上がると、ヨウ素の規格化浸出量は 10³ g·m⁻²·y^{-0.5} 程度に上昇する。しかし、 pH を 8 程度に下げ、高 pH においても飽和 Ca(OH)₂ が存在する条件では規格化浸出量が抑制 されることを確認した。

以上のように、およその適用範囲の見極めができたが、実際の処分環境を考慮し、抑制傾向 の見られた低 pH 効果、Ca 共存効果について、さらにデータの充実が必要であると考えられ る。また、より低濃度の HS⁻に対するヨウ素規格化浸出量の関係を明確にする必要がある。

(3) 固化体からのヨウ素放出挙動評価モデルの確立

これまでの浸漬試験結果や固化体マトリクスの分析評価の結果を総合的に見ると、アルミナ 固化体からのヨウ素放出挙動は時間の 1/2 乗則に従うと考えられ、拡散理論やシミュレーショ ンによる理論的な側面からも、その妥当性が示唆される結果が示された。この考えに基づき、 HS⁻濃度の違いとヨウ素放出挙動の関係を整理することができた。しかしさらに、pH の影響、 アルミナ混合率、および空隙率のヨウ素放出挙動に与える影響の確認を行う必要があると考え られる。

また、拡散過程と考えた場合、拡散経路の直接的な特定や拡散係数の特定などの直接的な証拠を示すデータを取得することにより、さらにモデルの信頼性を高める必要がある。

(4)残された課題まとめ

表 2.2.4-1 に、アルミナ固化体からのヨウ素放出挙動評価における現状と残された課題をま とめる。

ここでは、アルミナ固化体からのヨウ素放出の環境影響を検討するため、浸漬試験によるデ ータの取得を行う。また、この結果等からヨウ素放出挙動評価モデルの検討を行う。

項目	現状	課題
基本コンセプト	アルミナ混合固化体とする	-
空隙率	真空加熱脱気処理により、	_
	安定的に<5%を達成	
強度	一軸圧縮強度 10 ⁵ N・cm ⁻² (n=1)	n増しによるデータ蓄積
配合率	アルミナ90%以上で効果は飽和	90%以下での適用性見極め
		アルミナ/廃銀材(80/20),(70/30)等
配合アルミナ	純アルミナ(TM-DAR)	_
適用範囲検討	基礎検討から、pH と[HS ⁻], [Ca ²⁺]をパ	・低濃度[HS-]について濃度依存性の確認
	ラメータとした。	・[Ca ²⁺] : 高 pH における Ca ²⁺ 濃度依存性の確認
	pH $: 8 \sim 12.5$	
	$[\text{HS}^{\cdot}](\text{mol} \cdot \text{dm}^{-3})$: 0, 10 ⁻⁵ , 10 ⁻³ , 10 ⁻²	
	[Ca ²⁺]:0,地下水レベル(中性条件)	
	飽和 Ca(OH)2条件(高 pH)	
適用範囲の知見	寿命 10 万年に相当する値として規格	・地層処分の時間スケールでの信頼性確認
規格化浸出量	化浸出量 1650 g·m ⁻² ·y ^{-0.5} を基準に	
$(g \cdot m^{-2} \cdot y^{-0.5})$	HS 濃度、pH 等の浸漬条件によって	
	整理した。高 HS 濃度、高 pH 環境で	
	は浸出量が高くなったが、低 HS 濃度	
	条件や低 pH 条件、あるいは飽和	
	Ca(OH)2条件で基準(ヨウ素放出期間	
	10万年)クリアする条件が見出され	
	t.	
ヨウ素放出挙動	・実験結果は、√t 則でフィッティン	・拡散モデルをより直接的に示す証拠提示
評価モデル	クできることを確認	(拡散経路の可視化など)
	・反応を伴う物質移動の考え方で説明	 アルミナの溶解による経路生成過程を含めたヨ ・アルミナの溶解による経路生成過程を含めたヨ
	できる	ウ素放出挙動を確認(解析としてセルオートマト
	(1) Higuchi の式	ン 法 の 検討)
	(2) 多れ質媒体の反応拡散モテル	

表 2.2.4-1 アルミナ固化体の現状と課題

2.3.1 目的

これまで、アルミナ固体体の処分環境におけるヨウ素放出挙動について、想定される各種地下 環境因子[1]に対する影響を評価した。高 pH、高 HS・濃度では、規格化浸出量が 10³ g・m⁻²・y^{-0.5} レベルに上昇するが、pH が中性付近であれば、かなり低下することが示された。そこで、中性 付近での試験として、純水、降水系地下水およびベントナイト平衡水による試験を引き続き継続 し、中性環境でのヨウ素放出挙動を把握する。また、これまで蓄積してきた 3×10⁻³ mol・dm⁻³ に対して、より高濃度側(3×10⁻² mol・dm⁻³)と低濃度側(10⁻⁴ mol・dm⁻³)の試験を行い、HS・濃度 の影響を把握する。

高 HS 濃度においても、Ca(OH)2飽和濃度下(pH12.5)ではヨウ素の規格化浸出量が約1桁低下する可能性が示されたことから、Ca 共存による抑制効果を把握するため、Ca 飽和濃度より低いレベルでの Ca 共存によるヨウ素放出抑制効果を確認する。

2.3.2 試験方法

(1) 試験

試験は、低酸素雰囲気([O₂]<1ppm)下で、固化体から切り出した試験片を所定の条件の溶 液に浸漬し、一定期間ごとに一定量(0.005 dm³)の溶液をサンプリングし、その溶液中のヨ ウ素及び Al 濃度を分析することにより行う。濃度分析は ICP-MS(Perkin Elmer 社、ELAN) により行い、サンプリングは、1回/月の頻度で行う。

また、代表的な条件(HS⁻濃度の高・低、pH の高・低など)について、浸漬後の固化体の 内部構造を SEM・EDX により分析し、成分分布、内部構造変化を解析する。

(2) 試験条件

調査する目的と浸漬試験条件の一覧をその目的と共に、表 2.3.2-1 に示す。以下に環境因子の適用範囲の評価として実施している個々の試験条件の詳細について示す。

目的		浸渍	備考			
	固化体		溶	液		(試験 No.)
	(アルミナ	$[HS^{-}]$	pН	温度	pH 調整や	
	/廃銀吸着材)	$/mol \cdot dm^{-3}$		/°C	添加成分	
アルミナ混合率の効	100/0	3×10^{-3}	12.5	25	NaOH	(9-3)
果の確認	90/10	$3 imes 10^{-3}$	12.5	25	NaOH	固化体内部観察に供す
	90/10	$3 imes10^{-3}$	8	25	HCl	る (9-1、9-2)
	90/10	1×10^{-3}	11	60	NaOH	(_)
	99/1	1×10^{-3}	11	60	NaOH	(_)
温度効果の確認	90/10	1×10^{-3}	11	25	NaOH	平成28年度データ取得
				40		(_)
				60		
環境因子への適応範	90/10	3×10^{-2}	12.5	25	$Ca(OH)_2$	海水系地下水想定(12-
囲の評価①						3B)
・HS ⁻ 濃度、		3×10^{-3}	12.5	25	NaOH	これまでの基本条件
Ca(OH)2の効果					$Ca(OH)_2$	+Ca(OH) ₂ 効果確認
						(9-3, 12-3)
		$3 imes 10^{-4}$	12.5	25	NaOH	低濃度 HS-領域確認
						(15-1)
環境因子への適応範	90/10	0	7	25	純水	(12-1)
囲の評価②		3×10^{-5}	8	25	\Rightarrow ,	降水系地下水(12-2)
・地下水組成		0	8	25	\Rightarrow	ベントナイト平衡水(12-
						4)
環境因子への適応範	90/10	$3 imes 10^{-3}$	12.5	25	$[Ca^{2+}]$	Ca(OH)2飽和(12-3)
囲の評価③					=20mM	
・Ca 共存効果			12.5	25	$[CaCl_2]$	Ca(OH)2以外の効果
(①と共通)					=2mM	(15-2)

表 2.3.2-1 浸漬試験条件

1) 地下水組成の影響評価

a. 目的

降水系地下水や海水系地下水など、地下処分環境におけるヨウ素放出挙動を把握する。 平成28年度に開始した試験[10]を継続し、より長期のデータを取得する。

b. 試験条件

試験条件を以下に示す。

溶液 :純水、模擬降水系地下水[13]、ベントナイト平衡水
pH(初期):7~8(成り行き)
HS⁻濃度(初期):0、10⁻⁵(模擬降水系地下水)mol·dm⁻³
液固比: 100cm(600cm³/6cm²)
温度:25℃

2) HS 濃度影響の評価

a. 目的

高 HS⁻濃度(3×10^{-2} mol·dm⁻³)の浸漬試験を実施し、HS⁻濃度の影響を評価する。 また、低濃度側での試験を実施し、データを蓄積する。 b. 試験条件

(a) 高濃度 HS⁻条件

平成 28 年度から開始した飽和 Ca(OH)₂で pH12.5 に調整し、HS⁻濃度 3×10⁻³ mol· dm⁻³ で実施中の試験について、以下の条件(HS⁻濃度 3×10⁻² mol·dm⁻³)の溶液に 入れ替えて、継続して実施する。

pH : 12.5 (飽和 Ca(OH)₂で調整) HS⁻濃度 : 3×10⁻² mol·dm⁻³ 液固比 ; 100 cm (600cm³/6cm²) 温度 : 25℃

(b) 低濃度 HS⁻条件

低濃度 HS⁻条件について、以下の試験を行う。なお、ここでは試験に伴い消費される HS⁻を補うため、液の入れ替え試験とする。

pH:12.5 (NaOH で調整) HS⁻濃度: 3×10⁻⁴ mol·dm⁻³ 液固比:100cm (600cm³/6cm²) 温度:25℃

3) Ca の共存影響の評価

a. 目的

飽和 Ca(OH)₂ 共存下の場合、pH12.5 で、HS⁻濃度が 3×10⁻³ mol·dm⁻³ であっても、 NaOH で pH 調整した時に比べ、ヨウ素の規格化浸出率が約一桁低下することが確認され た。飽和 Ca(OH)₂条件では、Ca²⁺濃度は、約 20 mmol·dm⁻³ であり、降水系地下水では、 約 0.1 mmol·dm⁻³ である。

これは、Ca が共存することにより、ヨウ素放出が抑制されていると考えられる。この ヨウ素放出抑制のメカニズムは分かっていないが、濃度影響を把握することにより Ca の 共存影響について評価する。

b. 試験条件

浸漬試験条件を以下に示す。

pH : 12.5 (NaOH で調整) HS⁻濃度:3×10⁻³ mol·dm⁻³ Ca 濃度:CaCl₂: 2×10⁻³ mol·dm⁻³ 液固比: 100cm (600cm³/6cm²) 温度:25℃

4) 浸漬試験条件のまとめ

表 2.3.2-2 に浸漬試験の一覧表を示す。このうち、試験 No.9-1~9-3 については昨年度までに試験を終え、固化体を取り出して分析に供した。

試験	固化体	溶液			目的
No.	アルミナ 混合率(%)	概要	pН	[HS ⁻] mol•dm ⁻³	
9-1	90	pH12.5 (NaOH)	12.5	3E-3	アルミナ混合固化体の性能比較
9-2	90	pH 8 (NaOH)	8	3E-3	確認 →終了して固化体内部観察へ
9-3	0	pH12.5 (NaOH)	12.5	3E-3	
10-1	50	純水	7	0	
12-1	90	純水	7	0	処分場模擬地下水(低濃度[HS]条
12-2	90	模擬降水系地下水	8	0	件)の違いによる影響確認
12-4	90	ベントナイト平衡水	10	0	
12-3	90	pH12.5 (Ca(OH) ₂)	12.5	3E-3 → 3E-2	Caイオン共存効果の確認
15-2	90	pH12.5 (NaOH) + 2E-3M-CaCl ₂	12.5	3E-3	
15-1	90	pH12.5 (NaOH)	12.5	3E-4	[HS]濃度の影響の確認

表 2.3.2-2 浸漬条件一覧表

5) 浸漬後の固相分析

a. 目的

浸漬後の固化体について断面サンプルを作成し固相分析を行う。ヨウ素の化学形態、ヨ ウ素の固化体内分布状態、硫黄成分の浸入状況を評価する。これらは SEM、EDX および X線 CT を用いて断面の凹凸を詳細に分析・可視化することにより行う。これにより、固 化体の浸漬により形成される溶液の経路の評価を試みる。

- b. 分析
 - (a) SEM 観察及び EDX 分析

浸漬後の固化体をグローブボックス内で風乾した後、切断し、断面を CP 法により研 磨して観察に供した。断面は、液が浸漬した部分が目視で確認できるため、その境界を 基準にして、液が浸入していない内部と液が浸入した外部および境界近傍について SEM 観察を行った。観察は 1000 倍および 1 万倍で行い、適宜、EDX によるスポット の元素分析を行った。また、一部の試料については、表面近傍に着目して浸漬後の空隙 構造から液の経路の特定ができないか、1000~5 万倍での観察を試みた。用いた観察装 置等を表 2.3.2-3 に示す。

観察装置	日立製作所製 電界放出	形走查電子顕微鏡 SU-70
	加速電圧:	5kV
	撮影方法:	二次電子像、反射電子像
	観察倍率:	1000 倍、10000 倍
分析装置	OXFORD 社製 INCA	Energy+ エネルギー分散型X線分析装置
	(EDX)	
	加速電圧:	8kV
	分析方法:	ポイント分析
	計数時間:	100sec.
断面加工装置	日本電子製 SM-09010	クロスセクションポリッシャ(CP)
	使用ガス:	アルゴンガス
前処理	CP 加工法にて試料断面	を作製する。
	観察試料に導電性を持た	すため、オスミウムコーティングを施した

表 2.3.2-3 SEM 観察および EDX 分析

(b) X線CTによる評価

固化体でヨウ素拡散の経路となる空隙の連続性を評価する方法として、3D-SEMでの 観察を行い3次元の内部構造の解析を行った。ただし、3D-SEMでは、対象とする領域 が数+μmオーダに制限された。これに対して、アルミナ固化体内部に溶液が浸入した ことを示す黒変領域は試験 No.9-1 固化体や試験 No.9-3 固化体で1mm程度にまで広が っていることから、3D-SEMでは拡散経路としての空孔の連続性を評価するには領域サ イズで制限があった。一方、近年のサブミクロンオーダの分解能を持つX線CT装置の 進歩により、Takahashi et al.[14]は幌延堆積岩中の空隙分布を3次元で可視化し画像解 析で連続間隙数や屈曲度を求め、実効拡散との関連を評価している。同様に高橋ら[15] も砂岩中の空隙の3次元分布の可視化と空隙の連結性を評価している。

この解析例を参考として、ヨウ素が放出された黒変領域が大きい試験 No.9-1 固化体から黒変領域を精密切断加工して採取し、ナノX線 CT 測定を実施した。そのナノX線 CT 像の画像解析により空隙の3次元分布とともに連結性評価を試みた。

用いた X線 CT の測定条件を以下に示す。

測定対象	:試験 No.9-1 固化体の黒変領域 約 1×1×2mm 破砕片
測定装置	: ヤマト科学製 TDM1000H-Sµ
測定条件	
スキャンタイプ	: CT スキャン
X線管電圧	: 50.000 kV
X線管電流	: 0.085 mA
視野サイズ	$: 0.471 \times 0.471 \times 0.471 \text{ mm}$
マトリックスサイズ	: $1024 \times 1024 \times 1024$ pixel
画素サイズ	: $0.46 \times 0.46 \times 0.46 \mu\text{m}$

(c) 評価試料

観察した試料を、表 2.3.2-4 に示す。

討驗		浸漬条件						
No	固化体	ッ 日 (調敷封薬)	$[HS^{-}]$	液固比	浸漬期間			
110.	NO. pH (調整訊楽)		$(mol \cdot dm^{-3})$	$(cm^3 \cdot cm^{-2})$	(日)			
9-1	000/アルミナ泪合田化休	12.5 (NaOH)						
9-2	90%アルミデ混合固化体 8 (HCl)		2 \sim 10-3	100	000			
9-3	100%廃銀吸着材固化体 (アルミナ未添加)	12.5 (NaOH)	3~10°	(600/6)	982			

表 2.3.2-4 観察に用いた固化体

2.3.3 結果

(1) 地下水組成とヨウ素放出挙動の関係

純水に浸漬した固化体の浸漬試験(試験 No.10-1 および試験 No.12-1)の結果を図 2.3.3-1と 図 2.3.3-2、模擬降水系地下水(試験 No.12-2)の結果を図 2.3.3-3、ベントナイト平衡水(試 験 No.12-4)の結果を図 2.3.3-4 に示す。

いずれの浸漬結果においても、400~1000日の浸漬期間においてヨウ素の規格化浸出量は、 10~15g・m⁻²程度の値を示した。これは、これまでの高硫黄濃度([HS⁻]=3×10⁻³ mol・dm⁻³) 溶液による浸漬試験での10³g・dm⁻²のオーダに比べて2桁程度低い値となっている。一方、 時間依存性については、試験 No.10⁻¹(50%アルミナ混合固化体-純水)、試験 No.12⁻⁴(90% アルミナ混合固化体 - ベントナイト平衡水)では、時間とともに増加量が減少する傾向が明確 に見られたが、試験図 No.12⁻¹(90%アルミナ混合固化体 - 純水)および試験 No.12⁻²(90% アルミナ混合固化体 - 模擬降水系地下水)では、明確な減少傾向が見られなかった。

一方、アルミ(Al)濃度については、ベントナイト平衡水を除く純水系と模擬降水系地下水の結果では、定量下限(濃度で0.01 mg・dm⁻³、モル濃度で4×10⁻⁷ mol・dm⁻³)ぎりぎりの値であった。溶液は純水系で pH9 程度に安定して推移した。このレベルの Al の溶解が、pH 上昇をもたらしたものと考えられる。また、ベントナイト平衡水は初期にアルミを含んでいるが、浸漬試験後、濃度は低下しその後一定で推移し増加しなかった。pH も初期の値と変化が見られなかった。ベントナイト平衡水におけるヨウ素の増加量が減少する現象は、溶液中の Al 濃度の増加により固化体のアルミナ溶解が妨げられた可能性も考えられる。

2 - 21

図 2.3.3-1 純水を用いた浸漬試験結果その1 試験 No.10-1:50%アルミナ混合固化体

試験 No.12-1:90%アルミナ混合固化体

(1) pH, Eh

試験 No.12-2:90%アルミナ混合固化体

試験 No.12-4:90%アルミナ混合固化体

(2) HS⁻濃度とヨウ素放出挙動の関係

HS⁻濃度の影響評価として、飽和 Ca(OH)² 共存下(pH12.5)において、硫黄濃度を 3×10⁻³ mol・dm⁻³および 3×10⁻² mol・dm⁻³の条件で行った浸漬試験の結果を図 2.3.3⁻⁵ に示す。硫黄 濃度が一桁高くなることにより、初期のヨウ素放出量が多くなったが、その濃度上昇傾向は直 線的ではなく時間経過に伴い傾きが低下する傾向がみられる。この結果を基に時間依存性を求 めることによって固化体寿命の評価を行う。

 HS^- 濃度の低い方の条件として、硫黄濃度を $3 \times 10^{-4} \text{ mol} \cdot dm^3$ と $3 \times 10^3 \text{ mol} \cdot dm^3$ とを 比較した結果を図 2.3.3-6 に示す。この試験は、 $Ca(OH)_2$ を共存させず、NaOH で pH 調整し たものの比較である。初期の状態では、濃度の影響が見られていないが、今後、徐々に影響が 現れてくるものと思われる。なお、反応で消費される HS^- の減少が無視できなくなるため、 この試験では、溶液を 1 か月ごとに入れ替えている。そのため、溶液中の Al 濃度も入れ替え 毎にゼロになるため、アルミナ溶解に対して溶液中の飽和度もゼロとなりアルミナ溶解が進む。 規格化浸出量はこれらの量を積算したものであるため、比較した試験よりも Al の規格化浸出 量が大きい結果となっている。

(3) Ca 共存影響

Ca の影響評価として、飽和 Ca(OH)₂ではなく NaOH で pH 調整した溶液に、CaCl₂として 飽和濃度よりも低濃度で添加してその影響を確認した。図 2.3.3-7 に結果を示す。Ca(OH)₂の 飽和溶液中の Ca 濃度は、Ca(OH)₂の飽和溶解度 0.17g/100g から 1.8×10^2 mol·dm⁻³、 Ca(OH)₂の溶解度積 pKs=5.0 から計算すると 2.2×10^2 mol·dm⁻³であり、 10^2 オーダである。 今回は、そのオーダよりも一桁低い 2×10^3 mol·dm⁻³で添加したが、図に示したように、 NaOH のみの pH12.5 の比較データよりも明らかにヨウ素の放出量が減少した。何らかの作用 によって Ca がヨウ素放出について抑制方向に影響を与えている可能性がある。これまでに固 化体表面の XRD 観察等で Ca 含有沈殿物等の生成確認を試みたが検出されていない。化学平 衡計算ではハイドロガーネットの生成が示唆されているが、固化体の長寿命化にも関わること からそれがどのように作用して抑制効果を示すかなどの解明が、今後の課題である。

上記の検討において示した結果において Ca(OH)₂または CaCl₂の共存・非共存の影響が含ま れるので、それをまとめたものを表 2.3.3-1 に示す。ここでは、NaOH で pH を 12.5 に調整し た試験の結果(試験 No.9-1)の結果を併せて示した。NaOH で pH 調整したものと、飽和 Ca(OH)₂により pH を調整したものでは、NaOH→Ca(OH)₂にすることにより、ヨウ素の規格 化浸出量が低下する。それに対して、Ca(OH)₂ 共存下で硫黄濃度を $3 \times 10^{-3} \rightarrow 3 \times 10^{-2}$ mol・ dm⁻³に上昇させると、ヨウ素の規格化浸出量は増加するが、NaOH での 3×10^{-3} mol・dm⁻³ レ ベルにしか上がっていない。したがって、アルカリ側であっても、Ca(OH)₂ 共存下と同等と考 えられるセメント共存下のような環境であれば、ヨウ素の放出は抑制される傾向があり、 $3 \times$ 10^{-2} mol・dm⁻³ という過酷な条件であってもヨウ素閉じ込め性能が極端に低下することは無い と考えられる。

図 2.3.3-6 低 HS⁻濃度下における浸漬試験の結果(試験 No.15-1)

図 2.3.3-7 Ca 添加量の効果確認試験結果(試験 No.15-2)

試験条件	Ca 添加量	NL(I)の√t プロットの傾き				
		$[HS]=3 \times 10^{-4}$	$3 imes10^{-3}$	$3 imes10^{-2}$		
NaOH のみ	0	89	122	—		
NaOH で pH 調整後、 2×10 ⁻³ M-CaCl ₂ 添加	$2 imes 10^{-3}$	—	19.6	—		
Ca(OH)2で pH 調整	$2 imes 10^{-2}$	_	17.5	63		

表 2.3.3-1 HS⁻濃度と Ca(OH)₂の影響の関係整理

(4) 浸漬後の固相分析

1) 溶液の浸漬距離

サンプルの断面の目視観察から、固化体表面の変色領域の深さを測定した。その結果を表 2.3.3-2 に示す。また、これらの試験におけるヨウ素放出挙動を図 2.3.3-8 に示す。

図 2.3.3-8 観察した固化体の浸漬試験時のヨウ素規格化浸出量

これらの結果の整合性を以下において検討した。

表 2.3.3-2	溶液の浸入距離の計測結果

試験 No.	浸入距離	固化体/浸漬条件
	(µ m)	
9-1	1200	90%アルミナ混合固化体/pH12.5, [HS ⁻]:3x10 ⁻³ mol・dm ⁻³
9-2	260	90%アルミナ混合固化体/pH8, [HS ⁻]:3x10 ⁻³ mol・dm ⁻³
9-3	1700	100%廃銀吸着材(アルミナ未混合)/pH12.5, [HS ⁻]:3x10 ⁻³ mol・dm ⁻³

規格化浸出量の定義から浸入深さとの関係は、以下の通り示すことができる。

規格化浸出量 NL(*i*) =
$$\frac{C_i V}{f_i S}$$
 (2.3-1)

NL(i):元素 i の規格化浸出量[g・m⁻²]、Ci:溶液中濃度[g・dm⁻³], V:溶液体積[dm³]、 fi:固化体中元素含有率、S:表面積[m²]

図 2.3.3-9 に示すようにアルミナ固化体からのヨウ素放出を簡略化して示す。

図 2.3.3-9 固化体における表面積 S および深さ d の関係

図 2.3.3-9 のように、固化体から元素 i が深さ d の部分まで放出されたとすると、放出された量は、固化体の密度を ρ とすると、S×d× ρ ×fiとなる。これが溶液中の元素 i の量 Ci×Vとバランスする。すなわち、下式のように表すことができる。

$$\mathbf{S} \cdot \mathbf{d} \cdot \boldsymbol{\rho} \cdot f_i = C_i \cdot V \tag{2.3-2}$$

式2.3-1の関係を用いると次の式に示す関係が得られる。

$$d = \frac{C_i V}{f_i \cdot S \cdot \rho} = \frac{NL(i)}{\rho}$$
(2.3-3)

アルミナ混合固化体では、約 3.9g/cm³、100%廃銀吸着材固化体では、4.2g/cm³を使って 試算することができる(単位を合わせて計算する)。 その結果を表 2.3.3-3 と図 2.3.3-10 に 示す。絶対値は多少のずれがあるが、規格化浸出量から計算した浸入深さと固化体を観察し て得た実測値とは相関関係が見られた。固化体からのヨウ素放出と溶液中ヨウ素濃度変化が 整合していることが確認された。

· · · · · ·											
規格化浸出量(最大	固化体密度	浸入深さ(計算値)	浸入深さ(実測値)								
値) (g・m ⁻²)	(g • cm ⁻³)	(µ m)	(µ m)								
3800	3.9	970	1200								
940	3.9	240	260								
5500	4.2	1300	1700								

表 2.3.3-3 規格化浸出量と溶液侵入距離の比較

図 2.3.3-10 溶液浸入距離と溶液浸入距離の関係

2) SEM 観察および EDX 分析結果

浸漬試験後の固化体試料について、溶液浸入境界を中心とした SEM 観察を行った。図 2.3.3-11 に観察した部位を示す。各画像中に黄色い枠をかけた横長の部分が、各試料の結果 の最初に示される横長の SEM 像に対応した領域となる。この領域をさらに、境界領域、溶 液浸入領域(変色外側)、溶液未浸入の領域(内側)について、1000 倍および 10000 倍の SEM 観察像を示す。図 2.3.3-12 に試験 No.9-1、図 2.3.3-13 に試験 No.9-2、図 2.3.3-14 お よび図 2.3.3-15 に試験 No.9-3 の観察結果を示す。また、適宜、EDX による元素分析を行っ ており SEM 画像中に数字で測定位置を示し、各 EDX スペクトルを図 2.3.3-16、図 2.3.3-17 に示し、表 2.3.3-4 に組成をまとめる。

SEM 画像より以下について確認することができる。

90%アルミナ混合固化体を用いた試験 No.9-1, 試験 No.9-2 では、AgI の割合がアルミナ未 混合の試験 No.9-3 に比べ減少しており、アルミナ混合により AgI 同志の重なりが減少して いると考えられる。各固化体とも、溶液浸入部では、I が S に置き換わっており、AgI から Ag₂S に変化し、ヨウ素を放出したことが分かる。

また、溶液の未浸入の部分では、アルミナと AgI が十分密になっており空隙は少なくなっているが、溶液浸入部では、空隙が目立っている。AgI から Ag₂S への変化によって体積減少が生じて新たな空隙が生じたものと考えられる。

図 2.3.3-11 観察部位

1000 倍画像

変色境界A枠内拡大_反射電子像

図中番号は EDX 分析を
した部位を示す
(結果は後述)。

注:2枚の連続した写真となっている

变色外側A枠内拡大_反射電子像

10000 倍画像

左写真枠内拡大_反射電子像

図 2.3.3-12 溶液浸入境界付近の SEM 画像(試験 No.9-1)

1000 倍画像

10000 倍画像

変色境界6种内拡大_反射電子像

0629-28 5 0 KV ×10 0 K PDBSE

左写真枠内拡大_反射電子像

変色外側B种内拡大_反射電子像

左写真枠内拡大_反射電子像

図 2.3.3-13 溶液浸入境界の SEM 画像(試験 No.9-2)

反射電子像

1000 倍画像

10000 倍画像

28-58 5.0kV x10.0k PDBSE 左写真枠内拡大 反射電子像

変色外側C枠内拡大_反射電子像

左写真枠内拡大」反射電子像

40 5.0kV x1.00k PDBSE 変色外側(表層寄り、低倍率視野外)_反射電子像

左写真枠内拡大反射電子像

図 2.3.3-14 溶液浸入境界の SEM 画像(試験 No.9-3) その1

図 2.3.3-15 溶液浸入境界の SEM 画像(試験 No.9-3) その 2

図 2.3.3-16 EDX による元素分析 (試験 No.9-1 と試験 No.9-2) ポイント番号は SEM 画像中の数字に対応

ポイ	試験	/]	EDXによ	る元素分	↑析 (〔子数%)			原子	数比
ント	No.	卫电	С	0	Mg	Al	Si	S	Ag	Ι	I/Ag	S/Ag
1	9-1	境界域	3.4	65.2	0.0	24.7	0.0	0.0	4.0	2.7	0.68	—
2	9-1	境界域	2.9	66.9	0.0	12.6	0.0	4.3	13.3	0.0	—	0.32
3	9-1	浸入後	1.3	66.7	0.2	12.5	0.0	1.4	17.9	0.0	—	0.08
4	9-1	未浸入	5.6	55.0	0.0	30.6	0.0	0.0	5.5	3.3	0.60	—
5	9-2	境界域	2.4	62.8	0.0	33.6	0.2	0.0	0.5	0.5	1.00	_
6	9-2	境界域	4.5	69.1	0.0	17.2	0.0	2.1	7.1	0.0	—	0.30
7	9-2	浸入後	7.6	56.3	0.4	9.9	0.0	5.5	20.3	0.0	—	0.27
8	9-2	未浸入	7.7	39.7	0.0	12.2	0.0	0.0	23.0	17.4	0.76	_
9	9-3	境界域	3.0	65.0	0.0	16.0	0.0	5.8	10.2	0.0	—	0.57
10	9-3	境界域	8.2	48.4	0.0	40.8	1.6	0.0	0.4	0.6	1.50	—
11	9-3	浸入後	0.0	29.7	0.0	7.0	0.0	20.8	42.5	0.0	—	0.49
12	9-3	浸入後	3.9	41.7	0.0	9.9	0.0	14.7	29.8	0.0	_	0.49
13	9-3	未浸入	0.0	37.6	0.0	39.8	0.6	0.0	12.0	10.0	0.83	_

表 2.3.3-4 EDX 分析結果のまとめ

3) 表面近傍の SEM 観察

最表面における液の通り道などの観察を目的とし、浸漬後固化体の最表面部の観察を行った。観察は、試験 No.9-1 と 9-3 の浸漬後の固化体で前節のものと同じものを用いて、最表面を観察対象とした。図 2.3.3-18 に観察部位を示し、図 2.3.3-19 と図 2.3.3-20 に個々の固化体の観察結果を示した。倍率を5万倍まで上げて観察を試みた。

90%アルミナ混合固化体(試験 No.9-1)と非混合である 100%廃銀吸着材固化体(試験 No.9-3)を比べると、いずれも表面付近に空隙が目立っており、前節で観察した溶液未浸入 部分(浸漬前の固化体の状況)に比べても空隙が多くなっているように見られた。また、両 者を比較した場合、アルミナ混合固化体の方がその空隙が細かくなっている。これは、アル ミナ未混合の場合 20wt%ほど存在する AgI が集まりやすくなっていて、アルミナ混合によって AgI 同志が離れやすくなっていることによると考えられる。したがって、アルミナ混合 固化体においては、完全に浸入経路が閉ざされているとは言えないが、通路が細かくなって 拡散を抑制しやすくなっている可能性があると考えられる。

図 2.3.3-18 固化体最表面の断面観察部位

1000倍

A构内拡大_反射電子像

A-1枠内拡大」反射電子像

A-2枠内拡大」反射電子像

図 2.3.3-19 固化体最表面の SEM 観察 (試験 No.9-1:90%アルミナ混合固化体の浸漬後)

3枠内樜大 反射電子復

5万倍

図 2.3.3-20 固化体最表面の SEM 観察 (試験 No.9-3 100%廃銀吸着材(アルミナ未混合)固化体の浸漬後)

4) X線CTによる評価

0724-11 5.0

90%アルミナ混合固化体(試験 No.9-1)の黒変領域から採取した試料の X 線 CT 測定結 果を図 2.3.3-21 に示す。測定は $1 \times 1 \times 2$ mm の破砕片試料から 0.47 mm 角の領域を測定し たため、3 次元イメージは ϕ 0.47 × 0.47mm の円柱体となる。3D イメージの再構築には Volume Graphics 社の VGSTUDIO を用いた。

各スライス像で白く表示される部分は、Ag のような重元素成分が多い部分である。図 2.3.3・21 では Ag₂S と考えられる白い部分の近傍に、空隙による黒い部分が認められた X-Y スライス像を示したが、このような Ag₂S と空隙の位置関係はこの ϕ 0.47×0.47 mm の観察 領域では他に認められなかったことから、溶液が浸入する経路は μ m オーダ以下の微細な空 隙・隙間と考えられた。

図 2.3.3-21 黒変領域について観察した X線 CT 像と 3 次元再構築イメージ像
μm オーダの空隙を評価するにあたって、この X 線 CT 測定結果の妥当性について SEM 観 察像と比較して検証した結果を図 2.3.3-22 に示す。図 2.3.3-22 の上部に示したスライス像 は、アルミナ粒界を明瞭にするため米国国立衛生研究所(NIH)が公開している汎用の画像 処理ソフト: ImageJ を用いて画像処理を行っている。図 2.3.3-22 の下部には、スライス像 の一部を拡大して、同じスケールサイズに合わせた SEM 観察像(1 万倍)と比較した。こ の結果から、0.46 μm の分解能による X 線 CT 測定で、SEM 像の緑の点線部分で示したよ うな 1 μm 程度の大きさをもつ空隙が評価できることを確認した。

さらに画像処理を行い、空隙を抽出した例を図 2.3.3-23 に示す。この空隙抽出では、黒変 領域の空隙率を 5%と仮定して、空隙の面積率が 5%となるように画像処理を行った。な お、図中の中心部に黒く観察される部分は X線 CT 測定で試料を 360°回転させたことで生 じたゴースト像で、空隙ではない。

各スライス像でこの空隙抽出処理を行った画像を、ImageJ を用いて 3D 表示した結果を 図 2.3.3-24 に示す。図 2.3.3-24 の上部には、黒変領域の平均的な部分として図 2.3.3-23 の 赤枠で示した位置で切り取った $75 \times 75 \times 75 \mu m$ の領域での空隙の分布を示した。下部はさ らに $20 \times 20 \times 20 \mu m$ の領域に拡大し 3 方向から表示して空隙の形状が把握できる表示とし た。黒変領域での空隙は $1 \sim 10 \mu m$ の大きさで分散しているが、これらの連続性を確認する ことはできなかった。この結果は、黒変領域の断面 SEM 観察した結果(図 2.3.3-19)でも、 溶液の浸入経路となるような数十 μm 以上の連続的な空隙のつながりが観察できなかった結 果を裏付けるものと考えられる。すなわち、浸漬試験において溶液は SEM で観察されるよ うな大きな空隙の部分(元から存在した空隙や AgI の溶解によって生じた空隙)のみを伝わ って内部に浸入するのではなく、アルミナ結晶粒界のような微細な領域をも利用して浸入し ていくものと考えられる。

(図 2.3.3-19の再掲)

図 2.3.3-22 X線観察像と SEM 観察像の比較

図 2.3.3-23 黒変領域での X 線 CT スライス像における空隙抽出結果 (赤枠は 3D 表示するおよその位置)

75×75×75μmの領域での空隙の分布

20×20×20µmの領域を3方向から表示

図 2.3.3-24 黒変領域の平均的な部分での空隙分布

2.4 アルミナ固化体の HS⁻還元環境におけるヨウ素溶出挙動の評価

2.4.1 目的

アルミナ固化体からのヨウ素放出挙動の評価モデルの構築を目的として、これまでに様々な条件での試験が行い、固化体の溶解および固化体からのヨウ素の溶出挙動を評価している。また、 固化体を構成するマトリクス(アルミナ: Al₂O₃)およびヨウ化銀(AgI)について、それぞれ の溶解試験も加えた試験結果から速度論的評価を実施している。

地層処分における数十万年という超長期の挙動を充分な信頼性を持って評価する必要がある。 評価の信頼性向上において最も重要な要素の一つは、反応メカニズムの充分な理解とそれに基づ く速度論的評価であり、そのための様々な基礎データを取得し整理、評価することが重要である。

昨年度までの研究では、HIP 固化条件の異なる数種の固化体(①低空隙率固化体:水分量の制 御等により空隙率を低減した固化体[11]、②アルミナ混合固化体:アルミナ試薬を混合して従来 よりも AgI 含有率が小さく Al₂O₃の結晶性が高いアルミナ固化体[8][10]、③99.8%アルミナ混合 固化体:アルミナ試薬混合割合を増やして AgI 含有率をさらに小さくしたアルミナ固化体[9]につ いて、HS⁻(硫化水素)還元環境における溶解試験を行っている。その結果、いずれの固化体で もI(ヨウ素)の規格化溶解速度はマトリクスである Alに比較して 2~3 桁速く、I が選択的に溶 解するが、②アルミナ混合固化体および③99.8%アルミナ混合固化体では①低空隙率固化体より も I の溶解速度が遅く、また I の溶解速度が時間とともに減少する傾向が見られた。これらの結 果より、②アルミナ混合固化体および③99.8%アルミナ混合固化体では固化体表面近傍(深さ数 +~百 μ m 程度)に存在する AgI は AgI 溶解/Ag₂S 析出反応(2AgI + HS⁻ = Ag₂S + 2I⁻ + H⁺) によって速やかに溶解するものの、固化体内部に存在する AgI の溶解は反応物(I または S、ま たは H₂O)の拡散移行過程または移行経路(Al₂O₃の結晶粒界に沿って連結した空隙等)の形成 過程に支配されてゆっくりと進行することが確認された。これは、アルミナの添加により AgI 溶 解に関わる反応物の移行速度または移行経路の形成速度が低下する効果が推測された。

そこで、②アルミナ混合固化体(AgI: 1.8 wt%, Al₂O₃: 98.2 wt%) [8][10]についてより長期 (~100 日程度)の溶解試験を実施し、固化体からのヨウ素溶解の反応メカニズムの評価および 速度論的評価を行う。

2.4.2 実験方法

(1) アルミナ固化体試料

アルミナ試薬を混合して作製したアルミナ混合固化体[10]を試料とした。混合するアルミナ は粉末状アルミナ試薬(大明化学製 TM-DAR)を用い、混合率を 90%(廃銀吸着材 10%)、 HIP 条件を 1325℃、175MPa、3h とした。この固化体の組成は AgI: 2.1 wt%, Al₂O₃: 97.9 wt%、空隙率は 2.8 %である。この固化体をダイヤモンド低速カッターで約 11×9×3mm³の サイズに切り出し、SiC 研磨紙#1000、#1500、#2000、1 μ m ダイヤモンドペーストの順に研 磨して最終的に 10×10×2.0mm³程度のサイズとした。今回のアルミナ混合固化体試料の組成 等を昨年度までの試験で用いた固化体試料(①低空隙率固化体、②アルミナ混合固化体、③ 99.8%アルミナ混合固化体)とともに表 2.4.2-1 に示す。

固化体試料	組成、空隙率
アルミナ混合固化体 (今年度)	AgI: 2.1 wt%, Al ₂ O ₃ : 97.9 wt% 空隙率: 2.8 %
アルミナ混合固化体[10]	AgI: 1.8 wt%, Al ₂ O ₃ : 98.2 wt% 空隙率: 2.7 %
99.8%アルミナ混合固化体[9]	AgI: 0.2 wt%, Al ₂ O ₃ : 99.8 wt% 空隙率: 4.1 %
アルミナ混合固化体[8]	AgI: 1.8 wt%, Al ₂ O ₃ : 98.2 wt% 空隙率: 3.8 %
低空隙率固化体[11]	AgI: 21 wt%、Al ₂ O ₃ : 79 wt% 空隙率: 4.4 %

表 2.4.2-1 アルミナ固化体試料の組成

(2) 溶解試験

作製したアルミナ混合固化体試料について、昨年度までと同様の条件で溶解試験を行った。 実験のフローチャートを図 2.4.2-1 に示す。(Ar+5%H₂)混合ガスで置換した還元雰囲気のグ ローブボックス (GB) 中で 10⁻³M Na₂S 水溶液を作製し、NaOH 溶液を用いて pH を 11 に調 整した。ここで、溶液 pH は温度によって変化するため、所定の温度(60°) で pH11 となる ように熱力学平衡計算コード PHREEQE-C による計算を基にあらかじめ pH 調整を行った。

この溶液中のS(硫黄)の化学形は熱力学平衡計算からHS・と判断される。この溶液250cm³ を密封式 PP(ポリプロピレン)容器に分取し、図2.4.2・2に示すテフロン製ジグに固定した固 化体試料(1個)を浸漬して溶解試験を行った。試験温度は60℃とし、固化体試料を密封した PP 容器を GB 内に設置した恒温槽中に保持して試験を行った。また、試験期間は最大100日 程度としたが、固化体試料の表面状態の時間変化を確認するため、試験期間の異なる3つの溶 解試験を実施し(試験1:最大20日程度、試験2:最大50日程度、試験3:最大100日程度)、 それぞれの試験後の試料について表面分析を行った。なお、溶解反応の精密な速度論的評価を 行うには試験期間中の溶液液性(HS-濃度、pH/Eh等)を一定に保つ必要があるため、3日か ら20日程度毎に浸漬溶液を新しいものと交換して試験を実施した。

試験期間中、溶液の pH/Eh を適宜測定するとともに溶液のサンプリングを行い、ろ過(孔径0.45µm)の後、0.1M HNO3または0.1%TMAH (Tetra-methyl-ammoniumu Hydroxide) 水溶液で希釈して GB から搬出し、I, Al, Ag, S 濃度を ICP-MS (Agilent 製 7700X)を用いて 測定した。また、溶解試験修了後、固化体試料を GB 内で乾燥(室温)させた後 GB から搬出 し、試料表面の XRD 分析 (リガク製 SmartLab) および SEM/EDX 分析 (日本電子製 JSM-7001F/JED-2300F)を行った。試験条件をまとめて表 2.4.2-2 に示す。

図 2.4.2-1 AgI 溶解試験のフローチャート

図 2.4.2-2 テフロン製試料固定治具に固定された固化体試料

試験方法	静的溶解試験			
固化体試料	アルミナ混合固化体 AgI: 2.1 wt%, Al ₂ O ₃ : 97.9 wt% 空隙率: 2.8 % サイズ : 試料① 10.1×9.5×2.1mm ³ 試料② 10.0×9.7×2.0mm ³ 試料③ 10.1×9.5×2.1mm ³			
反応溶液	10 ⁻³ M Na ₂ S 水溶液([HS-]=10 ⁻³ M), pH11 3~21 日毎に浸漬溶液交換			
S/V (固化体表面積/溶液体積)	約 $230 \mathrm{mm^2}$ / $250 \mathrm{cm^3}$			
温度	$60^{\circ}\mathrm{C}$			
雰囲気	Ar+5%H2 gas 還元雰囲気			
溶液交換	3~21日毎(計6回)			
試験期間	試験 1 : ~20 日(試料①) 試験 2 : ~50 日(試料②) 試験 3 : ~100 日(試料③)			
分析	液相:pH/Eh, I, Ag, Al, S 濃度(ICP-MS) 固相:表面および断面分析(XRD, SEM/EDX)			

表 2.4.2-2 試験条件

2.4.3 実験結果

(1) 溶液の pH/Eh の経時変化

溶解試験期間における溶液 pH/Eh の経時変化について、試験 1、試験 2、試験 3 の結果を合わせて図 2.4.3-1 に示す。いずれの試験においても pH=11、Eh=-650mV vs SHE 程度で実験 期間中ほぼ一定の値に維持されていることが分かる。

図 2.4.3-1 溶液 pH/Eh の経時変化(試験 3 (~100 日))

(2) 溶解元素量の経時変化

試験1における溶液中の各元素濃度の経時変化を図2.4.3・2に示す。図2.4.3・2上段に示すS (硫黄)濃度の結果から、溶解試験期間中のS濃度は0.8~1.0×10⁻³ mol・dm⁻³の範囲に維持 されていることが分かる。図2.4.3・2中段左に示すI(ヨウ素)濃度の経時変化から、I濃度の 増加量は溶液交換毎に小さくなり、また、中段右に示す固化体からのI溶解量(溶液交換毎の 濃度の積算値)の増加も時間と共に緩やかになることが分かる。図2.4.3・2下段右に示す固化 体からのAl溶解量(溶液交換毎の濃度積算量)は、試験初期(~5日程度)には多少のばらつ きがあるが、その後はほぼ直線的に増加することが分かる。なお、Ag(銀)濃度については、 いずれの実験期間においても測定下限付近(10⁻¹⁰~10⁻⁹ mol・dm⁻³)またはそれ以下の極めて 低い濃度であり、充分な定量性は得られなかった。

試験2における溶液中の各元素濃度の経時変化を図2.4.3・3に示す。図2.4.3・3上段に示すS (硫黄)濃度の結果から、溶解試験期間中のS濃度は0.8~1.0×10⁻³ mol・dm⁻³の範囲に維持 されていることが分かる。図2.4.3・3 中段左に示すI(ヨウ素)濃度の経時変化から、I濃度の 増加量は溶液交換毎に小さくなり、また、中段右に示す固化体からのI溶解量(溶液交換毎の 濃度の積算値)の増加も時間と共に緩やかになることが分かる。図2.4.3・3 下段右に示す固化 体からのAl溶解量(溶液交換毎の濃度積算量)は、試験初期(~5日程度)には比較的急激に 増加するが、その後、溶解速度は時間と共に緩やかになり、試験期間20日程度以降はほぼ直 線的(溶解速度一定)に増加することが分かる。なお、Ag(銀)濃度については、試験1と同 様に充分な定量性は得られなかった。

試験3における溶液中の各元素濃度の経時変化を図2.4.3-4に示す。図2.4.3-4上段に示すS (硫黄)濃度の結果から、溶解試験期間中のS濃度は0.8~1.0×10⁻³ mol・dm⁻³の範囲に維持 されていることが分かる。図2.4.3-4中段左に示すI(ヨウ素)濃度の経時変化から、I濃度の 増加量は溶液交換毎に小さくなり、また、中段右に示す固化体からのI溶解量(溶液交換毎の 濃度の積算値)の増加も時間と共に緩やかになることが分かる。図2.4.3-4下段右に示す固化 体からのAI溶解量(溶液交換毎の濃度積算量)は、試験初期(~5日程度)には比較的急激に 増加するが、その後、溶解速度は時間と共に緩やかになり、試験期間20日程度以降はほぼ直 線的(溶解速度一定)に増加することが分かる。なお、Ag(銀)濃度については、試験1と同 様に充分な定量性は得られなかった。

2 - 51

図 2.4.3-2 溶液中の各元素濃度の経時変化と溶解量(溶液交換毎の濃度の積算値)(試験 1)

図 2.4.3-3 溶液中の各元素濃度の経時変化と溶解量(溶液交換毎の濃度の積算値)(試験 2)

図 2.4.3-4 溶液中の各元素濃度の経時変化と溶解量(溶液交換毎の濃度の積算値)(試験 3)

次に、試験 3 について各元素の溶解量の経時変化を規格化溶解量 NLi で整理した結果を図 2.4.3-5 に示す。ここで規格化溶解量 NLi[g・m-2]は以下に定義される量であり、各元素が固化 体からその組成比に従って調和的に溶解した場合に各元素の規格化溶解量は同じ値となる。

$$NL_i [g/m^2] = \frac{v c_i}{s f_i}$$
 (2.4-1)

 $V: 溶液体積[m^3]$
 $C_i: 溶液中 i 元素濃度 (積算値) [g \cdot m^{\cdot 3}]$
 $S: 接触表面積[m^2]$
 $f_i: 固化体中 i 元素重量分率[-]$

図 2.4.3-5 下段に示す I と Al の対数プロットより、I の *NLi* は Al に比べて 3~4 桁高く、I が固化体から選択的に溶解していることが分かる。また、I の *NLi* の増加(溶解速度)は時間 と共に緩やかになることが分かる。

図 2.4.3-5 I および Al の規格化溶解量 NLiの経時変化(試験 3)(リニア及び対数プロット)

(3) 反応後固化体試料の分析

試験後(試験1(20日)、2(50日)、3(100日))の固化体試料の外観を図2.4.3-6に示す。 図 2.4.2-2 に示す試験前の固化体表面は黄色であり固化体表面に AgI が存在することが分かる が、試験後の固化体表面はいずれの試験においても黒く変色しており、表面近傍の AgI の多く が溶解し Ag₂S として析出していることが推測される。試験 2(試験期間 50 日)の試験後固化 体試料表面の XRD 分析結果を図 2.4.3-7 に示す。AgI のピークに加え Ag₂S のピークが見られ Ag₂S の析出が確認された。以上より固化体からの I の溶解は以下の AgI 溶解/Ag₂S 析出反応 により進行することが分かる。

$2AgI + HS = Ag_2S + 2I + H^+$ (2.4-2)

次に、試験後固化体試料の断面について SEM 観察を行った。一例として、試験 2(試験期 間 50 日)の試験後固化体試料の断面 SEM 観察結果を図 2.4.3・8 に示す。図 2.4.3・8 左に示す 反射電子像中の白い析出粒子が AgI または Ag₂S と判断される。次に、図 2.4.3・8 右に示す断 面拡大図の番号を付けた析出粒子領域(No.9~19)について EDX による元素分析を行った。 元素分析結果の一例を図 2.4.3・9 に示す。試料表面に近い領域(No.9, 12)ではヨウ素(I)は 確認されず硫黄(S)と Ag が確認されることから、AgI が溶解し Ag₂S が析出していることが 分かる。一方、表面から深い領域(No.16, 19)では S は確認されず I と Ag が確認されること から、AgI の溶解は起きていないことが分かる。

図 2.4.3-6 試験後固化体試料の外観: (a)試験1(20日)、(b)試験2(50日)、(c)試験3(100日)

図 2.4.3-7 試験後固化体試料表面の XRD 分析結果(試験 2(50 日))

図 2.4.3-8 試験後固化体試料断面の SEM 観察結果(試験 2(50日))

図 2.4.3-9 試験後固化体試料断面の EDX 分析結果の一例(試験 2(50日))

2.4.4 考察

(1) これまでの試験結果との比較

ここでは、今年度の溶解試験(試験1、試験2、試験3)で得られた試験結果を平成28年度

[10]に同様の条件で実施した試験の結果と比較した。今年度と平成28年度のいずれの試験にお いても固化体試料はアルミナ混合固化体(AgI: 2.1 wt%、Al₂O₃: 97.9 wt%、空隙率: 2.8 %) であり、空隙率は多少異なるが、試験温度、反応溶液組成、pH の条件は同一、S/V(固化体 表面積/溶液体積)もほぼ同じである。なお、試験期間は平成28年度が最長50日であるのに 対し今年度は最長100日である。図2.4.4-1にIおよびAlの規格化溶解量NLiの経時変化の比 較を示す。図より、Iの NLi はいずれの試験においてもほぼ同様の経時変化を示し、溶解速度 (NLiの時間変化: 傾き)は時間と共に緩やかになることが分かる。一方、AlのNLiはいずれ の試験においても試験期間 20 日以降ほぼ直線的に増加し同様の経時変化の傾向を示したが、 今年度試験で得られた NLi は平成 28 年度試験に比較してわずかに低い値となった。ここで、 今年度試験における溶液中の溶存 Al 濃度は平成 28 年度試験の場合と同様にアルミナ (α-Al₂O₃) およびギブサイト(Al(OH)₃)の溶解平衡濃度に比べて充分に低く(表 2.4.4-1)、溶液 中の Al 濃度の変化が溶解速度減少の理由とは考えられない。一方、固化体マトリクスである アルミナは結晶性の高い結晶粒と結晶性の低い結晶粒界からなり、その溶解は結晶性の低い結 晶粒界から選択的に進行すると考えられる。従って、今年度の試験結果と平成28年度の試験 結果に差異が見られた理由として、両者の固化体試料間で結晶粒界の状態に差異があったこと が推測される。

表 2.4.4-1 アルミナ (α-Al₂O₃) およびギブサイト (Al(OH)₃) の溶解平衡濃度 (PHREEQE-C による平衡計算。主要な溶存種は全ての場合で Al(OH)₄・となる。)

pH 温度 α -Al ₂ O ₃ 溶解 Al(OH) ₃ 溶解 [°C] 平衡濃度[M] 平衡濃度[M]	溶液中 Al 濃度 [M]平成 (平成 28 年度)	溶液中 Al 濃度 [M](今年度)
--	----------------------------------	-----------------------

11	60	$1.6 \mathrm{x} 10^{-2}$	$9.4 \mathrm{x} 10^{-2}$	$< 2.4 \mathrm{x} 10^{-6}$	$< 1.6 \times 10^{-6}$
			0		

(2) 各元素の溶解速度の経時変化

次に、I および Al の溶解速度を以下に示す規格化溶解速度(*NR*;) で表し、今年度の結果と 平成 28 年度の結果を比較した。試験初期の固化体溶解挙動は試料表面の状態や組成のばらつ きによって大きな影響を受けるが、規格化溶解速度を用いることでその影響を排除して溶解挙 動を評価することができる。

 $NR_{i}[g/m^{2}/d] = \frac{\Delta NLi}{\Delta t} = \frac{\Delta C_{i} V}{\Delta t s} \frac{1}{f_{i}}$ (2.4-3)

 ΔNL_i :規格化溶解量の時間変化 $[\mathbf{g} \cdot \mathbf{m}^2]$ ΔC_i :溶液中 i元素濃度変化 $[\mathbf{g} \cdot \mathbf{m}^3]$ Δt :溶液サンプリング間隔 $[\mathbf{d}]$

Iおよび Al の規格化溶解速度 NRi の経時変化について今年度と平成 28 年度の試験結果を合わせて図 2.4.4・2 に示す。図より、I の NRi は時間とともに継続的に減少することが分かる。 また、今年度の結果と平成 28 年度の結果は試験初期(~10日)を除いてほぼ同じ NRi を示す ことが分かる。I の溶解速度が時間とともに継続的に減少する今回の結果は、I の溶解が何らか の物質移行過程に律速されて進行する事を示唆するものである。一方、Al の NRi も試験初期

(~20 日)には時間とともに減少するが、それ以降はほぼ一定値となることが観察される。 固化体マトリクスであるアルミナは結晶性の高い結晶粒と結晶性の低い結晶粒界からなり、そ の溶解は結晶性の低い結晶粒界から選択的に進行すると考えられる。従って、まず初めに固化 体表面付近の結晶性の低い結晶粒界が比較的速い速度で選択的に溶解し、その後、結晶性の高 い結晶粒がゆっくりと一定速度で溶解することが推測される。

(3) 液性分析結果と固相分析結果の整合性

図2.4.3-8、図2.4.3-9に示した試験後固化体試料(試験2(試験期間50日))の断面SEM/ EDX分析結果より、I、S、Agについて試料表面からの深さ方向の濃度分布を評価した。試験 2の試験後試料に加え、試験1(試験期間20日)及び試験3(試験期間100日)の試験後試料 についても同様に各元素の深さ方向の濃度分布を評価した。その結果をI/Ag及びS/Agの原子 比の分布として図2.4.4-3に示す。いずれの試験においてもI/Agは表面からある深さまでほぼ ゼロであり、その深さを超えると急激にまたはステップ状に増加しそれ以降はほぼ一定となる ことが分かる。一方、S/Agは表面からある深さまでほぼ一定であり、その深さを超えると急 激にまたはステップ状に減少しほぼゼロとなることが分かる。I/Agが増加する深さとS/Agが 減少する深さはいずれの試験においても良く対応しており、また、Sが存在する領域でのS/Ag の値が0.5程度となることから、AgI溶解/Ag2S析出反応(2AgI+HS=Ag2S+2I+H+)が この深さまで一様に進行していることが分かる。

図 2.4.4-3 試験後固化体試料中の I,S,Ag 濃度の表面からの深さ方向の濃度分布 (試験 1、2、3)

次に、図 2.4.4・3 から評価される I の溶解深さ(または S の進入深さ)を X [µm]として試験 期間に対してプロットした結果を図 2.4.4・4 に示す。時間とともに溶解深さは増加するが、そ の増加は直線的ではなく時間とともに緩やかになることが分かる。I の溶解深さ X は図 2.4.4・1 に示した液相分析による規格化溶解量 NL_i の結果からも以下の換算式を用いて評価できる。固 化体試料密度を ρ =3.92x10⁶[g/m³](実測値)として評価した I の溶解深さ X を液相分析結果と して図 2.4.4・4 に示す。

$$X[\mathbf{m}] = \frac{NL_i \left[\frac{g}{\mathbf{m}^2}\right]}{\rho \left[\frac{g}{\mathbf{m}^3}\right]} \qquad (2.4-4)$$

規格化溶解量 NLiから換算した I の溶解深さは固相分析による溶解深さに比べて最大 50%程度大きな値となるが、時間とともに緩やかになる傾向は整合する。両者の溶解深さに違いが生じた最大の要因は固相分析のサンプル数が少ないことと考えられ、サンプル数の増加によりその差は小さくなると考えられるが、今回の少ないサンプル数においても最大 50%程度の違いに収まることは両者の整合性を示す結果と判断される。

図 2.4.4-4 固化体試料からの I 溶解深さ(S進入深さ)の経時変化 (固相分析(EDX)結果と液相分析結果(*NL*iから換算))

(4) アルミナ固化体からの AgI の溶解機構

試験3(試験期間100日)におけるIの規格化溶解量を時間の平方根(SQRT of Time)に対 してプロットした結果を図2.4.4-5に示す。図には平成28年度試験の結果(試験温度:60℃) も合わせて示す。平成28年度試験ではIの規格化溶解量は試験期間50日まで時間の平方根に 対して良い直線性を示したが、試験3では試験期間50日以降も良い直線性を示すことが分か る。これは固化体からのIの溶解が何らかの物質移行過程(拡散過程等)に支配されて進行す ることを示唆するものである。

以上の結果から、I の規格化溶解量の経時変化を以下の時間の平方根則に基づく速度式を用

いてフィッティングし、反応速度定数 k を求めた。また、フィッティングにあたっては、ばら つきが大きい試験初期のデータを除き、試験 5 日目以降のデータを用いた。

> $NL_i(I) = \sqrt{k t} + b$ (2.4-4) $NL_i(I) : I の規格化溶解量[g/m²] k: 反応速度定数[(g/m²)²/d]$ t:反応時間[d] b: 切片[g/m²]

フィッティングの結果を図 2.4.4-5 に直線で示し、得られた反応速度定数 kの値表 2.4.4-2 に まとめた。試験 3 で得られたkの値は平成 28 年度試験で得られた値とほぼ一致し、 $k=1-2x10^{3}[(g \cdot m^{-2})^{2} \cdot d]$ となることが分かる。ここで、平成 28 年度試験においては反応速度定数 kの温 度依存性から活性化エネルギーの値 54(±4) [kJ・mol⁻¹]を評価し、これまでの試験で求めた HS⁻ 還元環境での AgI 単体の溶解の活性化エネルギー (38(±3) [kJ・mol⁻¹]) に比べて明らかに大 きな値であることを確認している。これらのことから固化体からのヨウ素溶解の律速過程を考 察すると、反応初期では固化体表面近傍に存在する AgI の HS⁻との反応 (2AgI + HS⁻= Ag₂S + 2I + H⁺) による速い溶解が支配的であるが、その後はアルミナ結晶粒界中の反応物 (Γ , HS⁻ま たは H₂O) の移行過程に律速されてゆっくりと進行すると判断される。AgI 自身の溶解は HS⁻ 濃度に比例して速やかに進行すること、HS⁻のアルミナ結晶粒界中の移行は結晶粒界が溶解し て初めて可能になること等を考えると、アルミナ結晶粒界の溶解による移行経路の進展速度が 1溶解の律速過程となる可能性も推論される。

以上の検討より、固化体からのIの溶解機構のさらなる理解には、I溶解速度の溶液中HS-濃 度依存性、溶液中 Al 濃度依存性、pH 依存性等の評価が有効であると考えられる。また、溶解 機構の理解を深めることで、物質移行過程律速による時間の平方根則に基づく速度式をより長 期間の挙動評価へ外挿できる可能性も示唆される。

図 2.4.4-5 Iの規格化溶解量 NLiの時間の平方根依存性(試験 3、平成 28 年度試験)

表 2.4.4-2 時間の平方根則に基づく速度式における反応速度定数 kの値(60℃)

	試験3(60℃,100日)	平成 28 年度試験
		(60°C, 100 日)
$k [(g/m^2)^2/d]$	$1.71 x 10^3$	$1.36 \mathrm{x} 10^4$

2.4.5 まとめと今後の課題

アルミナ混合固化体 (AgI: 2.1 wt%, Al₂Os: 97.9 wt%) について HS⁻還元環境における溶解試 験を最長 100 日まで実施し、ヨウ素溶解の反応メカニズムの検討および速度論的評価を行った。 試験結果より、ヨウ素の規格化溶解量 *NLi* はアルミニウムに比較して 3~4 桁高く、ヨウ素が固 化体から選択的に溶解することが分かった。また、アルミニウムの溶解速度は試験初期を除き時 間によらずほぼ一定であるのに対し、ヨウ素の溶解速度は時間とともに減少し、その溶解量は時 間の平方根則に従うことが分かった。時間の平方根則に基づく速度式から反応速度定数 k の値を 求めた結果、平成 28 年度の試験結果 (試験期間最長 50 日) とよく整合し、 $k=1-2x10^{-3}[(g \cdot m^2)^2 \cdot d]$ となった。また、平成 28 年度試験において反応速度定数 k の温度依存性から求めた活性 化エネルギーの値は 54(±4) [kJ · mol]であり、これまでの試験で求めた HS⁻還元環境での AgI 溶 解の活性化エネルギー (38(±3) [kJ · mol]) に比べて明らかに大きな値であることから、反応初 期の固化体表面近傍の AgI の速い溶解の後、ヨウ素溶解の律速過程はアルミナ結晶粒界中の反応 物 (Γ , HS⁻,または H₂O) の移行過程 (拡散等) または移行経路 (結晶粒界に沿って連結した空隙 等) の形成過程であると判断された。これらのことより、物質移行過程律速による時間の平方根 則に基づく速度式をより長期間の挙動評価へ外挿できる可能性が示唆された。

今回の溶解試験では、HS⁻還元環境として[HS-]=10⁻³M 溶液を用いたが、固化体からのヨウ素 の溶解機構のさらなる理解のため、また、今後の課題として実際の処分環境を考慮して、溶液中 の HS⁻濃度、Al 濃度や溶液 pH がヨウ素の溶解挙動に及ぼす影響を定量的、速度論的に測定評価 することが必要と考えられる。 2.5 長期ヨウ素放出挙動モデルの検証

2.5.1 目的

これまでに得られてきた各種浸漬試験の結果を整理した結果から、ヨウ素の放出挙動は \sqrt{t} 則 で整理できると考えられた。また、理論的な考察から、反応を伴う拡散現象としてヨウ素放出挙動を解釈することが可能で、その結果、ヨウ素放出挙動は \sqrt{t} 則に従うことも妥当性と考えられた。

一方、拡散過程を含む現象であることを間接的には推察できたが、直接的な証拠となるデータの取得を行い、モデルの信頼性を高めることが必要と考えられる。そのため、ここでは拡散経路の特定し、拡散係数の把握を行う。

2.5.2 検討内容

(1) 長期挙動モデルの高度化と検証

1) 概要

平成 28 年度に検討した Higuchi の式や一次元拡散計算によって求めたヨウ素の規格化浸 出量の時間変化係数(規格化浸出量を NL(I)=k・t^{1/2}の関数で表したときの係数 k)と実験結 果との比較を、空隙率の異なる固化体、アルミナ混合率の異なる固化体、pH 条件の異なる 浸漬試験等、広範囲に適用し、その適用性の妥当性を確認する。また、必要に応じてフィッ ティングパラメータを導入し、その妥当性を考察する。

また、セルオートマトン法による粒界腐食モデルを拡張した計算モデルを作成し、粒界に おける物質移動、アルミナ溶解に伴う粒界の拡大、AgI 溶解による空隙の拡大等をモデル化 したシミュレーションモデルを作成する。ここでは簡単な計算を行い、シミュレーションモ デルの動作の確実性を確認する。

2) 理論計算と実験値の比較検証

a. 検討条件

表 2.5.2-1 に示すようなケースに分けて、パラメータ影響を Higuchi の式による理論計 算により導き、実験結果の傾向との一致・不一致を整理する。判断には、妥当なフィッテ ィングパラメータ(一定のオフセットで乖離している場合など)で一致させられるかなど も含めて検討する。結果を考察して、モデルの高度化を行う。

ケース	パラメータ	実験事実	状況
ケース1	HS-濃度	HS-濃度によりヨウ素放出量が異な	理論計算と傾向が一致[14]
		る	ただし、HS-濃度の範囲を実験で補充
ケース2	pH	同HS-濃度でもpHが低いとヨウ素放	未検討
		出率が低下	
ケース3	空隙率	空隙率の異なる固化体でのヨウ素放	未検討
		出率は大きくは変化しない	
ケース4	アルミナ混合率	アルミナ混合率が高い固化体でヨウ	未検討
		素放出率が低下	
ケース5	Ca 共存効果	高 HS-濃度下で飽和 Ca(OH)₂ でヨウ	メカニズムが不明なためモデルに反映
		素放出率低下	できない

表 2.5.2-1 検討するパラメータ影響

b. 検討方法

Higuchi の式を以下に示す(時間 t を分離して表記した)。

$$\frac{Mt}{A} = \sqrt{\left(2c_{ini} - c_s\right) \cdot D \cdot t \cdot c_s} = \left(\sqrt{\left(2c_{ini} - c_s\right) \cdot D \cdot c_s}\right) \cdot \sqrt{t}$$
(2.5-1)

なお、以下の議論では、時間の平方根にかかる係数を \mathbf{k} とおき、さらに、実験結果の整理に合わせて規格化浸出量にするため、固化体中のヨウ素濃度 \mathbf{fi} で除した上で単位を $\mathbf{g} \cdot \mathbf{m}^{-2} \cdot \mathbf{d}^{-1}$ に合わせたものを \mathbf{k} とする。

$$k = \sqrt{\left(2c_{ini} - c_s\right) \cdot D \cdot c_s}$$

$$k' = \left(\frac{k}{f_i}\right) \times 1000$$
(2.5-2)
(2.5-3)

式 2.5-1 の Mt/A は積算放出量を表面積で除した値である。右辺に含まれるパラメータ は、Cini:溶出挙動を考える対象物の初期濃度、Cs:対象物の溶液飽和濃度、D:拡散係数 である。平成 28 年度の検討[10]により、アルミナ固化体に適用するにあたっては、Cini は AgI としての I 濃度に対応し、固化体の組成等の性状から次のように求められることを 示した。

$$C_{ini} = \frac{W_s \cdot f_i}{V_s \cdot \varepsilon} = \frac{W_s \cdot X_I \cdot (1 - y_{al})}{V_s \cdot \varepsilon}$$
(2.5-4)

ここで、

W_s:固化体の重量、fi:固化体中のヨウ素濃度、X_I:固化体中のヨウ素含有率、y_{al}:固 化体へのアルミナ添加率、V_s:固化体の体積、ε:固化体の空隙率

上記の関係式を基本として、アルミナ固化体からのヨウ素放出挙動に対する各種パラメ ータの影響を、Higuchiの式に基づいて考察する。検討対象とするパラメータは、表 2.5.2-1 に示した HS・濃度、pH、空隙率、アルミナ混合率および Ca 添加効果とする。 c. 検討結果

(a) HS⁻濃度

平成28年度の検討[10]において、ここではCsは溶液中の飽和ヨウ素濃度に対応し、HS ⁻共存環境下では、AgIとHS⁻の反応が速いとの仮定をもとに、Csは[HS-]とAgIの反応 式の化学量論関係から、以下のように表されると考えた。

 $C_{s} = [HS] \times 2 \times 127$

(2.5-5)

これに、拡散試験から見積もられた拡散係数 D として 10^{-14} m²・s⁻¹を適用して硫黄濃 度とヨウ素放出速度の関係を式 2.5-2 と式 2.5-3 および式 2.5-5 を用いて Higuchi の式を使 って試算した。その結果を図 2.5.2-1 に示す。[HS-]の濃度とともに k'が低下し、その延長 線上に純水系のデータが存在していることがわかる。確認のため、ここで計算した [HS-]=3×10⁻³ mol・dm⁻³の条件と[HS-]=0 の条件での k'から、式 2.5-1~式 2.5-4 を用 いて、浸漬試験曲線の計算を行った。その他の設定条件としては、アルミナ混合率 90% および 50%、拡散係数は、 10^{-14} m²・s⁻¹とした。試験結果として対応する条件である試験 No.9-1 (pH12.5、90%アルミナ混合固化体)、 10-1 (純水系、50%アルミナ混合固化体)、 12-1 (純水系、90%アルミナ混合固化体)を比較に用いた。結果を、図 2.5.2-2 に示す。 純水系において挙動が若干ずれているが、高濃度硫黄条件と純水条件の違いが単純な式に よってよく再現できていると考えられる。

図 2.5.2-1 Higuchi 式よる浸出率係数 k'の推算と実測値の関係

図 2.5.2-2 Higuchi 式によるヨウ素放出量の計算値と実験値(浸漬試験結果)との比較

次に、 $[HS^-]=3 \times 10^{-4} \text{ mol} \cdot dm^{-3} を使って k'を計算すると約 32 となる。この結果と実$ $験結果(図 2.3.3・6)と比較したものを図 2.5.2・3 に示す。実験結果は、<math>[HS^-]=3 \times 10^{-4}$ $^4\text{mol} \cdot dm^{-3}$ に下げた条件でも 100 日程度まで $3 \times 10^{-3}\text{mol} \cdot dm^{-3}$ と比べてヨウ素放出量 があまり変わっていないが、徐々に両者は離れる傾向が見られている。そこで、図中には、 $[HS^-]=3 \times 10^{-4}$ のときのヨウ素の規格化浸出量の時間変化を k'=32 として、NL(I)=k't^{1/2}で 計算した。その際に、時間 0 から計算したものを推算①、および浸漬時間 113 日を通るよ うに、計算値にオフセットを加えた推算②をプロットした。初期の影響が除かれた推算② に従って推移すると推測される。より長期の試験によってよりその傾向を確認できるもの と考えられる。

([HS-]= 3×10^{-3} および 3×10^{-4} mol · dm⁻³)

(b) pH

浸漬試験の実験結果から、高濃度の HS⁻濃度である 3×10⁻³ mol・dm⁻³の条件におい ても低 pH ではヨウ素の放出量が減少することが確認されている。pH は、マトリクスの アルミナの溶解に影響し、溶液の浸入経路形成に関連していると考えられるが、Higuchi 式においては、マトリクスの溶解が無視できることが前提とされているため、そのような 現象は対象外である。また、固化体組成に関連する溶出挙動を考える対象物の初期濃度 (Cini)、対象物の飽和濃度(Cs) はヨウ素に関するものであるため、pH と関連づけてい くことは困難である。したがって、Higuchi 式によって pH 影響を考察することはできな い。pH の影響については、後述するセルオートマトン法によって検討する。

(c) 空隙率

高温・高真空で事前処理をして HIP 固化をすることにより空隙率を 5%以下とするアル ミナ固化体が作製可能である。それは、アルミナを混合しない 100%廃銀吸着材固化体で も可能である。平成 28 年度迄に、そのような低空隙率のアルミナ固化体(アルミナ未混 合)とそれ以前の高空隙率(空隙率:約 15%)のアルミナ固化体(アルミナ未混合)の 浸漬試験の比較を行ってきた。その結果、両者において、ヨウ素の放出挙動の違いはわず かであった(図 2.5.2·4)。以下、これが Higuchi 式の解析で説明できるかを検討した。

図 2.5.2-4 空隙率の異なる固化体の浸漬試験結果の比較

空隙率は、式 2.5-2 にあるように、Higuchi 式の Cini に影響する。式中の ϵ (固化体の 空隙率)だけでなく、固化体の重量 Ws も空隙率が増えるとともに減少する。また、空隙 は溶液が満たされて物質移動の場となるため、空隙率は拡散係数に影響すると考えられる。 いわゆる実効拡散係数の考え方では、実効拡散係数と空隙率の関係として、次のようなも のが示されている。

$$D_e = D_v G_f \varepsilon^{\varphi} \quad \cdot \quad \cdot \quad (2.5-6)$$

ここで、De:実効拡散係数、Dv:水中における拡散係数、Gf:形状因子、 ϵ :空隙率で、 ϕ は係数である。

以上のように、式2.5-4と式2.5-5を用いて Ciniと Cs を計算し、拡散係数については、 式2.5-6に基づき空隙率のべき乗に比例するとして推算を行った。その結果を表2.5.2-2に 示す。

規格化浸出量の時間変化と同じ単位に換算した k'の値(表の最終行の数値)は、空隙率 によって大きな変化を見せなかった。空隙が増えることによって拡散係数が大きくなるが、 一方で、固化体内の AgI の量はほぼ一定で空隙(溶液に変化する)が増加した分、単位溶 液当たりの AgI 量、すなわち Cini が低下することから、Higuchi 式の中でお互いの影響 が打ち消し、空隙率の変化に伴うヨウ素放出速度への影響が少なくなったものと解釈する ことができ、実験結果と同様の傾向が得られた。

	記号	単位	空隙率			
	3	-	0.05	0.1	0.15	0.2
固化体重量	Ws	kg	4.18E-03	3.96E-03	3.74E-03	3.52E-03
廃銀吸着材中のヨウ素含有率	XI	-	0.1	0.1	0.1	0.1
アルミナ添加率	Yal	-	0.9	0.9	0.9	0.9
固化体体積	Vs	m ³	1.00E-06	1.00E-06	1.00E-06	1.00E-06
[HS]		mol/L	3.00E-03	3.00E-03	3.00E-03	3.00E-03
拡散係数	D	m²/d	8.64E-10	1.98E-09	3.23E-09	4.56E-09
固化体中ヨウ素含有率	fi	_	0.01	0.01	0.01	0.01
Cini=(Ws*XI*(1-yal))/(Vs*ε)	Cini	kg/m ³	8.36E+02	3.96E+02	2.49E+02	1.76E+02
Cs=[HS]*2*127	Cs	kg/m ³	7.62E-01	7.62E-01	7.62E-01	7.62E-01
k'=sqrt((2Cini-Cs)*D*Cs)*1000/fi	k	g/m²/d^0.5	105	109	111	111

表 2.5.2-2 Higuchi 式による空隙率とヨウ素放出挙動の関係の推算

(d) アルミナ混合率

アルミナ混合率を高くすると、同体積の固化体中の廃銀吸着材の含有率が低下し、同時 に AgI の含有率が低下する。アルミナ混合率を 0.9 とすると、AgI の含有率は 1/10 にな る。Cini がおよそ 1/10 に低下する。このようにパラメータの変化を考えて Higuchi の式 により計算した結果を表 2.5.2-3 に示すとともに、図 2.5.2-5 に◆で図示した。

アルミナ混合率が増えるとヨウ素の規格化浸出量の変化が大きくなるという計算結果となった。これは、Higuchiの式(式 2.5-1)において D や Cs が変化しなければヨウ素の放出速度は Ciniの 0.5 乗に比例するためである。

実験結果は、アルミナを混合するとヨウ素の規格化浸出量の変化が小さくなるとの結果 を得ていて矛盾が生じる。これは下記のように考えられた。

固化体内部の空隙の連続性の解析や SEM 等の観察によってアルミナ混合固化体では未 混合の固化体に比べて空隙の連続性が低下していることがわかっている。それによって、 固化体内部での物質移動はアルミナ混合によって阻害される傾向にあると考えられる。そ こで、物質移動のパラメータである拡散係数がアルミナ混合率の関数で変化すると考えら れた。拡散係数に対するアルミナ混合の影響についてはデータを得ていないが、ここでは、 アルミナ混合率の 1.5 乗に比例して拡散係数が変化すると仮定して計算した。この結果を、 先ほどの結果と合わせて表 2.5.2-3 内に示し、図 2.5.2-5 中に〇で図示した。アルミナ混合 によって k'が低下し、ヨウ素の放出量が低下するという傾向が得られ、それが物質移動の 抑制によって生じる可能性が示唆された。今後、拡散係数の取得等によって検証すること が課題と考えられる。

	記号	単位	アルミナ混合率			率	
アルミナ添加率	yal	- 0		0	0.9	0.	99
固化体重量	Ws	kg	4.18	E-03	3.84E-03	3.80E-03	
廃銀吸着材中のヨウ素含有率	XI	-	0	.1	0.1	0.1	
固化体体積	Vs	m ³	1.00	E-06	1.00E-06	1.00E-06	
空隙率	8	-	0.05		0.05	0.05	
[HS]		$mol \cdot dm^{-3}$	3.00E-03		3.00E-03	3.00E-03	
拡散係数,D	D	$m^2 d^{-1}$	$8.64E-10^{*1}$	8.64E-10 ^{*1} 2.73E-8 ^{*2}		$8.64E-10^{*1}$	$2.73E \cdot 11^{*2}$
固化体中ヨウ素含有率	fi	_	0	0.1		0.001	
Cini=(Ws*XI*(1-yal))/(Vs*e)	Cini	$\mathrm{kg} \cdot \mathrm{m}^{-3}$	8.36	E+03	7.68E+02	7.61E+01	
Cs=[HS]*2*127	Cs	$kg \cdot m^{-3}$	7.62	7.62E-01		7.62E-01	
k=sqrt((2Cini-Cs)*D*Cs)	k	$\mathop{\mathrm{kg}}\nolimits \boldsymbol{\cdot} \mathop{\mathrm{m}}\limits_{0.5}^{-2} \boldsymbol{\cdot} \mathop{\mathrm{d}}\limits^{-}$	$3.32E-3^{*1}$ $1.87E-2^{*2}$		1.01E-3	3.16E-4	5.61E-5
k'=k*1000/fi	k'	$\mathbf{g} \boldsymbol{\cdot} \mathbf{m}^{-2} \boldsymbol{\cdot} \mathbf{d}^{-}_{0.5}$	33.2^{*1}	187^{*_2}	101	316^{*_1}	56.1^{*2}

表 2.5.2-3 Higuchi 式によるアルミナ混合率とヨウ素放出挙動の関係の推算

*1: 拡散係数がアルミナ混合率に関係なく一定として計算

*2: 拡散係数がアルミナ混合率の 1.5 乗に比例して変化すると仮定して計算

図 2.5.2-5 アルミナ混合率に対するヨウ素放出挙動の変化の推算

(e) Ca 共存効果

表 2.3.3-1 で整理したように、Ca 共存によってヨウ素の放出速度が低下する傾向がある と考えられた。その要因については確証が得られていないが、基礎検討によって得られた 結果から、アルカリ性のアルミ溶液に Ca が共存するとハイドロガーネット等の Ca-Al 複 合水酸化物の沈殿の可能性があり、この生成が物質移動を阻害する要因になりうると思われる。Higuchiの式での表現は、アルミナ混合率の影響検討と同様に拡散係数に代表される物質移動係数への反映になると考えられる。今後、実験データを蓄積することにより、 メカニズムの把握することが課題と考えられる。

- 3) セルオートマトン法によるシミュレーションの高度化
 - a. 検討条件

アルミナ固化体からのヨウ素放出機構において、長期浸漬後にマトリクスの多くがそのま ま残っているにも関わらず、溶液の浸漬が生じてヨウ素が放出されており、粒界を介した溶 液の浸入と元素の放出機構が関連していると考えられる。

金属の分野では粒界腐食の解析にセルオートマトンによる粒界腐食計算の事例が報告されている[16]。その原理を応用してアルミナ固化体のシミュレーションモデルを検討した。

その際に重要となるのは、アルミナ結晶粒子、AgI 粒子、空隙を 2 次元に描画したときの 形状、粒径の値およびその分布である。そこで、仮想的な固化体モデルに加え、固化体の代 表的な SEM 画像を元にその画像をトレースしたモデル化も検討する。

b. 計算方法

計算のフローは以下の通りである。

- アルミナ固化体の内部構造は、これまでの検討結果から、アルミナマトリクス、AgI 及び空隙に分けられる。さらに、ここでは、アルミナの粒界を通した物質拡散・溶液 浸入を考慮するため、アルミナ粒界を設定した。
- ② 初期構造として、2 次元の格子状に配置されたセルに、仮想的な構造や SEM 画像を もとに、これらの成分に相当する属性を割り当てる。
- ③ 溶液は初期条件では最表面のみに存在する。
- ④以下の計算を繰り返す。
- ⑤ 最表面のセルから、奥の方に向かい個々のセルの状態を調べる。
- ⑥ まず、各セルの溶液への接触状況を調べ、溶液が接したセルでは、セルの属性ごとに 与えられた溶解速度によって溶解が進む。状態を属性による溶解速度に基づき溶解し ていく。セルの属性によって溶液接触時の挙動は、これまでの素過程に関する試験や 解析の結果を基に設定した。その設定内容を表 2.5.2-4 に示す。
- ⑦ それぞれのセル中の成分がすべて溶けると、そのセルは「溶液」の属性に変化する。

計算は、⑤~⑦までを繰り返して、溶液が最深部まで到達するか、所定の繰り返し数を 終えた時点で終了とする。

なお、溶液接触条件については、五十嵐ら[16]の方法を用いて、第1近傍と第2近傍セルの考慮を行った。プログラムのコーディングは、Microsoft Visual Basic 2015を用いた。

セルの属性	周囲環境	セルの属性変化
アルミナ	溶液あり	溶液の pH に応じて溶けて、既定の溶解量を超えた時点で、「溶液」
		に変化する。
	溶液なし	変化なし
AgI	溶液あり	溶液中の HS-濃度に応じて(関数化された速度で)Ag2S に変化し、
		I-を放出。既定の溶解量を超えた時点で「溶液」に変化する。
	溶液なし	変化なし
粒界	溶液あり	溶液の pH に応じて溶けて、既定の溶解量を超えた時点で「溶液」に
		変化する。
	溶液なし	変化なし
空隙	溶液あり	溶液が満たされた空隙に変化して、「溶液」に変化する。
	溶液なし	変化なし

表 2.5.2-4 拡張セルオートマトンモデルのルール

c. パラメータ設定

アルミナと AgI の溶解速度の比は、これまで取得してきた表 2.5.2-5 に示す各素過程の溶 解速度式を基に設定した。計算は主に、高硫黄濃度([HS⁻]=3×10⁻³ mol・dm⁻³)の条件で、 pH8 および pH12.5 の条件設定として表中に示したパラメータ(AgI 溶解速度/アルミナ溶解 速度)を用いることとした。

また、粒界の溶解速度はデータが無いが、仮の数値としてマトリクスのアルミナに対して 100 倍の溶解速度を持つと設定した。

		Case 1	Case 2
対象の速度式と速度パラメータ	pH : 12.5	pH : 8	
		[HS ⁻]:3x10 ⁻³ M	[HS-]:3x10 ⁻³ M
AgI	3.0×10^{-5}	3.0×10^{-5}	
$R_{AgI}[mol \cdot cm^2 \cdot d^{-1}] = 1.02 \times 10^{-2}$	$\cdot C_{HS}$		
C _{HS} :[HS ⁻]濃度 mol・dm ⁻³			
アルミナマトリクス	1.3×10^{-8}	5.4×10^{-10}	
$\ln(k[mol \cdot cm^2 \cdot d^{-1}]) = -16.0 +$	0.710pH - 3274/T		
AgI 溶解速度/アルミナ溶解速度	モル比	23000	56000
	重量比	11000	260000
	重量比(セル基準)*1	7600	180000

表 2.5.2-5 素過程の溶解速度式

*1 本解析では、一定の大きさのセル内の挙動を調べるため、AgI/アルミナの密度比及びそこに含まれる I お よび Al の重量率を考慮した換算をした。

d. 画像データの作成

SEM 画像を用いた解析の前に、マトリクス粒界の間に AgI が存在するモデルを作成した。 作成したモデルを図 2.5.2-6 に示す。六角形で表したものが、アルミナマトリクス、マトリ クス粒子の間に薄い灰色で示したところが粒界、粒界の所々に円形で示したものが AgI、黒 く示したものが空隙となる。この図では、AgI の面積比率は約 20%および 2%のものを示し ており、それぞれ、アルミナ未混合の固化体、90%アルミナ混合体に相当する。

(b) 拡大図
 図 2.5.2-6 固化体内部単純化モデル(100x3000 セル)

次に、SEM 画像を基にデータを作成した。図 2.5.2-7 に示す。元の SEM 画像は、試験 No.9-2 の浸漬後の試料の溶液未浸入部分の観察結果を用いた。SEM 画像は、1 万倍の測定 で得られたもので、約 15μ m 四方の領域をモデル化した。SEM 画像は白黒写真の電子ファ イルとなっており、黒〜白を 256 段階に数値化したデータとなっている。画像処理により、 黒色部分を空隙、白色部分を AgI、その他をアルミナとした。さらに、画像に手書き入力で、 粒界と思われる部分を書き入れた。粒界については、一部は画像として確認できるが、画像 処理によってトレースすることは難しかったため、手書き入力で行った。また、 15μ m レベ ルのサイズの画像を用いたのは、それより低倍率の観測では、目視でも粒界の判断が難しか ったためである。

SEM 画像:試験 No.9-2 に用いた固化体(溶液未浸入部)640×480 セル 図 2.5.2-7 SEM 画像を基にしてモデル化した内部構造

e. 計算結果の実スケールへの換算

今回のセルオートマトンの計算結果について1ステップあたりの時間を次のように考えた。 (i) セルの長さ

SEM 画像を 640×480 セルに分割したことから、1 セルの長さは 19.5nm となる。

- (ii) アルミナの溶解速度(単位表面積あたりの速度)
 - 溶解速度式より、温度 25℃、pH8 のとき、
 - $k = 5.416 \times 10^{-10} \ (mol \cdot d^{-1} \cdot cm^{-2})$
- (iii) 1 セルあたりの表面積

モデルの深さをh (nm) とすると、4 面の表面積は、

セルあたりの表面積 = $h \times 19.5 \times 4 \times 10^{-14}$ (cm²)

(iv)1セルあたりのアルミ量(モル数)

アルミナの真密度を 4.0 g・cm⁻³、アルミナの式量を 102g・mol⁻¹から、

(v)1セルあたりのアルミナがすべて溶ける時間をt(d)とすると、

t=アルミ量÷(溶解速度×表面積) =
$$\frac{2.982 \times 10^{-20} \cdot h}{5.416 \times 10^{-10} \times h \times 19.5 \times 4 \times 10^{-14}}$$
 = 70,6 (d)

(vi) シミュレーション条件との比較

シミュレーション条件では、セルー個に 100 の物質量が存在し速度 0.01 で溶けるため、 一つのセルが溶けるまで 10000 ステップを要する。したがって、1 ステップあたりの時間 Δ t は、

 $\Delta t = 70.6 \div 10000 = 7.06 \times 10^{-3} (d/step)$

以上のことから、計算結果を実スケールに換算する際には、1 セルあたりの長さを 19.5nm、1 ステップあたりの時間間隔 7.06×10⁻³ d/step を用い、実験結果との比較を行った。

また、今回のシミュレーションでは、拡散過程を考慮していないので、溶液へのヨウ素の 放出量の比較は難しいことから、液の浸入距離で比較した。シミュレーションでは、各計算 ステップにおいて溶液が浸入した最も深い位置を浸入深さとし、実験値では、式(2.3-3)に示 した方法で浸入距離を求め、両者を比較した。

f. 計算結果

計算結果を、図 2.5.2-8 に、固化体内部単純化モデルによる計算結果、図 2.5.2-9 および図 2.5.2-10 に SEM 画像を基にしたモデルでの計算結果を示す。それぞれ、高 pH を想定した case1 および低 pH を想定した case2 の比較を行っている。スナップショットは計算ステップ数による液の浸入状況を示したもので、赤い部分が溶液の浸入した領域を示している。各計算ステップにおける最深の浸入深さを記録して、それを計算ステップ数に対してプロットしたものが 2 枚目の図である。単純化モデルにおいても SEM 画像を基にしたモデルでの計算結果においても、溶液の浸入速度は case1 (高 pH) において速くなった。また、浸漬後の固化体内で、溶液浸入部はマトリクスを残して粒界と AgI の位置に限定される傾向が見られている。この傾向は実験結果と一致していると考えられる。ただし、実験結果に比べて、計算結果における液の浸入速度は遅い傾向が見られた。

図 2.5.2-8 固化体内部単純化モデルによる計算結果と実験値の比較

図 2.5.2-9 SEM 画像から作成したモデルによる計算結果

図 2.5.2-10 SEM 画像から作成したモデルによる計算結果(溶液浸入深さの時間変化)

g. まとめ

マトリクスのアルミナ粒子の粒界がマトリクス粒子よりも溶解速度が大きいという仮説の もと、シミュレーションを行った。その結果、マトリクス溶解速度が速い pH12.5 を模擬し た条件では、粒界が選択的に溶けて、AgI が溶液と接し、溶液部分が固化体内部に進んで行 った。アルミナの溶解度が pH12.5→pH8 への変化に相当して約 1/25 になるとして計算した pH8 を模擬した計算では、粒界の溶解速度も同様に低下するとしたため、溶液の浸入速度は 大きく低下した。浸漬後の図を見ると、固化体の SEM 観察で見られた通り、マトリクスを 残しながら AgI の部分が液で満たされながら空隙が進展していく様子が再現された。

以上のことから、実験結果とは定性的には大きな矛盾の無いシミュレーション結果が得ら れており、粒界を介した溶液浸入とヨウ素の放出の仮説が妥当であると考えられる。ただし、 実験結果と計算結果の絶対値は異なっており、計算結果の溶液浸入速度は実験結果に比べ 10 倍あるいはそれ以上に遅い傾向が見られた。この差の要因としては、以下のようなこと が考えられる。

粒界の性状の特定

今回は結晶粒界に非晶質成分が存在していると想定したが、超微細な隙間の存在も考えら れ、また、両者の組合せのようなことも考えられる。

粒界の溶解速度データの取得

粒界の溶解速度については、マトリクスの基礎試験で得られた値の 100 倍と設定したが、 実測データが必要と考えられる。

2次元化したことによる流路の減少

2次元モデルでは、3次元的に結合した流路を考慮していないため、経路が減少している可能性がある。

④ モデルのサイズの影響

深さ方向に加え幅方向について限られた領域での計算となっていることで、③と同じよう に経路が限定されている可能性がある。

⑤ 固化体の表面近傍の性状の影響

実験結果と計算結果の差は、特に初期の差が大きく、一定時間が過ぎると相対的な差があまり変わらない状態となる。固化体の表面近傍にある初期のAgIが初期の溶出挙動に大きく影響している可能性があり、シミュレーションで再現できていない可能性がある。

これらについて、固化体観察の高度化(①)、基礎実験データの取得(②)、シミュレーション手法の高度化(③2 層モデル等の適用、④大スケールでの計算、⑤考慮する反応過程の 拡大)等のアプローチが考えられ、今後の課題である。

2.6 まとめと今後の課題整理

2.6.1 まとめ

今年度の実施内容と成果を以下にまとめる。

- アルミナ固化体の環境影響評価のうち、純水、模擬降水系地下水、ベントナイト平衡水等では、500日程度の長期の試験を行っても、規格化浸出量は10g・dm⁻²程度と十分に低い値を示し、これらの条件でのヨウ素保持性能は高いと考えられた。これらの組成の中で特にヨウ素の放出を加速するような成分は無いと考えられた。
- アルミナ固化体の環境影響評価のうち、その範囲を限定する因子は、溶液中の HS⁻濃度であるが、飽和 Ca(OH)₂ 条件でヨウ素放出が低下する傾向が見られ、Ca(OH)₂ 共存下でpH12.5、[HS⁻]=3×10⁻² mol・dm⁻³の条件でもヨウ素の規格化浸出量は、NaOH でpH12.5に調整した硫黄濃度の一桁低い[HS⁻]=3×10⁻³ mol・dm⁻³の条件と同程度に抑制されることが分かった。したがって、セメント環境下でのヨウ素放出抑制の可能性が示された。
- Ca イオンの存在は Ca(OH)₂ の飽和条件([Ca²⁺]=2×10⁻² mol・dm⁻³)だけでなく、 [Ca²⁺]=2×10⁻³ mol・dm⁻³の条件でもヨウ素放出抑制効果が見られた。Ca 存在下でのヨウ 素放出機構については、未解明であり今後の課題であるが、ハイドロガーネット等の二次固 相の生成による物質移動の阻害によるものと推測される。
- 固化体からのヨウ素放出挙動のモデルを確認するため、アルミナ混合固化体の内部構造を詳細に観察した。浸漬試験後の固化体を用い、溶液浸入部と未浸入部の比較を行った。溶液未浸入部では空隙は少なく、アルミナと AgI が密接に充填されているが、溶液浸入部ではアルミナの結晶の形を残しながら空隙が生成されている。アルミナ・アルミナの粒界あるいはアルミナ-AgI の粒界および AgI が溶けて液の浸入路が形成しているヨウ素放出挙動のモデルが妥当であると考えられた。
- マトリクスからの薬剤放出に関する理論式、および粒界腐食を考慮したセルオートマトン法によるシミュレーション解析を行い、固化体浸漬条件の各種パラメータの影響について説明性の検討を行った。その結果、HS-濃度の影響や空隙率の影響等については単純な反応・拡

散に基づく理論式で説明することができたが、pH の影響については、説明できなかった。 しかし、粒界の溶解と新たな物質移動経路の生成を考慮したセルオートマトン解析によって、 pH の影響も説明することができた。

2.6.2 今後の課題

アルミナ固化体について、製造条件の確立、固化体からのヨウ素放出挙動についての知見が得られた。今後は、固化体の製造では、実機で想定している40dm³サイズの固化体製造に向けてスケールアップ検討が必要であると考えられる。

浸漬試験については、より長期のデータ取得が求められるが、加速条件等実験方法を考慮した 実験データの採取が必要と考えられる。

ョウ素放出挙動評価モデルについては、アルミナマトリクス粒界の溶解速度データの取得や、 処分環境で想定される Ca の共存環境で期待されるヨウ素放出の抑制効果について、二次固相の 直接観察等によるメカニズムの把握、これらを踏まえたモデルの精度向上が必要であると考えら れる。
参考文献

- [1] 核燃料サイクル開発機構・電気事業連合会:「TRU」廃棄物処分技術検討書, JNC-TY1400 2005-013, FEPC TRU TR2-2005-2, 2005
- [2] (財)原子力環境整備促進・資金管理センター,「平成17年度 地層処分技術調査等 TRU 廃棄物 関連処分技術調査 ヨウ素固定化技術調査 報告書」,平成18年3月
- [3] 西村ら,特許第 3720620 号「廃棄物固化体及びその製造方法」,株式会社神戸製鋼所
- [4] (財)原子力環境整備促進・資金管理センター,「平成23年度 地層処分技術調査等事業 TRU 廃 棄物処分技術 ヨウ素・炭素処理・処分技術高度化開発 報告書(第1分冊)ヨウ素固定化処 理技術開発」, 平成24年3月
- [5] (財)原子力環境整備促進・資金管理センター,「平成 22 年度 地層処分技術調査等委託費 TRU 廃棄物処分技術 ヨウ素・炭素処理・処分技術高度化開発 報告書(第1分冊)ヨウ素固定化 処理技術開発」,平成 23 年 3 月
- [6] (財)原子力環境整備促進・資金管理センター,「平成 20 年度 地層処分技術調査等委託費 TRU 廃棄物処分技術 ヨウ素・炭素処理・処分技術高度化開発 報告書(第1分冊)ヨウ素固定化 処理技術調査」, 平成 21 年 3 月
- [7] (財)原子力環境整備促進・資金管理センター,「平成 21 年度 地層処分技術調査等委託費 TRU 廃棄物処分技術 ヨウ素・炭素処理・処分技術高度化開発 報告書(第1分冊)ヨウ素固定化 処理技術調査」,平成 22 年 3 月
- [8] (財)原子力環境整備促進・資金管理センター,「平成26年度 地層処分技術調査等委託費 TRU 廃棄物処分技術 ヨウ素・炭素処理・処分技術高度化開発 報告書(第1分冊)-ヨウ素固 定化処理技術開発-」,平成27年3月
- [9] (財)原子力環境整備促進・資金管理センター,「平成 27 年度 地層処分技術調査等委託費 TRU 廃棄物処分技術 ヨウ素・炭素処理・処分技術高度化開発 報告書(第1分冊)-ヨウ素 129対策技術の信頼性向上-」,平成 28 年 3 月
- [10] (財)原子力環境整備促進・資金管理センター,「平成 28 年度 地層処分技術調査等委託費 TRU 廃棄物処分技術 ヨウ素・炭素処理・処分技術高度化開発 報告書(第1分冊)-ヨウ素 129 対策技術の信頼性向上-」,平成 29 年 3 月
- [11](財)原子力環境整備促進・資金管理センター,「平成 25 年度 地層処分技術調査等委託費 TRU 廃棄物処分技術 ヨウ素・炭素処理・処分技術高度化開発 報告書(第1分冊)-ヨウ素固 定化処理技術開発-」,平成 26 年 3 月
- [12] T. Higuchi, "Rates of Release of Medicaments from Ointment Bases Containing Drugs in Suspension", Journal of Pharmaceutical Sciences, vol.50(10), p.874,1961.
- [13] 笹本広,由井三和,「高レベル放射性廃棄物地層処分の性能評価における地下水水質設定の 考え方」,サイクル機構技報, No.7, p.59-69, 2000.
- [14] Takahashi, H., Seida, Y., Yui, M., "3D X-ray CT and diffusion measurements to assess tortuosity and constrictivity in a sedimentary rock", diffusion-fundamentals.org 11. 89, 1-11 (2009).
- [15] 高橋学,藤井幸泰,安昶完,竹村貴人,高橋直樹,朴赫,「来待砂岩の水銀ポロシメータおよび

X線CT構造解析から得られる空隙構造」,応用地質 52,5184-19112 (2011).

[16] 五十嵐誉廣,小松篤史,本岡隆文,上野文義,加治芳行,山本正弘,「セルオートマトンを 用いたステンレス鋼粒界腐食形態のシミュレーション」,材料と環境, Vol. 63,431-437, 2014.

第3章 BPI ガラス固化技術

3.1 諸 言

BPI ガラス固化技術は、再処理工場から発生する廃銀吸着材から水素を使用してヨウ素を乾式 脱離した後、無機イオン交換体 BiPbO₂NO₃ (BPN)を使用して BiPbO₂I (BPI) に転換し、これ を PbO-B₂O₃-ZnO ガラスフリットと混合させ、低温にてガラス溶融固化する固定化技術である。 本技術の特徴は、ガラス溶融温度が 540℃と比較的低温であることから、溶融中のヨウ素の揮発 率が低く、固化ガラスの均質性が期待できることがあげられる。

BPI ガラス固化体の長期性能評価のためのヨウ素放出機構については、ヨウ素をガラス中に均 ーに分散することにより、ヨウ素の溶出を高レベル放射性廃棄物ガラス固化体と同様にガラスマ トリクス溶解で制限できると考えられる。そのため、BPI ガラス固化体の化学構造に関する分析 と微視的構造を検討することで、ガラスの溶解に関する基礎的な知見が必要となる。また、ヨウ 素浸出機構の詳細化のため、実際の処分環境を想定した多様な条件下における浸漬試験等により、 BPI ガラスの溶解とヨウ素やガラス成分の放出挙動を把握することで、長期的なヨウ素放出メカ ニズムを理解する必要がある。

平成 29 年度は、昨年度までの検討成果及び課題を踏まえ、下記項目について試験・評価を実施 し、BPI ガラス固化体の溶解挙動及び長期性能についてより詳細に検討する。

(1) BPI ガラス固化体の化学構造の詳細検討

(2) BPI ガラス固化体からのヨウ素浸出機構の検討

(3) BPI ガラス固化体からのヨウ素放出モデルの検討

BPI ガラス固化技術は、還元剤として水素を使用して廃銀吸着材からヨウ素を脱離し、これを 独立行政法人 物質・材料研究機構が開発した無機イオン交換体 BiPbO₂NO₃ [1],[2],[3],[4](以下、 「BPN」という)に吸着させた後、ガラスフリットと混合して低温ガラス固化(溶融温度:540℃) する技術である。BPI ガラス固化プロセスの概要は、図 3.2.1-1 に示すとおりである。

図 3.2.1-1 BPI ガラス固化プロセス技術の概要

BPN は市販の試薬を使用して比較的容易に合成(圧力容器を使用して 380℃、10h で合成可能) できる陰イオン交換体であり、反応式(1)で示される。

さらに BPN を NaI 溶液に添加し、pH 調整して 90℃で 24h 加熱すれば、BiPbO₂I(以下、「BPI」 という) が反応式(2)のように合成できる。

$$Bi_{2}O_{3} + PbO + Bi (NO_{3})_{3} \cdot 5H_{2}O \rightarrow 3BiPbO_{2}NO_{3} \cdot 5H_{2}O$$
(1)
$$BiPbO_{2}NO_{3} + I^{-} \rightarrow BiPbO_{2}I + NO_{3}^{-}$$
(2)

BPIの結晶構造は図 3.2.1-2 に示すとおりであり、天然鉱物 Perite (BiPbO₂Cl) 等と結晶構造 が類似しており、化学的に安定している。

図 3.2.1-2 BiPbO₂I (BPI) の結晶構造

上記反応原理に基づき、水素等の還元剤を用いて廃銀吸着材からヨウ素を溶離し、この溶離されたヨウ素ガスをアルカリ溶液中の BPN に吸着させて、BPI の形態で回収する。

上記において得られた BPI を固定化する方法としては、長期間にわたりヨウ素 129(以下、 「I-129」という)を固化体のマトリクス中に均一分散させるために、融点が低い鉛ガラス固化を 採用する。

BPI の分解温度は 650℃であるが、ガラスと混合した場合は 560℃近傍で分解し、ヨウ素ガス が揮発する。BPI を固定するマトリクス材としてのガラスフリットとしては、浸出性及び製作性 を総合的に判断して、PbO-B₂O₃-ZnO 系ガラスの鉛含有率が 65mol%のガラスフリットを採用す ることとし、ヨウ素含有率は 2wt%に決定した。ガラスフリット及び BPI ガラス固化体の組成は、 表 3.2.1-1(図 3.2.1-3 における赤ポイントに相当)及び表 3.2.1-2 に示すとおりである。

図 3.2.1-3 対象とした低溶融鉛ガラスの基本組成

		· · · · · ·	
組成	PbO	B_2O_3	ZnO
mol%	65	30	5
wt%	85.2	12.4	2.4

表 3.2.1-1 BPI ガラスフリットの化学組成

表 3.2.1-2 BPI ガラス固化体の化学組成

組成	Ι	В	Pb	Zn	Bi	0
mol%	1.0	19.8	22.1	1.6	1.0	54.5
wt%	2.0	3.5	75.2	1.8	3.3	14.3

BPI ガラス固化体の基本仕様及び物理学的特性を表 3.2.1-3、図 3.2.1-4 及び表 3.2.1-4 に示す。 廃棄体容器は、ガラス固化体の製作性及び廃棄体のハンドリングの観点から、高レベルガラス固 化体やハル・エンドピースと同じキャニスタを使用する予定であり、廃棄体数は 390 体となる。ま た、BPI ガラス固化体は弱アルカリ雰囲気で固化体の閉じ込め性がより一層発揮されること及び 人工バリア材であるベントナイト系材料の長期健全性維持の観点から、人工バリアとしてセメン ト系材料は使用しないこととし、ベントナイト系材料のみを使用した比較的小断面坑道に定置す ることを想定している。

項目	仕 様
固化体内容積	150L
BPI ガラス固化体密度	6.8kg/L
BPI ガラス固化体重量	1,000kg
ヨウ素 129 含有量	20kg (2wt%)
キャニスタ容器重量	110kg
廃棄体重量	1,100kg
廃棄体総本数	390 体

表 3.2.1-3 BPI ガラス固化体の仕様及び数量

*1 ヨウ素量=I-129 放射能量(5.1×10¹³Bq)×比放射能(1.53×10⁷g/Bq)

図 3.2.1-4 BPI ガラス固化体の概念

項目	単位	物性值	分析方法
均一性		均一	EPMA 分析
圧縮強度	MPa	40.8 以上	小型物性試驗機、EZ-graph(島津製作所製)
熱伝導率	W/m/K	0.46	レーザーフラッシュ法
熱膨張係数	10 ⁻⁷ /°C	122	押し棒式変位検出法
融点	°C	520	熱重量示差熱分析(TG-DTA)
ガラス転移温度	°C	300	熱重量示差熱分析(TG-DTA)

表 3.2.1-4 BPI ガラス固化体の物理・化学的特性

3.3.1 BPI ガラス固化体の化学構造の詳細検討

BPI ガラスの性能を評価するためには、BPI ガラス固化体からのヨウ素放出挙動の解明及び BPI ガラス固化体の物理・化学的な長期安定性に関する評価が重要である。そのための基礎デー タとして、ガラスの構造や物理・化学的な特性に関する理解が不可欠であり、ガラス構造に基づ いたヨウ素放出挙動のモデル化が必要とされる。

ガラスの構造に関しては、高レベルガラス固化体(ホウケイ酸ガラス)に対して分子動力学法 等のナノスケールモデルによる解析が試みられ、将来的にはガラスの溶解等の挙動解明やモデル 化への発展が期待されている。

これまで、BPI ガラスの構成元素であるホウ素、鉛、酸素、ヨウ素、亜鉛及びビスマスについ て、BPI ガラスや類似の鉛含有ガラスを対象として XRD、NMR、XPS、XAFS 及び中性子回折 等の分析を実施した。また、それらの分析結果を反映することで、2 成分ガラスや 3 成分ガラス、 BPI ガラスにおける構成元素の結合状態をリバースモンテカルロ(RMC 法)によって提示し、解 析の精緻化を図ることで、構造の修正を継続的に進めている。

平成 25 年度[5]および平成 26 年度[6]は、Bi 系ガラスの J-PARC を利用した中性子実験結果の 解析から中性子構造因子を導出した。平成 27 年度[7]、Bi 系ガラスの短範囲構造に関する理解を 深め、SPring-8 放射光実験による構造情報と合わせて利用することにより、RMC 法による 3 次 元構造モデルの構築を目指した。また、平成 28 年度[8]は、BPI ガラスの配置構造の精密化を進 め、配置構造の妥当性を有する分子動力学(MD)モデルの構築を目指し、RMC 法による初期構 造の最適化及び原子間ポテンシャルパラメータの精密化に取り組み、ホウ素多面体の結合角につ いて改善した。

本年度は、RMC 法と MD 法の併用により局所構造の再現性が向上したガラス構造モデルの活 用を想定し、微視的な化学構造に基づいた溶出モデルの構築及び溶出過程と表面状態のエネルギ 一評価への研究展開を目指した基礎的検討を実施した。

3.3.2 BPI ガラス固化体からのヨウ素浸出機構の検討

BPI ガラスの性能を評価するためには、BPI ガラス固化体からのヨウ素放出挙動の解明及び BPI ガラス固化体の物理・化学的な長期安定性に関する評価が重要である。特に、長期のヨウ素 放出の評価は、短期試験で得られた浸出データの単純な外挿だけでなく、ガラスからのヨウ素放 出に関する基本的事象の理解と浸出モデルの構築が必要となり、ガラスの特性に加え、処分環境 の条件(地下水組成)の影響を理解することが重要となる。

これまで、BPI ガラスからのヨウ素の放出挙動を把握するための試験として、多様な環境条件 における浸漬試験を実施し、処分環境を考慮したベントナイト平衡水や海水系地下水において、 ガラスの可溶性マトリクス成分であるホウ素とヨウ素の調和性を明らかしてきた。また、ガラス の割れへの影響や、ガラスの溶解挙動に関する検討を行っている。これらの検討結果から、特に、

3-5

ガラスの溶解やヨウ素放出に対してガラス表面の変質層が重要な役割を果たすと考えられ、その 詳細な機能や特性を把握する試験に着手している。

平成 26 年度[6]からは、BPI ガラス表面変質層の形成過程をより詳細に観察するとともに、浸 漬液中の炭酸イオン及び HS-の BPI ガラス固化体の溶解挙動及び変質層の形成に及ぼす影響につ いて検討を開始し、平成 27 年度[7]は、多様な地下水組成の影響について検討するため、地球化 学シミュレーションを用いて、鉛の鉱物の析出可能性について解析評価した。また、浸漬試験に おいて炭酸塩、硫黄及びリン酸等の影響確認試験を実施し、ヨウ素とホウ素の溶解挙動と規格化 浸出量に与える影響を確認するとともに、変質層の固相分析により形成物質を確認した。さらに、 変質層中の濃度プロファイル(組成分布)に関する情報を得るために、SIMS 及び STEM-EDS を使用した測定を試みた。

平成28年度[8]は、地球化学シミュレーションを継続し、表面変質層の固相分析結果と対比し つつ、溶液化学及び二次鉱物について検討した。また、炭酸塩およびリン酸等の影響確認試験を 継続し、これらがBPIガラスの溶解挙動と主要元素の溶出挙動に与える影響に関するデータを蓄 積・整備した。さらに、変質層中の元素濃度プロファイルを取得するための固相分析方法を継続 検討した。

本年度は、多様な地下水環境条件で得られた試験結果を整理し、BPI ガラス固化体の性能に関 する情報を体系的に構築するとともに、その寿命を評価する。また、ホウ素とヨウ素が非調和溶 解になる浸漬試験を実施し、PbI2が形成されるかどうかを固相分析により確認し、想定した仮定 及び地球化学シミュレーション結果との整合性を確認する。さらに、異なる温度条件で浸漬した 固化体や海水系ベントナイト平衡水に浸漬した固化体の固相分析を実施し、その影響を確認する。

(1) 地球化学計算に基づく試験条件の検討

本年度は、ベントナイト平衡水に H₂PO₄⁻及び HS⁻が存在する場合に鉛の制限固相に与え る影響を解析・評価する。

- (2) 多様な環境条件における浸漬試験
 - 1) 炭酸塩影響試験:昨年度開始した、炭酸イオン濃度の影響試験を継続する。
 - 2) 非調和条件での浸漬試験:ホウ素とヨウ素が非調和溶解になる浸漬試験を実施する。
- (3) 変質層の固相分析
 - 1) 温度依存性試験用固化体

昨年度実施した温度依存性試験の固化体について、変質層を観察し、地球科学計算の結果 と比較する。

2) 模擬海水/ベントナイト平衡水に浸漬した固化体

ベントナイト平衡水中で浸漬した試料の変質層の主要成分は、ハイドロセルサイト (Pb₃(CO₃)₂(OH)₂)であった。一方、模擬海水中(0.55M NaCl+0.05M NaHCO₃)では、 NaPb₂(CO₃)₂(OH)が形成されていた。模擬海水を使用してベントナイト平衡水の浸漬試験の 結果は、ベントナイト平衡水中での浸漬試験の結果とほぼ同等であったことから、上記いず れの変質層が生成しているかを確認する。

3) 非調和溶解する条件での固化体

非調和的のヨウ化する条件では、2つのメカニズムで溶解することが予想されている。① 溶解した鉛は反応する対象物が存在しないため、ヨウ素と反応して PbI2を形成し、ヨウ素の 浸出率が抑制され、非調和溶解となる。②イオウが存在する場合、形成された PbS にヨウ素 が収着するため、非調和溶解となる。これら非調和条件での PbI2 や PbS の生成を確認する。

(4) 鉛丹をガラス原料とした 2.5L サイズの BPI ガラス固化体による浸漬試験

平成27年度[7]にガラス材料として鉛丹を使用して製作した2.5LサイズBPIガラス固化体から採取した試験体の浸出試験を継続する。

(5) 長期浸漬試験

BPI ガラス固化体はセメント系材料を使用せず、ベントナイト系緩衝材を使用した処分施設 を想定していることから、模擬緩衝材間隙、降水系地下水及び海水系地下水に関する長期浸漬 試験データ(800日)を蓄積・整備し、平成25年度までに、小型試験体、0.5Lガラス固化体 及び2.5Lガラス固化体の800日までの浸漬データを取得し、浸漬データに大きな差異はない ことを確認しているが、2,000日の長期浸漬試験データを取得するための浸漬試験を継続中で あり、取得した2000日の結果を用いて、ベントナイト平衡水中での固化体寿命を評価する。

3.3.3 BPI ガラス固化体からのヨウ素放出モデルの検討

処分環境における BPI ガラスからの長期のヨウ素浸出挙動の信頼性を確保するためには、短期 間の浸出データの単純な外挿では不十分であり、浸出メカニズムを理解したうえでモデルを構築 することが重要である。特に、本事業の開発目標であるヨウ素の浸出期間が 10 万年以上であるこ とを適切に説明するためには、BPI ガラス固化体からのヨウ素放出評価モデルを構築し、信頼性 を高める必要がある。これまで、浸漬試験及び各種分析結果等に基づいて BPI ガラスからのヨウ 素の溶出現象を確認したところ、ヨウ素の溶出傾向は浸漬液の性状に依存し、①可溶性元素であ るホウ素とヨウ素とが同じ速度で溶出する場合(調和溶解)と②ホウ素に比較してヨウ素の溶出 が抑制される場合(非調和溶解)の2種類に大別されることがわかった。その際、ガラス表面に 変質層が形成され、ガラス溶解及びヨウ素の溶出が進展することが分かっている。その一方で BPI ガラス固化体は比較的、組成が単純であり、化学構造が把握しやすい特徴がある。この特徴を活 かし、ガラスの化学構造に基づいた溶解変質を再現する手法がヨウ素放出のモデルとして期待さ れている。

これまで、ヨウ素放出モデルの微視的スケールによるアプローチとして、モンテカルロシミュ レーション(MC法)による表面変質層の形成過程の再現が試みられ、結合エネルギーや溶解度 等のパラメータに対する感度が把握されてきた。また、リバースモンテカルロ法(RMC法)の化 学構造解析結果を初期配置として解析できるように改良が進められており、継続的にモデルの高 度化が図られている。 平成 27 年度[7]は、反応移動連続体モデルについて、BPI ガラス成分と液相の成分である主要 なイオン等を含めた多成分系を扱えるようにモデルを改良した。具体的には、BPI ガラスを1次 元差分モデルでモデル化し、各セル内において各成分の液相中の濃度、空隙率及び固相中の量を 管理する解析モデルを検討し、浸漬試験結果の再現を試みた。

平成28年度[8]は、各種の浸漬試験に対するモンテカルロシミュレーションの適用範囲(再現性)について検討するとともに、モデルにおいて使用する結合エネルギー等のパラメータの妥当性について考察した。また、反応移動連続体モデルについては、海外における最新情報を調査し、その動向を把握した。

本年度は、多様な環境条件を想定した浸漬試験結果に基づき、モンテカルロシミュレーション のさらなる精度の向上を目指し、その適用範囲の拡大を目指すとともに、長期浸漬試験(2,000 日浸漬)の再現を試みる。また、反応移動連続体モデルについての適用性を検討し、その可能性 を判断する。必要に応じて、海外研究機関との情報交換を実施する。 3.4 BPI ガラス固化体の化学構造の詳細検討

3.4.1 モンテカルロシミュレーションにおける結合エネルギーについて

(1) 溶解過程に関するモデル

溶解は変質層中の固液界面で起こり、溶解確率は次式で表される結合数と1結合あたりの結 合パラメータとの積の関数で決まるものとした。

$$p_i(n) = p_0 \exp\left\{-n\left(\frac{dE}{kT}\right)_i\right\}$$

ここで、 $p_i(n)$ は分子iの溶解確率、nは結合数、 $\left(\frac{dE}{kT}\right)_i$ は分子iの1結合あたりの結合パラメ

ータ (dE:1 結合あたりの反応エネルギー[J/bond]、k:ボルツマン定数[J/K]、T:絶対温度[K])、 p_0 は規格化された溶解速度定数で解析では1.0を使用した。

結合数が順次減っていく(解離していく)現象をモデル化するため、1結合当たりの解離確 率を以下の式で求め、全ての結合が解離した時に溶解するとした。

$$p_i = p_0 \exp\left\{-\left(\frac{dE}{kT}\right)_i\right\}$$

現在は、1結合あたりの結合パラメータは、結合相手の分子の種類や結合数によらず同じ値 とした。また、一度、解離した結合は、再沈殿の場合を除き、再結合しないものとした。

(2) 再沈殿過程に関するモデル

再沈殿は結合数4のPbOのみを考慮した。溶液中の分子の再結合(沈殿)は、固液界面上の液 相側でおきる。再結合は、液相中の濃度と入力で与える沈殿速度の積で定まる確率でおきると した。沈殿サイトにおける固相の分子の結合状態にはよらない。沈殿確率は、次式で与えられ る。

$$W_{r,i} = W_{c,i} \cdot C_{aq,i}$$

ここで、 w_{ri} は分子iの沈殿確率、 w_{ci} は規格化された沈殿速度定数、 c_{aai} は液相中の分子i

の濃度である。液相中のPbの濃度が溶解度 $c_{sol,Pb}$ に達した場合の1タイムステップ当たりの溶解量と沈殿量は等しいことから、沈殿サイト数を N_r 、溶解サイト数を N_s とすると、次式が成立する。

$$W_{r,Pb} \cdot N_r = p_{Pb} \cdot N_s$$

沈殿サイト数 N_r と溶解サイト数 N_s が等しければ、 $w_{r,Pb} = p_{Pb} = w_{c,i} \cdot c_{aa,i}$ となり、規格化

された沈殿速度定数 w_{ci}は、次式で求められる。

$$w_{c,i} = p_{Pb} / c_{aq,i}$$

しかし、実際には、溶解速度の異なるホウ酸が存在するなどの理由により、必ずしも、沈殿 サイト数 N_r と溶解サイト数 N_s は等しくならない。そこで、解析に用いた規格化された沈殿速 度定数 $w_{c,i}$ は、Pbの濃度が溶解度 $c_{sol,Pb}$ で一定となるように微調整した。

液相の体積は、SV比[m⁻¹]と初期の表面積A[m²]から $V_{liq} = A/SV$ [m³]で一定とし、液相中の 分子iの濃度 c_{aqi} [mol/m³]は、溶出した正味の量 m_i [mol]より、 $c_{aqi} = m_i/V_{liq}$ [mo/m³]とした。

(3) 結合エネルギー等のパラメータの感度解析

リバースモンテカルロ (RMC) 法で再現した 3 次元構造を初期状態として取り込んだモデル を対象として、結合エネルギー等のパラメータの感度解析を実施した結果を図 3.4.1-1 に示す。 図中の括弧内の数値が解析に使用した Pb の結合に関するパラメータである。B はいずれのケ ースも 2.0 とした。Pb の結合に関するパラメータが大きいほど、1 タイムステップにおける解 離確率は小さくなり、図 3.4.1-1 (a)に示すように液相中の Pb の濃度上昇は緩やかになる。B の解離確率はどのケースも同じであるが、Pb に囲まれているホウ素は、その隣接 Pb が溶解し ないと解離しないため、Pb の結合に関するパラメータが大きいほど濃度上昇は緩やかになる。 5,000 タイムステップ後の BPI ガラス変質層の断面図を図 3.4.1-2 に示す。Pb の結合パラメ ータが小さいほど、ガラスの変質が速く進み、変質層の厚みが増加することが分かる。

図 3.4.1-1 Pbの結合パラメータに関する解析結果の比較:液相中濃度
 (Pbの溶解度 1E-6M、S/V=0.1 とした場合)

(a) 初期状態

Pb結合パラメータ

(Pbの溶解度1E-6M、SV=0.1とした場合)

3.4.2 BPI ガラス固化体の溶出モデルに関する基礎的検討

RMC 法と MD 法の併用により得られたガラス構造モデルは、ガラス内部の微視的な局所構造 の再現性が向上しているものと考えられるが、結合の切断と再結合、溶媒による表面修飾、溶媒 分子の内部拡散、再沈殿といった複雑な化学現象と伴う溶出過程をモデル化する対象として適切 な基礎構造を有しているか、十分な検討を必要とする。本年度は、溶出の基本モデルの構築を想 定し、表面構造の設定及び溶出の素過程のモデル化について基礎的検討を実施した。本年度の検 討は、別途、進められている溶解のモンテカルロシミュレーションにおける結合エネルギーパラ メータの意味付けを明らかにする目的と関連し、溶出化学種及びガラス表面のエネルギー評価に よる研究展開を想定するものである。

(1) 溶出モデルの初期状態(ガラス表面)について

ガラス構造モデルは、周期境界条件を課したバルクモデルであり、表面が存在しない。一方、 一般的な溶出試験におけるガラス試験片の表面は切削加工面であることから、これを模した初 期状態の設定が必要となる。本検討では、ガラス構造モデルの任意の面(例えば、z=0 面)で 切断して表面を作成した。ただし、切断面(切りっ放し)における構造的な欠陥を解消する目 的で、Bに配位したOに限定して表面に補充し、表面に露出したBO3、BO4多面体を保持した (図 3.4.2-1 参照)。BPI ガラス固化体及び関連する2成分および3成分ガラスにおけるB2O3 成分は網目形成酸化物であり、切断面においても強固なBO3とBO4多面体が形成されているも のと想定される。それに対し、その他の成分Pb、ZnおよびBiについては、これらの酸化物に おける単結合強度が小さく、配位多面体の保持の必要性は相対的に小さい。

本年度の検討では、上記のような極めて単純化した表面初期状態の設定で十分であると判断 したが、個々の配位多面体に関する慎重な取り扱いや表面構造の緩和を想定した表面ガラスに 特異な構造の設定が必要となる可能性もある。

図 3.4.2-1 2 成分ガラスの切断面 (切りっ放し(左)と BO₃、BO₄多面体を保持した表面処理後(右))

(2) 溶出過程のモデル化

本年度の検討では、単純化した溶出過程を以下の①~③のように設定した。ガラス構造モデ ル(表面処理後)に対して表面から溶出過程を適用した溶出モデル計算を行い、各ステップに おいて溶出化学種を計数し、表面状態と合わせてモデル化した溶出挙動の妥当性を検討した。

- 溶媒による結合切断の対象として、表面 (-z 方向)から最表面 O 原子 (BPI ガラスの場合、 I 原子を含む)を選択する。
- ② O原子が有する化学結合から、結合切断の有無を以下の基準で判断する。(本過程溶出モデルにおいては、確率過程を想定しない。)
 - ・ Pb-O (Zn-O、Bi-O) 結合の場合、その結合を切断する。
 - B-O 結合で、B が4 配位の場合、B-O 結合を切断して BO3 化する。
 - B-O 結合で、B が 3 配位の場合、切断しない。ただし、Pb が近接しない架橋 O ならば、 H₂O を消費して切断する。
- ③ 結合切断による孤立した化学種を確認し、溶出化学種を計数する。
 - Pb が孤立ならば、Pb²⁺として溶出する。(Zn²⁺、Bi³⁺も同じ)
 - O が孤立ならば、OH として溶出する。(I・も同じ)
 - ・ BO₃が孤立ならば、BO₃³として溶出する。

2 成分ガラス(2PbO-B2O3)のガラス構造モデル(表面処理後)を用いて、上記の溶出モデ

ルを適用した溶出挙動を図 3.4.2-2 に示す。ガラス表面(各図とも中央の境界)付近から、ガ ラス構造中の化学結合の切断に伴いバルク(右側)から孤立した化学種(OH、Pb²⁺、BO₃³⁻) が生成した。これらを溶出化学種とすると、液相中の濃度が単調に変化し、溶出は初期表面か ら内部(右方向)に進行することを確認した。また、本検討における溶出過程の適用条件の範 囲内では、ガラス構成成分のなかで Pb²⁺の溶出が先行し、B-O 骨格網目構造による不健全層が 形成した。このような溶出挙動は、BPI ガラス固化体を対象とした実際の溶出試験や溶解のモ ンテカルロシミュレーションで想定されていないものであり、今後の検討において、溶媒分子 のガラス構造中拡散、溶出化学種の溶解度等を考慮した溶出過程の見直し、あるいは適用条件 の修正を必要とする。

本年度の検討により、BPI 関連ガラスのガラス構造モデルを用いた溶出過程のモデル化が可 能であることが示された。不健全層を含めた溶出過程の表面構造を化学構造の観点で理解し、 エネルギー的な側面で評価することが今後の視野に含まれる。また、溶出化学種の濃度を見積 り熱力学計算と結合することにより精密なモデル化への展開が期待できる。

図 3.4.2-2 ガラス構造モデルを用いた 2 成分ガラスの溶出挙動 (左から 1000, 2000, 3000, 4000, 5000 ステップ後)

3.5 BPI ガラス固化体からのヨウ素浸出機構の解明

本年度は、多様な地下水環境条件で得られた試験結果を整理し、BPI ガラス固化体の性能に関 する情報を体系的に構築するとともに、その寿命を評価する。また、ホウ素とヨウ素が非調和溶 解になる浸漬試験を実施し、PbI2が形成されるかどうかを固相分析により確認し、想定した仮定 及び地球化学シミュレーション結果との整合性を確認する。さらに、異なる温度条件で浸漬した 固化体や海水系ベントナイト平衡水に浸漬した固化体の固相分析を実施し、その影響を確認する。

3.5.1 地球化学計算に基づく試験条件の検討

本年度は、ベントナイト平衡水に H₂PO₄⁻及び HS⁻が存在する場合に、鉛の制限固相に与える 影響を解析・評価した。

(1) 昨年度までの解析結果

平成 27 年度[7]は、BPI ガラス固化体が地層処分環境下に置かれた状態で想定される地下水 性状(降水系、海水系)及び人工バリア構成等を考慮して地球化学計算コードを使用したシミ ュレーションにより、水溶液条件下の Pb の化学種及び鉱物の析出可能性について解析した。

具体的には、我が国における代表的な地下水性状(降水系地下水、海水系地下水)及び緩衝 材間隙水を対象として、地球化学計算コード The Geochemist's Workbench v.11 中の Act2 を使 用したシミュレーションにより、Pb の化学種及び鉱物の析出可能性について検討した。

なお、熱力学データとしては、JAEA 公開の 140331g0.tdb (JAEA の 2014 年 3 月版溶解度 計算用 TDB)を使用した。解析の温度条件は、25℃である。

平成26年度[6]の地球化学計算では、緩衝材間隙水を対象とした場合にはハイドロセルサイト (水白鉛鉱:Pb₃(CO₃)₂(OH)₂)及びセルサイト(白鉛鉱:PbCO₃)が生成する結果(図 3.5.1-1) が得られている。本解析結果は、浸漬試験結果とも整合的であることが確認されている。この

元素	Na	K	Ca	Si	Al	Mg	IC	Cl	$SO_{4^{2}}$	Pb
濃度 (mg/l)	95	1.14	1.82	32.6	13.1	2.85	27.9	1.34	59.9	1

表 3.5.1-1 ベントナイト平衡水の代表組成

解析の際に使用した緩衝材間隙水(ベントナイト平衡水)の組成を表 3.5.1-1 に示す。

図 3.5.1-1 ベントナイト平衡水における平衡計算結果

一方、平成 27 年度[6]の地球化学解析では、我が国における代表的な地下水[9](表 3.5.1-2 参照)を対象として解析した結果、降水系地下水と海水系地下水のいずれにおいても、パイロ モルファイト(緑鉛鉱、Chloro-pyromorphite: Pb5(PO4)3Cl)が生成する結果(図 3.5.1-2)が 得られた。これは、地下水中にリンと塩素が存在するためである。

図 3.5.1-2 降水系地下水及び海水系地下水における平衡計算結果

地下水の種類	降水系 高pH型地下水	降水系 低pH型地下水	海水系 高pH型地下水	海水系 低pH型地下水	混合系 中性型地下水
	FRHP	FRLP	SRHP	SRLP	
рН	8.46	5.70	7.95	5.96	7.07
Eh[mV]	-281	-156	-303	-159	-244
	25	25	25	25	25
イオン強度[molality]	0.004	0.004	0.632	0.654	0.389
電荷バランス[eq] ¹⁾	9.96E-14	3.26E-13	-7.30E-12	-1.73E-13	1.51E-11
元 素		4	全濃度(molality)	-
Na	3.55E-03	3. 47E-03	6.17E-01	5.00E-01	3.09E-01
К	6.15E-05	5.99E-05	1.06E-02	1.09E-02	7.99E-02
Mg	5.00E-05	5.00E-05	2.49E-04	2.07E-02	3.32E-04
Ca	1.09E-04	1.07E-04	3.34E-04	2.76E-02	4.52E-04
AI	3.43E-07	2.19E-05	3.21E-09	3.12E-08	6.62E-10
Si	3.39E-04	3.23E-04	2.95E-04	2.90E-04	2.94E-04
Fe	9.73E-10	3.12E-08	3.89E-08	3.89E-08	1.99E-08
F ²⁾	5.40E-05	5.40E-05	1.02E-04	1.02E-04	1.02E-04
CI	1.46E-05	1.02E-04	5.90E-01	5.90E-01	2.95E-01
C	3.54E-03	3.55E-02	3.46E-02	4. 23E-02	2.00E-01
S	1.11E-04	6.23E-08	3.01E-02	3.01E-02	1.51E-02
B ²⁾	2.93E-04	2.93E-04	1.71E-03	1.71E-03	1.71E-03
P ²⁾	2.86E-06	2.86E-06	2.63E-07	2.63E-07	2.63E-07
N ²⁾	2.30E-05	2.30E-05	5.15E-03	5.15E-03	5.15E-03
Br ²⁾	_	_	5.26E-04	5.26E-04	5.26E-04
I ²⁾	_	_	1.98E-04	1.98E-04	1.98E-04
溶存化学種			濃度(molality)		
HCO3-	3.44E-03	3.77E-03	1.19E-02	1.39E-02	8.14E-02
C03 ²⁻	5.75E-05	1.08E-07	1.25E-04	1.50E-06	1.15E-04
C0 ₂ (aq)	2.50E-05	1.59E-02	2.10E-04	2.39E-02	1.08E-02
CH ₄ (aq)	1.54E-10	1.59E-02	2.00E-02	4. 23E-04	9.99E-02
S04 ²⁻	1.08E-04	9.87E-13 3.16E-05 2.22E-04		2. 22E-04	1.51E-05
HS⁻	3.76E-09	3.24E-09	-09 2.80E-02 3.57E-03		9.65E-03
$H_2S(aq)$	1.18E-10	5.91E-08	2.10E-03	2.60E-02	5.44E-03
NH4 ⁺	1.99E-05	2.30E-05	5.00E-03	5.15E-03	5.13E-03
Fe ²⁺	8.92E-10	3.11E-08	1.19E-13	2.10E-11	1.00E-12
$H_4SiO_4(aq)$	3.23E-04	3.23E-04	2.89E-04 2.90E-04		2.93E-04

表 3.5.1-2 第2次取りまとめの性能評価のために設定されたモデル地下水水質[9]

1) Na+あるいは Cl·により電荷バランスを調整した。

2) これらの元素濃度は、スクリーニングされた実測データを基に各元素濃度の平均値から算出した。

(2) 本年度の解析結果

1) ベントナイト平衡水中に PO4³⁻が存在する場合の解析

ベントナイト平衡水中に PO4³⁻が存在する場合の解析結果は図 3.5.1-4 に示すとおりであ る。PO4³⁻が 1E-7mM の場合は制限固相への影響はないが、1E-6mM を超えるとセルサイ ト (PbCO₃) がパイロモルファイト (Pb5(PO4)3Cl) に変化する。PO4³⁻濃度が上昇するにつ れて、パイロモルファイトの領域が拡がり、ハイドロセルサイト (Pb3(CO3)2(OH)2) の領域 が狭まる。

浸漬試験では、NaH₂PO₄を 3E-4 mM または 3E-3 mM 添加することにより、ホウ素とヨ ウ素の浸出率が低下することが確認されている(図 3.5.1-3 参照)。しかしながら、表面変質 層の固相分析ではパイロモルファイトは確認できていない。

図 3.5.1-3 ベントナイト平衡水に NaH2PO4 を添加した場合の浸漬試験結果

図 3.5.1-4 ベントナイト平衡水中に H₂PO₄-が存在する場合の地球化学解析結果

2) ベントナイト平衡水中に HS⁻が存在する場合の解析

ベントナイト平衡水中にHS⁻が存在する場合の解析結果は図 3.5.1-6に示すとおりである。 HS⁻が 1E-9mM の場合は制限固相への影響はないが、1E-8mM を超えるとハイドロセルサ イトがガレナ (PbS) に変化する。HS⁻濃度が上昇するにつれて、ガレナの領域が拡がり、 セルサイトの領域が狭まる。

浸漬試験では、NaSを0.5 mM添加することにより、ホウ素とヨウ素の浸出率が低下する ことが確認されている(図 3.5.1-5参照)。しかしながら、表面変質層の固相分析ではガレナ は確認できていない。

図 3.5.1-5 ベントナイト平衡水に NaH₂PO₄ を添加した場合の浸漬試験結果

図 3.5.1-6 ベントナイト平衡水中に HS⁻が存在する場合の地球化学解析結果(2/2)

BPI ガラスの性能を評価するためには、BPI ガラス固化体からのヨウ素放出挙動の解明及び BPI ガラス固化体の物理・化学的な長期安定性に関する評価が重要である。長期のヨウ素放出の 評価は、短期試験で得られた浸出データの単純な外挿だけでなく、ガラスからのヨウ素放出に関 する基本的事象の理解と浸出モデルの構築が必要となり、ガラスの特性に加え、処分環境の条件 (地下水組成)の影響を理解することが重要となる。

これまで、BPI ガラスからのヨウ素の放出挙動を把握するための試験として、多様な環境条件 における浸漬試験を実施し、処分環境を考慮したベントナイト平衡水や海水系地下水において、 ガラスの可能性マトリクス成分であるホウ素とヨウ素の調和性を明らかにしてきた。

⇒+EA 友 /+-	泪津波の毛密		雰囲	围気) 画 一 文 1	SA/V
武駛余件	凌 頃 他の 種類	谷攸性状	大気	低酸素	退兀剤	(cm ⁻¹)
	イオン交換水	pH9、pH11、pH12.5	0	0	電解鉄	0.1
	N-OL 游游	0.0055 M, $0.055 M$		0	電解鉄	0.1
	NaCI俗攸	$0.55 \mathrm{M}$	0	0	電解鉄	0.1
	模擬海水	$0.55 \mathrm{M} \mathrm{NaCl} + ~ 0.05 \mathrm{M} \mathrm{NaHCO}_3$		0	電解鉄	0.1
	模擬海水共存 イオン影響	硫黄(HS [.])の影響 (0.5、30mM Na ₂ S)	_	0	電解鉄	0.1
溶液種類	ベントナイト 平衡水	クニゲル V1/イオン交換水 =1/50 (g/ ml)	0	0	電解鉄	0.1
	ベントナイト セメント平衡水	OPC セメント/クニゲル V1 平衡水 HFSC セメント/クニゲル V1 平衡水	_	0	電解鉄	0.1
	ベントナイト平衡 水共存イオン影響	炭酸イオン、硫黄(HS [.])及び リン酸の影響	_	0	電解鉄	0.1
降水系地下水共存 イオン影響		リン酸の影響 (3×10 ⁻³ mM NaH2PO4)	_	0	電解鉄	0.1
固液比	ベントナイト 平衡水	クニゲル V1/イオン交換水 =1/50 (g/ ml)	_	0	電解鉄	$0.17 \sim 9.0$

表 3.5.2-1 多様な環境条件における浸漬試験一覧

平成 25 年度[5]は、ベントナイト平衡水に浸漬した BPI ガラス固化体の表面 50~100µm の範 囲の健全ガラスを含む粉末試料を分析した結果、主要なピークはハイドロセルサイト(水白鉛鉱)

(hydrocerussite; Pb 3(CO3)2(OH) 2) であり、変質層の主要な形成物質であることが確認された。 また、初期炭酸イオン濃度とホウ素、ヨウ素の浸出量の関係は、ベントナイト平衡水及び NaCl をベースにした浸漬液でほぼ同一直線上にプロットできたことから、炭酸イオンが浸出量に影響 を及ぼすことが示唆された。さらに、模擬海水に浸漬した試料の変質層を観察したところ、 NaPb2(CO3)2(OH)が形成されていることが確認された。 これと並行して、試料先端を細く加工した固化体を使用し、X線CTによる in-situの表面観察 を実施したが、X線CT 画像では変化が見られなかった。この時点での変質層の厚さは、X線CT 装置の分解能(5µm)以下であると予想される。

平成 26 年度[6]からは、BPI ガラス表面変質層の形成過程をより詳細に観察するとともに、浸 漬液中の炭酸イオン及び HS-の BPI ガラス固化体の溶解挙動及び変質層の形成に及ぼす影響を明 にしつつあり、炭酸イオン濃度の上昇に伴いホウ素とヨウ素の浸出率が上昇し、ハイドロセルサ イト等の変質層の主要構成物質を特定できた。この構成物質は、地球化学計算コードを使用した シミュレーションと整合的であった。

平成 27 年度[7]は、より多様な地下水組成の影響について検討するため、BPI ガラス固化体が 地層処分環境下に置かれた状態で想定される地下水性状(降水系地下水、海水系地下水)及び人 エバリア構成等を考慮して地球化学計算コードを使用したシミュレーションにより、水溶液条件 下の Pb の化学種及び鉱物の析出可能性について解析評価し、その結果に基づき、リン酸イオン や高濃度の HS-イオンの影響を評価した。また、変質層のバリア機能や役割を明確にするため、 変質層の元素分布の分析を実施した。また、平成 25 年度にガラスフリット原料鉛として、工業的 に汎用性の高い鉛丹(Pb₃O₄)を用いて 20mL サイズの BPI ガラス固化体を作製し、評価を行っ てきた。その結果、PbO を原料鉛とした従来の固化体と、特性やヨウ素浸出率はほぼ同等と考え られたので、鉛丹を用いた 2.5L サイズの BPI ガラス固化体を製作した。

平成 28 年度[8]は、より詳細に炭酸イオン濃度の影響を検討する他、模擬海水中でのリン酸イ オンの影響を評価した。また、BPI ガラス固化体の溶解挙動をより詳細に把握するため、ベント ナイト平衡水中での温度依存性に関する情報を取得するための試験を実施すると伴に、引き続き 変質層中の元素濃度プロファイルを取得するための固相分析方法の検討を実施した。昨年度作成 した、PbO を原料とした、2.5L サイズの固化体の浸漬試験を開始した。

本年度は、炭酸イオン濃度依存性確認試験を継続し、200日及び400日の浸漬データを取得した。また、ホウ素とヨウ素が非調和溶解になる浸漬試験を実施した。温度依存性試験については、 254日まで浸漬し、固相分析を行うために、固化体を取り出した。(表 3.5.2-2 参照)

3-24

計醉友曲	闫速波の孫叛	济济社业	雰	囲気	温宁刘	SA/V
武鞅朱忤	夜 俱 攸 り 裡 類	谷攸性扒	大気	低酸素	退兀剤	(cm ⁻¹)
溶液種類	ベントナイト 平衡水 共存イオン影響	ナイト 水 ン影響 炭酸イオンの影響		0	電解鉄	0.1
	模擬海水 ベントナイト平衡水		_	0	電解鉄	0.1
非調和溶解	イオン 交換水(pH9)	Ca(OH)2 (pH9 に調整)	_	0	電解鉄	0.1
温度依存性	ベントナイト 平衡水	10℃、40℃、60℃	浸漬	液調整	電解鉄	0.1
	ベントナイト 平衡水	クニゲル V1/イオン交換水 =1/50 (g/ ml)		0	電解鉄	0.1
ガラス フリット原料 (鉛丹、 Pb 3 O 4)	降水系地下水	$3.55 \mathrm{mM} \mathrm{NaHCO}_3 + 0.11 \mathrm{mM} \mathrm{CaSO}_4$	—	0	電解鉄	0.1
	模擬海水	0.55M NaCl+ 0.05M NaHCO3	_	0	電解鉄	0.1

表 3.5.2-2 多様な環境条件における浸漬試験一覧(平成 29 年度)

(1) 炭酸イオン濃度依存性確認試験

平成 27 年度[7]までに実施した試験結果から、変質層の主要成分は Pb の炭酸水酸化物である ハイドロセルサイトであり、ホウ素とヨウ素の規格化浸出量を√t で線形近似した場合、比例定 数は炭酸イオン濃度ともに増加することが示唆された。今年度は、昨年度より継続している、 より詳細に炭酸イオン濃度の影響について、200 日と 400 日のデータを取得した。

1) 試験条件

炭酸イオン濃度依存性確認試験の浸漬試験条件は、表 3.5.2-3 に示すとおりである。

表 3.5.2-3 炭酸塩影響試験条件

項	目	浸漬条件					
液	固比	10 ml/g					
固相	ガラス	BPI ガラス固化体、約 10×20×5 mm(約 7 g)					
液相	浸漬液	 ① 模擬海水/ベントナイト平衡水 ② ベントナイト平衡水+0.07M NaHCO3 ③ ベントナイト平衡水+0.05M NaHCO3 					
気	相	低酸素雰囲気					
試験期間		14 日、30 日、60 日、120 日、200 日、400 日、600 日、800 日					
全試験数		全 48 サンプル(=期間 8×繰返し 2×浸漬液 3)					
分析項目		① 液相の pH、Eh、温度 ② 液相化学成分(I, B, Pb, Zn, Bi, Fe, IC)					

+: クニゲル V1/ 模擬海水(NaCl 0.55M+NaHCO₃ 0.05M) = 1/50(g/ml)、1 ヶ月振とう *: pH、Eh は定期的に測定する。その他の分析項目は試験期間終了後に実施する。

- 2) 浸漬手順
 - a. 模擬海水の調製

NaCl 濃度が 0.55M、NaHCO3 濃度が 0.05M になるように、それぞれイオン交換水に溶解した。

b. 模擬海水/ベントナイト平衡水の調製

模擬海水を使用したベントナイト平衡水は、クニゲル V1 と模擬海水を 1:50 の比率で混合して調製した。組成を表 3.5.2・4 に示す。

- ①グローブボックス(GB)に模擬海水とクニゲル V1 を入れ、GB 内で模擬海水を 12 時間以上 Ar バブリングする。
- ②GB内でクニゲル V1 と模擬海水を 1:50(具体的にはクニゲル V1 の 80g と模擬海水の4L)で混合し、密封してポリ容器をGBから出す。
- ③ポリ容器を1ヶ月間振とうする。
- ④振とう後、容器を大気下で開封し、高速遠心分離機で固液分離し、液相を 0.45 µ mフ ィルターを用いてろ過し、ろ液を回収する。
- ⑤ろ液をGBに入れ、電解鉄を添加するとともに、Arバブリングを行う。
- ⑥Eh 及び pH を経時測定し、Eh が一定(-200mV 以下)となった後の溶液を模擬海水
 /ベントナイト平衡水とする。

 ⑦分析用の溶液を小分けして GB から取り出し、塩素及び硫酸イオンはイオンクロマト (ICS-3000 (DIONEX 製))で、無機炭素(IC)は TOC 計 (TOC-5000A (SHMADZU 製))で、他の元素は ICP-AES (SPS 5220 (Seiko Instruments 製))で組成を分析す る。

浸渍冻	Na	К	Ca	Si	Al	Mg	IC	Cl	$SO_{4^{2}}$	pН
	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	
模擬海水/ベン トナイト平衡水	10,202	28	2.5	1.9	0	0	502	16,905	54	8.75

表 3.5.2-4 模擬海水/ベントナイト平衡水の組成

c. ベントナイト平衡水の調製

ベントナイト平衡水は、以下の手順でクニゲル V1 とイオン交換水を 1:50 の比率で混合 して調製した。

- ①グローブボックス(GB)にイオン交換水とクニゲル V1 を入れ、GB 内でイオン交換 水を 12 時間以上 Ar バブリングする。
- ②GB内でクニゲル V1 とイオン交換水を 1:50(具体的にはクニゲル V1 の 80g とイオン 交換水の 4 L) で混合し、密封してポリ容器を GB から出す。

③ポリ容器を1ヶ月間振とうする。

- ④振とう後、容器を大気下で開封し、高速遠心分離機で固液分離し、液相を 0.45 µ mフ ィルターを用いてろ過し、ろ液を回収する。
- ⑤ろ液をGBに入れ、電解鉄を添加するとともに、Arバブリングを行う。
- ⑥Eh 及び pH を経時測定し、Eh が一定(-200mV 以下)となった後の溶液をベントナイト平衡水とする。
- ⑦分析用の溶液を小分けして GB から取り出し、塩素及び硫酸イオンはイオンクロマト で、無機炭素(IC)は TOC 計、他の元素は ICP-AES で組成を分析する。
- d. NaHCO3の添加

前項に記載した手順に従い調製したベントナイト平衡水に炭酸濃度をそれぞれ、0.07M または 0.05M になるように NaHCO3を溶解した。NaHCO3を添加したベントナイト平衡 水の組成分析結果を表 3.5.2-5 に示す。

闫速広	Na	К	Ca	Si	Al	Mg	IC	Cl	$\mathrm{SO}_{4^{2^{\text{-}}}}$	pН
<u> </u>	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	
ベントナイト平衡 水+0.07M NaHCO ₃	1,328	40	0.4	34.6	12.2	1.4	833	24	53	8.96
ベントナイト平衡 水+0.05M NaHCO ₃	1,012	111	0.6	62.0	22.3	3.9	625	82	55	8.99

表 3.5.2-5 NaHCO3を添加したベントナイト平衡水の組成

e. 浸漬試験

浸漬試験は、以下の手順で実施した。

- ①グローブボックス内で、浸漬液に還元剤として電解鉄を浸漬液に対して約1 wt%添加し、浸漬液の Eh を-200 mV 以下に調整した。
- ②アルゴンで一昼夜バブリング後に Eh を測定し、所定値になっていない場合には再度 電解鉄を添加して性状を調整した。
- ③BPI ガラス固化体を秤量し、所定の液固比となる浸漬液量を算出した。
- ④浸漬液を浸漬容器に③で算出した液量を添加した。
- ⑤所定期間浸漬後の浸漬液をグローブボックス内においてディスミックフィルタ(孔径 0.45 μm)を用いてサンプル容器に採取した。分析試料をグローブボックスから取り 出し、ICP-AES または ICP-MS を使用し、ホウ素、ヨウ素、鉛、亜鉛及びビスマスの 濃度を分析した。

規格化浸出量Q(g/m²)及び規格化浸出率R(g/m²/d)は、次式により算出した。

 $Q = (A_t / A_0 \times W_0) / S$

R = Q/d

At:t日後の元素浸出量(g)、Ao:初期元素含有量(g)

W₀: 試料初期重量(g)、S: 試料表面積(m²)、d: 浸漬日数(日)

3) 試験結果と考察

a. 模擬海水/ベントナイト平衡水の浸漬試験結果

模擬海水/ベントナイト平衡水の 400 日までの規格化浸出量及び規格化浸出率の経時変 化を、図 3.5.2-1 及び図 3.5.2-2 に示す。比較のため、模擬海水及びベントナイト平衡水 の結果を合わせて示すが、200 日までのホウ素とヨウ素の浸出量は、炭酸水素イオン濃度 が高いにもかかわらず、ベントナイト平衡水中での浸漬試験の結果と同等であった。後述 の固相分析の結果からは、120 日浸漬後の試料では、変質層(ハイドロセルサイト)の上 部に、NaPb2(CO₃)2(OH)の大きな結晶が析出していることが示唆されており、浸漬開始直 後はハイドロセルサイトの生成が支配的であることが推定される。

一方、400日での浸出量はベントナイト平衡水中よりやや高くなっており、NaPb2(CO₃)2 (OH)の生成が支配的になっている可能性がある。

ホウ素とヨウ素の浸出量の比較を図 3.5.2-3 に示すが、ホウ素とヨウ素は調和的に溶解 している。

Eh、pHの変化をそれぞれ、図 3.5.2-4 と図 3.5.2-5 に示す。Eh は-200mV以下で還元 雰囲気を保っている。pH は 9 付近であり、炭酸イオンは主に HCO₃の形態であると考え られる。

図 3.5.2-1 模擬海水/ベントナイト平衡水中での規格化浸出量

	浸清期間	規格化浸出量 / g·m ⁻²
一元素		ベントナイト平衡水 + 模擬海水
	14	6 6F+00
	31	1 0F+01
	63	1.5E+01
ホウ素	120	2 9F+01
	202	4.3E+01
	400	1.0E+02
	14	1.0E+01
	31	1.6E+01
=	63	1.9E+01
ヨワ东	120	3.1E+01
	202	4.3E+01
	400	1.0E+02
	14	1.1E-01
	31	1.1E-01
会八	63	9.4E-02
ΨЦ	120	5.3E-02
	202	8.8E-03
	400	1.4E+00
	14	1.1E+01
	31	1.1E+01
ドスマス	63	9.8E+00
	120	6.0E+00
	202	7.6E+00
	400	1.1E+01
	14	N.D.(<2.7E+00)
	31	N.D.(<2.7E+00)
亜鉛	63	N.D.(<2.7E+00)
	120	N.D.(<2.7E+00)
	400	N.D.(<2.7E+00)

表 3.5.2-6 模擬海水/ベントナイト平衡水中での規格化浸出量

図 3.5.2-2 模擬海水/ベントナイト平衡水中での規格化浸出率

元素	浸漬期間 /日	
		ベントナイト平衡水 + 模擬海水
ホウ素	14	4.7E-01
	31	3.3E-01
	63	2.4E-01
	120	2.4E-01
	202	2.1E-01
	400	2.6E-01
ヨウ素	14	7.4E-01
	31	5.2E-01
	63	3.0E-01
	120	2.5E-01
	202	2.1E-01
	400	2.5E-01
鉛	14	7.7E-03
	31	3.7E-03
	63	1.5E-03
	120	4.5E-04
	202	4.4E-05
	400	3.4E-03
ビスマス	14	7.8E-01
	31	3.5E-01
	63	1.6E-01
	120	5.0E-02
	202	3.8E-02
	400	2.8E-02
亜鉛	14	N.D.(<2.0E-01)
	31	N.D.(<8.7E-02)
	63	N.D.(<4.4E-02)
	120	N.D.(<2.3E-02)
	202	N.D.(<1.3E-02)
	400	N.D.(<6.8E-03)

表 3.5.2-7 模擬海水/ベントナイト平衡水中での規格化浸出率

図 3.5.2-5 模擬海水/ベントナイト平衡水中の pH 変化

b. 炭酸イオンを添加したベントナイト平衡水の浸漬試験結果

炭酸イオンを添加したベントナイト平衡水の 400 日までの規格化浸出量及び規格化浸出 率の経時変化を図 3.5.2-6 と図 3.5.2-7 に示す。比較のため、昨年度まで実施した 0.1M の NaHCO₃ 及び 0.01M の NaHCO₃ を添加した結果も合わせて示す。炭酸水素イオンが多く なるほどホウ素とヨウ素の浸出量は大きくなる傾向が認められた。

ホウ素とヨウ素の浸出量の比較を図 3.5.2-8 に示すが、ホウ素とヨウ素は調和的に溶解 している。

0.07M 及び 0.05M の NaHCO₃ を添加したベントナイト平衡水中での Eh 変化は図 3.5.2-9 及び図 3.5.2-10 示すとおりであり、Eh は-200mV 以下であった。pH 変化は、図 3.5.2-11 及び図 3.5.2-12 に示す。いずれも pH は 9 付近であり、模擬海水/ベントナイト 平衡水の場合と同様、NaHCO₃ 濃度にかかわらず、炭酸イオンは主に HCO₃ の形態である と考えられる。

図 3.5.2-6 NaHCO3を添加したベントナイト平衡水中での規格化浸出量

ŧ	9 5 9.0	NoUCO。な沃加し	たべいトナイ	ト亚海水山で	の坦枚化温山昌
衣	3.3.2-8	NanしU3 を称加し	ノにシトノ トリイ	「千仭小中で	27尻恰16反山里

		規格化浸出量 / g m ⁻²			
元素	浸漬期間	ベントナイト平衡水	ベントナイト平衡水		
	/日	+ NaHCO ₃ 0.05M	+ NaHCO ₃ 0.07M		
	14	3.2E+00	7.4E+00		
	31	8.3E+00	3.6E+01		
赤 古麦	63	1.4E+01	2.8E+01		
ハンホ	120	2.7E+01	4.7E+01		
	202	3.0E+01	9.4E+01		
	400	6.1E+01	2.6E+02		
	14	3.0E+00	7.7E+00		
	31	8.4E+00	3.8E+01		
口内表	63	1.9E+01	3.8E+01		
17*	120	2.5E+01	4.6E+01		
	202	3.1E+01	9.3E+01		
	400	6.3E+01	2.6E+02		
	14	1.1E-01	5.7E-02		
	31	9.7E-02	1.0E-01		
엪	63	1.5E-01	1.6E-01		
半口	120	1.0E-01	1.4E-01		
	202	1.2E-02	2.1E-02		
	400	2.2E-01	4.1E-01		
	14	1.3E+00	1.5E+00		
	31	1.3E+00	1.7E+00		
ドスマス	63	1.5E+00	1.9E+00		
	120	9.8E-01	1.5E+00		
	202	7.6E+00	7.6E+00		
	400	1.3E+00	1.3E+00		
	14	N.D.(<2.7E+00)	N.D.(<2.7E+00)		
	31	N.D.(<2.7E+00)	N.D.(<2.7E+00)		
亜鉛	63	N.D.(<2.7E+00)	N.D.(<2.7E+00)		
	120	N.D.(<2.7E+00)	N.D.(<2.7E+00)		
	202	N.D.(<2.7E+00)	N.D.(<2.7E+00)		
	400	N.D.(<2.7E+00)	N.D.(<2.7E+00)		

図 3.5.2-7 NaHCO3 を添加したベントナイト平衡水中での規格化浸出率

規格化浸出率 / g⋅m-2⋅d-1 浸漬期間 |ベントナイト平衡水|ベントナイト平衡水 元素 /日 + NaHCO₃ 0.05M + NaHCO₃ 0.07M 14 2.3E-01 5.3E-01 31 2.7E-01 1.2E+00 4.4E-01 63 2.3E-01 ホウ素 120 2.2E-01 3.9E-01 1.5E-01 202 4.7E-01 400 1.5E-01 6.4E-01 14 2.1E-01 5.5E-01 2.7E-01 31 1.2E+00 6.0E-01 63 3.0E-01 ヨウ素 120 2.1E-01 3.8E-01 202 1.5E-01 4.6E-01 400 1.6E-01 6.6E-01 14 8.1E-03 4.1E-03 31 3.1E-03 3.3E-03 63 2.4E-03 2.5E-03 鉛 120 8.6E-04 1.1E-03 202 5.8E-05 1.1E-04 400 5.4E-04 1.0E-03 14 9.3E-02 1.1E-01 31 4.2E-02 5.6E-02 63 2.4E-02 3.0E-02 ビスマス 120 8.2E-03 1.3E-02 202 3.8E-02 3.8E-02 400 3.1E-03 3.4E-03 14 N.D.(<2.0E-01) N.D.(<2.0E-01) N.D.(<8.7E-02) N.D.(<8.7E-02) 31 N.D.(<4.4E-02) N.D.(<4.4E-02) 63 亜鉛 120 N.D.(<2.3E-02) N.D.(<2.3E-02) 202 N.D.(<1.3E-02) N.D.(<1.3E-02) 400 N.D.(<6.8E-03) N.D.(<6.8E-03)

表 3.5.2-9 NaHCO3を添加したベントナイト平衡水中での規格化浸出率

図 3.5.2-8 炭酸イオン影響試験結果 (ベントナイト平衡水:ホウ素とヨウ素の規格化浸出量の比較)

図 3.5.2-9 0.07M NaHCO3 を添加した/ベントナイト平衡水中の Eh 変化

図 3.5.2-10 0.05M NaHCO3を添加した/ベントナイト平衡水中の Eh 変化

図 3.5.2-11 0.07M NaHCO3 を添加した/ベントナイト平衡水中の pH 変化

図 3.5.2-12 0.05M NaHCO3 を添加した/ベントナイト平衡水中の pH 変化

c. 初期炭酸イオンとホウ素・ヨウ素の浸出率の関係

120日後の初期炭酸イオン濃度とホウ素・ヨウ素の浸出量の関係を図 3.5.2-13と図 3.5.2-14に示す。また、200日後の初期炭酸イオン濃度とホウ素・ヨウ素の浸出量の関係 を図 3.5.2-15と図 3.5.2-16、400日後の関係を図 3.5.2-17と図 3.5.2-18にそれぞれ示す。 120日目の結果(図 3.5.2-13、図 3.5.2-14)を見ると、模擬海水での結果を除くと、模擬 海水/ベントナイト平衡水の結果も含め、浸出量は、初期炭酸イオン濃度が、0.1M(100mM) 以上で急に大きくなっている。この結果から、ベントナイト平衡水中には、ホウ素やヨウ 素の溶解を抑制する成分が含まれている可能性がある。一方、200日や400日では、初期 炭酸イオン濃度 0.07M(70mM)付近から浸出量が急増しているように見える。特に、浸漬 試験400日の方が、初期炭酸イオン濃度70mMでの浸出量の増大が大きいようにも見える。 固相分析の結果によると(平成27年度報告書[7])、初期炭酸イオン濃度 0.1M(100mM)の 時には、ハイドロセルサイト以外に、セルサイトが析出していた。炭酸イオン濃度 0.07M の条件では、当初はハイドロセルサイトの生成が支配的であるが、浸漬期間が長くなると、 セルサイトの析出が支配的となり、浸出量の増大が大きくなった可能性があるが、詳細は、 固相分析及び 600 日や 800 日での浸漬結果を見て判断する必要がある。

図 3.5.2-13 初期炭酸イオン濃度とホウ素浸出量の関係(120日)

図 3.5.2-14 初期炭酸イオン濃度とヨウ素浸出量の関係(120 日)

図 3.5.2-15 初期炭酸イオン濃度とホウ素浸出量の関係(200 日)

図 3.5.2-16 初期炭酸イオン濃度とヨウ素浸出量の関係(200 日)

図 3.5.2-17 初期炭酸イオン濃度とホウ素浸出量の関係(400 日)

図 3.5.2-18 初期炭酸イオン濃度とヨウ素浸出量の関係(400 日)

d. IC 濃度変化

ICの経時変化を示す。ICは60日目付近から低下しており、変質層の生成が急激に進ん だ可能性もあり、今後、炭酸イオン濃度と浸出量の関係が変化することも考えられる。

図 3.5.2-19 IC の経時変化

(2) 非調和条件での浸漬試験

平成28年度[8]に実施した地球化学計算の結果、非調和的のヨウ化する条件では、2つのメ カニズムで溶解することが予想されている。①溶解した鉛は反応する対象物が存在しないた め、ヨウ素と反応してPbI2を形成し、ヨウ素の浸出率が抑制され、非調和溶解となる。②イ オウが存在する場合、形成されたPbSにヨウ素が収着するため、非調和溶解となる。この内、 溶解した鉛は反応する対象物が存在しない①のケースについて、浸漬試験を実施した。

1) 試験条件

非調和条件での浸漬試験条件を表 3.5.2-10 に示す。BPI ガラスとしては、工業的に汎用性の高い鉛丹(Pb₃O₄)を使用した。なお、従来使用している PbO₂を原料した BPI ガラスについては、非調和溶解することは確認している(平成 25 年度報告他[5])。

項	目	浸漬条件		
液	固比	10 ml/g		
固相 ガラス		BPI ガラス固化体(鉛丹使用)、約 10×20×5 mm(約 7 g)		
液相 浸漬液		Ca(OH) ₂ (pH9 に調整)		
気	相	低酸素雰囲気		
試験期間		14 日、30 日、60 日、120 日		
全試験数		全8サンプル(=期間4×繰返し2×浸漬液1)		
分析項目		 液相の pH、Eh、温度 液相化学成分(I, B, Pb, Zn, Bi, Fe, pH*, Eh*, IC) 		

表 3.5.2-10 非調和条件での浸漬試験条件

*: pH、Eh は定期的に測定する。その他の分析項目は試験期間終了後に実施する。

2)試験手順

a.浸漬液の調製

イオン交換水にpHが9になるようにCa(OH)2を溶解した。

b. 浸漬試験

浸漬試験は、3.5.2(1)2)eに記載の方法に準じた。

3) 試験結果

Ca(OH)₂(pH=9)に浸漬した時の規格化浸出量と規格化浸出率の経時変化を図 3.5.2·20 と 図 3.5.2·21 に示すが、ホウ素は、浸出量が経時的に上昇したものの、ヨウ素はほとんど溶出 しなかった。図 3.5.2·22 に、ホウ素とヨウ素の浸出量の比較を示す。比較のため、調和溶解 する条件のベントナイト平衡水、模擬降水系地下水、模擬海水の結果も記す。原料の酸化鉛 の種類にかかわらず、イオン強度が低い Ca(OH)₂(pH=9)では、非調和的溶解していた。Eh は、-200mV 以下を維持し(図 3.5.2·23)、pH は約 9 であった(図 3.5.2·24)。

図 3.5.2-20 Ca(OH)₂(pH=9)での規格化浸出量(Pb₃O₄原料)

	浸漬期間 /日	規格化浸出量 / g·m ⁻²
元素		Ca(OH) ₂ pH9
	14	7.0E+01
士 古麦	30	9.9E+01
17 J T	62	9.8E+01
	120	1.0E+02
	14	9.1E-01
コム車	30	1.0E+00
コワ糸	62	8.0E-01
	120	1.9E-01
	14	7.3E+00
<i>\$</i> /\	30	1.2E+01
シロ	62	1.5E+01
	120	6.3E+01
	14	6.3E+00
ドフフフ	30	4.4E+01
	62	4.6E+01
	120	1.6E+01
	14	N.D.(<6.4E-01)
亜 鉛	30	2.6E+00
	62	2.0E+00
	120	1.7E+00

表 3.5.2-11 Ca(OH)2(pH=9)での規格化浸出量(Pb3O4原料)

図 3.5.2-21 Ca(OH)₂(pH=9)での規格化浸出率(Pb₃O₄原料)

	浸漬期間 /日	規格化浸出率 / g·m ^{−2} ·d ^{−1}
元素		Ca(OH) ₂ pH9
	14	5.0E+00
士卢麦	30	3.3E+00
	62	1.6E+00
	120	8.7E-01
	14	6.5E-02
口占丰	30	3.5E-02
	62	1.3E-02
	120	1.6E-03
	14	5.2E-01
\$ /\	30	4.0E-01
王日	62	2.4E-01
	120	5.2E-01
	14	4.5E-01
ビフフフ	30	1.5E+00
	62	7.4E-01
	120	1.3E-01
	14	N.D.(<4.5E-02)
亜鉛	30	8.8E-02
	62	3.2E-02
	120	1.4E-02

表 3.5.2-12 Ca(OH)₂(pH=9)での規格化浸出率 (Pb₃O₄原料)

図 3.5.2-22 Ca(OH)2(pH=9)でのホウ素とヨウ素の規格化浸出量の比較

図 3.5.2-24 Ca(OH)₂(pH=9)での pH 変化 (Pb₃O₄ 原料)

(3) 温度依存性試験

BPI ガラス固化体の溶解挙動をより詳細に把握するため、ベントナイト平衡水中に浸漬した 場合の溶解の温度依存性に関する情報を取得するための試験を実施した。254日浸漬した後に、 固相分析に供するため、固化体を取り出した。

1) 浸漬条件

温度依存性取得試験の浸漬試験条件を表 3.5.2-13 に示す。

項目		浸漬条件				
液固比		16.5 ml/g				
固相 ガラス		BPI ガラス固化体、約 10×20×5 mm(約 7 g)				
液相 浸漬液		ベントナイト平衡水				
気 相		低酸素雰囲気中で試料を準備し、大気中で所定期間保持、分取時は GB 内				
試験期間		7日、14日、30日、60日、120日、200日ごとに 5ml ずつ分取				
温度		10°C、40°C、60°C				
全試験数		全 6 サンプル (=温度 3×繰返し 2×浸漬液 1)				
分析項目		① 液相の pH、Eh、温度 ② 液相化学成分(I, B, Pb, Zn, Bi, Fe, IC)				

表 3.5.2-13 温度依存性取得試験条件

2) 浸漬試験

浸漬試験は、以下の手順で実施した。

- ①グローブボックス内で、浸漬液に還元剤として電解鉄を浸漬液に対して約1 wt%添加し、浸漬液の Eh を-200 mV 以下に調整した。
- ②アルゴンで一昼夜バブリング後に Eh を測定し、所定値になっていない場合には再度 電解鉄を添加して性状を調整した。

③BPI ガラス固化体を秤量し、所定の液固比となる浸漬液量を算出した。

④浸漬液を浸漬容器に③で算出した液量を添加した。

⑤浸漬容器をグローブボックスから取り出し、所定の温度の恒温槽に設置した。

⑥所定期間浸漬後、容器をグローブボックス内に戻し、浸漬液を 5ml 分取し、ディスミ ックフィルタ(孔径 0.45 μm)を用いてサンプル容器に採取した。分析試料をグロー ブボックスから取り出し、ICP-AES または ICP-MS を使用し、ホウ素、ヨウ素、鉛、 亜鉛及びビスマスの濃度を分析した。

規格化浸出量Q(g/m²)及び規格化浸出率R(g/m²/d)は、次式により算出した。

 $Q = (A_t / A_0 \times W_0) / S$

R = Q/d

At:t日後の元素浸出量(g)、Ao:初期元素含有量(g)

W₀:試料初期重量(g)、S:試料表面積(m²)、d:浸漬日数(日)

⑦浸漬液を分取下後の浸漬容器は、グローブボックスから取り出し、所定の温度の恒温 槽に設置し、浸漬を継続し、初手期間後に同様の方法で、浸漬液を分析した。

3) 浸漬結果

ホウ素及びヨウ素の規格化浸出量の経時変化を図 3.5.2・25 に示す。浸漬開始から、100 日 程度までは、10℃~40℃で浸出量に有意な差異はなく、60℃では低下する結果となった。そ の後、10℃でのホウ素ヨウ素の浸出量が多くなり、200 日以降での浸出量の序列は、ホウ素、 ヨウ素とも、10℃>40℃>60 度の順になった。ホウ素とヨウ素の規格化浸出量の比較を図 3.5.2・26 に示すが、60℃においてもホウ素とヨウ素は調和的溶解している。図 3.5.2・27 に、 固相分析を行うために取り出した、254 日浸漬後の固化体の外観を示す。ホウ素やヨウ素浸 出率の大きかった 10℃や 40℃で浸漬した固化体の表面が白っぽくなり変質が進んでいるこ とが示唆された。詳細は後述するが、固相分析の結果からは、変質層の主要な回折ピークは、 ハイドロセルサイトであるものの、変質層の厚さは 60℃が最も薄く (約 2~3 μ m)、40℃で は 5 μ m 程度、10℃では 5~6 μ m となっており、浸出試験の結果と整合していた。

図 3.5.2-25 ホウ素・ヨウ素の規格化浸出量の温度依存性(ベントナイト平衡水)

	闫津田田	規格化浸出量 / g·m ⁻²				
元素	/ 皮」 <u>肉</u> 明 / 日	ベントナイト平衡	ベントナイト平衡	ベントナイト平衡		
	7 म	水(10°C)	水(40°C)	7大(60°C)		
	7	5.6E+00	7.3E+00	5.9E+00		
	14	7.3E+00	8.9E+00	7.2E+00		
	30	1.0E+01	1.2E+01	8.1E+00		
ホウ素	62	1.5E+01	1.5E+01	8.7E+00		
	120	2.0E+01	1.9E+01	8.6E+00		
	204	2.5E+01	2.1E+01	8.2E+00		
	254	2.7E+01	2.4E+01	8.4E+00		
	7	4.8E+00	6.1E+00	4.5E+00		
	14	6.9E+00	7.1E+00	5.8E+00		
	30	9.3E+00	9.1E+00	6.3E+00		
ヨウ素	62	1.3E+01	1.2E+01	7.4E+00		
	120	1.8E+01	1.5E+01	7.5E+00		
	204	2.2E+01	1.6E+01	6.2E+00		
	254	2.3E+01	1.8E+01	6.2E+00		
	7	1.4E-01	1.9E-01	1.9E-01		
	14	1.5E-01	1.9E-01	2.2E-01		
	30	1.2E-01	1.5E-01	1.6E-01		
鉛	62	1.5E-01	2.1E-01	2.8E-01		
	120	1.2E-01	3.1E-01	3.8E-01		
	204	1.2E-01	3.1E-01	3.8E-01		
	254	1.3E-01	2.2E-01	4.3E-01		
	7	1.2E+01	1.2E+01	1.2E+01		
	14	1.1E+01	1.1E+01	1.1E+01		
	30	1.4E+01	1.4E+01	1.4E+01		
ビスマス	62	1.4E+01	1.4E+01	1.4E+01		
	120	1.8E+00	1.7E+00	1.8E+00		
	204	1.7E+00	1.3E+00	1.8E+00		
	254	1.4E+00	1.4E+00	1.5E+00		
	7	N.D.(<4.5E+00)	N.D.(<4.5E+00)	N.D.(<4.5E+00)		
	14	N.D.(<4.3E+00)	N.D.(<4.3E+00)	N.D.(<4.3E+00)		
	30	N.D.(<4.1E+00)	N.D.(<4.1E+00)	N.D.(<4.1E+00)		
亜鉛	62	N.D(<3.9E+00)	N.D(<3.9E+00)	N.D(<3.9E+00)		
	120	5.9E+00	6.4E+00	1.9E+00		
	204	8.0E+00	5.8E+00	2.5E+00		
	254	N.D(<6.5E-01)	N.D(<6.6E-01)	N.D(<6.5E-01)		

表 3.5.2-14 ホウ素・ヨウ素の規格化浸出量の温度依存性(ベントナイト平衡水)

図 3.5.2-26 ホウ素とヨウ素の規格化浸出量の比較

3.5.3 変質層の固相分析

(1) 昨年度までの分析結果

ベントナイト平衡水に浸漬したガラス試料(図 3.5.3-1)のSEM 画像とSEM 画像から計測 した変質層の厚さ及びホウ素溶出量から計算した変質層の厚さの関係を図 3.5.3-2 に示す。表 面変質層の厚さは時間とともに増加するが、徐々に飽和していく傾向が見られる。SEM 分析か ら求めた表面変質層の厚さの経時変化は、ホウ素浸出率と対応していることが確認されている。

図 3.5.3-1 ベントナイト平衡水に浸漬後の試料 (800 日)

図 3.5.3-2 変質層の SEM 画像と変質層の厚さ

また、変質層の XRD パターンは図 3.5.3-3 に示すとおりであり、浸漬期間 7 日~800 日まで の全期間において主要なピークはすべてハイドロセルサイト(水白鉛鉱)に帰属された。ハイ ドロセルサイトの炭酸塩は、ベントナイト平衡水中の CO₃2-に由来するものと考えられる。

図 3.5.3-3 ベントナイト平衡水に浸漬した BPI ガラス変質層の XRD パターン

(2) SEM-EDS 分析及び XRD 分析

1) 温度依存性試験用固化体

昨年度実施した温度依存性試験において、60℃で浸漬した BPI ガラス固化体の浸出率が 10℃および 40℃で浸漬した固化体のそれよりも低かったため、変質層の構造を調査した。 254 日浸漬後の変質層の XRD 分析結果を図 3.5.3・4 に示す。いずれの試料も主要な回折ピ ークはハイドロセルサイトで帰属され、変質層の構成物質には差が認められなかった。60℃ で浸漬した固化体は、20 =30°付近においてガラスからのブロードなハローが強く出ており、かつ、ハイドロセルサイトのピークの半値幅も大きいことから、微細なハイドロセルサイト層が薄く形成されていると考えられる。40℃で浸漬した固化体は、ハローが消えているため、ハイドロセルサイト層が 60℃で浸漬した場合に比較して厚くなっていると考えられる。10℃で浸漬した固化体は、ハイドロセルサイトの(00)のピークが異常に強く、かつ、半値幅が非常に小さい。一方、それ以外のピークはやや半値幅が大きい。このことから、ある程度の厚さの微細なハイドロセルサイト層の上に c 軸配向したハイドロセルサイトの大きな結晶が析出していることが示唆された。SEM 画像を図 3.5.3・5 に示す。ガラス上に形成された変質層の厚さは 60℃が最も薄く、場所によるバラツキがあるが、約 2~3 μ m 程度である。40℃ ではその厚さが 5 μ m 程度になっている。最後に 10℃では 5~6 μ m となっており、40℃のときとそれほど変わらないが、表面に塊状のハイドロセルサイト結晶が多く析出しており、浸漬試験結果(図 3.5.2・25)と整合的である。温度が高い場合に BPI ガラスの溶出または変質層の形成が抑制されることについては、ハイドロセルサイトの成分である炭酸イオン(HCO3 や CO3²)の溶液への溶解度が水温上昇とともに低下し、この影響が温度上昇によるハイドロセルサイトの反応速度の上昇を大きく上回ったためであると予想される。

図 3.5.3-4 254 日浸漬後の BPI ガラス固化体変質層の XRD 分析結果

図 3.5.3-5 ベントナイト平衡水に 254 日浸漬した BPI ガラス表面の SEM 画像 (左上 60°C、右上 40°C、左下 10°C)

2) 模擬海水を使用して作製したベントナイト平衡水に浸漬した固化体

ベントナイト平衡水中で浸漬した試料の変質層の主要成分は、ハイドロセルサイト (Pb3(CO3)2(OH)2)であった。一方、模擬海水中(0.55M NaCl+0.05M NaHCO3混合溶液) では、NaPb2(CO3)2(OH)が形成されていた。昨年度実施した模擬海水を使用して作製したベ ントナイト平衡水(以下、「模擬海水のベントナイト平衡水」という。)の浸漬試験の結果は、 ベントナイト平衡水中での浸漬試験の結果とほぼ同等であったことから、変質層の構成物質 を確認した。

模擬海水のベントナイト平衡水に 120 日浸漬した試料の XRD および SEM 画像を図 3.5.3-6 と図 3.5.3-7 に示す。XRD パターンの主要なピークはハイドロセルサイトと NaPb₂(CO₃)₂(OH)に帰属された。ハイドロセルサイトのピークは半値幅が大きく、 NaPb₂(CO₃)₂(OH)の方は半値幅が小さい。これより、ハイドロセルサイトの変質層の上に NaPb₂(CO₃)₂(OH)の大きな結晶が析出していることが示唆される。SEM の断面を見ると 5 μ m 程度のハイドロセルサイトの変質層の上に六角柱状の NaPb₂(CO₃)₂(OH)の結晶が析出 しており、XRD より想定された構造が確認できた。

浸漬試験結果(図 3.5.2-1)からは、200 日までのホウ素とヨウ素の浸出量は、炭酸水素 イオン濃度が高いにもかかわらず、ベントナイト平衡水中での浸漬試験の結果と同等であっ たが、400日での浸出量はベントナイト平衡水中よりやや高くなっており、NaPb2(CO3)2(OH) の生成が支配的になっている可能性がある。

図 3.5.3-6 模擬海水のベントナイト平衡水に浸漬した試料の変質層の XRD(120 日)

図 3.5.3-7 模擬海水のベントナイト平衡水に浸漬した試料の SEM 画像(120 日)

3) ヨウ素とホウ素が非調和溶解する条件での固化体

ヨウ素とホウ素が非調和的に溶解する条件では、2 つのメカニズムで溶解することが予想 されている。①溶解した鉛は反応する対象物が存在しないため、ヨウ素と反応して PbI2を形 成するため、ヨウ素の浸出率が抑制され、非調和溶解となる。②イオウが存在する場合、形 成された PbS にヨウ素が収着するため、非調和溶解となる。これら非調和条件での変質層を 観察した。

a. Ca(OH)2 (pH=9) に浸漬した固化体

溶解した鉛が反応するイオン等が存在しない条件と考えられる Ca(OH)2(pH=9) 溶液 に 800 日浸漬した固化体について固相分析を実施した。なお、この固化体の原料ガラスフ リットは PbO2を用いて作製しており、3.3.2(3)3)において使用した固化体と原料は異なる が、いずれも非調和溶解している。

SEM および SEM-EDS の結果を図 3.5.3-8 および図 3.5.3-9 に示す。SEM 画像からは、 ハイドロセルサイトは確認できなかった。また、EDS の結果からは、塊状の物質(Pb と O が検出)と板状の結晶(Zn、Al、O が検出)が見られたが、どちらからもヨウ素は検出 されなかった。XRD の結果(図 3.5.3-10)はわずかにハイドロセルサイトと思われるピー クは確認されるものの、PbI2 のピークは観察されず、これまで見られなかった新しい結晶 相の形成ができていることが明らかになった。

図 3.5.3-8 Ca(OH)₂ (pH=9) に浸漬した固化体の SEM 画像(800 日)

図 3.5.3-9 Ca(OH)₂ (pH=9) に浸漬した固化体の SEM-EDS(800 日)

図 3.5.3-10 Ca(OH)₂ (pH=9) に浸漬した固化体の変質層の XRD(800 日)

b. 純水に Na2S を溶解した系に浸漬した固化体

純木に Na₂S を溶解した溶液に浸漬した固化体について固相分析を実施した。120 日浸漬 後の外観を図 3.5.3·11 に示す。白色を呈する層がガラス上に形成され、その上に茶色を呈す る層が形成されていることが分かる。白色部の SEM-EDS を図 3.5.3·12 に示すが、ガラス上 に形成された白色を呈する層は葉片状の微結晶でできており、そこからは Pb と O しか検出 されないため、この微結晶はハイドロセルサイトと考えられる。白色層上の茶色を呈する層 (図 3.5.3·13) は、球状に凝集した物質が中心で、Pb, O とともに I (ヨウ素) が検出された。 局所に大きな自形結晶も存在し、同様な EDS スペクトルを示し、ハイドロセルサイト以外に ヨウ素を含む物質が検出された。この層から集束イオンビーム (FIB) 法により薄膜試料を 作製し、その電子回折を取った。また、このこの茶色の層をはぎ取り XRD を測定した。電 子回折及び XRD のパターンは明らかにハイドロセルサイトとは異なっており、これまでに なかった新しい物質であることがわかった。さらに、この薄膜試料から電子エネルギー損失 分光 (Electron Energy-Loss Spectroscopy: EELS) スペクトルを測定したところ、炭素の K 殻の損失ピークが明瞭に観察され、またそのピーク形状から、この炭素は炭酸塩であるこ とが判明した (図 3.5.3·14)。これより、このヨウ素を含む新しい物質はハイドロセルサイト と同様の鉛の炭酸塩であると考えられる。

図 3.5.3-11 純水+Na₂S に浸漬した固化体の外観(120 日)

図 3.5.3-12 白色部の SEM-EDS

図 3.5.3-13 茶色部の SEM-EDS (左) および電子線回折 (右上)、XRD パターン (右下)

図 3.5.3-14 茶色部の層から EELS スペクトル (CKaの損失ピーク) (青は球状の凝集体、赤は立方上の大きな結晶から収集。右は様々な炭素の形態の物質からの CKaの損失ピーク)

3.5.4 鉛丹をガラス原料とした 2.5L サイズの BPI ガラス固化体による浸漬試験

ガラスフリット原料鉛として、従来使用している PbO₂から、工業的に汎用性の高い鉛丹 (Pb₃O₄) に変更し、平成 27 年度[7]に作製した 2.5L サイズの BPI ガラス固化体から採取した試験体の浸出 試験を継続した。今年度は、200 日と 400 日のデータを取得した。

(1) 浸漬条件

Pb3O4をガラス原料とした 2.5L サイズの BPI ガラス固化体の浸漬条件を表 3.5.4-1 に示す。

項目		浸漬条件			
液固比		10 ml/g			
固相	ガラス	BPI ガラス固化体(鉛丹使用)、約 10×20×5 mm(約 7 g)			
液相 浸漬液		 ベントナイト平衡水 模擬降水系地下水 模擬海水 			
気相		低酸素雰囲気			
試験期間		14 日、30 日、60 日、120 日、200 日、400 日、600 日、800 日			
全試験数		全 48 サンプル (=期間 8×繰返し 2×浸漬液 3)			
分析項目		 液相の pH、Eh、温度 液相化学成分(I, B, Pb, Zn, Bi, Fe, IC) 			

表 3.5.4-1 Pb₃O₄をガラス原料とした 2.5L サイズ BPI ガラス固化体による浸漬試験条件

*: pH、Eh は定期的に測定する。その他の分析項目は試験期間終了後に実施する。

(2) 浸漬手順

1) 浸漬液の調製

ベントナイト平衡水及び模擬海水は、それぞれ、3.5.2(1)2)c 及び 3.5.2(1)2)a に記載の方法 に準じて実施した。模擬降水系地下水は、第 2 次とりまとめのモデル降水系地下水組成[9]を 参考に、代表的な成分である NaHCO₃ と CaSO₄ をそれぞれ、3.55mM と 0.11mM になるよ うにイオン交換水に溶解した。浸漬液の組成は、表 3.5.4-2 に示す。

浸漬液	Na	Κ	Ca	Si	Al	Mg	IC	Cl	$\mathrm{SO}_{4^{2^{\text{-}}}}$	pН
	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	—
ベントナイト平衡水	107	4.1	1.4	42.8	15.2	2.2	32	7	49	9.8
模擬降水系地下水	75	8.9	1.0	0.7	0	0	39	11	7	9.26
模擬海水	10236	18	0	0.2	0	0	588	17087	7	8.42

表 3.5.4-2 浸漬液の組成

(3) 浸漬試験

浸漬試験は、3.5.2(1)2)eに記載の方法に準じた。

(4) 浸漬結果

1) ベントナイト平衡水

ベントナイト平衡水中での規格化浸出量及び規格化浸出率の経時変化を、図 3.5.4-1 と図 3.5.4-2 に示す。比較のため、Pb₃O₄をガラスフリット原料に使用した小型ガラスの試験結果 及び通常の BPI ガラス (PbO₂ 原料)の結果も合わせて示す。Pb₃O₄をガラスフリット原料 に使用 BPI ガラスは、ホウ素・ヨウ素とも、従来のガラスとほぼ同等かやや低い浸出率となった。Eh は-200mV を維持(図 3.5.4-7)し、pH は約 10 であり(図 3.5.4-8)、従来の固化 体と同等であった。

図 3.5.4-1 ベントナイト平衡水中での規格化浸出量(Pb₃O₄原料)

	浸清期間	規格化浸出量 / g·m ⁻²
元素	/日	ベントナイト平衡水
	14	3.6E+00
	31	5.9E+00
士卢麦	60	7.5E+00
小 7 未	122	8.4E+00
	200	8.7E+00
	403	1.5E+01
	14	4.2E+00
	31	5.9E+00
口内表	60	5.3E+00
	122	5.0E+00
	200	4.4E+00
	403	6.6E+00
	14	5.0E-02
	31	5.4E-02
全 八	60	2.1E-02
2日	122	2.1E-02
	200	6.9E-02
	403	3.1E-02
	14	1.2E+00
	31	1.3E+00
ドスマス	60	1.1E+00
	122	6.6E-01
	200	1.1E+00
	403	1.2E+00
	14	N.D.(<2.8E+00)
	31	N.D.(<2.9E+00)
亜鉛	60	N.D.(<2.8E+00)
	122	N.D.(<2.8E+00)
	200	N.D.(<2.8E+00)
	403	N.D.(<2.8E+00)

表 3.5.4-3 ベントナイト平衡水中での規格化浸出量 (Pb₃O₄原料)

図 3.5.4-2 ベントナイト平衡水中での規格化浸出率(Pb3O4 原料)

)ヨ)ま #0 88	規格化浸出率 / g·m ⁻² ·d ⁻¹
元素		ベントナイト平衡水
	14	2.6E-01
	31	1.9E-01
	60	1.3E-01
小ワ系	122	6.8E-02
	200	4.4E-02
	403	3.7E-02
	14	3.0E-01
	31	1.9E-01
コウ素	60	8.8E-02
	122	4.1E-02
	200	2.2E-02
	403	1.6E-02
	14	3.5E-03
	31	1.7E-03
<u>\$</u> /\	60	3.5E-04
2日	122	1.7E-04
	200	3.4E-04
	403	7.8E-05
	14	8.8E-02
	31	4.3E-02
ドスマス	60	1.8E-02
	122	5.4E-03
	200	5.3E-03
	403	3.0E-03
	14	N.D.(<2.0E-01)
	31	N.D.(<9.3E-02)
亜鉛	60	N.D.(<4.6E-02)
	122	N.D.(<2.3E-02)
	200	N.D.(<1.4E-02)
	403	N.D.(<6.8E-03)

表 3.5.4-4 ベントナイト平衡水中での規格化浸出率 (Pb₃O₄原料)

図 3.5.4-3 ベントナイト平衡水中での Eh 変化 (Pb₃O₄ 原料)

図 3.5.4-4 ベントナイト平衡水中での pH 変化 (Pb₃O₄ 原料)

2) 模擬降水系地下水

降水系地下水中での規格化浸出量及び規格化浸出率の経時変化を、図 3.5.4-5 と図 3.5.4-6 に示す。通常の BPI ガラス (PbO₂原料、小型)の結果は 120 日までの結果であるが、Pb₃O₄ をガラスフリット原料に使用 BPI ガラスは、ホウ素・ヨウ素とも、従来のガラスとほぼ同等 かやや低い浸出率となった。Eh は、-200mV を維持し(図 3.5.4-7)、pH は約 9 であった(図 3.5.4-8)。

図 3.5.4-5 模擬降水系地下水中での規格化浸出量(Pb₃O₄原料)

	浸洁坩問	規格化浸出量 / g·m ⁻²
元素		模擬降水系地下水
	14	7.6E-01
	31	1.0E+00
士卢夫	60	1.5E+00
小ワ糸	122	8.5E+00
	200	2.0E+00
	403	4.0E+00
	14	1.4E+00
	31	1.7E+00
コム車	60	1.7E+00
コワ糸	122	5.7E+00
	200	1.6E+00
	403	2.8E+00
	14	9.0E-03
	31	1.8E-02
¢۸	60	1.2E-02
亚口	122	4.5E-03
	200	1.9E-03
	403	2.8E-02
	14	1.1E+00
	31	1.1E+00
ビフフフ	60	1.0E+00
	122	5.9E-01
	200	7.8E-01
	403	1.1E+00
	14	N.D.(<2.8E+00)
	31	N.D.(<2.9E+00)
一 田 鉛	60	N.D.(<2.8E+00)
×H	122	N.D.(<2.8E+00)
	200	N.D.(<2.8E+00)
	403	N.D.(<2.8E+00)

表 3.5.4-5 模擬降水系地下水中での規格化浸出量(Pb₃O₄原料)

図 3.5.4-6 模擬降水系地下水中での規格化浸出率 (Pb₃O₄原料)

	闫注即明	規格化浸出率 /g·m ⁻² ·d ⁻¹			
元素	凌俱 朔 间 /日	模擬降水系地下水			
	14	5.4E-02			
	31	3.3E-02			
十古丰	60	2.5E-02			
	122	7.0E-02			
	200	1.0E-02			
	403	9.9E-03			
	14	1.0E-01			
	31	5.5E-02			
コム車	60	2.9E-02			
コワ糸	122	4.6E-02			
	200	7.9E-03			
	403	7.0E-03			
	14	6.4E-04			
	31	5.7E-04			
会八	60	2.0E-04			
ΨĽ	122	3.7E-05			
	200	9.7E-06			
	403	7.0E-05			
	14	7.6E-02			
	31	3.5E-02			
ビフフフ	60	1.7E-02			
	122	4.8E-03			
	200	3.9E-03			
	403	2.8E-03			
	14	N.D.(<2.0E-01)			
	31	N.D.(<9.3E-02)			
亜鉛	60	N.D.(<4.6E-02)			
	122	N.D.(<2.3E-02)			
	200	N.D.(<1.4E-02)			
	403	N.D.(<6.8E-03)			

表 3.5.4-6 模擬降水系地下水中での規格化浸出率(Pb₃O₄原料)

図 3.5.4-8 模擬降水系地下水中での pH 変化 (Pb₃O₄ 原料)

3) 模擬海水

ベントナイト平衡水中での規格化浸出量及び規格化浸出率の経時変化を、図 3.5.4-9 と図 3.5.4-10 に示す。比較のため、Pb₃O₄ をガラスフリット原料に使用した小型ガラスの試験結 果及び、通常の BPI ガラス (PbO₂ 原料)の結果も示す。Pb₃O₄ をガラスフリット原料に使 用 BPI ガラスは、ホウ素・ヨウ素とも、従来のガラスとほぼ同等かやや低い浸出率となった。 Eh は、-200mV を維持し(図 3.5.4-11)、pH は約 9 であった(図 3.5.4-12)。

図 3.5.4-9 模擬海水中での規格化浸出量 (Pb₃O₄原料)

	温洁期問	規格化浸出量 / g·m ⁻²					
元素	/日	模擬海水					
	14	2.7E+01					
	31	2.8E+01					
	60	3.3E+01					
小·/·禾	122	4.4E+01					
	200	4.5E+01					
	403	5.7E+01					
	14	4.3E+01					
	31	4.4E+01					
コウ表	60	4.2E+01					
	122	4.6E+01					
	200	4.8E+01					
	403	6.0E+01					
	14	6.7E-02					
	31	7.9E-02					
鉛	60	6.1E-02					
	122	4.3E-02					
	200	1.1E-02					
	403	2.4E-01					
	14	1.1E+01					
	31	1.1E+01					
ドフフフ	60	9.8E+00					
	122	5.8E+00					
	200	7.6E+00					
	403	1.1E+01					
	14	N.D.(<2.8E+00)					
	31	N.D.(<2.9E+00)					
亜鉛	60	N.D.(<2.8E+00)					
	122	N.D.(<2.8E+00)					
	200	N.D.(<2.8E+00)					
	403	N.D.(<2.8E+00)					

表 3.5.4-7 模擬海水中での規格化浸出量(Pb₃O₄原料)

図 3.5.4-10 模擬海水中での規格化浸出率 (Pb₃O₄原料)

元素	温洁期問	規格化浸出率 / g·m ⁻² ·d ⁻¹			
	/日	模擬海水			
	14	1.9E+00			
	31	9.0E-01			
士白麦	60	5.5E-01			
小ワ糸	122	3.6E-01			
	200	2.3E-01			
	403	1.4E-01			
	14	3.0E+00			
	31	1.4E+00			
口内表	60	7.0E-01			
コワ糸	122	3.7E-01			
	200	2.4E-01			
	403	1.5E-01			
	14	4.8E-03			
	31	2.5E-03			
鉛	60	1.0E-03			
	122	3.6E-04			
	200	5.6E-05			
	403	5.9E-04			
	14	7.7E-01			
	31	3.6E-01			
ドフフフ	60	1.6E-01			
	122	4.8E-02			
	200	3.8E-02			
	403	2.8E-02			
	14	N.D.(<2.0E-01)			
	31	N.D.(<9.3E-02)			
亜鉛	60	N.D.(<4.6E-02)			
	122	N.D.(<2.3E-02)			
	200	N.D.(<1.4E-02)			
	403	N.D.(<6.8E-03)			

表 3.5.4-8 模擬海水中での規格化浸出率 (Pb₃O₄原料)

図 3.5.4-12 模擬海中での pH 変化 (Pb₃O₄原料)

4) ホウ素とヨウ素溶解挙動

ホウ素とヨウ素の規格化浸出量の比較を図 3.5.4-13 に示す。鉛原料にかかわらず、ベント ナイト平衡水、降水系地下水、模擬海水いずれも、ホウ素とヨウ素は調和的に溶解している。

図 3.5.4-13 ホウ素とヨウ素の規格化浸出量の比較(Pb3O4原料)

3.5.5 長期浸漬試験

BPI ガラス固化体はセメント系材料を使用せず、ベントナイト系緩衝材を使用した処分施設を 想定していることから、模擬緩衝材間隙、降水系地下水及び海水系地下水に関する長期浸漬試験 データ(800日)を蓄積・整備した。平成 25 年度[5]までに、小型試験体、0.5L ガラス固化体及 び 2.5L ガラス固化体の 800 日までの浸漬データを取得し、浸漬データに大きな差異はないこと を確認しているが、さらに長期の 2,000 日の浸漬試験データを取得した。規格化浸出量及び規格 化浸出率の結果を、図 3.5.5-1 と図 3.5.5-2 に示す。また、ヨウ素の規格化浸出量と \sqrt{t} の関係を 図 3.5.5-3 に示すように、2000 日の結果も 800 日までの結果と同一直線上にプロットされた。 Eh は-200mV を維持(図 3.5.5-4)し、pH は約 10 であった(図 3.5.5-5)。

図 3.5.5-1 ベントナイト平衡水中での規格化浸出量の経時変化

		規格化浸出量 / g⋅m ⁻²				
元素	浸漬期間					
	/日	ベントナイト平衡水				
	14	8.0E+00				
	32	1.5E+01				
	60	2 1E+01				
	100	2.7E+01				
	122	3 8F+01				
ホウ素	202	2 9E+01				
	400	3 4F+01				
	601	4 0E+01				
	806	4.0E+01				
	2002	6 5E+01				
	2002	7.75+00				
	20	7.7E+00				
	52	1.1E+01				
	100	1.2E+01				
	100	1.7E+01				
ヨウ素	122	1.0E+01				
	202	1.0E+01				
	400	2.0E+01				
	601	1.9E+01				
	806	2.3E+U1				
	2002	3.2E+U1				
	14	7.2E-U2				
	32	ND (1.3E-02)				
	60	6.3E-02				
	100	ND(1.3E-02)				
鉛	122	4.8E-02				
	202	ND(1.3E-02)				
	400	4.3E-02				
	601	ND(1.3E-02)				
	806	ND(1.3E-02)				
	2002	4.7E-03				
	14	6.3E-01				
	32	7.7E-01				
	60	7.2E-01				
	100	8.6E-01				
ビスマス	122	4.8E-01				
	202	3.2E-01				
	400	1.8E+00				
	601	6.9E-01				
	806	ND(2.9E-01)				
	2002	8.0E-01				
	14	9.0E-01				
	32	ND (5.4E-01)				
	60	6.1E-01				
	100	ND(5.4E-01)				
亜鉛	122	8.2E-01				
	202	ND(5.4E-01)				
	400	ND(5.4E-01)				
	601	ND(5.4E-01)				
	806	ND(5.4E-01)				
	2002	ND(55E-01)				

表 3.5.5-1 ベントナイト平衡水中での規格化浸出量の経時変化

図 3.5.5-2 ベントナイト平衡水中での規格化浸出率の経時変化

	注注中的	規格化浸出率 / g⋅m ⁻² ⋅d ⁻¹		
元素	凌湏朔间 │日	ベントナイト平衡水		
	1.4	5.7E_01		
	14	<u> </u>		
	32	4.0E-01		
	60	3.4E-01		
	100	2.7E-01		
ホウ素	122	3.1E-01		
	202	1.4E-01		
	400	8.6E-02		
	601	6.7E-02		
	806	5.5E-02		
	2002	3.2E-02		
	14	5.5E-01		
	32	3.6E-01		
	60	2.0E-01		
	100	1.7E-01		
日ウ麦	122	8.3E-02		
- 2 31	202	7.9E-02		
	400	4.9E-02		
	601	3.2E-02		
	806	2.8E-02		
	2002	1.6E-02		
	14	5.2E-03		
	32	ND (4.0E-04)		
	60	1.0E-03		
	100	ND(1.3E-04)		
<u>ک</u> ۸	122	3.9E-04		
東口	202	ND(6.2E-05)		
	400	1.1E-04		
	601	ND(2.1E-05)		
	806	ND(1.6E-05)		
	2002	2.4E-06		
	14	4.5E-02		
	32	2.4E-02		
	60	1.2E-02		
	100	8.6E-03		
	122	4 0F-03		
ビスマス	202	1 6F-03		
	400	4 5F-03		
	400 601	1 1F-03		
	806	ND(3.6E-04)		
	2002	1 OF-04		
	11	4.0C 04 6.5E_02		
	32	ND (1 7F-02)		
	60	1 OF-02		
	100			
	100	6 7E_02		
亜鉛	122			
	202			
	400			
	001			
	806			
	2002	ND(2./E-04)		

表 3.5.5-2 ベントナイト平衡水中での規格化浸出率の経時変化

図 3.5.5-3 ヨウ素の規格化浸出量と平方根則の関係

図 3.5.5-4 ベントナイト平衡水中での Eh 変化

図 3.5.5-5 ベントナイト平衡水中での pH 変化

処分環境における BPI ガラス固化体からの長期のヨウ素浸出挙動の信頼性を確保するためには、 短期間の浸出データの単純な外挿では不十分であり、浸出メカニズムを理解したうえでモデルを 構築することが重要である。特に、本事業の開発目標であるヨウ素の浸出期間が 10 万年以上であ ることを適切に説明するためには、BPI ガラス固化体からのヨウ素放出評価モデルを構築し、信 頼性を高める必要がある。これまで、浸漬試験及び各種分析結果等に基づいて BPI ガラス固化体 からのヨウ素の溶出現象を確認したところ、ヨウ素の溶出傾向は浸漬液の性状に依存し、①可溶 性元素であるホウ素とヨウ素とが同じ速度で溶出する場合(調和溶解)と②ホウ素に比較してヨ ウ素の溶出が抑制される場合(非調和溶解)の2種類に大別されることがわかっている。その際、 ガラス表面に変質層が形成され、ガラス溶解及びヨウ素の溶出が進展することが分かっている。 その一方で BPI ガラス固化体は比較的、組成が単純であり、化学構造が把握しやすい特徴がある。 この特徴を活かし、ガラスの化学構造に基づいた溶解変質を再現する手法がヨウ素放出のモデル として期待されている。

これまで、ヨウ素放出モデルの微視的スケールによるアプローチとして、モンテカルロシミュ レーション(MC法)による表面変質層の形成過程の再現が試みられ、結合エネルギーや溶解度 等のパラメータに対する感度が把握されてきた。また、リバースモンテカルロ法(RMC法)の化 学構造解析結果を初期配置として解析できるように改良が進められており、継続的にモデルの高 度化が図られている。

平成 27 年度[7]は、反応移動連続体モデルについて、BPI ガラス成分と液相の成分である主要 なイオン等を含めた多成分系を扱えるようにモデルを改良した。具体的には、BPI ガラスを1次 元差分モデルでモデル化し、各セル内において各成分の液相中の濃度、空隙率及び固相中の量を 管理する解析モデルを検討し、浸漬試験結果の再現を試みた。

平成 28 年度[8]は、平成 27 年度までに実施した各種の浸漬試験に対するモンテカルロシミュレ ーションの適用範囲(再現性)について検討するとともに、モデルにおいて使用する結合エネル ギー等のパラメータの妥当性について考察した。また、反応移動連続体モデルについては浸漬試 験の再現について試みるとともに、海外関係機関との情報交換等を通じて拡散係数等の必要なパ ラメータやその適用性について検討した。

本年度は、多様な環境条件を想定した浸漬試験結果に基づき、モンテカルロシミュレーション のさらなる精度の向上を目指し、その適用範囲の拡大を目指すとともに、長期浸漬試験(2,000 日浸漬)の再現を試みた。また、反応移動連続体モデルについての適用性を検討し、その可能性 を判断する。必要に応じて、海外研究機関との情報交換を実施する。 3.6.1 Monte Carlo シミュレーションの高度化検討

(1) 多様な処分環境条件下におけるシミュレーション

1) ベントナイト平衡水及び模擬海水の浸漬試験の再現

ベントナイト平衡水及び模擬海水の浸漬試験結果とモンテカルロシミュレーション結果の 比較結果を図 3.6.1-1に示す。Pb溶解度及び結合に関するパラメータは、溶液条件によらず 同じとし、ホウ素の溶液中の濃度変化が浸漬試験結果に合うように変質層中の実効拡散係数 を求めた。

海水における変質層中の実効拡散係数は、ベントナイト平衡水に比較して5倍程度高くなった。これは、溶液によって変質層の鉱物や空隙構造が異なり、ベントナイト平衡水に浸漬したBPIガラスの変質層は海水に比較して緻密であることを示唆しているが、浸漬試験のデータのばらつきを考慮すると、倍率の数値に有意な差異はない可能性もある。

ホウ素の結合に関するパラメータを固定し、鉛の結合に関するパラメータを変化させた解 析を実施したが、結果に大きな差は見られなかった。モデル上、鉛の結合に関するパラメー タを大きくすると溶液中の濃度の立ち上がりが速くなるが、鉛の溶解度が低く、結合に関す るパラメータを多少変更しても、短時間で溶解度に到達するためである。溶解度に達した後 は、鉛の結合に関するパラメータを大きい場合、変質層中の鉛の単位時間当たりの溶解及び 沈殿量が増加するが、溶解度平衡に達しているため、変質層中の鉛の溶解量と沈殿量はほぼ 等しく、結果として大きな違いが生じないと考えられる。

上記の差異をより詳細に確認するために、小型試験体、0.5L固化体及び2.5L固化体の浸漬 試験結果を使用し、ホウ素、ヨウ素及び鉛の液相中の濃度の再現を試みた。小型試験体、0.5L 固化体及び2.5L固化体の浸漬試験結果には、多少のばらつきが生じている。今回は、2.5L固 化体を対象として再現することとした。(図 3.6.1-2参照)

ホウ素の液相中の濃度を再現するように実効拡散係数を設定すると、ヨウ素の液相中の濃 度は再現可能である。しかしながら、鉛については初期濃度が高いことから、十分に再現で きていない。これは、浸漬直後にガラスが溶解し、鉛が過飽和状態になるが、これが液相中 の炭酸塩等とハイドロセルサイトまたはセルサイトを形成し、液相中の濃度が低下すること から、特異的な挙動を示すためであると考えられる。また、一方、モンテカルロシミュレー ション計算では、鉛の溶解度を10⁻⁶ Mとしているためであり、今後見直しが必要である。

2) ベントナイト平衡水浸漬試験における炭酸塩の影響

ベントナイト平衡水に NaHCO₃ を 0.01M 及び 0.1M を添加した場合の浸漬試験データの 再現を試みた結果を図 3.6.1-3 及び図 3.6.1-4 に示す。

上記と同様に、ホウ素の液相中の濃度を再現するように実効拡散係数を設定すると、ヨウ 素の液相中の濃度は再現可能であるが、鉛については再現できていない。NaHCO3 を 0.01M 添加した試験では、シミュレーション結果は浸漬試験データよりも若干高いが、NaHCO3 を 0.1M 添加した試験では、浸漬試験データはシミュレーション結果よりも高くなる。これは、 NaHCO3 を 0.1M 添加した場合には、二次鉱物としてセルサイト量が増加し、溶解度が上昇 するためであると予想される。なお、地球化学計算結果に基づけば、セルサイトの溶解度は約2×10⁻⁶ M であり、ハイドロセルサイトの溶解度は8×10⁻⁷~2×10⁻⁶ M の範囲にある。

図 3.6.1-1 ベントナイト平衡水と模擬海水の浸漬試験結果とモンテカルロシミュレーション結果の比較

ベントナイト平衡水

図 3.6.1-2 ベントナイト平衡水と模擬海水の各種固化体の浸漬試験とモンテカルロシミュレーション結果の比較

3-89

図 3.6.1-3 ベントナイト平衡水+NaHCO3 0.01M 浸漬試験の再現

図 3.6.1-4 ベントナイト平衡水+NaHCO3 0.1M 浸漬試験の再現

(2) 長期浸漬試験結果の再現

2,000 日の浸漬試験結果(浸漬液:ベントナイト間隙水)が得られたことから、これの再現 性について検討した。Monte Carlo シミュレーションに使用した数値を表 3.6.1-1 に示す。ま た、Monte Carlo シミュレーション結果を図 3.6.1-5 及び図 3.6.1-6 に示す。

800日浸漬試験と使用したパラメータを変更することなく、2,000日の浸漬結果を良好に再現することができた。この期間内では、ガラスの溶解及び変質メカニズムは変化していないと考えられる。

また、変質層の厚さ及び成分比に関する解析結果を図 3.6.1-7 に示す。変質層の厚さは、浸 漬試験をほぼ再現できている。また、変質層の成分比分布は、変質層には B、Zn 及び I は存在 しないことを示している。

衣 5.0.1 1 Monte Carlo シミュレーションに使用した数値					
Pb 溶解度(M)	$1\! imes\!10^{-6}$				
結合に関するパラメータ	B=2.0, Pb=3.2, Bi=3.2, Zn=3.0				
実効拡散係数(m²/s)	$1.8 imes 10^{-19}$				

表 3.6.1-1 Monte Carlo シミュレーションに使用した数値

図 3.6.1-5 ホウ素濃度に関する Monte Carlo シミュレーション結果

図 3.6.1-6 ヨウ素、鉛、ビスマス及び鉛濃度に関する Monte Carlo シミュレーション結果

図 3.6.1-7 変質層厚さと組成割合に関する Monte Carlo シミュレーション結果

反応移動連続体モデルは、各種試験や分析結果に基づく、MCシミュレーションモデル及び地球 化学モデルで得られた知見([10],[11],[12],[13],[14])を統合したモデルであり、その概念図は図 3.6.2-1に示すとおりである。

図 3.6.2-1 性能評価モデルの構築に必要な構成要素と相互補完的な組合せの概念図

(1) 多成分モデルの検討

平成26年度[6]は、簡易なモデル(図 3.6.2-2参照)を作成し、変質層の厚みは時間の平方根 に比例することを確認するとともに、変質層内における水分子の実効拡散係数を 2×10^{-15} m²/s とした場合、変質層の厚みは800日で約10 μ mとなり、長期浸漬試験結果ともほぼ一致した。 10万年後で溶解したガラスの厚みは4.2mm、変質層の厚みは2.1mmとなった。この簡易なモデ ルでは、以下の仮定を設定していた。

- ・BPIガラスの溶解は水和反応によって起こり、変質層中の水分の拡散で律速される。
- ・変質層及び健全層は、それぞれ均一である。
- ・再沈殿する成分はPbのみである。
- ・変質層中の水分濃度は一定勾配であり、健全層の表面で水和反応により濃度0となる。

図 3.6.2-2 BPI ガラスの一次元簡易モデル

平成27年度[7]は、BPIガラスの成分であるPb、B、I、Bi及びZnと液相の成分である主要な イオン等を含めた多成分系を扱えるようにした。具体的には、BPIガラスを図 3.6.2-3に示すよ うな1次元差分モデルでモデル化し、各セル内で各成分(ガラス成分、H2O、CO3イオン等) の液相中の濃度、空隙率及び固相中の量を管理する解析モデルを検討した。

地層処分環境下におけるBPIガラスの変質溶解過程は、以下のように起こると想定される。

①BPIガラス健全相と液相との界面でのホウ酸やPb酸化物の水和反応による変質層の形成 ②変質層中での液相成分(H₂O、Pb、CO³⁻等の移行と固液界面の拡散移動

③変質層中及び変質層と液相界面でのBPIガラス成分の溶解・再沈殿及び二次鉱物(ハイ ドロセルサイトなど)の生成

変質層中での溶解・沈殿反応により空隙率等が変化し、変質層中での物質の拡散に影響を及 ぼす。その結果、ガラスの健全相の変質速度が影響を受け、健全相の変質速度や変質層と液相 界面での溶解・沈殿反応による変質層の厚みの変化も、拡散に影響を及ぼすと想定される。

そのため、BPIガラスを1次元差分モデルでモデル化し、各セル内における各成分の液相中の濃度、空隙率及び固相の量を管理する解析モデルを開発することにした。(図 3.6.2-3参照)

図 3.6.2-3 BPI ガラスの一次元差分モデル

溶解沈殿反応は変質層の液相中濃度の一次反応を仮定し、溶質は空隙率の関数として表され る実効拡散係数に基づき変質層の液相中を拡散するとすれば、変質層中の水分子及び化学種は 以下の反応拡散方程式で表現される。

	$\partial t \qquad \partial x^2 \qquad \partial x^2$
$C_{H_2O,gl}$	変質層中の水分子の空間・時間依存した濃度
X	位置 (χ=0 は、ガラス/水反応が始まる前のガラスの表面位置)
$D_{H_2O,eff}$	変質層内における水分子の実効拡散係数
k	ガラスの溶解・沈殿反応により消滅・生成する水分子の反応速度定数

 $\frac{\partial C_{H_2O,gl}}{\partial t} = D_{H_2O,eff} \frac{\delta^2 C_{H_2O,gl}}{\delta x^2} - k C_{H_2O,gl}$

$$\frac{\delta C_M}{\delta t} = D_{M,eff} \frac{\delta^2 C_M}{\delta x^2} - \sum_{i_m=1}^{n_m} f_{i_m}(k_{i_m M}, C_{M_0}, C_{M_1}, ...)$$
 C_M
 変質層中の化学種の空間・時間依存した濃度

 x
 位置 ($\chi = 0$ は、ガラス/水反応が始まる前のガラスの表面位置)

 $D_{M,eff}$
 変質層内における化学種の実効拡散係数

 $k_{i_m,M}$
 反応 im により消滅・生成する着目化学種の平衡定数に関する変数

 C_{M_N}
 反応に関与する他の化学種の濃度

(2) 浸出メカニズムと整合的なモデルの検討

昨年度までは、BPIガラスはPbO、B2O3、ZnO及びIの混合物とし、溶解反応は以下の式を仮 定していた。この式では、正の値が溶解反応を表している。tは時間、msは溶解した固相の量 [mol/s]、ksは速度定数[mol/m²/s]、Asは固相の表面積[m²]、Kは平衡定数、Qは液相中の活量積 である。

$$\frac{dm_s}{dt} = k_s A_s \left(1 - \frac{Q}{K} \right) \tag{1}$$

活量積Qは、例えば、PbO = Pb²⁺⁺H₂O - 2H+ならば、液相中の各成分の活量をa[成分]で表すと、次式で与えられる。

$$Q = \frac{a[Pb^{2+}]}{a[H^+]^2}$$

上記モデルでは、液相中の成分が希薄なほど溶解速度は速く、飽和状態に達するとガラスの 溶解は起きなくなり、変質層の進展も止まる。本年度では、昨年度までのモデルに時間依存項 を追加し、以下の式に改良した。

$$\frac{dm_s}{dt} = k_s A_s \left(1 - \frac{Q}{K} \right) + k_t t^{\alpha}$$
⁽²⁾

上式の右辺第二項が追加した時間依存項である。 $k_t = 0$ とすれば、昨年度までのモデルと同 ーとなる。 $k_t \neq 0$ の場合に、液相が飽和に達した後のガラスの溶解は、 $\alpha = -1/2$ であれば \sqrt{t} に比例して進行し、 $\alpha = 0$ とすれば一定速度 k_t で進行(時間tに比例)することになる。

現時点において考慮している液相中の化学種を表 3.6.2-1 に示す。固相の溶解沈殿反応については、表 3.6.2-2 に示す。

反応式	平衡定数(log10K)
$B_2O(OH)_5^-= 2B(OH)_3(aq) - H^+$	18.6851
$BO_2^- = B(OH)_3(aq) - H^+ - H_2O$	9.2449
$CO_2(aq) = HCO_3^- + H^+ - H_2O$	-6.3447
CO_{3^2} = $HCO_3^ H^+$	10.3288
$OH^{-}=H_2O-H^+$	13.9951
$Pb(CO_3)_2^- = Pb^{2++2} HCO_3^ 2H^+$	11.2576
$Pb(OH)_2(aq) = Pb^{2+}+2H_2O-2H^+$	17.0902
$Pb(OH)_{3}^{-} = Pb^{2+}+3H_{2}O-3H^{+}$	28.0852
$PbCO_3(aq) = Pb^{2+} + HCO_3^ H^+$	3.7488
$PbOH^+ = Pb^{2+} + H_2O - H^+$	7.6951

表 3.6.2-1 現時点において考慮している液相中の化学種

出典) THERMODYNAMIC DATABASE: thermo.com.V8.R6.230

表 3.6.2-2 現時点において考慮している固相

反応式	平衡定数(log10K)
$B_2O_3=2B(OH)_3(aq)-3H_2O$	5.5464
$PbO = Pb^{2+} + H_2O - 2H^+$	12.6388
ハイドロセルサイト Pb3(CO3)2(OH)2 = 3Pb ²⁺ +2HCO3 ⁻ +2H ₂ O-4H ⁺	1.8477
セルサイト PbCO3 = Pb ²⁺ +HCO3 ⁻ -H ⁺	-3.2091

出典) THERMODYNAMIC DATABASE: thermo.com.V8.R6.230

BPI ガラス固化体の変質層及び固相中の実効拡散係数 Dは取得できていないため、ホウケイ酸ガラスの変質層中のシリカの残存割合と実効拡散係数の関係[11]を参考とし、暫定的に実効拡散係数 $D_{eff} = D \cdot \epsilon^{3.7}$ で近似した。ここで、D はシリカ残留率が 0 の場合の実効拡散係数で D=1×10⁻¹⁴ m²/s であり、 ϵ は変質層の間隙率とした。

(3) 試解析結果

昨年度までは変質層が拡散抵抗になっておらず、液相中のガラス溶解成分の濃度は時間にほ ぼ比例していた。その原因の一つは、変質層の空隙率がハイドロセルサイト等の沈殿物で十分 小さくなっていないため、実効拡散係数が大きく低下せず、ガラスの溶解成分が液相側に拡散 で流出する。その対策として、一次元差分モデルのセル割厚さを小さくすることを試みたが、 変質層の空隙率が小さくなると、変質層中の液相体積も小さくなり、すなわち、液相中の化学 種量も少なくなる。この場合、わずかな溶解沈殿反応でも、液相中の化学種濃度は大きく変動 し、数値解析上の不安定さにより計算途中で計算不能になる。試解析結果を図 3.6.2-5 に示す が、数値解析が安定せず、400 日時点で計算が終了した。 今後は、海外研究機関におけるモデル化について詳細に調査するとともに、必要に応じてモ デルを改良し、長期的な溶出メカニズムを再現することを検討する必要があると考えられる。

(ハイドロセルサイトの沈殿)

3.7 まとめ

- 3.7.1 BPI ガラス固化体の化学構造の詳細検討
- (1) モンテカルロシミュレーションにおける結合エネルギーについて

リバースモンテカルロ法で再現した 3 次元構造モデルを対象とし、結合エネルギーの感度解 析を実施した。その結果、鉛(Pb)の結合エネルギーが大きくなれば、解離確率が小さくなり、 液相中の Pb の濃度上昇は緩やかになること、ホウ素(B)は隣接する Pb が溶解しないと解離し ないため、Pb と同様に濃度上昇が緩やかになることが確認された。また、BPI ガラス変質層に ついては、Pb の結合パラメータが大きくなれば、ガラスの変質が遅くなり、厚みが減少するこ とが確認された。

(2) BPI ガラス固化体の溶出モデルに関する基礎的検討

溶出の基本モデルの構築を想定し、表面構造の設定及び溶出の素過程のモデル化について基礎的検討を実施した。本年度の検討は、別途、進められている溶解のモンテカルロシミュレーションにおける結合エネルギーパラメータの意味付けを明らかにする目的と関連し、溶出化学種及びガラス表面のエネルギー評価による研究展開を想定するものである。

具体的には、溶出モデルの初期表面状態を設定し、溶出過程をモデル化することにより、BPI ガラスの構造モデルを用いた溶出過程のモデル化が可能であることが示されたが、表面変質層 を含めた溶出過程の表面構造を化学構造の観点で理解し、エネルギー的な側面で評価すること が今後の課題となる。また、溶出化学種の濃度を評価し、熱力学計算と結合することにより精 密なモデル化への展開が必要である。

3.7.2 BPI ガラス固化体からのヨウ素浸出機構の解明

本年度は、多様な地下水環境条件で得られた試験結果を整理し、BPI ガラス固化体の性能に関 する情報を体系的に構築するとともに、その寿命を評価した。また、ホウ素とヨウ素が非調和溶 解になる浸漬試験を実施し、PbI2が形成されるかどうかを固相分析により確認し、想定した仮定 及び地球化学シミュレーション結果との整合性を確認した。さらに、異なる温度条件で浸漬した 固化体や海水系ベントナイト平衡水に浸漬した固化体の固相分析を実施し、その影響を確認した。

(1) 地球化学計算に基づく試験条件の検討

ベントナイト平衡水に $H_2PO_4^-$ 及び HS^- が存在する場合に、鉛の制限固相に与える影響を解 析・評価した。ベントナイト平衡水中に PO_4^{3-} が存在する場合は、 PO_4^{3-} が 1E-7mM の場合は 制限固相への影響はないが、1E-6mM を超えるとセルサイト (PbCO₃) がパイロモルファイト (Pb₅(PO₄)₃Cl) に変化する。 PO_4^{3-} 濃度が上昇するにつれて、パイロモルファイトの領域が拡 がり、ハイドロセルサイト (Pb₃(CO₃)₂(OH)₂) の領域が狭まる。ただし、浸漬試験後の固相分 パイロモルファイトが生成するかどうかを確認する必要があると考えられる。

ベントナイト平衡水中にHS⁻が存在する場合はHS⁻が1E-9mMの場合は制限固相への影響 はないが、1E-8mMを超えるとハイドロセルサイトがガレナ(PbS)に変化する。HS⁻濃度が 上昇するにつれて、ガレナの領域が拡がり、セルサイトの領域が狭まる。ただし、浸漬試験の 固相分析ではガレナは確認できなかった。

PO₄³⁻及び HS⁻の添加量を増量した浸漬試験を実施し、パイロモルファイトおよびガレナが 生成するかどうかを確認するとともに、これらが保護層として機能するかどうかを確認する必 要があると考えられる。

(2) 多様な環境条件における浸漬試験

これまで試験結果から、変質層の主要成分は Pb の炭酸水酸化物であるハイドロセルサイト であり、ホウ素とヨウ素の規格化浸出量を√t で線形近似した場合、比例定数は炭酸イオン濃度 ともに増加することが示唆された。今年度は、炭酸イオン濃度の影響確認試験において、200 日と 400 日のデータが蓄積された。これまでの知見同様、ホウ素とヨウ素は調和的に溶解して おり、初期炭酸イオン濃度が高いほど、浸出量が高くなる傾向が認められた。浸漬初期には、 炭酸イオン濃度 0.1M 付近で浸出量が急増したが、400 日では、炭酸イオン濃度 0.07M 程度か ら浸出量が急増していた。炭酸イオン濃度 0.07M の条件では、当初はハイドロセルサイトの生 成が支配的であるが、浸漬期間が長くなるとセルサイトの析出が支配的となり、浸出量が増大 する可能性があることから、浸漬試験を継続実施し、固相分析及び 600 日や 800 日での浸漬結 果を見て判断する必要がある。

(3) 変質層の固相分析

温度依存性確認試験の試験体について、XRD および SEM 観察を行った。変質層はハイドロ セルサイトに帰結され、構成物質に差は認められなかったが、変質層の厚みは低温で浸漬した 試料ほど厚くなった。温度が高い場合に BPI ガラスの溶出または変質層の形成が抑制されるこ とについては、ハイドロセルサイトの成分である炭酸イオンの溶液への溶解度が水温上昇とと もに低下し、この影響が温度上昇によるハイドロセルサイトの反応速度の上昇を上回ったため であると予想される。

模擬海水を使用したベントナイト平衡水中のホウ素やヨウ素の浸出量は、模擬海水中より抑制された。模擬海水中での変質層は NaPb₂(CO₃)₂(OH)で構成されていたが、模擬海水を使用したベントナイト平衡水中では、ハイドロセルサイトの変質層の上に NaPb₂(CO₃)₂(OH)が析出していることが示唆された。

非調和条件で浸漬した固化体のうち、Ca(OH)2 (pH=9) に浸漬した固化体では、PbI2のピークは観察されず、これまで見られなかった新しい結晶相の形成ができていることが明らかになった。また、純水に Na2S を溶解した系に浸漬した固化体では、SEM・EDD および XRD の結果から、ヨウ素を含む新しい物質が検出され、電子エネルギー損失分光 (Electron Energy-Loss Spectroscopy: EELS) スペクトルを測定したところ、炭酸塩であることが判明した。

(4) 鉛丹をガラス原料とした 2.5L サイズの BPI ガラス固化体による浸漬試験

鉛丹(Pb₃O₄)をガラスフリット原料に使用した BPI ガラスの規格化浸出量は、従来の PbO₂ を原料とした BPI ガラスと同等の結果が得られた。

(5) 長期浸漬試験

ベントナイト平衡水中での 2,000 日の浸漬試験データが取得された。これまで 800 日までの データを取得したが、2000 日でのヨウ素の規格化浸出量と√tの関係は 800 日までの結果と同 一直線上にプロットされた。

3.7.3 BPI ガラス固化体からのヨウ素放出モデルの検討

本年度は、多様な環境条件を想定した浸漬試験結果に基づき、モンテカルロシミュレーション のさらなる精度の向上を目指し、その適用範囲の拡大を目指すとともに、長期浸漬試験(2,000 日浸漬)の再現を試みた。また、反応移動連続体モデルについての適用性を検討した。

(1) Monte Carlo シミュレーションの高度化検討

2,000 日の浸漬試験結果(浸漬液:ベントナイト間隙水)が得られたことから、これの再現 性について検討した。800 日浸漬試験と使用したパラメータを変更することなく、2,000 日の 浸漬結果を良好に再現することができたことから、この期間内では、ガラスの溶解及び変質メ カニズムは変化していないと考えられる。また、変質層の厚さについても、浸漬試験をほぼ再 現できたが、鉛の液相中の濃度は再現できていないことから、さらなる検討が必要である。

(2) 反応移動連続体モデルに関する調査検討

本年度は、昨年度までのモデルに時間依存項を追加し、浸漬試験結果の再現を試みたが、十 分に再現することはできなかった。今後は、液相中の化学種および固相の溶解沈殿反応につい てより詳細に検討するとともに、必要に応じてモデルを改良する必要があると考えられる。 [1] H. Kodama, A. Dyer, M. J. Hudson, P. A. Williams, Progress in Ion Exchange, The Royal Society of Chemistry, Cambridge, UK, 1997, p39

[2] H. Kodama; in Proc. of the Ion ICIE'95 Conf., Takamatsu Japan 1995, P285

[3] H. Kodama; Czechoslovak J. of PHysics, Vol. 49 (1999), Suppl. S1, P971

 [4] H. Kodama, N.Kabay; "Reactivity of Inorganic Anion Exchanger BiPbO₂NO₃ with Ions in Solution" Solid State Ionics 141-142 (2001) p603-607

[5] 公益財団法人 原子力環境整備促進・資金管理センター,平成 25 年度地層処分技術調査等事業 TRU 廃棄物処理・処分技術高度化開発 報告書(第1分冊) ーヨウ素 129 対策技術の信頼性向 上-,平成 26 年 3 月

[6] 公益財団法人 原子力環境整備促進・資金管理センター,平成 26 年度地層処分技術調査等事業 TRU 廃棄物処理・処分技術高度化開発 報告書(第1分冊) ーヨウ素 129 対策技術の信頼性向 上-,平成 27 年 3 月

[7] 公益財団法人 原子力環境整備促進・資金管理センター,平成 27 年度地層処分技術調査等事業 TRU 廃棄物処理・処分技術高度化開発 報告書(第1分冊) ーヨウ素 129 対策技術の信頼性向 上-,平成 28 年 3 月

[8] 公益財団法人 原子力環境整備促進・資金管理センター,平成 28 年度地層処分技術調査等事業 TRU 廃棄物処理・処分技術高度化開発 報告書(第1分冊) ーヨウ素 129 対策技術の信頼性向 上-,平成 29 年 3 月

[9] 笹本 広,油井 三和:高レベル放射性廃棄物地層処分性能評価における地下水水質設定の考え 方,サイクル機構技報, No.7, 2000

[10] F.Devreux, P.Barboux : Numerical modeling of glass dissolution : gel layer morphology, Journal of Nuclear Materials 298 (2001) 145-149.

[11] I. Ribet et.al, Long-Term Behavior of Nuclear Glass: The r(t) Operational Model, FR0201905

[12] Louise J. Criscenti et.al, Progress toward Bridging from Atomistic to Continuum Modeling to Predict Nuclear Waste Glass Dissolution, SANDIA REPORT, SAND2011-8250 (2011)

[13] P. Frugier, S. Gin, Y. Minet, T. Chave, B. Bonin, N. Godon, J.E. Lartigue, P. Jollivet, A. Ayral, L. de Windt and G. Santarini (2004): SON68 nuclear glass dissolution kinetics: Current state of knowledge and basis of the new GRAAL model, 326, 9-18, 2004, Journal of Nuclear Materials 380 (2008) 8–21.

[14] AMEC (2015): Review of glass dissolution models and application to UK glasses, RWM005105/AMEC/103498/02 Issue 2.

第4章 セメント固化技術

4.1 緒言

本セメント固化技術は、陰イオンに対する収着性の高いセメント鉱物であるエトリンガイト (AFt)やモノサルフェート(AFm)の含有量を高めることで、陰イオン形態のヨウ素を化学的 に閉じ込めるヨウ素固定化技術である。固化材料としてアルミナセメント、二水石膏を用い、混 練水中のヨウ素形態をヨウ素酸イオン(IO₃⁻)とすることで、ヨウ素をセメント固化体中に固定 化することができる(セメント固化体と称する)。

10万年以上の放出抑制期間を持つことを検証するため、本研究では主にセメント固化体のヨウ 素閉じ込め性能に関して検討してきた。セメント固化体の長期にわたるヨウ素閉じ込め性能を評 価するためには、閉じ込めおよび放出の機構を理解し、その機構に基づく解析評価モデルを構築 することが望まれる。これまで、セメント固化体からのヨウ素放出を検討するために、放出の機 構、ヨウ素の存在形態、セメント固化体中の水和物および評価上必要な物理量データの取得につ いての研究を進めてきた[1]~[10]。得られた結果からヨウ素放出挙動評価モデルを構築し、検証 データの取得と構築した評価モデルの改訂、環境影響を考慮した際のヨウ素放出挙動について検 討し、改訂後のヨウ素放出挙動評価モデルが幅広い環境条件下で適用できる可能性を示した[10] ~[12]。一方、実際に固化体を作製するには実廃棄物を想定した処理プロセスの成立性が重要とな る。処理プロセスの成立性に関してはプロセス関連データの取得と概念検討を実施し、200 L ド ラム缶相当で年間 54 体のセメント固化体を製作できるシステムの成立性を机上で確認した[7]~ [12]。

これらを踏まえ平成 25 年度から、セメント固化技術の実用化に向けた中期計画を策定、大型化 する場合の温度影響評価に着手した。その結果、スケールアップにともなってセメント内部温度 が上昇し、その結果、ヨウ素固定相が AFt からハイドロガーネット (HG) へ変化することが分 かった。したがって、実用化のためには発熱影響を考慮した処理プロセスや固化体の評価など難 しい課題が残っている[13]。その一方で、セメント固化体の長期評価のためのモデル構築について は、熱力学パラメータの設定や実験結果との整合性などの確認が行われており[12]、今後、構築し たモデルの適用性が課題として挙げられる。平成 28 年度にはそれらを踏まえた将来の開発課題 が示された[14]。平成 29 年度は、平成 28 年度までに挙げられた熱影響等の評価を踏またスケー ルアップや処理プロセス、さらに、これまでに構築した評価モデルの観点からの課題について、 技術開発の課題を改めて整理する。

4.2 セメント固化技術の概要

セメント固化体にはアルミナセメント(ALC)と二水石膏を混合した材料を用いる。主要成分 である ALC は一般的に用いられている普通ポルトランドセメント(OPC)と比較して、早強性・ 耐火性に優れた材料となっており、道路の急修理用など短時間に強度発現が求められる場合や耐 火物の硬化材として用いられる[2]。ALC の化学組成は表 4.2.1-1 のとおりであり、特徴の比較を 表 4.2.1-2 に示す。ALC の主要水和鉱物は CA (C: Ca, A: Al; カルシウムアルミネート)であ り、CA は水と反応して CAH₁₀, C₂AH₈, C₄AH₁₃, C₃AH₁₃および AH₃を生成する。このうち CAH₁₀, C₂AH₈, C₄AH₁₃は準安定鉱物であり、常温または比較的低温で生成し、温度が高い場合には安定 鉱物である C₃AH₆が生成する。ALC の凝結は比較的緩慢であるが、硬化は急速であり 1 日程度 までに強度を発現する性質がある。

	化学組成/ %				化合物組成 /%							
	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	CaO	MgO	SO3	FeO	C₃S	C ₂ S	C ₃ A	C ₄ AF	その他
普通ポルトランドセ メント (OPC)	22.2	5.1	3.2	65.1	1.4	1.5	_	53	24	8	10	3 (セッコウ)
アルミナセメント (ALC)	2.8	39.8	6.6	37.4	0.1	_	10.5	0	8	0	20	46 (CA) 12 (C ₁₂ A ₇)

表 4.2.1-1 普通ポルトランドセメントとアルミナセメントの化学組成[13]

表 4.2.1-2 普通ポルトランドセメントとアルミナセメントの特徴の比較

	普通ポルトランドセメント(OPC)	アルミナセメント (ALC)
主要水和反応	$C_3S + \pi \longrightarrow C_2SH_2$ $C_2S + \pi \longrightarrow C_3S_2H_{1.5}$ $C_3Sの反応は比較的早い (~7日)$ $C_2Sの反応は比較的遅い (~数ヵ月)$	単安定鉱物 ・ CAH ₁₀ → CAH ₁₀ ・ C ₂ AH ₈ → C ₂ AH ₈ ・ C ₂ AH ₈ → C ₂ AH ₈ ・ C ₄ AH ₁₃ → C ₄ AH ₁₃ + AH ₃ → C ₃ AH ₆ ・ C ₄ AH ₆ ・ C ₃ AH ₆ 単安定鉱物は比較的低温で生成 AH ₃ ALCの硬化反応は早い(~1日)
硬化体主要鉱物	CSH, ポルトランダイト 等	ハイドロガーネット,水酸化アルミニウム, モノサルフェート*,エトリンガイト* 等
特徴		耐火性,早強性

*) ヨウ素固化体では石膏の混合によりサルフェート系鉱物が主要鉱物として生成

セメント固化体は、液相成分をヨウ素酸ナトリウム溶液: 0.4 mol·dm^{-3} とし、また固相成分を ALC: CaSO4·2H₂O=100: 15.5(重量比)に配合し、液相/固相=0.56になるよう混練固化し たセメントである。これにより作製した固化体は、ヨウ素がアルミナフェライト系化合物に保持 され、長期間にわたってヨウ素の放出抑制が期待できる特徴がある。具体的には、セメント水和 物のひとつであるアルミン酸硫酸カルシウム系鉱物エトリンガイト(AFt: Ca6[Al(OH)6]2·24H2O(SO4)3·2H2O)、モノサルフェート(AFm: [Ca2Al(OH)6]2(SO4)·6H2O))が ヨウ素酸イオン(IO3⁻⁻)に対し、高い保持機能を有することを利用した固化手法である。図 4.2.1-1にセメント固化体のSEM像を示す。図中に示されている針状結晶がAFt、板状結晶がAFmで あり、これら鉱物にヨウ素が固定化される。本セメントはCaSO4·2H2Oを添加することによりヨ ウ素を固定化できる鉱物の生成量を増加させている。

図 4.2.1-1 セメント固化体の SEM 像

本セメント固化体の鉱物相組成は化学分離による鉱物相の定量方法に従い、概ね表 4.2.1-3 に 示すように定量されている。なお、HG については XRD による結晶構造は同定されていないた め、表 4.2.1-3 では HG 相当として割り当てている[10]。また、表 4.2.1-4 にセメント固化体の物 理性状の一例をまとめて示す。

組成		割合
アルミン酸硫酸カルシウム系鉱物 エトリンガイト(AFt)	$Ca_6[Al(OH)_6]_2 \cdot 24H_2O(SO_4)_3 \cdot 2H_2O$	$13 \ \%$
モノサルフェート (AFm)	$[Ca_2Al(OH)_6]_2(SO_4) \cdot 6H_2O$	21~%
ハイドロガーネット (HG)	3CaO ·Al ₂ O ₃ ·6H ₂ O	17~%
ギブサイト・アルミナゲル(Al 相)	Al(OH) ₃	33 %
その他	(未水和成分含む)	16~%

表 4.2.1-3 セメント固化体の組成

表 4.2.1-4 セメント固化体の物理性状の一例

混練特性	フロー値 / s	29.2, 27.8
	P ロート値 / s	12.2, 12.7
	粘度 / dPa·s	16, 12
硬化特性	沤灶吐用	凝結開始:45分
	埃尼和日本时间	凝結終了:120分
	ゴリージンガ本	3時間後:0%
	ノリーシンク卒	20 時間以上:0%
	膨張率	0.35%
固化体特性*)	一軸圧縮強度 / kg·cm ⁻²	30 日後:222
	密度 / g cm ⁻³	1.74
	外観	亀裂なし、良好

*) 直径 50 mm、高さ 100 mm の固化体で評価

図 4.2.1-2 に現状想定されているセメント固化体中でのヨウ素酸イオンの存在状態を示す。本 セメント中でのヨウ素の存在状態について、初期状態のセメント固化体では、ヨウ素はヨウ素酸 イオン (IO₃⁻) としてセメント固化体中の AFt (IO₃型 AFt) や AFm (IO₃型 AFm) 中に固定化 されていると考えられる。また、ヨウ素は、これらの鉱物の溶解にともなって放出されると考え られる。

同図の左側にAFt (3CaO·Al₂O₃·6H₂O)を単位 (Column:円柱状)としたセメント固化体の イメージを示す。Column と Column に陰イオンが取り込まれるすき間 (Channel) があり、こ の部分に硫酸イオンやヨウ素酸イオンが取りこまれる。同図右上には、SO₄·AFt の模式図を示す。 Column 断面を便宜上黄色にし、Channel 部に赤色で示した硫酸イオンが取り込まれている状態 を模擬して示している。また同図の右下には、同様に硫酸イオンと青色に示したヨウ素酸イオン が置換した IS-AFt の状態を模式的に示している。ヨウ素は主に IS-AFt の溶解に伴って放出され る傾向にある。AFt は環境条件に応じて徐々に溶解するため、ヨウ素は急激に放出されることな く長期にわたって放出が抑制され、被ばく量低減につながる。

図 4.2.1-2 セメント固化体中での IO3⁻存在状態の想定

セメントを用いた廃銀吸着材中のヨウ素のセメント固化プロセス概要を図 4.2.1-3 に示す。本 プロセスは、前処理プロセスと固定化プロセスとから構成される。

このうち前処理プロセスは、廃銀吸着材(使用済燃料のせん断・溶解時等にオフガス中に発生 する放射性ヨウ素を吸着する吸着材)からのヨウ素の脱離を硫化ナトリウム(Na₂S)による還元 処理で行なう脱離工程と、二次廃棄物低減の観点からヨウ素の酸化処理をオゾンにより IO₃⁻形態 に転換する転換工程からなる。オゾン酸化処理によって、液中のヨウ素のうち 99.5 %以上を IO₃ ⁻の形態に転換できることを確認している[6]。

固定化プロセスは、酸化後の IO₃⁻溶液の濃縮液を用いて混練固化を行うセメント固化工程であ る。混練の最適条件は、水/セメント比 0.56、濃縮溶液中の IO₃⁻濃度 0.4 mol·dm⁻³ としている。 実際のヨウ素固定化セメントサイズとして、200 L ドラム缶規模を想定して検討を進めてきてお り、これまでに 200 L ドラム缶規模の 1/10 スケールである 20 L ペール缶規模で固化体を作製し た実績がある。固化体にはひび割れ、ブリージングは確認されず、問題なく固化できることを確 認した。これらより、実規模想定サイズ (200 L ドラム缶規模以上)の固化体も作製可能と考えて いる[6]。

図 4.2.1-3 廃銀吸着材中のヨウ素のセメント固化プロセスの概要

4.3 技術開発課題

平成28年度までに以下の技術開発課題が示されており[15]、ここで改めて整理・指摘する。

4.3.1 発熱影響による固定化コンセプトの変化

セメント系材料は処分システムで幅広く使われる。従来の安全評価では、保守的に、セメント 系材料へのヨウ素収着量は小さく想定されているが、エトリンガイト (AFt) やモノサルフェート (AFm)、さらに珪酸カルシウム水和物 (CSH) などのセメント水和鉱物には一定のヨウ素収着 性が認められており、ヨウ素に対する閉じ込め・移行抑制が期待できる。したがって本研究開発 では、4.2 で述べたように、ヨウ素 (IO₃)と親和性の高いセメント水和鉱物 (エトリンガイト)の 含有量を増加させたアルミナセメントを用いて、ヨウ素をセメント鉱物中に固定化するコンセプ トを採用している。

平成 27 年度までの検討において、セメント固化体粉末試料の液交換試験(加速的な浸出試験) により、ヨウ素を含む水和鉱物中の変化およびヨウ素放出量を評価できることが示されている[6]。 また、鉱物の溶解平衡に基づいたヨウ素放出モデルを構築した。これにより、実験結果をおおむ ね再現できることを示した。その一方で、セメント水和時の発熱によって固化体特性が影響を受 けることがわかっており[13]、図 4.3.1・1 に示すような固化体サイズのスケールアップに課題が ある。具体的には図 4.3.1・2 に示すように、固化体サイズの 200 ml から 20 L への増大にともな って固化体内部温度が 30℃から 150℃に変化することにより、鉱物組成は変化しないが、ヨウ素 固定層がエトリンガイトからハイドロガーネット(HG) へ変化する。このことから、エトリンガ イトへのヨウ素固定化をコンセプトとした固化体評価の見直しが必要と考えられる。

図 4.3.1-1 固化体サイズのスケールアップと発熱の課題

図 4.3.1・2 発熱影響によるセメント固化体の鉱物組成とヨウ素固定相の変化

4.3.2 ハイドロガーネット固化体の評価

スケールアップにともない発熱影響を受けた固化体では、ヨウ素固定相がハイドロガーネット となる。このハイドロガーネット固化体について、これまで構築したヨウ素放出モデル[10]を用い てそのヨウ素放出特性を評価し、従来のコンセプトであるエトリンガイト固化体と比較した[13]。 その結果、図 4.3.2-1 に示すように、モデル上はエトリンガイト固化体との相違はないヨウ素放 出挙動を示す。このことは、両者が同じヨウ素放出特性を有するとも考えられるが、このモデル 自体にその要因を求めることが合理的と考えられるため、過年度までにモデルについての検証を 行った。

図 4.3.2-1 ヨウ素放出モデルによるエトリンガイト固化体と ハイドロガーネット固化体の比較評価

4.3.3 ヨウ素放出モデルの検証

セメント固化体からのヨウ素放出を評価するためのモデルとして、セメント固化体を構成する 鉱物の溶解平衡に基づくモデルが構築された[10]。このモデルでは、セメント固化体粉末の液交換 試験よる鉱物組成変化やヨウ素放出量を再現させるため、以下の仮定を行っている。

① ヨウ素の化学形はヨウ素酸(IO3⁻)のみ。ヨウ化物(I⁻)に還元されない

② ヨウ素は3つのセメント水和物のみに分配し、それぞれ固溶体を生成

a. エトリンガイト(IS-AFt): Ca₆(Al(OH)₆)₂.((IO₃)_{0.5}(OH)_{0.5}(SO₄)_{0.5})₃·24.5H₂O

b. モノサルフェート (IO₃·AFm): (CaO)₃·Al₂O₃·Ca(IO₃)₂·12H₂O

c. ハイドロガーネット (I-HG): Ca₃Al₂(OH)₈(IO₃)₄

d. IS-AFt、IO3-Afmの溶解度(log K)は、合成試料の溶解試験で取得

③ IS-AFt のみ再析出させない

④ HG がヨウ素を取り込むという知見はない。I-HG の log K はフィッティングパラメータ ①については熱力学的に矛盾しており、また、このような想定を行う場合、計算機への負荷が 極めて高く解析エラーの主要因となる。②については、このような鉱物組成であることの検証が 十分にできていない。特に、ハイドロガーネットについてはヨウ素を取り込む、もしくはヨウ素 と相互作用するという知見はこれまで得られおらず、このモデルでのみ取り扱っている鉱物であ る。さらに、エトリンガイトについてはヨウ素酸イオンの置換率に限界があることに論理的な裏 付けがない。一方で、モノサルフェートについてはヨウ素酸イオンの置換率に限界がなく、すべ ての陰イオン交換チャンネルを占めることができるとしている。③④については液交換試験にモ デル結果が合うようにフィッティングした結果であり、根拠はない。

また、このモデルは平衡モデルであり、液交換試験に対応したものである。したがって、液固

比の取り扱い、すなわち溶解平衡の計算回数が異なることにより、評価結果が影響する可能性が ある。例えば、液固比が1ずつ増加し1000まで平衡を繰り返した場合と、液固比1000の条件で 平衡に到達した場合では、同じ液固比であっても鉱物組成やヨウ素放出が異なる可能性がある。 なお、実際の処分環境では、地下水と固化体は液交換のようなバッチ式の接触によって相互作用 するわけではないことにも留意する必要がある。ここでは、解析的に液固比の影響を検討した。 図 4.3.3-1に液固比の1ml/gごとに増加させた場合と、所定の液固比での平衡との比較の解析結 果を示す[14]。この結果から、1ml/gごとに液交換した場合のほうが、ヨウ素の全量放出が極めて 早くなることがわかる。したがって、液固比の取扱の観点からもこのモデルの難しさが指摘され、 さらに処分場の設計や地下水の流動条件などから、平衡条件の取扱を決定させる必要がある。

以上のように、このヨウ素放出モデルには極めて大胆な仮定・想定が行われており、また平衡 条件の取り扱い(液固比)も難しく、モデルコンセプトの大幅な改善含め、その適用性は慎重に 見極める必要がある。

図 4.3.3-1 液固比の取り扱い検討におけるヨウ素放出割合の変化(純水系)[14]

4.3.4 セメント固化体の優位性評価

4.3.3 で記載したとおり、セメント固化体に適用しているヨウ素放出モデルには課題があった。 そこで、このモデルが適用できると仮定して、セメント固化体と類似固化体との比較を行った[14]。 比較対象は、第二次 TRU レポートでリファレンスとなっている廃銀吸着材を普通ポルトランド セメントと混練させた OPC セメント固化体である[16]。図 4.3.4-1 に解析結果を示す。この解析 では、OPC セメント固化体の組成およびヨウ素含有率を初期組成とし、液交換を模擬した溶解平 衡計算を行っている。その結果、ヨウ素の放出変遷については、純水においても海水系地下水

(SRHP)においても、セメント固化体と OPC 固化体とでほぼ同等となった。液相が海水系の場合は液固比約 100 でヨウ素が全量放出され、純水系では液固比約 1,000 でヨウ素が全量放出される結果となった。以上のように、このヨウ素放出モデルで評価する限り、セメント固化体とリファレンスである OPC 固化体に性能の差がなく、セメント固化体を代替技術として採用する優位

図 4.3.4-1 セメント固化体とリファレンス OPC 固化体のヨウ素放出のモデル比較[14]

4.4 まとめ

これまでエトリンガイトにヨウ素(ヨウ素酸イオン)を固定化させるというコンセプトのもと、 セメント固化体の開発を行ってきた。実験室スケールではセメント鉱物の溶解平衡に基づいた評 価によってヨウ素放出挙動に一定の説明性が得られてきた。しかし、実用化を見据えたスケール アップによって、発熱影響が顕著となり、以下のような開発課題が整理され明確になった。

- スケールアップにともなう発熱をマネジメントするため、冷却システムの導入や固化体 サイズなど、処理プロセスの見直しが必要である
- エトリンガイト相にヨウ素が固定されるとしたコンセプトを見直す必要がある
- これまで構築したヨウ素放出モデル(鉱物の溶解平衡モデル)は、大胆な仮定・想定に
 基づいており、適用性を慎重に見極める必要がある
- 海水系環境では、固化体性能が著しく低下する(炭酸イオン影響)

その一方で、これまでの検討によってセメント水和物とヨウ素の相互作用について重要な知見 が多く得られた。ヨウ素 129 対策としては、固化体によるソースターム評価だけではなく、ニア フィールド・ファーフィールド含めたトータルシステムの評価が重要であり、セメントとヨウ素 の関係は引き続き重要な課題である。特に、熱影響を受けたセメント水和物とヨウ素との相互作 用は重要な知見である。

さらに近年、諸外国においてはセメント系材料の特性評価が国際プロジェクトとして取り組ま れており、今後、原位置でのセメント材料中でのヨウ素の移行試験も計画されている。国内で も、セメント水和物へのヨウ素の取り込みや吸着などの研究も実施され、セメント系材料とヨウ 素の相互作用や移行遅延についての重要性が認識されるとともに、知見が得られつつある。した がって、今後は本技術開発でこれまでに得られた知見を活用し、特にヨウ素の移行特性(分配係 数など)の評価として、ヨウ素 129 に対する安全対策として成果を発展させて行く必要がある。 参考文献

- [1] "TRU 廃棄物処分技術検討書"、電気事業連合会、核燃料サイクル開発機構 (2000).
- [2] 財団法人 原子力環境整備促進・資金管理センター:平成 14 年度 地層処分技術調査等 TRU 廃棄物関連処分技術調査 ヨウ素固定化技術調査 報告書 (2002).
- [3] 財団法人 原子力環境整備促進・資金管理センター:平成 15 年度 地層処分技術調査等 TRU 廃棄物関連処分技術調査 ヨウ素固定化技術調査 報告書 (2003).
- [4] 財団法人 原子力環境整備促進・資金管理センター:平成 16 年度 地層処分技術調査等 TRU 廃棄物関連処分技術調査 ヨウ素固定化技術調査 報告書 (2004).
- [5] 財団法人 原子力環境整備促進・資金管理センター:平成 17 年度 地層処分技術調査等 TRU 廃棄物関連処分技術調査 ヨウ素固定化技術調査 報告書 (2005).
- [6] 財団法人 原子力環境整備促進・資金管理センター:平成 18 年度 地層処分技術調査等 TRU 廃棄物関連処分技術調査 ヨウ素固定化技術調査 報告書 (2006).
- [7] 財団法人 原子力環境整備促進・資金管理センター:平成 19 年度 地層処分技術調査等 TRU 廃棄物関連処分技術調査 ヨウ素固定化技術調査 報告書 (2007).
- [8] 財団法人 原子力環境整備促進・資金管理センター:平成 20 年度 地層処分技術調査等 TRU 廃棄物関連処分技術調査 ヨウ素固定化技術調査 報告書 (2008).
- [9] 財団法人 原子力環境整備促進・資金管理センター:平成 21 年度 地層処分技術調査等 TRU 廃棄物関連処分技術調査 ヨウ素固定化技術調査 報告書 (2009).
- [10] 公益財団法人 原子力環境整備促進·資金管理センター:平成 22 年度 地層処分技術調査等 TRU 廃棄物関連処分技術調査 ヨウ素固定化技術調査 報告書 (2010).
- [11] 公益財団法人 原子力環境整備促進·資金管理センター:平成 23 年度 地層処分技術調査等 TRU 廃棄物関連処分技術調査 ヨウ素固定化技術調査 報告書 (2011).
- [12] 公益財団法人 原子力環境整備促進・資金管理センター:平成24年度 地層処分技術調査等 TRU 廃棄物処分技術 ヨウ素・炭素処理・処分技術処理・処分技術開発 報告書(第1分冊)
 –ヨウ素固定化処理技術開発 平成25年3月(2013).
- [13] 公益財団法人 原子力環境整備促進・資金管理センター:平成 26 年度 地層処分技術調査等
 事業 TRU 廃棄物処理・処分技術高度化開発 報告書(第1分冊) —ヨウ素 129 対策技術の
 信頼性向上— 平成 27 年 3 月 (2015).
- [14] 公益財団法人 原子力環境整備促進・資金管理センター:平成 27 年度 地層処分技術調査等
 事業 TRU 廃棄物処理・処分技術高度化開発 報告書(第1分冊) —ヨウ素 129 対策技術の
 信頼性向上— 平成 28 年 3 月 (2016).
- [15] 公益財団法人 原子力環境整備促進・資金管理センター:平成 28 年度 地層処分技術調査等
 事業 TRU 廃棄物処理・処分技術高度化開発 報告書(第1分冊) —ヨウ素 129 対策技術の
 信頼性向上— 平成 29 年 3 月 (2017).
- [16] 電気事業連合会 核燃料サイクル開発機構:TRU 廃棄物処分技術検討書 -第2次TRU 廃 棄物処分研究開発とりまとめ-(2005)

第5章 まとめ

5.1 アルミナ固化技術のまとめ

アルミナ固化体の環境影響評価のうち、純水、模擬降水系地下水、ベントナイト平衡水等では、 500日程度の長期の試験を行っても、規格化浸出量は 10g・dm⁻²程度と十分に低い値を示し、こ れらの条件でのヨウ素保持性能は高いと考えられた。これらの組成の中で特にヨウ素の放出を加 速するような成分は無いと考えられた。また、アルミナ固化体の環境影響評価のうち、その範囲 を限定する因子は、溶液中の HS⁻濃度であるが、飽和 Ca(OH)₂条件でヨウ素放出が低下する傾向 が見られ、Ca(OH)₂共存下で pH12.5、[HS⁻]= 3×10^{-2} mol・dm⁻³の条件でもヨウ素の規格化浸 出量は、NaOH で pH12.5 に調整した硫黄濃度の一桁低い[HS⁻]= 3×10^{-3} mol・dm⁻³の条件と 同程度に抑制されることが分かった。したがって、セメント環境下でのヨウ素溶出抑制の可能性 が示された。さらに、Ca イオンの存在は Ca(OH)₂の飽和条件([Ca²⁺]= 2×10^{-2} mol・dm⁻³) だ けでなく、[Ca²⁺]= 2×10^{-3} mol・dm⁻³の条件でもヨウ素放出抑制効果が見られた。Ca 存在下で のヨウ素放出機構については、未解明であり今後の課題であるが、ハイドロガーネット等の二次 固相の生成による物質移動の阻害によるものと推測される。

次に、固化体からのヨウ素放出挙動のモデルを確認するため、アルミナ混合固化体の内部構造 を詳細に観察した。浸漬試験後の固化体を用い、溶液浸入部と未浸入部の比較を行った。溶液未 浸入部では空隙は少なく、アルミナと AgI が密接に充填されているが、溶液浸入部ではアルミナ の結晶の形を残しながら空隙が生成されている。アルミナ・アルミナの粒界あるいはアルミナ・AgI の粒界および AgI が溶けて液の浸入路が形成しているヨウ素放出挙動のモデルが妥当であると考 えられた。そのため、マトリクスからの薬剤放出に関する理論式、および粒界腐食を考慮したセ ルオートマトン法によるシミュレーション解析を行い、固化体浸漬条件の各種パラメータの影響 について説明性の検討を行った。その結果、HS-濃度の影響や空隙率の影響等については単純な 反応・拡散に基づく理論式で説明することができたが、pH の影響については、説明できなかった。 しかし、粒界の溶解と新たな物質移動経路の生成を考慮したセルオートマトン解析によって、pH の影響も説明することができた。

以上のように、これまでの検討において、アルミナ固化体の製造条件の確立、固化体からのヨ ウ素放出挙動についての基礎的な知見が得られた。今後の課題としては、基礎試験から、一段階 進めた検討が必要と思われ、固化体の製造では、実機で想定している 40dm³サイズの固化体製造 に向けてスケールアップ検討が必要であると考えられる。浸漬試験については、より長期のデー タ取得が求められるが、加速条件等実験方法を考慮した実験データの採取が必要と考えられる。 ヨウ素放出挙動モデルについては、アルミナマトリクス粒界の溶解速度データの取得や、処分環 境で想定される Ca の共存環境で期待されるヨウ素放出の抑制効果について、二次固相の直接観 察等によるメカニズムの把握、これらを踏まえたモデルの精度向上が必要であると考えられる。

5.2 BPI ガラス固化技術のまとめ

BPI ガラス固化体の化学構造の詳細検討として、リバースモンテカルロ法で再現した3次元構 造モデルを対象とし、結合エネルギーの感度解析を実施した結果、鉛の結合エネルギーが大きく なれば、液相中の鉛およびホウ素の濃度上昇は緩やかになるとともに、ガラスの変質が遅くなり、 厚みが減少することが確認された。また、BPI ガラス固化体の溶出モデルを構築するために、表 面構造の設定及び溶出の素過程のモデル化について検討した結果、BPI ガラスの構造モデルを用 いた溶出過程のモデル化が可能であることが示された。しかしながら、表面変質層を含めた溶出 過程の表面構造を化学構造の観点で理解し、エネルギー的な側面で評価するとともに、溶出化学 種の濃度を評価し、熱力学計算と結合することにより精密なモデル化への展開が必要である。

BPI ガラス固化体からのヨウ素浸出機構を解明するため、多様な地下水環境条件で得られた試 験結果を整理し、BPI ガラス固化体の性能に関する情報を体系的に構築するとともに、その寿命 を評価した。また、ホウ素とヨウ素が非調和溶解になる浸漬試験を実施し、PbI2が形成されるか どうかを固相分析により確認し、想定した仮定及び地球化学シミュレーション結果との整合性を 確認するとともに、異なる温度条件で浸漬した固化体や海水系ベントナイト平衡水に浸漬した固 化体の固相分析を実施し、その影響を確認した。さらに、ベントナイト平衡水中での 2,000 日の 浸漬試験データが取得された。今後は、PO4³⁻及び HS⁻の添加量を増量した浸漬試験を実施し、 パイロモルファイト及びガレナが生成するかどうかを確認するとともに、これらが保護層として 機能するかどうかを確認する必要があると考えられる。また、炭酸塩影響確認試験を継続実施し、 ハイドロセルサイトの生成が長期的に支配的であるかどうかを観察する必要がある。

BPI ガラス固化体からのヨウ素放出モデルの検討として、Monte Carlo シミュレーションについては、長期浸漬試験結果の再現性を検討したところ、800日浸漬試験と使用したパラメータを変更することなく、2,000日の浸漬結果を良好に再現することができた。また、変質層の厚さについても、浸漬試験をほぼ再現できたが、鉛の液相中の濃度は再現できていないことから、さらなる検討が必要である。反応移動連続体モデルについては、昨年度までのモデルに時間依存項を追加し、浸漬試験結果の再現を試みたが、十分に再現することはできなかった。今後は、液相中の化学種および固相の溶解沈殿反応についてより詳細に検討するとともに、必要に応じてモデルを改良する必要があると考えられる。

5.3 セメント固化技術のまとめ

本研究において、これまでエトリンガイトにヨウ素(ヨウ素酸イオン)を固定化させるという コンセプトのもと、セメント固化体の開発を行ってきた。実験室スケールの固化体評価において、 セメント鉱物の溶解平衡に基づいた評価によってヨウ素放出挙動に一定の説明性が得られてきた。 しかし、実用化を見据えたスケールアップによって、発熱影響が顕著となり、冷却システムの導 入や固化体サイズといった処理プロセスの見直しが必要となった。また、エトリンガイト相にヨ ウ素が固定されるとしたコンセプトの見直しや、大胆な仮定・想定に基づいて構築したヨウ素放 出モデル(鉱物の溶解平衡モデル)の見極め、さらに、海水系環境における固化体性能の著しい 低下といった課題が明らかになった。 その一方で、これまでの検討によってセメント水和物とヨウ素の相互作用について重要な知見 が多く得られた。ヨウ素 129 対策としては、固化体によるソースターム評価だけではなく、ニア フィールド・ファーフィールド含めたトータルシステムの評価が重要であり、セメントとヨウ素 の関係は引き続き重要な課題である。特に、熱影響を受けたセメント水和物とヨウ素との相互作 用は重要な知見である。したがって、今後はこれまで得られた知見を活用し、特にヨウ素の移行 特性(分配係数など)の評価として、成果を発展させて行く必要がある。

5.4 ヨウ素 129 対策技術の総合評価

本技術開発は、TRU 廃棄物の地層処分において最も高い被ばく影響を与えるヨウ素 129 を長期 にわたり閉じこめる代替固化体(アルミナ固化体、BPI ガラス固 化体、セメント固化体)を開発 し、その影響を低減することを目的として実施した。これまでの試験や解析等において、ヨウ素 固化体の溶出試験や固化方法の改良等を行い、アルミナ固化体の空隙率の低減、BPI ガラス固化 体のヨウ素浸出への地下水中の溶存イオン種の影響、セメント固化体中のヨウ素固定鉱物相を確 認するなどの成果を得ることで、ヨウ素 129 の放出を抑制できることを確認した。特に、アルミ ナ固化体および BPI ガラス固化体については、ヨウ素浸出特性の観点から環境適応性の範囲等を 明らかにすることができ、それぞれ硫酸イオンや炭酸イオンの影響範囲が特定された。一方、セ メント固化技術では、処理プロセスに起因するヨウ素固定化のコンセプトの見直しの必要性が明 らかになったが、セメント水和物とヨウ素の相互作用について重要な知見が多く得られ、固化体 によるソースターム評価だけではなく、ニアフィールド・ファーフィールド含めた総合的なヨウ 素 129 対策として、今後、期待・発展性のある成果が得られた。以上のように、各代替技術の特 性の応じた評価技術や環境適応性について進展が得られ、今後は再処理事業や処分立地選定など 事業の進展に応じて、スケールアップやサイトスペシフィックな環境適性など、実用化へ向けた 継続的な技術開発が期待される。さらに、固化体開発によるソースターム低減だけではなく、移 行挙動や生活圏まで含めた総合的なヨウ素 129 対策技術への取組が将来的に必要となる。