平成28年度放射性廃棄物共通技術調查等事業

放射性核種生物圈移行評価高度化開発

平成29年3月

国立研究開発法人

量子科学技術研究開発機構放射線医学総合研究所

平成28年度 放射性核種生物圈移行評価高度化開発

目 次

第1章	本調査の目的1
第 2章	気候変動を考慮した環境移行パラメータ(TF および K」)データベースの
∦ □ +	構筑 3
2.1.	はじめに 3
2.2.	環境移行パラメータと気温の影響に係る文献調査 5
2.2.1.	+ 壌-植物間移行係数(TF)に対する気温の影響調査
2.2.1	1.1 文献調査結果のデータベース化のための項目抽出
2.2.1	1.2 文献内容の入力とデータチェック
2.2.2.	移行係数に係る文献調査:土壌,玄米
2.3.	気温が相対的に低い地域と高い地域における土壌−農作物間移行係数 (TF)
	データの取得
2.3.1.	玄米およびジャガイモ土壌-農作物間移行係数(TF)データの取得7
2.3.1	1.1. 採取場所の選択と採取方法
2.3.1	1.2. 土壌試料の前処理方法
2.3.1	1.3. 農作物試料の前処理方法
2.3.1	1.4. 土壌の物理化学的特性8
2.3.1	1.5. 土壌中の安定元素の分析
2.3.1	1.6. 農作物中の安定元素の分析10
2.3.1	1.7. その他の元素の定量11
2.3.1	1.8. 平成 28 年度に採取した試料の分析結果12
2.3.2.	平成 27 年度に採取した試料のデータ追加12
2.3.3.	気温が相対的に低い地域と高い地域における土壌−農作物間移行係数 (TF)
	データのまとめ12
2.4.	環境移行パラメータ変動要因の解析14
2.4.1.	水田土壌および玄米中の元素濃度比較14
2.4.2.	玄米移行係数の比較14
2.4.3.	玄米移行係数のまとめ14
2.5.	土壌-土壌溶液間分配係数(K _d)に対する気温の影響調査16
2.5.1.	30℃における土壌-土壌溶液間分配係数の実験方法の検討16
2.5.2.	30℃における土壌-土壌溶液間分配係数の実験方法
2.5.3.	30°C における K _d - ¹³⁷ Cs の測定結果
2.5.4.	30°Cにおける水田土壌の K _d - ¹³⁷ Cs のまとめ17
2.6.	放射性セシウムの環境移行に関わる福島第一原発事故後のデータ18

2.6.1. 植物中の放射性 Cs 減少率の時間変化	18
2.6.1.1. 材料および測定方法	18
2.6.1.2. 植物中放射性 Cs のフィッティング結果	18
2.6.2.野生生物への Cs 移行係数	19
2.6.2.1. イノシシ	19
2.6.2.2. ニホンジカ	20
2.6.2.3. ツキノワグマ	20
2.6.2.4. 野生生物の T _{ag} のまとめ	20
2.6.3. 淡水魚中の ¹³⁷ Cs 濃度	21
2.6.3.1. 印旛沼の基本情報と周辺域の汚染状況	21
2.6.3.2. 印旛沼で採取された淡水魚の ¹³⁷ Cs 濃度	21
2.6.3.3. 栄養段階推定のための予備調査	23
2. 7. おわりに	25
2.7.1. TF に対する気温の影響に関する文献調査	25
2.7.2. 気温が相対的に低い地域と高い地域における土壌-農作物間移行係数(FF) 25
2.7.3. 環境移行パラメータ(TF)の変動要因の解析	26
2.7.4. 土壌-土壌溶液間分配係数に対する気温の影響調査	26
2.7.5. 福島第一原発事故後の放射性 Cs の環境移行調査研究のまとめ	26
引用文献	27
2 補 1 根 圏 城 泪 庶 と 気 泪 の 関 係	30
2-111. 低固线通及CX通》因示	
2-111. 低固氮温度 C 、 温 O 因 际	
第3章 放射性炭素の移行パラメータに対する微生物活動の影響調査	59
 第3章 放射性炭素の移行パラメータに対する微生物活動の影響調査	59 59
 第3章 放射性炭素の移行パラメータに対する微生物活動の影響調査 3.1.はじめに 引用文献 	59 59 60
 第3章 放射性炭素の移行パラメータに対する微生物活動の影響調査 3.1.はじめに 引用文献 3.2.¹⁴Cガス発生量に関わる要因 	59 59 60 61
 第3章 放射性炭素の移行パラメータに対する微生物活動の影響調査 3.1.はじめに 引用文献 3.2.¹⁴Cガス発生量に関わる要因 3.2.1.¹⁴CO₂ガス発生量に対する¹⁴C源の初期濃度の効果 	59 60 61 61
 第3章 放射性炭素の移行パラメータに対する微生物活動の影響調査 3.1.はじめに 引用文献 3.2.¹⁴Cガス発生量に関わる要因 3.2.1.¹⁴CO₂ガス発生量に対する¹⁴C源の初期濃度の効果 3.2.1.1.¹⁴Cガス発生量に対する初期¹⁴C濃度の効果 	59 60 61 61 61
 第3章 放射性炭素の移行パラメータに対する微生物活動の影響調査	59 60 61 61 61 62
 第3章 放射性炭素の移行パラメータに対する微生物活動の影響調査 3.1.はじめに 引用文献 3.2.¹⁴Cガス発生量に関わる要因 3.2.1.¹⁴CO₂ガス発生量に対する¹⁴C源の初期濃度の効果 3.2.1.1.¹⁴Cガス発生量に対する初期¹⁴C濃度の効果 3.2.1.2. 温度変化に伴う最大¹⁴Cガス発生量 	59 60 61 61 61 62 63
 第3章 放射性炭素の移行パラメータに対する微生物活動の影響調査	59 60 61 61 61 62 63 63
 第3章 放射性炭素の移行パラメータに対する微生物活動の影響調査	59 60 61 61 61 62 63 63 65
 第3章 放射性炭素の移行パラメータに対する微生物活動の影響調査	59 60 61 61 61 62 63 65 65
 第3章 放射性炭素の移行パラメータに対する微生物活動の影響調査	59 60 61 61 61 63 63 65 65
 第3章 放射性炭素の移行パラメータに対する微生物活動の影響調査	59 60 61 61 62 63 65 65 65 66 67
 第3章 放射性炭素の移行パラメータに対する微生物活動の影響調査	59 60 61 61 62 63 63 65 65 65 67 67
 第3章 放射性炭素の移行パラメータに対する微生物活動の影響調査	59 60 61 61 61 63 63 65 65 65 65 67 67 68
 第3章 放射性炭素の移行パラメータに対する微生物活動の影響調査	59 60 61 61 61 62 63 65 65 65 65 67 67 67 67 67
 第3章 放射性炭素の移行パラメータに対する微生物活動の影響調査	59 60 61 61 62 63 63 65 65 66 67 67 67 67 67 67 67 70
 第3章 放射性炭素の移行パラメータに対する微生物活動の影響調査	59 60 61 61 61 62 63 63 65 65 65 65 67 67 67 67 67 67 70 70

3.4.1.3. 収穫時における穂部内 ¹⁴ C量と環境移行パラメータとの相関分析	71
3.4.2. 近傍大気 - 環境大気の放射性炭素移行半減期の精緻化	72
3.4.2.1. 圃場における微気象観測	72
3.4.2.2. 群落内部における CO2 濃度変化	75
3.4.3. 近傍大気 - 環境大気間の移行パラメータの検討	75
3.4.3.1. 移行パラメータの試算	76
3.4.3.2. 精緻化したモデルによる基本解析および感度解析	77
3.4.3.3. 精緻化したモデルによる不確実さ伝播解析	77
3.4.3.4. 土壌からイネへの ¹⁴ C移行係数の試算	78
3.4.4. まとめ	79
引用文献	79
3. 5. おわりに	81
第4章 重要核種(Pu, Am, Th および Cl)の超高精度分析による環境移行	
パラメータ収集	119
4. 1. はじめに	119
4.2. 重要核種 Am の超高精度分析法開発	120
4.2.1. 土壌試料中 Am 高精度質量分析法の確立	120
4.2.1.1. 分析装置	121
4.2.1.2. Aridus-SF-ICP-MS 分析装置の最適化	121
4.2.1.3. 測定試料	122
4.2.1.4. 試薬	122
4.2.1.5. 化学分離法の検討	122
4.2.1.6. 分析法の確立	124
4.2.2. 畑土壤中 ²⁴¹ Am 濃度測定	125
4.2.2.1. 測定試料	125
4.2.2.2. 実験手順	125
4.2.2.3. 結果および考察	125
引用文献	127
4. 3. 米中 Th 濃度の測定	130
4.3.1. はじめに	130
4.3.2. 測定試料	130
4.3.3. 実験手順	130
4.3.4. 結果および考察	131
引用文献	132
4. 4. 土壌中塩素の超高精度分析法開発	133
4.4.1. はじめに	133
4.4.2. 土壌試料からの TMAH による塩素抽出率	133
4.4.3. TMAH 抽出溶液の ICP-MS 測定前の処理	134
4.4.4. 農作物および土壌試料中の塩素分析結果と TF	134

4.4.5. 土壌中塩素の超高精度分析法のまとめ	
引用文献	
4. 5. Puの土壌-米間移行係数データの追加	
4.5.1. はじめに	
4.5.2. 試料の前処理	
4.5.2.1. 測定試料	
4.5.2.2. 試薬	
4.5.2.3. Pu の化学分離と分析	
4.5.3. 結果および考察	
4.5.3.1. 土壌サンプル中の Pu 濃度と汚染源の識別	
4.5.3.2. 米中 Pu 濃度	
4.5.3.3.Pu の土壌-米間移行係数	
引用文献	
4. 6. 文献調査による Pu, Am, Th および Cl の土壌-農作物間移行係数	
4.6.1. はじめに	
4.6.2. データ収集および統計解析	141
4.6.3. IAEA TRS-472 との比較	
引用文献	
4. 7. まとめ	147
4.7.1. Am および Cl の超高精度分析	147
4.7.1.1. 土壌中 Am の超高精度分析法の確立	147
4.7.1.2. 塩素の超高精度分析	147
4.7.2. 米中 Th 濃度測定	147
4.7.3. Pu の土壌-米間移行係数の収集	
第5章 まとめ	
5. 1. はじめに	
5.2.気候変動を考慮した環境移行パラメータ(TFおよび K _d)データベー	・ス
の構築	
5.2.1. TF に対する気温の影響に関する文献調査	
5.2.2. 気温が相対的に低い地域と高い地域における土壌-農作物間移行係数	ά (TF) 172
5.2.3. 環境移行パラメータ (TF) の変動要因の解析	
5.2.4. 土壌-土壌溶液間分配係数(K _d)に対する気温の影響調査	
5.2.5 福島第一原発事故後の放射性 Cs の環境移行調査研究	
5.3.放射性炭素の移行パラメータに対する微生物活動の影響調査	
5.3.1. ¹⁴ C ガス発生量に関わる要因	
5.3.2. 水田土壌微生物群集に対する温度効果	
5.3.3. 水稲全体モデルの精緻化	
5. 4. 重要核種 (Pu, Am, Th および Cl) の超高精度分析による環境移行パ	ラ
メータ収集	

	の超高精度分析	および Cl	.1 Am	5.
析法の確立177	Amの超高精度	土壌中の	.4.1.1.	
	高精度分析法開	塩素の超	.4.1.2.	
	行係数の収集	_壤-米間移	.2. ±	5.

放射性核種生物圈移行評価高度化開発評価検討委員会	179
放射性核種生物圈移行評価高度化開発評価検討委員	
平成 28 年度放射性核種生物圈移行評価高度化開発評価検討委員会開催日	
謝辞	

図 表 リ ス ト

第2章 気候変動を考慮した環境移行パラメータ(TFおよびK_d)データベースの構築

表	2.3-1	農作物試料の採取場所と採取日	.31
表	2.3-2	農作物採取圃場の土壤試料採取日と土壤群	.31
表	2.3-3	玄米の水分含量と精米歩合	.32
表	2.3-4	ジャガイモの廃棄率と可食部の水分含量	.32
表	2.3-5	試料到着時の状態 (1) 玄米	.33
表	2.3-6	試料到着時の状態 (2) ジャガイモ	.35
表	2.3-7	平成 28 年度に採取した土壌試料の物理化学的特性	.37
表	2.3-8	平成 14-18 年度および平成 26-28 年度に採取した土壌試料の物理化学	
		特性の比較	.37
表	2.3-9	平成 28 年度に採取した土壌試料の元素濃度	.38
表	2.3-10	平成 28 年度に採取した農作物試料の元素濃度	.39
表	2.3-11	平成 28 年度に採取した農作物の移行係数	.40
表	2.3-12	平成 27 年度に採取した土壌の希土類元素等の濃度	.41
表	2.3-13	平成 27 年度に採取した農作物の希土類元素等の濃度	.42
表	2.3-14	平成 27 年度に採取した農作物の希土類元素等の移行係数	.43
表	2.4-1	年平均気温と5-9月の平均気温(理科年表(2016)データ使用)	.44
表	2.4-2	比較的寒冷地および温暖地で採取した水田土壌中元素濃度等の比較	.44
表	2.4-3	比較的寒冷地および温暖地で採取した玄米中元素濃度等の比較	.45
表	2.4-4	比較的寒冷地および温暖地における玄米への移行係数の比較	.45
表	2.5-1	実験に用いた土壌試料の特性	.46
表	2.5-2	水田土壌の Cs の K _d (30°C) および他の温度での K _d	.46
表	2.6-1	植物中 ¹³⁷ Cs 濃度の経時変化のフィッティングに使用したパラメータ値	.47
表	2.6-2	野生生物への放射性 Csの面積当たりの移行係数(T _{ag} : m ² kg ⁻¹)	.47
表	2.6-3	印旛沼の基本情報	.47
表	2.6-4	捕獲した魚の全長と湿重	.47
表	2.6-5	捕獲した魚の耳石解析による誕生時推定と ¹³⁷ Cs 濃度	.48
表	2.6-6	δ ¹³ C と δ ¹⁵ N の分析に用いた試料	.48
表	2s-1	2015 年および 2016 年の気温と地温の平均値と範囲	.48
义	2.2-1	気候帯別の土壌中 Ni, Sr, Mo および Pb 濃度の比較	.49
义	2.4-1	比較的寒冷な地域と温暖な地域の水田土壤中の元素濃度の世界平均値	
		との比較	.50
义	2.4-2	比較的寒冷な地域と温暖な地域の Fe, Co, Ni, Cu, Zn および Sr の移行係数	
		の比較	.50
义	2.5-1	予備振とう1又は30日とCs添加後振とう3,7,30日における水田土壌	

	$K_d $ と pH の比較	51
図 2.5-2	10, 23, 30°C において得られた K _d - ¹³⁷ Cs の比較	52
図 2.5-3	10, 23, 30°C において得られた K _d - ¹³⁷ Cs の幾何平均値と温度の関係	52
図 2.6-1	多年生草本植物(イタドリ、ヨモギ、フキ)の ¹³⁷ Cs 濃度の経時変化と	
	フィッティング結果	53
図 2.6-2	2012-2016 におけるイノシシ、ニホンジカおよびツキノワグマの ¹³⁷ Cs の	
	移行係数(T _{ag} , m ² kg ⁻¹)の経時変化	54
図 2.6-3	2011 年 11 月から 2016 年 9 月までの底質の放射性セシウム濃度の変化	55
図 2.6-4	印旛沼で捕獲した魚	55
図 2.6-5	部位ごとの ¹³⁷ Cs 濃度	56
図 2.6-6	脂質抽出手順	56
図 2.6-7	抽出回数とδ ¹³ Cとδ ¹⁵ Nの関係	57
図 2.6-8	印旛沼で捕獲した魚の炭素・窒素安定同位体	57
図 2s-1	2015 および 2016 年における気温(Air)と地温(Soil、20cm)の変化	58
図 2s-2	千葉測候所の気温データとの比較(2015、2016年)	58

第3章 放射性炭素の移行パラメータに対する微生物活動の影響調査

表 3.3-1	微生物群集構造解析に用いたプライマー	83
表 3.3-2	切り出したバンドの遺伝子配列	83
表 3.4-1	環境コンパートメント間の移行半減期のパラメータと不確実さ伝播解析の	
:	対象パラメータ	84
表 3.4-2	収穫時の穂部内 ¹⁴ C存在量に対する環境移行パラメータの寄与	84
表 3.4-3	観測日毎の水稲草丈と風向風速計の設置位置	85
表 3.4-4	第1回観測日における水平および鉛直方向の風速	86
表 3.4-5	第1回観測日における水平および鉛直方向の風向頻度	86
表 3.4-6	第2回観測日における水平および鉛直方向の風速	87
表 3.4-7	第2回観測日における水平および鉛直方向の風向頻度	87
表 3.4-8	第3回観測日における水平および鉛直方向の風速	88
表 3.4-9	第3回観測日における水平および鉛直方向の風向頻度	88
表 3.4-10	第4回観測日における水平および鉛直方向の風速	89
表 3.4-11	第4回観測日における水平および鉛直方向の風向頻度	89
表 3.4-12	第5回観測日における水平方向の風速	90
表 3.4-13	第5回観測日における水平方向の風向頻度	90
表 3.4-14	第6回観測日における水平方向の風速	91
表 3.4-15	第6回観測日における水平方向の風向頻度	91
表 3.4-16	第7回観測日における水平方向の風速	92
表 3.4-17	第7回観測日における水平方向の風向頻度	92
表 3.4-18	第8回観測日における水平方向の風速	93

表	3.4-19	第8回観測日における水平方向の風向頻度	93
表	3.4-20	水稲全体モデルによる移行係数の範囲	94
义	3.2-1	¹⁴ C ガス発生量に対する初期 ¹⁴ C 濃度の効果試験概要	95
义	3.2-2	発生した ¹⁴ CO ₂ ガス量の積算値	95
义	3.2-3	初期添加量に対する発生した ¹⁴ CO2ガス積算量の割合	95
义	3.2-4	発生した ¹⁴ CO ₂ ガス量の積算値	96
义	3.2-5	初期添加量に対する発生した ¹⁴ CO ₂ ガス積算量の割合	96
义	3.3-1	異なる温度で培養した P2 土壌の微生物群集構造	97
义	3.3-2	異なる温度で培養した P11 土壌の微生物群集構造	97
义	3.3-3	¹⁴ C ガス化率の異なる土壌の DGGE のバンドパターン	98
义	3.3-4	DGGE ゲルより回収した DNA の分子系統樹	98
义	3.4-1	水稲全体モデルの構成	99
义	3.4-2	不確実さ伝播解析の対象パラメータにおける各サンプリング値	100
义	3.4-3	茎葉部コンパートメント内の ¹⁴ C存在量の経時変化	101
义	3.4-4	穂部コンパートメント内の ¹⁴ C存在量の経時変化	101
义	3.4-5	近傍大気コンパートメント内の ¹⁴ C存在量の経時変化	.102
义	3.4-6	土壌 1 ->近傍大気の ¹⁴ C 移行量の経時変化	.103
义	3.4-7	灌漑水->近傍大気の ¹⁴ C移行量の経時変化	.103
义	3.4-8	近傍大気->環境大気の ¹⁴ C移行量の経時変化	.104
义	3.4-9	相関の高い上位4つの環境移行パラメータと収穫時の穂部 ¹⁴ C存在量の関係.	105
义	3.4-10	水田における水平および鉛直方向の風向風速計設置状況	106
义	3.4-11	第1回観測日の水田	106
义	3.4-12	第2回観測日の水田	106
义	3.4-13	第3回観測日の水田	106
义	3.4-14	第4回観測日の水田	107
义	3.4-15	第5回観測日の水田	.107
义	3.4-16	第6回観測日の水田	.107
义	3.4-17	第7回観測日の水田	.108
义	3.4-18	第8回観測日の水田	108
义	3.4-19	ドライアイス試験の概略図	108
义	3.4-20	イネ群落内に投入したドライアイスによる群落内外の CO2 濃度の経時変化.	109
义	3.4-21	基本解析における環境コンパートメント間の ¹⁴ C 移行量変化	.110
义	3.4-22	基本解析におけるコンパートメント内 ¹⁴ C存在量	.111
义	3.4-23	感度解析において下限値を用いた場合における環境コンパートメント間の	
		¹⁴ C移行量変化	.112
义	3.4-24	感度解析において上限値を用いた場合における環境コンパートメント間の	
		¹⁴ C移行量変化	.112
义	3.4-25	感度解析において下限値を用いた場合におけるにおけるコンパートメント	
		内 ¹⁴ C存在量	.113

図 3.4-26 感度解析において上限値を用いた場合におけるにおけるコンパートメン	F
内 ¹⁴ C存在量	113
図 3.4-27 穂部の ¹⁴ C存在量の感度解析結果の比較	114
図 3.4-28 近傍大気-環境大気の交換半減期の感度解析結果の比較	114
図 3.4-29 感度解析による不確実さ伝播解析のサンプリング状態	115
図 3.4-30 感度解析における不確実さ伝播解析による収穫時の穂部の ¹⁴ C 量と	
環境移行パラメータの関係	116
図 3.4-31 不確実さ伝播解析による近傍大気と環境大尉の交換半減期と収穫時の穂	
部内 ¹⁴ C 量との関係	117
図 3.4-32 基本解析および上限値と下限値を用いた感度解析における土壌1と穂部	
¹⁴ C 存在量の経時変化	117

第4章 重要核種(Pu, Am, Th および Cl)の超高精度分析による環境移行パラメータ収集

表 4.2-1	CaC ₂ O ₄ 共沈および UTEVA + DGA-N 樹脂による Am 分離後の 5g JSAC-0471
	土壌サンプル (SF-ICP-MS 測定用 1mL 溶液中) のマトリックス濃度149
表 4.2-2	畑土試料採取場所及び ²⁴¹ Amと有機物含有量測定結果149
表 4.2-3	畑土中 Pu 同位体および ²⁴¹ Am/ ²³⁹⁺²⁴⁰ Pu activity 比測定結果150
表 4.3-1	標準試料の Th 濃度測定結果150
表 4.3-2	白米と玄米中 Th 濃度測定結果151
表 4.4-1	土壌試料中の TMAH 抽出による塩素、臭素およびヨウ素濃度と RSD(%)152
表 4.4-2	凍結乾燥農作物試料中の塩素、臭素およびヨウ素濃度と RSD(%)152
表 4.4-3	土壌と農作物試料の塩素、臭素およびヨウ素平均濃度と TF153
表 4.4-4.	土壌から葉菜類への塩素、臭素およびヨウ素の移行係数153
表 4.5-1	水田土試料中の Pu 濃度と ²⁴⁰ Pu/ ²³⁹ Pu 原子数比154
表 4.5-2	米中の ²³⁹ Pu 測定結果と Pu の土壌-米間移行係数155
表 4.5-3	Puの土壌-米間移行係数値の比較155
表 4.6-1	2008-2016 に発表された文献による Th の土壌-植物間移行係数156
表 4.6-2	2008-2016 に発表された文献による Am の土壌-植物間移行係数157
表 4.6-3	2008-2016 に発表された文献による Pu の土壌-植物間移行係数158
図 4.2-1	高効率試料導入システム(Aridus II)と結合した SF-ICP-MS (Element XR) の
	概略図159
図 4.2-2	様々な濃度の硝酸および塩酸溶液による DGA-N 樹脂の妨害元素の抽出挙動.159
図 4.2-3	Fe(OH) ₃ 、CaC ₂ O ₄ および CaF ₂ 共沈殿(n = 3)による共沈降土壌マトリックスの
	割合160
図 4.2-4	DGN 樹脂からの 0.05M HNO ₃ による Am および REE の溶出曲線 (a) TEVA
	による分離後の Am および REE の吸着回収(b)160
図 4.2-5	SF-ICP-MS による土壌試料の Am 測定の分析法161

図 4.2-6	DGA-N 樹脂からの 0.5M HCl および TEVA 樹脂からの 4M HCl による
	Am の溶出曲線161
図 4.2-7	土壤標準物質(IAEA-soil-6 and IAEA-375)、海底堆積物の標準物質
	(NIST-4357, IAEA-385 and IAEA-384)と湖堆積物標準物質(NIST-4354)中
	²⁴¹ Am 濃度測定値と文献値比較162
図 4.2-8	畑土中 ²⁴¹ Am 濃度と有機物含有量、 ²³⁹⁺²⁴⁰ Pu 濃度および ¹³⁷ Cs 濃度の相関163
図 4.2-9	畑土中 ²⁴¹ Am/ ²³⁹⁺²⁴⁰ Pu 濃度比と ²⁴¹ Am 濃度の相関と日本水田土中
	²⁴¹ Am/ ²³⁹⁺²⁴⁰ Pu 濃度比文献値の比較164
図 4.4-1	中性子放射化法(NAA)と TMAH 抽出-ICP-MS による土壌試料中の塩素定量
	結果の比較165
図 4.4-2	土壌試料からの塩素、臭素およびヨウ素の TMAH による抽出率165
図 4.4-3	塩素、臭素およびヨウ素を含む 1%TMAH 溶液を 100℃で加熱処理した
	ときの回収率166
図 4.4-4	塩素を含む 1%TMAH 溶液を 100℃で加熱処理したときの回収率:容器
	形状の違い166
図 4.5-1	本研究における土壌および米試料採取地点(1-6, 平成 27 年度調査採取地点;
	7-10, 本年度調查採取地点)
図 4.5-2	土壌試料中 Pu の定量のための HNO3 抽出-抽出樹脂化学分離法168
図 4.5-3	Pu の土壌-農作物間移行係数と IAEA TRS-472 に報告されている値との比較
	(紫色ドットは本調査測定結果平均値)169
図 4.6-1	2008 年から 2016 年に報告された Th の土壌-農作物間移行係数と IAEA
	TRS-472 に報告されている値との比較169
図 4.6-2	2008 年から 2016 年に報告された Am の土壌-農作物間移行係数と IAEA
	TRS-472 に報告されている値との比較170
図 4.6-3	2008 年から 2016 年に報告された Pu の土壌-農作物間移行係数と IAEA
	TRS-472 に報告されている値との比較172

第1章 本調査の目的

放射性廃棄物の地層処分に係わる安全評価では、地下の処分場から放射性核種が地下水等により移動し、最終的に人間の生活環境を含む生物圏に到達する様々なシナリオを想定し、評価を行う必要がある。生物圏においても、核種移行プロセスとこれによる被ばく経路について適切にモデル化を行い、人間への影響を評価することが重要である。長期の安全評価を行うためには、生物圏移行モデルに使用するデータベースは気候変動等を考慮したものを構築することが必要である。また、¹⁴C 等の環境移行では微生物が重要な役割を果たすが、微生物の活動は温度や栄養分など様々な環境要因に左右される。したがって、安全評価においては、その影響を統括的に評価する事が必要である。さらに、Pu、Am、 Th および塩素 (Cl) は放射性廃棄物の地層処分に係わる安全評価において重要な核種である。しかし、その測定は極めて高度な分析技術が要求されることから、核種移行モデルに使用できる環境移行パラメータは十分蓄積されていない。

本研究は、以下の3つの課題について調査・研究を行い、我が国の生物圏における環境移行パラメ ータのデータベースの高度化を目指すものである。

- (1)気候変動を考慮した環境移行パラメータ(TFおよびKd)データベースの構築
- (2) 放射性炭素の移行パラメータに対する微生物活動の影響調査
- (3) 重要核種(Pu、 Am、 Th および Cl 等)の超高精度分析による環境移行パラメータ収集

以下、本年度行った調査について、それぞれの課題毎に詳しく述べる。

(1)気候変動を考慮した環境移行パラメータ(TFおよびKd)データベースの構築

環境移行パラメータには、気温によって値が変動するものがある(炭素-K_d、 ヨウ素-K_d、 TF等)。 放射性廃棄物の地層処分における長期の安全性について現実的な評価を行うためには、気候変動を考 慮した我が国独自のデータベースを構築することが必要である。そのために平成 28 年度は、以下の調 査を実施した。

- ① 土壌-植物間移行係数(TF)に対する気温の影響調査
 - 気温とTFに関する文献調査
 - 農作物および土壌の採取:気温が相対的に低い地域と高い地域から、コメそれぞれ5地点、ジャガイモそれぞれ5地点、計20地点。
 - 上記試料は前処理の後、土壌および植物試料の元素分析(20元素程度)。
 - 上記分析結果に基づき、TFを導出しデータベースに追加した。なお、平成27年度に採取した 試料についても、希土類元素等の定量分析を行い、データベースに追加した。
- 土壌-土壌溶液間分配係数(K_d)に対する気温の影響調査
 - 気温と TF に関する文献調査を引き続き行い、データの解析を行った。
 - 水田土壌約 20 試料を用いて比較的高温条件下(30℃)において、¹³⁷Csの土壌-土壌溶液間分 配係数(K_d)データを取得した。
- 変動要因の解析
 - 玄米への TF に関し、寒冷地域のデータの統計解析を行い、本事業においてこれまでに得た全国の TF データと比較し、TF 変動に影響する因子についての予備的な情報を取得した。

(2) 放射性炭素の移行パラメータに対する微生物活動の影響調査

放射性廃棄物地層処分における長期的な安全性確保の観点から、放射性炭素の環境移行に関与する ことが示唆されている微生物活動の影響を評価することは重要であるが、その影響は温度や栄養分な ど様々な環境要因に左右される。したがって、安全評価においては、その影響を統括的に評価する事 が必要である。

平成28年度は、以下の調査を実施した。

- ① 微生物と環境移行パラメータの解析
 - ¹⁴Cガス発生量に対する初期¹⁴C量の影響についてのデータを蓄積した。
 - ¹⁴Cガス化率の異なる土壌微生物群集構造の違いを明らかにした。
 - ¹⁴Cのガス化を担う細菌種の帰属分類を決定した。
- ② 温度変化と微生物活動の関係についての調査
 - 温度変化に伴う最大¹⁴Cガス発生量のデータを蓄積した。
- ③ 微生物活動を反映したモデルの構築
 - 水稲全体モデル精緻化のために環境大気と近傍大気のガス交換に資する気象パラメータ(CO₂ 濃度、風向風速、光合成有効放射量)を取得した。
 - 実験的に取得した実測データを水稲全体モデルに反映した。

(3) 重要核種(Pu、Am、Th および Cl 等)の超高精度分析による環境移行パラメータ収集

Pu、Am、Th及び塩素(Cl)等は、放射性廃棄物の地層処分に係わる安全評価上、重要核種であるが、 その測定には極めて高度の分析技術が要求されるため、核種移行モデルに使用される環境移行パラメ ータも世界的にデータが少ない。本課題では土壌および農作物中の重要核種の超高精度分析技術の開 発を行い、これらの核種について我が国独自の土壌-農作物の環境移行パラメータを収集する。

平成28年度は、以下の調査・研究を行った。

① 超高精度分析法開発

平成27年度に引き続き、超高精度分析法の開発を行う。

- ²⁴¹Amについては高分解能ICP-MSを用い、土壌中の超高精度質量分析法の開発を行った。
- ② 土壌-農作物の環境移行パラメータの収集
 - Pu、Th、AmおよびClの土壌分析を行い、土壌中の濃度データを蓄積した。
 - Pu、ThおよびClの農作物の分析を行い、農作物中の濃度データを蓄積した。
 - 得られた土壌および農作物データに基づき、Pu、ThおよびClのTFデータを導出した。
 - 文献調査を進めるとともに、平成25年度から平成28年度に収集したTFデータベースに、本調査 で求められたデータを追加した。

さらに、東京電力福島第一発電所事故により環境中に放出された放射性核種の移行パラメータも収 集した。得られたデータは、環境における放射性核種の中・長期の挙動予測にも活用可能であり、事 故により環境中に放出された放射性核種の廃棄物処分や中間貯蔵施設の安全評価等にも活用できるも のである。

本調査で得られる我が国の環境移行パラメータのデータベース、モデルなどを用いることにより、 放射性核種の環境挙動予測の精度が向上し、放射性廃棄物地層処分の安全評価がより適切なものとな ることが期待される。

第2章 気候変動を考慮した環境移行パラメータ

(TF および K_d) データベースの構築

2.1.はじめに

地下に建設された放射性廃棄物処分施設が閉鎖された後,長期間経過するうちに埋設場から放射性 核種が移動して生物圏に到達しても,安全評価で十分低いレベルにあることを示す必要性がある。長 期的には我が国において,地殻変動としては隆起・侵食が起こり,また生物圏の気候はある一定の周 期をもって寒冷期へと変遷すると予想される。海外の事例(Kautsky et al., 2013; Staudt et al., 2013, Becker et al., 2014)からも,長期の安全評価において温暖化および寒冷化に対する考慮が行われてい る。原子力発電環境整備機構(NUMO)においても,長期変遷を考慮した閉鎖後長期の生活圏安全評 価に関する技術開発課題として,Geosphere-Biosphere Interfaceを含む生活圏モデルの開発を挙げてい る(NUMO, 2011)。長期変遷を考慮したモデルについては、時間的に変化するパラメータを取入れ たサイトスペシフィックな複雑モデルと、時代に応じて様式化したモデルを組み合わせたモデルによ る評価が考えられ、どちらも適用についてそれぞれ利点がある(Walke et al., 2015)。どのようなモデ ルを用いる場合でも、それぞれに応じた環境移行パラメータを整備しておくことで、不確実性を減ら すことに貢献することができる。

高レベル放射性廃棄物処分計画が進められつつある欧米諸国での食生活は、野菜や魚介類の摂取率 が高い我が国と異なり、家畜の肉や乳製品等を多く摂取する(FAO, 2017)。そのため、肉や乳製品 からの線量寄与が高いが、我が国ではそれらの摂取割合が欧米に比べて低く、したがって、気候変動 を考慮した生物圏評価を行うためには、我が国の生活様式や食習慣に見合った環境移行パラメータの データベースを準備しておくことが必要である。IAEA (2010)によりまとめられた環境移行パラメー タは、気候の違いも考慮したものになっているが、温帯以外の地域におけるデータの数が少なく、種 類に偏りもあり、かつデータクオリティが揃っていないため、気候の違いにより環境移行パラメータ が異なるのかどうかを検討することは難しい。

本研究は、生物圏移行パラメータにおよぼす気温等の影響評価を行うと共に、その変動を考慮した 環境移行データベースを構築するものである。そのため、土壌-植物間移行係数(Transfer Factor, TF) に対する気温影響についての文献調査を行い、また、実測データが重要であることから、フィールド 調査も行っている。計画では、1年目においては移行係数の高い葉菜類を中心にデータを収集したが、 その後は主食である米と、温暖-寒冷地域で生産が可能なジャガイモに着目して収集を進めている。そ れぞれの作物を温暖地域と寒冷地域から試料を5検体ずつ採取することで、最終的には、例えば温暖 地域-玄米という条件のデータセットをそれぞれ 20 試料ずつ収集できることになる。これにより、同 じクオリティで採取されたデータセットを得る事ができるため、詳細な比較が可能となる。平成 28 年度は玄米およびジャガイモ収集3年目であり、3年間で各組み合わせについて15 試料の採取を終了 し、元素濃度を含む20項目程度の分析結果を得た。さらに、玄米のTFについては、主要な元素につ いて、これまで得られているデータを全て用いて寒冷地域と温暖地域の間のTFの解析を行った。

土壌-土壌溶液分配係数 (K_d) については温度の影響を受け易い炭素やヨウ素ではなく、影響を受けるいと考えられる Cs について検討を行い、温度要因と K_d の関係を調査研究している。Cs の K_d で変化が見られれば、他の元素でも温度による K_d の違いが生じる可能性がある。本年度は水田土壌試料 20 検体を用いて、10、23、30℃の比較を行った。

調査研究では、東京電力福島第一原子力発電所(以下、福島第一原発)の事故により環境中に放出 された放射性 Cs についても、長期環境影響評価において重要核種である¹³⁵Cs(2.3×10⁶ y)を念頭に おいたときに、実環境中で得られる貴重なデータであることから研究を進めている。平衡状態におけ る移行パラメータ値を取得することが目的である。

これらの研究結果について、以下に報告する。

2.2.環境移行パラメータと気温の影響に係る文献調査

2.2.1. 土壌-植物間移行係数(TF)に対する気温の影響調査

2.2.1.1 文献調査結果のデータベース化のための項目抽出

気候変動に伴う生物圏安全評価については、ドイツ(Staudt et al., 2013)やスウェーデン(Kautsky et al., 2013; Becker et al., 2014)でも検討されている。環境移行パラメータのうち、温暖化による移行係数への影響に関しては、Dowdall ら(2008)が報告をしているが、例えば降雨量の変化は地域によって違うため、単純に移行係数が高くなる・低くなるということを推定するのは容易ではないことが示された。長期的には周期的な寒冷化が予想されることや、いろいろな環境変化に対応するために、ドイツ Gesellschaft für Anlagen- und Reaktorsicherheit のレポート(2008)ではいくつかの組み合わせを考慮している。

本研究では、気候の異なる地域間での比較として、これまで国内の寒冷地と温暖な地域における ⁹⁰Sr や¹³⁷Cs の移行について、グローバルフォールアウトを用いた考察等により進めてきた。また、無 機元素濃度に着目して農作物中濃度の比較を行ってきた。このような文献調査では、同じ地点で土壌 と植物を採取していないことから、TF で表すことは困難である。そこで、濃度の絶対値の比較、また は長期的な変動(環境半減期)という観点でデータ整理を行ったものである。これらのデータを TF と気温の関係を理解するための補足データとすることができる。

付属する項目として、データが採取された地点、採取年の情報とデータソースを必須とする。地点の情報から気候を推定することもできるが、将来的には気象庁(2017)による過去の気象データを利用することを考え、降雨量や気温のデータも入力できる項目を入れる。最終的には一般に利用可能な csv 形式等にて保存するものとする。下記にいくつかの項目の例を示したが、さらに精査する必要がある。

植物名	気候区分	採取場所	気象情報	採取年	元素/	濃度	分析方法	データ
					核種			ソース
和名, 英名, 部位等	寒帯, 亜寒帯, 温帯, 亜熱帯,等	都道府県, 市町村,緯 度経度,土 壌 タイプ 等	平年の気 温,降雨量			生重, 乾重での値。 平均(算術,幾何) または中央値の場 合はデータ数	測 定 機 器, 前処 理方法等	文献, web等 doi

気候帯による放射性核種等の植物中濃度比較に加える項目

気候帯による放射性核種の土壌や植物からの環境半減期に加える項目

植物/	気候区分	採取場所	気象情報	データ採取	元素/	環境半減期 (年)	分析方	Ref.
土壤				期間	核種		法	
和名, 英名	寒帯, 亜寒帯, 温帯, 亜熱帯,等	都道府県, 市町村, 緯度経度, 等	平年の気 温,降雨 量	年 (可能で あれば月, 日)		Single exponential の場 合,切片とん,p 値	測 定 機 器等	文献, web等 doi

2.2.1.2 文献内容の入力とデータチェック

文献は学術論文等の専門家による査読を受けたもの、プロシーディングス、公的機関の報告書やオ ープンデータベースとし、個人的なやりとりによるデータは含めないこととしている。データ項目を 入力したときは、入力日、さらに入力者も記載し、さらに別の者によるデータ入力の確認を行うこと が望ましい。第2.2.1.1 項に加えて、これらのデータチェック用の項目を入れる。さらに、必要に応じ てそのデータの確からしさを入れる項目を設ける。例えば、報告書等の記載の数値を正確に入力した としても、他のデータと合わせてデータの分布を調べた時に明らかに外れ値となる場合には、報告書 の数値が間違っている可能性が考えられる。そのため、このようなデータは、データの分布を調べた 後に、その確からしさについてコメントを入れることとする。

2.2.2. 移行係数に係る文献調査:土壌,玄米

鉱山等鉱物資源が豊富な地域や人の活動により重金属汚染が負荷される,自然および人為的な汚染 がある場所を除き,一般にわが国の土壌中の元素濃度は世界の平均値と大きく外れることはなかった ことを以前報告している(Tagami and Uchida, 2010)。気候帯の違いにより土壌中元素濃度が変わる可 能性があるのかどうかについては,FAO等の国際機関データにとりまとめられていないことから不明 である。そこで本年度は、国内のデータのみならず、国外にも調査対象を広げ、地域~国~行政区単 位で採取された土壌データの文献調査を行い、寒帯、温帯、熱帯、乾燥地帯についての情報を得た。

微量元素データはほとんどの文献で数個~数百個のデータを取りまとめた平均値として報告されている。これらのデータの取扱は検討が必要であるため、今回はデータ数を示さず、文献数を示すこととした。重要核種関連元素である Ni, Sr, Mo および Pb の結果について図 2.2-1 に示す。Ni については気候帯間で有意差が認められたが、他の3元素については有意な差は見られなかった。その他 Zn, Cu, As, Cd についても有意差はなく、Co は熱帯で有意に高かったが、平均値は同じオーダーであったことから、元素濃度という観点からは、土壌中の濃度はほぼ同程度と考えられる。

米については、Pinson ら(2015)が、ジャポニカ種、インディカ種等の括りで世界から1763 品種を 収集し、湛水条件/非湛水条件で育てた玄米中に含まれる P, Mg, K, S, Ca, As, Cd, Co, Cu, Fe, Mn, Mo, Ni, Rb, Sr および Zn の濃度を比較した。ほとんどの元素で品種間差があったことが報告されているが、 濃度差はわずかであり、栽培条件や草丈などに濃度が影響されないことが報告されている。

以上の結果から、土壌、玄米とも世界的に濃度がそれぞれほぼ同じため、もし玄米への移行係数に 差が生じるのであれば、気候が影響する可能性が示唆されるが、一方で移行係数の差が数倍以内であ れば、品種間差が要因となるとも言える。品質の揃ったデータセットによる TF の比較が必要である。

3.気温が相対的に低い地域と高い地域における土壌−農作物間移行係数(TF)データの 取得

2.3.1. 玄米およびジャガイモ土壌-植物間移行係数(TF)データの取得

本年度は我が国の主食として重要である米と,温暖~寒冷地域で生産が可能なジャガイモについて, 温暖地域において玄米とジャガイモ各5試料,寒冷地域においてにおいて玄米とジャガイモ各5試料 を収穫期に採取するとともに,採取された同じ圃場の土壌を同時期に採取することにより,TFデータ の蓄積を行った。本作業は平成26年度より行っており,これにより玄米-土壌試料のセット,ジャガ イモ-土壌試料のセットは,寒冷地域および温暖地域でそれぞれ15検体ずつとなった。

2.3.1.1. 採取場所の選択と採取方法

比較的寒冷地および温暖地の選択については、ジャガイモと米は生育時期が異なることから生育期 間の気温を指標とせず、昨年度と同様の基準である年平均気温を指標とした。年平均気温を指標とし たものである。寒冷地域として、北海道、青森県、岩手県、秋田県を選択した。温暖地域として、玄 米は沖縄県、鹿児島県、熊本県、宮崎県、高知県で採取が可能であったが、ジャガイモについては、 熊本地震も影響したため、採取地点の変更を行い、鹿児島県、宮崎県、高知県に加え、長崎県と福岡 県で採取した。採取場所と採取日を表 2.3-1 および表 2.3-2 に示す。

ア 土壌採取

シャベル,スコップ等を用いて作土層(水田では 0-15cm,畑では 0-20cm 程度)から一試料の総量 約 2.5 kg(生重)(5 点から約 0.5kg ずつ採取し混合)をポリエチレン袋に採取。別途,同一スポット から土壌密度測定用試料を,100cc 容コアで採取し,仮比重を算出した。採取地点の土壌を「農耕地 土壌分類(第 3 次改訂版)」に従い分類した。

イ 農作物試料の採取

上記土壌の採取地点で平均的に生育している水稲の玄米5kg及びジャガイモ5kgを採取した。

採取した土壌および農作物試料は、直ちに実験室に送付し、以下に示す前処理を行った後、土壌の 物理化学的特性の測定、土壌および農作物の元素分析に供した。土壌分類と仮比重については表 2.3-2 に、玄米の水分含量(凍結乾燥による)と精米歩合を表 2.3-3 に、ジャガイモの水分含量を表 2.3-4 に 示す。これらの試料到着時の状態については表 2.3-5 (玄米)と表 2.3-6 (ジャガイモ)に写真と共に 示す。

2.3.1.2. 土壌試料の前処理方法

土壌試料は、よく混合して均一化したのち、生土を 100 g 分取し、これについては5℃の低温保管 庫に保存した(土壌微生物の試験等に利用するため)。残りについては石や根などの大きな固形物を除 去し、指で潰せる土塊については破砕し、良く混合した。この時点で生重量を測定した。室温にて風 乾する方法が通常用いられるが、本分析では、大気起源のコンタミを避けるため、プラスチック製ト レーに広げた土壌試料を電気乾燥機庫内において 40℃で恒量に達するまで乾燥させた。恒量時の重量 を測定して生土に含まれていた水分含量を求めた。乾燥土壌は孔径 2mm の標準ふるいを通過させた ものを風乾細土試料とし、室温で保管した。この試料から 50 g 程度を分取し、ボールミルでさらに粉 砕して微量元素測定用試料とした。

7

2.3.1.3. 農作物試料の前処理方法

ジャガイモは重量測定の後, 汲みおいた水道水に浸漬し, スポンジ等を用いて丁寧に 洗浄して土 壌を落とし, 傷んだ試料の有無を確認した。次に RO 水を用いてリンスを行い, 最後に Milli-Q 水(超 純水) で洗浄した。水分はペーパータオルで丁寧に拭き取ったのちに重量を測定し, 洗浄前後での増 減を確認した。痛んだ部分を取り除き, 除いた部分を廃棄率として求め, 洗浄後の重量ベースで算出 した。皮は可食部として取り扱った。小片に切った可食部を一旦冷凍し, その後凍結乾燥機 (EYELA, FD-550) を用いて全て乾燥させ, 水分含量を求めた。この一部を採取して粉砕し, 元素分析に供した。

玄米試料は,2.5 kgのうち0.5 kgを糠と白米に分けて精米率を求めるために使用した(表2.3-3参照)。 精米にはトーヨーテスター精米機 MC-90A(東洋ライス株式会社)を用いた。残りを全て凍結乾燥 し水分含量を求めた。この一部を分取してセラミックミルを用いて粗く粉砕後,メノウ乳鉢を用いて 均一にし,安定元素分析に供した。残りの凍結乾燥試料は水分を含まないようにビニール袋に入れて 室温にて保管した。

2.3.1.4. 土壌の物理化学的特性

(1) $pH(H_2O)$

試料 10gに水 25 mL を加えてかき混ぜ1時間放置した。測定前に軽くかき混ぜて懸濁状態とし、ガラス電極の薄膜部を静かに液中に漬し、pH 計の表示が安定したのち pH 値を読みとった。

(2) 陽イオン交換容量(CEC)(セミミクロ Schollenberger 法)

洗浄液容器に 1M 酢酸アンモニウム溶液を 100 mL 入れた。脱脂綿及びセルロースパウダーを詰め た浸透管(内径 13 mm,高さ 120 mm)に洗浄液容器より 1M 酢酸アンモニウム溶液を 2/3 程度入れ,約8 cm の厚さとなるように採取した試料を浸透管に気泡が入らないように落下沈降させて充てんし た。浸透管下端のコックを開け,1M 酢酸アンモニウム溶液を洗浄液容器から滴下した。4~20 時間程 度で浸透が終了するようにコックで滴下速度を調整した。酢酸アンモニウム溶液滴下終了後,受け器 を取り替え少量の 80 %エタノールで浸透管上部内壁及び洗浄液容器内壁を洗浄した。洗浄液容器に 80 %エタノール 50 mL を入れて浸透管に接続し,滴下しながら余剰の酢酸アンモニウムを除去した。 再び受け器を取り替えて洗浄容器に 10 %塩化ナトリウム溶液 100 mL を入れ滴下した。滴下終了後, 浸透液を 200 mL の全量フラスコに洗い込み定容とした。浸透塩化ナトリウム溶液から正確に一定量 をとり,水蒸気蒸留法によりアンモニウムイオンを定量し塩基置換容量を算出した。

(3) 置換性 Ca 及び K

(2)の陽イオン交換容量の操作で得られた酢酸アンモニウム浸透液を200 mLの全量フラスコに洗い込み定容とした。この溶液の一定量をとり、ストロンチウム濃度が1000 mg/Lとなるように塩化ストロンチウム溶液を加え、水で定容し、原子吸光光度計によりカルシウムを測定した。また、別途、酢酸アンモニウム浸透液を適宜水で希釈したのち、原子吸光光度計によりカリウムを測定した。

<原子吸光光度計操作条件>

機 種: SpectrAA240FS (アジレント・テクノロジー株式会社)

光 源: カリウム中空陰極ランプ(アジレント・テクノロジー株式会社)

カルシウム中空陰極ランプ(アジレント・テクノロジー株式会社) 測定波長:766.5 nm (カリウム), 422.7 nm (カルシウム) フレーム:アセチレン 2.00 L/min, 空気 13.50 L/min

(4) 活性 Al, Fe (酸性シュウ酸塩溶解法)

試料 1.0 g を 250 mL のプラスチック容器に量りとり, 0.2 M 酸性シュウ酸溶溶液 (pH3.0) 100 mL を加えて室温・暗条件で 4 時間往復振とうした。この溶液約 25 mL を 50 mL の遠沈管にとり, Superfloc (凝集剤)を 1 滴加えて振り混ぜてから 10 分間遠心分離 (3000 rpm) し上澄み液を得た。上澄み液を適 宜希釈し, ICP 発光分析装置によりアルミニウム及び鉄を測定した。

<ICP 発光分析装置操作条件>

機 種:ICPE-9000(株式会社 島津製作所) 高周波出力:1100W プラズマガス(アルゴン):15 L/min 補助ガス(アルゴン):1.2 L/min キャリヤーガス(アルゴン):0.80 L/min 測定波長:396.153 nm(アルミニウム),238.204 nm(鉄)

(5) Al, Fe 総量

検体 0.05 g を分解容器に量りとり, HNO₃を 3 mL, HCl を 3 mL を加え, マイクロウェーブ分解を 行った。放冷後, さらに HNO₃を 1 mL, HF を 1 mL を加え, 再びマイクロ波分解を行った。放冷後, PTFE 製ビーカーに移しかえ, ホットプレート上で乾固直前まで蒸発した。HNO₃を 2 mL と水 4 mL を加え加温した後, HNO₃(1+2)で 50 mL に定容したものを適宜希釈し試験溶液とした。この試験溶液 について ICP 発光分析装置により各元素の測定を行った。

<ICP 発光分析装置操作条件> 機 種: Optima 8300 (株式会社 パーキンエルマージャパン) 高周波出力:1300 W プラズマガス (アルゴン):12 L/min 補助ガス (アルゴン):0.2 L/min キャリヤーガス (アルゴン):0.55 L/min

測定波長: 396.153 nm (アルミニウム), 238.204 nm(鉄), 343.489 nm (ロジウム;内標準元素として)

以上の測定では2回分析を行い、その平均値を求めた。ただし、RSD が 10%を超える場合には再測定 を行った。結果を表 2.3-7 に示す。

2.3.1.5. 土壌中の安定元素の分析

土壌の安定元素分析法と測定条件を以下に記す。

(1) ケイ素

試料 0.1~0.2 gを白金皿に量りとり,500℃で灰化したのち炭酸ナトリウム 5 gを加え 900℃で 20 分間融解した。放冷後,塩酸(1+1)で中和し,更に塩酸(1+1)を 20 mL 加え水浴上で蒸発乾固させた。 次に塩酸(1+1)を 20 mL 加え 10 分間加温後,ろ紙 (No.5C[東洋濾紙株式会社]) でろ過した。ろ液中に 塩化物イオンの反応がなくなるまで内容物を洗浄後,残渣をろ紙ごと白金皿に移して灰化し 900℃で 20 分間強熱し,放冷後重量(W1)を測定した。内容物を水で湿らして硫酸 2~3 滴及びフッ化水素酸 10 mL を加え,蒸発乾固したのち電気炉へ移し灰化した。放冷後,再び重量(W2)を測定した。2 つの重量差(W1-W2)からケイ素含量を算出した。

(2) ホウ素

試料 0.2gを白金るつぼに量りとり,550 ℃ で 2 時間灰化した。炭酸ナトリウム 1gを加え,徐々に 温度を上昇させ 900 ℃ で 20 分間融解した。放冷後,水を加え 155 ℃ で加温したのち,更に 5 % HNO₃ を 50 mL 加えて加温した。ろ紙 (No.5C[東洋濾紙株式会社]) でろ過し,水で 100 mL に定容したもの を試験溶液とし, ICP 発光分析装置によりホウ素を測定した。

<ICP 発光分析装置操作条件>

機 種: Optima 8300 (株式会社 パーキンエルマージャパン) 高周波出力:1300 W プラズマガス (アルゴン):15 L/min 補助ガス (アルゴン):0.2 L/min キャリヤーガス (アルゴン):0.55 L/min 測定波長: 208.957 nm (ホウ素) 451.131 nm (インジウム;内標準元素として)

(3) 水銀

試料 0.1 gをセラミック製サンプルボードに量りとり,加熱気化原子吸光光度計に設置し,加熱分解 を行い,吸光度を測定した。

<加熱気化原子吸光光度計操作条件> 機 種:MA-3000(日本インスツルメンツ株式会社) 測定波長:253.7 nm

(4) Cr, P, Co, Ni, Cu, Zn, Sr. Cd

2.3.1.4. (5)の試験溶液を用いて、リン(測定波長: 213.617 nm)の測定を ICP 発光分析装置により行った。Cr, Co, Ni, Cu, Zn 及び Cd は ICP 質量分析装置により測定を行った。

<ICP 質量分析装置操作条件>

機 種: Agilent 8800 (アジレント・テクノロジー株式会社)

高周波出力:1550W

プラズマガス (アルゴン): 15 L/min

キャリヤーガス (アルゴン):1.0 L/min

コリジョンガス (ヘリウム):5 mL/min

m/z:52(クロム),59(コバルト),60(ニッケル),63(銅),66(亜鉛),111(カドミウム) 103(ロジウム;内標準元素として)

2.3.1.6. 農作物中の安定元素の分析

農作物可食部中の安定元素分析法と測定条件を以下に記す。

(1) ケイ素

試料 0.2~3 gを白金るつぼに量りとり,500 ℃ で灰化したのち炭酸ナトリウム 5 gを加え 900℃ で 20 分間融解した。放冷後,水を加えて加温し,ろ紙 (No.5B[東洋濾紙株式会社]) でろ過し,水で定 容したのち希釈したものを試験溶液とした。

この試験溶液について、第2.3.1.4.の(5)と同様に ICP 発光分析装置によりケイ素を測定した。

<ICP 発光分析装置操作条件> 機種:SPECTRO BLUE (アメテック株式会社) 高周波出力:1400 W プラズマガス(アルゴン):13 L/min 補助ガス(アルゴン):0.8 L/min キャリヤーガス(アルゴン):0.8 L/min 測定波長:251.612 nm(ケイ素),417.206 nm(ガリウム;内標準元素として)

(2) P, Fe, Ni, Cu, Zn, Cd

試料 0.5~0.6 g を分解容器に量りとり、5 mL の HNO₃ を加えマイクロウェーブ分解を行った。ポリ プロピレン製定容容器に移しかえ、水で 50 mL に定容したものを試験溶液とした。この試験溶液につ いてリン、鉄及び亜鉛は ICP 発光分析装置により測定を行った。コバルト、ニッケル、銅及びカドミ ウムは ICP 質量分析装置により測定を行った。

<ICP 発光分析装置操作条件>

機 種: Optima 8300 (株式会社 パーキンエルマージャパン)

高周波出力:1300W

- プラズマガス(アルゴン): 12 L/min
- 補助ガス(アルゴン): 0.2 L/min
- キャリヤーガス(アルゴン): 0.55 L/min
- 測定波長: 213.617 nm(リン), 238.204 nm(鉄), 213.857 nm(亜鉛)
 - 371.029 nm(イットリウム;内標準元素として)

<ICP 質量分析装置操作条件>

機 種: Agilent 8800 (アジレント・テクノロジー株式会社)

高周波出力:1550W

プラズマガス(アルゴン):15 L/min キャリヤーガス(アルゴン):1.0 L/min コリジョンガス(ヘリウム):5 mL/min m/z:59(コバルト),60(ニッケル),63(銅),111(カドミウム), 103(ロジウム;内標準元素として)

2.3.1.7. その他の元素の定量

(1) 土壤試料

粉砕試料を約100mg 秤量し, テフロン製分解容器に入れて, HNO3を7mL, HFを7mL 加えた(多

摩化学工業,分析用超高純度試薬 AA-100)。分解容器をマイクロウェーブ分解装置(CEM 社製, MARS5) で約 15 分の加熱を1回行った。放冷後, HClO₄を1 mL 加え,ホットプレート上で加熱し乾固させた。 試料に1 mL の HNO₃と 0.5 mL の H₂O₂を添加して残さを溶かした後,再度乾固した。再乾固した試 料に 40% HNO₃を 2.5 mL 加え 50 mL ポリプロピレン製容器に移し,Milli-Q 水 (>18MΩ)を用いて全 量を 50mL とした。この試料母液の HNO₃ 濃度は 2% であり,元素濃度は,もとの土壌試料中の濃度の 1/500 である。分析操作の確認のために標準試料として旧地質調査所が提供していた岩石標準試料で ある JB-1a または JB-3 を用いて同様の操作を行った。測定には ICP 発光分光分析装置(Horiba, Activa-M) および ICP 質量分析装置(Agilent, 7500c)を用いた。

(2) 農作物試料

80°C で 3 時間乾燥させ、放冷後約 500mg 秤量し、テフロン製分解容器に入れて、HNO₃を 10mL、 HF を 4 mL 加えた。80°C において 10 時間加熱して有機物分解後、分解容器をマイクロウェーブ分解 装置にセットし、約 10 分間加熱した。放冷後、装置から取り出した試料はそのままホットプレート上 で加熱・乾固した。試料に 1 mL の HNO₃ と 0.5 mL の H₂O₂を添加して残さを溶かした後、再度乾固 し、最終的に 40% HNO₃を 1 mL 加え 20 mL ポリエチレン製容器に移し、超純水を添加して全量 20 mL とした。この試料母液の HNO₃濃度は 2%、元素濃度は、もとの農作物試料濃度の約 1/40 である。ま た、標準試料として中国の標準化国立研究センターが作成した灌木試料(GBW-07603) または NIST が作成したトマトの葉試料(SRM-1573a)を使用した。測定には ICP 発光分光分析装置(Horiba, Activa-M) および ICP 質量分析装置(Agilent, 7500c)を用いた。

以上の分析については、全て1 試料から2 サブサンプルを作成して測定した。土壌試料と農作物試料ではそれぞれ含まれている元素濃度が異なるために、希釈倍率及び、測定条件をそれぞれの試料に 合わせて設定している。

2.3.1.8. 平成 28 年度に採取した試料の分析結果

表 2.3-8 には平成 26-28 年度に収集した土壌試料の物理化学特性を,平成 14-18 年度に収集した水田 および畑土壌データと比較した結果を示す。表中の数字はすべて算術平均値である。水田土壌では有 意差は認められなかった。畑土壌の CEC については,平成 26-28 年度に採取した土壌でやや高い値と なったが(t検定,p<0.05),その他の項目では差がなかった。したがって,土壌特性自体は全国データ とほぼ差がないといえる。

表 2.3-9 および表 2.3-10 に, 土壌および農作物試料中の元素濃度の結果を示した。土壌については 21 元素, 作物については, 20 元素の濃度が得られた。

得られた濃度データから移行係数(TF)を乾物重ベース導出した(表 2.3-11)。

2.3.2. 平成 27 年度に採取した試料のデータ追加

上述の第 2.3.1.7 項に記載した方法により, 平成 27 年度に採取した農作物および土壌試料各 20 検体 について,希土類元素などの TF を追加するための元素濃度データを測定した。土壌分析の結果を表 2.3-12,作物分析の結果を表 2.3-13 に示す。土壌については濃度が高いこともあり,ほとんどの元素 で定量できているが,希土類元素の一部については濃度が低く,特に玄米試料では定量できていない ものがある。しかしながら,希土類は挙動が類似していることもあり,いくつかの TF データが得ら れれば測定ができなかった元素のデータを補完することができると考えられる。得られた濃度データ より移行係数を導出し,表 2.3-14 にデータをまとめた。 2.3.3. 気温が相対的に低い地域と高い地域における土壌-農作物間移行係数(TF)データのまとめ 平成 28 年度においても、比較的寒冷地および温暖地において玄米 10 点(寒冷地 5 点,温暖地 5 点) とジャガイモ 10 点(寒冷地 5 点,温暖地 5 点)およびこれらの収穫期の土壌をサンプリングした。こ れらの試料の前処理を行い、土壌特性分析をするとともに、元素濃度定量を農作物および土壌それぞ れについて 20 元素程度行い、濃度データを得た(表 2.3-7, 2.3-9~2.3-10)。さらに、得られた濃度デ ータを用い、農作物中濃度(乾重)/土壌中濃度(乾重)により TFを導出して(表 2.3-11)データベ ースに追加した。さらに、平成 27 年度に採取した土壌および作物データセットについて、希土類元素 等の定量分析を行い(表 2.3-12~2.3-13), TF(表 2.3-14)をデータベースに追加することができた。

2. 4. 環境移行パラメータ変動要因の解析

比較的寒冷な地域と温暖な地域において栽培される農作物の移行係数の違いが考えられる中,本調 査研究で採取した玄米について,平成14-18年度に収集したデータと合わせて主要な元素について, 解析を試みた。比較的温暖な地域として,沖縄,鹿児島,宮崎,熊本,高知の5県,比較的寒冷な地 域として,北海道,青森,岩手,秋田の4道県を選択した。年平均気温および稲が屋外で栽培される 5-9月期における気温を,国立天文台編(2016)による理科年表を用いて導出し,表2.4-1にまとめた。 データは1981年から2010年までの30年間の平均であり,同一道県内に複数のデータがある場合は, その算術平均値を用いた。比較的寒冷な地域における年平均値は10.1℃,温暖な地域では19.0℃であ り,約9℃の差があった。5-9月だけの結果は,18.4℃と25.3℃と約7℃の差であった。

2.4.1. 水田土壌および玄米中の元素濃度比較

水田土壌-玄米のデータセットは本年度までデータを全てあわせると、比較的寒冷地で26 試料、温 暖地で21 試料であった。まず、土壌および玄米中の濃度データの分布を調べたところ、ほぼ対数正規 分布で近似できた。そこで、これらのデータを対数変換し、土壌中濃度および玄米中濃度に差がある かどうかについて解析を行った。対象とする元素は、Na, Mg, Al, Si, P, K, Ca, Cr, M, Fe, Co, Ni, Cu, Zn, Sr, Cd, Ba である。土壌については、置換性 Ca, 置換性 K, 活性 Al, 活性 Fe および pH についても比較し た。本統計解析は KaleidaGraph ver. 4.1.4 の t 検定機能を用いて行った。

土壌の結果を表 2.4-2 に、玄米の結果を表 2.4-3 に示す。土壌中の濃度はほとんどの元素で明確に有 意ではなく(p>0.01),活性 Fe と pH には差が見られたものの、幾何平均値(GM)の比をとった結果 からもわかるように、差が小さい。また、世界の平均値(Reinmann and Caritat, 2012)と比べてもほぼ 同じ濃度であった(図 2.4-1)。玄米については、Fe, Cu, Zn および Ba で p<0.01 となり、比較的寒冷地 のデータでこれらの元素濃度が低い傾向になることがわかったが、GM 比の結果からその差は 2 倍以 内であった。したがって、元素濃度はいくつかの元素で有意差があったが、その差は小さいことがわ かった。

2.4.2. 玄米移行係数の比較

続いて TF の比較を行った。置換性 Ca, 置換性 K, 活性 Al, 活性 Fe については, それぞれを mg/kg 換算し, その値と玄米中濃度の比を求めた。結果を表 2.4-4 に示す。寒冷地と温暖地の TF で明らかに 有意 (p<0.01) な元素は, Fe, Zn であり活性 Fe をベースにした TF も有意差が見られた (図 2.4-2)。 また, p<0.05 を示した元素は, Na, Si, K, Co, Ba であった。これらの元素のうち, K の TF のみが寒冷 地で高く, それ以外の元素では TF が寒冷地で低くなる結果となった。このように有意差があった元素でも, 寒冷地と温暖地の TF の GM 比の結果から, 差は 2 倍以内であり TF の差は小さいと言える。 幾何標準偏差 (GSD) の結果を比較すると, Ca では温暖地域でやや広がりが大きい (F 検定における p<0.01) が, その他の元素では GSD はほとんど同じであり, TF の分布は同じような幅であったと言 える。これらの結果から, 今回選んだ元素については, 気候条件に関わらず TF はほぼ同じであった。

昨年度行った葉菜類の検討結果では、対象元素をNa, Mg, Al, Si, P, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Se, Rb, Sr, Y, Zr, Nb, Mo, Cd, Sn, Sb, Cs, Ba, La, Ce, Sm, Eu, Gd, Pb, Th, Uの37元素として異なる 気温条件でのTFデータを比較したが、気温帯によってTFには差が生じず、変動要因とならない可能 性が高いことを報告した。しかし稲は葉菜類よりも生育期間が長い。今回対象としなかった微量元素 は必須元素ではないことから、根が長期間土壌と接することで、葉菜よりも温度差が生じる可能性が ある。今後は微量元素についての検討が必要である。 2.4.3. 玄米移行係数に関する寒冷な地域と温暖な地域間の比較結果のまとめ

本年度は主要な元素(Na, Mg, Al, Si, P, K, Ca, Cr, M, Fe, Co, Ni, Cu, Zn, Sr, Cd, Ba)について、玄米の 移行係数を比較的寒冷な地域と温暖な地域間で比較を行った。その結果, TF が有意に違う元素(Fe, Zn) もあったが、その差は小さかったことから、TF 全体のバラツキに比べて気温条件がこれらの元素の TF に大きな影響を与えることはないと言えた。用いた玄米は全てジャポニカ種である。Pinsonら(2015) はジャポニカ種やインディカ種といった地域的な違いによる品種間の元素濃度比較を行っている。Ca, Mg, K についてはインディカ種がジャポニカ種よりも有意に高いことを報告しているが、その差はご く僅かであった。Pinson らの研究により、同じ環境条件下においては、米の品種に関わらず TF が同 様の値を示す可能性を示しているが、今回の本調査の結果はさらに、気温差が 7℃ほどある条件でも、 TF に差を生じることはほとんどないことを示した。微量元素についても同様のことが言えるのか、ま た米以外の種についてどのような結果が得られるのかについて、さらに検討する必要がある。

2.5.土壌-土壌溶液間分配係数に対する気温の影響調査

昨年度は、10℃における Cs の Kd 値は 23℃と大きく異ならないと想定し、低温条件(10℃) において、水田土壌 20 試料、畑土壌 20 試料について Kd を求め、過去に 23℃で得られた結果と比較した結果、有意差がないことがわかった。今年度は、水田土壌について、より高温条件(30℃) において Kd を求め、10℃および 23℃の結果と比較した。30℃においては、微生物活性が高まり(例えば Wagai et al., 2013)、有機物分解が促進されて、有機物収着 Cs が放出される(Kd が下がる)可能性、固相の粘土鉱物の収着サイトが分解された微細な有機物によってマスキングされる(Kd が下がる)可能性がある一方、鉱物等を覆っていた有機物が分解されてマスキングが解除されて Cs が収着しやすくなる(Kd が上がる)可能性がある。

2.5.1. 30℃における土壌-土壌溶液間分配係数の実験方法の検討

通常の K_d実験においては、土壌に水を添加してから予備振とう1日後に RI を添加し、7日間連続 振とうさせて平衡になった後に液相と土壌固相を分離して K_dを測定している。しかしながら、30℃に おいては上述したように微生物活性が高まることから、いくつかの実験条件を検討した。すなわち、

①予備振とう1日-添加後連続振とう3日

②予備振とう1日-添加後連続振とう7日

③予備振とう1日-添加後連続振とう30日

④予備振とう 30 日-添加後連続振とう 7 日

①-③により,平衡時の確認を行うとともに,初期に収着した Cs が,より長時間 30℃で有機物分解を 進めることにより,どのような反応を示すのか (Kdが上がるのか,下がるのか)について検討をした。 また,②と④を比較することにより,予備振とう中に土壌条件の変化が生じた場合の Kd比較を行った。 実験用の土壌試料は5種類用いた(土壌特性は表 2.5-1)。固液比 1:10,¹³⁷Cs を添加し,振とうは 120rpm とした。振とう終了後,遠心機(日立 HIMAC CT5L)により 3000 rpm で 10 分間分離し,上澄み液 を φ =0.45 µm の PTFE フィルターに通し,得られた溶液を 3mL 分取して NaI (Tl)オートウェルシンチ レーションカウンター(アロカ, ARC-380)により 20 分カウントした(3回繰り返し)。上と同様に 土壌を添加しないスタンダード溶液を用意し,同じ条件でカウントした。 Kd 値は以下の式により算出した:

$$K_{\rm d} = \frac{(C_{\rm i} - C_{\rm l})}{C_{\rm l}} \cdot \frac{W_{\rm l}}{W_{\rm s}}$$

ここで, *C*_i (Bq/L)は添加初期¹³⁷Cs 濃度, *C*_l (Bq/L)は RI 添加・振とう期間終了後の試料溶液中¹³⁷Cs 濃度, *W*_lは溶液量(L), *W*_sは乾燥土壌重量である。*C*_i (Bq/L)および *C*_l (Bq/L)はそれぞれスタンダード溶液と試料溶液のネット cpm/mL で代用できる。

3回繰り返しの結果を図 2.5-1 に示す。有機物分解が進むと考えられる 30 日振とうにおける挙動は 必ずしも一致していない。添加後 3, 7, 30 日の振とう時間において, K_dが下がる結果を示した試料 は 2 試料,逆に上がる結果を示したのも 2 試料であり,1 試料については変化が無かったことから, どちらかに偏る傾向は見られなかった。また,予備振とう期間の違い(1 日と 30 日)は,2 試料で K_dに有意差が無く,2 試料でやや減少し,1 試料では増加した。全体としては,EP-SD-50 以外の試 料では大きく K_dが変化することはなかった。土壌特性(表 2.5-1)のデータからはこの土壌の特殊性 はわからなかったが,30 日も連続振とうすると,微生物活性以外のファクターとして物理的に土壌構 造が変化することも考えられる。

本研究の結果からは K_dに影響するファクターについて言及できない。分析条件について, RI 添加 後振とう 3, 7, 30 日の結果から, EP-SD-50 を除き, K_d値はほぼ一定であったので, 30℃においても, 10℃や 23℃の実験と同様に, 1 日の予備振とう7 日間の連続振とうでほぼ平衡状態であることが示さ れた。

2.5.2. 30℃における土壌-土壌溶液間分配係数の実験方法

上記の結果を受けて、30℃における K_d実験は以下の通り行うこととした。実験に用いた土壌試料は 放医研において室温で保存した風乾水田土壌 20 試料(φ <2 mm) である。

土壌試料1gを30 mLのポリプロピレン容器に分取し,超純水(Milli-Q)を10 mL加えて,30°Cに 設定した振とう機を用いて120 rpmで24時間予備振とうを行った。その後,試料に¹³⁷Cs(CsCl)を1 試料当たり4 kBq添加した。再び振とう機を用いて30°C,120 rpmで7日間振とうした。振とう後の 操作は第2.5.1 項と同じである。本実験も3連で行った。

2.5.3. 30°C における K_d-¹³⁷Cs の測定結果

30℃で得られた K_dの結果を表 2.5-2 に 10℃および 23℃の結果とともに示す。昨年度行った 10℃での結果は、23℃とは有意差がなかったが、本年度得た 30℃の結果と 10℃とを比較したところ、30℃のK_dが有意差が認められた(K_d値を対数変換, t-testの p=0.0075)。箱ヒゲ図を図 2.5-2 に示したが、K_d値は 10℃に比べて 30℃では平均で 0.49 倍に減少した。(K_dの幾何平均値は、10℃の試料では 3.88×10³、20℃の試料では 2.34×10³、30℃の試料では 1.91×10³ であった)。上述したように、減少する原因として 微生物活性による有機物分解による Cs 放出または土壌中の Cs 収着サイトを有機物がマスキングする ことによる Cs 収着量の減少等(e.g. Bellenger and Staunton, 2008)が影響すると考えられる。

さらに K_dの幾何平均値と温度の関係を図 2.5-3 にプロットしたところ,直線回帰で高い相関係数が 得られ (R=0.99), 10℃上がる毎に K_d値が約 1000 下がった。Cs については微生物活性の影響を受け にくいため,気温の影響を受けにくいと考えていたが,本結果から,Cs の K_dについては気温の影響 を受けることがわかった。Sr については Başçetin and Atun (2006) が鉱物に対して K_dが温度によって 変化することを示している。この場合,温度が高いほど K_dが高くなっており,彼らは拡散速度の違い が影響している可能性を示唆しているが,今回得られた土壌 Cs とは反対の反応であることから,Cs については拡散速度の違いでは説明できない。

2.5.4. 30°C における水田土壌の K_d-¹³⁷Cs のまとめ

水田土壌について、10、23、30℃での K_dを比較したところ、気温が高くなることにより K_dが減少 することがわかった。フィッティングにより、10℃気温が上昇することで、K_dが約 1000 下がる結果 を得た。この気温の影響については、土壌微生物活性が関連すると思われるが、30 日間連続振とうし た結果からは明確な結果が得られなかった。

今回用いた試料は水田土壌であり、畑土壌と異なる可能性もあることから、今後畑土壌についても 同様のことが言えるのかどうかについて検討する必要がある。

2.6.放射性セシウムの環境移行に関わる福島第一原発事故後のデータ

放射性セシウムの環境動態解明は、長期環境影響評価において重要核種である¹³⁵Cs(物理的半減期:2.3×10⁶ y)に関する環境移行パラメータに反映させることができる。東電福島第一原発の事故により環境中に放出された放射性 Cs のデータは貴重であるが、短期的には環境中を動き易いため変化し易い。長期環境影響評価においては、平衡状態におけるデータが必要であることから、平衡状態に 達したことを確認し、その後順次平衡時のデータとして収集していくこととしている。

本年度行った研究成果について以下に報告する。

2.6.1. 植物中の¹³⁷Cs 減少率の時間変化

植物中の¹³⁷Cs 濃度変化は 2011 年から 2013 年までは1つの指数関数でほぼ近似することができたが(例えば Tagami and Uchida, 2015),過去のチェルノブイリ原発事故後の経験から(Smith et al., 2000), 早い移行成分と遅い移行成分の2成分の指数関数で実効半減期が成り立っていると考えられる。そこで昨年度からは2成分の指数関数による近似を試みた。その結果,樹木については直接沈着した Cs を地上部が吸収した影響を受けて,引き続き早い半減期で減少している結果が得られた。

本年度も引き続き,木本植物および草本植物のサンプリングを継続しているが,木本植物では十分 平衡に達していないと考えられることから,今年度は草本植物について解析を行うこととした。

2.6.1.1. 材料および測定方法

以前と同様に,量研機構-放医研敷地内(千葉県千葉市稲毛区)に生育している植物を調査対象とし, 継続して採取した。草本植物として,イタドリ(Fallopia japonica),ヨモギ(Artemisia indica var. maximowiczii),フキ(Petasites japonicus)を対象とした。これらの植物は多年生草本植物であるが, 冬期においては地上部がすべて枯れている。採取後1時間以内に直ちに実験室に持ち帰り,生重量を 測定後,洗浄・無処理の2つの試料を作成したが,両者間に濃度差がなかったことから,どちらのデ ータも用いることとした。各試料は80°Cにて乾燥,粉砕ののち,U8容器に詰めてGe半導体検出器 (Seiko EG&G Ortec)により80,000秒から150,000秒の測定を行った。

2成分の指数関数を組み合わせて表すことから、以下の式により震災後からの経過日数 t 日における植物中の濃度(Y_t)を推定する。

 $Y_t = A^* \exp(-\lambda_a * t) + B^* \exp(-\lambda_b * t) \qquad \dots (1)$

速い移行成分の定数: A

- 遅い移行成分の定数:B
- 速い移行成分の減衰率:λ。 (実効半減期 T_{eff}=ln(2)/λ_a)
- 遅い移行成分の減衰率: λ_b (実効半減期 T_{eff}=ln(2)/ λ_b)

フィッティングは KaleidaGraph ver. 4.1.4 の回帰式作成機能を用いて行った。

2.6.1.2. 植物中放射性 Cs のフィッティング結果

¹³⁷Cs 濃度結果を事故発生日からの経過時間で示した結果を図 2.6-1 に示す。得られた回帰式の相関 係数はイタドリで R=0.99, ヨモギで R=0.90, フキで R=0.89 と高い相関が得られた。2 成分目の半減期 は、2.7-10.5 年であり、フキでやや早い減少が得られているが、ヨモギでは環境半減期が 10.5 年と長 い。以前,グローバルフォールアウト¹³⁷Cs の表層土壌からの環境半減期を求めた際,平均的な値と して 13-21 年を得ている(放射線医学総合研究所, 2016)。この程度の値であれば,植物中濃度の変化 と土壌中濃度の変化が平衡になっていることから,移行係数も平衡になっていると考えられる。近年 のデータだけを取り出せば,2015-2016 年では値の変化がほとんどないことも加味すると,ほぼ平衡 に達した状態の値が得られていると考えられる。

得られたデータを元に、面積当たりの移行係数(T_{ag} , m² kg⁻¹)を導出した。土壌中の¹³⁷Cs 鉛直方 向濃度分布が表層で高く下層で低い不均一分布を示すことから、一般的な TF を用いることは不適切 である。 T_{ag} は次式で表される:

T_{ag}= 生物中¹³⁷Cs 濃度(Bq kg⁻¹)/土壤中¹³⁷Cs 濃度(Bq m⁻²)(2)

土壌中濃度(Bq m⁻²) については,面積既知の 0-5cm 採取可能なコアサンプラーで土壌を採取して 求めている。5 cm 以深では 137Cs は全降下量の 5%以内であることが,2011-2016 年のサンプリングで わかっている。

(2)式より、 T_{ag} として草本植物については 5.3×10^{-5} から 1.6×10^{-4} m² kg⁻¹を得た。樹木葉への T_{ag} として 2.5×10^{-3} から 1.2×10^{-2} m² kg⁻¹が報告されているが(IAEA, 2010) これよりも 1-2 桁低い値である。日本の土壌は高い Cs 収着能が報告されていることが、海外との違いの要因と考えられる。更なるデータ蓄積を行い、既存データとの比較を行うことが重要である。

2.6.2. 野生生物への Cs 移行係数

野生生物への Cs 移行係数については、わが国ではこれまで報告がなかった。しかし、食品モニタ リング(厚生労働省,2017)を通じて狩猟生物の可食部中の放射性 Cs 濃度の報告が行われているこ とから、これらのデータについて考察することが可能である。これまで、濃度の変化について環境半 減期の観点から検討を行ってきたが、本年度は移行係数の導出を試みた。ただし、ここでは、2.6.1 で も記したように、土壌中の¹³⁷Cs 鉛直濃度が一定ではないことを考慮し、草本植物で用いた面積当た りの移行係数(T_{ag})として報告する。

野生生物中の採取場所は市町村名まで特定可能である。さらに福島県内においては、より範囲を特定した狩猟マップ上のグリッドまで報告されている(福島県、2017)。これに対応した土壌中濃度は、 文部科学省(2017)が公表している観測データ(サンプリングまたは in-situ)を用い、それぞれの区域(市町村単位、または狩猟マップ上のグリッド)内において採取された報告値、または福島県内においては、グリッドを接する範囲でデータがあれば利用した。各区域内に複数のデータがある場合には幾何平均値を求め、それを土壌中濃度(Bq m⁻²)とした。データ採取は報告が開始されたときから、2016年12月に公表された値までである。

2.6.2.1. イノシシ

イノシシの T_{ag} は宮城県 (325),福島県 (1177),茨城県 (183),栃木県 (968),群馬県 (205) で 得られた (カッコ内はデータ数)。時系列でデータを図 2.6-2 に示した (T_{ag}=10⁻⁵ にプロットされたデ ータは N.D.を示している)。2015-2016 では季節変化も見られるようであるがまだ明確ではなく,連続 データを今後も収集する必要がある。

この図からは、この減少曲線をフィッティングする際、植物のように2成分に分けることが困難であることがわかる。そこで一成分の指数関数でフィッティングしたところ、茨城県を除いて(R=-0.51, p<0.001) T_{ag}と経過時間との間の相関係数は0.2を超えることがなく、ほとんど経時変化がみられない

ことがわかった。良い相関は得られなかったものの,得られたフィッティングデータから¹³⁷Csの実効半減期を求めると、1.8y~減少なしであり、5 県の幾何平均値は 9.3 年であった。府馬らは(2016) はイノシシ中の放射性 Cs の経時的な減少を報告しているが、これは¹³⁴⁺¹³⁷Cs として報告しており物理 的減衰を補正していない。すなわち、経時的な減少のほとんどは¹³⁴Cs の減衰によるものと考えられ ることから、本報告と異なるのは当然の結果といえる。物理的減衰を補正しないで環境中の放射性 Cs の減衰を論じる場合、事故直後には¹³⁴Cs の物理的減衰により大きく減少するが、その後、環境中に は¹³⁷Cs が主に存在しているため、ほとんど物理的減衰が期待できない。したがって、環境中における¹³⁷Cs の実効半減期を求める事は重要である。

 T_{ag} を県別に比較したところ有意差はなく,したがってこれらの地域内では同様の T_{ag} となることがわかった。得られた T_{ag} の幾何平均値は 3.4×10^{-3} m² kg⁻¹であった(表 2.6-2)。IAEA(2010)は 5×10^{-4} から 3.4×10^{-1} m² kg⁻¹を報告していることから、本調査で得られた T_{ag} はその範囲内であることがわかった。

筋肉中の濃度のイノシシ全体の代表性については、田野井ら(2016)によれば、イノシシのいろい ろな部位の中でも太ももの筋肉中の濃度が最も高いと報告されている。したがって、筋肉を用いるこ とで、各部位を過小評価することはないといえる。

2.6.2.2. ニホンジカ

ニホンジカの T_{ag}は岩手県(97), 宮城県(78), 福島県(44), 栃木県(83), 群馬県(359) で得ら れた(カッコ内はデータ数)。群馬県ではイノシシの数を上回って採取されている。ニホンジカのデー タについても時系列の変化を図 2.6-2 に示す。イノシシと同様に一成分の指数関数でフィッティング を行ったが, p 値が低く相関は得られなかった。したがって, イノシシと同様, ニホンジカも事故後 から濃度がほとんど変化していないことが伺える。フィッテイング結果から実効半減期を求めたとこ ろ 3.6-減少なしであった。

 T_{ag} の県別比較ではイノシシと同様に有意差がなかったことから、同様の T_{ag} を用いることがこれらの地域では可能である。得られた T_{ag} の幾何平均値は 5.5×10⁻³ m² kg⁻¹(表 2.6-2)であり、t-検定を行ったところシカの値はイノシシやツキノワグマよりも有意に高いことがわかった(p<0.01)。Red deerや Roe deer は 1×10⁻² から 5×10⁻² m² kg⁻¹ と 5×10⁻³ から 5×10⁻² m² kg⁻¹が報告されている(IAEA, 2010)ことから、ニホンジカの T_{ag} は Red deer よりも低く、Roe deer と同程度であったと言える。

2.6.2.3. ツキノワグマ

クマの T_{ag} は岩手県(50),宮城県(56),福島県(346),群馬県(200)で得られた(カッコ内はデ ータ数)。福島県内では2番目に多く採集される野生動物である。 T_{ag} の時系列は図 2.6-2 に示したが, ほとんど減衰せず,むしろ緩やかに上昇する傾向も宮城県と群馬県で見られている。 T_{ag} の県別比較で は他の2種類と同様に有意差がなかったことから,これらの地域では同様の T_{ag} を用いることができ る。得られた T_{ag} の幾何平均値は 3.8×10⁻³ m² kg⁻¹(表 2.6-2)であり,イノシシと有意差がなく,シカ よりも低い値であった。ツキノワグマは欧米で食用にすることがないため,移行係数は IAEA TRS472 (2010)には含まれていないが,今後は今回得られた値を使うことができる。

2.6.2.4. 野生生物のT_{ag}のまとめ

野生動物については、¹³⁷Cs の T_{ag} が経時的に減少していなかったことがわかった。したがって、今後も長期に渡って、現在と同様の T_{ag} を用いることができる。本分析で得られた T_{ag} は、イノシシで $3.4 \times 10^3 \text{ m}^2 \text{ kg}^{-1}$ 、ニホンジカで $5.5 \times 10^{-3} \text{ m}^2 \text{ kg}^{-1}$ 、ツキノワグマで $3.8 \times 10^{-3} \text{ m}^2 \text{ kg}^{-1}$ であり、これらの生物

へのCsの移行係数(T_{ag})は類似していることがわかった。

経年変化についてはほとんど減少していないが、季節変動について、イノシシではここ2年程度緩 やかな増減の繰り返しが見られている。東日本のイノシシの食性については情報がないが、西日本で は、春期にタケノコ、夏期に双子葉植物、秋期にドングリ等の堅果類および動物質、冬期に根・塊茎 の採食量が多い(環境省,2017a)。ヨーロッパで確認されているようにキノコ類の摂取量が体内中濃 度を高める(Hohmann & Huckschlag, 2005)こととは挙動が違うものと考えられる。そのため、野生キ ノコ中の放射性 Cs 濃度が高くても、あまり影響を受けることは無い可能性がある。今後もどのよう な変化をするのか、傾向を確認する必要がある。

2.6.3. 淡水魚中の¹³⁷Cs 濃度

福島第一原発事故により生活圏に放射性 Cs が放出され、様々な環境が汚染された。陸水環境も例 外ではない。風や降雨により陸域に蓄積した放射性 Cs の一部は河川へと運ばれ、最終的には海へ流 れ出る。湖沼はこの流出過程に存在する。河川において放射性 Cs は主に懸濁物質とともに存在して おり (Tsuji et al. 2014)、湖沼はこれら懸濁物質が蓄積しやすい場所でもある。湖沼に生息する生物は、 したがって、放射性 Cs に暴露される機会が多く、体内に蓄積している可能性がある。特に、魚は湖 沼生態系において栄養段階が高く、放射性セシウムで汚染された生き物を多量に、そして継続的に食 べていると考えられるため、蓄積量も多いと推測される。また、魚はヒトの被ばく経路の重要な媒体 でもある。

Kurita et al. (2015)は、東北および関東沖に生息するヒラメの放射性 Cs 濃度を 2011 年から測定しており、事故後3年では放射性 Cs 濃度が平衡に達していない可能性を示唆している。また我々も複数の海水魚については、恐らくは生物的半減期の長期成分が影響し、減少が遅延していることを報告した

(Tagami and Uchida, 2016)。しかし、事故後6年が経過しようとしている現在、湖沼生態系における 放射性 Cs 濃度は平衡状態に近づきつつある。平衡状態での移行パラメータを得るためには、したが って、これからのデータ収集が重要となる。そこで、2015年9月から千葉県北西部にある印旛沼にお いて捕獲した魚の¹³⁷Cs 濃度について調査を行っている。ここでは2016年3月以降の結果について報 告する。

2.6.3.1. 印旛沼の基本情報と周辺域の汚染状況

印旛沼の基本情報を表 2.6-3 に示す。印旛沼は利根川水系の湖沼で、千葉県北西部に位置する。印 旛沼を構成する西印旛沼と北印旛沼は印旛沼捷水路で結ばれている。印旛沼は水道用水の他、農業用 水、工業用水として利用されている。また、コイ、フナ、ウナギ、モツゴなどを対象に、内水面漁業 も行われている。周辺域の放射性セシウム(¹³⁴⁺¹³⁷Cs)汚染状況であるが、放射線量等分布マップ拡大 サイト(文部科学省, on line)によると、2011 年 11 月 5 日の時点において、30k Bq/m²以下であった。

環境省は東日本大震災への対応の一環として、公共用水域における放射性セシウムのモニタリング を行っている(環境省,2017b)。このモニタリングで得られた2011年11月から2016年9月までの底 質の放射性セシウム濃度の変化を図2.6-3に示す。平成28年度は12月末までに6月と9月の2回調 査が行われた。それぞれの調査における放射性セシウム濃度は348 Bq/kg-dryと357 Bq/kg-dryであり、 昨年度とほぼ同じ値であった。河川や周辺の環境から放射性セシウムの流入が減り、底質の放射性セ シウム濃度は平衡状態であると考えられる。水質中の放射性セシウム濃度は,2011年11月から2016 年9月までに20回調査が行われたが、いずれも1 Bq/L 未満であった。

2.6.3.2. 印旛沼で採取された淡水魚の¹³⁷Cs 濃度

2016年3月2日から12月8日までの期間,印旛沼において51匹の魚を捕獲した。捕獲した魚種毎の写真を図2.6-4に、魚種、魚種毎の捕獲数、全長の最小-最大値,および湿重の最小-最大値を表2.6-4に示す。魚の捕獲には、東邦大学の風呂田利夫名誉教授にご協力いただいた。捕獲した魚は部位毎(頭部,筋肉,骨,内臓,その他)に切り分けた。その他の部位については、皮、鱗、骨、それに筋肉など、様々な部位が様々な割合で含まれるため、分析対象から除いた。但し、各部位に分別することが難しい小型のフナとブルーギルに関しては、頭部を除いた全ての部位(胴体試料)を分析試料とした。フナは37匹捕獲したうち15匹を、ブルーギルは2匹捕獲したうちの1匹を胴体試料とした。骨試料について、生の状態では骨と肉を分けることが難しいため、80℃で湯浴したのち、ブラシを用いて骨から肉をそぎ落として得た。頭部を除き、各部位および胴体試料は凍結乾燥した。凍結乾燥試料は粉砕機(ラボミルサープラス、大阪ケミカル)で粉砕し、ねじロU型容器(U8、関谷理化株式会社)に封入した。放射性セシウムの測定は、ゲルマニウム半導体検出器をあるが、効率校正およびエネルギー校正は放射能標準ガンマ体積線源(日本アイソトープ協会)を用いて行い、測定精度は放射能分析用土壌認証標準物質(JSAC0473、日本分析化学会)を用いて確認した。

魚種毎の部位別¹³⁷Cs 濃度を図 2.6-5 に示す。捕獲したいずれの魚においても、¹³⁷Cs 濃度は部位毎に 異なった。最も¹³⁷Cs 濃度が高かった部位は筋肉で、内臓中の濃度は筋肉の 32-49%の範囲であり、卵 は内臓と同等かそれ以下であった(筋肉に対して 21-43%の範囲)。骨は¹³⁷Cs 濃度が最も低く筋肉中の 濃度の 4-8%であった。安定セシウムは骨や歯などの硬組織より筋肉や内臓などの軟組織に蓄積しやす いことが知られており(Yankovich, 2009)、本調査の結果は放射性セシウムにおいても安定セシウムと 同様に軟組織に蓄積しやすいことがわかった。また、放射性セシウムは軟部組織の中でも筋肉に蓄積 しやすいことが分かった。部位毎に異なる¹³⁷Cs 蓄積量の情報は、魚を食べることによる内部被ばく 線量の推測にも役立つ。ヒトは魚を丸ごと食べることがあるが、筋肉に蓄積されやすい Cs の特性は、 筋肉の¹³⁷Cs 濃度が、魚一匹全体の平均的な¹³⁷Cs 濃度より高いことを意味している。つまり、筋肉部 の放射性セシウム濃度が食品中の放射性物質の基準値(100 Bq/kg)を超えていなければ、魚丸ごと一 匹の放射性セシウム濃度は基準値を超えないと言える。

筋肉中の¹³⁷Cs濃度は魚種にも依存することがわかった。平均濃度で比較すると、カムルチ、アメ リカナマズ,オオクチバス,ブルーギル,コイ,そしてフナの順で濃度が低くなった。筋肉中の¹³⁷Cs 濃度は曝露時期にも依存する可能性があるので、原子力発電所事故以前に生まれた魚と事故後に生ま れた魚を判別するために、それぞれの魚種についていくつかの個体から耳石を採取し、輪紋数から魚 齢を推定した(表 2.6-5)。その結果、カムルチは2才、アメリカナマズは2匹捕獲したが、そのうち 一匹は7才であった。オオクチバスは3匹捕獲し、2匹は2才であった。ブルーギルは捕獲した2匹 のうち筋肉の¹³⁷Cs 濃度を定量した個体の年齢は2才であった。年齢推定を行わなかったアメリカナ マズ、オオクチバスおよびブルーギルであるが、年齢推定を行った個体とほぼ同じ全長であったこと から、同様の魚齢だったと推測される。コイは6匹捕獲したうちの3匹を用いて年齢推定を行い、何 れも事故以前に生まれた個体であることが分かった。その他の個体も、年齢推定した個体よりも全長 が長く、従って事故以前に生まれていたと推測された。フナは 37 匹捕獲し、そのうち 22 匹について 筋肉中の¹³⁷Cs濃度を測定し、さらにこのうち18匹について年齢査定を行った。その結果、捕獲時の 魚齢が 5 才以上, つまり原子力発電所事故以前に生まれたと推定された個体は 10 匹であった。この 10 匹の筋肉部の平均¹³⁷Cs 濃度は 86 Bq/kg-dry であった。以上をまとめると、カムルチ、オオクチバ ス,おおびブルーギルはアメリカナマズ,コイ,および一部のフナよりも¹³⁷Cs による暴露期間が短 いが,他の魚種よりも¹³⁷Cs濃度が高いことが分かった。

魚種による筋肉中¹³⁷Cs 濃度の違いは、魚の食性に依存する可能性がある。¹³⁷Cs 濃度が高いカムル

22
チやオオクチバスは魚食性であり、ブルーギルやアメリカナマズは動物食性の強い雑食性である。コ イも雑食性であるがブルーギルやアメリカナマズとは異なり、動物食性が強いわけではない。フナの 食性は種により異なる。例えば、ギンブナは動物プランクトン、付着藻類、底生動物など食べる雑食 性であるが、ゲンゴロウブナは植物プランクトンを主に食べる。印旛沼ではギンブナおよびゲンゴロ ウブナが捕獲できるが、その判別は難しく、今回捕獲したフナに関しても判別はできなかった。以上 をまとめると、魚食性、動物食性が強い雑食性、雑食性の順で¹³⁷Cs が筋肉に蓄積しやすいと考えら れる。フナは種により食性が異なることから、今後簡便に判別する方法を検討する必要がある。

2.6.3.3. 栄養段階推定のための予備調査

食性の違いは栄養段階に現れる。したがって、上述の仮説を証明するには捕獲した魚の栄養段階を 明らかにする必要がある。魚の栄養段階は炭素および窒素安定同位体を用いた研究がこれまでよくお こなわれてきた(Rybczynski et al. 2008, Perkins et al. 2014)。この安定同位体比の測定において、試料 の前処理が重要であることが指摘されている(鈴木と佐藤 2010, 杉崎ら 2013)。つまり、脂質の炭素 同位体比は筋肉と比較して軽いため、筋肉中の脂質含量が安定同位体比に影響を与えることが報告さ れている。印旛沼で捕獲された魚のうち、アメリカナマズは多量の脂質を含んでおり、他の魚も採取 時期によっては多量に脂質を含んでいることがあった。そこで、魚の筋肉の安定同位体比を分析する 前に、脱脂の方法について検討した。

脱脂にはエタノール、メタノール、アセトン、キシレン、クロロフォルムなどの有機溶媒がよく利用される。中でもクロロフォルムーメタノール(体積比,2:1)混合液は他の抽出液より抽出効率が良いことが知られている(Logan and Lutcavage 2008)。しかしながら、試料量に対する混合液量や抽出回数は様々であり、定まった方法がない。そこで、印旛沼で捕獲できる魚に最適な脂質抽出方法について検討した。クロロフォルムとメタノールは共に劇物であることから、できる限り使用量を減らすことが望ましい。また、同位体比質量分析に必要な試料量は数ミリグラム程度でよいことから、10 mg程度の試料量に対する抽出方法について検討した。

抽出のプロトコルを図 2.6-6 に示す。2015 年 12 月 14 日に印旛沼で捕獲したアメリカナマズを凍結 乾燥し粉砕したものを試料とし、この試料 10-20 mg を 2 mL 容量のチューブに分取した。このチュー ブに脱脂液としてクロロフォルム-メタノールの混合溶液(体積比=2:1)を 1.5 mL 添加し、よく混合 したのち一晩浸漬した。その後再度よく混合し、チューブ内の浮遊物を完全に沈殿させるため、5,500 ×gで5分間、室温で遠心分離し、上清を廃棄した。さらに 1.5 mL の脱脂液を新たにチューブに添加・ 混合し、上述と同条件により上清を廃棄した。これを1回抽出試料とした。脱脂液の添加から上清の 廃棄までをさらに2回行い、それぞれを2回抽出試料および3回抽出試料とした。対象試料として凍 結乾燥後粉砕した試料を未抽出試料とした。これらの試料は 50℃で 24 時間以上乾燥し、測定試料と した。測定試料は専用のスズ箔に梱包し、同位体比質量分析計(DELTA V Advantage, Thermo Fisher Scientific Inc.)を用いて3種類のワーキングスタンダード(SI Science Reference Material; Amino Standard) により暫定 δ 値を求め、国際スタンダードによる δ ¹³C と δ ¹⁵N に換算した。

抽出回数とδ¹³Cとδ¹⁵Nの関係を図 2.6-7 に示す。1 回抽出によりδ¹³Cは-42.8‰から-26.6‰まで上 昇し、明確な脱脂効果がえられた。一方、2 回抽出を行った場合、1 回抽出試料と比較しδ¹³C に変化 は認められなかった。ところが 3 回抽出を行った場合、逆にδ¹³C が低くなった。通常、抽出により δ¹³C が低くなることは考えにくく、値の低下は粉砕試料の不均一性により生じたと考えられる。分 析試料は粉砕したが繊維状の筋肉が残っているのを目視で確認した。おそらく、このような繊維質の 筋肉の不均一性がδ¹³C に影響を与えたと考えられる。したがって、δ¹³C の分析にはサンプリング誤 差を小さくする工夫が必要である。δ¹⁵N は抽出によりわずかに上昇する傾向が観察された。この結 果は Eliot and Eliot (2016)の結果と一致する。つまり、脂質の δ^{15} N は筋肉よりもわずかに低い可能性がある。

以上の検討を踏まえ、脱脂操作は3回行い、同一魚試料から準備した粉砕試料を独立して3回測定 することとした。そして2015年9月以降に捕獲した魚について δ^{13} Cと δ^{15} Nを求めた。分析に用い た試料一覧を表 2.6-6に示す。また、測定の結果得られた炭素・窒素安定同位体比を図 2.6-8に示す。 魚食性のカムルチとオオクチバス、および動物食が強い雑食性のアメリカナマズは、明らかにコイと フナより高い δ^{15} Nを示した。 δ^{15} Nは食う一食われる関係によって高次の生物に濃縮されることから

(Minagawa and Wada, 1984), この δ^{15} N の結果は印旛沼の魚の食性を表しているといえる。 δ^{13} C も同様に生物濃縮されるが変動幅が大きく栄養段階よりもむしろ一次生産者に依存するところが大きい

(杉崎ら, 2013)。したがって、コイ2匹とフナにおける δ^{13} Cの違いは一次生産者に対する食性の違いと言える。また、同じコイ種であっても一次生産者に対する食性の違いがある可能性が、本調査の結果から示唆された。今後、検体数を増やすなどの必要はあるが、安定同位体比は食物連鎖と¹³⁷Csの蓄積との関係を明らかにする手法として利用できる可能性がある。アメリカナマズの胃内容物であるが、目視で確認できる限り、モツゴとスジエビが主な構成物であった。胃内容物とアメリカナマズの筋肉の δ^{15} Nは、それぞれ13.2‰と15.9‰であり、その差は2.7‰であった。一般に、栄養段階が1上がると δ^{15} Nが3-4‰上昇することが知られており(杉崎ら2013)、アメリカナマズはモツゴとスジエビを主食としている可能性が示唆された。また、オオクチバスの δ^{15} Nは16.1‰とアメリカナマズの値よりわずかに高いだけであり、従って、印旛沼においてはこの魚も主にアメリカナマズと同様の食性である可能性が示唆された。カムルチの δ^{15} Nは16.8と測定した資料のうち最も高く、従って、モツゴやスジエビ以外にも何か食べている可能性がある。コイの卵であるが、 δ^{13} Cと δ^{15} Nが共に最も小さい値となった。同一個体の筋肉より小さいことは、卵における炭素や窒素の回転速度が筋肉より遅い、あるいは卵が形成されてからまもなくこの個体が捕獲されたことを意味している。この様に、今後、炭素・窒素安定同位体比のデータを蓄積することにより、淡水魚における栄養段階と¹³⁷Csの濃縮の関係がより詳細に明らかになることが期待される。

2.7.おわりに

第2章で行った調査研究の目的は、環境移行パラメータ(TF, K_d)に及ぼす気温等の影響評価を行い、気温の影響を受ける場合には気温条件を項目に加えたデータベースを構築することである。そのためには質の揃ったデータセットが必要であることから、土壌―農作物試料収集を行い、元素分析・定量し、TFデータを蓄積してきた。また、Csの土壌K_dについて、温度を考慮した検討を行った。さらに、長半減期核種である¹³⁵Csを考慮し、その環境移行パラメータに反映させるために、福島第一原発の事故により環境中に放出された放射性Csデータに着目してデータを収集した。

2.7.1. TF に対する気温の影響に関する文献調査

本年度は、これまでの文献調査結果をデータベースとして供給するために、データとともに記載す る項目の抽出を行った。ただし、文献調査では、気候帯と移行係数という観点からのデータがほとん どなかったことから、実際には土壌や植物中の元素濃度データや、わが国の環境放射能調査・研究か ら得られたグローバルフォールアウト⁹⁰Sr や¹³⁷Cs の土壌および植物中の濃度変化について、気温の 違う地域間で比較してきている。付属する項目として、データが採取された地点、採取年の情報とデ ータソースを必須としている。他にも項目を挙げているが、これらについては挙げるべき項目の確認 を行い、データ整備していく。

最も重要なことは、入力されたデータに間違いがないかの確認である。これまでは文献検索からデ ータ入力までの作業は個人で行われてきたが、必ず再確認を別の担当者が行うこととする。なお、デ ータ入力の情報についても、データベースに含まれる項目とする。

文献調査データベースの入力を充実させるために、わが国のみならず世界に検索範囲を広げ、異な る気候帯におけるデータ比較が必要である。しかしながら、放射性核種の情報は限られていることか ら、よりデータが多い無機元素に着目してデータ収集を行い、寒帯、温帯、熱帯、乾燥地帯の土壌デ ータを収集することができた。重要核種関連元素である Ni, Sr, Mo および Pb について解析したところ、 Ni については気候帯で有意差が認められたが、その差は2倍以内であり、他の3元素については有意 な差は見られなかった。さらに5つの無機元素(Co, Zn, Cu, As, Cd)についても解析を行ったが、気 候帯別での差は明確ではなく、世界的に土壌中の無機元素濃度はほぼ同程度と考えられる。

2.7.2. 気温が相対的に低い地域と高い地域における土壌-農作物間移行係数(TF)

平成 28 年度においても、比較的寒冷地および温暖地において玄米 10点(寒冷地5点,温暖地5点) とジャガイモ 10点(寒冷地5点,温暖地5点)およびこれらの収穫期の土壌をサンプリングした。本 作業は平成 26 年度より行っており、これにより玄米-土壌試料のセット、ジャガイモ-土壌試料のセッ トは、寒冷地域および温暖地域でそれぞれ 15 検体ずつとなった。本年度採取した試料については 20 元素の濃度データ測定と、それらを用いて導出した TF をデータベースに追加した。さらに、前年度 採取した試料の希土類元素等の微量元素についてもデータを追加し、これらについても TF を導出し てデータベースに追加することができた。データが増えたことから、今年度は平成 26-28 年度に収集 した土壌試料の物理化学特性を、平成 14-18 年度に収集した水田および畑土壌データとそれぞれ比較 した。その結果、平成 26-28 年度に採取の土壌試料の土壌特性は全国データとほぼ差がないことがわ かった。

データの解析については、玄米の主要元素について、本年度、これまで得られたデータを用いて TF の解析を比較的寒冷な地域と温暖な地域のデータを用いて第 2.4 節で行った。ジャガイモについては 目標とする、寒冷地域と温暖地域それぞれ 20 試料以上を得た上で解析を実施予定である(来年度の試 料採取後を予定)。

2.7.3 環境移行パラメータ(TF)の変動要因の解析

主要な元素(Na, Mg, Al, Si, P, K, Ca, Cr, M, Fe, Co, Ni, Cu, Zn, Sr, Cd, Ba) について, 平成 14-18 年度 に収集したデータと合わせることで, 比較的寒冷な地域と温暖な地域の TF の差異について統計解析 により検討を行った。稲が栽培される主たる季節である 5-9 月において, 比較的寒冷な地域における 気温は平均 18.4℃であり温暖な地域(25.3℃)と約 7℃の差であった。

データは対数変換してから解析を行った。その結果,TFが有意に違う元素(Fe, Zn, p<0.01)もあったが,その幾何平均値の差は小さかった。Pinsonら(2015)の研究により,同じ生育環境条件下においては,TFの米の品種間差が小さい可能性を示しているが,今回の本調査の結果は,気温差が7℃ほどある環境条件でも,TFに差を生じることはほとんどないことを示した。昨年度行った葉菜類の解析結果も同様に,対象元素37元素(Na, Mg, Al, Si, P, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Se, Rb, Sr, Y, Zr, Nb, Mo, Cd, Sn, Sb, Cs, Ba, La, Ce, Sm, Eu, Gd, Pb, Th, U)に対し,気温帯によってTFには差が生じず,変動要因とならない可能性が高いことを報告している。

しかし稲は葉菜類よりも生育期間が長い。今回対象としなかった微量元素は必須元素ではないこと から、根が長期間土壌と接することで、葉菜よりも温度差が生じる可能性がある。今後は微量元素に ついての検討が必要である。

2.7.4. 土壌-土壌溶液間分配係数に対する気温の影響調査

本年度は水田土壌 20 試料を用い、30°Cの条件において K_d を測定した。得られたデータをこれまで 採取した 10°C, 23°Cにおける K_d を比較したところ、 K_d の幾何平均値は、10°Cの試料では 3.88×10³、 20°Cの試料では 2.34×10³、30°Cの試料では 1.91×10³となり、気温が高くなることにより K_d が減少する ことがわかった。

フィッティングにより、10℃気温が上昇することで、K_dが約 1000 下がる結果を得た。このような 気温の影響については、土壌微生物活性が関連すると思われるが、30 日間連続振とうし、土壌微生物 活性を高めた試料の結果からは、明確な結果が得られなかった。今回用いた試料は水田土壌であり、 畑土壌と異なる可能性もあることから、今後畑土壌についても同様のことが言えるのかどうかについ て検討する必要がある。

2.7.5 福島第一原発事故後の放射性 Cs の環境移行調査研究のまとめ

福島第一原発事故により環境中に放出された放射性セシウムの環境移行に関し、実環境試料中のデータ収集を行うことにより、環境移行パラメータを得ることを目的として調査研究を行った。

植物については,量研機構-放医研の敷地内で採取した草本植物3種類について,2成分の指数関数 による近似を行ったところ,良好なフィッティング結果が得られた。二成分めの遅い半減期のデータ から,今後の放射性セシウムの植物中濃度濃度は顕著に減らないことがわかった。そこで長期的な評 価を行うために必要な平衡状態にほぼ達していると考えられたことから,土壌中濃度と平成27-28年 度に得られたデータを元に面積当たりの移行係数(T_{ag})を導出し,5.3×10⁻⁵から1.6×10⁴ m² kg⁻¹を得 た。

野生動物については、イノシシ、ニホンジカ、ツキノワグマに着目した。食品モニタリングデータから、動物中の¹³⁷Cs 濃度は事故後からほとんど減少していないことがわかった。そこで土壌中濃度モニタリングデータも用い、野生動物肉への T_{ag} を求めた。その結果、イノシシで $3.4 \times 10^3 \text{ m}^2 \text{ kg}^{-1}$ 、ニャンジカで $5.5 \times 10^{-3} \text{ m}^2 \text{ kg}^{-1}$ 、ツキノワグマで $3.8 \times 10^{-3} \text{ m}^2 \text{ kg}^{-1}$ であり、これらの生物への Cs移行係数(T_{ag})

は類似していることがわかった。これらのデータを野生動物に適応することができるようになった。 淡水魚では,海水魚よりも¹³⁷Cs を濃縮する機構を持つことから,実効半減期が長くなっているこ とが指摘されている。また,生物濃縮も重要なファクターであることから,食品モニタリング等の文 献では得ることのできない生態系における地位を窒素安定同位体比により明らかにしておくことが重 要であることから,新たに印旛沼において測定を開始した。本年度は捕獲した魚の部位ごとに¹³⁷Cs を測定することで筋肉により¹³⁷Cs が蓄積されやすいこと,さらに魚種により筋肉中の¹³⁷Cs 濃度が異 なることを明らかにした。魚種による¹³⁷Cs 濃度の違いは,食性に依存する可能性が考えられたこと から,δ¹³C およびδ¹⁵N を用いて魚の栄養段階の解析に着手した。これらの周辺情報を整理すること で,平衡状態においていろいろな生態学的地位にある魚の濃縮係数を蓄積して行くことができるよう になると期待される。

以上のような検討を行うことで、長期的な環境安全評価を行う上で必要な環境移行パラメータの収 集を行い、周辺情報と併せてデータベース化することによって、いろいろな環境条件における情報を 蓄積することができる。TFやT_{ag},K_dのデータ収集は未だ不十分であり、したがって今後さらにフィ ールドでのサンプリングと定量分析を行いながら、我が国の環境移行パラメータデータベースを構築 する必要がある。

引用文献

- Başçetin, E., & Atun, G. (2006). Adsorption behavior of strontium on binary mineral mixtures of Montmorillonite and Kaolinite. *Applied radiation and isotopes*, 64(8), 957-964.
- Becker, J. K., Lindborg, T., & Thorne, M. C. (2014). Influence of climate on landscape characteristics in safety assessments of repositories for radioactive wastes. Journal of environmental radioactivity, 138, 192-204.
- Bellenger J.-P., Staunton, S. (2008) Adsorption and desorption of ⁸⁵Sr and ¹³⁷Cs on reference minerals, withi and without inorganic and organic surface coatings. J. Environ. Radioactiv. 99, 831-840.
- Dowdall, M., Standring, W., Shaw, G., & Strand, P. (2008). Will global warming affect soil-to-plant transfer of radionuclides?. *Journal of environmental radioactivity*, 99(11), 1736-1745.
- Elliott, K. H., & Elliott, J. E. (2016). Lipid extraction techniques for stable isotope analysis of bird eggs: Chloroform–methanol leads to more enriched 13C values than extraction via petroleum ether. Journal of Experimental Marine Biology and Ecology, 474, 54-57.

FAO (2016) FAOSTAT Food Balance. http://faostat3.fao.org/browse/FB/*/E (2016.2.19 アクセス)

- Fuma, S., Kubota, Y., Ihara, S., Takahashi, H., Watanabe, Y., Aono, T., H. Soeda & Yoshida, S. (2016). Radiocaesium contamination of wild boars in Fukushima and surrounding regions after the Fukushima nuclear accident. Journal of Environmental Radioactivity, 164, 60-64.
- Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH (2008): Impact of climate change on far-field and biosphere processes for a HLW-repository in rock salt. GRS-241.
- Hohmann, U., & Huckschlag, D. (2005). Investigations on the radiocaesium contamination of wild boar (Sus scrofa) meat in Rhineland-Palatinate: a stomach content analysis. European Journal of Wildlife Research, 51(4), 263-270.
- IAEA (2010) Handbook of parameter values for the prediction of radionuclide transfer in terrestrial and freshwater environments. Technical Report Series No.472 (IAEA-TRS-472).
- Kautsky, U., Lindborg, T., & Valentin, J. (2013). Humans and ecosystems over the coming millennia: Overview of a biosphere assessment of radioactive waste disposal in Sweden. Ambio, 42(4), 383-392.

- Kurita, Y., Shigenobu, Y., Sakuma, T., & Ito, S.-i. (2015). Radiocesium contamination histories of Japanese flounder (Paralichthys olivaceus) after the 2011 Fukushima Nuclear Power Plant Accident. In K. Nakata & H. Sugisaki (Eds.), Impacts of the Fukushima Nuclear Accident on fish and fishing grounds (pp. 139-151). Tokyo: Springer Japan.
- Logan, J. M., & Lutcavage, M. E. (2008). A comparison of carbon and nitrogen stable isotope ratios of fish tissues following lipid extractions with non-polar and traditional chloroform/methanol solvent systems. Rapid Commun Mass Spectrom, 22(7), 1081-1086.
- Minagawa, M., & Wada, E. (1984). Stepwise enrichment of 15N along food chains: Further evidence and the relation between δ 15N and animal age. Geochimica et Cosmochimica Acta, 48(5), 1135-1140.
- NUMO (2011): 地層処分事業の安全確保(2010 年度版) 確かな技術による安全な地層処分の実現の ために-, NUMO-TR-11-01.
- Perkins, M. J., McDonald, R. A., van Veen, F. J., Kelly, S. D., Rees, G., & Bearhop, S. (2014). Application of nitrogen and carbon stable isotopes (δ15N and δ13C) to quantify food chain length and trophic structure. PLoS One, 9(3), e93281.
- Pinson, S. R., Tarpley, L., Yan, W., Yeater, K., Lahner, B., Yakubova, E., Huang, X.Y., Zhang, M., Guerinot, M.L. & Salt, D. E. (2015). Worldwide genetic diversity for mineral element concentrations in rice grain. Crop Science, 55(1), 294-311.
- Reimann, C., & De Caritat, P. (2012). Chemical elements in the environment: factsheets for the geochemist and environmental scientist. Springer Science & Business Media.
- Rybczynski, S. M., Walters, D. M., Fritz, K. M., & Johnson, B. R. (2008). Comparing trophic position of stream fishes using stable isotope and gut contents analyses. Ecology of Freshwater Fish, 17(2), 199-206.
- Smith, J.T., Comans, R.N.J., Beresford, N.A., Wright, S.M., Howard, B.J., Camplin, W.C. (2000). Chernobyl's legacy in food and water. Nature 405, 141.
- Staudt, C., Semiochkina, N., Kaiser, J. C., & Pröhl, G. (2013). Modeling the impact of climate change in Germany with biosphere models for long-term safety assessment of nuclear waste repositories. Journal of environmental radioactivity, 115, 214-223.
- Tagami, K., & Uchida, S. (2010). Can elemental composition data of crop leaves be used to estimate radionuclide transfer to tree leaves?. Radiation and environmental biophysics, 49(4), 583-590.
- Tagami, K. Uchida, S. (2015). Effective half-lives of ¹³⁷Cs from persimmon tree tissue parts in Japan after Fukushima Daiichi Nuclear Power Plant accident. J. Environ. Radioactiv. 141, 8-13.
- Tagami, K., & Uchida, S. (2016). Consideration on the Long Ecological Half-Life Component of ¹³⁷Cs in Demersal Fish Based on Field Observation Results Obtained after the Fukushima Accident. Environmental science & technology, 50(4), 1804-1811.
- Tanoi, K., Uchida, K., Doi, C., Nihei, N., Hirose, A., Kobayashi, N. I., R. Sugita, T. Nobori, T. Nakanishi, M. Kanno, I, Wakabayashi, M. Ogawa & Y. Tao (2016). Investigation of radiocesium distribution in organs of wild boar grown in Iitate, Fukushima after the Fukushima Daiichi nuclear power plant accident. Journal of Radioanalytical and Nuclear Chemistry, 307(1), 741-746.
- Tsuji, H., Yasutaka, T., Kawabe, Y., Onishi, T., & Komai, T. (2014). Distribution of dissolved and particulate radiocesium concentrations along rivers and the relations between radiocesium concentration and deposition after the nuclear power plant accident in Fukushima. Water Res, 60, 15-27.
- Wagai, R., Kishimoto Mo, A. W., Yonemura, S., Shirato, Y., Hiradate, S., & Yagasaki, Y. (2013). Linking temperature sensitivity of soil organic matter decomposition to its molecular structure, accessibility, and

microbial physiology. Global Change Biology, 19(4), 1114-1125.

- Walke, R. C., Kirchner, G., Xu, S., & Dverstorp, B. (2015). Post-closure biosphere assessment modelling: comparison of complex and more stylised approaches. Journal of environmental radioactivity, 148, 50-58.
- Yankovich, T. L. (2009). Mass balance approach to estimating radionuclide loads and concentrations in edible fish tissues using stable analogues. J Environ Radioact, 100(9), 795-801.
- 環境省(2017a)特定鳥獣保護管理計画作成のためのガイドライン(イノシシ編). https://www.env.go.jp/nature/choju/plan/plan3-2a/(2017/1/17アクセス)
- 環境省(2017b).日本大震災の被災地における放射性物質関連の環境モニタリング調査:公共用水域. http://www.env.go.jp/jishin/monitoring/results r-pw.html(2017/1/6アクセス)
- 気象庁 (2017) 過去の気象データ・ダウンロード. http://www.data.jma.go.jp/gmd/risk/obsdl/ (2017.1.10 アクセス)
- 厚生労働省(2017)食品中の放射性物質の検査. 月別検査結果. http://www.mhlw.go.jp/stf/kinkyu/0000045250.html(2017/1/17アクセス)

国立天文台編(2016)理科年表平成 29 年第 90 冊 丸善出版.

- 杉崎宏哉, 児玉真史, 市川忠史, 山田圭子, 和田英太郎, & 渡邊朝生. (2013). 安定同位体による新食物 網解析法-数値の解釈と基礎生産者の同位体比推定記述モデルの検討-. Journal of Fisheries Technology, 6(1), 57-68.
- 鈴木彌生子, & 佐藤里恵. (2010). 熱分解型元素分析/同位体比質量分析計(TCEA/IRMS)を用いた有機物の水素・酸素安定同位体比の測定方法における留意点とその応用. Researches in organic geochemistry, 26, 31-37.
- 文部科学省 (2017) 放射線量等分布マップ. セシウム-137 の土壤濃度マップ. http://ramap.jmc.or.jp/map/ (2017/1/17 アクセス)
- 福島県(2017) 野生鳥獣の放射線モニタリング調査結果. http://www.pref.fukushima.lg.jp/site/portal/wildlife-radiationmonitoring1.html (2017/1/17 アクセス)
- 放射線医学総合研究所, 2016. 平成 27 年度 放射性廃棄物共通技術調査等委託事業 放射性核種生物圈 移行評価高度化開発, 千葉.

2-補1. 根圏域温度と気温の関係

作物成長には根圏域の温度が重要であることから、昨年度は2014年11月から2015年11月までの 1年間について比較を行った。その結果、気温は地温によく反映されており、畑のように直射日光が 当たる草地条件であれば、年間の平均的な地温と気温の値はよく一致する結果が得られた。年間を通 した平均として考えると、地温の状況は、気温で代表できることがわかった。これにより、寒冷地と 温暖地を気温によって区分することが妥当であることが示された。しかし、1年間だけの結果である ため、念のため今年度も引き続き測定を行った。また、データの採取は、2015年1月1日から2015 年12月31日および2016年1月1日から2016年12月31日までの期間として改めて比較を行った。

(1) データ採取方法

データの採取方法は昨年と同様である。すなわち、2種類の方法で放医研敷地内において採取した。 1つは常に針葉樹の影になる草地土壌を地温測定場所として選択し、日陰条件の地温(根圏域を考慮 し20 cm 深)とその直上の気温(木陰,地上 0.5 m 位)を測定した。もう1つは日中適時直射日光を 受ける草地土壌を選択し、その地温(20 cm 深)と近傍の気温(直射日光を当てない、地上 1.5 m 位) を測定した。以下、畑条件と呼ぶ。データは2チャンネル温度ロガー(佐藤計量機器製作所、SK-L210T: 日陰条件に使用、T&D、TR-71wf:畑条件に使用)により5分間隔でデータ収集を行った。

得られたデータは1日を6区分(0-4時, 4-8時, 8-12時, 12-16時, 16-20時, 20-24時)とし,そ れぞれの区分内での平均温度を求め,各区分の中間時間(2, 6, 10, 14, 18, 22時)における値とし て整理した。

同様に、千葉県千葉市の気象データベース(気象庁、2017)から、時間毎の気温を2015および2016年について1月1日から12月31日までを用いて、上述の方法と同様に1日を6区分として計算し整理し直した。

(2) 気温と地温の変化の結果

図 2s-1 には日陰条件と畑条件における気温と地温の変化を 2015 年と 2016 年について示した。昨年 同様,温度の日変化については,気温よりも地温は小さかった。気温の変化に対して地温が徐々に追 従する形で反応してるように見えるが,昨年度と今年度のデータから,気温および地温とも最低およ び最高値を出した日のズレは生じていない。また,気温が前日に比べて著しく上昇または下降した日 においては,時間的遅延が生じるが地温も反応して上下をしていた。したがって,気温に比べて地温 がある一定の間隔で遅れているのではなく,土壌の暖まり易さや冷め易さが影響していると考えた方 が良い。

次に気温データについて、千葉測候所が、当該データ採取地点に最も近いことから、2015年および 2016年のデータをそれぞれ比較したところ(図 2s-2)、2015年および 2016年の日陰条件および畑条件 の気温データと良く一致しており、相関係数として両年とも 0.996(p<0.001)を得た。したがって、 サンプリング地域に近い場所の気象データを用いることで、より確からしい気温情報が得られること がわかった。千葉測候所および放医研で得られた畑条件および日陰条件における気温と地温の平均値 と範囲を表 2s-1 に示す。日陰条件では 2015年 2016年とも 1℃近く低い値であるが、日当りが良い畑 条件では気温と同程度の値となった。なお、気温と地温には高い相関が見られたことから(R>0.90、 p<0.001)地温をおおよそ推定することが可能である。

表 2.3-1	農作物試料の採取場所と採取日
---------	----------------

Sample	code	場所	市町村名	用途	採取日	作物	品種
EPII-CF-	21	宮崎	日南市	水田	2016/7/28	水稻	コシヒカリ
EPII-CF-	22	鹿児島	日置市	水田	2016/7/28	水稻	コシヒカリ
EPII-CF-	23	高知	安芸郡田野町	水田	2016/8/13	水稻	ヒノヒカリ
EPII-CF-	24	沖縄	石垣市	水田	2016/6/10	水稻	ひとめぼれ
EPII-CF-	25	北海道	磯谷郡蘭越町	水田	2016/9/17	水稻	ゆめぴりか
EPII-CF-	26	青森	南津軽郡田舎館村	水田	2016/9/21	水稻	晴天の霹靂
EPII-CF-	27	北海道	北斗市	水田	2016/9/17	水稻	ふっくりんこ
EPII-CF-	28	熊本	山鹿市	水田	2016/10/11	水稻	ヒノヒカリ
EPII-CF-	29	秋田	由利本荘市	水田	2016/9/25	水稻	ひとめぼれ
EPII-CF-	30	岩手	盛岡市	水田	2016/10/20	水稻	どんぴしゃり
EFII-CF-	41	鹿児島	出水郡長島町	畑地	2016/5/29	ジャガイモ	ニシユタカ
EFII-CF-	42	宮崎	延岡市	畑地	2016/5/31	ジャガイモ	北海黄金
EFII-CF-	43	長崎	諫早市	畑地	2016/6/1	ジャガイモ	アイユタカ
EFII-CF-	44	福岡	みやま市	畑地	2016/6/2	ジャガイモ	メークイン
EFII-CF-	45	高知	高岡郡四万十町	畑地	2016/6/9	ジャガイモ	男爵
EFII-CF-	46	岩手	一関市	畑地	2016/7/4	ジャガイモ	キタアカリ
EFII-CF-	47	青森	上北郡東北町	畑地	2016/7/12	ジャガイモ	メークイン
EFII-CF-	48	秋田	能代市	畑地	2016/8/6	ジャガイモ	メークイン
EFII-CF-	49	北海道	上川郡和寒町	畑地	2016/8/9	ジャガイモ	男爵
EFII-CF-	50	北海道	勇払郡むかわ町	畑地	2016/8/10	ジャガイモ	メークイン

表 2.3-2 農作物採取圃場の土壌試料採取日と土壌群

Sample	code	場所	採取日	土壤群	土壤亜群	土壤統群	仮比重
EPII-SD-	21	宮崎	2016/7/30	灰色低地土	普通灰色低地土	細粒質	0.82
EPII-SD-	22	鹿児島	2016/8/2	灰色低地土	普通灰色低地土	礫質	1.06
EPII-SD-	23	高知	2016/8/17	低地水田土	灰色化低地水田土	中粒質	0.15
EPII-SD-	24	沖縄	2016/9/5	黄色土	台地黄色土	細粒質	1.49
EPII-SD-	25	北海道	2016/9/20	灰色低地土	普通灰色低地土	粗粒質	0.9
EPII-SD-	26	青森	2016/9/27	灰色低地土	普通灰色低地土	中粒質	0.66
EPII-SD-	27	北海道	2016/10/14	褐色低地土	普通褐色低地土	中粒質	1.05
EPII-SD-	28	熊本	2016/10/20	グライ低地土	表層灰色グライ低地土	細粒質	1.15
EPII-SD-	29	秋田	2016/10/22	灰色低地土	普通灰色低地土	中粒質	0.74
EPII-SD-	30	岩手	2016/10/20	黒ボク土	厚層黒ボク土	多腐植質	0.1
EFII-SD-	41	鹿児島	2016/5/29	赤色土	普通赤色土	細粒質	0.87
EFII-SD-	42	宮崎	2016/5/31	褐色低地土	普通褐色低地土	中粒質	0.9
EFII-SD-	43	長崎	2016/6/1	黄色土	山地黄色土	細粒質	0.8
EFII-SD-	44	福岡	2016/6/2	灰色低地土	グライ化灰色低地土	粗粒質	0.92
EFII-SD-	45	高知	2016/6/9	黄色土	湿性黄色土	細粒質	0.81
EFII-SD-	46	岩手	2016/7/4	黄色土	山地黄色土	細粒質	0.72
EFII-SD-	47	青森	2016/7/12	黒ボク土	普通黒ボク土	腐植質	0.65
EFII-SD-	48	秋田	2016/8/6	黒ボク土	普通黒ボク土	多腐植質	0.73
EFII-SD-	49	北海道	2016/8/9	グライ低地土	表層灰色グライ低地土	細粒質	0.86
EFII-SD-	50	北海道	2016/8/10	多湿黒ボク土	下層低地多湿黒ボク土	礫質	0.92

⇒+2421 →	18	⇒+	水分含量 精米前後重量(後重量(g)	精米歩合
武科ユー	- Γ	 സ	玄米	玄米	白米	
EPII-CF-	21	宮崎	9.3 %	480.02	435.40	90.7 %
EPII-CF-	22	鹿児島	9.5 %	480.04	436.99	91.0 %
EPII-CF-	23	高知	9.6 %	480.05	438.25	91.3 %
EPII-CF-	24	沖縄	10.1 %	480.07	440.74	91.8 %
EPII-CF-	25	北海道	9.2 %	480.03	439.69	91.6 %
EPII-CF-	26	青森	10.9 %	480.06	437.74	91.2 %
EPII-CF-	27	北海道	10.4 %	480.08	439.11	91.5 %
EPII-CF-	28	熊本	9.5 %	480.05	438.38	91.3 %
EPII-CF-	29	秋田	8.3 %	480.01	437.74	91.2 %
EPII-CF-	30	岩手	9.7 %	480.09	441.01	91.9 %

表 2.3-3 玄米の水分含量と精米歩合

表 2.3-4 ジャガイモの廃棄率と可食部の水分含量

試料コー	- ド	道県名	廃棄率 (湿重ベース)	可食部水分含量
EFII-CF-	41	鹿児島	2.3 %	81.2 %
EFII-CF-	42	宮崎	8.0 %	79.0 %
EFII-CF-	43	長崎	4.7 %	82.6 %
EFII-CF-	44	福岡	8.8 %	79.6 %
EFII-CF-	45	高知	2.4 %	79.8 %
EFII-CF-	46	岩手	7.9 %	78.4 %
EFII-CF-	47	青森	4.5 %	81.8 %
EFII-CF-	48	秋田	7.2 %	81.3 %
EFII-CF-	49	北海道	5.7 %	78.9 %
EFII-CF-	50	北海道	2.1 %	76.5 %

表 2.3-5 試料到着時の状態 (1) 玄米

番号	採取場所	土壤	作物
21	宮崎 2016.8.2 2016.8.2 (上段:土壤到着 日、下段:作物到 着日)	28 置時 玄末 玄末土境	28 宏明 五米 五米 五米 五米
22	鹿児島 2016.8.5 2016.8.5	28 鹿児島 土壌 玄米	25度见器 28 鹿児島 土壤 玄米
23	高知 2016.8.18 2016.8.18	28 高知 土壤 玄米	15kc 28 高知 土壤 玄米
24	沖縄 2016.9.14 2015.9.14	28 沖 後 (35) 28 神縄 土壌 玄米	28 种植 土壤 玄米
25	北海道①(蘭越) 2016.9.23 2016.9.23	28 北海道 1 (新越) 土柴 玄米	28 北海道 1 (蘭越) 土壤 玄米

表 2.3-5 試料到着時の状態 (1) 玄米(つづき)

番号		土壤	作物
26	青森 2016.9.29 2016.9.29	28 青森 土壤 文米	28 青森 土城 玄米
27	北海道②(北斗) 2016.10.17 2016.10.17		
28	熊本 2016.10.24 2016.10.24		
29	秋田 2016.10.24 2016.10.24	28 标旧 上爆 玄米	A Market Harry H
30	岩手 2016.10.28 2016.10.28	田子 田子 土地 文米	28 岩手 土壤 玄米

番号	採取場所	土壌	作物
41	鹿児島 2016.5.31 2016.5.31	28 座児島ジ	28度息当
42	宮崎 2016.6.2 2016.6.2	28 宮崎 土壌 ジャガイモ	
43	長崎 2016.6.2 2016.6.2	28 長崎 土壌 ジャガイモ	Bigging Bigging Hard Party Par
44	福岡 2016.6.6 2016.6.6	28 新岡 生験 ジャガイモ	28 前回 28 前回 28 第三日 28 第三日
45	高知 2016.6.10 2016.6.10	28意来o 王·时任,土壤	28350 2777 FE 13

表 2.3-6 試料到着時の状態 (2) ジャガイモ

番号		土壌	作物
46	岩手 2016.7.6 2016.7.6	部設作出来シャガイモ	Contraction of the second
47	青森 2016.7.13 2016.7.13	28 28 28 5 7 28 6 7 4 度 ジャガイモ	() () () () () () () () () () () () () (
48	秋田 2016.8.8 2016.8.8	28 StB 128 24 J	
49	北海道 1 2016.8.11 2016.8.11	10000000 28日前直1 (雨窓) 上坂 ジャガイモ	
50	北海道 2 2016.8.12 2016.8.12	28 北海道 2 (むかわ町) 土壌 ジャガイモ	

表 2.3-6	試料到着時の状態	(2)	ジャガイモ	(つづき)

		pH	CEC	置換性 Ca	置換性 K	活性 Al	活性 Fe
	検体 No.	(H ₂ O)	meq/100g	mg/100g	mg/100g	g/kg	g/kg
EPII-SD-	21	5.7	15	156	10	2.3	4.7
EPII-SD-	22	5.5	10	96	13	2.2	3.9
EPII-SD-	23	4.7	10	49	12	1.2	2.1
EPII-SD-	24	6.6	8	137	9	3.2	3.7
EPII-SD-	25	5.5	20	186	15	3.0	10.4
EPII-SD-	26	5.5	24	169	61	4.8	3.0
EPII-SD-	27	5.8	19	141	27	9.6	9.7
EPII-SD-	28	5.6	18	165	17	2.1	11.5
EPII-SD-	29	5.3	37	329	29	3.2	10.9
EPII-SD-	30	5.2	39	246	18	14.5	16.5
EFII-SD-	41	3.9	20	30	41	5.0	6.0
EFII-SD-	42	5.4	10	64	25	3.2	3.8
EFII-SD-	43	5	19	158	29	4.1	5.9
EFII-SD-	44	7	16	354	25	2.2	4.7
EFII-SD-	45	6.9	21	461	39	3.6	3.6
EFII-SD-	46	6	26	354	56	12.4	3.7
EFII-SD-	47	5.6	26	268	71	28.6	10.6
EFII-SD-	48	4.5	36	28	30	10.7	14.5
EFII-SD-	49	6.1	31	435	47	3.3	7.1
EFII-SD-	50	5	13	85	10	2.7	6.1

表 2.3-7 平成 28 年度に採取した土壌試料の物理化学的特性

表 2.3-8 平成 14-18 年度および平成 26-28 年度に採取した土壌試料の物理化学特性の比較

	pH	CEC	置換性 Ca	置換性 K	活性 Al	活性 Fe
Sample	(H ₂ O)	meq/100g	mg/100g	mg/100g	g/kg	g/kg
Paddy field						
H14-18	5.7	13.3	171	19	3.5	6.6
H26-28	5.7	15.2	140	18	3.9	6.0
Upland field						
H14-18	6.3	14.1	252	44	6.2	7.6
H26-28	5.9	20.4*	192	33	9.6	7.2
* p<0.05						

表 2.3-9	平成28年度に採取した土壌試料の元素濃度
	(乾物重ベース)

	В	Na	Mg	Al	Si	Р	K	Ca	Cr	Mn	Fe
Sample code	mg/kg	mg/kg	mg/kg	g/kg	g/kg	g/kg	mg/kg	mg/kg	mg/kg	mg/kg	g/kg
EPII-SD- 21	4.1E+1	1.4E+4	3.8E+3	6.7E+1	3.0E+2	1.7E+0	1.3E+4	4.8E+3	4.7E+1	2.7E+2	2.6E+1
EPII-SD- 22	3.0E+1	1.5E+4	4.7E+3	8.5E+1	2.8E+2	8.3E-1	1.6E+4	6.8E+3	2.6E+1	3.8E+2	2.8E+1
EPII-SD- 23	4.3E+1	8.2E+3	2.0E+3	5.9E+1	3.3E+2	7.4E-1	2.1E+4	9.3E+2	4.6E+1	1.3E+2	1.3E+1
EPII-SD- 24	2.1E+1	5.4E+3	3.4E+3	5.1E+1	3.5E+2	7.5E-1	1.3E+4	3.3E+3	5.4E+1	5.6E+2	2.7E+1
EPII-SD- 25	1.7E+1	1.2E+4	6.1E+3	8.4E+1	2.6E+2	1.3E+0	9.6E+3	1.1E+4	2.7E+1	6.1E+2	4.7E+1
EPII-SD- 26	1.6E+1	1.5E+4	6.5E+3	7.7E+1	2.6E+2	2.0E+0	9.9E+3	1.0E+4	1.8E+1	4.3E+2	2.8E+1
EPII-SD- 27	2.2E+1	1.3E+4	8.1E+3	8.0E+1	2.5E+2	2.1E+0	1.2E+4	1.4E+4	4.7E+1	7.5E+2	4.1E+1
EPII-SD- 28	7.0E+0	1.1E+4	2.4E+4	9.1E+1	2.1E+2	1.2E+0	4.1E+3	2.3E+4	4.2E+2	1.4E+3	6.2E+1
EPII-SD- 29	3.2E+1	1.0E+4	1.1E+4	7.2E+1	2.6E+2	1.1E+0	1.3E+4	1.2E+4	6.4E+1	4.3E+2	3.6E+1
EPII-SD- 30	1.4E+1	7.0E+3	5.0E+3	7.8E+1	2.1E+2	5.2E+0	4.2E+3	9.7E+3	5.5E+1	5.8E+2	5.7E+1
EFII-SD- 41	1.8E+1	1.3E+3	6.5E+2	4.5E+1	1.8E+2	2.7E+0	4.3E+3	7.3E+2	1.7E+2	9.8E+2	8.9E+1
EFII-SD- 42	5.1E+1	1.4E+4	1.1E+4	6.4E+1	3.0E+2	1.8E+0	2.1E+4	1.1E+4	8.4E+1	1.0E+3	4.0E+1
EFII-SD- 43	1.7E+1	8.7E+2	4.6E+2	4.1E+1	1.8E+2	1.6E+0	2.4E+3	7.3E+2	5.7E+1	1.3E+3	8.1E+1
EFII-SD- 44	2.7E+1	1.5E+4	9.8E+3	7.0E+1	2.7E+2	2.2E+0	1.5E+4	1.4E+4	8.8E+1	8.8E+2	4.2E+1
EFII-SD- 45	6.9E+1	5.3E+3	3.2E+3	6.4E+1	2.8E+2	3.8E+0	1.9E+4	8.7E+3	6.6E+1	6.1E+2	2.7E+1
EFII-SD- 46	1.0E+1	1.5E+4	8.5E+3	6.8E+1	2.6E+2	3.0E+0	8.1E+3	1.9E+4	2.2E+1	7.9E+2	3.1E+1
EFII-SD- 47	2.4E+1	1.1E+4	6.5E+3	7.2E+1	2.1E+2	2.2E+0	9.7E+3	8.7E+3	4.6E+1	9.0E+2	4.9E+1
EFII-SD- 48	4.6E+1	6.2E+3	3.1E+3	6.1E+1	2.3E+2	1.8E+0	1.4E+4	2.4E+3	7.1E+1	6.9E+2	3.8E+1
EFII-SD- 49	2.9E+1	8.4E+3	3.9E+3	6.0E+1	2.4E+2	2.0E+0	9.0E+3	7.6E+3	9.9E+1	4.2E+2	3.3E+1
EFII-SD- 50	2.7E+1	1.4E+4	2.3E+4	7.2E+1	2.4E+2	1.9E+0	7.3E+3	4.1E+4	4.7E+1	1.5E+3	6.9E+1

	Со	Ni	Cu	Zn	Rb	Sr	Мо	Cd	Ba	Hg
Sample code	mg/kg									
EPII-SD- 21	8.2E+0	1.7E+1	2.1E+1	9.7E+1	5.7E+1	5.8E+1	3.2E-1	2.1E-1	2.6E+2	9.0E-2
EPII-SD- 22	8.5E+0	1.0E+1	1.4E+1	7.2E+1	8.3E+1	7.9E+1	4.5E-1	1.4E-1	3.5E+2	7.0E-2
EPII-SD- 23	4.2E+0	1.5E+1	1.7E+1	6.1E+1	4.2E+1	4.3E+1	1.9E-1	2.2E-1	3.9E+2	1.8E-1
EPII-SD- 24	1.1E+1	2.2E+1	2.3E+1	6.8E+1	3.6E+1	3.4E+1	5.0E-1	1.4E-1	2.0E+2	3.0E-2
EPII-SD- 25	1.2E+1	1.1E+1	1.7E+1	8.9E+1	9.5E+1	8.8E+1	8.3E-1	2.0E-1	3.9E+2	9.0E-2
EPII-SD- 26	7.3E+0	8.9E+0	3.3E+1	1.2E+2	8.9E+1	8.1E+1	9.2E-1	4.7E-1	3.1E+2	2.0E-1
EPII-SD- 27	1.3E+1	2.2E+1	3.5E+1	1.5E+2	1.2E+2	1.1E+2	1.4E+0	4.9E-1	3.6E+2	1.7E-1
EPII-SD- 28	3.1E+1	7.6E+1	6.2E+1	1.1E+2	2.5E+2	2.3E+2	5.9E-1	3.1E-1	2.8E+2	4.0E-2
EPII-SD- 29	1.1E+1	2.3E+1	2.4E+1	1.1E+2	1.2E+2	1.2E+2	2.1E+0	4.1E-1	4.0E+2	1.4E-1
EPII-SD- 30	1.8E+1	1.9E+1	3.9E+1	1.2E+2	6.1E+1	5.6E+1	1.6E+0	7.6E-1	2.0E+2	2.1E-1
EFII-SD- 41	3.2E+1	4.2E+1	3.6E+1	1.4E+2	8.0E+0	8.2E+0	1.4E+0	7.2E-2	3.1E+2	7.0E-2
EFII-SD- 42	1.4E+1	3.4E+1	4.3E+1	1.7E+2	1.8E+2	1.8E+2	6.1E-1	3.5E-1	4.2E+2	4.0E-2
EFII-SD- 43	3.3E+1	2.9E+1	3.0E+1	1.5E+2	5.9E+0	6.2E+0	1.1E+0	1.5E-1	3.6E+2	3.0E-2
EFII-SD- 44	1.5E+1	3.5E+1	1.8E+2	5.4E+2	1.6E+2	1.6E+2	9.6E-1	1.0E+0	3.7E+2	3.5E-1
EFII-SD- 45	9.5E+0	2.1E+1	4.1E+1	2.2E+2	4.4E+1	4.4E+1	6.8E-1	3.2E-1	3.4E+2	2.0E-1
EFII-SD- 46	1.1E+1	1.2E+1	2.0E+1	9.1E+1	1.9E+2	1.9E+2	2.9E-1	2.4E-1	2.1E+2	6.0E-2
EFII-SD- 47	1.4E+1	1.7E+1	1.5E+1	1.1E+2	7.6E+1	7.5E+1	1.8E+0	2.0E-1	2.6E+2	1.0E-1
EFII-SD- 48	9.6E+0	2.4E+1	2.5E+1	1.2E+2	3.7E+1	3.7E+1	2.2E+0	4.2E-1	2.1E+2	1.4E-1
EFII-SD- 49	1.4E+1	3.0E+1	2.6E+1	8.3E+1	5.2E+1	5.1E+1	7.3E-1	2.7E-1	3.0E+2	2.1E-1
EFII-SD- 50	2.4E+1	1.8E+1	3.8E+1	1.1E+2	2.2E+2	2.1E+2	7.2E-1	1.9E-1	2.7E+2	5.0E-2

表 2.3-10 平成 28 年度に採取した農作物試料の元素濃度 (乾物重ベース)

Sample code	Li mg/kg	Na mg/kg	Mg mg/kg	Al mg/kg	Si mg/kg	P mg/kg	K mg/kg	Ca mg/kg	Cr mg/k	Mn g mg/kg
FPILCE 21	4 7E-3	2 3E+1	1 4E+3	4 9E+0	1 7E+2	4 3E+3	3 1E+3	8 5E+1	1 4 E	1 2 4E+1
EPII-CE- 22	4.4E-3	3.2E+1	1.1E+3	2.9E-1	2.2E+2	3.8E+3	3 2E+3	9.1E+1	1.1E	1 2.11 1 1 3 1E+1
EPII-CE- 23	5.6E-3	1.6E+1	1.0E+3	1.0E 1	4.5E+2	3.6E+3	3.3E+3	8 0E+1	1.2E	1 3.8E+1
EPII-CE- 24	7.3E-3	2.8E+1	1.1E+3	8.9E+0	3.1E+2	3.5E+3	3.3E+3	7 7E+1	2.5E	1 2.8E+1
EPII-CE- 25	2.5E-3	1.8E+1	1.1E+3	1.4E+0	1 2E+2	4 0E+3	3 4E+3	8 0E+1	1 3E	1 2.8E+1
EPII-CE- 26	5.7E-3	1.0E+1	1.2E+3	1.1E+0	3.0E+2	3.3E+3	2.9E+3	1 0E+2	$\frac{1.0E}{2}$	1 2.0E+1
EPII-CE- 27	1.8E-3	2 2E+1	1.2E+3	2.8E-1	3.3E+2	3.8E+3	3 2E+3	9 2E+1	1.3E	1 4 3E+1
EPII-CE- 28	1.8E-3	8.5E+0	1.2E+3	4 2E-1	6.9E+1	3.2E+3	2.7E+3	8.8E+1	1.6E	1 3.3E+1
EPII-CF- 29	3.6E-3	1.8E+1	1.3E+3	3.5E+0	1.6E+2	3.1E+3	2.9E+3	8.3E+1	1.6E	1 4.4E+1
EPII-CF- 30	1.4E-3	1.0E+1	1.4E+3	1.6E-1	2.0E+2	3.3E+3	2.9E+3	8.7E+1	1.5E	1 3.3E+1
EFII-CF- 41	1.2E-2	3.5E+1	1.0E+3	5.9E+1	5.7E+1	2.5E+3	1.9E+4	1.4E+2	2 9.4E	2 5.2E+1
EFII-CF- 42	3.6E-3	2.7E+1	1.0E+3	7.4E+0	1.7E+1	3.9E+3	2.5E+4	1.6E+2	2 6.2E	2 9.7E+0
EFII-CF- 43	2.8E-3	3.3E+1	1.0E+3	1.4E+1	1.7E+1	2.9E+3	2.3E+4	3.8E+2	2 4.1E	2 1.2E+1
EFII-CF- 44	1.6E-3	1.6E+1	8.7E+2	3.5E+0	9.9E+0	3.4E+3	2.1E+4	5.1E+2	2 5.8E	2 5.3E+0
EFII-CF- 45	9.3E-4	1.4E+1	1.0E+3	3.9E+0	7.8E+0	3.5E+3	2.4E+4	3.5E+2	2 5.6E	2 7.3E+0
EFII-CF- 46	1.5E-3	2.1E+1	1.2E+3	6.2E+0	1.0E+1	3.1E+3	2.3E+4	1.7E+2	2 4.7E	2 7.3E+0
EFII-CF- 47	3.6E-3	2.1E+1	9.9E+2	3.4E+0	6.8E+0	2.4E+3	2.3E+4	1.8E+2	2 5.0E	2 6.7E+0
EFII-CF- 48	1.2E-3	2.4E+1	9.1E+2	1.6E+0	4.2E+0	2.1E+3	2.2E+4	1.4E+2	2 4.7E	2 9.6E+0
EFII-CF- 49	1.4E-3	1.2E+1	1.0E+3	3.4E+0	9.2E+0	3.5E+3	2.2E+4	2.9E+2	2 4.8E	2 5.7E+0
EFII-CF- 50	1.8E-3	1.7E+1	8.7E+2	5.1E+0	1.1E+1	2.6E+3	1.7E+4	1.6E+2	2 3.5E	2 6.5E+0
	Fe	Co	Ni	Cu	Zn	Rh	Sr	Mo	Cd	Ba
Sample code	e Fe mg/kg	Co mg/kg	Ni mg/kg	Cu mg/kg	Zn mg/kg	Rb mg/kg	Sr mg/kg	Mo mg/kg	Cd mg/kg	Ba mg/kg
Sample code EPII-CF- 21	e Fe mg/kg	Co mg/kg 1.1E-2	Ni mg/kg 9.1E-2	Cu mg/kg 2.0E+0	Zn mg/kg 2.4E+1	Rb mg/kg 3.7E+0	Sr mg/kg 2.0E-1	Mo mg/kg 7.4E-1	Cd mg/kg 8.5E-3	Ba mg/kg 3.6E-1
Sample code EPII-CF- 21 EPII-CF- 22	e Fe mg/kg 1.6E+1	Co mg/kg 1.1E-2 1.2E-2	Ni mg/kg 9.1E-2 8.6E-2	Cu mg/kg 2.0E+0 2.9E+0	Zn mg/kg 2.4E+1 2.6E+1	Rb mg/kg 3.7E+0 2.8E+0	Sr mg/kg 2.0E-1 2.8E-1	Mo mg/kg 7.4E-1 1.2E+0	Cd mg/kg 8.5E-3 1.3E-2	Ba mg/kg 3.6E-1 1.6E+0
Sample code EPII-CF- 21 EPII-CF- 22 EPII-CF- 23	e Fe mg/kg 1.6E+1 1.0E+1 1.1E+1	Co mg/kg 1.1E-2 1.2E-2 6.0E-3	Ni mg/kg 9.1E-2 8.6E-2 8.0E-1	Cu mg/kg 2.0E+0 2.9E+0 3.9E+0	Zn mg/kg 2.4E+1 2.6E+1 3.0E+1	Rb mg/kg 3.7E+0 2.8E+0 3.2E+0	Sr mg/kg 2.0E-1 2.8E-1 2.0E-1	Mo mg/kg 7.4E-1 1.2E+0 2.1E+0	Cd mg/kg 8.5E-3 1.3E-2 1.8E-1	Ba mg/kg 3.6E-1 1.6E+0 8.0E-1
Sample code EPII-CF- 21 EPII-CF- 22 EPII-CF- 23 EPII-CF- 24	e Fe mg/kg 1.6E+ 1.0E+ 1.1E+ 3.4E+	Co mg/kg 1.1E-2 1.2E-2 6.0E-3 2.2E-2	Ni mg/kg 9.1E-2 8.6E-2 8.0E-1 1.5E-1	Cu mg/kg 2.0E+0 2.9E+0 3.9E+0 3.1E+0	Zn mg/kg 2.4E+1 2.6E+1 3.0E+1 3.8E+1	Rb mg/kg 3.7E+0 2.8E+0 3.2E+0 2.7E+0	Sr mg/kg 2.0E-1 2.8E-1 2.0E-1 3.5E-1	Mo mg/kg 7.4E-1 1.2E+0 2.1E+0 1.3E+0	Cd mg/kg 8.5E-3 1.3E-2 1.8E-1 2.0E-3	Ba mg/kg 3.6E-1 1.6E+0 8.0E-1 4.3E-1
Sample code EPII-CF- 21 EPII-CF- 22 EPII-CF- 23 EPII-CF- 24 EPII-CF- 25	e Fe mg/kg 1.6E+1 1.0E+1 1.1E+1 3.4E+1 8.5E+(Co mg/kg 1.1.1E-2 1.2E-2 6.0E-3 1.2.2E-2 1.4E-2	Ni mg/kg 9.1E-2 8.6E-2 8.0E-1 1.5E-1 7.2E-2	Cu mg/kg 2.0E+0 2.9E+0 3.9E+0 3.1E+0 9.9E-1	Zn mg/kg 2.4E+1 2.6E+1 3.0E+1 3.8E+1 2.3E+1	Rb mg/kg 3.7E+0 2.8E+0 3.2E+0 2.7E+0 7.4E+0	Sr mg/kg 2.0E-1 2.8E-1 2.0E-1 3.5E-1 1.6E-1	Mo mg/kg 7.4E-1 1.2E+0 2.1E+0 1.3E+0 1.2E+0	Cd mg/kg 8.5E-3 1.3E-2 1.8E-1 2.0E-3 1.7E-2	Ba mg/kg 3.6E-1 1.6E+0 8.0E-1 4.3E-1 1.4E-1
Sample code EPII-CF- 21 EPII-CF- 22 EPII-CF- 23 EPII-CF- 24 EPII-CF- 25 EPII-CF- 26	e Fe mg/kg 1.6E+1 1.0E+1 1.1E+1 3.4E+1 8.5E+0 1.2E+1	Co mg/kg 1.1.1E-2 1.2E-2 1.6.0E-3 1.2.2E-2 1.2.2E-2 1.4E-2 1.4E-2 1.4.0E-3	Ni mg/kg 9.1E-2 8.6E-2 8.0E-1 1.5E-1 7.2E-2 1.6E-1	Cu mg/kg 2.0E+0 2.9E+0 3.9E+0 3.1E+0 9.9E-1 3.9E+0	Zn mg/kg 2.4E+1 2.6E+1 3.0E+1 3.8E+1 2.3E+1 2.4E+1	Rb mg/kg 3.7E+0 2.8E+0 3.2E+0 2.7E+0 7.4E+0 1.5E+0	Sr mg/kg 2.0E-1 2.8E-1 2.0E-1 3.5E-1 1.6E-1 1.9E-1	Mo mg/kg 7.4E-1 1.2E+0 2.1E+0 1.3E+0 1.2E+0 8.5E-1	Cd mg/kg 8.5E-3 1.3E-2 1.8E-1 2.0E-3 1.7E-2 1.1E-1	Ba mg/kg 3.6E-1 1.6E+0 8.0E-1 4.3E-1 1.4E-1 4.6E-1
Sample code EPII-CF- 21 EPII-CF- 22 EPII-CF- 23 EPII-CF- 24 EPII-CF- 25 EPII-CF- 26 EPII-CF- 27	e Fe mg/kg 1.6E+1 1.0E+1 1.1E+1 3.4E+1 8.5E+0 1.2E+1 8.3E+0	Co mg/kg 1.1.1E-2 1.2E-2 1.6.0E-3 1.2.2E-2 1.4E-2 1.4E-2 1.4.0E-3 0.8.5E-3	Ni mg/kg 9.1E-2 8.6E-2 8.0E-1 1.5E-1 7.2E-2 1.6E-1 9.2E-2	Cu mg/kg 2.0E+0 3.9E+0 3.1E+0 9.9E-1 3.9E+0 3.3E+0	Zn mg/kg 2.4E+1 2.6E+1 3.0E+1 3.8E+1 2.3E+1 2.4E+1 2.4E+1	Rb mg/kg 3.7E+0 2.8E+0 3.2E+0 2.7E+0 7.4E+0 1.5E+0 4.2E+0	Sr mg/kg 2.0E-1 2.8E-1 2.0E-1 3.5E-1 1.6E-1 1.9E-1 1.7E-1	Mo mg/kg 7.4E-1 1.2E+0 2.1E+0 1.3E+0 1.2E+0 8.5E-1 9.9E-1	Cd mg/kg 8.5E-3 1.3E-2 1.8E-1 2.0E-3 1.7E-2 1.1E-1 6.3E-2	Ba mg/kg 3.6E-1 1.6E+0 8.0E-1 4.3E-1 1.4E-1 4.6E-1 4.2E-1
Sample code EPII-CF- 21 EPII-CF- 22 EPII-CF- 23 EPII-CF- 24 EPII-CF- 25 EPII-CF- 26 EPII-CF- 27 EPII-CF- 28	e Fe mg/kg 1.6E+1 1.0E+1 1.1E+1 3.4E+1 8.5E+0 1.2E+1 8.3E+0 1.1E+1	Co mg/kg 1.1.1E-2 1.2E-2 1.6.0E-3 1.2.2E-2 1.4E-2 1.4E-2 1.4.0E-3 0.8.5E-3 1.1.1E-2	Ni mg/kg 9.1E-2 8.6E-2 8.0E-1 1.5E-1 7.2E-2 1.6E-1 9.2E-2 1.4E-1	Cu mg/kg 2.0E+0 2.9E+0 3.9E+0 3.1E+0 9.9E-1 3.9E+0 3.3E+0 2.5E+0	Zn mg/kg 2.4E+1 2.6E+1 3.0E+1 3.8E+1 2.3E+1 2.4E+1 2.4E+1 2.5E+1	Rb mg/kg 3.7E+0 2.8E+0 3.2E+0 2.7E+0 7.4E+0 1.5E+0 4.2E+0 8.8E+0	Sr mg/kg 2.0E-1 2.8E-1 2.0E-1 3.5E-1 1.6E-1 1.9E-1 1.7E-1 2.8E-1	Mo mg/kg 7.4E-1 1.2E+0 2.1E+0 1.3E+0 1.2E+0 8.5E-1 9.9E-1 5.9E-1	Cd mg/kg 8.5E-3 1.3E-2 1.8E-1 2.0E-3 1.7E-2 1.1E-1 6.3E-2 2.1E-2	Ba mg/kg 3.6E-1 1.6E+0 8.0E-1 4.3E-1 1.4E-1 4.6E-1 4.2E-1 5.9E-1
Sample code EPII-CF- 21 EPII-CF- 22 EPII-CF- 23 EPII-CF- 24 EPII-CF- 25 EPII-CF- 26 EPII-CF- 27 EPII-CF- 28 EPII-CF- 28 EPII-CF- 29	e Fe mg/kg 1.6E+1 1.0E+1 1.1E+1 3.4E+1 8.5E+(1.2E+1 8.3E+(1.1E+1 1.1E+1 1.1E+1	Co mg/kg 1.1.1E-2 1.2E-2 1.6.0E-3 1.2.2E-2 1.2.2E-2 1.4E-2 1.4.0E-3 1.4.0E-3 1.8.5E-3 1.1.1E-2 1.9.0E-3	Ni mg/kg 9.1E-2 8.6E-2 8.0E-1 1.5E-1 7.2E-2 1.6E-1 9.2E-2 1.4E-1 8.9E-1	Cu mg/kg 2.0E+0 2.9E+0 3.9E+0 3.1E+0 9.9E-1 3.9E+0 3.3E+0 2.5E+0 3.0E+0	Zn mg/kg 2.4E+1 2.6E+1 3.0E+1 3.8E+1 2.3E+1 2.4E+1 2.4E+1 2.5E+1 2.5E+1	Rb mg/kg 3.7E+0 2.8E+0 3.2E+0 2.7E+0 7.4E+0 1.5E+0 4.2E+0 8.8E+0 8.5E+0	Sr mg/kg 2.0E-1 2.8E-1 2.0E-1 3.5E-1 1.6E-1 1.9E-1 1.7E-1 2.8E-1 2.8E-1 2.9E-1	Mo mg/kg 7.4E-1 1.2E+0 2.1E+0 1.3E+0 1.2E+0 8.5E-1 9.9E-1 5.9E-1 1.5E+0	Cd mg/kg 8.5E-3 1.3E-2 1.8E-1 2.0E-3 1.7E-2 1.1E-1 6.3E-2 2.1E-2 3.1E-1	Ba mg/kg 3.6E-1 1.6E+0 8.0E-1 4.3E-1 1.4E-1 4.6E-1 4.2E-1 5.9E-1 6.1E-1
Sample code EPII-CF- 21 EPII-CF- 22 EPII-CF- 23 EPII-CF- 24 EPII-CF- 25 EPII-CF- 26 EPII-CF- 27 EPII-CF- 27 EPII-CF- 28 EPII-CF- 29 EPII-CF- 30	e Fe mg/kg 1.6E+1 1.0E+1 1.1E+1 3.4E+1 8.5E+0 1.2E+1 8.3E+0 1.1E+1 1.1E+1 1.1E+1 1.0E+1	Co mg/kg 1.1.1E-2 1.2E-2 1.2.2E-2 1.4E-2 1.4E-2 1.4E-2 1.4E-3 1.4E-3 1.1E-2 1.1.1E-2 1.9.0E-3 1.7.5E-3	Ni mg/kg 9.1E-2 8.6E-2 8.0E-1 1.5E-1 7.2E-2 1.6E-1 9.2E-2 1.4E-1 8.9E-1 9.4E-2	Cu mg/kg 2.0E+0 3.9E+0 3.1E+0 9.9E-1 3.9E+0 3.3E+0 2.5E+0 3.0E+0 2.1E+0	Zn mg/kg 2.4E+1 2.6E+1 3.0E+1 3.8E+1 2.3E+1 2.4E+1 2.4E+1 2.5E+1 2.5E+1 2.3E+1 2.3E+1	Rb mg/kg 3.7E+0 2.8E+0 3.2E+0 2.7E+0 7.4E+0 1.5E+0 4.2E+0 8.8E+0 8.5E+0 2.2E+0	Sr mg/kg 2.0E-1 2.8E-1 2.0E-1 3.5E-1 3.5E-1 1.6E-1 1.9E-1 1.7E-1 2.8E-1 2.8E-1 1.7E-1 1.7E-1 2.0E-1 1.1E-1	Mo mg/kg 7.4E-1 1.2E+0 2.1E+0 1.3E+0 1.2E+0 8.5E-1 9.9E-1 5.9E-1 1.5E+0 5.1E-1	Cd mg/kg 8.5E-3 1.3E-2 1.8E-1 2.0E-3 1.7E-2 1.1E-1 6.3E-2 2.1E-2 3.1E-1 8.5E-3	Ba mg/kg 3.6E-1 1.6E+0 8.0E-1 4.3E-1 1.4E-1 4.6E-1 4.2E-1 5.9E-1 6.1E-1 1.3E-1
Sample code EPII-CF- 21 EPII-CF- 22 EPII-CF- 23 EPII-CF- 24 EPII-CF- 25 EPII-CF- 26 EPII-CF- 26 EPII-CF- 27 EPII-CF- 28 EPII-CF- 29 EPII-CF- 30 EFII-CF- 41	e Fe mg/kg 1.6E+1 1.0E+1 1.1E+1 3.4E+1 8.5E+0 1.2E+1 8.3E+0 1.1E+1 1.1E+1 1.0E+1 4.0E+1	Co mg/kg 1.1.1E-2 1.2E-2 1.6.0E-3 1.2.2E-2 1.4.0E-3 1.4E-2 1.4.0E-3 1.4.0E-3 1.8.5E-3 1.1.1E-2 1.9.0E-3 1.7.5E-3 1.2.0E+0	Ni mg/kg 9.1E-2 8.6E-2 8.0E-1 1.5E-1 7.2E-2 1.6E-1 9.2E-2 1.4E-1 8.9E-1 9.4E-2 4.1E-1	Cu mg/kg 2.0E+0 2.9E+0 3.9E+0 3.1E+0 9.9E-1 3.9E+0 3.3E+0 2.5E+0 3.0E+0 2.1E+0 4.5E+0	Zn mg/kg 2.4E+1 2.6E+1 3.0E+1 3.8E+1 2.3E+1 2.4E+1 2.4E+1 2.5E+1 2.5E+1 2.3E+1 2.3E+1 2.3E+1 2.1E+1	Rb mg/kg 3.7E+0 2.8E+0 3.2E+0 2.7E+0 7.4E+0 1.5E+0 4.2E+0 8.8E+0 8.5E+0 2.2E+0 1.6E+1	Sr mg/kg 2.0E-1 2.8E-1 2.0E-1 3.5E-1 1.6E-1 1.9E-1 1.7E-1 2.8E-1 2.0E-1 1.7E-1 2.8E-1 2.0E-1 5.4E-1	Mo mg/kg 7.4E-1 1.2E+0 2.1E+0 1.3E+0 1.2E+0 8.5E-1 9.9E-1 5.9E-1 1.5E+0 5.1E-1 7.5E-2	Cd mg/kg 8.5E-3 1.3E-2 1.8E-1 2.0E-3 1.7E-2 1.1E-1 6.3E-2 2.1E-2 3.1E-1 8.5E-3 4.0E-2	Ba mg/kg 3.6E-1 1.6E+0 8.0E-1 4.3E-1 1.4E-1 4.6E-1 4.2E-1 5.9E-1 6.1E-1 1.3E-1 2.5E+0
Sample code EPII-CF- 21 EPII-CF- 22 EPII-CF- 23 EPII-CF- 24 EPII-CF- 25 EPII-CF- 26 EPII-CF- 27 EPII-CF- 28 EPII-CF- 29 EPII-CF- 30 EFII-CF- 41 EFII-CF- 42	e Fe mg/kg 1.6E+1 1.0E+1 1.1E+1 3.4E+1 3.4E+1 8.5E+(1.2E+1 8.3E+(1.1E+1 1.1E+1 1.1E+1 1.4E+1	Co mg/kg 1.1.1E-2 1.2E-2 1.6.0E-3 1.2.2E-2 1.4E-2 1.4.0E-3 1.4E-2 1.4.0E-3 1.4.1.1E-2 1.9.0E-3 1.1.1E-2 1.9.0E-3 1.7.5E-3 1.2.0E+0 1.5.8E-2	Ni mg/kg 9.1E-2 8.6E-2 8.0E-1 1.5E-1 7.2E-2 1.6E-1 9.2E-2 1.4E-1 8.9E-1 9.4E-2 4.1E-1 2.1E-1	Cu mg/kg 2.0E+0 2.9E+0 3.9E+0 3.1E+0 9.9E-1 3.9E+0 3.3E+0 2.5E+0 3.0E+0 2.1E+0 4.5E+0 4.8E+0	Zn mg/kg 2.4E+1 2.6E+1 3.0E+1 3.8E+1 2.3E+1 2.4E+1 2.4E+1 2.5E+1 2.5E+1 2.5E+1 2.3E+1 2.1E+1 1.4E+1	Rb mg/kg 3.7E+0 2.8E+0 3.2E+0 2.7E+0 7.4E+0 1.5E+0 4.2E+0 8.8E+0 8.5E+0 2.2E+0 1.6E+1 1.2E+1	Sr mg/kg 2.0E-1 2.8E-1 2.0E-1 3.5E-1 1.6E-1 1.9E-1 1.7E-1 2.8E-1 2.0E-1 1.7E-1 2.8E-1 2.6E-1 4.4E-1	Mo mg/kg 7.4E-1 1.2E+0 2.1E+0 1.3E+0 1.2E+0 8.5E-1 9.9E-1 5.9E-1 1.5E+0 5.1E-1 7.5E-2 2.7E-1	Cd mg/kg 8.5E-3 1.3E-2 1.8E-1 2.0E-3 1.7E-2 1.1E-1 6.3E-2 2.1E-2 3.1E-1 8.5E-3 4.0E-2 5.0E-2	Ba mg/kg 3.6E-1 1.6E+0 8.0E-1 4.3E-1 1.4E-1 4.6E-1 4.2E-1 5.9E-1 6.1E-1 1.3E-1 2.5E+0 1.1E+0
Sample code EPII-CF- 21 EPII-CF- 22 EPII-CF- 23 EPII-CF- 24 EPII-CF- 24 EPII-CF- 25 EPII-CF- 26 EPII-CF- 27 EPII-CF- 28 EPII-CF- 29 EPII-CF- 30 EFII-CF- 41 EFII-CF- 42 EFII-CF- 43	Fe Fe mg/kg 1.6E+1 1.0E+1 1.1E+1 3.4E+1 8.5E+0 1.2E+1 8.3E+0 1.1E+1 1.1E+1 1.1E+1 1.4E+1 1.0E+1 1.4E+1	Co mg/kg 1.1.E-2 6.0E-3 2.2E-2 1.4E-2 1.4E-2 1.4E-2 1.4.0E-3 1.4E-2 1.4.0E-3 1.4E-2 1.4.0E-3 1.1.1E-2 1.9.0E-3 1.7.5E-3 1.2.0E+0 1.5.8E-2 1.3E-1	Ni mg/kg 9.1E-2 8.6E-2 8.0E-1 1.5E-1 7.2E-2 1.6E-1 9.2E-2 1.4E-1 8.9E-1 9.4E-2 4.1E-1 2.1E-1 1.2E-1	Cu mg/kg 2.0E+0 3.9E+0 3.1E+0 9.9E-1 3.9E+0 3.3E+0 2.5E+0 3.0E+0 2.1E+0 4.5E+0 4.8E+0 4.1E+0	Zn mg/kg 2.4E+1 2.6E+1 3.0E+1 3.8E+1 2.3E+1 2.4E+1 2.4E+1 2.5E+1 2.5E+1 2.3E+1 2.3E+1 1.4E+1 1.8E+1	Rb mg/kg 3.7E+0 2.8E+0 3.2E+0 2.7E+0 7.4E+0 1.5E+0 4.2E+0 8.8E+0 8.5E+0 2.2E+0 1.6E+1 1.2E+1 1.8E+1	Sr mg/kg 2.0E-1 2.8E-1 2.0E-1 3.5E-1 3.5E-1 1.6E-1 1.9E-1 1.7E-1 2.8E-1 2.8E-1 1.7E-1 1.7E-1 2.8E-1 4.4E-1 1.9E+0 1.9E+0	Mo mg/kg 7.4E-1 1.2E+0 2.1E+0 1.3E+0 1.2E+0 8.5E-1 9.9E-1 5.9E-1 1.5E+0 5.1E-1 7.5E-2 2.7E-1 3.8E-2	Cd mg/kg 8.5E-3 1.3E-2 1.8E-1 2.0E-3 1.7E-2 1.1E-1 6.3E-2 2.1E-2 3.1E-1 8.5E-3 4.0E-2 5.0E-2 1.6E-1	Ba mg/kg 3.6E-1 1.6E+0 8.0E-1 4.3E-1 1.4E-1 4.6E-1 4.2E-1 5.9E-1 6.1E-1 1.3E-1 1.3E-1 2.5E+0 1.1E+0 8.5E+0
Sample code EPII-CF- 21 EPII-CF- 22 EPII-CF- 23 EPII-CF- 24 EPII-CF- 24 EPII-CF- 26 EPII-CF- 26 EPII-CF- 27 EPII-CF- 28 EPII-CF- 29 EPII-CF- 30 EFII-CF- 41 EFII-CF- 42 EFII-CF- 43 EFII-CF- 44	e Fe mg/kg 1.6E+1 1.0E+1 1.0E+1 1.1E+1 3.4E+1 8.5E+0 1.2E+1 8.3E+0 1.1E+1 1.1E+1 1.0E+1 1.4E+1 2.6E+1 1.5E+1	Co mg/kg 1.1.1E-2 1.2E-2 1.6.0E-3 1.2.2E-2 1.2.2E-2 1.4E-2 1.4.0E-3 1.4E-2 1.4.0E-3 1.4E-2 1.4.0E-3 1.4.0E-3 1.4.0E-3 1.4.0E-3 1.4.0E-3 1.1.1E-2 1.5.5-3 1.2.0E+0 1.5.8E-2 1.1.3E-1 1.2.1E-2	Ni mg/kg 9.1E-2 8.6E-2 8.0E-1 1.5E-1 7.2E-2 1.6E-1 9.2E-2 1.4E-1 8.9E-1 9.4E-2 4.1E-1 2.1E-1 1.2E-1 8.2E-2	Cu mg/kg 2.0E+0 3.9E+0 3.1E+0 9.9E-1 3.9E+0 3.3E+0 2.5E+0 3.0E+0 2.1E+0 4.5E+0 4.8E+0 4.1E+0 5.7E+0	Zn mg/kg 2.4E+1 2.6E+1 3.0E+1 3.8E+1 2.3E+1 2.4E+1 2.5E+1 2.5E+1 2.5E+1 2.3E+1 2.1E+1 1.4E+1 1.8E+1 1.8E+1	Rb mg/kg 3.7E+0 2.8E+0 3.2E+0 2.7E+0 7.4E+0 1.5E+0 4.2E+0 8.8E+0 8.5E+0 2.2E+0 1.6E+1 1.2E+1 1.8E+1 6.6E+0	Sr mg/kg 2.0E-1 2.8E-1 2.0E-1 3.5E-1 1.6E-1 1.9E-1 1.7E-1 2.8E-1 2.0E-1 1.7E-1 2.8E-1 2.0E-1 1.1E-1 5.4E-1 4.4E-1 1.9E+0 1.4E+0	Mo mg/kg 7.4E-1 1.2E+0 2.1E+0 1.3E+0 1.2E+0 8.5E-1 9.9E-1 5.9E-1 1.5E+0 5.1E-1 7.5E-2 2.7E-1 3.8E-2 6.2E-1	Cd mg/kg 8.5E-3 1.3E-2 1.8E-1 2.0E-3 1.7E-2 1.1E-1 6.3E-2 2.1E-2 3.1E-1 8.5E-3 4.0E-2 5.0E-2 1.6E-1 1.1E-1	Ba mg/kg 3.6E-1 1.6E+0 8.0E-1 4.3E-1 1.4E-1 4.6E-1 4.2E-1 5.9E-1 6.1E-1 1.3E-1 2.5E+0 1.1E+0 8.5E+0 9.8E-1
Sample code EPII-CF- 21 EPII-CF- 22 EPII-CF- 23 EPII-CF- 24 EPII-CF- 25 EPII-CF- 26 EPII-CF- 27 EPII-CF- 28 EPII-CF- 29 EPII-CF- 30 EFII-CF- 41 EFII-CF- 42 EFII-CF- 43 EFII-CF- 44 EFII-CF- 45	e Fe mg/kg 1.6E+1 1.0E+1 1.0E+1 1.1E+1 3.4E+1 8.5E+0 1.2E+1 8.3E+0 1.1E+1 1.1E+1 1.0E+1 1.1E+1 1.0E+1 1.0E+1 1.1E+1 1.0E+1 1.0E+1 1.0E+1 1.0E+1 1.0E+1 1.0E+1 1.0E+1 1.0E+1 1.0E+1 1.0E+1 1.4E+1 1.4E+1 1.5E+1 1.8E+1 1.8E+1	Co mg/kg 1.1.1E-2 2.6.0E-3 1.2E-2 2.2E-2 1.4E-2 1.4E-2 1.4E-2 1.4.0E-3 0.8.5E-3 1.1.1E-2 1.9.0E-3 1.7.5E-3 1.2.0E+0 1.5.8E-2 1.3E-1 1.2.1E-2 1.2.1E-2 1.2.3E-2	Ni mg/kg 9.1E-2 8.6E-2 8.0E-1 1.5E-1 7.2E-2 1.6E-1 9.2E-2 1.4E-1 8.9E-1 9.4E-2 4.1E-1 2.1E-1 1.2E-1 8.2E-2 6.1E-2	Cu mg/kg 2.0E+0 2.9E+0 3.9E+0 3.1E+0 9.9E-1 3.9E+0 3.3E+0 2.5E+0 3.0E+0 2.1E+0 4.5E+0 4.8E+0 4.1E+0 5.7E+0 4.0E+0	Zn mg/kg 2.4E+1 2.6E+1 3.0E+1 3.8E+1 2.3E+1 2.4E+1 2.4E+1 2.5E+1 2.5E+1 2.3E+1 2.3E+1 2.1E+1 1.4E+1 1.8E+1 1.8E+1 1.7E+1	Rb mg/kg 3.7E+0 2.8E+0 3.2E+0 2.7E+0 7.4E+0 1.5E+0 4.2E+0 8.8E+0 2.2E+0 1.6E+1 1.2E+1 1.8E+1 6.6E+0 9.8E+0	Sr mg/kg 2.0E-1 2.8E-1 2.0E-1 3.5E-1 1.6E-1 1.6E-1 1.9E-1 2.8E-1 2.0E-1 1.7E-1 2.8E-1 2.0E-1 1.7E-1 2.8E-1 2.0E-1 1.1E-1 1.4E-1 1.9E+0 1.9E+0 1.4E+0	Mo mg/kg 7.4E-1 1.2E+0 2.1E+0 1.3E+0 1.2E+0 8.5E-1 9.9E-1 5.9E-1 1.5E+0 5.1E-1 7.5E-2 2.7E-1 3.8E-2 6.2E-1 3.1E-1	Cd mg/kg 8.5E-3 1.3E-2 1.8E-1 2.0E-3 1.7E-2 1.1E-1 6.3E-2 2.1E-2 3.1E-1 8.5E-3 4.0E-2 5.0E-2 1.6E-1 1.1E-1 3.0E-2	Ba mg/kg 3.6E-1 1.6E+0 8.0E-1 4.3E-1 1.4E-1 4.6E-1 4.2E-1 5.9E-1 6.1E-1 1.3E-1 1.3E-1 2.5E+0 1.1E+0 8.5E+0 9.8E-1 4.4E-1
Sample code EPII-CF- 21 EPII-CF- 22 EPII-CF- 23 EPII-CF- 24 EPII-CF- 24 EPII-CF- 25 EPII-CF- 26 EPII-CF- 27 EPII-CF- 28 EPII-CF- 29 EPII-CF- 30 EFII-CF- 41 EFII-CF- 42 EFII-CF- 43 EFII-CF- 44 EFII-CF- 45 EFII-CF- 46	e Fe mg/kg 1.6E+1 1.0E+1 1.1E+1 3.4E+1 8.5E+0 1.2E+1 8.3E+0 1.1E+1 1.1E+1 1.1E+1 1.1E+1 1.0E+1 1.1E+1 1.0E+1 1.0E+1 1.0E+1 1.0E+1 1.4E+1 2.6E+1 1.5E+1 1.8E+1 2.1E+1	Co mg/kg 1.1.1E-2 1.2E-2 1.2.2E-2 1.2.2E-2 1.2.2E-2 1.4.0E-3 1.4E-2 1.4.0E-3 1.4.0E-	Ni mg/kg 9.1E-2 8.6E-2 8.0E-1 1.5E-1 7.2E-2 1.6E-1 9.2E-2 1.4E-1 8.9E-1 9.4E-2 4.1E-1 2.1E-1 1.2E-1 8.2E-2 6.1E-2 5.6E-2	Cu mg/kg 2.0E+0 3.9E+0 3.1E+0 9.9E-1 3.9E+0 3.3E+0 2.5E+0 3.0E+0 2.1E+0 4.5E+0 4.8E+0 4.1E+0 5.7E+0 4.0E+0 2.1E+0	Zn mg/kg 2.4E+1 3.0E+1 3.8E+1 2.3E+1 2.3E+1 2.4E+1 2.4E+1 2.5E+1 2.5E+1 2.3E+1 1.4E+1 1.8E+1 1.8E+1 1.7E+1 1.5E+1	Rb mg/kg 3.7E+0 2.8E+0 3.2E+0 2.7E+0 2.7E+0 7.4E+0 1.5E+0 4.2E+0 8.8E+0 8.5E+0 2.2E+0 1.6E+1 1.2E+1 1.8E+1 6.6E+0 9.8E+0 9.3E+0	Sr mg/kg 2.0E-1 2.8E-1 2.0E-1 3.5E-1 3.5E-1 1.6E-1 1.9E-1 1.7E-1 2.8E-1 2.8E-1 1.7E-1 1.7E-1 3.5E-1 1.1E-1 1.1E-1 1.1E-1 1.4E-1 1.9E+0 1.4E+0 7.0E-1 5.9E-1 1	Mo mg/kg 7.4E-1 1.2E+0 2.1E+0 1.3E+0 1.2E+0 8.5E-1 9.9E-1 5.9E-1 1.5E+0 5.1E-1 7.5E-2 2.7E-1 3.8E-2 6.2E-1 3.1E-1 6.8E-1	Cd mg/kg 8.5E-3 1.3E-2 1.8E-1 2.0E-3 1.7E-2 1.1E-1 6.3E-2 2.1E-2 3.1E-1 8.5E-3 4.0E-2 5.0E-2 1.6E-1 1.1E-1 3.0E-2 5.0E-2	Ba mg/kg 3.6E-1 1.6E+0 8.0E-1 4.3E-1 1.4E-1 4.6E-1 4.2E-1 5.9E-1 6.1E-1 1.3E-1 2.5E+0 1.1E+0 8.5E+0 9.8E-1 4.4E-1 2.7E-1
Sample code EPII-CF- 21 EPII-CF- 22 EPII-CF- 23 EPII-CF- 24 EPII-CF- 24 EPII-CF- 26 EPII-CF- 26 EPII-CF- 27 EPII-CF- 28 EPII-CF- 29 EPII-CF- 30 EFII-CF- 41 EFII-CF- 42 EFII-CF- 43 EFII-CF- 44 EFII-CF- 45 EFII-CF- 46 EFII-CF- 47	e Fe mg/kg 1.6E+1 1.0E+1 1.0E+1 1.1E+1 3.4E+1 8.5E+0 1.2E+1 8.3E+0 1.1E+1 1.1E+1 1.0E+1 1.1E+1 1.0E+1 1.0E+1 1.0E+1 1.9E+1	Co mg/kg 1.1.1E-2 6.0E-3 1.2E-2 0.1.4E-2 1.4.0E-3 0.8.5E-3 1.4E-2 1.4.0E-3 0.8.5E-3 1.4.1E-2 1.9.0E-3 1.1.1E-2 1.9.0E-3 1.1.1E-2 1.9.0E+0 1.5.8E-2 1.1.3E-1 1.2.1E-2 1.2.1E-2 1.4.1E-2 1.3.5E-2	Ni mg/kg 9.1E-2 8.6E-2 8.0E-1 1.5E-1 7.2E-2 1.6E-1 9.2E-2 1.4E-1 8.9E-1 9.4E-2 4.1E-1 2.1E-1 1.2E-1 8.2E-2 6.1E-2 5.6E-2 2.0E-1	Cu mg/kg 2.0E+0 3.9E+0 3.1E+0 9.9E-1 3.9E+0 3.3E+0 2.5E+0 3.0E+0 2.1E+0 4.5E+0 4.8E+0 4.1E+0 5.7E+0 4.0E+0 2.1E+0 2.5E+0	Zn mg/kg 2.4E+1 2.6E+1 3.0E+1 3.8E+1 2.3E+1 2.3E+1 2.4E+1 2.5E+1 2.5E+1 2.5E+1 2.3E+1 1.4E+1 1.4E+1 1.8E+1 1.8E+1 1.5E+1 1.5E+1	Rb mg/kg 3.7E+0 2.8E+0 3.2E+0 2.7E+0 7.4E+0 1.5E+0 4.2E+0 8.8E+0 8.5E+0 2.2E+0 1.6E+1 1.2E+1 6.6E+0 9.8E+0 9.3E+0 7.3E+0	Sr mg/kg 2.0E-1 2.8E-1 2.0E-1 3.5E-1 1.6E-1 1.9E-1 1.7E-1 2.8E-1 2.0E-1 1.7E-1 2.8E-1 2.0E-1 1.1E-1 5.4E-1 4.4E-1 1.9E+0 1.4E+0 7.0E-1 5.9E-1 1.0E+0	Mo mg/kg 7.4E-1 1.2E+0 2.1E+0 1.3E+0 1.2E+0 8.5E-1 9.9E-1 5.9E-1 1.5E+0 5.1E-1 7.5E-2 2.7E-1 3.8E-2 6.2E-1 3.1E-1 6.8E-1 2.3E-1	Cd mg/kg 8.5E-3 1.3E-2 1.8E-1 2.0E-3 1.7E-2 1.1E-1 6.3E-2 2.1E-2 3.1E-1 8.5E-3 4.0E-2 5.0E-2 1.6E-1 1.1E-1 3.0E-2 5.0E-2 1.1E-1	Ba mg/kg 3.6E-1 1.6E+0 8.0E-1 4.3E-1 1.4E-1 4.6E-1 4.2E-1 5.9E-1 6.1E-1 1.3E-1 2.5E+0 1.1E+0 8.5E+0 9.8E-1 4.4E-1 2.7E-1 4.9E-1
Sample code EPII-CF- 21 EPII-CF- 22 EPII-CF- 23 EPII-CF- 24 EPII-CF- 24 EPII-CF- 25 EPII-CF- 26 EPII-CF- 27 EPII-CF- 28 EPII-CF- 29 EPII-CF- 30 EFII-CF- 41 EFII-CF- 42 EFII-CF- 43 EFII-CF- 43 EFII-CF- 45 EFII-CF- 46 EFII-CF- 47 EFII-CF- 48	e Fe mg/kg 1.6E+1 1.0E+1 1.0E+1 1.1E+1 3.4E+1 8.5E+0 1.2E+1 8.3E+0 1.1E+1 1.1E+1 1.0E+1 1.1E+1 1.0E+1 1.0E+1 1.1E+1 1.0E+1 1.0E+1 1.0E+1 1.0E+1 1.0E+1 1.0E+1 1.0E+1 1.0E+1 1.4E+1 2.6E+1 1.5E+1 1.8E+1 2.1E+1 1.9E+1 1.5E+1	Co mg/kg 1.1.1E-2 2.2E-2 3.1.2E-2 3.1.2E-2 3.1.2E-2 3.1.4E-2 4.0E-3 3.1.4E-2 4.0E-3 3.1.4E-2 3.1.4E-2 3.1.4E-2 4.0E-3 3.1.1E-2 4.0E-3 3.1.1E-2 4.1E-2 4.1E-2 4.3.5E-2 4.8.3E-2 4.8.3E-2	Ni mg/kg 9.1E-2 8.6E-2 8.0E-1 1.5E-1 7.2E-2 1.6E-1 9.2E-2 1.4E-1 8.9E-1 9.4E-2 4.1E-1 2.1E-1 1.2E-1 8.2E-2 6.1E-2 5.6E-2 2.0E-1 3.0E-1	Cu mg/kg 2.0E+0 3.9E+0 3.1E+0 9.9E-1 3.9E+0 3.3E+0 2.5E+0 3.0E+0 2.1E+0 4.5E+0 4.8E+0 4.1E+0 5.7E+0 4.0E+0 2.1E+0 2.5E+0 5.2E+0	Zn mg/kg 2.4E+1 2.6E+1 3.0E+1 3.8E+1 2.3E+1 2.4E+1 2.4E+1 2.5E+1 2.5E+1 2.3E+1 2.3E+1 1.4E+1 1.4E+1 1.8E+1 1.8E+1 1.7E+1 1.5E+1 2.0E+1	Rb mg/kg 3.7E+0 2.8E+0 3.2E+0 2.7E+0 7.4E+0 1.5E+0 4.2E+0 8.8E+0 8.8E+0 2.2E+0 1.6E+1 1.2E+1 1.8E+1 6.6E+0 9.8E+0 7.3E+0	Sr mg/kg 2.0E-1 2.8E-1 2.0E-1 3.5E-1 1.6E-1 1.6E-1 1.7E-1 2.8E-1 2.0E-1 1.7E-1 2.8E-1 1.7E-1 2.8E-1 1.7E-1 2.8E-1 1.1E-1 5.4E-1 1.9E+0 1.4E+0 7.0E-1 5.9E-1 1.0E+0 4.8E-1	Mo mg/kg 7.4E-1 1.2E+0 2.1E+0 1.3E+0 1.2E+0 8.5E-1 9.9E-1 5.9E-1 1.5E+0 5.1E-1 7.5E-2 2.7E-1 3.8E-2 6.2E-1 3.1E-1 6.8E-1 2.3E-1 7.5E-2	Cd mg/kg 8.5E-3 1.3E-2 1.8E-1 2.0E-3 1.7E-2 1.1E-1 6.3E-2 2.1E-2 3.1E-1 8.5E-3 4.0E-2 5.0E-2 1.6E-1 1.1E-1 3.0E-2 5.0E-2 1.1E-1 1.2E-1	Ba mg/kg 3.6E-1 1.6E+0 8.0E-1 4.3E-1 1.4E-1 4.6E-1 4.2E-1 5.9E-1 6.1E-1 1.3E-1 2.5E+0 1.1E+0 8.5E+0 9.8E-1 4.4E-1 2.7E-1 4.9E-1 1.7E+0
Sample code EPII-CF- 21 EPII-CF- 22 EPII-CF- 23 EPII-CF- 24 EPII-CF- 25 EPII-CF- 26 EPII-CF- 27 EPII-CF- 28 EPII-CF- 29 EPII-CF- 30 EFII-CF- 41 EFII-CF- 42 EFII-CF- 43 EFII-CF- 44 EFII-CF- 45 EFII-CF- 46 EFII-CF- 47 EFII-CF- 48 EFII-CF- 48 EFII-CF- 49	e Fe mg/kg 1.6E+1 1.0E+1 1.0E+1 1.4E+1 3.4E+1 8.5E+(1.2E+1 8.3E+(1.1E+1 1.1E+1 1.1E+1 1.4E+1 1.4E+1 1.4E+1 1.5E+1 1.8E+1 1.5E+1 1.9E+1 1.5E+1 1.6E+1	Co mg/kg 1.1.1E-2 1.2E-2 1.6.0E-3 1.2.2E-2 1.4E-2 1.4.0E-3 1.4E-2 1.4.0E-3 1.4.0E-3 1.4.0E-3 1.4.0E-3 1.4.0E-3 1.4.0E-3 1.4.0E-3 1.4.0E-3 1.4.0E-3 1.4.0E-3 1.5.8E-3 1.7.5E-3	Ni mg/kg 9.1E-2 8.6E-2 8.0E-1 1.5E-1 7.2E-2 1.6E-1 9.2E-2 1.4E-1 8.9E-1 9.4E-2 4.1E-1 2.1E-1 1.2E-1 8.2E-2 6.1E-2 5.6E-2 2.0E-1 3.0E-1 2.1E-1	Cu mg/kg 2.0E+0 3.9E+0 3.1E+0 9.9E-1 3.9E+0 3.3E+0 2.5E+0 3.0E+0 2.1E+0 4.3E+0 4.1E+0 5.7E+0 4.0E+0 2.1E+0 2.5E+0 5.2E+0 5.2E+0 4.8E+0	Zn mg/kg 2.4E+1 3.0E+1 3.8E+1 2.3E+1 2.3E+1 2.4E+1 2.5E+1 2.5E+1 2.5E+1 2.5E+1 1.4E+1 1.4E+1 1.8E+1 1.8E+1 1.5E+1 1.5E+1 2.0E+1 1.3E+1 1.3E+1	Rb mg/kg 3.7E+0 2.8E+0 3.2E+0 2.7E+0 7.4E+0 1.5E+0 4.2E+0 8.8E+0 2.2E+0 1.6E+1 1.2E+1 1.8E+1 6.6E+0 9.8E+0 7.3E+0 1.7E+1 4.7E+0	Sr mg/kg 2.0E-1 2.8E-1 2.0E-1 3.5E-1 1.6E-1 1.6E-1 1.9E-1 2.8E-1 2.0E-1 1.6E-1 1.9E-1 1.9E-1 2.8E-1 2.0E-1 1.1E-1 5.4E-1 4.4E-1 1.9E+0 1.4E+0 7.0E-1 5.9E-1 1.0E+0 4.8E-1 9.4E-1	Mo mg/kg 7.4E-1 1.2E+0 2.1E+0 1.3E+0 1.2E+0 8.5E-1 9.9E-1 5.9E-1 1.5E+0 5.1E-1 7.5E-2 2.7E-1 3.8E-2 6.2E-1 3.1E-1 6.8E-1 2.3E-1 7.5E-2 1.1E-1 1.1E-1	Cd mg/kg 8.5E-3 1.3E-2 1.8E-1 2.0E-3 1.7E-2 1.1E-1 6.3E-2 2.1E-2 3.1E-1 8.5E-3 4.0E-2 5.0E-2 1.6E-1 1.1E-1 3.0E-2 5.0E-2 1.1E-1 1.2E-1 1.5E-1	Ba mg/kg 3.6E-1 1.6E+0 8.0E-1 4.3E-1 1.4E-1 4.6E-1 4.6E-1 4.2E-1 5.9E-1 6.1E-1 1.3E-1 2.5E+0 1.1E+0 8.5E+0 9.8E-1 4.4E-1 2.7E-1 4.9E-1 1.7E+0 1.5E+0

表 2.3-11	平成28年度に採取した農作物の移行係数
	(乾物重ベース)

Sample code			Na	Mg	Al	Si	Р	К	ex. K*	Ca	ex. Ca*
EPII-CF-21	宮崎	玄米	1.6E-3	3.6E-1	7.3E-5	5.6E-4	2.5E+0	2.4E-1	3.0E+1	1.8E-2	5.4E-2
EPII-CF-22	鹿児島	玄米	2.1E-3	2.8E-1	3.4E-6	7.9E-4	4.5E+0	2.0E-1	2.5E+1	1.3E-2	9.5E-2
EPII-CF-23	高知	玄米	2.0E-3	5.5E-1	1.9E-5	1.3E-3	4.8E+0	1.6E-1	2.9E+1	8.6E-2	1.7E-1
EPII-CF-24	沖縄	玄米	5.1E-3	3.4E-1	1.8E-4	9.0E-4	4.7E+0	2.6E-1	3.7E+1	2.3E-2	5.6E-2
EPII-CF-25	北海道	玄米	1.5E-3	2.0E-1	1.7E-5	4.8E-4	3.0E+0	3.5E-1	2.4E+1	7.3E-3	4.3E-2
EPII-CF-26	青森	玄米	6.6E-4	1.9E-1	1.4E-5	1.2E-3	1.6E+0	2.9E-1	4.7E+0	1.0E-2	6.0E-2
EPII-CF-27	北海道	玄米	1.7E-3	1.5E-1	3.5E-6	1.3E-3	1.8E+0	2.7E-1	1.2E+1	6.8E-3	6.5E-2
EPII-CF-28	熊本	玄米	7.4E-4	5.0E-2	4.7E-6	3.2E-4	2.6E+0	6.6E-1	1.6E+1	3.8E-3	5.3E-2
EPII-CF-29	秋田	玄米	1.7E-3	1.2E-1	4.9E-5	6.0E-4	2.9E+0	2.3E-1	1.0E+1	7.1E-3	2.5E-2
EPII-CF-30	岩手	玄米	1.5E-3	2.9E-1	2.0E-6	9.6E-4	6.4E-1	6.9E-1	1.6E+1	9.0E-3	3.6E-2
EFII-CF-41	鹿児島	ジャガイモ	2.6E-2	1.6E+0	1.3E-3	3.2E-4	9.4E-1	4.4E+0	4.6E+1	1.9E-1	4.6E-1
EFII-CF-42	宮崎	ジャガイモ	2.0E-3	9.7E-2	1.2E-4	5.9E-5	2.1E+0	1.2E+0	9.9E+1	1.4E-2	2.5E-1
EFII-CF-43	長崎	ジャガイモ	3.8E-2	2.2E+0	3.4E-4	9.6E-5	1.8E+0	9.7E+0	7.8E+1	5.2E-1	2.4E-1
EFII-CF-44	福岡	ジャガイモ	1.1E-3	8.8E-2	5.0E-5	3.6E-5	1.5E+0	1.4E+0	8.4E+1	3.6E-2	1.5E-1
EFII-CF-45	高知	ジャガイモ	2.7E-3	3.1E-1	6.0E-5	2.8E-5	9.4E-1	1.2E+0	6.1E+1	4.0E-2	7.6E-2
EFII-CF-46	岩手	ジャガイモ	1.4E-3	1.4E-1	9.1E-5	4.1E-5	1.1E+0	2.9E+0	4.2E+1	8.7E-3	4.8E-2
EFII-CF-47	青森	ジャガイモ	2.0E-3	1.5E-1	4.7E-5	3.2E-5	1.1E+0	2.4E+0	3.2E+1	2.0E-2	6.6E-2
EFII-CF-48	秋田	ジャガイモ	3.8E-3	2.9E-1	2.7E-5	1.8E-5	1.2E+0	1.6E+0	7.4E+1	5.7E-2	5.0E-1
EFII-CF-49	北海道	ジャガイモ	1.5E-3	2.6E-1	5.6E-5	3.9E-5	1.8E+0	2.5E+0	4.8E+1	3.9E-2	6.8E-2
EFII-CF-50	北海道	ジャガイモ	1.2E-3	3.8E-2	7.0E-5	4.4E-5	1.3E+0	2.4E+0	1.7E+2	3.8E-3	1.8E-1
	-			-	-				-		1
	Cr	Mn	Fe	Co	Ni	Cu	Zn	Rb	Sr	Cd	Ba
EPII-CF-21	Cr 3.1E-3	Mn 8.7E-2	Fe 6.3E-4	Co 1.3E-3	Ni 5.5E-3	Cu 9.5E-2	Zn 2.5E-1	Rb 6.5E-2	Sr 3.4E-3	Cd 4.1E-2	Ba 1.4E-3
EPII-CF-21 EPII-CF-22	Cr 3.1E-3 4.7E-3	Mn 8.7E-2 8.1E-2	Fe 6.3E-4 3.6E-4	Co 1.3E-3 1.4E-3	Ni 5.5E-3 8.3E-3	Cu 9.5E-2 2.0E-1	Zn 2.5E-1 3.7E-1	Rb 6.5E-2 3.4E-2	Sr 3.4E-3 3.6E-3	Cd 4.1E-2 9.2E-2	Ba 1.4E-3 4.6E-3
EPII-CF-21 EPII-CF-22 EPII-CF-23	Cr 3.1E-3 4.7E-3 2.7E-3	Mn 8.7E-2 8.1E-2 2.9E-1	Fe 6.3E-4 3.6E-4 8.7E-4	Co 1.3E-3 1.4E-3 1.4E-3	Ni 5.5E-3 8.3E-3 5.3E-2	Cu 9.5E-2 2.0E-1 2.3E-1	Zn 2.5E-1 3.7E-1 5.0E-1	Rb 6.5E-2 3.4E-2 7.6E-2	Sr 3.4E-3 3.6E-3 4.6E-3	Cd 4.1E-2 9.2E-2 7.9E-1	Ba 1.4E-3 4.6E-3 2.0E-3
EPII-CF-21 EPII-CF-22 EPII-CF-23 EPII-CF-24	Cr 3.1E-3 4.7E-3 2.7E-3 4.6E-3	Mn 8.7E-2 8.1E-2 2.9E-1 5.0E-2	Fe 6.3E-4 3.6E-4 8.7E-4 1.3E-3	Co 1.3E-3 1.4E-3 1.4E-3 2.1E-3	Ni 5.5E-3 8.3E-3 5.3E-2 6.6E-3	Cu 9.5E-2 2.0E-1 2.3E-1 1.4E-1	Zn 2.5E-1 3.7E-1 5.0E-1 5.6E-1	Rb 6.5E-2 3.4E-2 7.6E-2 7.3E-2	Sr 3.4E-3 3.6E-3 4.6E-3 1.0E-2	Cd 4.1E-2 9.2E-2 7.9E-1 1.4E-2	Ba 1.4E-3 4.6E-3 2.0E-3 2.2E-3
EPII-CF-21 EPII-CF-22 EPII-CF-23 EPII-CF-24 EPII-CF-25	Cr 3.1E-3 4.7E-3 2.7E-3 4.6E-3 4.9E-3	Mn 8.7E-2 8.1E-2 2.9E-1 5.0E-2 4.7E-2	Fe 6.3E-4 3.6E-4 8.7E-4 1.3E-3 1.8E-4	Co 1.3E-3 1.4E-3 1.4E-3 2.1E-3 1.1E-3	Ni 5.5E-3 8.3E-3 5.3E-2 6.6E-3 6.4E-3	Cu 9.5E-2 2.0E-1 2.3E-1 1.4E-1 5.9E-2	Zn 2.5E-1 3.7E-1 5.0E-1 5.6E-1 2.6E-1	Rb 6.5E-2 3.4E-2 7.6E-2 7.3E-2 7.7E-2	Sr 3.4E-3 3.6E-3 4.6E-3 1.0E-2 1.8E-3	Cd 4.1E-2 9.2E-2 7.9E-1 1.4E-2 8.3E-2	Ba 1.4E-3 4.6E-3 2.0E-3 2.2E-3 3.6E-4
EPII-CF-21 EPII-CF-22 EPII-CF-23 EPII-CF-24 EPII-CF-25 EPII-CF-26	Cr 3.1E-3 4.7E-3 2.7E-3 4.6E-3 4.9E-3 7.7E-3	Mn 8.7E-2 8.1E-2 2.9E-1 5.0E-2 4.7E-2 6.7E-2	Fe 6.3E-4 3.6E-4 8.7E-4 1.3E-3 1.8E-4 4.2E-4	Co 1.3E-3 1.4E-3 1.4E-3 2.1E-3 1.1E-3 5.5E-4	Ni 5.5E-3 8.3E-3 5.3E-2 6.6E-3 6.4E-3 1.7E-2	Cu 9.5E-2 2.0E-1 2.3E-1 1.4E-1 5.9E-2 1.2E-1	Zn 2.5E-1 3.7E-1 5.0E-1 5.6E-1 2.6E-1 2.0E-1	Rb 6.5E-2 3.4E-2 7.6E-2 7.3E-2 7.7E-2 1.7E-2	Sr 3.4E-3 3.6E-3 4.6E-3 1.0E-2 1.8E-3 2.3E-3	Cd 4.1E-2 9.2E-2 7.9E-1 1.4E-2 8.3E-2 2.3E-1	Ba 1.4E-3 4.6E-3 2.0E-3 2.2E-3 3.6E-4 1.5E-3
EPII-CF-21 EPII-CF-22 EPII-CF-23 EPII-CF-24 EPII-CF-25 EPII-CF-26 EPII-CF-27	Cr 3.1E-3 4.7E-3 2.7E-3 4.6E-3 4.9E-3 7.7E-3 2.8E-3	Mn 8.7E-2 8.1E-2 2.9E-1 5.0E-2 4.7E-2 6.7E-2 5.7E-2	Fe 6.3E-4 3.6E-4 8.7E-4 1.3E-3 1.8E-4 4.2E-4 2.0E-4	Co 1.3E-3 1.4E-3 1.4E-3 2.1E-3 1.1E-3 5.5E-4 6.5E-4	Ni 5.5E-3 8.3E-3 5.3E-2 6.6E-3 6.4E-3 1.7E-2 4.1E-3	Cu 9.5E-2 2.0E-1 2.3E-1 1.4E-1 5.9E-2 1.2E-1 9.5E-2	Zn 2.5E-1 3.7E-1 5.0E-1 5.6E-1 2.6E-1 2.0E-1 1.6E-1	Rb 6.5E-2 3.4E-2 7.6E-2 7.3E-2 7.7E-2 1.7E-2 3.4E-2	Sr 3.4E-3 3.6E-3 4.6E-3 1.0E-2 1.8E-3 2.3E-3 1.5E-3	Cd 4.1E-2 9.2E-2 7.9E-1 1.4E-2 8.3E-2 2.3E-1 1.3E-1	Ba 1.4E-3 4.6E-3 2.0E-3 3.6E-4 1.5E-3 1.2E-3
EPII-CF-21 EPII-CF-22 EPII-CF-23 EPII-CF-24 EPII-CF-25 EPII-CF-26 EPII-CF-27 EPII-CF-28	Cr 3.1E-3 4.7E-3 2.7E-3 4.6E-3 4.9E-3 7.7E-3 2.8E-3 3.9E-4	Mn 8.7E-2 8.1E-2 2.9E-1 5.0E-2 4.7E-2 6.7E-2 5.7E-2 2.4E-2	Fe 6.3E-4 3.6E-4 8.7E-4 1.3E-3 1.8E-4 4.2E-4 2.0E-4 1.7E-4	Co 1.3E-3 1.4E-3 1.4E-3 2.1E-3 1.1E-3 5.5E-4 6.5E-4 3.4E-4	Ni 5.5E-3 8.3E-3 5.3E-2 6.6E-3 6.4E-3 1.7E-2 4.1E-3 1.8E-3	Cu 9.5E-2 2.0E-1 2.3E-1 1.4E-1 5.9E-2 1.2E-1 9.5E-2 4.1E-2	Zn 2.5E-1 3.7E-1 5.0E-1 5.6E-1 2.6E-1 2.0E-1 1.6E-1 2.4E-1	Rb 6.5E-2 3.4E-2 7.6E-2 7.3E-2 1.7E-2 3.4E-2 3.4E-2 3.4E-2 3.6E-2	Sr 3.4E-3 3.6E-3 4.6E-3 1.0E-2 1.8E-3 2.3E-3 1.5E-3 1.2E-3	Cd 4.1E-2 9.2E-2 7.9E-1 1.4E-2 8.3E-2 2.3E-1 1.3E-1 6.8E-2	Ba 1.4E-3 4.6E-3 2.0E-3 3.6E-4 1.5E-3 1.2E-3 2.1E-3
EPII-CF-21 EPII-CF-22 EPII-CF-23 EPII-CF-24 EPII-CF-25 EPII-CF-26 EPII-CF-27 EPII-CF-28 EPII-CF-29	Cr 3.1E-3 4.7E-3 2.7E-3 4.6E-3 4.9E-3 7.7E-3 2.8E-3 3.9E-4 2.4E-3	Mn 8.7E-2 8.1E-2 2.9E-1 5.0E-2 4.7E-2 6.7E-2 5.7E-2 2.4E-2 1.0E-1	Fe 6.3E-4 3.6E-4 8.7E-4 1.3E-3 1.8E-4 4.2E-4 2.0E-4 1.7E-4 3.1E-4	Co 1.3E-3 1.4E-3 2.1E-3 1.1E-3 5.5E-4 6.5E-4 3.4E-4 8.5E-4	Ni 5.5E-3 8.3E-3 5.3E-2 6.6E-3 6.4E-3 1.7E-2 4.1E-3 1.8E-3 3.9E-2	Cu 9.5E-2 2.0E-1 2.3E-1 1.4E-1 5.9E-2 1.2E-1 9.5E-2 4.1E-2 1.3E-1	Zn 2.5E-1 3.7E-1 5.0E-1 5.6E-1 2.6E-1 2.0E-1 1.6E-1 2.4E-1 2.3E-1	Rb 6.5E-2 3.4E-2 7.6E-2 7.3E-2 7.7E-2 1.7E-2 3.4E-2 3.6E-2 6.8E-2	Sr 3.4E-3 3.6E-3 4.6E-3 1.0E-2 1.8E-3 2.3E-3 1.5E-3 1.2E-3 1.7E-3	Cd 4.1E-2 9.2E-2 7.9E-1 1.4E-2 8.3E-2 2.3E-1 1.3E-1 6.8E-2 7.6E-1	Ba 1.4E-3 4.6E-3 2.0E-3 3.6E-4 1.5E-3 2.1E-3 2.1E-3 1.5E-3
EPII-CF-21 EPII-CF-22 EPII-CF-23 EPII-CF-24 EPII-CF-25 EPII-CF-26 EPII-CF-27 EPII-CF-28 EPII-CF-29 EPII-CF-30	Cr 3.1E-3 4.7E-3 2.7E-3 4.6E-3 4.9E-3 7.7E-3 2.8E-3 3.9E-4 2.4E-3 2.7E-3	Mn 8.7E-2 8.1E-2 2.9E-1 5.0E-2 4.7E-2 6.7E-2 5.7E-2 2.4E-2 1.0E-1 5.6E-2	Fe 6.3E-4 3.6E-4 8.7E-4 1.3E-3 1.8E-4 4.2E-4 2.0E-4 1.7E-4 3.1E-4 1.8E-4	Co 1.3E-3 1.4E-3 2.1E-3 1.1E-3 5.5E-4 6.5E-4 3.4E-4 8.5E-4 4.2E-4	Ni 5.5E-3 8.3E-3 5.3E-2 6.6E-3 6.4E-3 1.7E-2 4.1E-3 1.8E-3 3.9E-2 4.9E-3	Cu 9.5E-2 2.0E-1 2.3E-1 1.4E-1 5.9E-2 1.2E-1 9.5E-2 4.1E-2 1.3E-1 5.4E-2	Zn 2.5E-1 3.7E-1 5.0E-1 2.6E-1 2.0E-1 1.6E-1 2.4E-1 2.3E-1 1.8E-1	Rb 6.5E-2 3.4E-2 7.6E-2 7.3E-2 7.7E-2 1.7E-2 3.4E-2 3.6E-2 6.8E-2 3.5E-2	Sr 3.4E-3 3.6E-3 4.6E-3 1.0E-2 1.8E-3 2.3E-3 1.5E-3 1.2E-3 1.7E-3 2.1E-3	Cd 4.1E-2 9.2E-2 7.9E-1 1.4E-2 8.3E-2 2.3E-1 1.3E-1 6.8E-2 7.6E-1 1.1E-2	Ba 1.4E-3 4.6E-3 2.0E-3 3.6E-4 1.5E-3 2.1E-3 1.5E-3 6.7E-4
EPII-CF-21 EPII-CF-22 EPII-CF-23 EPII-CF-24 EPII-CF-25 EPII-CF-26 EPII-CF-27 EPII-CF-28 EPII-CF-29 EPII-CF-30 EFII-CF-41	Cr 3.1E-3 4.7E-3 2.7E-3 4.6E-3 4.9E-3 7.7E-3 2.8E-3 3.9E-4 2.4E-3 2.7E-3 5.6E-4	Mn 8.7E-2 8.1E-2 2.9E-1 5.0E-2 4.7E-2 6.7E-2 5.7E-2 2.4E-2 1.0E-1 5.6E-2 5.3E-2	Fe 6.3E-4 3.6E-4 8.7E-4 1.3E-3 1.8E-4 4.2E-4 2.0E-4 1.7E-4 3.1E-4 1.8E-4 4.6E-4	Co 1.3E-3 1.4E-3 2.1E-3 1.1E-3 5.5E-4 6.5E-4 6.5E-4 8.5E-4 8.5E-4 4.2E-4 6.3E-2	Ni 5.5E-3 8.3E-3 5.3E-2 6.6E-3 6.4E-3 1.7E-2 4.1E-3 1.8E-3 3.9E-2 4.9E-3 9.9E-3	Cu 9.5E-2 2.0E-1 2.3E-1 1.4E-1 5.9E-2 1.2E-1 9.5E-2 4.1E-2 1.3E-1 5.4E-2 1.2E-1	Zn 2.5E-1 3.7E-1 5.0E-1 2.6E-1 2.0E-1 1.6E-1 2.4E-1 2.3E-1 1.8E-1 1.5E-1	Rb 6.5E-2 3.4E-2 7.6E-2 7.3E-2 1.7E-2 3.4E-2 3.6E-2 6.8E-2 3.5E-2 2.0E+0	Sr 3.4E-3 3.6E-3 4.6E-3 1.0E-2 1.8E-3 2.3E-3 1.5E-3 1.7E-3 2.1E-3 6.6E-2	Cd 4.1E-2 9.2E-2 7.9E-1 1.4E-2 8.3E-2 2.3E-1 1.3E-1 6.8E-2 7.6E-1 1.1E-2 4.9E-1	Ba 1.4E-3 4.6E-3 2.0E-3 3.6E-4 1.5E-3 1.2E-3 2.1E-3 1.5E-3 6.7E-4 8.1E-3
EPII-CF-21 EPII-CF-22 EPII-CF-23 EPII-CF-24 EPII-CF-25 EPII-CF-26 EPII-CF-27 EPII-CF-28 EPII-CF-29 EPII-CF-30 EFII-CF-41 EFII-CF-42	Cr 3.1E-3 4.7E-3 2.7E-3 4.6E-3 4.9E-3 7.7E-3 2.8E-3 3.9E-4 2.4E-3 2.7E-3 5.6E-4 7.4E-4	Mn 8.7E-2 8.1E-2 2.9E-1 5.0E-2 4.7E-2 6.7E-2 2.4E-2 1.0E-1 5.6E-2 5.3E-2 9.4E-3	Fe 6.3E-4 3.6E-4 8.7E-4 1.3E-3 1.8E-4 4.2E-4 2.0E-4 1.7E-4 3.1E-4 1.8E-4 4.6E-4 3.6E-4	Co 1.3E-3 1.4E-3 2.1E-3 1.1E-3 5.5E-4 6.5E-4 3.4E-4 8.5E-4 4.2E-4 6.3E-2 4.2E-3	Ni 5.5E-3 8.3E-3 5.3E-2 6.6E-3 6.4E-3 1.7E-2 4.1E-3 1.8E-3 3.9E-2 4.9E-3 9.9E-3 6.0E-3	Cu 9.5E-2 2.0E-1 2.3E-1 1.4E-1 5.9E-2 1.2E-1 9.5E-2 4.1E-2 1.3E-1 5.4E-2 1.2E-1 1.1E-1	Zn 2.5E-1 3.7E-1 5.0E-1 2.6E-1 2.0E-1 1.6E-1 2.4E-1 2.3E-1 1.8E-1 1.5E-1 8.1E-2	Rb 6.5E-2 3.4E-2 7.6E-2 7.3E-2 7.7E-2 1.7E-2 3.4E-2 3.6E-2 6.8E-2 3.5E-2 2.0E+0 6.6E-2	Sr 3.4E-3 3.6E-3 4.6E-3 1.0E-2 1.8E-3 2.3E-3 1.5E-3 1.7E-3 2.1E-3 6.6E-2 2.5E-3	Cd 4.1E-2 9.2E-2 7.9E-1 1.4E-2 8.3E-2 2.3E-1 1.3E-1 6.8E-2 7.6E-1 1.1E-2 4.9E-1 1.4E-1	Ba 1.4E-3 4.6E-3 2.0E-3 3.6E-4 1.5E-3 1.2E-3 2.1E-3 1.5E-3 6.7E-4 8.1E-3 2.6E-3
EPII-CF-21 EPII-CF-22 EPII-CF-23 EPII-CF-24 EPII-CF-25 EPII-CF-26 EPII-CF-27 EPII-CF-28 EPII-CF-29 EPII-CF-30 EFII-CF-41 EFII-CF-42 EFII-CF-43	Cr 3.1E-3 4.7E-3 2.7E-3 4.6E-3 4.9E-3 7.7E-3 2.8E-3 3.9E-4 2.4E-3 2.7E-3 5.6E-4 7.4E-4 7.2E-4	Mn 8.7E-2 8.1E-2 2.9E-1 5.0E-2 4.7E-2 6.7E-2 5.7E-2 2.4E-2 1.0E-1 5.6E-2 5.3E-2 9.4E-3 9.1E-3	Fe 6.3E-4 3.6E-4 1.3E-3 1.8E-4 4.2E-4 2.0E-4 1.7E-4 3.1E-4 1.8E-4 4.6E-4 3.6E-4 3.3E-4	Co 1.3E-3 1.4E-3 2.1E-3 1.1E-3 5.5E-4 6.5E-4 3.4E-4 8.5E-4 6.3E-2 4.2E-3 4.1E-3	Ni 5.5E-3 8.3E-3 5.3E-2 6.6E-3 6.4E-3 1.7E-2 4.1E-3 1.8E-3 3.9E-2 4.9E-3 9.9E-3 6.0E-3 4.2E-3	Cu 9.5E-2 2.0E-1 2.3E-1 1.4E-1 5.9E-2 1.2E-1 9.5E-2 4.1E-2 1.3E-1 5.4E-2 1.2E-1 1.1E-1 1.4E-1	Zn 2.5E-1 3.7E-1 5.0E-1 2.6E-1 2.0E-1 1.6E-1 2.4E-1 2.3E-1 1.8E-1 1.5E-1 8.1E-2 1.3E-1	Rb 6.5E-2 3.4E-2 7.6E-2 7.7E-2 1.7E-2 3.4E-2 3.6E-2 3.5E-2 2.0E+0 6.6E-2 3.0E+0	Sr 3.4E-3 3.6E-3 4.6E-3 1.0E-2 1.8E-3 2.3E-3 1.5E-3 1.7E-3 2.1E-3 6.6E-2 2.5E-3 3.1E-1	Cd 4.1E-2 9.2E-2 7.9E-1 1.4E-2 8.3E-2 2.3E-1 1.3E-1 6.8E-2 7.6E-1 1.1E-2 4.9E-1 1.4E-1 1.4E-1	Ba 1.4E-3 4.6E-3 2.0E-3 3.6E-4 1.5E-3 2.1E-3 1.5E-3 6.7E-4 8.1E-3 2.6E-3 2.4E-2
EPII-CF-21 EPII-CF-22 EPII-CF-23 EPII-CF-24 EPII-CF-25 EPII-CF-26 EPII-CF-27 EPII-CF-28 EPII-CF-29 EPII-CF-29 EPII-CF-30 EFII-CF-41 EFII-CF-42 EFII-CF-43 EFII-CF-44	Cr 3.1E-3 4.7E-3 2.7E-3 4.6E-3 4.9E-3 7.7E-3 2.8E-3 3.9E-4 2.4E-3 2.7E-3 5.6E-4 7.4E-4 7.2E-4 6.6E-4	Mn 8.7E-2 8.1E-2 2.9E-1 5.0E-2 4.7E-2 5.7E-2 5.7E-2 2.4E-2 1.0E-1 5.6E-2 5.3E-2 9.4E-3 9.1E-3 6.0E-3	Fe 6.3E-4 3.6E-4 1.3E-3 1.8E-4 4.2E-4 2.0E-4 1.7E-4 3.1E-4 1.8E-4 4.6E-4 3.6E-4 3.6E-4 3.6E-4	Co 1.3E-3 1.4E-3 2.1E-3 1.1E-3 5.5E-4 6.5E-4 6.5E-4 3.4E-4 8.5E-4 4.2E-4 6.3E-2 4.2E-3 4.1E-3 1.4E-3	Ni 5.5E-3 8.3E-3 5.3E-2 6.6E-3 6.4E-3 1.7E-2 4.1E-3 1.8E-3 3.9E-2 4.9E-3 9.9E-3 6.0E-3 4.2E-3 2.3E-3	Cu 9.5E-2 2.0E-1 1.4E-1 5.9E-2 1.2E-1 9.5E-2 4.1E-2 1.3E-1 5.4E-2 1.2E-1 1.1E-1 1.4E-1 3.2E-2	Zn 2.5E-1 3.7E-1 5.0E-1 2.6E-1 2.0E-1 1.6E-1 2.4E-1 2.3E-1 1.5E-1 8.1E-2 1.3E-1 3.4E-2	Rb 6.5E-2 3.4E-2 7.6E-2 7.7E-2 1.7E-2 3.4E-2 3.6E-2 3.5E-2 2.0E+0 6.6E-2 3.0E+0 4.1E-2	Sr 3.4E-3 3.6E-3 4.6E-3 1.0E-2 1.8E-3 2.3E-3 1.5E-3 1.7E-3 2.1E-3 6.6E-2 2.5E-3 3.1E-1 8.9E-3	Cd 4.1E-2 9.2E-2 7.9E-1 1.4E-2 8.3E-2 2.3E-1 1.3E-1 6.8E-2 7.6E-1 1.1E-2 4.9E-1 1.4E-1 1.4E-1 1.1E+0 1.1E-1	Ba 1.4E-3 4.6E-3 2.0E-3 3.6E-4 1.5E-3 1.2E-3 2.1E-3 6.7E-4 8.1E-3 2.6E-3 2.4E-2 2.7E-3
EPII-CF-21 EPII-CF-22 EPII-CF-23 EPII-CF-24 EPII-CF-25 EPII-CF-26 EPII-CF-27 EPII-CF-28 EPII-CF-29 EPII-CF-29 EFII-CF-41 EFII-CF-41 EFII-CF-43 EFII-CF-44 EFII-CF-45	Cr 3.1E-3 4.7E-3 2.7E-3 4.6E-3 4.9E-3 7.7E-3 2.8E-3 3.9E-4 2.4E-3 2.7E-3 5.6E-4 7.4E-4 7.2E-4 6.6E-4 8.5E-4	Mn 8.7E-2 8.1E-2 2.9E-1 5.0E-2 4.7E-2 5.7E-2 2.4E-2 1.0E-1 5.6E-2 5.3E-2 9.4E-3 9.1E-3 6.0E-3 1.2E-2	Fe 6.3E-4 3.6E-4 8.7E-4 1.3E-3 1.8E-4 4.2E-4 2.0E-4 1.7E-4 3.1E-4 1.8E-4 4.6E-4 3.6E-4 3.3E-4 3.6E-4 6.6E-4	Co 1.3E-3 1.4E-3 2.1E-3 1.1E-3 5.5E-4 6.5E-4 3.4E-4 8.5E-4 4.2E-4 6.3E-2 4.2E-3 4.1E-3 1.4E-3 2.4E-3	Ni 5.5E-3 8.3E-3 5.3E-2 6.6E-3 6.4E-3 1.7E-2 4.1E-3 1.8E-3 3.9E-2 4.9E-3 9.9E-3 6.0E-3 4.2E-3 2.3E-3 2.9E-3	Cu 9.5E-2 2.0E-1 2.3E-1 1.4E-1 5.9E-2 1.2E-1 9.5E-2 4.1E-2 1.3E-1 5.4E-2 1.2E-1 1.1E-1 1.4E-1 3.2E-2 9.9E-2	Zn 2.5E-1 3.7E-1 5.0E-1 2.6E-1 2.0E-1 1.6E-1 2.4E-1 2.3E-1 1.8E-1 1.5E-1 8.1E-2 1.3E-1 3.4E-2 7.7E-2	Rb 6.5E-2 3.4E-2 7.6E-2 7.3E-2 1.7E-2 3.4E-2 3.6E-2 6.8E-2 3.5E-2 2.0E+0 6.6E-2 3.0E+0 4.1E-2 2.2E-1	Sr 3.4E-3 3.6E-3 4.6E-3 1.0E-2 1.8E-3 2.3E-3 1.5E-3 1.7E-3 2.1E-3 6.6E-2 2.5E-3 3.1E-1 8.9E-3 1.6E-2	Cd 4.1E-2 9.2E-2 7.9E-1 1.4E-2 8.3E-2 2.3E-1 1.3E-1 6.8E-2 7.6E-1 1.1E-2 4.9E-1 1.4E-1 1.1E+0 1.1E-1 1.0E-1	Ba 1.4E-3 4.6E-3 2.0E-3 3.6E-4 1.5E-3 1.2E-3 2.1E-3 1.5E-3 6.7E-4 8.1E-3 2.6E-3 2.4E-2 2.7E-3 1.3E-3
EPII-CF-21 EPII-CF-22 EPII-CF-23 EPII-CF-24 EPII-CF-25 EPII-CF-26 EPII-CF-27 EPII-CF-28 EPII-CF-29 EPII-CF-30 EFII-CF-41 EFII-CF-42 EFII-CF-43 EFII-CF-44 EFII-CF-45 EFII-CF-46	Cr 3.1E-3 4.7E-3 2.7E-3 4.6E-3 4.9E-3 7.7E-3 2.8E-3 3.9E-4 2.4E-3 2.7E-3 5.6E-4 7.4E-4 7.2E-4 6.6E-4 8.5E-4 2.1E-3	Mn 8.7E-2 8.1E-2 2.9E-1 5.0E-2 4.7E-2 5.7E-2 2.4E-2 1.0E-1 5.6E-2 5.3E-2 9.4E-3 9.1E-3 6.0E-3 1.2E-2 9.2E-3	Fe 6.3E-4 3.6E-4 1.3E-3 1.8E-4 4.2E-4 2.0E-4 1.7E-4 3.1E-4 1.8E-4 3.1E-4 3.6E-4 3.6E-4 3.6E-4 6.6E-4	Co 1.3E-3 1.4E-3 2.1E-3 1.1E-3 5.5E-4 6.5E-4 3.4E-4 8.5E-4 6.3E-2 4.2E-3 1.4E-3 2.4E-3 3.8E-3	Ni 5.5E-3 8.3E-3 5.3E-2 6.6E-3 6.4E-3 1.7E-2 4.1E-3 1.8E-3 3.9E-2 4.9E-3 9.9E-3 6.0E-3 2.3E-3 2.9E-3 4.8E-3	Cu 9.5E-2 2.0E-1 2.3E-1 1.4E-1 5.9E-2 1.2E-1 9.5E-2 1.3E-1 1.3E-1 1.4E-1 1.4E-1 3.2E-2 9.9E-2 1.1E-1	Zn 2.5E-1 3.7E-1 5.0E-1 2.6E-1 2.0E-1 1.6E-1 2.4E-1 2.3E-1 1.8E-1 1.5E-1 8.1E-2 1.3E-1 3.4E-2 7.7E-2 1.6E-1	Rb 6.5E-2 3.4E-2 7.6E-2 7.7E-2 1.7E-2 3.4E-2 3.6E-2 3.5E-2 2.0E+0 6.6E-2 3.0E+0 4.1E-2 2.2E-1 4.8E-2	Sr 3.4E-3 3.6E-3 4.6E-3 1.0E-2 1.8E-3 2.3E-3 1.5E-3 1.2E-3 1.7E-3 2.1E-3 3.1E-1 8.9E-3 1.6E-2 3.1E-3	Cd 4.1E-2 9.2E-2 7.9E-1 1.4E-2 8.3E-2 2.3E-1 1.3E-1 6.8E-2 7.6E-1 1.1E-2 4.9E-1 1.4E-1 1.4E-1 1.1E+0 1.1E+0 1.1E-1 1.0E-1 2.2E-1	Ba 1.4E-3 4.6E-3 2.0E-3 3.6E-4 1.5E-3 1.2E-3 2.1E-3 1.5E-3 6.7E-4 8.1E-3 2.6E-3 2.4E-2 2.7E-3 1.3E-3
EPII-CF-21 EPII-CF-22 EPII-CF-23 EPII-CF-24 EPII-CF-25 EPII-CF-26 EPII-CF-27 EPII-CF-28 EPII-CF-28 EPII-CF-29 EPII-CF-30 EFII-CF-41 EFII-CF-42 EFII-CF-44 EFII-CF-45 EFII-CF-46 EFII-CF-47	Cr 3.1E-3 4.7E-3 2.7E-3 4.6E-3 4.9E-3 7.7E-3 2.8E-3 3.9E-4 2.4E-3 2.7E-3 5.6E-4 7.2E-4 6.6E-4 8.5E-4 2.1E-3 1.1E-3	Mn 8.7E-2 8.1E-2 2.9E-1 5.0E-2 4.7E-2 5.7E-2 2.4E-2 1.0E-1 5.6E-2 5.3E-2 9.4E-3 9.1E-3 6.0E-3 1.2E-2 9.2E-3 7.5E-3	Fe 6.3E-4 3.6E-4 1.3E-3 1.8E-4 4.2E-4 2.0E-4 1.7E-4 3.1E-4 1.8E-4 3.6E-4 3.6E-4 3.6E-4 6.6E-4 6.6E-4 3.8E-4	Co 1.3E-3 1.4E-3 2.1E-3 1.1E-3 5.5E-4 6.5E-4 3.4E-4 8.5E-4 4.2E-4 6.3E-2 4.2E-3 1.4E-3 2.4E-3 3.8E-3 2.6E-3	Ni 5.5E-3 8.3E-3 5.3E-2 6.6E-3 6.4E-3 1.7E-2 4.1E-3 1.8E-3 3.9E-2 4.9E-3 9.9E-3 6.0E-3 2.3E-3 2.9E-3 4.8E-3 1.2E-2	Cu 9.5E-2 2.0E-1 1.4E-1 5.9E-2 1.2E-1 9.5E-2 4.1E-2 1.3E-1 1.4E-1 1.4E-1 1.4E-1 3.2E-2 9.9E-2 1.1E-1 1.6E-1	Zn 2.5E-1 3.7E-1 5.0E-1 2.6E-1 2.0E-1 1.6E-1 2.4E-1 2.3E-1 1.8E-1 1.5E-1 8.1E-2 1.3E-1 3.4E-2 7.7E-2 1.6E-1 1.3E-1	Rb 6.5E-2 3.4E-2 7.6E-2 7.7E-2 1.7E-2 3.4E-2 3.6E-2 3.5E-2 2.0E+0 6.6E-2 3.0E+0 4.1E-2 2.2E-1 4.8E-2 9.6E-2	Sr 3.4E-3 3.6E-3 4.6E-3 1.0E-2 1.8E-3 2.3E-3 1.5E-3 1.7E-3 2.1E-3 6.6E-2 2.5E-3 3.1E-1 8.9E-3 1.6E-2 3.1E-3 1.6E-2 3.1E-3 1.3E-3	Cd 4.1E-2 9.2E-2 7.9E-1 1.4E-2 8.3E-2 2.3E-1 1.3E-1 6.8E-2 7.6E-1 1.1E-2 4.9E-1 1.4E-1 1.1E+0 1.1E+0 1.1E-1 1.0E-1 2.2E-1 5.5E-1	Ba 1.4E-3 4.6E-3 2.0E-3 3.6E-4 1.5E-3 1.2E-3 2.1E-3 1.5E-3 6.7E-4 8.1E-3 2.6E-3 2.4E-2 2.7E-3 1.3E-3 1.9E-3
EPII-CF-21 EPII-CF-22 EPII-CF-23 EPII-CF-24 EPII-CF-25 EPII-CF-26 EPII-CF-27 EPII-CF-28 EPII-CF-29 EPII-CF-29 EPII-CF-30 EFII-CF-41 EFII-CF-43 EFII-CF-44 EFII-CF-45 EFII-CF-46 EFII-CF-48	Cr 3.1E-3 4.7E-3 2.7E-3 4.6E-3 4.9E-3 7.7E-3 2.8E-3 3.9E-4 2.4E-3 2.7E-3 5.6E-4 7.4E-4 7.2E-4 6.6E-4 8.5E-4 2.1E-3 1.1E-3 6.6E-4	Mn 8.7E-2 8.1E-2 2.9E-1 5.0E-2 4.7E-2 5.7E-2 5.7E-2 1.0E-1 5.6E-2 5.3E-2 9.4E-3 9.1E-3 6.0E-3 1.2E-2 9.2E-3 7.5E-3 1.4E-2	Fe 6.3E-4 3.6E-4 1.3E-3 1.8E-4 4.2E-4 2.0E-4 1.7E-4 3.1E-4 1.8E-4 4.6E-4 3.6E-4 3.6E-4 3.6E-4 6.6E-4 3.8E-4 4.0E-4	Co 1.3E-3 1.4E-3 2.1E-3 1.1E-3 5.5E-4 6.5E-4 3.4E-4 8.5E-4 4.2E-4 6.3E-2 4.2E-3 1.4E-3 1.4E-3 2.4E-3 3.8E-3 2.6E-3 8.6E-3	Ni 5.5E-3 8.3E-3 5.3E-2 6.6E-3 6.4E-3 1.7E-2 4.1E-3 1.8E-3 3.9E-2 4.9E-3 9.9E-3 6.0E-3 4.2E-3 2.3E-3 2.3E-3 2.9E-3 4.8E-3 1.2E-2 1.3E-2	Cu 9.5E-2 2.0E-1 2.3E-1 1.4E-1 5.9E-2 1.2E-1 9.5E-2 4.1E-2 1.3E-1 1.4E-1 1.4E-1 3.2E-2 9.9E-2 1.1E-1 1.6E-1 2.1E-1	Zn 2.5E-1 3.7E-1 5.0E-1 2.6E-1 2.0E-1 1.6E-1 2.4E-1 2.3E-1 1.5E-1 8.1E-2 1.3E-1 3.4E-2 7.7E-2 1.6E-1 1.3E-1 1.3E-1 1.7E-1	Rb 6.5E-2 3.4E-2 7.6E-2 7.3E-2 1.7E-2 3.4E-2 3.6E-2 3.5E-2 2.0E+0 6.6E-2 3.0E+0 4.1E-2 2.2E-1 4.8E-2 9.6E-2 4.7E-1	Sr 3.4E-3 3.6E-3 4.6E-3 1.0E-2 1.8E-3 2.3E-3 1.5E-3 1.7E-3 2.1E-3 6.6E-2 2.5E-3 3.1E-1 8.9E-3 1.6E-2 3.1E-3 1.3E-2 1.3E-2	Cd 4.1E-2 9.2E-2 7.9E-1 1.4E-2 8.3E-2 2.3E-1 1.3E-1 6.8E-2 7.6E-1 1.1E-2 4.9E-1 1.1E-2 1.1E+0 1.1E-1 1.1E+0 1.1E-1 1.0E-1 2.2E-1 5.5E-1 2.9E-1	Ba 1.4E-3 4.6E-3 2.0E-3 3.6E-4 1.5E-3 1.2E-3 2.1E-3 1.5E-3 6.7E-4 8.1E-3 2.4E-2 2.7E-3 1.3E-3 1.3E-3 1.9E-3 8.1E-3
EPII-CF-21 EPII-CF-22 EPII-CF-23 EPII-CF-24 EPII-CF-25 EPII-CF-26 EPII-CF-27 EPII-CF-28 EPII-CF-29 EPII-CF-29 EPII-CF-30 EFII-CF-41 EFII-CF-41 EFII-CF-43 EFII-CF-44 EFII-CF-45 EFII-CF-46 EFII-CF-48 EFII-CF-49	Cr 3.1E-3 4.7E-3 2.7E-3 4.6E-3 4.9E-3 7.7E-3 2.8E-3 3.9E-4 2.4E-3 2.7E-3 5.6E-4 7.4E-4 7.2E-4 6.6E-4 8.5E-4 2.1E-3 1.1E-3 6.6E-4 4.8E-4	Mn 8.7E-2 8.1E-2 2.9E-1 5.0E-2 4.7E-2 5.7E-2 2.4E-2 1.0E-1 5.6E-2 5.3E-2 9.4E-3 9.1E-3 6.0E-3 1.2E-2 9.2E-3 7.5E-3 1.4E-2 1.4E-2	Fe 6.3E-4 3.6E-4 1.3E-3 1.8E-4 4.2E-4 2.0E-4 1.7E-4 3.1E-4 3.1E-4 3.1E-4 3.6E-4 3.6E-4 3.6E-4 3.6E-4 6.6E-4 6.6E-4 4.0E-4 4.0E-4	Co 1.3E-3 1.4E-3 2.1E-3 1.1E-3 5.5E-4 6.5E-4 3.4E-4 8.5E-4 4.2E-4 6.3E-2 4.2E-3 4.1E-3 1.4E-3 2.4E-3 3.8E-3 2.6E-3 8.6E-3 6.2E-3	Ni 5.5E-3 8.3E-3 5.3E-2 6.6E-3 6.4E-3 1.7E-2 4.1E-3 1.8E-3 3.9E-2 4.9E-3 9.9E-3 6.0E-3 2.3E-3 2.9E-3 4.8E-3 1.2E-2 1.3E-2 7.1E-3	Cu 9.5E-2 2.0E-1 2.3E-1 1.4E-1 5.9E-2 1.2E-1 9.5E-2 4.1E-2 1.3E-1 1.4E-1 1.4E-1 3.2E-2 9.9E-2 1.1E-1 1.6E-1 2.1E-1 1.9E-1	Zn 2.5E-1 3.7E-1 5.0E-1 2.6E-1 2.0E-1 1.6E-1 2.4E-1 2.3E-1 1.8E-1 1.5E-1 8.1E-2 1.3E-1 3.4E-2 7.7E-2 1.6E-1 1.3E-1 1.7E-1 1.5E-1	Rb 6.5E-2 3.4E-2 7.6E-2 7.7E-2 1.7E-2 3.4E-2 3.6E-2 3.5E-2 2.0E+0 6.6E-2 3.0E+0 4.1E-2 2.2E-1 4.8E-2 9.6E-2 4.7E-1 9.1E-2	Sr 3.4E-3 3.6E-3 1.0E-2 1.8E-3 2.3E-3 1.5E-3 1.2E-3 1.7E-3 2.1E-3 3.1E-1 8.9E-3 1.6E-2 3.1E-3 1.3E-2 1.3E-2 1.3E-2 1.9E-2	Cd 4.1E-2 9.2E-2 7.9E-1 1.4E-2 8.3E-2 2.3E-1 1.3E-1 6.8E-2 7.6E-1 1.1E-2 4.9E-1 1.4E-1 1.1E+0 1.1E+0 1.1E-1 1.0E-1 2.2E-1 5.5E-1 2.9E-1	Ba 1.4E-3 4.6E-3 2.0E-3 3.6E-4 1.5E-3 1.2E-3 2.1E-3 1.5E-3 6.7E-4 8.1E-3 2.4E-2 2.7E-3 1.3E-3 1.9E-3 8.1E-3 5.1E-3

*交換性 K および交換性 Ca ベースでの TF.

表 2.3-12 平成 27 年度に採取した土壌の希土類元素等の濃度 (乾物重ベース)

a 1 1					a			<i>a</i> 1	~		-	a			7
Sample code	场所	Li ma/ka	Be mg/kg	V ma/ka	Ga mg/kg	As mg/kg	Mo mg/kg		Cs mg/kg	Ba mg/kg	La mg/kg	Ce mg/kg	Pr mg/kg	Nd mg/kg	
FPILSD-11	沖縄	111g/Kg 2.8F±1	1 2E±0	1.2E±2	111g/Kg	1 3E±1	2 QE-	1 1 6E-1	3 5E±0	111g/Kg	1 5E±1	$\frac{110}{4}$ 0F+1	111g/Kg	IIIg/Kg	, 1
EPII-SD-12	宜崎	5.0E+1	1.2E+0	8.9E+1	5.6E+0	7.4E+0	4 0E-1	1 3.6E-1	6.6E+0	2.3E+2 2.7E+2	2 5E+1	6.0E+1	6.2E+0	2 3E+1	1
EPII-SD-12 EPII-SD-13	高知	4.3E+1	1.9E+0	8.1E+1	4.8E+0	7.5E+0	4.7E-	1 2.7E-1	6.5E+0	1.6E+2	1.1E+1	3.2E+1	2.8E+0	1.1E+1	1
EPII-SD-14	鹿児島	3.1E+1	1.5E+0	6.0E+1	6.5E+0	5.5E+0	7.6E-	1 3.3E-1	6.3E+0	4.0E+2	2.2E+1	4.5E+1	5.1E+0	1.9E+1	1
EPII-SD-15	秋田	2.1E+1	9.0E-1	1.2E+2	5.0E+0	6.1E+0	7.3E-	1 4.2E-1	1.7E+0	2.9E+2	1.0E+1	2.5E+1	2.7E+0	1.1E+1	1
EPII-SD-16	岩手	1.3E+1	1.1E+0	1.2E+2	5.6E+0	7.2E+0	7.7E-	1 4.7E-1	2.0E+0	3.0E+2	1.6E+1	3.3E+1	4.0E+0	1.7E+1	1
EPII-SD-17	青森	2.2E+1	1.1E+0	9.4E+1	5.1E+0	1.2E+1	9.1E-1	1 5.8E-1	3.5E+0	2.6E+2	1.0E+1	2.6E+1	3.0E+0	1.2E+1	1
EPII-SD-18	熊本	2.9E+1	1.3E+0	1.9E+2	5.1E+0	1.3E+1	9.1E-1	1 5.3E-1	2.5E+0	2.0E+2	2.0E+1	3.4E+1	6.1E+0	2.5E+1	1
EPII-SD-19	北海道	2.1E+1	8.0E-1	8.1E+1	5.5E+0	1.6E+1	1.2E+	0 3.9E-1	4.5E+0	4.1E+2	1.4E+1	3.2E+1	3.8E+0	1.5E+1	1
EPII-SD-20	北海道	2.5E+1	1.2E+0	1.3E+2	6.8E+0	1.8E+1	8.5E-	1 2.8E-1	5.4E+0	5.0E+2	1.7E+1	4.0E+1	4.3E+0	1.7E+1	1
EFII-SD-31	高知	3.6E+1	8.1E-1	7.5E+1	4.6E+0	1.2E+1	1.5E+	0 3.8E-1	4.4E+0	2.3E+2	1.4E+1	3.9E+1	3.6E+0	1.4E+1	1
EFII-SD-32	鹿児島	1.5E+1	1.1E+0	1.2E+2	4.5E+0	6.9E+0	1.6E+	0 4.4E-1	2.4E+0	1.5E+2	1.4E+1	2.6E+1	3.9E+0	1.6E+1	1
EFII-SD-33	宮崎	3.4E+1	1.4E+0	1.2E+2	4.7E+0	8.1E+0	8.4E-1	1 2.4E-1	4.5E+0	1.9E+2	1.6E+1	3.6E+1	4.5E+0	1.7E+1	1
EFII-SD-34	福岡	2.9E+1	1.2E+0	9.5E+1	4.6E+0	1.9E+1	8.5E-	1 6.6E-1	4.9E+0	2.1E+2	1.7E+1	3.8E+1	4.4E+0	1.7E+1	1
EFII-SD-35	熊本	3.2E+1	1.5E+0	8.2E+1	4.9E+0	1.8E+1	1.7E+	0 4.5E-1	4.8E+0	1.6E+2	1.3E+1	2.4E+1	3.6E+0	1.5E+	1
EFII-SD-36	岩手	4.1E+1	9.0E-1	1.4E+2	4.8E+0	2.3E+1	1.0E+	0 6.2E-1	1.7E+0	1.6E+2	9.7E+0	2.4E+1	2.9E+0	1.3E+1	1
EFII-SD-37	秋田	2.8E+1	9.5E-1	7.4E+1	5.4E+0	1.3E+1	1.5E+	0 3.2E-1	3.4E+0	3.6E+2	1.5E+1	3.4E+1	3.6E+0	1.4E+1	1
EFII-SD-38	青森	3.9E+1	1.8E+0	1.4E+2	6.3E+0	2.0E+1	2.4E+	0 5.2E-1	6.9E+0	2.7E+2	2.3E+1	5.3E+1	5.4E+0	2.1E+1	1
EFII-SD-39	北海道	2.6E+1	1.2E+0	1.5E+2	6.1E+0	1.7E+1	1.4E+	0 4.1E-1	5.9E+0	3.3E+2	1.6E+1	4.0E+1	4.5E+0	1.8E+1	1
EFII-SD-40	北海道	9.0E+0	4.8E-1	9.3E+1	4.5E+0	6.6E+0	1.3E+	0 4.1E-1	1.3E+0	2.0E+2	7.6E+0	1.7E+1	2.5E+0	1.2E+1	1
					•			•	•						_
Sample code	Sm	Eu	Gd	Т	b D	y	Ho	Er	Tm	Yb	Lu	Pb	Th		U
-	mg/kg	mg/kg	mg/k	g mg/	kg mg	/kg n	ng/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/k	g mg	g/kg
EPII-SD-11	3.1E+0	7.6E-1	3.3E-	+0 3.4I	E-1 2.5	E+0 5	.2E-1	1.5E+0	2.2E-1	1.5E+0	2.1E-1	1.2E+	6.1E+	-0 2.0)E+0
EPII-SD-12	4.2E+0	8.3E-1	3.8E+	+0 3.7I	E-1 2.4	E+0 4	.8E-1	1.4E+0	2.1E-1	1.5E+0	2.1E-1	2.4E+	1 5.7E-	-0 3.3	3E+0
EPII-SD-13	2.0E+0	4.2E-1	2.1E+	-0 1.9I	E-1 1.6	E+0 3	.5E-1	1.1E+0	1.7E-1	1.2E+0	1.8E-1	2.5E+	1 3.8E+	-0 2.7	/E+0
EPII-SD-14	4.1E+0	9.8E-1	4.5E-	+0 5.9I	E-1 4.2	E+0 8	.9E-1	2.7E+0	4.0E-1	2.8E+0	4.2E-1	2.3E+	1 1.0E+	1 3.7	/E+0
EPII-SD-15	2.5E+0	8.4E-1	2.8E-	-0 3.5I	E-1 2.8	E+0 6	.0E-1	1.9E+0	2.8E-1	2.0E+0	2.9E-1	1.5E+	1 3.2E-	-0 2.3	3E+0
EPII-SD-16	4.1E+0	1.2E+0) 4.8E-	-0 6.71	E-1 4.8	E+0 1	.0E+0	3.0E+0	4.3E-1	2.9E+0	4.4E-1	1.6E+	1 5.0E-	-0 2.2	2E+0
EPII-SD-17	2.9E+0	8.6E-1	3.2E-	+0 4.21	3-1 3.2	E+0 6	8E-1	2.1E+0	3.2E-1	2.3E+0	3.3E-1	3.4E+	1 3.5E-	0 2.7	/E+0
FPILSD-18	5 5F+0	1 4F+() 5.8F-	0 7.61	F-1 4 9	E+0 1	0E+0	3.0E+0	4 2E-1	2.8E+0	4 1F-1	2 0F+		-0 30	$E_{\pm 0}$
EPIL SD 10	3.6E+0	8.4E 1	4 2E	0 5.01	$\frac{1}{2}$ 1 1 1 2		0E 1	2.8E+0	4.0E 1	2.0E+0	4.1E 1	2.0E	1 5.4E	0 28	
EPH SD 20	3.0E+0	0.4L-1	$4.2E_{1}$	0 5.21	7 1 2 7		.0E-1	2.86+0	4.0E-1	2.86+0	4.1L-1	2.0E+		0 2.6	ET0
EPII-SD-20	3.7E+0	1.0E+0	9 4.1E	0 0.51	2-1 3.7	E+0 /	.0E-1	2.3E+0	3.3E-1	2.3E+0	3.4E-1	2.1E+		-0 2.5	E+0
EFII-SD-31	2.8E+0	5.9E-1	2.9E-	-0 3.71	2-1 2.6	E+0 5	.4E-1	1./E+0	2.6E-1	1.8E+0	2./E-1	2.8E+	1 8.5E-	-0 3.1	.E+0
EFII-SD-32	3.8E+0	1.0E+0) 4.1E+	+0 5.9I	5-1 4.0	E+0 8	.4E-1	2.6E+0	3.7E-1	2.6E+0	3.8E-1	1.6E+	1 5.5E+	-0 2.2	2E+0
EFII-SD-33	3.6E+0	7.8E-1	3.4E+	+0 4.4I	E-1 2.9	E+0 6	.0E-1	1.9E+0	2.8E-1	2.0E+0	2.9E-1	2.0E+	1 5.6E-	-0 2.7	'E+0
EFII-SD-34	3.5E+0	8.9E-1	3.5E+	+0 4.4I	E-1 2.8	E+0 5	.6E-1	1.7E+0	2.4E-1	1.6E+0	2.4E-1	2.6E+	1 5.6E+	-0 2.8	3E+0
EFII-SD-35	3.1E+0	6.6E-1	3.0E+	+0 4.1I	E-1 2.8	E+0 6	.0E-1	1.9E+0	2.9E-1	2.1E+0	3.1E-1	2.9E+	1 4.4E+	-0 2.6	бE+0
EFII-SD-36	3.0E+0	8.1E-1	3.3E-	+0 4.8I	E-1 3.3	E+0 7	.0E-1	2.2E+0	3.2E-1	2.3E+0	3.4E-1	2.8E+	1 2.7E+	-0 2.0)E+0
EFII-SD-37	2.8E+0	8.3E-1	2.9E-	+0 3.9I	E-1 2.7	E+0 5	.6E-1	1.7E+0	2.5E-1	1.8E+0	2.6E-1	2.2E+	1 5.6E+	0 1.8	3E+0
EFII-SD-38	4.3E+0	8.7E-1	4.4E-	-0 6.0I	E-1 3.8	E+0 7	.5E-1	2.3E+0	3.2E-1	2.2E+0	3.1E-1	3.1E+	1 8.3E+	-0 3.9	€+0
EFII-SD-39	4.2E+0	1.1E+0) 4.6E-	+0 6.9I	E-1 4.5	E+0 9	.4E-1	2.9E+0	4.2E-1	2.9E+0	4.3E-1	2.6E+	1 7.1E-	-0 3.0)E+0
EFII-SD-40	3.5E+0	1.1E+() 4.5E-	+0 7.3I	E-1 5.11	E+0 1	.1E+0	3.4E+0	5.0E-1	3.4E+0	5.2E-1	8.5E+0) 1.8E+	-0 2.5	5E+0
· · · · · ·		1					-	-		*	1				-

表 2.3-13 平成 27 年度に採取した農作物の希土類元素等の濃度 (乾物重ベース)

Sample code	場所	Li	Be		V	Ga	As	Mo	Cd	Cs	Ba	La	Ce	Pr	Nd	
EDIL CE 11	汕縪			kg n	Ng/Kg	2 5 E 2		mg/kg	mg/kg	mg/kg	mg/kg	2 2E 4	2 2E 2	mg/kg	mg/kg	1
EFIL-CE-12	宣崎	7.2E-3	1.2E	-3 3	0E-2	4.9E-3	9 1E-2	7.8E-1	2.4E-2	3.0E-3	7.1E-1	1.5E-4	4.6E-3	n.u.	1.4E-4	2
EFILCE-13	直知	8 1E-3	1.72	-3 2	5E-2	4.7E 3	3.0E-1	7.8E-1	2.7E 2 8.5E-3	5.0E 3	5.1E-1	1.5E-3	4.6E 3	n.d.	1.5E 3	, 2
EPIL-CE-14	 鹿児皀	6.7E-3	1.50	-3 2	5E-2	2.5E-3	6.5E-2	6.1E-1	2.6E-2	2.0E-2	J.1E-1	6.2E-4	4.3E-3	n.d.	3.6E-/	, 1
EPIL-CE-15	秋田	5.2E-3	1.72	-3 1	4F-2	3.4E-3	5.0E-2	1.1E+0	5.5E-2	3.2E-3	4.1E-1	3.4E-4	1.5E-3	n d	4 1E-4	1
EPIL-CE-16	出手	4.5E-3	9.4E	-4 1	4E-2	3.0E-3	1.6E-2	3.9E-1	1.7E_2	2.1E-3	3.7E-1	3.4E 4	1.5E 3	n.d.	2.6E-4	1
EFIL-CE-17	吉森	5.1E-3	7.0E	-4 1	1E-2	2.5E-3	9.1E-2	6.1E-1	1.7E-2	2.1E-3	3.7E-1	4.7E-4	1.9E-3	n.d.	1.8E-4	1
EPIL-CE-18	能太	3.1E 3	9.0E	-4 6	9F-3	1.6E-3	3.0E-1	3.8F-1	2.2E_2	7.5E-3	1.6E-1	3.2E-4	5.2E-4	n d	1.6E 4	1
EPIL-CE-19	北海道	3.0E-3	2.8E	-4 1	6F-2	8.4E-4	9.5E-2	4 8F-1	2.2E 2 2.1E-2	1.5E 3	1.0E 1	2.9E-4	1.0E-3	n d	2.9E-4	1
EPIL-CE-20	北海道	2.4E-3	4 0F	-4 1	2E-2	1 3E-3	1.5E 2	7.7E-1	2.1E 2 2.2E-2	6.0E-3	9.7E-2	2.9E 4	6.7E-4	n d	3.5E-4	1
EFII-CE-31	高知	7.9E-3	2 7F	-3 5	8E-2	1.5E 0	3.4E-2	7.4E-1	3.1E-2	1.0E-2	9.6E-1	7 3E-3	6.7E-3	1 4E-3	5.5E 4	2
EFII-CE-32	唐児島	8.6E-3	2.7E	-3 5	3E-2	9.0E-3	3.1E-2	4 9E-1	4.6E-2	6.5E-2	3.7E-1	1.8E-3	3.3E-3	3.9E-4	1.8E-3	2
EFIL-CE-33	宜崎	1.6E-2	3 OF	-3 1	4F-1	2.7E-2	3.0E-2	3 3E-1	4.6E-2	2.8E-2	2.6E+0	4 8E-3	6.8E-3	9.6E-4	3.5E-3	2
EFII-CF-34	福岡	1.6E 2	3.8E	-3 1	5E-1	1.1E-2	3.6E 2	3.7E-1	9.0E-2	7.5E-3	6.6E-1	5.2E-3	1.1E-2	1.2E-3	5.0E-3	,
EFIL-CE-35	能太	1.5E-2	3 0F	-3 4	7E-2	1.4E-2	2 1E-2	3.4E-1	7.3E-2	2.6E-2	1.2E+0	2.2E-3	3.9E-3	4 5E-4	1.7E-3	2
EFIL-CE-36	岩毛	7.6E-3	2 4 F	-3 5	1E-2	9.3E-3	2.1E 2	5.4E 1	1.3E 2	8.8E-3	5.8F-1	2.2E 3	3.4E-3	4.9E-4	1.7E 3	2
EFILCE-37	利田	1.0E-2	2.46	-3 5	0E-2	9.5E 3	2.7E 2	3.5E-1	5.5E-2	1.1E-2	4.2E-1	6.4E-3	1.1E-2	1.7E-3	5.2E-3	2
EFILCE-38	吉杰	1.0L-2	2.2L	-3 5	5E-2	1.5E-2	2.1E-2	4.2E-1	7.8E-2	7.7E-3	4.2E-1	8 3E-3	1.1L-2	1.4E-3	6.2E-3	2
EFIL-CE-30	北海道	8 3E-3	2.0L	-3 5	6E-2	8.0E-3	2.5E-2	4.2E-1	7.6E-2	3.9E-2	6.4E-1	6.5E-3	1.4L-2	1.0E-3	5.2E-3	, 2
EFIL CE 40	北海道	4.5E 3	2.01	3 3	1E 2	4.6E 3	2.1E-2	3.1E-1	2.8E 2	3.1E 2	0.4E-1	0.5E-3	1.1L-2	1.2E-5	0.3E /	, 1
Li li Ci 40	1014/12	4.512 5	2.01	, 5 5.	.1L 2	4.0L 1	4.52.5	5.1L 1	2.01 2	5.1L Z	2.01 1	7.0L 4	1.52.5	1.72 4	7.51	<u></u>
Sample cod	e Sr	n	Eu	Gd		Tb	Dv	Но	Er	Tm	Yb	Lu	Pb	Th		U
	mg/	kg n	ng/kg	mg/k	ig n	ng/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	g mg/l	cg m	g/kg
EPII-CF-11	n.c	d.	n.d.	4.2E	-4	n.d.	n.d.	n.d.	2.9E-4	n.d.	1.7E-4	n.d.	7.5E-2	3 2.3E	-3 5.4	4E-5
EPII-CF-12	2 n.c	d. :	n.d.	3.6E-	-4	n.d.	n.d.	n.d.	2.8E-4	n.d.	1.4E-4	n.d.	7.3E-	3 1.2E	-3 2.0	6E-4
EPII-CF-13	3 n.o	d.	n.d.	4.3E-	-4	n.d.	n.d.	n.d.	2.5E-4	n.d.	2.5E-4	n.d.	6.0E-	3 9.0E	-4 1.8	8E-4
EPII-CF-14	l n.o	d. i	n.d.	5.0E-	-5	n.d.	n.d.	n.d.	1.9E-4	n.d.	1.1E-4	n.d.	3.8E-2	3 5.5E	-4 1.6	6E-4
EPII-CF-15	5 n.c	d.	n.d.	1.1E-	-4	n.d.	n.d.	n.d.	1.1E-4	n.d.	6.3E-5	n.d.	1.8E-3	3 3.8E	-4 1.1	1E-4
EPII-CF-16	5 n.c	d.	n.d.	4.7E-	-4	n.d.	n.d.	n.d.	3.0E-4	n.d.	9.4E-5	n.d.	5.9E-3	3 2.7E	-4 6.0	0E-5
EPII-CF-17	7 n.c	d.	n.d.	1.6E	-4	n.d.	n.d.	n.d.	1.1E-4	n.d.	1.0E-4	n.d.	1.3E-3	3 3.2E	-4 9.2	2E-5
EPII-CF-18	3 n.o	d.	n.d.	3.9E-	-5	n.d.	n.d.	n.d.	1.8E-4	n.d.	7.3E-5	n.d.	2.2E-3	3 2.1E	-4 3.4	4E-5
EPII-CF-19) n.c	d. :	n.d.	3.0E-	-4	n.d.	n.d.	n.d.	2.5E-4	n.d.	1.1E-4	n.d.	4.6E-4	4 2.4E	-4 5.8	8E-5
EPII-CF-20) n.c	d.	n.d.	3.9E-	-5	n.d.	n.d.	n.d.	9.6E-5	n.d.	1.1E-4	n.d.	3.4E-4	4 1.4E	-4 3.2	2E-5
EFII-CF-3	1.8I	E-3 2.	5E-4	1.4E-	-3	n.d.	6.1E-4	2.5E-4	7.3E-4	1.2E-4	5.2E-4	7.2E-5	2.9E-2	2 5.7E	-4 3.0	0E-4
EFII-CF-32	2 9.8H	E-4 5.	1E-5	7.0E-	-4	n.d.	3.2E-5	8.7E-5	2.7E-4	3.5E-5	3.5E-4	5.5E-5	9.6E-	3 4.5E	-4 2.0	0E-4
EFII-CF-33	3 1.3H	E-3 5.	5E-4	9.2E	-4	n.d.	4.3E-4	1.7E-4	3.5E-4	9.3E-5	5.2E-4	6.6E-5	1.3E-2	2 7.9E	-4 6.0	0E-4
EFII-CF-34	4 1.5I	E-3 3.	4E-4	1.4E-	-3	n.d.	3.8E-4	3.1E-4	6.4E-4	1.6E-4	7.5E-4	2.7E-4	1.7E-2	2 1.5E	-3 2.1	1E-3
EFII-CF-35	5 1.1H	E-3 3.	4E-4	5.1E	-4	n.d.	3.1E-4	1.9E-4	3.3E-4	1.1E-4	3.1E-4	3.1E-4	9.9E-	3 5.1E	-4 2.3	3E-4
EFII-CF-36	5 1.1H	E-3 3.	.0E-4	8.8E	-4	n.d.	5.9E-4	1.6E-4	3.0E-4	1.1E-4	3.6E-4	2.7E-4	1.1E-2	2 3.0E	-4 3.2	2E-4
EFII-CF-37	7 1.3H	E-3 3.	4E-4	1.4E-	-3	n.d.	1.1E-3	2.0E-4	5.4E-4	8.1E-5	5.3E-4	2.5E-4	1.5E-2	2 1.3E	-3 6.4	4E-4
EFII-CF-38	3 1.8H	E-3 3.	.3E-4	1.3E-	-3	n.d.	1.3E-3	2.1E-4	5.2E-4	9.5E-5	6.0E-4	2.5E-4	1.4E-2	2 2.0E	-3 1.2	2E-3
EFII-CF-39) 1.8H	E-3 3.	9E-4	1.3E-	-3	n.d.	1.0E-3	2.6E-4	7.0E-4	1.3E-4	8.8E-4	3.4E-4	3.7E-2	2 1.3E	-3 8.7	7E-4
EFII-CF-40	6.21	E-4 1.	.3E-4	4.5E	-4	n.d.	2.7E-4	1.3E-4	3.0E-4	7.2E-5	2.9E-4	2.2E-4	6.6E-	3 1.9E	-4 5.2	2E-4

Sample code	場所	Li	В	e	V	Ga	As	ľ	Mo	Cd	(Cs	Ba	La	ì	Ce	Pr		Nd
EPII-CF-11	沖縄	1.0E-	4 9.91	E-4 1	1.5E-4	7.0E-4	1.4E-2	1.6	5E+0	1.5E-1	1.6	БЕ-3	2.2E-3	2.2E	E-5	5.4E-:	5		9.2E-6
EPII-CF-12	宮崎	1.4E-	4 8.71	E-4 3	3.4E-4	8.8E-4	1.2E-2	2.0)E+0	7.6E-2	4.5	E-4	2.6E-3	6.3E	E-5	7.6E-:	5		5.7E-5
EPII-CF-13	高知	1.9E-	4 8.11	E-4 3	3.1E-4	8.5E-4	4.0E-2	1.7	7E+0	3.2E-2	9.1	E-4	3.2E-3	1.4E	E-4	1.4E-4	4		1.1E-4
EPII-CF-14	鹿児島	2.2E-	4 1.21	E-3 4	4.1E-4	3.9E-4	1.2E-2	8.0	0E-1	7.6E-2	3.2	E-3	1.0E-3	2.8E	E-5	4.9E-:	5		1.9E-5
EPII-CF-15	秋田	2.5E-	4 1.21	E-3 1	1.2E-4	6.9E-4	8.3E-3	1.5	5E+0	1.3E-1	1.9	E-3	1.7E-3	3.4E	E-5	6.0E-:	5		3.7E-5
EPII-CF-16	岩手	3.5E-	4 8.81	E-4 1	1.2E-4	5.4E-4	6.4E-3	5.	1E-1	3.5E-2	1.1	E-3	1.2E-3	2.3E	E-5	5.7E-:	5		1.5E-5
EPII-CF-17	青森	2.3E-	4 6.11	E-4 1	1.1E-4	5.0E-4	7.6E-3	6.	7E-1	1.8E-1	2.2	E-3	1.3E-3	4.5E	E-5	5.1E-:	5		1.5E-5
EPII-CF-18	熊本	1.1E-	4 6.81	E-4 3	3.7E-5	3.1E-4	2.4E-2	4.	1E-1	4.2E-2	3.0)E-3	7.8E-4	1.6E	E-5	1.5E-:	5		5.9E-6
EPII-CF-19	北海道	1.4E	4 3.51	E-4 1	1.9E-4	1.5E-4	5.8E-3	4.	1E-1	5.5E-2	3.8	E-4	2.5E-4	2.0E	E-5	3.2E-:	5		1.9E-5
EPII-CF-20	北海道	9.3E-	5 3.41	E-4 8	8.7E-5	1.9E-4	7.8E-3	9.0	0E-1	7.7E-2	1.1	E-3	1.9E-4	1.2E	E-5	1.7E-:	5		2.0E-5
EFII-CF-31	高知	2.2E-	4 3.41	E-3 7	7.8E-4	3.0E-3	2.9E-3	4.8	8E-1	8.1E-2	2.4	E-3	4.1E-3	5.3E	E-4	1.6E-4	4 3.9E-	4	4.1E-4
EFII-CF-32	鹿児島	5.7E-	4 2.41	E-3 4	4.4E-4	2.0E-3	4.5E-3	3.0	0E-1	1.0E-1	2.7	'E-2	2.4E-3	1.3E	E-4	1.3E-4	4 9.9E-	.5	1.1E-4
EFII-CF-33	宮崎	4.6E-	4 2.11	E-3 1	1.2E-3	5.8E-3	3.7E-3	3.9	9E-1	1.9E-1	6.4	E-3	1.4E-2	2.9E	E-4	1.9E-4	4 2.2E-	4	2.0E-4
EFII-CF-34	福岡	5.0E-	4 3.11	E-3 1	1.5E-3	2.4E-3	1.8E-3	4.4	4E-1	1.4E-1	1.5	E-3	3.1E-3	3.2E	2-4	2.9E-4	4 2.7E-	4	2.9E-4
EFII-CF-35	熊本	4.6E-	4 2.01	E-3 5	5.8E-4	3.0E-3	1.2E-3	2.0	0E-1	1.6E-1	5.5	E-3	7.8E-3	1.7E	E-4	1.6E-4	4 1.2E-	4	1.2E-4
EFII-CF-36	岩手	1.9E-	4 2.71	E-3 3	3.7E-4	1.9E-3	1.2E-3	4.8	8E-1	2.2E-1	5.4	E-3	3.7E-3	2.3E	E-4	1.4E-4	4 1.7E-	-4	1.5E-4
EFII-CF-37	秋田	3.8E-	4 2.31	E-3 6	5.8E-4	1.6E-3	1.6E-3	2.3	3E-1	1.7E-1	3.3	E-3	1.1E-3	4.2F	E-4	3.4E-4	4 4.0E	-4	3.8E-4
EFII-CF-38	青森	3.1E-	4 1.41	E-3 4	4.0E-4	2.4E-3	1.2E-3	1.8	8E-1	1.5E-1	1.1	E-3	4.7E-3	3.6E	E-4	2.6E-4	4 3.0E-	4	3.0E-4
EFII-CF-39	北海道	3.2E-	4 2.11	E-3 3	3.8E-4	1.3E-3	1.2E-3	1.2	2E-1	1.3E-1	6.5	E-3	1.9E-3	4.0E	E-4	2.7E-4	4 2.6E	-4	2.8E-4
EFII-CF-40	北海道	5.0E-	4 4.11	E-3 3	3.3E-4	1.0E-3	6.8E-4	2.4	4E-1	6.7E-2	2.4	E-2	9.9E-4	1.3E	E-4	9.1E-:	5 7.5E-	.5	7.6E-5
		1		I													I		
Sample co	de Si	m	Eu	Gd	1 T	b Dy	Н	[o	Eı	T :	'n	Y	Ъ	Lu	F	Ъ	Th		U
EPII-CF-1	11 -	-	-	1.3E	-4 -	· _	-	-	1.9E	8-4	_	1.2	E-4	-	6.5	E-4	3.7E-4	2.7	7E-5
EPII-CF-1	12 -	-	-	9.5E	-5 -	· –	-	-	2.0E	2-4	_	9.6	E-5	-	3.0	E-4	2.1E-4	8.0)E-5
EPII-CF-1	- 13	-	-	2.0E	-4 -	· _	-	-	2.3E	-4	_	2.0	E-4	-	2.4	E-4	2.4E-4	6.5	5E-5
EPII-CF-1	- 14	-	-	1.1E	2-5 -	· _	-	-	7.0E	2-5	-	4.0	E-5	-	1.6	E-4	5.4E-5	4.2	2E-5
EPII-CF-1	15 -	-	-	3.9E	2-5 -	· _	-	-	5.9E	2-5	_	3.2	E-5	-	1.2	E-4	1.2E-4	4.8	3E-5
EPII-CF-1	16 -	-	-	9.9E	2-5 -	· -	-	-	9.9E	2-5	-	3.2	E-5	-	3.7	E-4	5.3E-5	2.7	/E-5
EPII-CF-I	1/ -	-	_	5.1E	-5 -		-		5.3E	-5	_	4.4	E-3	-	3.9	E-5	9.0E-5	3.4	IE-5
EPII-CF-1	19 -	_	_	0.7E				_	3.9E	-5	_	3.8	E-5 E-5	_	2.3	E-4 E-5	2.9E-5	2	E-5
EPII-CF-2	20 -	-	_	9.5E	2-6 -		-	_	4.2F	3-5	_	4.8	E-5	_	1.6	E-5	2.1E-5	1.3	3E-5
EFII-CF-3	31 6.4	E-4 4	4.2E-4	5.0E	-4 -	- 2.3E	-4 4.6	E-4	4.2F	2-4 4.5	E-4	2.8	E-4 2.	7E-4	1.1	E-3	6.7E-5	9.9)E-5
EFII-CF-3	32 2.61	E-4 5	5.1E-5	1.7E	-4 -	· 8.1E	-6 1.0	E-4	1.0E	8-4 9.5	E-5	1.4	E-4 1.	5E-4	6.0	E-4	8.3E-5	9.3	3E-5
EFII-CF-3	33 3.71	E-4 7	7.1E-4	2.7E	-4 -	· 1.5E	-4 2.8	E-4	1.8E	8-4 3.3	E-4	2.6	E-4 2.	2E-4	6.6	E-4	1.4E-4	2.2	2E-4
EFII-CF-3	34 4.21	E-4 3	3.8E-4	4.0E	-4 -	- 1.4E	-4 5.5	E-4	3.8E	2-4 7.0	E-4	4.6	E-4 1.	2E-3	6.5	E-4	2.7E-4	7.5	5E-4
EFII-CF-3	35 3.51	E-4 5	5.1E-4	1.7E	-4 -	· 1.1E	-4 3.2	E-4	1.8E	2-4 4.0	E-4	1.5	E-4 1.	0E-3	3.4	E-4	1.2E-4	8.8	3E-5
EFII-CF-3	36 3.8	E-4 3	3.7E-4	2.7E	-4 -	· 1.8E	-4 2.3	E-4	1.4E	2-4 3.5	E-4	1.6	E-4 8.	1E-4	3.8	E-4	1.1E-4	1.6	5E-4
EFII-CF-3	37 4.8	E-4 4	4.1E-4	4.7E	-4 -	- 4.2E	-4 3.6	E-4	3.1E	2-4 3.2	E-4	3.0	E-4 9.	7E-4	6.8	E-4	2.4E-4	3.5	5E-4
EFII-CF-3	38 4.3	E-4 3	3.8E-4	3.0E	-4 -	- 3.5E	-4 2.8	E-4	2.3E	2-4 3.0	DE-4	2.7	E-4 7.	9E-4	4.6	E-4	2.4E-4)E-4
EFII-CF-3	10 1.01	E-4 3	0.0E-4	2.9E	-4 -	- 2.3E	-4 2.8	E-4	2.4E	2-4 3.1	E-4	3.0	E-4 7.	9E-4	1.4	E-3	1.8E-4	2.8)E-4
EFII-CF-4	+0 1.81	C-4]	1.1 C-4	1 I.UE	-4 -	- D.SE	-5 1.1.	Ľ-4	0.ŏE	2-3 1.4	·LC-4	0.4	Ľ-J 4.	∠ C -4	1.8	Ľ-4	1.UC-4	_ <i>L</i> .!	1 L-4

表 2.3-14 平成 27 年度に採取した農作物の希土類元素等の移行係数

場所	年平均気温(月別平均気温の範囲),℃	5-9月平均気温, ℃
北海道	7.5 (-3.7 – 20.2)	15.8
青森県	10.6 (-0.7 – 23.3)	18.8
秋田県	11.7 (0.1 – 24.9)	20.4
岩手県	10.4 (-0.8 – 22.8)	18.6
平均	10.1	18.4
高知県	23.9 (7.5 – 27.0)	23.9
熊本県	24.8 (5.7 – 28.2)	24.8
宮崎県	24.4 (7.5 – 27.3)	24.4
鹿児島県	26.0 (11.7 – 28.5)	26.0
沖縄県	27.2 (17.0 – 28.9)	27.2
平均	19.0	25.3

表 2.4-1 年平均気温と 5-9月の平均気温(理科年表(2016) データ使用)

表 2.4-2 比較的寒冷地および温暖地で採取した水田土壌中元素濃度等の比較

元素濃度等	寒冷地				温暖地		GM 比	t 検定
(mg/kg)	n	GM (A)	GSD	n	GM (B)	GSD	A/B	p 値
Na	26	1.2E+4	1.3	21	1.1E+4	2.1	1.1	0.643
Mg	26	6.2E+3	1.6	21	5.5E+3	2.1	1.1	0.535
Al	26	7.3E+4	1.3	21	7.2E+4	1.5	1.0	0.939
Si	25	2.6E+5	1.1	21	2.7E+5	1.2	1.0	0.252
Р	25	1.6E+3	1.6	21	1.7E+3	2.1	1.0	0.808
K	26	9.3E+3	1.5	21	1.2E+4	1.5	0.8	0.024
Ca	26	1.2E+4	1.6	21	9.4E+3	3.0	1.3	0.341
Cr	26	4.9E+1	1.7	21	6.1E+1	2.2	0.8	0.289
Mn	26	5.6E+2	1.9	21	5.4E+2	1.7	1.0	0.800
Fe	26	3.9E+4	1.3	21	3.3E+4	1.5	1.2	0.105
Со	26	1.2E+1	1.5	21	1.1E+1	1.7	1.1	0.619
Ni	26	2.0E+1	1.9	21	1.9E+1	2.1	1.1	0.706
Cu	26	2.5E+1	1.4	21	2.9E+1	2.0	0.9	0.430
Zn	26	1.0E+2	1.2	21	8.8E+1	1.4	1.2	0.031
Sr	26	9.0E+1	1.7	21	1.0E+2	1.9	0.9	0.458
Cd	26	3.5E-1	1.5	21	2.5E-1	1.6	1.4	0.017
Ba	26	2.6E+2	1.4	21	2.9E+2	1.3	0.9	0.290
置換性 Ca ^{*1}	25	1.7E+2	1.5	21	1.2E+2	1.8	1.5	0.015
置換性K ^{*1}	25	2.1E+1	1.6	21	1.6E+1	1.8	1.3	0.119
活性 Al*2	25	4.2E+0	2.1	21	4.1E+0	2.7	1.0	0.896
活性 Fe ^{*2}	25	9.0E+0	1.6	21	4.4E+0	1.9	2.1	0.000
pH ^{*3}	25	5.4			5.9			0.002

*1単位は mg/100g. *2単位は g/kg. *3 対数変換せずに使用. 薄緑: p<0.05, 黄色: p<0.01.

元素濃度等		寒冷地			温暖地		GM 比	t 検定
(mg/kg)	n	GM (A)	GSD	n	GM (B)	GSD	A/B	p 値
Na	26	1.3E+1	2.9	21	2.4E+1	2.5	0.5	0.036
Mg	26	1.3E+3	1.1	21	1.4E+3	1.2	0.9	0.123
Al	21	1.7E+0	1.9	17	2.9E+0	2.2	0.6	0.032
Si	25	1.2E+2	1.9	21	2.1E+2	2.1	0.6	0.015
Р	25	3.1E+3	1.1	21	3.3E+3	1.1	0.9	0.024
K	26	2.6E+3	1.1	21	2.6E+3	1.1	1.0	0.974
Ca	26	9.3E+1	1.3	21	9.8E+1	1.4	1.0	0.564
Cr	26	1.4E-1	3.0	21	1.8E-1	2.8	0.7	0.351
Mn	26	2.8E+1	1.4	21	2.7E+1	1.3	1.0	0.865
Fe	26	9.4E+0	1.3	21	1.3E+1	1.3	0.7	0.000
Со	26	9.4E-3	1.8	21	1.3E-2	1.5	0.7	0.031
Ni	26	2.2E-1	2.7	21	1.8E-1	2.3	1.2	0.477
Cu	26	2.2E+0	1.6	21	3.0E+0	1.4	0.7	0.008
Zn	26	2.1E+1	1.1	21	2.7E+1	1.1	0.8	< .0001
Sr	26	1.7E-1	1.6	21	2.2E-1	1.7	0.7	0.049
Cd	26	2.9E-2	3.3	21	1.7E-2	2.9	1.6	0.140
Ba	26	2.9E-1	2.2	21	5.4E-1	2.1	0.5	0.008

表 2.4-3 比較的寒冷地および温暖地で採取した玄米中元素濃度等の比較

薄緑:p<0.05,黄色:p<0.01.

表 2.4-4 比較的寒冷地および温暖地における玄米への移行係数の比較

元素濃度		寒冷地			温暖地		GM 比	t 検定
	n	GM (A)	GSD	n	GM (B)	GSD	A/B	p 値
Na	26	1.0E-3	3.0	21	2.1E-3	2.9	0.5	0.031
Mg	26	2.1E-1	1.6	21	2.5E-1	2.1	0.8	0.333
Al	21	2.4E-5	2.4	17	4.0E-5	2.7	0.6	0.112
Si	25	4.7E-4	2.0	21	7.7E-4	2.1	0.6	0.025
Р	25	2.0E+0	1.7	21	2.0E+0	2.2	1.0	0.888
K	26	2.8E-1	1.6	21	2.2E-1	1.4	1.3	0.024
Ca	26	7.7E-3	1.7	21	1.0E-2	3.0	0.7	0.266
Cr	26	2.8E-3	3.3	21	3.0E-3	3.2	0.9	0.839
Mn	26	4.9E-2	1.8	21	5.1E-2	1.8	1.0	0.856
Fe	26	2.4E-4	1.5	21	3.9E-4	1.7	0.6	0.002
Со	26	8.0E-4	1.6	21	1.2E-3	1.9	0.7	0.022
Ni	26	1.1E-2	2.6	21	9.8E-3	2.5	1.1	0.675
Cu	26	8.9E-2	1.6	21	1.1E-1	2.0	0.8	0.323
Zn	26	2.0E-1	1.2	21	3.0E-1	1.4	0.7	< .0001
Sr	26	1.8E-3	2.0	21	2.2E-3	2.5	0.8	0.457
Cd	26	8.2E-2	3.1	21	6.9E-2	2.9	1.2	0.614
Ba	26	1.1E-3	2.6	21	1.9E-3	2.0	0.6	0.032
置換性 Ca ^{*1}	25	5.5E-2	1.7	21	8.3E-2	2.0	0.7	0.027
置換性K ^{*1}	25	1.3E+1	1.7	21	1.7E+1	1.9	0.8	0.122
活性 Al ^{*1}	21	4.5E-4	2.6	16	5.6E-4	3.0	0.8	0.530
活性 Fe ^{*1}	25	1.3E-2	2.3	21	4.7E-2	3.4	0.3	0.000

*1 mg/kg に変換後に TF を導出. 薄緑: p<0.05, 黄色: p<0.01.

		pН	Sand	Silt	Clay	含水率	EC (1:5)
Code	土壤種	(H_2O)	(%)	(%)	(%)	(%)	(µS/cm)
EP-SD-43	黒ボク土	5.8	50	35	15	10.9	108
EP-SD-49	灰色低地土	5.2	68	18	14	2.6	77
EP-SD-50	低地水田土	6.1	61	25	14	8.4	97
EP-SD-51	灰色低地土	5.6	45	28	27	8.3	72
EP-SD-52	グライ低地土	5.2	40	33	27	8.0	88

表 2.5-1 実験に用いた土壌試料の特性

表 2.5-2 水田土壌の Cs の K_d (30°C) および他の温度での K_d. (全て予備振とう1日、RI 添加後振とう7日)

Code	10°C	23°C	30°C	
EP-SD-35	4810	1930	2550	±130
EP-SD-36	3180	680	1310	±30
EP-SD-37	1610	570	470	±30
EP-SD-38	4580	2360	2530	±130
EP-SD-39	7290	7800	8610	±1170
EP-SD-40	7920	3560	3850	±230
EP-SD-41	8490	5710	4810	± 80
EP-SD-42	8090	2950	3610	±240
EP-SD-43	840	340	250	±30
EP-SD-44	5160	2950	2660	±280
EP-SD-45	5200	11700	2370	±10
EP-SD-46	4960	4410	2250	± 40
EP-SD-47	4580	1640	780	± 40
EP-SD-48	6690	6710	3710	±190
EP-SD-49	2040	880	850	± 50
EP-SD-50	1190	770	450	±10
EP-SD-51	3900	5030	2070	± 100
EP-SD-52	3340	2340	3240	±20
EP-SD-53	5370	4470	4810	± 40
EP-SD-54	2350	1500	1370	± 60
GM	3880	2340	1910	
GSD	1.9	2.6	2.5	

表 2.6-1 植物中¹³⁷Cs 濃度の経時変化のフィッティングに使用したパラメータ値

種類	Δ	λd^{-1}	T _{cc} v	В	λd^{-1}	T _{cc} v
	11	n_a, u	I eff, y	D	<i>n</i> _b , u	1 еп, у
イタドリ	172	0.00482	0.39	28.5	0.000782	4.7
ヨモギ	404	0.00675	0.28	14.9	0.000142	10.5
フキ	125	0.00675	0.63	8.3	0.000399	2.7
マメ科雑草	144	0.00402	0.47	14.0	0.000142	12 /
(放医研, 2016)	144	0.00402	0.47	14.7	0.000142	13.4

表 2.6-2 野生生物への放射性 Cs の面積当たりの移行係数 (T_{ag}: m² kg⁻¹)

動物名	Ν	GM	95%信頼区間	
イノシシ	2790	3.4E-3	4.0E-4	2.9E-2
ニホンジカ	630	5.5E-3	7.3E-4	4.1E-2
ツキノワグマ	644	3.8E-3	5.6E-4	2.5E-2

表 2.6-3 印旛沼の基本情報

面積	11.55 km ² (北印旛沼: 6.26 km ² ,西印旛沼: 5.29 km ²)
貯水量	$19.7 \times 10^6 \text{ m}^3$
周囲	26.4 km
推進	約 1.7 m (最大 2.5 m)
滞留時間	約 22 日

表 2.6-4 捕獲した魚の全長と湿重

魚種	捕獲数	全長 (cm)	湿重 (g)
フナ	37	8.5-42.0	9-1238
コイ	6	45.0-72.0	1012-4777
オオクチバス	3	32.5-36.5	584-894
ブルーギル	2	14.0-14.5	56-62
アメリカナマズ	2	54.0-55.0	1070-1738
カムルチ	1	40	526
	モルレムトンボリーン	たの目 [仕 目] に	+

全長および湿重は捕獲した魚の最小値-最大値を示す。

			¹³⁷ Cs
魚種	誕生	解析数	(Bq/kg-dry)
フナ	事故以前	8	70
	事故後	10	86
コイ	事故以前	0	
	事故後	3	117
オオクチバス	事故以前	2	145
	事故後	0	
ブルーギル	事故以前	1	108
	事故後	0	
アメリカナマズ	事故以前	0	
	事故後	1	216
カムルチ	事故以前	1	199
	事故後	0	

表 2.6-5 捕獲した魚の耳石解析による誕生時推定と¹³⁷Cs 濃度

表 2.6-6 δ^{13} C と δ^{15} N の分析に用いた試料

			体長	湿重	推定年齢
魚種	部位	捕獲日	(cm)	(g)	(y)
カムルチ	筋肉	2015/9/29	72	3478	5
アメリカナマズ	筋肉	2015/11/8	60	2013	9
11	胃内容物	11	11]]	11
コイ1	筋肉	2015/11/8	45	725	21
フナ	筋肉	2015/11/8	35	598	7
オオクチバス	筋肉	2016/4/5	36	894	2
コイ 2	筋肉	2016/4/7	68	3727	9
11	耶	11	//	11	11

表 2s-1 2015 年および 2016 年の気温と地温の平均値と範囲

-		,				
観測年	千葉測候所*1	畑条	件*2	日陰条件*2		
	気温	気温	地温	気温	地温	
2015 平均値 (最小—最大) 1/1 - 12/31	16.8 (-0.6 - 36.8)	16.7 (-2.8 – 38.8)	16.6 (0.8 - 28.7)	16.3 (-3.4 – 36.7)	15.4 (2.1 – 28.5)	
2016 平均値 (最小—最大) 1/1 – 12/31	16.8 (-0.6 – 36.3)	16.6 (-2.4 – 40.0)	16.9 (6.3 – 27.0)	16.2 (-3.4 – 36.2)	15.4 (3.4 – 26.4)	

*1気象庁(2017)時間毎の値。

*25分毎の値。

図 2.2-1 気候帯別の土壌中 Ni, Sr, Mo および Pb 濃度の比較. (乾物重ベース)

図 2.4-1 比較的寒冷な地域と温暖な地域の水田土壌中の元素濃度の世界平均値との比較.

図 2.4-2 比較的寒冷な地域と温暖な地域の Fe, Co, Ni, Cu, Zn および Sr の移行係数の比較.

図 2.5-1 予備振とう 1 又は 30 日と Cs 添加後振とう 3, 7, 30 日における水田土壌 K_dと pH の比較. 異なるアルファベットは有意差 (p<0.05) があることを示す.

横軸 □d-■d:□は予備振とう期間、■は RI 添加後振とう期間.

図 2.5-1 予備振とう 1 又は 30 日と Cs 添加後振とう 3,7,30 日における水田土壌 K_dと pH の比較(つづき). 異なるアルファベットは有意差(p<0.05)があることを示す.

図 2.5-2 10, 23, 30°C において得られた Kd-¹³⁷Cs の比較. (予備振とう1日、RI 添加後振とう7日)

図 2.5-3 10, 23, 30°C において得られた Kd-¹³⁷Cs の幾何平均値と温度の関係.

図 2.6-1 多年生草本植物(イタドリ、ヨモギ、フキ)の¹³⁷Cs 濃度の経時変化と フィッティング結果.

図 2.6-2 2012-2016 におけるイノシシ、ニホンジカおよびツキノワグマの¹³⁷Csの 移行係数(T_{ag}, m² kg⁻¹)の経時変化.

図 2.6-3 2011 年 11 月から 2016 年 9 月までの底質の放射性セシウム濃度の変化.

図 2.6-4 印旛沼で捕獲した魚. 1. カムルチ、2. オオクチバス、3. アメリカナマズ、4. ブルーギル、5. コイ、6. フナ.

図 2.6-5 部位ごとの¹³⁷Cs 濃度. 'n' は分析した数、 '%' は筋肉中の¹³⁷Cs 濃度に 対する百分率(エラーバーは標準偏差を表す).

- 1) 粉砕試料(<20 mg)を2 mL チューブに準備
- 2) 1.5 mL の脱脂液 (クロロフォルム:メタノール,2:1) 添加、混合
- 3) 一晚浸漬
- 4) 混合後、遠心 (5,500×g,5分,室温)
- 5) 上清廃棄
- 6) 1.5 mL の脱脂液添加、混合
- 7) 遠心 (5,500×g,5分,室温)
- 8) 上清廃棄
- 9) 操作6から操作8を1-2回繰り返し
- 10) 50°C で 24 時間以上乾燥
- 11) 専用スズ箔で梱包
- 12) 同位体比質量分析計で分析

図 2.6-6 脂質抽出手順.

図 2.6-7 抽出回数と δ^{13} C と δ^{15} N の関係.

図 2.6-8 印旛沼で捕獲した魚の炭素・窒素安定同位体.

2015.1.1-12.31

畑条件

2015.1.1-12.31

図 2s-1 2015 および 2016 年における気温(Air)と地温(Soil、20cm)の変化.

図 2s-2 千葉測候所の気温データとの比較(2015, 2016年).

第3章 放射性炭素の移行パラメータに対する微生物活動の影響調査

3.1.はじめに

使用済み核燃料の再処理施設や MOX 燃料加工施設の操業に伴い発生する「超ウラン核種を含む放射性廃棄物(TRU 廃棄物)」には,種類や性状そして放射能レベルの異なる放射性廃棄物が含まれる。 なかでも放射性炭素(¹⁴C)は物理的半減期が5730年と長く,そして処分場を構成する人工バリア材 や母岩への収着率が小さいことから,TRU 廃棄物の被ばく線量の概算において線量支配核種と評価さ れている(JAEA and FEPC, 2007)。¹⁴C を含む長半減期放射性核種の地層処分における最終的な目標は, 遠い将来にわたって放射性廃棄物がヒトとヒトの生活環境に影響を及ぼさないようにすることである。 この目標を達成するために,大きく分けて二つのシナリオ(地下水シナリオおよび近接シナリオ)で シミュレーションが行われ,安全評価に役立てられている。このうち地下水シナリオでは,処分場か ら漏洩した放射性核種が地下水を介して最終的にヒトの生活圏へと移行することが想定されている (核燃料サイクル開発機構, 1999)。このように,¹⁴C が処分場からヒトへ至るまでのプロセスを長期 的な視点で評価することは重要である。

本事業では、¹⁴Cがヒトに移行する場として生活圏に着目しており、農耕地土壌から農作物への¹⁴C 移行データを収集している。これまでの調査から、生活圏に到達した¹⁴Cの大部分は、農耕地におい てガスとして大気中に放出されることが示唆されており(Ishii et al., 2015)、標準状態(25°C, 1 気圧) でガス化する放射性核種は限られているため、ガス化は¹⁴Cの特徴的な環境移行プロセスといえる。 環境移行パラメータとしてよく利用される土壌-土壌溶液間分配係数(*K*_d)や土壌-農作物間移行係数 (TF)は、ガス化を考慮しておらず、したがって、¹⁴Cの移行プロセスの評価においてガス化を考慮 した新たな環境挙動パラメータの提案が望まれる。

これまでの本事業の成果として、¹⁴Cのガス化は主に微生物活動が原因であることが分かってきた (Ishii et al., 2015)。例えば、¹⁴C 標識酢酸を添加すると¹⁴C ガスを発生する水田土壌を高熱高圧処理あ るいは化学的殺菌処理すると、¹⁴Cのガス化はほとんど認められなくなる。この結果は、農耕地にお ける¹⁴Cのガス化が,そこに生息する微生物の活動に依存していることを意味している。近年,温暖 化や寒冷化といった将来的な地球環境の変化が示唆されている(Frölicher et al., 2014)。微生物の活動 は気温の変化に対して敏感に反応するため(Castro et al., 2010; Schindlbacher et al., 2011),温暖化や寒 冷化による気温の変化は、¹⁴Cのガス化にも影響すると考えられる。また、微生物の代謝活動は気温 の変化以外にも、湿度、pH,酸化還元電位、栄養環境など様々な物理化学的要因にも影響されるため、 ¹⁴C のガス化に寄与する微生物の活動は,ガス化に対する環境要因を統括する指標になりうると考え られる。そこで、微生物の呼吸活性およびアデノシン三リン酸(ATP)量を指標とした微生物バイオ マスと¹⁴C ガス化率の関係について調査したが、有意な相関関係は得られなかった(放射線医学総合 研究所、2015)。つまり、微生物の呼吸活性やバイオマス量は¹⁴Cの統括的指標として利用できない可 能性が示された。相関が得られなかった要因として、水田土壌微生物群の¹⁴C-酢酸に対する資化性の 問題(微生物が酢酸を栄養源として利用できるかどうか)が考えられた。そこで、昨年度の本事業に おいて水田の微生物による 95 種類の炭素資化性を調査したところ, 酢酸は利用しにくい炭素源である ことが分かった(放射線医学総合研究所,2016)。つまり,水田に酢酸より利用しやすい有機物が存在 すれば酢酸の分解は遅くなり、見かけ上、土壌微生物の活性は高いが酢酸に含まれる¹⁴Cのガス化は 進まないこととなる。また、これまでの本事業における試験結果から、トレーサーレベルの微量な酢 酸は炭酸ガスとして大気に放出することが示されているが、昨年度、水田環境に存在するレベルの酢 酸を添加したところ、炭酸ガスの発生が抑制された。この結果は、初期濃度によりその挙動が変わる ことを示唆している。¹⁴Cのガス化に対する初期濃度の効果は、ほとんど知見がなく、今後の調査課 題として挙げられた。また、土壌が異なれば微生物による炭素資化性が異なることから、土壌による 微生物種の違いが示唆されており(放射線医学総合研究所, 2016)、ガス発生率が異なる土壌の微生物 群集構造を明らかにすることも重要である。

放射性炭素の移行パラメータに対する微生物活動の影響調査では、本年度、6つの課題について調 査した。

- 1)¹⁴C ガス発生量に対する初期¹⁴C 量についてデータを蓄積すること
- 2)¹⁴Cガス化率の異なる土壌微生物群集構造の違いを明らかにすること
- 3)¹⁴Cのガス化を担う可能性のある細菌種の帰属分類を決定すること
- 4) 温度変化に伴う最大¹⁴C ガス発生量のデータを蓄積すること
- 5)環境大気と近傍大気のガス交換に資する気象パラメータを取得すること
- 6) 取得したデータを水稲全体モデルに反映すること

課題1)と4)は第3.2節で,課題2)と3)は第3.3節で,そして,課題5)と6)の結果は第3.4節で報告する。

引用文献

- Castro, H. F., Classen, A. T., Austin, E. E., Norby, R. J., & Schadt, C. W. (2010). Soil microbial community responses to multiple experimental climate change drivers. Appl Environ Microbiol, 76(4), 999-1007.
- Frölicher, T. L., Winton, M., & Sarmiento, J. L. (2014). Continued global warming after CO₂ emissions stoppage. Nature Climate Change, 4, 40-44.
- Ishii, N., Ogiyama, S., Sakurai, S., Tagami, K., & Uchida, S. (2015). Environmental transfer of carbon-14 in Japanese paddy fields. In K. Nakajima (Ed.), Nuclear Back-end and transmutation technology for waste disposal (pp. 303-309). Tokyo: Springer.
- Japan Atomic Energy Agency, & The Federation of Electric Power Companies of Japan. (2007). Second Progress Report on Research and Development for TRU Waste Disposal in Japan – Repository Design, Safety Assessment and Means of Implementation in the Generic Phase –. Ibaraki, Japan.
- Schindlbacher, A., Rodler, A., Kuffner, M., Kitzler, B., Sessitsch, A., & Zechmeister-Boltenstern, S. (2011). Experimental warming effects on the microbial community of a temperate mountain forest soil. Soil Biol Biochem, 43(7), 1417-1425.
- 核燃料サイクル開発機構. (1999). わが国における高レベル放射性廃棄物地層処分の技術的信頼性 地層処分研究開発第2次取りまとめ—.
- 放射線医学総合研究所. (2015). 平成 26 年度 放射性廃棄物共通技術調査等委託事業 放射性核種生物 圈移行評価高度化開発. 千葉.
- 放射線医学総合研究所. (2016). 平成 27 年度 放射性廃棄物共通技術調査等委託事業 放射性核種生物 圈移行評価高度化開発. 千葉.

3.2.¹⁴C ガス発生量に関わる要因

放射化金属 TRU 廃棄物であるハルやエンドピースなどから発生する¹⁴C の化学形態は, 酢酸, ギ酸, ホルムアルデヒド,メタノールなどの低級炭化水素化合物であることが知られている(Kaneko et al., 2003)。いずれの化合物に含まれる¹⁴C も,農耕地環境においてその大部分がガスとして大気中に放出 されるため(放射線医学総合研究所, 2013),ガス化は¹⁴C の特徴的な環境挙動と言える。また,¹⁴C のガス化は主に土壌微生物の働きによるため(Ishii et al., 2015),微生物代謝活動と¹⁴C ガス化の間に は何かしらの関係があると推測される。

炭素はあらゆる生物にとって必須元素であることから、生物的作用により刻々と様々な化学形態に 変化する。ガス化もこの形態変化の一つである。つまり、地層処分上で発生した¹⁴C は生活圏におい てその化学形態を変化させていくことが考えられる。化学形態が変われば、生物による利用効率も変 わる。例えば、これまでの調査から、酢酸、ギ酸、ホルムアルデヒド、およびメタノールは、同じ土 壌、同じ条件であってもガス化率が異ることが報告されているが(放射線医学総合研究所, 2013)、こ の結果はそれぞれの化学形態によって微生物による利用効率が異なることを意味している。そこで、 昨年度は水田土壌に生息する微生物による様々な有機態炭素の資化性について調査され、その過程で、 一般に水田に蓄積される程度の酢酸が土壌微生物の活動を阻害することが確認された(放射線医学総 合研究所, 2016)。この結果を受け、¹⁴C ガス化率に対する基質の初期濃度の効果、¹⁴C ガスの最大発 生量と温度効果について検討する必要性が述べられている。

本節では, 湛水水田における¹⁴C 源である[1,2-¹⁴C]酢酸ナトリウムの添加濃度と¹⁴C のガス化との関係について報告するとともに, ¹⁴C ガス発生量に対する温度効果について報告する。

3.2.1. ¹⁴CO₂ガス発生量に対する¹⁴C 源の初期濃度の効果

水田土壌微生物にとって 酢酸は利用しにくい有機物であり,多量の酢酸は土壌微生物活性を抑制す る。このことは、水田が湛水されると一時的酢酸が蓄積されること、そして嫌気的環境が発達した後 はメタン生成菌や一部の硫酸還元菌しか酢酸を分解できないことからも明らかである(堀ら,1990)。 本節では、地層処分場において金属 TRU 廃棄物から発生すると考えられている[1,2-¹⁴C]酢酸塩を¹⁴C 源とし、¹⁴C 源の初期濃度とガス発生量の関係、および¹⁴C ガス発生量に対する温度効果について報告 する。

3.2.1.1. ¹⁴C ガス発生量に対する初期¹⁴C 濃度の効果

試験は滋賀県の水田より採取した灰色低地土を用いて行った。この土壌は平成26年度のガス化率の 調査において,調査した63水田土壌の平均ガス化率に最も近い値を示した試料である(放射線医学総 合研究所,2015)。

試験の概要を図 3.2-1 に示す。この土壌 0.5 g-dry(粒子サイズ: < 2 mm)を 30 mL 容量のガスクロ バイアルビンに準備し、そこに 5 mL [1,2-¹⁴C]酢酸ナトリウム溶液で浸漬し、ブチルゴム栓で密封した。 [1,2-¹⁴C]酢酸ナトリウム溶液 (pH 未調整)の¹⁴C 初期濃度であるが、1.7×10³ Bq/mL、4.2×10³ Bq/mL、 8.6×10³ Bq/mL、1.7×10⁴ Bq/mL、4.2×10⁴ Bq/mL、8.4×10⁴ Bq/mL とした。つまり 1 試料(0.5 g 土壌) 当たり 8.6×10³ Bq から 4.2×10⁵ Bq の¹⁴C を添加した。酢酸ナトリウムは微生物を除くために、土壌 への添加直前に 0.2 µm 孔径のフィルターで濾過減菌した。この様にして準備した湛水土壌試料を、 25℃、暗条件で 15 日間静置培養した。

培養期間中に土壌から発生した¹⁴CO₂ガスを回収するために、試料容器の上流にポンプを接続し、 20 mL/min の流速で 10 分間空気を流し続けた。試料容器の容量は 30 mL であったので、発生した¹⁴C ガスはこの流量(200 mL)で十分に下流の流れたと考えられる。試料容器の下流には、二酸化炭素吸 収剤として 16 g の 1 mol/L 水酸化ナトリウム溶液を含むガス捕集ビンを 3 本接続した。このアルカリ 溶液で、発生した¹⁴CO₂ ガスを捕集した。¹⁴C を捕集した水酸化ナトリウム溶液は、Hionic-Fluor (PerkinElmer)と混合し、液体シンチレーションカウンタ(Tri-Carb-25WTR Liquid Scintilation Analyzer) で¹⁴C の放射能を測定した。測定条件として、0-156 KeV 領域を 3 分間測定した。測定により得られ た計数値(dpm)から¹⁴C の濃度に換算した。

容器内で発生した¹⁴CO₂ガス量の積算値を図 3.2-2 に示す。いずれの試料においても、培養開始から 4 日間に¹⁴CO₂が発生し、その日以降も発生し続けるが、初期と比較すると発生量はわずかであった。 この様に培養初期において¹⁴CO₂ガスが急速に発生するのは、これまでの試験結果と同様であった

(Ishii et al., 2010)。4 日目以降に観察されたように、容器内の¹⁴CO₂ガス量が平衡に達した値が、各初 期添加濃度に対する最大ガス発生量といえる。本試験で添加した¹⁴Cの最大濃度は 8.4 × 10⁴ Bq/mL で あり、使用した[1,2-¹⁴C]酢酸ナトリウムの比放射能(4.07 × 10⁹ Bq/mmol)から Bq/mL をモル濃度(mol/L) に換算すると 20.6 μ mol/L となる。0.5 gの土壌に対しこの濃度の酢酸ナトリウムを 5 mL 添加したので、 この土壌 1 kg 当たりの酢酸濃度は 2.06 × 10⁻² cmol/kg と計算される。この酢酸濃度は水田に蓄積され る酢酸濃度(犬伏, 1994)と比較すると 50 倍程度低いと見積もられる。

¹⁴CO₂ガスの総発生量は、¹⁴C 添加量に依存して多くなった(図 3.2-2)。8.4×10⁴ Bq/mL の¹⁴C 濃度の[1,2-¹⁴C]酢酸ナトリウムを添加した試料では、培養1日目から2日目にかけて容器当たり5.8×10⁴ Bq の¹⁴C が¹⁴CO₂ガスとして発生した。一方、8.6×10³ Bq/mL の¹⁴C 濃度の[1,2-¹⁴C]酢酸ナトリウムを添加した試料の容器当たりの総¹⁴C 量は4.2×10⁴ Bq であり、従ってこれと同量以上の¹⁴CO₂ガスが培養1日目から2日目にかけて発生したこととなる。つまり、本試験に用いた水田土壌の微生物は、少なくとも8.6×10³ Bq/mL の¹⁴C を添加した試料の[1,2-¹⁴C]酢酸ナトリウムを全て¹⁴CO₂に分解する能力を有していたと考えられる。この能力にも関わらず、何れの試料においても添加した[1,2-¹⁴C]酢酸ナトリウムが完全に¹⁴CO₂に分解されなかったということは、培養期間中に分解を抑制する機序が働いたと考えられる。

モデルを構築する上で移行量を表すパラメータは必要不可欠である。そこで、本試験で得られた数 値を、初期添加量に対するガス発生量の割合に変換した。結果を図 3.2-3 に示す。興味深いことに、 8.6×10³ Bq/mL 以下の¹⁴C 濃度の[1,2-¹⁴C]酢酸ナトリウムを添加した 3 つの試料において、15 日の試 験期間、ほぼ同様の割合で¹⁴CO₂ガスが発生した。この濃度より高い¹⁴C が添加された場合、添加濃 度に応じて¹⁴CO₂ガス発生割合が減少した。以上の結果は、¹⁴C が[1,2-¹⁴C]酢酸ナトリウムの化学形態 の場合、8.6×10³ Bq/mL 以下の濃度であれば、初期濃度に対するこの割合は湛水土壌から大気への¹⁴C 移行パラメータとして利用できることを示唆している。ここでは1 例を示しただけに過ぎず、この様 な関係が他の土壌でも成り立つのか、この割合をパラメータとして利用するにはさらなる検証が必要 である。

3.2.1.2. 温度変化に伴う最大¹⁴C ガス発生量

本試験は, [1,2-¹⁴C]酢酸ナトリウム溶液濃度と培養温度を除いて, 第 3.2.1.1.節と同じ条件で行った。 添加した[1,2-¹⁴C]酢酸ナトリウム溶液の¹⁴C濃度は 8.6×10³ Bq/mL であった。培養は 15℃, 20℃, 25℃, 30℃の 4 段階で行った。¹⁴CO₂ ガスの回数および¹⁴C の放射能測定も, 第 3.2.1.1.節と同様の手順で行 った。

容器内で発生した¹⁴CO₂ガス量の積算値を図 3.2-4 に示す。培養開始から 4 日目までの期間,¹⁴CO₂ガス発生速度は温度上昇と共に速くなった。これは昨年度の本事業の結果と一致する(放射線医学総合研究所, 2016)。いずれの温度で培養した試料においても、培養開始から 4 日間に多くの¹⁴CO₂ガス

64

が発生し、各培養温度により発生量は異なるものの、同じようなガス発生曲線を描いた。また、25℃ と 30℃におけるガス発生曲線が実験期間中ほぼ一致したことより、この温度範囲ではガス発生量に対 する温度の効果はなく、ガス発生量の増大効果は 25℃が最大と考えられる。以上の結果から、25℃以 下の温度は¹⁴CO₂ ガス発生量に影響するが、放出パターンには影響しないことが分かった。ガス発生 量に対する温度効果の要因であるが、微生物活動が関与していたと考えられる。つまり、温度の低下 に伴い微生物活動が抑制され、¹⁴CO₂ガス発生量が低下したと考えられる。

図 3.2-5 に初期添加量に対する¹⁴CO₂ガス発生量の割合(相対的ガス発生率)を示す。本試験では, 培養温度は異なるが、¹⁴Cの初期添加量は何れの培養試料も同じであることから,図 3.2-4 と同様の曲 線となった。注目すべきは 25℃と 30℃で培養した時のガス発生割合であり、4 日目以降、同じ割合で 変化した。この結果は、25℃から 30℃の範囲であれば、初期濃度に対する¹⁴CO₂ガス発生量の割合は、 湛水土壌から大気への¹⁴C移行パラメータとして利用できることを示唆しており、また温度に依存す る最大ガス発生量もこのパラメータから求めるられる可能性がある。また、温度上昇にも関わらずこ の割合が一定であることは、これ以上高温になったとしても¹⁴CO₂ガス発生割合が上がることは無く、 むしろ高温による微生物活性の低下によりガス発生割合も低下すると考えられる。

3.2.2. まとめ

湛水した水田土壌を用いて、¹⁴C 源である[1,2-¹⁴C]酢酸ナトリウムの添加濃度と¹⁴C のガス化との関係、および¹⁴C ガス発生量に対する温度効果について検討した。

まず初期添加濃度であるが、 2×10^{-2} cmol/kg-soil 程度の酢酸塩であれば ¹⁴CO₂ ガスの発生は抑制され ないことが分かった。本試験で使用した[1,2-¹⁴C]酢酸ナトリウムの比放射能は 4.07 × 10⁹ Bq/mmol であ り、¹⁴C の濃度は 8.4 × 10⁴ Bq/mL であった。この濃度の ¹⁴C が地層処分場から酢酸塩の化学形態で生 活圏に移行するとは考えられず、したがって、¹⁴C-酢酸塩の初期 ¹⁴C 濃度が高くなれば発生する ¹⁴CO₂ ガス量も増大する。さらに、¹⁴CO₂ ガス発生量は初期 ¹⁴C 濃度に対して一定の割合であることが分かっ た。

¹⁴CO₂ガス発生量に対する温度の効果であるが、25℃から 30℃の範囲では認められず、25℃未満で は初期濃度に対する ¹⁴CO₂ガス発生量の割合が低下することが分かった。

引用文献

- Ishii, N., Koiso, H., Takeda, H., & Uchida, S. (2010). Partitioning of ¹⁴C into solid, liquid, and gas phases in various paddy soils in Japan. Journal of Nuclear Science and Technology, 47(3), 238-243.
- Ishii, N., Ogiyama, S., Sakurai, S., Tagami, K., & Uchida, S. (2015). Environmental transfer of carbon-14 in Japanese paddy fields. In K. Nakajima (Ed.), Nuclear Back-end and transmutation technology for waste disposal (pp. 303-309). Tokyo: Springer.
- Kaneko, S., Tanabe, H., Sasoh, M., Takahashi, R., Shibano, T., & Tateyama, S. (2003). A study on the chemical forms and migration behavior of Carbon-14 leached from the simulated hull waste in the underground condition. Materials Research Society Proceedings, 757, II3.8.1.
- 犬伏和之. (1994). 水田の物質循環と微生物の働き. In 日本微生物生態学会 (Ed.), 微生物の生態 19 物質循環における微生物の役割 (pp. 91-118). 東京: 学会出版センター.

放射線医学総合研究所. (2013). 放射性廃棄物共通技術調査等委託事業 放射性核種生物圏移行評価高度化調査 6 年間(平成 19 年度~平成 24 年度)のまとめ [詳細版]. 千葉.

放射線医学総合研究所. (2015). 平成 26 年度 放射性廃棄物共通技術調查等委託事業 放射性核種生物

圈移行評価高度化開発. 千葉.

- 放射線医学総合研究所. (2016). 平成 27 年度 放射性廃棄物共通技術調査等委託事業 放射性核種生物 圈移行評価高度化開発. 千葉.
- 堀謙三, 犬伏和之, 松本聡, & 和田秀徳. (1990). 水田土壌におけるメタン生成と硫酸還元の酢酸をめ ぐる競合. 日本土壌肥料学会誌, 61(6), 572-578.

3.3.水田土壤微生物群集に対する温度効果

微生物はエネルギーを得るために有機物を分解し、その結果、水と二酸化炭素が生じる。それ故、 有機物に含まれる¹⁴Cのガス化において、微生物は重要な役割を担っている(Ishii et al., 2015)。一般 に、微生物の活動は温度に影響されるため、昨年度、本事業において温度変化と微生物活動の反応に ついて調査が行われた。95 種類の有機炭素について行われた炭素資化試験結果から、温度の低下は炭 素資化速度を遅くするが、炭素資化性のパターン(利用でいる炭素の種類と利用の程度)にはほとん ど影響しなかったことが報告されている(放射線医学総合研究所, 2016)。微生物は種により利用でき る炭素が異なるため、群集構造(群集を構成している微生物の種組成と量)が変化すれば当然炭素資 化性のパターンも変わるはずである。したがって、温度の低下は微生物の活動を抑制するが、土壌微 生物群集構造に対する影響は小さいと考えられる。しかしながら、温度変化と微生物群集構造との関 係については情報が限られている。本節では、微生物群集構造に対する温度の効果を明らかにすると 共に、¹⁴CO₂ガス発生量が異なる土壌の微生物群集構造を調査し、¹⁴CO₂ガス発生に関わる可能性があ る微生物の帰属分類を推定した結果について報告する。

3.3.1. 微生物群集構造に対する温度変化の効果

寒冷地域である岩手県の水田から採取した土壌(P2)と温暖地域である福岡県の水田から採取した 土壌(P11)を微生物群集構造の調査対象として選定した。P2 土壌は多湿クロボク土壌で、粒度分析 の結果、砂、シルト、粘土の割合は、それぞれ 52%、31%、17%であった。炭素および窒素含量は、 それぞれ 84.7 g/kg および 6.4 g/kg であった。P11 土壌は灰色低地土で、粒度分析の結果、砂、シルト、 粘土の割合は、それぞれ 36%、35%、29%であった。炭素および窒素含量は、それぞれ 21.3 g/kg およ び 2.2 g/kg であった。以上の結果より、P2 は P11 と比較すると砂質の水田土壌であるが有機物含量が 多いことが分かった。両土壌の詳細な性状は昨年度の報告書(放射線医学総合研究所, 2016)を参照さ れたい。

土壌試料の培養のために、0.5 g-dry(粒子サイズ:<2 mm)の土壌試料を 50 mL 容量のポリプロピレン性コニカルチューブに準備し、それを 0.5 mL の脱イオン水で浸漬した。このチューブを静置状態、暗条件のもと、15℃、20℃、25℃、および 30℃で7日間培養した。細菌の増殖は極めて速いため、この培養期間内に十分な世代交代が起こったと考えられる。培養は独立して3回繰り返し行った。

培養後, 土壌から DNA を抽出した。DNA の抽出は ISOIL for Beads Beating (ニッポンジーン) キットを用いた。抽出手順はキット付属のマニュアルに従った。但し, 土壌微生物のビーズ破砕には FastPrep 24 Instrument (MP Biomedicals) を用い, 6 m/sec で 45 秒間の条件で行った。

抽出した DNA から細菌の 16S rRNA 遺伝子の一部を増幅するために、ポリメラーゼ連鎖反応 (PCR) を行った。PCR プライマーとして 341f-GC と 907R を用いた。使用したこれらプライマーの一覧を表 3.3-1 に示す。PCR 反応には 50 µL の混合液を用いた。この混合液は 0.25 µL の Takara Ex Taq polymerase Hot Start Version (Takara Bio Inc), 0.5 µL の 25 µM 341F-GC forward primer, 0.5 µL の 25 µM 907R reverse primer, 1 µL の 0.1% Bovine Serum Albumin 溶液(Takara Bio Inc.), 4 µL の dNTP Mixture (各 2.5 mM), 5 µL の 10 × Ex Taq Buffer および 1 µL の抽出 DNA を脱イオン水で 50 µL に調整したものである。PCR 増幅は TProfessional 96 Gradient Thermocycler (Biometra GmbH)を用い, touch-down PCR を行った。温度 条件は以下の通りであった:1) 95℃, 60 sec, 2) 94℃, 30 sec, 3) 65℃, 30 sec, 4) 72℃, 60 sec, 5) 94℃, 30 sec, 6) 55℃, 30 sec, 7) 72℃, 60 sec, 8) 72℃, 600 sec. 但し 3), 4), 5)の一連の操作は 20 回繰り返し, 繰り返す 毎に 3)の温度を 0.5℃下げ, 繰り返し終了後に 5)以降の操作に移った。また, 5)から 7)までの操作は 9 回繰り返した後, 操作 8)を行った。この PCR 増幅反応で得られた PCR 産物は QIAquick PCR Purification

Kit (QIAGEN)を用いて精製し, 2100 Bioanalyzer (Agilent)を用いて精製された DNA のサイズ (Bp) と 濃度 (ng/μL)を求めた。

精製した DNA は変性剤濃度勾配ゲル電気泳動 (DGGE) 法による群集構造解析に利用した。DGGE には D-code system (Bio-Rad Laboratories, Inc.)を用いた。120 ng の精製 DNA を DGGE ゲルに添加し, 61.5℃に温めた泳動槽にて 50V で 20 時間, 電気泳動を行った。泳動槽には TAE buffer を用いた。DGGE ゲルには 5.5% (w/v)のポリアクリルアミドが含まれており, 変性剤の濃度勾配は 45% から 60% とした。 ここでいう変性剤 100% とは、7 M 尿素 + 40% ホルムアミドのことである。泳動終了後, SYBR Gold Nucleic Acid Gel Stain (ThermoFisher Scientific Inc.)を用いて染色し, Molecular Imager FX (Bio-Rad Laboratories, Inc.)を用いて泳動結果をデジタル画像化した。

P2 土壌の微生物群集構造に関する電気泳動の結果を図 3.3-1 に示す。培養温度が異なるにも関わら ず、類似した電気泳動パターンが得られた。この電気泳動画像におけるバンドは、それぞれが異なる 細菌種を示しており、そしてバンド強度が細菌種の相対量を表している。つまり、バンドパターンが 似ていることは群集構造が似ていることを意味するので、この電気泳動の結果は、細菌群集構造に対 する温度の影響は小さいことを示している。但し、15℃で培養したときには確認できるが、それ以外 の温度で培養したときには不明瞭なバンドがいくつか確認できた。15℃でのみ明確に確認できたこれ らのバンドは、おそらく温度に対する反応が鈍い細菌種ではないかと考えられる。例えば、図 3.3-1 のレーン 1 に存在する全細菌の量を 100%とし、15℃で培養したときには青い矢印で示した細菌もあ る一定量存在していたとする。温度の上昇に伴い矢印以外の細菌種が増殖したとすると、矢印で示し た細菌の相対量は減少し、その結果、バンドとして検出できなくなる。

P11 土壌の微生物群集構造に関する電気泳動の結果を図 3.3-2 に示す。P2 土壌と同様に、電気泳動のパターンは培養温度に関わらず類似であった。つまり、P11 土壌においても温度は土壌細菌群集構造を変化させるほどの影響がなかったことが分かった。

3.3.2. ガス化率と微生物群集構造の関係

 $^{14}CO_2$ ガス発生量が異なる土壌の微生物群集構造を調査し、 $^{14}CO_2$ ガス発生に関わる可能性がある微 生物について検討した。

調査対象土壌として福井県の水田から採取した土壌 (P21) と千葉県の水田から採取した土壌 (P33) を選定した。P21 土壌は、[1,2-¹⁴C]酢酸ナトリウムを炭素源としたとき、培養7日目までに初期添加量 の75%がガスとして¹⁴C が放出された土壌であり、一方、P33 は 47% しか放出されなかった土壌であ る (放射線医学総合研究所, 2015)。P21 土壌は灰色低地土で、粒度分析の結果、砂、シルト、粘土の 割合は、それぞれ 47%、32%、21%であった。炭素および窒素含量は、それぞれ 20.2 g/kg および 2.2 g/kg であった。P33 土壌はグライ低地土で、粒度分析の結果、砂、シルト、粘土の割合は、それぞれ 50%、 27%、22%であった。炭素および窒素含量は、それぞれ 36.2 g/kg および 4.2 g/kg であった。両土壌の 詳細な性状は昨年度の報告書(放射線医学総合研究所, 2016)を参照されたい。

土壌試料は第 3.3.1.節と同様の手順で培養し,培養後に DNA を抽出した。つまり,0.5 g の土壌に対 して 0.5 mL の脱イオン水を添加した湛水土壌を 7 日間培養し,その後, ISOIL for Beads Beating キッ トを用いて DNA を抽出した。但し,培養は 30°Cで行った。得られた DNA は QIAquick PCR Purification Kit (QIAGEN)で精製し,サイズおよび濃度の定量を行い,DGGE 法により群集構造を解析した。DGGE ゲルにはレーン当たり 200 ng の DNA を添加し,62 °C の泳動槽にて 50V 定電圧の条件で 20 時間,電 気泳動を行った。DGGE ゲルであるが,6% (w/v)のポリアクリルアミドを含み,変性剤の濃度勾配は 40%から 55%とした。

図 3.3-3 に電気泳動の結果を示す。P21 と P33 は明らかにバンドパターンが異なった。P21 土壌によ

68

る¹⁴Cのガス化はP33 土壌のそれと比較して顕著である(放射線医学総合研究所, 2015)。そのため, P21 には存在し、P33 には存在しない、あるいは存在しても相対量が少ないバンドが¹⁴CO₂ガス発生 に関与している可能性がある。

湛水した水田では還元的環境が発達する。このような環境においてメタン生成菌は酢酸の分解に重要な役割を果たしている(中村と鎌形,2006)。メタン生成菌はいわゆる普通の細菌,真正細菌ではなく古細菌に属するため,今回用いたプライマー(341f-GC/907R)では検出できない。そこで古細菌を検出するためのプライマー,PARCH 340f-GC と PARCH 519R(表 3.3-1)を用いて PCR 増幅を試みたが,増幅は確認できなかった。つまり,本試験の環境では古細菌は希少な存在であったと考えられる。

3.3.3. 特異的な細菌種の帰属分類の推定

¹⁴CO₂ガスの発生に寄与している可能性のある細菌の帰属分類を推定するには、16S rRNA 遺伝子配 列を決定する必要がある。そこで、DGGE ゲルから目的のバンドを切り出し、遺伝子配列を決定した。 ゲルからの切り出しのために、図 3.3-3 において矢印で示した 5 つのバンドを選定した。CS08 を除き、 これらは ¹⁴C ガス発生率が高い土壌試料でより多く存在していると考えられる種であった。CS08 はど ちらの土壌でも共通に検出できる種であった。

DGGE ゲルから切り出したバンドは、40 µL 10mM Tris-Cl 溶液 (pH8.5)に入れ、凍らせたのち解凍した。この過程で溶出した DNA を TOPO TA Cloning Kits for Sequencing kit (ThermoFisher Scientific Inc.) でサブクローニングした。サブクローニングは使用したキットのプロトコルに従った。その後の遺伝子配列の解析はユーロフィンジェノミクス株式会社で行った。遺伝子配列は 5'末端と 3'末端の両方から読み、正しく読めているか確認した。得られた配列から、切り出したバンドの細菌の帰属分類を推定するために、Ribosomal Database Project Release 11 を用いて検索を行った。切り出したバンドの遺伝子配列を表 3.3-2 に示す。

今回決定した遺伝子配列と、これと相同性の高い基準株の配列のアライメントを行い、近隣結合法 で分子系統樹を作成した。アライメントおよび分子系統樹の作成は、MEGA: Molecular Evolutionary Genetics Analysis (Tamura et al. 2007)を用いて行った。

得られた系統樹を図 3.3-4 に示す。単離された DNA 配列情報から得られたそれぞれの細菌は Clostridium carboxidivorans, Massilia aerilata, Bacillus niacini, Tumebacillus ginsengisoli, そして Ramlibacter solisilvae に近縁の種であった。C. carboxidivorans であるが酢酸を分解するのではなく合成 する細菌であった (Liou et al. 2005)。そのほかの4種については、いずれも酢酸を利用することができ る菌であった。M. aerilata はプロピオン酸や酢酸塩を同化するとの報告があり (Weon et al., 2008), B. niacini は酢酸塩利用することができ、酢酸塩をを含む寒天培地上では芽包を形成する(Nagel and Andereesen, 1991)。T. ginsengisoli も同様に酢酸塩を利用することができる(Baek et al, 2011)。R. solisilvae については Biolog GN plate を用いて酢酸の利用を確認している (Heulin et al, 2003)。

3.3.4. まとめ

本節では、微生物群集構造に対する温度の効果を明らかにすると共に、¹⁴CO₂ ガス発生量が異なる 土壌の微生物群集構造および、¹⁴CO₂ ガス発生に関わる可能性がある微生物の帰属分類の推定につい て調査した。まず温度の効果であるが、日本国内の温暖な地域と寒冷な地域の水田から土壌を採取し、 15℃から 30℃の温度範囲で培養したが、何れの土壌においても顕著な群集構造の変化は認められなか った。昨年度、気温の変化は炭素資化速度には影響するが炭素資化パターンには影響しないとの結論 が得られている。その要因として、気温は微生物活性に影響するが群集構造には影響しないからと考 えられていた。本年度の試験結果は、昨年度のこの考えを支持する結果であった。次に、¹⁴CO₂ 発生 に寄与する細菌種の推定であるが、¹⁴C のガス化率が異なる土壌の群集構造を比較し、ガス化率が高 い土壌で特異的に検出される細菌種の帰属分類を推定することで行った。この様な細菌種を4種類選 定し、16S rRNA 遺伝子の配列から帰属分類をを決定したところ、4種の内、3種が酢酸を基質とし て利用できる細菌であることが分かった。また、残り1種類は酢酸を生産する細菌であることが分か った。¹⁴C を生産する細菌が存在する一方で、それを分解する細菌も存在し、生態系のなかで酢酸を 介した¹⁴C の循環が起こっている可能性が示唆された。

引用文献

- Baek, S.H., Cui, Y., Kim, S.C., Cui, C.H., Yin, C., Lee, S.T., Im, W.T., 2011. Tumebacillus ginsengisoli sp. nov., isolated from soil of a ginseng field. International journal of systematic and evolutionary microbiology 61, 1715-1719.
- Heulin, T., Barakat, M., Christen, R., Lesourd, M., Sutra, L., De Luca, G., Achouak, W., 2003. Ramlibacter tataouinensis gen. nov., sp. nov., and Ramlibacter henchirensis sp. nov., cyst-producing bacteria isolated from subdesert soil in Tunisia. International journal of systematic and evolutionary microbiology 53, 589-594.
- Ishii, N., Ogiyama, S., Sakurai, S., Tagami, K., Uchida, S., 2015. Environmental transfer of carbon-14 in Japanese paddy fields, in: Nakajima, K. (Ed.), Nuclear Back-end and transmutation technology for waste disposal. Springer, Tokyo, pp. 303-309.
- Liou, J.S., Balkwill, D.L., Drake, G.R., Tanner, R.S., 2005. Clostridium carboxidivorans sp. nov., a solvent-producing clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov. International journal of systematic and evolutionary microbiology 55, 2085-2091.
- Muyzer, G., Brinkhoff, T., Nübel, U., Santegoeds, C., Schäfer, H., Wawer, C., 2004. Denaturing gradient gel electrophoresis (DGGE) in microbial ecology, in: Kowalchuk, G.A., de Bruijn, F., Head, I.M., Van der Zijpp, A.J., van Elsas, J.D. (Eds.), Molecular Microbial Ecology Manual. Springer Netherlands, Netherlands.
- Muyzer, G., de Waal, E., Uitterlinden, A., 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and environmental microbiology 59, 695-700.
- Nagel, M., Andreesen, J.R., 1991. Bacillus niacini sp. nov. a Nicotinate-Metabolizing Mesophile Isolated from Soil. International journal of systematic and evolutionary microbiology 41, 134-139.
- Ovreås, L., Forney, L., Daae, F.L., Torsvik, V., 1997. Distribution of bacterioplankton in meromictic Lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Applied and environmental microbiology 63, 3367-3373.
- Tamura, K., Dudley, J., Nei, M., Kumar, S., 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular biology and evolution 24, 1596-1599.
- Weon, H.Y., Kim, B.Y., Son, J.A., Jang, H.B., Hong, S.K., Go, S.J., Kwon, S.W., 2008. Massilia aerilata sp. nov., isolated from an air sample. International journal of systematic and evolutionary microbiology 58, 1422-1425.
- 中村浩平, 鎌形洋一, 2006. メタン生成にかかわる共生微生物系の研究と最新動向. 環境バイオテクノ ロジー学会誌 5, 81-89.
- 放射線医学総合研究所, 2015. 平成 26 年度 放射性廃棄物共通技術調査等委託事業 放射性核種生物圈 移行評価高度化開発, 千葉.

放射線医学総合研究所, 2016. 平成 27 年度 放射性廃棄物共通技術調査等委託事業 放射性核種生物圈 移行評価高度化開発, 千葉.

3.4.水稲全体モデルの精緻化

廃棄物から放出される可能性のある有機態¹⁴Cを対象に、日本の特徴である水田生態系における¹⁴C 水稲移行モデル(水稲全体モデル)を構築することは、安全評価において重要である。これまで構築 した水稲全体モデルを図 3.4-1 に示す。本事業におけるこれまでの調査から、TRU 廃棄物由来の有機 態¹⁴C は、その多くが炭酸ガスとして土壌から近傍大気へ放出され、その一部が光合成により農作物 に取り込まれることが分かってきた。特に、近傍大気から環境大気への¹⁴C 移行半減期は、収穫した 穂部の¹⁴C 量に影響することが分かってきた(Ishii et al., 2015)。

本節では、これまで構築した水稲全体モデルにおいて、設定している各移行半減期のうち、収穫時 における穂部の¹⁴C 含量に最も影響するパラメータを明らかにすること。そして、より現実的なパラ メータを設定するために、本年度行った野外実験の結果を水稲全体モデルに反映することを試みた。 また、収穫期における水稲内の放射性炭素量に、各移行半減期がどのように影響するかについて感度 解析を行い、各モデルパラメータの結果への影響度合いを把握するために不確実さ伝播解析を行った。 この節では以上の結果について報告する。

3.4.1. 水稲全体モデルの不確実さ伝播解析

水稲全体モデルは、環境コンパートメント間における放射性炭素の移行半減期を用いてモデル化し ている。昨年度までに、収穫期における水稲内の放射性炭素量に対する各移行半減期の影響を感度解 析によって把握してきた。

各モデルパラメータの結果への影響度合いを把握するには、対象とする複数のモデルパラメータを 不確実さ幅内でランダムにサンプリングした組を水稲全体モデルの入力データとして与えて解析を実 施する不確実さ伝播解析が有用である。そこで、本年度は昨年度までに構築された水稲全体モデルの 不確実さ伝播解析を行った。

検討が必要なモデルパラメータのグループとしては、水稲内移行量を制御するモデルパラメータ(茎 葉部と穂部間の移行半減期等)、環境コンパートメント間の移行量を制御するモデルパラメータ(土壌 と近傍大気間の移行半減期等)、流入量や流入時期を制御するモデルパラメータ(ソース流入量,流入 時期、土壌や近傍大気等への初期流入割合等)の3つが考えられる。ここでは、不確実さ伝播解析の 手法を検討するため、上記のうち環境コンパートメント間のモデルパラメータのグループを対象とし、 収穫期における水稲内の放射性炭素量に対する、環境コンパートメント間の各移行半減期の寄与の度 合いを不確実さ伝播解析によって検討した。

3.4.1.1. 不確実さ伝播解析の入力データ

不確実さ伝播解析は、対象とする複数のモデルパラメータについて、各パラメータの不確実さ幅内 でランダムにサンプリングした組を水稲全体モデルの入力データとして与えて解析、得られたエンド ポイントに対して、各パラメータの影響(相関)を分析し、モデル内のどのパラメータがエンドポイ ントに対して寄与が高いか調べる手法である。したがって、不確実さ伝播解析を行うためには、まず 環境移行パラメータ(移行半減期)の不確実さ幅、およびサンプリング方法(不確実さ分布、サンプ リング数等)を設定する必要がある。そこで、不確実さ伝播解析に用いる入力データは以下の条件で 作成することとした。

- 各パラメータの不確実さ幅は、昨年度までに検討された幅とする。
- 対象パラメータは、表 3.4-1 に示した移行半減期または交換半減期とする。

- 各パラメータのサンプリングには, PREP コード(Homma and Saltelli, 1992)を用いる。
- サンプリング方法はモンテカルロ法(ランダムサンプリング)とする。また、サンプリング数は 100 を目安とする。
- サンプリングの分布形は一様分布とする。パラメータは移行半減期(day)であり、移行半減期は指数関数ではないので、一様分布か正規分布が適当である。さらに、不確実さ幅内において 尤もらしい数値というのが現時点では見当がつかないことから、一様分布が妥当と思われる。
- パラメータ間の相関は無いものとしてサンプリングする。各パラメータを独立した状態でサン プリングすることで、エンドポイントに対する寄与がより明確になると考えられる。

以上の条件に基づき, PREP コードによりランダムサンプリング法で各パラメータの入力データを 作成した。図 3.4-2 にパラメータのサンプリング状態を示す。各パラメータが独立していずれも不確 実さ幅内でサンプリングされていることが確認できた。

3.4.1.2. 不確実さ伝播解析

前節の入力データに基づき、不確実さ伝播解析を実施した。

1) コンパートメント内の¹⁴C存在量

図 3.4-3 に茎葉部コンパートメント内の¹⁴C 存在量の経時変化を,図 3.4-4 に穂部コンパートメント 内の¹⁴C 存在量の時間変化を示す。環境移行パラメータを変動させても,茎葉部および穂部の¹⁴C 存 在量の変動は約1桁の幅に収まっており,不確実さ幅は比較的小さいと言える。

図 3.4-5 に近傍大気コンパートメント内の¹⁴C存在量の時間変化を示す。近傍大気内の¹⁴C存在量の 変動は,灌漑水が存在する場合には,水稲内と同様,約1桁の幅に収まったが,灌漑水が無い時には,約2桁の幅で大きくなった。

2) コンパートメント間の¹⁴C移行量

図 3.4-6 に土壌 1 - 近傍大気の¹⁴C 移行量の時間変化を,図 3.4-7 に灌漑水 - 近傍大気の¹⁴C 移行量の時間変化を示す。灌漑水 - 近傍大気の¹⁴C 移行量の変動は約 1 桁の幅に収まったが,土壌 1 - 近傍 大気の¹⁴C 移行量の変動は灌漑水が無い時には約 2 桁の幅に広がった。

図 3.4-8 に近傍大気 - 環境大気の¹⁴C 移行量の時間変化を示す。灌漑水が無い時に、土壌 1 - 近傍大気への移行量と同様、約 2 桁の幅に広がった。

以上の結果から,灌漑水が無い時の¹⁴C移行量の変動幅がやや大きくなること,そして近傍大気の ¹⁴C存在量の変動幅が大きくなるが,茎葉部と穂部の¹⁴C存在量の変動幅は約1桁に収まっており,落 水時の移行量は水稲内¹⁴C存在量に対して強く影響しないことが分かった。

3.4.1.3. 収穫時における穂部内¹⁴C量と環境移行パラメータとの相関分析

不確実さ伝播解析による各パラメータの影響について, SPOP コ - ド (Saltelli and Homma, 1992)を用 いて相関分析を行った。ここでは, 偏相関係数 (PCC; Partial Correlation Coefficient) 及び順位偏相関 係数 (PRCC; Partial Rank Correlation Coefficient) を指標に用いた。PCC は見かけ上の相関 (疑似相関 squrious correlation) を危惧して他の変数の影響を除いた他の二つの変数の相関係数を求める手法であ る。

ここで, x,y,z の変数があり, x,y の相関係数を Rxy,x と z の相関係数を Rxz, y と z の相関係数を

Ryz としたとき, z を制御変数とした偏相関係数 Rxy.z は以下の式になる。偏相関係数は, -1≦R≦1 の範囲をとり,絶対値が1に近いほど関係が強いことを示す。

$$R_{xy \cdot z} = \frac{R_{xy} - R_{xz} R_{yz}}{\sqrt{1 - R_{xz}^2} \sqrt{1 - R_{yz}^2}}$$
 $\ddagger (3.4-1)$

PRCC は、独立変数(入力パラメータ)と従属変数(解析結果)の順位(ランク)を対象にした相関係数であり、下式で表わされる。PRCC も $-1 \leq R \leq 1$ の範囲をとり、絶対値が1に近いほど関係が強いことを示す。

$$R = 1 - \frac{\sum_{i=1}^{n} (x_i - y_i)^2}{\frac{n(n^2 - 1)}{6}}$$
 $\Re(3.4-2)$

表 3.4-2 に不確実さ伝播解析結果に基づく相関分析結果を示す。PCC も PRCC (ランク部分相関係 数) もほぼ同じ結果が得られており、その序列も上位6位までは同じであった。最も影響が大きい(相 関が高い)のは、「近傍大気 - 環境大気の移行半減期(中干し期以降)」であり、次いで「土壌 1 - 近 傍大気の移行半減期(水稲生育期で灌漑水無し)」となった。

相関が高い上位4位までの環境移行パラメータと収穫時の穂部¹⁴C存在量との関係を図3.4-9に示す。 この図からも、上位2つのパラメータが特に相関が高いことが確認できた。また、1位の近傍大気-環境大気の移行半減期(中干し期以降)については、上に凸の関係が窺えることから半減期がさらに 小さくなると、収穫時の穂部¹⁴C存在量に対する影響はより大きくなることが予想される。その場合 には、収穫時の穂部¹⁴C存在量の不確実さ幅も大きくなることになるので、近傍大気と環境大気の交 換半減期の検討がより重要になると考える。

3.4.2. 近傍大気 - 環境大気の放射性炭素移行半減期の精緻化

Migration Of GRound Additions (MOGRA) コードを用いた動的コンパートメントモデルにより (Amano, 2003),¹⁴Cの水稲への移行モデル(水稲全体モデル)を構築している(図 3.4-1)。より現実 的な水稲全体モデルの構築において,近傍大気 - 環境大気間の移行半減期の精緻化は欠くことができ ない。昨年度までに模擬水田および室内実験のデータを用いて精緻化を試みたが,本年度は実際の水 田環境で取得した微気象観測データを用いて精緻化を行った。

3.4.2.1. 圃場における微気象観測

微気象データは千葉県農林水産部農林総合研究センタ - 水稲・畑地園芸研究所の水田で取得させて いただいた。圃場の大きさは 50 m×20 mで,中心付近に超音波式風向風速計(DS-2, Decagon Devices, Inc.)を地面に対し水平方向および鉛直方向に向けて設置した。風向風速計の設置状況を図 3.4-10 に 示す。設置の高さは群落内,群落頂,および群落上の3段階とした。群落内水平方向が 21 cm,鉛直 方向が 18 cm であり,群落上水平方向が 108 cm,鉛直方向が 94 cm であった。群落頂の高さは稲の成 長により変えた。各観測時期における草丈および観測機器の設置高さ等を,表 3.4-3 に示す。風向風 速は 10秒間隔で測定し,6回測定した平均値を記録した。つまり設置期間(およそ 24 時間)中の記 録は1分毎に行った。測定は 2018年6月15日から9月7日までの期間に8回行った。

以下に観測結果の概要について述べる。

・第1回観測結果(観測日6月15日)

観測日の水田の様子を図 3.4-11 に示す。観測期間中,水平方向および鉛直方向における 1 時間毎の 平均,最大,最小風速を表 3.4-4 に,風向の頻度を表 3.4-5 に示す。鉛直方向の風向風速であるが,使 用した機器は,本来,水平方向の風向風速を測定する機器である。そこで天頂を 0°とし,315°-0°-45°の範囲から風向風速計に入り込む風を上風,135°-225°の範囲から測定器に入り込む風を下風,そ して 45°-135°,および 225°-315°の範囲から機器に吹き込む風を横風とした。

まず,水平方向の風速であるが,記録を行った全ての時間において群落内部で最も風速が小さく, 平均風速は群落頂部や上部の平均風速の約1/2であった。群落頂部と群落上部の風速に大きな差は見 られなかった。水稲群落が十分に成長しておらず,一般的な地上からの高さに対する風速の関係と同 じであると考えられる。風向は,どの観測高さにおいても東方向からの発生頻度が高く,その頻度分 布は何れの観測高も類似であった。

鉛直方向の風速は観測高が最も低い群落内部で最も小さく,平均風速は 0.7 m/s 以下であった。落 頂部の風速が群落上部よりも平均風速が大きくなっていることがあった。風向は,どの観測高さにお いても,水平方向の頻度が高く,上風(上から下に向かって吹く風)や下風(下から上に向かって吹 く風)の発生頻度は少なかった。つまり,群落内から群落上部へと抜ける風は少ないと言える。群落 内の横風が吹いた頻度は 0.92,水平方向の平均風速は 0.30 m/s であった。したがって,風が群落内部 を水平方向に移動する速さは,約 0.28 m/s (=0.92 × 0.30)と試算された。

・第2回観測結果(観測日7月12日)

観測日の水田の様子を図 3.4-12 に示す。観測期間中,水平方向および鉛直方向における1時間毎の 平均,最大,最小風速を表 3.4-6 に,風向の頻度を表 3.4-7 に示す。

水平方向の風速は,群落内部と群落頂部が同程度であり,群落上部はそれよりも大きくなった。どの観測高でも観測期間の平均風速は1m/s未満であり,穏やかな天候であったことが窺える。風向頻度分布はどの観測高さにおいても類似であり,概ね東方向からの発生頻度が高かった。

鉛直方向の風速は、水平方向の風速に比べて小さく、第1回観測時に比べてもさらに小さかった。 群落内部および頂部はいずれも平均風速は 0.4 m/s 以下と類似の結果を示した。群落上部の平均風速も 1 m/s 以下であり、この結果からも観測日の天候が穏やかだったことが窺える。風向は観測高さによっ て異なっているように見受けられるが、これは風速が小さいために、風のゆらぎが影響したためと推 察された。群落内に限ると、上から下に向かって吹いた風の頻度が 0.64、横方向の風が 0.36、そして 下から上へ抜ける風の頻度が 0.00 であった。つまり、群落内から群落外へは風が抜けにくい状態であ ったといえる。群落内における水平方向の平均風速は 0.26 m/s であったことから、風が群落内部を水 平方向に移動する速さは、約 0.09 m/s (=0.36 × 0.26)と試算された。

・第3回観測結果(観測日7月20日)

観測日の水田の様子を図 3.4-13 に示す。観測期間中,水平方向および鉛直方向における1時間毎の 平均,最大,最小風速を表 3.4-8 に,風向の頻度を表 3.4-9 に示す。

水平方向の風速は, 群落内部と群落頂部が同程度であり, 群落上部に比べて約 1/2 であった。また, 第2回調査と同じくどの観測高でも平均風速は1m/s 未満であった。風向頻度分布は, どの観測高さ においても類似であり, 概ね東方向からの発生頻度が高かった。

鉛直方向の風速は, 群落頂部および上部において, 朝 6:40 以降で特異的に大きな値を示し, 朝 8:40 以降の群落頂部の風速は欠損データとなった。この日の朝から降り出した雨の影響と考えられる。鉛

直方向に設置した機器であるが、これは本来の設置方法とは異なる。鉛直方向に設置したことにより、 風向風速のセンサ - 部分が雨にさらされることとなり、その結果、欠損データとなったと考えられた。 朝 6:40 前(観測開始後 15 時間)までのデータを見ると、群落内部で時別平均風速は 0.3 m/s 以下、群 落頂部で 0.5 m/s 以下であり、群落上部の約 1/2 であった。

鉛直方向の風向は、観測高さによって異なっているように見受けられるが、これは風速が小さいために、風のゆらぎが影響したためと推察された。群落内に限ると、上から下に向かって吹いた風の頻度が0.29、横方向の風が0.62、そして下から上へ抜ける風の頻度が0.08であった。この観測期間においても、風は群落内から群落外へ抜けにくい状態であったといえる。群落内における水平方向の平均風速は0.19 m/s であったことから、風が群落内部を水平方向に移動する速さは、約0.12 m/s (=0.62 × 0.19)と試算された。

・第4回観測結果(観測日7月28日)

観測日の水田の様子を図 3.4-14 に示す。観測期間中,水平方向および鉛直方向における1時間毎の平均,最大,最小風速を表 3.4-10 に,風向の頻度を表 3.4-11 に示す。

水平方向の風速は,群落内部と群落頂部が同程度であり,群落上部に比べて約1/3であった。風向 頻度分布であるが,これまでの観測結果と同じく,どの観測高においても概ね東方向からの発生頻度 が高かった。

鉛直方向の風速は、群落頂部において 19時 27 分に 5.89 m/s,そして 21時 33 分に 5.85 m/s が記録 された。一方、同時刻の群落内部や群落上部では突風は記録されていない。従って、計測機器に外的 な要因が加わった結果生じた電気的ノイズと思われる。この日、雨は無降っていなかったので雨の影 響ではない。機器の開口部は水稲イネと平行に開いているため、群落頂部において水稲の葉が機器の センサ - 部分に接触しやすい状態にある。そしてその接触が電気的ノイズとなり、群落頂部にのみ突 風が吹いたように記録されたのかもしれない。鉛直方向の風向は、上向きと下向きの風の頻度が高い が、風速が小さいために、風のゆらぎが影響したと推察された。群落内に限ると、上から下に向かっ て吹いた風の頻度が 0.58、横方向の風が 0.41、そして下から上へ抜ける風の頻度が 0.02 であった。つ まり、これまでの観測と同様、群落内から群落外へは風が抜けにくい状態であったといえる。群落内 における水平方向の平均風速は 0.20 m/s であったことから、風が群落内部を水平方向に移動する速さ は、約 0.08 m/s (=0.41 × 0.20)と試算された。

鉛直方向の風向風速データであるが,機器の不調による欠損データが多くなったこと,降雨による 故障などのため第4回で測定終了とした。

・第5回観測結果(観測日8月4日)

観測日の水田の様子を図 3.4-15 に示す。観測期間中,水平方向における1時間毎の平均,最大, 最小風速を表 3.4-12 に,風向の頻度を表 3.4-13 に示す。

水平方向の風速は,群落内部と群落頂部が同程度であり,群落上部の風速に対して 1/3~1/2 であった。風向頻度分布は,概ね東方向からの発生頻度が高かった。

・第6回観測結果(観測日8月23日)

観測日の水田の様子を図 3.4-16 に示す。観測期間中,水平方向における1時間毎の平均,最大, 最小風速を表 3.4-14 に,風向の頻度を表 3.4-15 に示す。

水平方向の風速は, 群落内部が 0.1~0.4 m/s とバラツキが小さいが, 群落頂部と群落上部では, よりバラツキが大きくなった。例えば, 群落内部における風速の変動係数は 0.24 であったが, 群落頂部

と群落上部では、それぞれ 0.46 および 0.38 であった。この観測時期からは台風による影響でイネが倒 伏しており、群落頂部の測定位置(70cm)は、イネの草丈(直立で 97cm、倒伏状態で 59cm)からす ると、時間によって群落上部を測定した場合と群落内部を測定した場合が混ざっている可能性がある。 風向頻度分布は、概ね東方向からの発生頻度が高くなった。

・第7回観測結果(観測日8月31日)

観測日の水田の様子を図 3.4-17 に示す。観測期間中,水平方向における1時間毎の平均,最大, 最小風速を表 3.4-16 に,風向の頻度を表 3.4-17 に示す。

水平方向の風速は, 群落内部が 0.1~0.4m/s とバラツキが小さいが, 群落頂部と群落上部ではバラ ツキが大きくなった。変動係数は, それぞれ 0.20, 0.40, および 0.42 であった。第6回観測時と同様, イネが倒伏しており, 群落頂部の測定位置(70cm)は, イネの草丈(直立で 92cm, 倒伏状態で 74cm) からすると,時間によって群落上部を測定した場合と群落内部を測定した場合が混ざっている可能性 がある。風向頻度分布は, 概ね東方向からの発生頻度が高くなった。

·第8回観測結果(観測日9月6日)

観測日の水田の様子を図 3.4-18 に示す。観測期間中,水平方向における1時間毎の平均,最大, 最小風速を表 3.4-18 に,風向の頻度を表 3.4-19 に示す。

水平方向の風速は、第6回、第7回の観測結果と同様、群落内部が0.1~0.4m/sとバラツキが小さいが、群落頂部と群落上部ではバラツキが大きく、変動計数はそれぞれ0.19,0.36,そして0.43であった、イネの倒伏状態が影響しているものと推察された。また、風向頻度分布は、概ね東方向からの発生頻度が高くなった。

3.4.2.2. 群落内部における CO2 濃度変化

群落内から群落外への CO₂の移行を観察するため,水田に CO₂源としてドライアイスを投入し, その後の群落内外の CO₂濃度を調査した。調査の概略図を図 3.4-19 に示す。測定は,8月4日,23日, 24日および9月1日の計4回実施した。

図 3.4-20 に測定結果を示す。群落内の CO₂濃度はドライアイスの添加直後から急速に高くなり, 時間とともに低下した。一方,群落外の CO₂濃度は添加直後も変化はほとんどなく,測定終了までの 期間,ほぼ一定であった。二酸化炭素の比重は約 1.5 と空気より重いため,発生した CO₂は群落内に おいて蓄積されやすく,その結果生じる群落外大気との密度差により群落内から群落外へと拡散する ことが考えられる。しかしながら,本試験の結果は,この様な拡散による CO₂の移行は水平方向の移 動と比較すると極めて小さいことを示唆している。つまり,風速・風向の観測結果から予想されたよ うに,群落が成長した状態では,群落内外の鉛直方向ではガス交換がほとんど起こらないことが確認 できた。

群落内部の CO₂ 濃度は,非常に細かく変動してた。これは群落内部の風速に依存し,風速が大き いと拡散して CO₂ 濃度が低くなり,風速が小さいとその発生場所に停滞して CO₂ 濃度が高くなるもの と考えられる。この考えは現場における観察結果からも裏付けされる。つまり,風が停滞するとドラ イアイスから発生した煙が蓄積し,風が吹くことによりその煙が拡散しなくなることを目視確認した。

3.4.3. 近傍大気 - 環境大気間の移行パラメータの検討

圃場における群落上部,頂部および内部における水平方向と鉛直方向の風速の観測の結果を反映し, より現実的な移行パラメータについて検討した。 3.4.3.1. 移行パラメータの試算

圃場における風向風速の観測の結果から以下の点が明らかとなった。

- ・近傍大気(群落内部)から環境大気へのガス移行は, 圃場の外側(畔など)からガスが流入し, 群 落内部を水平移動して, 圃場の外(やはり畔など)へ流出する。
- ・群落内部から鉛直方向に群落上部ヘガス移行はしていない。
- ・上の結果は、田植え直後を除き水稲の成長段階に因らない。
- ・群落内部のガスは、鉛直方向に小さな渦を描きながら水平移動していると推定され、水平移動の速 度は 0.08 m/s から 0.28 m/s と試算された。但し、これは必ずしもガスの塊が水平移動している速度 ではなく渦状態の水平方向の速度である可能性がある。ガスの塊の水平移動速度はさらに小さい可 能性が高い。

以上より,近傍大気と環境大気の交換半減期は,圃場の大きさ(幅又は長さ)を群落内のガスの水 平移動速度で除することで算出でき,半減期としては,その大きさ(幅又は長さ)の半分の長さから 直接的に算出できる。

ここで、圃場の大きさが交換半減期を決定することになるが、様々な大きさの圃場を想定し、それ らを交換半減期の不確実さ幅として考慮することとした。群落内部のガスの水平移動速度については、 0.05 m/s から 0.25 m/s の範囲とした。近傍大気と環境大気の交換半減期を算出する際のパラメータは 以下のとおりである。

圃場の幅: 10 m~50 m を想定圃場の長さ: 30 m~100 m を想定群落内部のガスの水平移動速度: 0.05 m/s~0.25 m/s

また、これらのパラメータ値に基づく算出結果は以下のとおりとなった。

近傍大気と環境大気の交換半減期

下限値: $(10 \text{ m / 2}) / 0.25 \text{ m/s} = 20 \sec(約 2 \times 10^4 \text{ day})$ 上限値: $(100 \text{ m / 2}) / 0.05 \text{ m/s} = 1000 \sec = 0.28 \text{ hr}(約 0.01 \text{ day})$

鉛直方向でガス交換されるとして試算してきた昨年度までの結果とは大きく異なり,非常に速い半 減期となった。前述したように,ガス塊の水平移動速度はさらに小さい可能性があることを考慮すれ ば交換半減期はより長くなることも考えられるので,ここでは暫定的に下限値を0.01 day,上限値を1 day,基本解析で適用する値を0.1 dayとした。これは感度解析結果を考慮し最終的に設定することと した。下記の3段階でのイネの成長区分i)~iii)に対して同じ交換半減期,0.01~0.1~1 dayを適用した。

- i) 田植え~栄養成長期 : イネの群落状態が未発達
- ii) 栄養成長期後~生殖成長 : イネの群落成長
- iii) 生殖成長後~収穫まで : イネの群落成熟

3 段階のイネ成長区分における昨年度までの値は、それぞれ i) 0.1~0.3~0.5 day, ii) 0.5~2~4 day、 そして iii) 4~20~40 day であった。 3.4.3.2. 精緻化したモデルによる基本解析および感度解析

近傍大気と環境大気の交換半減期に基準値を適用した基本解析,および不確実さ幅を考慮した感度 解析を実施するとともに,変動させるパラメータを限定して不確実さ伝播解析を実施した。

モデル改良内容を検証するため、まずモデルパラメータの基準値を用いた基本解析を行う必要 がある。この基本解析の条件であるが、イネ成長段階の全ての期間において、近傍大気 - 環境大 気の交換半減期を 0.1 day とし、灌漑水と一緒に¹⁴C が流入してくるとした。また、対照として昨 年度のモデルパラメータの代表値による解析結果と比較した。

図 3.4-21 に基本解析と平成 27 年度モデルによる各移行経路の移行量を示す。近傍大気 - 環境 大気,灌漑水 - 近傍大気の移行量は,昨年度に比べて約1桁大きくなってるが,これは近傍大気 から環境大気へ速やかに¹⁴C が移行することで,灌漑水 - 近傍大気の移行量も増えるためである。

土壌 1 - 近傍大気, 土壌 1 - 灌漑水の移行量は, 昨年度と同程度の移行量を示したが, これは 土壌 1 - 近傍大気の移行が灌漑水による蓋効果が無くなった際に現れるものであり, その移行半 減期は昨年度から変更していないことによる。また, 土壌 1 - 灌漑水への移行も近傍大気の状態 (濃度等)に直接的な影響は受けないためと考えられる。

図 3.4-22 に、モデルの各コンパートメント内の¹⁴C 存在量を示す。昨年度モデルに比べて、イネ内の¹⁴C 量は 2 桁以上少なく、近傍大気内の¹⁴C 量も 1 桁以上少ない。近傍大気から環境大気への移行半減期が小さくなったことで、環境大気への移行が速やかで、近傍大気内の¹⁴C 量が少なくなり、それに伴いイネへの¹⁴C 取り込み量も少なくなったことが要因と考えられる。また、イネの生長期間に因らず、近傍大気 - 環境大気への移行半減期を一定としたことで、灌漑水の無い中干し期および収穫前落水時では、一旦上昇した近傍大気内¹⁴C 量が時間とともにシャープに低下していることが窺えた。近傍大気 - 環境大気の移行半減期は、中干し期以降では、昨年度の 20 day から 0.1 day と 1 桁以上も短くしたことで、結果には大きな影響があることが改めて分かった。

感度解析は、パラメータ値を変更した近傍大気 - 環境大気の移行半減期の上限値と下限値を用いて 実施した。図 3.4-23 に下限値 (0.01 day)を用いて行った、そして図 3.4-24 に上限値 (1 day)を用いて行った感度解析における環境コンパートメント間の¹⁴C 移行量の時間変化を示す。近傍大気から環境大気への移行量は、下限値で多く、上限値で少なくなった。

図 3.4-25 に下限値を用いて行った感度解析におけるイネコンパートメント内の¹⁴C 存在量の時間変 化を示す。同様に、図 3.4-26 に上限値を用いて行った感度解析におけるイネコンパートメント内の¹⁴C 存在量の時間変化を示す。下限値の結果は上限値の結果に比べて、近傍大気から環境大気への移行量 が多いため、近傍大気内の¹⁴C 量が減り、イネ内の¹⁴C 量も少なくなった。但し、¹⁴C 存在量の時間変 化の挙動はいずれも類似であった。

図 3.4-27 に基本解析と併せて,近傍大気と穂部の¹⁴C 存在量を,図 3.4-28 に近傍大気から環境大気 への¹⁴C 移行量の比較結果を示す。図から明らかなように,近傍大気から環境大気への移行量は,下 限値の結果が他の 2 つのケースと大きく異なり,穂部と近傍大気の存在量は,上限値の結果が他の 2 つのケースと離れている結果となった。近傍大気から環境大気への移行量に大きな違いがない上限値 と基本解析において,近傍大気と穂部の存在量では大きな差となっていることから,今回の感度解析 の上限-下限幅が,結果(穂部の¹⁴C 量など)に大きく影響する範囲であることを示唆している。

3.4.3.3. 精緻化したモデルによる不確実さ伝播解析

感度解析で見られたように、灌漑水から近傍大気への移行量等も、近傍大気 - 環境大気の移行半減 期に影響を受ける。すなわち、これらの関係には依存性がある。そのため、個々のパラメータを変化 させるよりも、複数のパラメータを変化させた場合に、どのような挙動になるかを把握することが重要と思われる。そこで、不確実さ伝播解析を実施することとした。変動させるパラメータは、近傍大気コンパートメントとの関連が高いと考えられる以下の3つの移行半減期とした。但し、この解析は 全体的な挙動を把握することが目的なので、サンプリング数は50とした。

・近傍大気 - 環境大気の交換半減期; 0.01~4 day, 一様分布

・灌漑水 - 近傍大気の移行半減期; 0.5~2 day, 一様分布

・土壌1-近傍大気の移行半減期;1.9~24 day,一様分布

図 3.4-29 に 3 つの移行半減期の不確実さ幅における 50 のサンプリング内容を示す。得られた結果 から、各パラメータが独立してランダムにサンプリングされていることが確認できた。

図 3.4-30 に不確実さ伝播解析の対象とした 3 つの移行半減期に対する, 収穫時における穂部内の¹⁴C 存在量との相関を示す。最も良い相関関係が得られたのは, 近傍大気 - 環境大気交換半減期と収穫時 における穂部¹⁴C 量との関係であり, 水稲全体モデルにおける環境移行パラメータのうち, 近傍大気 と環境大気の交換半減期が強い支配的因子であることが分かった。

第3.4.1.節で解析した近傍大気 - 環境大気交換半減期と収穫時における穂部¹⁴C量との関係と本節での解析結果を重ね相関性について調べたところ,第3.4.1.節では他の移行パラメータも変化させているにも関わらず,本節との結果とほぼ連続性があることが分かった(図3.4-31)。2つの不確実さ伝播解析の結果を合せて回帰分析をしたところ,交換半減期に対する累乗式であらわすことができ,そして非常に高い相関が得られた。また,近傍大気 - 環境大気の交換半減期がより小さい値になるにつれ,結果に対する変化が大きくなることが分かった。

3.4.3.4. 土壌からイネへの¹⁴C 移行係数の試算

水稲全体モデルの解析結果を基に、土壌からイネへの炭素の移行係数(TF)を試算した。炭素については、土壌中の炭素がガス化して近傍大気に移行した後にイネに吸収されるため、直接土壌から吸収される割合は少ない。このため他の元素とはTFの概念が異なるが、結果的に「土壌の炭素がコメに移行した」ものとして扱い、他の元素と同様の方法[TF=コメ内の¹⁴C 濃度(Bq/g)/土壌中の¹⁴C 濃度(Bq/g)]としてTFを算出することとした。TFを算定するに当たり、基本解析、および感度解析(上/下限値ケース)の解析結果を用いた。

解析の結果得られた土壌1と穂部の¹⁴C存在量の時間変化を図 3.4-32に示す。「土壌1の¹⁴C濃度」は、穂部の¹⁴C量が上昇を開始する時点と(90 day)と、収穫前落水時点(120 day)の両方の時点の ¹⁴C量とした。「コメ内の¹⁴C濃度」は、収穫時における穂部コンパートメント内の¹⁴C量とした。以 上の条件のもと、水稲全体モデルの解析結果から抽出した値を表 3.4-20に示す。土壌1コンパートメ ント内の day 90 における¹⁴C濃度は 4.63 × 10⁻⁵ Bq/g から 5.35 × 10⁻⁵ Bq/g であった。同じく、day 120 における土壌1コンパートメント内の¹⁴C濃度は 1.14 × 10⁻⁴ Bq/g から 1.17 × 10⁻⁴ Bq/g 2 なった。day 150 において収穫した穂部コンパートメント内の¹⁴C濃度は 1.39 × 10⁻⁵ Bq/g から 1.37 × 10⁻⁴ Bq/g の範囲で あった。以上の結果から、TF は 0.12 から 2.56 の範囲であると試算された。コンパートメント内の¹⁴C 濃度は、上限値と下限値を用いた感度解析においても大きな差は無く(表 3.4-20)、したがって、TF の変動は穂部コンパートメント内の¹⁴C濃度に依存していると言える。また、本年度実施した不確実 さ伝播解析および感度解析において、収穫時における穂部の¹⁴C量は近傍大気-環境大気の交換半減期 に強く影響されることから、最終的に TF は近傍大気-環境大気の交換半減期に依存すると言える。

IAEA では grain への炭素の TF として 0.1 を報告している (IAEA, 2003)。 δ^{13} C を用いた調査では,

イネによる安定炭素の TF は 0.05 から 2.2 と推定されており,この推定値は¹⁴C の TF にも適応できる 可能性が示唆されている(田上ら, 2009)。この様に,炭素のイネへの TF に関する情報はごく限られ ているのが,モデル解析から求めた¹⁴C の TF は,過去の報告とよく一致することが確認できた。

3.4.4. まとめ

本作業では、水稲全体モデルにおける環境移行パラメータの解析結果に及ぼす重要度を知るため、 12の環境移行パラメータを対象に不確実さ伝播解析を実施した。その結果、近傍大気と環境大気の交換半減期が最も重要度が高く、昨年度までに着目していた当該交換半減期の重要性が改めて認識できた。

そこで,実験および実水田における観測データを基に,イネ群落内のガスの動きを検討したところ, イネ群落内部のガスは鉛直方向には殆ど移動せず,群落内部を水平方向に移動していることが明らか となった。そのため,近傍大気と環境大気の交換半減期は,圃場の大きさと群落内部の水平方向の風 速に依存すると考えられた。この結果を受けて,当該交換半減期は0.01 day~1 day に変更した。この 値はイネ群落の成長状態に因らないことも分かった。また,算定した半減期は,昨年度まで検討した イネ群落内部のガスは鉛直方向に移動するとして算定した 20 day(基準値)の交換半減期は不適当で あることが判明した。

見直しした近傍大気と環境大気の交換半減期を用いて,基本解析及び感度解析を実施した。見直しした交換半減期の不確実さ幅では,解析結果(収穫時における穂部の¹⁴C 量等)に与える感度が大きいことが明らかとなった。また,感度解析では見直しした交換半減期と合わせて3つの環境移行パラメータによる不確実さ伝播解析を実施し,先の不確実さ伝播解析結果と重ね合わせたところ,近傍大気と環境大気の交換半減期は解析結果に対して連続性があること,そして,感度解析の結果でも示唆されたように,見直しした交換半減期の不確実さ幅では結果への影響が敏感であることが改めて確認できた。また,見直しした交換半減期を用いた解析結果から,土壌からコメへのTF を試算し,これまでに報告されている値(0.05-2.2;田上ら,2009)と類似する結果であることが示された。

今後はイネ作物内の移行パラメータの不確実さ伝播解析を実施し、重要なパラメータを把握することが重要である。また、多年数解析についても関連するパラメータの重要度について検討することが 必要と考える。また、近傍大気と環境大気の交換半減期の重要度が非常に高いことや、試算した TF にも影響することから、より妥当と思われる半減期を更に検討することが重要と考える。

引用文献

- Amano, H., Takahashi, T., Uchida, S., Matsuoka, S., Ikeda, H., Hayashi, H., Kurosawa, N., 2003. Development of a code MOGRA for predicting the migration of ground additions and its application to various land utilization areas. Journal of Nuclear Science and Technology 40, 975-979.
- Homma, T., Saltelli, A., 1992. LISA package user guide, Part 1: PREP (Statistical PRE Processor) preparation of input sample for Monte Carlo simulations program description and user guide, 33 pp.
- IAEA, 2003. Derivation of activity limits for the disposal of radioactive waste in near surface disposal facilities, IAEA-TECDOC-1380, 145 pp.
- Ishii, N., Ogiyama, S., Sakurai, S., Tagami, K., Uchida, S., 2015. Environmental transfer of carbon-14 in Japanese paddy fields, in: Nakajima, K. (Ed.), Nuclear Back-end and transmutation technology for waste disposal. Springer, Tokyo, pp. 303-309.

Saltelli, A., Homma, T., 1992. LISA : Package user guide - Part III : SPOP (Statistical POst Processor) :

Uncertainty and sensitivity analysis for model output : Program description and user guide, 51 pp.

田上恵子,石井伸昌,内田滋夫,2009. 炭素安定同位体自然存在比を用いた水稲による土壌起源炭素吸 収率及び炭素移行係数の推定. Radioisotopes 58, 641-648.

3. 5. おわりに

本事業は、微生物の代謝活性と¹⁴Cのガス化との関係を踏まえ、ガス化を考慮した環境移行パラメ ータについて検討することを目的としている。本年度は、¹⁴C源の初期濃度と¹⁴Cガス発生量との関係 および¹⁴Cガス発生量に対する温度の効果について調査した。また、微生物の調査では、温度に反応 して微生物群集構造が変化しうるのか、そして¹⁴Cガス化率が異なる土壌の微生物群集構造を調査し、 ¹⁴Cのガス化に重要な役割を担っている可能性がある細菌種の特定を試みた。最後に、農耕地におけ る¹⁴Cの挙動を解析するために水稲全体モデルの精緻化に資する微気象データの取得、およびそれら のデータから得られた移行パラメータをモデルに反映することを行った。

¹⁴C 源の初期濃度と ¹⁴C ガス発生量との関係では、地層処分場において金属 TRU 廃棄物から発生す る可能性が示唆されている[1,2-¹⁴C]酢酸ナトリウムを用いてトレーサ実験を行った。0.5 g の水田土壌 に対して最大 4.2×10⁵ Bq の ¹⁴C を添加したが、特に ¹⁴C ガス発生量が抑制されることはなかった。む しろ添加量が多くなることで、発生する ¹⁴C ガスの絶対量が増加することが分かった。一方、4.2×10³ Bq/mL 以下の ¹⁴C 濃度であれば、初期添加量に対する ¹⁴C ガスの発生する割合は一定であることが分 かった。このことは初期濃度に対する ¹⁴C ガス発生率は、灌漑水から大気への移行パラメータとして 利用できる可能性を示唆している。また、¹⁴C ガス発生量に対する温度の効果であるが、25℃から 30℃ の範囲であれば初期濃度に対する ¹⁴C ガス発生割合に影響ないが、この温度の範囲外であれば ¹⁴C ガ スの発生する割合が低くなることが分かった。今後は、ガス中の ¹⁴C が農作物への移行する割合につ いてデータが収集されることが望まれる。

昨年度の本事業において,温度は微生物の活動には影響するが,群集構造を変化させるほどの影響 はないことが示された。そこで,温暖な地域と寒冷な地域の水田土壌を用いて,そこに生息する微生 物群集構造に対する温度の効果について調査した。その結果,確かに温度は微生物群集構造を変化さ せるほどの効果がないことが確かめられた。今回の調査では7日培養後の群集構造に関して行われた。 増殖速度の速い微生物にとって7日間は増殖し定常状態に至るのに十分な時間ではあるが,地層処分 の安全評価においてはより長期的な培養を行い微生物群集に対する温度の効果を明らかにする必要が あるかもしれない。そして,放射性核種の挙動に影響する微生物のモニタリング手法の確立が望まれ る。

¹⁴CO₂の発生に寄与する細菌種の推定は、¹⁴C ガス化率の異なる土壌の微生物群集構造を比較し、ガス化率が高い土壌で特異的に検出される細菌種の帰属分類の推定により行った。このような細菌種は確かに存在し、そのうちの4種類について調査したところ、3種類が酢酸を利用する細菌であることが分かった。水田において、一時的に酢酸が蓄積することからも明らかなように、酢酸は微生物にとってそれほど利用しやすい有機物ではない。それにも拘わらず検出できたということは、やはり¹⁴C ガス発生率が高い土壌には酢酸を利用できる種が生きていける環境を提供していることが分かった。残りの1種は酢酸を生産する種であったことから、この土壌では酢酸がうまく循環している可能性が考えられる。

本事業で開発した水稲全体モデルにおいて,近傍大気と環境大気の移行半減期が,イネによる¹⁴Cの蓄積に影響することが示唆されている。本年度,不確実さ伝播解析を行うことにより,改めて近傍 大気と環境大気のガス交換速度が水稲による¹⁴Cの取り込みに影響することが確認できた。したがっ て,近傍大気と環境大気のガス交換をより現実的に評価することによりモデルの精緻化が達成できる といえる。そこで,実際の水田で風向風速データを取得し,近傍大気と環境大気のガス交換の知見と した。調査期間中,群落内の風は群落外の風と比較すると小さく,ほぼ一定方向に流れていることが 分かった。風の流れは地形にもよるため,様々な水田で同様のデータを蓄積することも重要である。

83

昨年までは群落内の大気(近傍大気)は鉛直方向にガス交換が行われるものとしてモデルを構築して いた。ところが実際の水田でデータを取得することにより,風は鉛直方向へはほとんど移動せず,水 平方向に移動していることが分かった。この結果を受け,これまでの近傍大気-環境大気移行半減期の 値を見直し,基本解析および感度解析を行った。見直した交換半減期の不確実さ幅では,結果への影 響が敏感であり,より妥当と思われる半減期について検討する必要がある。

プライマー	ターゲット	配列	文献
341F	Bacteria	5'-CCTACGGGAGGCAGCAG	Muyzer et al, 1993
907R	Bacteria	5'-CCGTCAATTCCTTT(A/G)AGTTT	Muyzer et al, 2004
PARCH340f	Archae	5'-GCCTACGGGG(C/T)GCA(C/G)CAG	Øvreås et al, 1997
PARCH519r	Archae	5'-TTACCGCGGC(T/G)GCTG	Øvreås et al, 1997
GC clamp 1		5'-CGCCCGCCGCCCCGCGCCCGTCCCGCCGCCCCGCCCG	Muyzer et al, 2004
GC clamp 2		5'-CGCCCGCCGCGCGGGGGGGGGGGGGGGGGGGGGGGGG	Øvreås et al, 1997

表 3.3-1 微生物群集構造解析に用いたプライマー

GC clamp 1は341Fの5'末端に付加した。 GC clamp 2はPARCH340fの5'末端に付加した。

表 3.3-2 切り出したバンドの遺伝子配列

Band ID	Sequeice
CS07	CCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGAAAGCCTGATGCAGCAACGCCGCGTGAGTGA
CS08	CCTACGGGAGGCAGCAGTGGGGAATTTTGGACAATGGGGGCAACCCTGATCCAGCAATGCCGCGTGAGTGA
CS09	CCTACGGGAGGCAGCAGTAGGGAATCATCCGCAATGGACGAAAGTCTGACGGTGCAACGCCGCGTGAGCGATGAAGGCCTTCGGGTCGTAAAGCTCTGTTGTCAGGGAA GGACAAGTATCGGAGTAACTGCCGGTACCTTGACGGTACCTGACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGG AATTATTGGGCGTAAAGCGCGCGCAGGCGGTCCTTTAAGTCTGATGTAAAGCCCACGGCTCAACCGTGGAGGGTCATTGGAAACTGGGGGACTTGAGTGCGGAAAGAGG AAAGCGGAATTCCACGTGTAGCGGTGAATGCGTAGAGATGTGGAAGGAA
CS10	CCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGGCGCAAGCCTGACGGAGCAACGCCGCGTGAGTGA
CS11	CCTACGGGAGGCAGCAGTGGGGAATTTTGGACAATGGGCGCAAGCCTGATCCAGCCATTCCGCGTGCAGGATGAAGGCCCTCGGGTTGTAAACTGCTTTTGTACGGAAC GAAACGGCCTGCTCTAATACAGCGGGCTAATGACGGTACCGTAAGAATAAGCACCGGCTAACTACGTGCCAGCAGCCGCGGAATACGTAGGGTGCGAGCGGCGAGCGGAAC AATTACTGGGCGTAAAGCGTGCGCGAGGCGGTTTTGTAAGACAGGTGTGAAATCCCCGGGCTAACCACTGCGAGACTGCACTGCAGGGCGCAGAGG GGGATGGAATTCCGCGTGTAGCAGTGGAATGCGTAGATATGCGGAGGGAACACCGATGGCGAAGGCAATCCCCTGGGCCTGCACTGCACGACGCCTCAGCGCCTGCACCGCCGAAGGCGAAGCGCGGG AGCAAACAGGATTAGATACCCTGGTGGAATGCGTAGATATGCGGAGGGAACACCGATGGCCAAGGCAATCCCCTGGGCCTGCACTGACGCCAAGGCTGAAGCTGACGCCCGG AGCAAACAGGATTAGATACCCTGGTAGTCCACGCCCTAAACGATGTCAACTGCTTGTGGGCCTTCACTGGCTCAGTAACGAAGCTAACGCGTGAAGTTGACCGCCTGG GGAGGCCGCAAGGTTGAAACCCAAAGGAATTGACGG

適用条件等	現在設定値	不確実さ幅	分布形	単位
0-79day (中干し前)	0.3	0.1-0.5	一様	day
80-90day (中干し期)	2	054	. 144	dov
120-150day (収穫前落水)	2	0.3-4	尔农	uay
91-119day (中干し以降)	20	4-40	一様	day
	2	0.5-2	一様	day
	25	4-25	一様	day
灌漑水が無い時; 水稲生育期間	2.5	1.9-24	一様	day
灌漑水が無い時; 水稲生育期間ではない時	67	27-114	一様	day
灌漑水が無い時	25	4-25	一様	day
	6.1	1.9-24	一様	day
	6.1	1.9-24	一様	day
	1.5	1.5-10	一様	day
	2	0.5-2	一様	day
考慮しない	10000	-		day
考慮しない	10000	—		day
稲刈り直後	0.1	_		day
	730	730-2810		day
	73	73-168		day
	適用条件等 0-79day (中干し前) 80-90day (中干し期) 120-150day (収穫前落水) 91-119day (中干し以降) 灌漑水が無い時; 水稻生育期間 灌漑水が無い時; 水稻生育期間ではない時 灌漑水が無い時; 水稻生育期間ではない時 灌漑水が無い時; 水稻生育期間ではない時 潜漑水が無い時; 水稻生育期間ではない時 潮流水が無い時; 水稻生育期間ではない時 水稻生育期間ではない時 潮流水が無い時; 水稻生育期間ではない時 潮流水が無い時; 水稻生育期間ではない時 潮流水が無い時; 水稻生育期間ではない時 潮流水が無い時; 適応水が無い時; 小稻生育期間ではない時 第歳しない 稻刈り直後	適用条件等 現在設定値 0-79day (中干し前) 0.3 80-90day (中干し期) 2 120-150day (収穫前落水) 2 91-119day (中干し以降) 20 2 25 灌漑水が無い時; 2.5 灌漑水が無い時; 67 水稲生育期間ではない時 67 灌漑水が無い時 25 6.1 1.5 2 3 考慮しない 10000 考慮しない 10000 考慮しない 10000 730 73	適用条件等現在設定値不確実さ幅0-79day (中干し前)0.30.1-0.580-90day (中干し期)20.5-4120-150day (収穫前落水)20.5-291-119day (中干し以降)204.4020.5-225254.25灌漑水が無い時; 水稻生育期間 灌漑水が無い時;2.51.9-24灌漑水が無い時; 水稻生育期間ではない時6727-114灌漑水が無い時254.256.11.9-246.11.9-241.51.5-1020.5-237373-168	適用条件等 現在設定値 不確実さ幅 分布形 0-79day (中干し前) 0.3 0.1-0.5 一様 80-90day (中干し期) 2 0.5-4 一様 91-119day (中干し以降) 20 4-40 一様 2 0.5-2 一様 2 0.5-2 一様 灌漑水が無い時; 2.5 1.9-24 一様 灌漑水が無い時; 2.5 4-25 一様 灌漑水が無い時; 6.7 27-114 一様 灌漑水が無い時; 6.1 1.9-24 一様 潜漑水が無い時; 2 0.5-2 一様 考慮しない 6.1 1.9-24 一様 1.5 1.5-10 一様 1.5 1.5-10 一様 考慮しない 10000 - 730 730-2810 -

表 3.4-1 環境コンパートメント間の移行半減期のパラメータと不確実さ伝播解析の

対象パラメータ

表 3.4-2 収穫時の穂部内¹⁴C存在量に対する環境移行パラメータの寄与

変数	PCC		PRCC	
	決定係数(R ²)	順位	決定係数(R ²)	順位
近傍大気⇔環境大気(中干し前)	-0.06	10	0.04	11
近傍大気⇔環境大気(中干し期)	-0.2	7	-0.02	12
近傍大気⇔環境大気 (中干し後)	0.87	1	0.92	1
灌漑水→近傍大気	0.02	12	-0.05	9
近傍大気→灌漑水	0.21	6	0.22	6
土壌1→近傍大気(水稲生育期、灌漑水無し)	-0.75	2	-0.75	2
土壌1→近傍大気(水稲無し、灌漑水無し)	-0.12	8	-0.16	7
近傍大気→土壌1(灌漑水無し)	0.57	4	0.64	4
土壤1→灌溉水	0.27	5	0.28	5
灌溉水→土壤1	0.03	11	0.05	10
土壤2→土壤 1	-0.62	3	-0.64	3
灌溉水→土壤2	-0.11	9	-0.08	8

PCC;部分相関係数

PRCC;ランク部分相関係数

		古十	(am)		風速	風向計の	設置位置	(cm)	
観測	時期	早入	(CIII)		水平			鉛直	
		直立	倒状	内部	頂部	上部	内部	頂部	上部
第1回	2016.6.15	23		21	79	108	18	42	94
第2回	2016.7.12	67		21	50	108	18	42	94
第3回	2016.7.20	75		21	64	108	18	57	94
第4回	2016.7.28	83		21	64	108	18	73	94
第5回	2016.8.4	94		21	70	108		観測できず	
第6回	2016.8.23	97	59	21	70	108		観測できず	
第7回	2016.8.31	92	74	21	70	108		観測できず	
第8回	2016.9.6	94	69	21	70	108		観測できず	

表 3.4-3 観測日毎の水稲草丈と風向風速計の設置位置

			最小	0.16	0.20	0.38	0.44	0.32	0.11	0.20	0.01	0.03	0.09	0.01	0.04	0.03	0.01	0.05	0.09	0.03	0.06	0.02	0.03	0.01	0.03	0.02	0.01	0.16
		群落上部	最大	2.29	3.03	2.35	2.39	2.07	1.38	1.20	1.62	1.00	0.93	0.74	1.26	0.60	0.80	0.80	1.17	1.14	1.73	1.86	1.45	1.58	1.53	1.51	1.97	1.93
			平均風速	1.40	1.60	1.27	1.19	0.97	0.75	0.68	0.45	0.52	0.38	0.33	0.39	0.23	0.27	0.37	0.49	0.50	0.54	0.93	0.38	0.77	0.56	0.55	0.86	0.82
	n/s)		最小	0.87	0.34	0.25	0.19	0.09	0.37	0.32	0.29	0.36	0.58	0.62	0.38	0.64	0.50	0.61	0.37	0.42	0.13	0.13	0.04	0.05	0.07	0.05	0.13	0.20
	5向風速 (群落 頂部	最大	2.80	1.34	1.25	1.22	1.02	1.10	1.11	1.17	1.24	1.16	1.46	1.20	1.21	1.36	1.03	1.00	1.49	1.79	1.71	1.09	0.96	0.89	0.94	1.74	1.27
	鉛直フ		平均風速	1.37	0.87	0.71	0.66	0.65	0.70	0.73	0.87	0.81	0.92	0.97	0.87	0.96	0.93	0.80	0.74	0.74	0.81	0.78	0.38	0.42	0.43	0.40	0.84	0.76
			最小	0.17	0.06	0.08	0.24	0.26	0.15	0.11	0.03	0.01	0.04	0.02	0.01	0.00	0.01	0.04	0.05	0.05	0.01	0.04	0.01	0.04	0.02	0.03	0.07	0.07
		洋落内部	最大	0.96	1.37	1.11	0.99	1.24	0.83	0.73	0.63	0.40	0.48	0.36	0.39	0.36	0.32	0.32	0.49	0.54	0.61	0.84	0.53	0.74	0.53	0.50	1.06	0.67
		HR.	平均風速	0.57	0.64	0.57	0.56	0.56	0.44	0.38	0.23	0.21	0.16	0.13	0.16	0.11	0.11	0.15	0.20	0.23	0.22	0.25	0.20	0.24	0.23	0.20	0.40	0.37
			最小	0.16	0.20	0.38	0.44	0.32	0.11	0.20	0.01	0.03	0.09	0.01	0.04	0.03	0.01	0.05	0.09	0.03	0.06	0.02	0.03	0.01	0.03	0.02	0.01	0.16
		堤 丁 梨 実	最大	2.29	3.03	2.35	2.39	2.07	1.38	1.20	1.62	1.00	0.93	0.74	1.26	0.60	0.80	0.80	1.17	1.14	1.73	1.86	1.45	1.58	1.53	1.51	1.97	1.93
		H4	平均風速	1.40	1.60	1.27	1.19	0.97	0.75	0.68	0.45	0.52	0.38	0.33	0.39	0.23	0.27	0.37	0.49	0.50	0.54	0.93	0.38	0.77	0.56	0.55	0.86	0.82
自の風速	n/s)		最小	0.87	0.34	0.25	0.19	0.09	0.37	0.32	0.29	0.36	0.58	0.62	0.38	0.64	0.50	0.61	0.37	0.42	0.13	0.13	0.04	0.05	0.07	0.05	0.13	0.20
沿直方回	向風速(n	洋落頂部	最大	2.80	1.34	1.25	1.22	1.02	1.10	1.11	1.17	1.24	1.16	1.46	1.20	1.21	1.36	1.03	1.00	1.49	1.79	1.71	1.09	0.96	0.89	0.94	1.74	1.27
および	水平方	R.	平均風速	1.37	0.87	0.71	0.66	0.65	0.70	0.73	0.87	0.81	0.92	0.97	0.87	0.96	0.93	0.80	0.74	0.74	0.81	0.78	0.38	0.42	0.43	0.40	0.84	0.76
る水平			最小	0.17	0.06	0.08	0.24	0.26	0.15	0.11	0.03	0.01	0.04	0.02	0.01	0.00	0.01	0.04	0.05	0.05	0.01	0.04	0.01	0.04	0.02	0.03	0.07	0.07
におけ		详落内部	最大	0.96	1.37	1.11	0.99	1.24	0.83	0.73	0.63	0.40	0.48	0.36	0.39	0.36	0.32	0.32	0.49	0.54	0.61	0.84	0.53	0.74	0.53	0.50	1.06	0.67
回観測日			平均風速	0.57	0.64	0.57	0.56	0.56	0.44	0.38	0.23	0.21	0.16	0.13	0.16	0.11	0.11	0.15	0.20	0.23	0.22	0.25	0.20	0.24	0.23	0.20	0.40	0.37
第1回		間範囲	end	15:29	16:29	17:29	18:29	19:29	20:29	21:29	22:29	23:29	0:29	1:29	2:29	3:29	4:29	5:29	6:29	7:29	8:29	9:29	10:29	11:29	12:29	13:29	14:29	15:00
表 3.4-4		観測時后	start	14:30	15:30	16:30	17:30	18:30	19:30	20:30	21:30	22:30	23:30	0:30	1:30	2:30	3:30	4:30	5:30	6:30	7:30	8:30	9:30	10:30	11:30	12:30	13:30	14:30

旁
Ē
風
6
Ē
方
间
部
3
ц Ц
10
1 T
1/1
N N
5
$\tilde{\sim}$
44
2
Ш
浭
邂
Π
Ч
箫
Ś
4.
ШX
ΠM

表	3.4-5 第	:1 回観測日	1における	水平およ	び鉛直方向	肓の風向頻	庾
水平		頻度		鉛直		頻度	
方位	群落内部	群落頂部	群落上部	方位	群落内部	群落頂部	群落上部
北-北東	6.8.E-0	4 2.7.E-03	2.7.E-02	上風	5.5.E-02	9.3.E-02	3.5.E-02
北東-東	8.3.E-0	2 1.5.E-01	4.5.E-01	下風	2.9.E-02	4.2.E-02	4.3.E-02
東-南東	7.0.E-0	1 6.0.E-01	4.4.E-01	横風	9.2.E-01	8.7.E-01	9.2.E-01
南東-南	2.2.E-0	1 2.2.E-01	8.1.E-02				
南-南西	0.0.E+0	0 2.1.E-02	0.0.E+00				
南西-西南	0.0.E+0	0 0.0.E+00	0.0.E+00				
西-北西	0.0.E+0	0 0.0.E+00	0.0.E+00				
北西-北	0.0.E+0	0 0.0.E+00	0.0.E+00				

6
Ē
Ē
Ш
金
\mathcal{P}
Ц
22
1/1
FT.
¥.
N
+
$\tilde{2}$
4Æ
ど
Ш
乬
則
簷
미
-
骶

1

		最小	0.14	0.18	0.09	0.07	0.03	0.03	0.04	0.02	0.03	0.01	0.06	0.07	0.03	0.03	0.01	0.01	0.01	0.08	0.01	0.06	0.03	0.03	0.01	0.02	0.02
	群落上部	最大	2.03	2.06	1.58	1.07	0.72	0.75	0.36	0.45	0.34	0.38	0.48	0.55	0.33	0.58	0.41	0.40	0.58	0.84	0.78	0.84	0.76	0.58	0.46	1.19	1.01
		平均風速	0.93	0.88	0.63	0.52	0.28	0.24	0.19	0.13	0.16	0.16	0.16	0.28	0.16	0.25	0.11	0.17	0.20	0.34	0.27	0.29	0.25	0.22	0.17	0.41	0.26
(s/u)		最小	0.01	0.02	0.01	0.01	0.01	0.01	0.05	0.06	0.05	0.06	0.08	0.06	0.09	0.09	0.10	0.10	0.11	0.10	0.02	0.01	0.01	0.01	0.00	0.01	0.00
5向風速 1	洋落 頂部	最大	0.33	0.28	0.20	0.14	0.16	0.14	0.13	0.12	0.13	0.13	0.16	0.20	0.16	0.17	0.16	0.19	0.23	0.24	0.22	0.16	0.09	0.10	0.09	0.13	0.10
鉛直方	É	平均風速	0.11	0.10	0.09	0.07	0.06	0.07	0.08	0.09	0.09	0.09	0.12	0.12	0.13	0.13	0.12	0.14	0.16	0.17	0.10	0.05	0.05	0.04	0.04	0.05	0.04
		最小	0.04	0.03	0.03	0.01	0.00	0.01	0.03	0.01	0.03	0.04	0.05	0.06	0.06	0.04	0.02	0.07	0.02	0.04	0.12	0.29	0.34	0.28	0.24	0.23	0.26
	群落内部	最大	0.23	0.18	0.20	0.17	0.11	0.10	0.09	0.09	0.09	0.09	0.10	0.12	0.10	0.10	0.13	0.12	0.15	0.36	0.35	0.41	0.40	0.39	0.34	0.33	0.36
		平均風速	0.11	0.10	0.10	0.08	0.05	0.04	0.06	0.04	0.06	0.07	0.08	0.09	0.08	0.07	0.08	0.10	0.08	0.18	0.26	0.34	0.37	0.35	0.28	0.28	0.30
		最小	0.67	0.70	0.53	0.44	0.20	0.08	0.01	0.02	0.01	0.02	0.05	0.19	0.09	0.11	0.00	0.02	0.04	0.21	0.07	0.10	0.12	0.15	0.04	0.23	0.18
	群落上部	最大	2.09	2.52	2.07	1.79	1.23	1.08	0.63	0.60	0.39	0.38	0.50	0.79	0.50	0.79	0.61	0.50	1.02	1.23	1.14	0.77	1.21	0.77	0.81	1.37	1.15
		平均風速	1.46	1.46	1.17	1.04	0.73	0.46	0.19	0.29	0.20	0.17	0.25	0.50	0.30	0.39	0.15	0.26	0.46	0.63	0.54	0.42	0.47	0.40	0.39	0.63	0.52
n/s)		最小	0.04	0.07	0.02	0.02	0.02	0.03	0.02	0.00	0.01	0.02	0.06	0.07	0.02	0.05	0.07	0.05	0.05	0.04	0.02	0.01	0.01	0.00	0.02	0.01	0.01
向風速(眸落頂部	最大	0.74	0.69	0.61	0.45	0.56	0.31	0.29	0.10	0.13	0.13	0.23	0.26	0.14	0.24	0.16	0.16	0.36	0.31	0.27	0.22	0.18	0.17	0.24	0.28	0.29
水平方		平均風速	0.34	0.32	0.26	0.21	0.17	0.15	0.08	0.03	0.05	0.08	0.11	0.14	0.08	0.11	0.11	0.10	0.17	0.14	0.10	0.08	0.06	0.06	0.08	0.08	0.08
		最小	0.02	0.04	0.06	0.07	0.08	0.10	0.24	0.18	0.16	0.20	0.20	0.28	0.33	0.30	0.46	0.46	0.45	0.37	0.11	0.08	0.09	0.07	0.12	0.05	0.06
	群落内部	最大	0.32	0.33	0.25	0.29	0.23	0.40	0.34	0.27	0.25	0.26	0.38	0.40	0.42	0.50	0.50	0.53	0.53	0.54	0.40	0.19	0.21	0.20	0.23	0.20	0.21
		平均風速	0.18	0.17	0.16	0.16	0.15	0.28	0.28	0.24	0.22	0.24	0.26	0.35	0.38	0.40	0.48	0.50	0.49	0.48	0.18	0.14	0.15	0.14	0.16	0.14	0.14
	見範囲	end	15:29	16:29	17:29	18:29	19:29	20:29	21:29	22:29	23:29	0:29	1:29	2:29	3:29	4:29	5:29	6:29	7:29	8:29	9:29	10:29	11:29	12:29	13:29	14:29	15:00
	観測時間	start	14:30	15:30	16:30	17:30	18:30	19:30	20:30	21:30	22:30	23:30	0:30	1:30	2:30	3:30	4:30	5:30	6:30	7:30	8:30	9:30	10:30	11:30	12:30	13:30	14:30

選
つ風
百0
£
直行
Ľ∯
Ч
*
×
4 2
j
N
Ē
観
第2
4im/
4-6
ю. 1112
ΨĤ

第2回観測日における水平および鉛直方向の風向頻度 表 3.4-7

•		INGI	0	608-17			XX
水平		頻度		即頃		頻度	
方位	群落内部	群落頂部	群落上部	方位	群落内部	群落頂部	群落上部
北-北東	1.0.E-01	2.9.E-02	1.7.E-02	「国一	6.4.E-01	2.0.E-02	1.1.E-01
北東-東	2.1.E-01	1.5.E-01	1.4.E-01	下風	7.1.E-04	2.9.E-01	3.4.E-02
東-南東	3.7.E-01	2.5.E-01	3.9.E-01	横風	3.6.E-01	6.9.E-01	8.6.E-01
南東-南	3.1.E-01	2.5.E-01	3.2.E-01				
南-南西	5.4.E-03	1.7.E-01	8.2.E-02				
南西-西	0.0.E+00	7.4.E-02	2.5.E-02				
西-北西	6.8.E-04	4.6.E-02	1.2.E-02				
光面-光	0.0.E+00	2.6.E-02	3.4.E-03				

		最小	0.07	0.11	0.07	0.21	0.21	0.10	0.03	0.02	0.07	0.11	0.23	0.14	0.17	0.08	0.00	0.06	0.34	1.42	2.07	2.57	1.12	2.84	6.61	7.76	
	群落上部	最大	1.65	1.43	1.61	2.04	1.50	2.03	1.67	1.33	1.48	1.63	1.53	1.57	1.88	1.00	0.98	1.09	2.49	2.43	3.14	3.29	3.31	6.71	9.55	11.86	
		平均風速	0.66	09.0	0.53	0.78	0.75	0.84	0.50	0.67	0.71	0.69	0.83	0.86	0.76	0.52	0.32	0.23	1.80	2.12	2.86	2.83	2.44	4.40	8.43	10.15	
1/S)		最小	0.02	0.06	0.04	0.04	0.04	0.05	0.01	0.03	0.04	0.03	0.05	0.04	0.05	0.03	0.05	0.09	2.53	6.01							
向風速 0	羊落頂部	最大	0.45	0.41	0.36	0.55	0.32	0.33	0.26	0.34	0.38	0.33	0.40	0.36	0.39	0.30	0.23	2.51	7.82	7.86							
鉛直方	÷÷÷	平均風速	0.20	0.18	0.15	0.16	0.15	0.15	0.10	0.13	0.14	0.14	0.16	0.17	0.16	0.13	0.11	0.42	5.74	7.38							
		最小	0.03	0.00	0.04	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.05	0.01	0.01	0.00	0.00	0.01	0.01	0.05	0.04	
	佯落内部	最大	0.19	0.21	0.16	0.17	0.16	0.15	0.09	0.10	0.10	0.15	0.17	0.27	0.13	0.13	0.13	0.14	0.13	0.11	0.11	0.12	0.11	0.15	0.21	0.22	
	me	平均風速	0.09	0.09	0.08	0.08	0.06	0.05	0.03	0.04	0.04	0.05	0.05	0.06	0.06	0.04	0.06	0.08	0.06	0.05	0.04	0.04	0.04	0.07	0.11	0.12	
		最小	0.52	0.53	0.46	0.35	0.39	0.23	0.23	0.28	0.41	0.38	0.42	0.46	0.41	0.43	0.13	0.04	0.21	0.20	0.30	0.45	0.33	0.25	0.21	0.45	0.29
	眸落上 部	最大	1.86	2.24	1.58	1.94	1.56	1.69	1.28	1.61	1.78	1.69	2.30	2.14	1.96	1.58	1.37	1.08	1.19	1.52	1.39	1.83	1.65	1.93	1.46	1.24	1.37
		平均風速	1.20	1.15	0.99	1.01	0.94	0.93	0.67	0.87	0.98	0.96	1.15	1.16	1.11	0.91	0.66	0.58	0.62	0.77	0.83	0.99	0.91	0.92	0.74	0.79	0.77
(s/u		最小	0.18	0.11	0.09	0.07	0.06	0.01	0.01	0.02	0.08	0.06	0.04	0.07	0.08	0.02	0.01	0.01	0.01	0.02	0.02	0.04	0.02	0.06	0.01	0.09	0.02
向風速 (r	洋落頂部	最大	0.91	0.83	0.91	0.86	0.98	0.94	0.60	0.71	0.56	1.00	0.67	0.77	0.66	0.69	0.45	0.54	0.46	0.54	0.69	0.65	0.91	0.67	0.50	0.52	0.46
水平方	ER.	平均風速	0.48	0.47	0.39	0.35	0.37	0.35	0.21	0.26	0.26	0.27	0.31	0.34	0.29	0.27	0.18	0.22	0.21	0.24	0.23	0.27	0.23	0.28	0.19	0.22	0.20
		最小	0.08	0.05	0.09	0.04	0.01	0.07	0.15	0.16	0.16	0.15	0.15	0.09	0.13	0.09	0.03	0.07	0.06	0.03	0.07	0.08	0.08	0.05	0.06	0.04	0.09
	详落内部	最大	0.38	0.31	0.26	0.34	0.32	0.36	0.38	0.40	0.43	0.47	0.43	0.39	0.34	0.28	0.19	0.21	0.24	0.28	0.28	0.30	0.33	0.32	0.27	0.23	0.22
	THC .	平均風速	0.19	0.18	0.17	0.14	0.14	0.21	0.28	0.29	0.29	0.27	0.27	0.25	0.22	0.18	0.11	0.13	0.13	0.14	0.16	0.19	0.22	0.16	0.14	0.13	0.14
	「範囲	end	15:39	16:39	17:39	18:39	19:39	20:39	21:39	22:39	23:39	0:39	1:39	2:39	3:39	4:39	5:39	6:39	7:39	8:39	9:39	10:39	11:39	12:39	13:39	14:39	14:49
	観測時間	start	14:40	15:40	16:40	17:40	18:40	19:40	20:40	21:40	22:40	23:40	0:40	1:40	2:40	3:40	4:40	5:40	6:40	7:40	8:40	9:40	10:40	11:40	12:40	13:40	14:40

おける水平および鉛直方向の風速
3回観測日(
表 3.4-8 第

表3.4-9 第3回観測日における水平および鉛直方向の風向頻度

			0. CIOSUL	608-17			XX
水平		頻度		鉛直		頻度	
方位	群落内部	群落頂部	群落上部	方位	群落内部	群落頂部	群落上部
北-北東	2.8.E-03	2.5.E-01	1.6.E-01	「国日	2.9.E-01	2.9.E-02	3.3.E-01
北東-東	7.4.E-02	2.7.E-01	5.2.E-01	下風	8.4.E-02	2.3.E-01	3.0.E-02
東-南東	5.9.E-01	2.7.E-01	2.4.E-01	横風	6.2.E-01	7.4.E-01	6.4.E-01
南東-南	3.1.E-01	1.3.E-01	7.1.E-02				
南-南西	1.9.E-02	6.2.E-03	6.9.E-04				
南西-西	0.0.E+00	4.1.E-03	0.0.E+00				
西-北西	7.0.E-04	6.9.E-03	0.0.E+00				
北西-北	0.0.E+00	6.6.E-02	4.8.E-03				

			最小	0.02	0.24	0.04	0.02	0.02	0.04	0.03	0.06	0.07	0.08	0.11	0.12	0.10	0.10	0.08	0.09	0.04	0.01	0.05	0.07	0.04	0.05	0.11	0.09	0.05
		群落上部	最大	1.34	1.57	1.20	0.63	0.42	0.29	0.37	0.36	0.17	0.27	0.40	0.28	0.24	0.53	0.38	0.59	0.71	0.70	0.85	0.99	0.76	0.72	2.23	1.39	1.03
			平均風速	0.47	0.67	0.36	0.16	0.16	0.12	0.13	0.14	0.12	0.15	0.21	0.19	0.15	0.21	0.20	0.32	0.25	0.25	0.35	0.34	0.28	0.29	0.60	0.64	0.53
	1/s)		最小	0.05	0.14	0.06	0.01	0.04	0.01	0.01	0.06	0.08	0.09	0.13	0.12	0.14	0.13	0.16	0.13	0.00	0.03	0.01	0.03	0.02	0.03	0.05	0.13	0.11
	向風速 0	羊落頂部	最大	0.51	0.72	0.61	0.23	5.89	3.83	0.18	5.85	0.16	0.30	0.27	0.25	0.21	0.36	0.41	0.44	0.42	0.44	0.44	0.31	0.29	0.70	0.68	1.24	0.77
澎	鉛直方	艳	平均風速	0.21	0.36	0.23	0.09	0.88	0.19	0.09	0.43	0.13	0.16	0.19	0.17	0.16	0.18	0.22	0.24	0.18	0.17	0.15	0.13	0.14	0.20	0.31	0.42	0.33
向の風			最小	0.01	0.01	0.01	0.00	0.00	0.00	0.02	0.01	0.01	0.03	0.07	0.05	0.06	0.05	0.07	0.04	0.06	0.04	0.00	0.01	0.02	0.03	0.05	0.02	0.05
沿直方		落内部	最大	0.16	0.17	0.12	0.10	0.12	0.11	0.06	0.06	0.09	0.10	0.11	0.11	0.09	0.10	0.11	0.11	0.16	0.16	0.12	0.10	0.13	0.16	0.20	0.19	0.14
および			平均風速	0.05	0.07	0.05	0.03	0.05	0.04	0.04	0.03	0.05	0.08	0.09	0.09	0.08	0.07	0.09	0.08	0.10	0.10	0.05	0.04	0.07	0.08	0.11	0.10	0.09
る水平			最小	0.03	0.47	0.11	0.03	0.03	0.01	0.02	0.04	0.03	0.01	0.05	0.01	0.02	0.05	0.02	0.19	0.19	0.04	0.11	0.02	0.05	0.27	0.50	0.35	0.40
におけ		落上部	最大	1.32	1.47	1.23	1.05	0.66	0.51	0.56	0.33	0.22	0.35	0.47	0.37	0.35	0.51	0.44	0.77	0.92	0.90	0.86	0.80	06.0	1.50	1.66	1.72	1.45
観測日		辑	平均風速	0.55	0.84	0.59	0.38	0.29	0.28	0.22	0.14	0.10	0.16	0.23	0.14	0.12	0.19	0.21	0.40	0.48	0.45	0.38	0.36	0.48	0.77	1.11	1.10	0.83
第4回	(s)		最小	0.01	0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.00	0.05	0.01	0.04	0.04	0.02	0.02	0.03	0.02	0.02	0.01	0.04	0.03	0.03	0.04	0.05	0.00
4-10	風速 (m.	落頂部	最大	0.26	0.44	0.31	0.22	0.32	0.14	0.13	0.06	0.07	0.13	0.12	0.11	0.11	0.11	0.15	0.25	0.43	0.29	0.38	0.20	0.38	0.39	0.60	0.63	0.34
表 3.	水平方向	雑	^五 均風速	0.10	0.14	0.11	0.08	0.12	0.06	0.05	0.03	0.03	0.08	0.06	0.07	0.07	0.07	0.08	0.12	0.13	0.13	0.14	0.12	0.13	0.18	0.25	0.26	0.13
			最小 马	0.06	0.06	0.07	0.11	0.19	0.17	0.10	0.11	0.11	0.13	0.11	0.11	0.12	0.12	0.14	0.28	0.36	0.31	0.06	0.09	0.12	0.05	0.08	0.05	0.04
		落内部	最大	0.26	0.30	0.22	0.34	0.37	0.27	0.22	0.16	0.15	0.18	0.17	0.18	0.18	0.18	0.32	0.45	0.53	0.50	0.48	0.26	0.31	0.32	0.32	0.34	0.30
		群	勾風速	0.15	0.15	0.14	0.18	0.28	0.22	0.14	0.13	0.12	0.15	0.15	0.15	0.15	0.16	0.18	0.36	0.44	0.39	0.25	0.16	0.19	0.18	0.18	0.18	0.15
		5囲	i和 pu	5:29	5:29	7:29	8:29	9:29	0:29	1:29	2:29	3:29	29	:29	:29	:29	:29	:29	:29	:29	:29	:29	0:29	1:29	2:29	3:29	4:29	5:00
		見測時間範	art e	:30 1:	:30 1(:30 1.	:30 18	:30 15	:30 2(:30 2	:30 22	:30 2:	:30 0	30 1	30 2	30 3	30 4	30 5	30 6	30 7	30 8	30 9	30 1(:30 1	:30 12	:30 1:	:30 14	:30 1:
		匍	st.	14	15	16	17	18	19	20	21	22	23	:0	Ξ	2:	3:	4	5:	:9	7:	8:	:6	10	11	12	13	14

łKJ
E E
6
Ē
R
直
慾
Ĝ
4
4¥ 1√1
ケン
N.
Ng
け
46
N
Ш
颩
観
Ē
4
第4
第4
10 第4

表3.4-11 第4回観測日における水平および鉛直方向の風向頻度

17 J	.+-11 77					н v / /жин у	头汉
大平		頻度		到直		頻度	
方位	群落内部	群落頂部	群落上部	方位	群落内部	群落頂部	群落上部
北-北東	6.2.E-03	7.0.E-02	4.3.E-02	「画」	5.8.E-01	3.8.E-01	3.8.E-01
北東-東	1.4.E-01	1.7.E-01	9.5.E-02	下風	1.6.E-02	1.6.E-01	1.7.E-02
東-南東	4.9.E-01	1.8.E-01	2.7.E-01	横風	4.1.E-01	4.5.E-01	6.0.E-01
南東-南	3.5.E-01	1.7.E-01	3.4.E-01				
南-南西	6.2.E-03	1.6.E-01	1.2.E-01				
南西-西	0.0.E+00	1.1.E-01	4.0.E-02				
西-北西	0.0.E+00	9.9.E-02	5.1.E-02				
北西-北	0.0.E+00	3.3.E-02	4.4.E-02				

					水平方	「向風速(m/s)			
観測時	間範囲		群落内部			群落頂部			群落上部	
start	end	平均風速	最大	最小	平均風速	最大	最小	平均風速	最大	最小
14:30	15:29	0.22	0.33	0.16	0.07	0.21	0.01	0.25	0.65	0.04
15:30	16:29	0.19	0.28	0.13	0.12	0.34	0.01	0.56	1.08	0.21
16:30	17:29	0.22	0.34	0.09	0.13	0.31	0.02	0.77	1.41	0.33
17:30	18:29	0.24	0.33	0.16	0.10	0.27	0.00	0.53	0.95	0.15
18:30	19:29	0.27	0.31	0.24	0.09	0.20	0.01	0.33	0.59	0.05
19:30	20:29	0.25	0.29	0.21	0.09	0.21	0.01	0.33	0.69	0.13
20:30	21:29	0.24	0.29	0.21	0.09	0.19	0.04	0.31	0.49	0.17
21:30	22:29	0.22	0.25	0.19	0.11	0.21	0.04	0.32	0.66	0.03
22:30	23:29	0.23	0.26	0.19	0.10	0.17	0.07	0.23	0.47	0.06
23:30	0:29	0.21	0.26	0.17	0.10	0.18	0.05	0.21	0.58	0.05
0:30	1:29	0.22	0.25	0.17	0.11	0.16	0.09	0.19	0.42	0.05
1:30	2:29	0.18	0.21	0.15	0.10	0.13	0.07	0.11	0.21	0.02
2:30	3:29	0.17	0.19	0.14	0.11	0.16	0.08	0.15	0.34	0.01
3:30	4:29	0.15	0.18	0.11	0.12	0.22	0.09	0.25	0.46	0.06
4:30	5:29	0.15	0.18	0.13	0.09	0.14	0.05	0.16	0.39	0.03
5:30	6:29	0.22	0.29	0.17	0.09	0.16	0.04	0.17	0.67	0.02
6:30	7:29	0.28	0.35	0.22	0.09	0.24	0.01	0.56	1.06	0.22
7:30	8:29	0.27	0.39	0.17	0.12	0.25	0.03	0.60	1.22	0.18
8:30	9:29	0.14	0.26	0.06	0.11	0.33	0.01	0.46	0.95	0.16
9:30	10:29	0.16	0.29	0.09	0.10	0.27	0.03	0.33	0.66	0.06
10:30	11:29	0.23	0.35	0.15	0.10	0.25	0.01	0.41	0.96	0.15
11:30	12:29	0.26	0.39	0.18	0.10	0.26	0.01	0.47	1.07	0.06
12:30	13:29	0.20	0.31	0.09	0.10	0.27	0.00	0.55	1.09	0.14
13:30	14:29	0.16	0.27	0.07	0.08	0.26	0.01	0.53	1.08	0.13
14:30	15:00	0.14	0.26	0.05	0.08	0.20	0.01	0.49	0.96	0.20

表 3.4-12 第5回観測日における水平方向の風速

表 3.4-13 第5回観測日における水平方向の風向頻度

水平		頻度			
方位	群落内部	群落頂部	群落上部		
北-北東	6	48	46		
北東-東	174	442	58		
東-南東	1141	209	220		
南東-南	131	254	525		
南-南西	0	176	331		
南西-西	0	150	144		
西-北西	0	139	94		
北西-北	0	31	35		

					水平力	「向風速((m/s)			
観測時	間範囲		群落内部			群落頂部			群落上部	
start	end	平均風速	最大	最小	平均風速	最大	最小	平均風速	最大	最小
14:49	15:48	0.27	0.43	0.16	0.72	1.24	0.27	0.98	1.57	0.43
15:49	16:48	0.29	0.41	0.17	0.60	1.22	0.23	0.90	1.77	0.31
16:49	17:48	0.41	0.55	0.28	0.53	1.29	0.19	0.83	1.59	0.38
17:49	18:48	0.34	0.44	0.29	0.21	0.64	0.02	0.34	0.96	0.05
18:49	19:48	0.35	0.45	0.31	0.20	0.48	0.03	0.38	1.16	0.05
19:49	20:48	0.35	0.44	0.30	0.25	0.56	0.03	0.55	0.90	0.13
20:49	21:48	0.32	0.38	0.25	0.27	0.50	0.05	0.65	1.11	0.23
21:49	22:48	0.31	0.49	0.11	0.51	0.96	0.01	1.21	2.16	0.48
22:49	23:48	0.19	0.31	0.11	0.27	0.69	0.04	0.75	1.40	0.24
23:49	0:48	0.17	0.26	0.13	0.15	0.35	0.03	0.38	0.96	0.07
0:49	1:48	0.17	0.21	0.12	0.14	0.58	0.01	0.31	1.23	0.03
1:49	2:48	0.20	0.35	0.15	0.20	0.58	0.03	0.47	1.19	0.11
2:49	3:48	0.18	0.26	0.10	0.24	0.48	0.08	0.62	1.31	0.21
3:49	4:48	0.25	0.39	0.08	0.45	1.02	0.09	0.69	1.47	0.22
4:49	5:48	0.23	0.34	0.17	0.35	0.68	0.05	0.47	1.21	0.02
5:49	6:48	0.21	0.29	0.16	0.23	0.58	0.01	0.37	0.74	0.05
6:49	7:48	0.29	0.46	0.17	0.32	0.80	0.06	0.71	1.53	0.06
7:49	8:48	0.23	0.36	0.12	0.25	0.53	0.04	0.51	0.94	0.06
8:49	9:48	0.30	0.48	0.19	0.48	0.94	0.10	0.84	1.61	0.35
9:49	10:48	0.31	0.45	0.19	0.65	1.04	0.32	1.21	1.82	0.74
10:49	11:48	0.31	0.51	0.16	0.50	1.10	0.11	0.92	1.75	0.24
11:49	12:48	0.31	0.59	0.05	0.44	1.55	0.05	0.74	2.24	0.22
12:49	13:48	0.35	0.47	0.28						
13:49	14:52	0.37	0.53	0.25						

表 3.4-14 第6回観測日における水平方向の風速

表 3.4-15 第6回観測日における水平方向の風向頻度

水平		頻度	
方位	群落内部	群落頂部	群落上部
北-北東	0	166	223
北東-東	135	176	273
東-南東	1178	231	223
南東-南	127	236	249
南-南西	0	210	178
南西-西	0	90	60
西-北西	0	54	20
北西-北	0	100	36

					水平プ	5向風速	(m/s)			
観測時	間範囲		群落内部			群落頂部	3		群落上部	
start	end	平均風速	最大	最小	平均風速	最大	最小	平均風速	最大	最小
14:23	15:22	0.28	0.56	0.06	1.23	2.81	0.50	1.93	3.50	0.89
15:23	16:22	0.32	0.66	0.11	1.45	2.47	0.73	2.10	3.54	1.02
16:23	17:22	0.37	0.62	0.14	1.02	2.12	0.46	1.48	3.08	0.54
17:23	18:22	0.32	0.62	0.09	1.11	1.79	0.26	1.54	2.34	0.74
18:23	19:22	0.19	0.33	0.09	0.98	1.49	0.55	1.15	1.91	0.57
19:23	20:22	0.17	0.26	0.09	0.62	1.55	0.20	1.00	1.85	0.62
20:23	21:22	0.18	0.22	0.14	0.41	0.70	0.18	0.95	1.47	0.60
21:23	22:22	0.21	0.27	0.16	0.50	0.84	0.29	1.07	1.51	0.72
22:23	23:22	0.22	0.28	0.16	0.45	0.83	0.24	1.03	1.62	0.75
23:23	0:22	0.23	0.30	0.14	0.66	1.39	0.26	1.19	1.72	0.72
0:23	1:22	0.25	0.40	0.10	0.62	1.22	0.24	0.95	1.69	0.49
1:23	2:22	0.23	0.33	0.15	0.54	0.96	0.22	0.89	1.37	0.43
2:23	3:22	0.22	0.33	0.17	0.57	0.93	0.23	0.88	1.46	0.48
3:23	4:22	0.22	0.27	0.17	0.42	0.82	0.15	0.66	1.29	0.09
4:23	5:22	0.22	0.29	0.15	0.51	0.83	0.20	0.77	1.42	0.20
5:23	6:22	0.20	0.24	0.15	0.33	0.46	0.19	0.34	0.88	0.03
6:23	7:22	0.24	0.37	0.17	0.55	0.85	0.28	0.58	1.11	0.09
7:23	8:22	0.28	0.43	0.18	0.60	1.01	0.26	0.80	1.82	0.34
8:23	9:22	0.35	0.48	0.19	0.67	1.30	0.38	0.85	1.82	0.31
9:23	10:22	0.26	0.42	0.15	0.71	1.55	0.37	0.80	1.50	0.27
10:23	11:22	0.28	0.50	0.11	0.65	1.21	0.25	0.87	2.19	0.39
11:23	12:22	0.25	0.41	0.15	0.62	1.07	0.36	0.83	2.00	0.39
12:23	13:22	0.23	0.36	0.12	0.55	1.00	0.23	0.70	1.35	0.05
13:23	14:22	0.22	0.32	0.15	0.45	0.76	0.20	0.49	1.27	0.03
14:23	14:56	0.25	0.37	0.17	0.55	0.96	0.25	0.58	1.22	0.21

表 3.4-16 第7回観測日における水平方向の風速

表 3.4-17 第7回観測日における水平方向の風向頻度

水平		頻度	
方位	群落内部	群落頂部	群落上部
北-北東	1	0	10
北東-東	6	0	4
東-南東	1269	0	3
南東-南	190	20	183
南-南西	3	780	708
南西-西	0	397	262
西-北西	0	237	163
北西-北	0	29	109

		水平方向風速(m/s)								
観測時間範囲			群落内部			群落頂部			群落上部	
start	end	平均風速	最大	最小	平均風速	最大	最小	平均風速	最大	最小
14:04	15:03	0.27	0.42	0.16	1.16	2.17	0.72	1.30	2.48	0.64
15:04	16:03	0.26	0.42	0.04	1.54	2.42	0.55	2.02	3.34	0.78
16:04	17:03	0.27	0.47	0.06	1.19	1.89	0.70	1.49	2.57	0.51
17:04	18:03	0.28	0.50	0.12	1.01	1.67	0.48	1.19	3.09	0.47
18:04	19:03	0.43	0.65	0.31	1.02	1.74	0.48	1.28	2.41	0.26
19:04	20:03	0.40	0.52	0.21	0.84	1.45	0.49	0.89	1.69	0.41
20:04	21:03	0.33	0.48	0.21	0.86	1.25	0.44	1.02	1.78	0.36
21:04	22:03	0.31	0.44	0.18	0.89	1.49	0.41	1.28	2.09	0.32
22:04	23:03	0.17	0.21	0.14	0.34	0.51	0.10	0.28	0.61	0.01
23:04	0:03	0.21	0.26	0.16	0.55	0.97	0.26	0.54	1.14	0.09
0:04	1:03	0.24	0.28	0.22	0.45	0.89	0.15	0.51	1.01	0.13
1:04	2:03	0.24	0.29	0.18	0.40	0.79	0.11	0.44	0.91	0.09
2:04	3:03	0.24	0.31	0.21	0.50	1.15	0.32	0.47	1.04	0.09
3:04	4:03	0.26	0.33	0.20	0.63	1.71	0.14	0.75	1.85	0.05
4:04	5:03	0.28	0.34	0.20	0.85	1.67	0.52	1.10	1.89	0.56
5:04	6:03	0.28	0.32	0.24	0.78	1.38	0.31	0.74	1.24	0.44
6:04	7:03	0.27	0.31	0.22	0.59	0.99	0.29	0.58	1.15	0.24
7:04	8:03	0.24	0.33	0.19	0.40	0.78	0.07	0.61	1.38	0.06
8:04	9:03	0.23	0.34	0.18	0.55	1.34	0.06	0.83	1.78	0.13
9:04	10:03	0.25	0.43	0.15	1.00	1.70	0.47	1.44	2.13	0.86
10:04	11:03	0.29	0.45	0.20	1.07	1.69	0.47	1.55	2.11	1.07
11:04	12:03	0.28	0.46	0.13	1.10	1.67	0.63	1.40	2.31	0.54
12:04	13:03	0.30	0.47	0.17	0.86	1.47	0.51	1.10	2.40	0.51
13:04	13:28	0.28	0.38	0.22	0.89	1.09	0.60	1.17	1.55	0.84

表 3.5-18 第8回観測日における水平方向の風速

表 3.4-19 第8回観測日における水平方向の風向頻度

水平	頻度						
方位	群落内部	群落頂部	群落上部				
北-北東	1	0	5				
北東-東	2	1	12				
東-南東	1255	5	36				
南東-南	146	158	376				
南-南西	0	745	655				
南西-西	0	420	239				
西-北西	0	58	71				
北西-北	0	0	2				
	day	下限值(感度解析)		基本解析		上限值(感度解析)	
--------------------------	-----	-----------	----------	----------	----------	-----------	----------
		土壌	穂部	土壌	穂部	土壌	穂部
¹⁴ C量 ※1	90	4.42		4.48		5.1	
(Bq) 1Bq流入量当たり	120	10.84		10.87		11.14	
	150		6.97E-04		1.26E-03		6.85E-03
¹⁴ C濃度 ※1	90	4.63E-05		4.70E-05		5.35E-05	
(Bq/g)	120	1.14E-04		1.14E-04		1.17E-04	
	150		1.39E-05		2.51E-05		1.37E-04
TF(移行係数)	90	0.30		0.53		2.56	
(dayは計算に使用した 土壌濃度の時期)	120	0.12		0.22		1.17	

表 3.4-20 水稲全体モデルによる移行係数の範囲

※1;コンパートメント内

図 3.2-1¹⁴C ガス発生量に対する初期¹⁴C 濃度の効果試験概要

図 3.2-2 発生した ¹⁴CO₂ ガス量の積算値

図 3.2-3 初期添加量に対する発生した¹⁴CO₂ガス積算量の割合

図 3.2-4 発生した ¹⁴CO₂ ガス量の積算値

図 3.2-5 初期添加量に対する発生した¹⁴CO₂ガス積算量の割合

図 3.3-1 異なる温度で培養した P2 土壌の微生物群集構造 矢印で示したバンドは 15℃以外の温度では不明瞭

図 3.3-2 異なる温度で培養した P11 土壌の微生物群集構造

図 3.3-3¹⁴C ガス化率の異なる土壌の DGGE のバンドパターン

0.02

図 3.3-4 DGGE ゲルより回収した DNA の分子系統樹

図 3.4-5 近傍大気コンパートメント内の¹⁴C存在量の経時変化 80-90 day は中干しのため、120 day 以降は収穫前の落水のために灌漑水が無い状態となる。

図 3.4-8 近傍大気->環境大気の¹⁴C 移行量の経時変化 80-90 day は中干しのため、120 day 以降は収穫前の落水により灌漑水が無い状態となる。

図 3.4-9 相関の高い上位 4 つの環境移行パラメータと収穫時の穂部¹⁴C存在量の関係

図 3.4-10 水田における水平および鉛直方向の風向風速計設置状況 写真は第1回観測日に設置した時の状況

図 3.4-11 第1回観測日の水田

図 3.4-12 第2回観測日の水田

図 3.4-13 第3回観測日の水田

図 3.4-14 第4回観測日の水田

図 3.4-15 第5回観測日の水田

図 3.4-16 第6回観測日の水田

図 3.4-17 第7回観測日の水田

図 3.4-18 第8回観測日の水田

図 3.4-21 基本解析における環境コンパートメント間の¹⁴C 移行量変化 (上:本年度モデル、下:昨年度モデル)

H27モデル

図 3.4-22 基本解析におけるコンパートメント内¹⁴C存在量 (上:本年度モデル、下:昨年度モデル)

図 3.4-23 感度解析において下限値を用いた場合における 環境コンパートメント間の¹⁴C 移行量変化

図 3.4-25 感度解析において下限値を用いた場合におけるにおける コンパートメント内¹⁴C存在量

図 3.4-26 感度解析において上限値を用いた場合におけるにおける コンパートメント内¹⁴C存在量

図 3.4-27 穂部の¹⁴C存在量の感度解析結果の比較

図 3.4-28 近傍大気-環境大気の交換半減期の感度解析結果の比較

図 3.4-29 感度解析による不確実さ伝播解析のサンプリング状態

図 3.4-30 感度解析における不確実さ伝播解析による収穫時の穂部の ¹⁴C 量と環境移行パラメータの関係

図 3.4-31 不確実さ伝播解析による近傍大気と環境大尉の交換半減期と 収穫時の穂部内¹⁴C 量との関係

図 3.4-32 基本解析および上限値と下限値を用いた感度解析における土壌1と穂部¹⁴C存在量の経時変化

第4章 重要核種 (Pu, Am, Th および Cl)の超高精度分析による環境移行パラメータ収集

4.1.はじめに

放射性廃棄物の地層処分場から環境中へ放出された放射性核種は環境の違いによってその動態が大 きく異なると考えられる。従って、我が国独自の環境移行パラメータを収集・整備する必要がある。 平成14年度から18年度までに放射線医学総合研究所では、生物圏における環境媒体中元素濃度を蓄 積し、土壌-植物移行係数(TF)や土壌-土壌溶液分配係数(K_d)の環境移行パラメータの導出並びに データベース構築を行った。Pu, Am, Th 及び塩素(Cl)は、放射性廃棄物の地層処分に係わる安全評 価上重要核種であるがデータが少ない。その重要核種の測定は極めて高度の分析技術が要求されるた め、核種移行モデルに使用される環境移行パラメータは十分蓄積されていない。

本事業では、データが少なくかつ重要核種、すなわち、Pu, Am, Th 及び塩素について、超高精度分析を開発し、実際の環境試料を分析して、環境移行パラメータ、特に TF を求めることを目的の一つとしている。今年度は土壌中 Am と塩素の超高精度分析法の開発研究を進めた。土壌中 Am 同位体測定については、土壌の前処理法、Am 同位体分析の化学分離法の調査・研究を実施し、実用的な超高精度質量分析法を確立し、日本の畑土中の Am 濃度データの収集を開始した。塩素については、開発した塩素の超高精度分析法を用いて、土壌-農作物中の塩素の分析を行い、日本の環境生態系中の土壌-植物間移行係数データの収集を開始した。また、高分解能 ICP-MS をもちいて、玄米と白米中の超微量 Th 分析法を確立した。日本の米中の Th 濃度データの収集を開始した。重要核種元素である Pu について、平成 25 年度開発した土壌中 Pu の超高精度質量分析法を改良し、分析の迅速化を進めた。さらに、開発した Pu 超高精度分析法を用いて、土壌-米中の微量 Pu 同位体の分析を行い、重要核種元素である Pu について、日本の環境生態系中の土壌-米移行係数データを追加した。

さらに、Pu, Am, Th 及び塩素の TF について、2015年-2016年から現在までに報告されている国内 外の最新文献の調査を行ない、平成27年度に作成したデータベースに新しい情報を追加した。このよ うな調査研究は、放射性廃棄物の地層処分に関する安全評価の高度化に資するものである。Am につ いては、福島原発事故により環境中に放出された放射性核種の中で注目されている核種であり、また 放出量と環境分布は十分に解明されていない核種の一つである。その分析法開発はその挙動予測のた めに役立つと考えられる。

121

4.2. 重要核種 Am の超高精度分析法開発

4.2.1. 土壌試料中Am高精度質量分析法の確立

近年,環境中の²⁴¹Amの研究に大きな関心が持たれてきた。²⁴¹Amはα線およびγ線を放出する長半 減期核種であり,いったん環境中に放出されれば長期間環境中に存在することになる。したがって, 長く被ばくする可能性があるため,環境中の²⁴¹Amの濃度および土壌一農作物間の移行を調査・研究す る事は重要である(Bennett, 1978)。さらに,環境中には核実験などで生成した²⁴¹Puが存在しているが, ²⁴¹Puは²⁴¹Amに崩壊するため,環境中において²⁴¹Amが将来増加する事になる。Zheng et al. (2012)は, 福島第一原子力発電所(FDNPP) 事故により環境中に放出された²⁴¹Amの濃度は今後上昇を続けるこ とを予測している。このように,環境中におけるAmの研究は,放射線影響評価の目的だけではなく, Amの環境挙動研究としても重要性が増しているものである。状況を連続的に監視する事は,環境中 における²⁴¹Puおよび²⁴¹Amの長期間の挙動に関する詳しい情報が得られる(Zheng et al., 2013a)。

²⁴¹Amが沈着した土壌の分析は、放射線計測法と質量分析法の両方が用いられてきた(Amoli and Barker, 2012; Maxwell and Faison, 2008; Zheng and Yamada, 2008)。一般的に用いられる放射線計測法は α 線スペクトロメトリと γ 線スペクトロメトリであり、後者は高濃度レベルの²⁴¹Am(0.1 - 1 Bg/kg 以 上の濃度)の測定にのみ用いられる (Xiao et al., 2014)。α線スペクトロメトリは、安価で、高感度で、 さらに操作が簡便であるため、最も一般的に²⁴¹Am測定に用いられる測定法である(Zheng et al., 2013b)。しかし、低濃度の環境試料に対しては、非常に長時間の測定が必要となる。Varga(2007)に よると、3-10日が必要であると報告している。さらに、α線スペクトロメトリは同じようなエネルギ ーのα線を放出する核種(例えば,²³⁸Pu,²¹⁰Po,²²⁸Th および²³²U)を分離しなければならず,そのた めに複雑な化学分離が必要である。そして、非常に短い飛程のα放射線を確実に検出するために薄い (10マイクロメータ以下の厚さのフィルム [薄膜]) α線測定試料を作成する必要がある (Vajda and Kim, 2010)。原子数をカウントする質量分析技術の場合,誘導結合プラズマ質量分析装置(ICP-MS) と加速器質量分析装置(AMS)による²⁴¹Am分析が報告されている(Kazi et al., 2015; Li et al., 2010)。 ICP-MSは, 環境試料中の²⁴¹Am分析に対して多く用いられている(Hang et al., 2004; Truscott et al., 2001)。非常に高感度であるICP-MSは、²⁴¹Amの検出限界が α 線スペクトロメトリと同等か、それより も低い事が報告されている(Varga, 2007; Zheng and Yamada, 2008)。さらに、質量分析法はα線スペク トロメトリよりも幾つかの利点を有している。まず, 質量分析における化学分離はα線スペクトロメ トリよりも簡単である。すなわち、α線スペクトロメトリで分離が必要であるα線放出核種を分離す る必要はない。厳密にα線だけの試料作成という事を気にせずに作成できる。また, ICP-MSとAMS による²⁴¹Amの測定は数分で済むため、α線スペクトロメトリよりも非常に短時間で測定を行うことが 出来る。このように、測定のために大量の試料が必要な場合や迅速な測定が必要な場合(例えば、事 故直後に採取された環境試料)では、質量分析法は放射線計測法と比べるとメリットがある方法とい える。

質量分析法は、α線スペクトロメトリ法よりも幾つかの点において優れているけれども、²⁴¹Am 分 析における試料マトリックス効果の影響や同重体や多原子による妨害があるため完全ではない。マト リックス効果の影響は調整された試料の過剰塩濃度により生じるものであり、2つの方法で測定を妨害 する。例を挙げると、最初に、沢山の塩がサンプリングコーンおよびスキマーコーンに沈着し、コー ンの開放部が狭くなる。そして、その結果、機器の長時間の使用において感度が減少し装置の安定性 が失われることになる。二番目に、主要な高濃度の塩イオンはイオン化抑制を導くために、感度の損 失を生じる。同重体や多原子による妨害は、測定中の対象イオンと分離する事が出来ないシグナルで ある。それらは、主に測定対象イオン以外のイオンから導かれた同じ整数質量である単原子のシング

122

ルチャージイオン,または複数にチャージしたイオンから生じる(Prohaska et al., 2014)。²⁴¹Am測定にお ける潜在的な同重体や多原子 による妨害を平成27年度報告書(表 4.2-1)に示した(放射線医学総合 研究所, 2016)。表中には、ICP-MSによりこれらの妨害を除去するのに必要な質量分解能と妨害する同 重体の相対的な存在量も示した。この表は、もし、ICP-MSの分解モードが最大感度を得るために低分 解能(m/△m=300)モードであったならば、PuやBi, Pb, Tl, Hg, Irのような元素は、m/z = 241に妨害を生じ る可能性がある、という事を示している。土壌は多くの元素を含む複雑な混合物である事はよく知ら れている。土壌中の²⁴¹Am濃度(Yamamoto et al. (1983)は、0.032-0.263 mBq/g という値を報告してい る)を考慮した場合、分析機器の感度によるが、正確な²⁴¹Am濃度を測定するためには、通常、数グラ ムから数十グラムの試料が必要である。明らかに、そのような量の土壌は確実に多くのマトリックス 構成元素と妨害となる元素を含んでおり、化学分離なしに質量分析装置で直接測定する事は不可能で ある。

そこで本研究では、最初にDGA-N樹脂上の妨害となる元素の抽出挙動を調査するために溶出実験を 行い、Amと妨害元素の分離手順を提案した。三つの共沈殿法によるマトリクス除去効率および共沈 澱法の後のAm分離法を比較した結果、CaC₂O₄共沈殿法とDGA-N樹脂抽出クロマトグラフィーAm分離 を結合する方法が最適である事が分かった。Amと希土類元素の化学性質が非常に類似しているため、 いままで報告された分離法ではAmと希土類元素の分離が十分に行われず、Am分析用のサンプル中に 希土類元素が高い濃度で存在していた。SF-ICP-MSをもちいてAm測定する際、希土類元素によりマト リックス効果が生じるため感度が低下する。この問題点を改善するために、本研究では、TEVA樹脂 を用いて、Am分析用サンプルから希土類元素を除去する法を検討した。前述した調査結果から、土 壌中Am高精度質量分析法を確立した。開発した本方法の妥当性を、保証値がある標準物質(6種類の 土壌標準物質や底質土標準物質)で確認した。

4.2.1.1. 分析装置

使用した機器の概要を図 4.2-1 に示す。Aridus 脱溶媒システムは超微量放射性核種測定に広く使用 されている。 このシステムは、Aspire PFA ネブライザーを加熱した PFA (テトラフルオロエチレン・ パーフルオロアルキルビニルエーテル共重合体)製スプレーチェンバーに取り付け,加熱したフッ素 樹脂製メンブランを通過させる仕組みになっている。試料溶液は、Aspire PFA ネブライザーの自立吸 引で Aridus II システムに導入される。ネブライザーで生成されたエアロゾルは, 最大 110 ℃ に加熱さ れた PFA スプレーチェンバーに噴霧することで、蒸発した状態を維持させておく。次にこの蒸気状の 試料を,加熱した PTFE (ポリテトラフルオロエチレン) メンブラン脱溶媒モジュールに導入する。 PTFE メンブラン脱溶媒モジュールには、アルゴンガスが逆流して、メンブランの多孔質壁に溶媒を 取り除かれる。このとき、非揮発性成分はメンブランの多孔質壁を通過できない。最後に脱溶媒され たエアロゾルが SF-ICP-MS のトーチに到達する仕組みである。脱溶媒モジュールは Aridus II 装置の 重要な部分であるが,清浄に保つために脱着が容易にできるようになっている。この装置の場合には, 吸引速度が異なる3種類の PFA ネブライザーが使用可能であり(50,100 もしくは 200 μL min⁻¹),本 研究では 50 μL min⁻¹のネブライザーを用いた。ICP-AES 装置(Activa-M, 堀場, 京都, 日本)を使用 して、土壌試料の化学処理前後の主要金属濃度(Na, Mg, K, Fe, Ca および Al)を測定した。妨害 元素(Bi, Pb, Tl, Hg, Pt, Hf および希土類元素(REEs))の測定のために, SF-ICP-MS 機器(Element XR, Thermo Scientific, Bremen, Germany) に Scott 型スプレーチャンバー試料導入システムを用いた。

4.2.1.2. Aridus-SF-ICP-MS 分析装置の最適化

本調査において超高精度分析を進めるために、導入した Element XR の性能調査および試料導入装

置を連動させて性能向上試験を H27 年度に行った。特に,Aridus の脱溶媒システムの分析条件の最適 化を検討した。最適化された分析条件の詳細については H27 事業報告書の表 4.2-6 を参照されたい。 また,Am分析の感度,精度及び機器検出限界については H27 事業報告書の第 4.2.2.を参照されたい。

4.2.1.3. 測定試料

土壤標準物質(IAEA-soil-6 and IAEA-375),海底堆積物の標準物質(NIST-4357, IAEA-385 and IAEA-384) および湖堆積物標準物質(NIST-4354)を開発した²⁴¹Am分析法の確認のために用いた。共沈 殿法のマトリクス除去効率の確認ために,JSAC-0471 土壤標準物質を用いた。これらの土壤標準物質 を用いて,²⁴¹Am 濃度およびマトリクス元素と妨害元素の測定を行った。

4.2.1.4. 試薬

実験に使用した試薬 (HCl, HNO₃, HF, HCOOH, H₂C₂O₄, NH₄OH, NaNO₂, Ca(NO₃)₂, NH₄SCN) は,分 析用レベルであり,それ以上の純度を上げる操作をせずに用いた。溶出実験用 HCl と HNO₃ (多摩化 学) は高純度レベルである。標準溶液 (Bi, Tl, Hg, Pb, U, Hf, Pt, In, Rh および REEs) は Merck Millipore から購入したものである。Eichrom 社製の抽出樹脂(DGA-N, UTEVA and TEVA, すべて 粒径が 50-100µm の 2 mL カートリッジ)を用いた。試料には²⁴³Am (Amersham International, UK) を適量スパ イクし,回収率測定のために用いた。また、ミリポアの純水製造装置 (Milli-Q-Plus) で作成した超純 水 (>18 MΩ cm⁻¹) をすべての実験に使用した。

4.2.1.5. 化学分離法の検討

(1) DGA-N 抽出樹脂に収着している妨害元素の溶出試験

DGA-N 樹脂上の妨害元素の溶出挙動を研究するために、様々な濃度での HCl と HNO₃溶液を用い て、妨害元素の溶出実験を行った。実験では、Am 測定時における妨害元素となる U, Bi, Tl, Hg, Pb, Hf, Pt 及び Dy をスパイクした(濃度 2 ng mL⁻¹) HNO₃ または HCl 溶液(5mL)を DGA-N 樹脂カートリ ッジに通水した。希土類元素(REE)の化学的性質と Am の化学的性質を類似するため、Dy を溶出実 験において Am のアナログとして用いた。DGA-N 樹脂は、妨害元素の通水に用いた溶液の酸濃度と同 じ濃度の HCl または HNO₃溶液 5mL で予め調整した。その後、樹脂を事前調整に用いた酸溶液と同じ 酸濃度の HCl または HNO₃溶液 5mL で洗浄した。最後に、この通水試験によりカートリッジから流出 した溶液は全て収集し、溶液中の U, Bi, Tl, Hg, Pb, Hf, Pt 及び Dy 濃度を SF-ICP-MS を用いて測定した。 本実験に用いた HNO₃濃度は、0.01~8 M (0.01M, 0.05M, 0.1M, 0.5M, 1M, 3M, 5M および 9.5 M) である。また、HCl 濃度は 0.01 M~9.5 M (0.01M, 0.1M, 0.25M, 0.5M, 1M, 4M, 9M および 9.5 M) であった。

様々な酸濃度による溶出試験の結果を図4.2-2に示す。Amの溶出挙動はDyの挙動を参照されたい。 図 4.2-2 において, a および b は HNO₃溶液による溶出実験結果を, c および d は HCI 溶液による溶出 実験結果を示す。図の y 軸(相対強度)は、添加した各元素の溶出量とスパイク量との比(相対溶出 量)を表す。これらの結果から、HNO₃ または HCI 溶液により DGA-N 樹脂に添加された妨害元素に ついて、様々な酸濃度における収着能力を明らかにすることができる。相対強度「1」は弱い吸着(易 溶出)を表し、相対強度「0」は強い収着(難溶出)を表す。この実験結果から、TI は HNO₃ および HCI 溶液の両方について DGA-N 樹脂上にとどまっていないことが分かった。しかし、Hg は、希 HNO₃ および HCI 溶液では DGA-N 樹脂上に保持され、8M HNO₃によって容易に溶出することができる。Bi については、Horwitz ら(2005)によって報告された結果と同様に、0.01~4M の HCI および 0.01~8M の HNO₃溶液で DGA-N 樹脂に収着される。Pb の場合、DGA-N 樹脂上の強い保持は、0.5~3M の HNO₃ においてのみ見られ, Horwitz ら (2005) によって報告された傾向と一致する。0.5-1M の HNO₃および 0.25M より高い濃度の HCl 溶液中で, Pt が DGA-N 樹脂上に保持されることがわかった。この現象は,報告された分配係数 (K_d) 値と一致する (Pourmand and Dauphas, 2010)。Hf は, HNO₃および HCl 溶液において同様の挙動を示す。すなわち,酸濃度が 4M よりも高い場合, Hf は DGA-N 樹脂上に保持されるが,濃度が薄くなると (HNO₃<0.1M, HCl<1.0M) 容易に脱着される。

以上の結果から、DGA-N 樹脂を用いた妨害元素の分離方法を提案した:

- ① Puの除去を確実にしUの除染係数を高めるために, UTEVA 樹脂カートリッジを DGA-N 樹脂カ ートリッジの上に追加する。
- ② HNO₃媒体中で、15mLの8M HNO₃を用いてPb、HgおよびPtを分離する;15mLの0.5M HNO₃を用いてTlを分離する;15mLの0.1M HNO₃を用いてU、PtおよびHfを除去する。および
- ③ (3) HCl 媒体中で、10mL の濃 HCl を用いて、Bi、Tl および Pb を除去する。
- ④ UTEVA 樹脂カートリッジを廃棄し, DGA-N 樹脂カートリッジから Am 分離を行う。

(2) 共沈殿法のマトリクス除去効率

土壌のように共存元素,特に妨害となる元素が多く存在する場合は,直接,抽出クロマトグラフィーによる分離を行うと分離精度が悪くなることが考えられる。したがって,抽出樹脂上のAmと妨害元素との間の分離に影響を及ぼすマトリックス成分を除去するために,抽出クロマトグラフィーに先立って通常共沈殿法が用いられる(Qiao et al., 2009; Xu et al., 2014)。Amの分離では,Fe(OH)3, CaF2および CaC₂O₄による共沈法が最も一般的に使用されている。本調査では、3 つの方法のマトリックス除去効率を評価するために、JSAC-0471 土壌サンプル 5g を用いて共沈殿により共沈された土壌マトリックスの割合を比較した。その結果を図 4.2-3 に示す。Mg と Al の大部分が Fe(OH)3 と共沈し, Mg とAl な主要元素の除去能力が低いことを示した。同様の性能が CaF2 共沈で見られ,Al の大部分と Fe の 30%が共沈していた。CaC₂O₄ の共沈殿は、最も優れたマトリックス元素除去効率を示し、ほとんどのマトリックス元素(Na を除く)については 10%未満が共沈した。これらの実験結果より,Am クロマトグラフィー分離の前処理として、CaC₂O₄ 共沈を選択した。

(3) 希土類元素とAmの分離

幾つかの予備実験結果から、UTEVA + DGA-N 樹脂を用いた Am 分離法と CaC₂O₄ 共沈を組み合わ せた方法により、土壌試料中の主要なマトリックスおよび妨害元素が効果的に除去されたことが明ら かとなった。しかし、SF-ICP-MS 測定のシグナル強度抑制は、大量の土壌サンプルでは依然として深 刻なままであった。シグナル強度抑制の原因を特定するために、分離後の JSAC-0471 土壌サンプル(5g) の最終溶液中の主要なマトリックス元素 (Na, K, Mg, Ca, Fe および Al) および REEs の濃度を測 定した。その結果を表 4.2-1 に示す。主要元素の濃度は比較的低く 0.1~7.6 μ g mL⁻¹の範囲であり、本 研究で開発された方法によって提供される主要元素除去の堅牢性を実証しているといえる。対照的に、 REEs の濃度は 6~66 μ gmL⁻¹ と有意に高かった。これは、Am 分離プロセスにおける Am と REEs が同 様の挙動をとることによるものであった。例えば、本実験結果は、REEs の 90%が CaC₂O₄ と共沈して おり、Dy は提案された DGA-N 樹脂からの分離手順によっては除去できないことを示している。その ような高濃度の REEs は、SF-ICP-MS におけるイオン化効率を抑制し、感度低下(マトリックス効果) をもたらすので、SF-ICP-MS 測定に有害である。したがって、REEs は、SF-ICP-MS 測定におけるマ トリックス効果を減少させるために除去しなければならない。

Maxwell ら (2010) は, DGA-N 樹脂から REEs を 0.05M HNO₃により部分的に除去する方法を報告 している。この方法の効果を確認するために, 図 4.2-4a に示すように, REEs および Am について, DGA-N 樹脂からの 0.05M HNO₃の溶出曲線を得た。その結果, 0.05M の HNO₃ が La と Ce を徐々に除 去できることが明らかになった。65%の La および 25%の Ce を 10mL の 0.05M HNO₃ で除去できた。 しかし, この手法では他の REEs を除去することができなかったので,より効果的な方法を見つける 必要がある。幸いにも,TEVA 樹脂に基づくいくつかの方法が,²⁴¹Am 分析に α 分光法を使用する研 究者によって報告されている (Thakur et al., 2011; Luisier et al., 2009)。この報告された方法を用いて, 他の REEs を除去できるかどうか,同様に溶出実験によって評価を行った。そのための手順および結 果を図 4.2-4b に示す。Pr, Nd, Sm および Eu の回収率は 10%未満であり,これらの元素の大部分が TEVA 樹脂に通水した後に除去されたことを示している。La と Ce の分離は, Pr, Nd, Sm, Eu に比 べてそれほど良くはなかった。しかし,DGA-N 樹脂上の 0.05M HNO₃ リンス 10mL を TEVA 手順と組 み合わせると,これらの REEs はすべて効果的に除去することができる。図 4.2-4b は,Am の 95%近 くがこの手順で回収された事を示している。すなわち,Am の回収率が REEs の分離操作によって著 しく影響を受けなかったことが明らかとなった。

4.2.1.6 分析法の確立

(1) 操作手順

本調査で確立した実験手順, すなわち, 試料の分解・Amの抽出, 分離, 精製の手順を図 4.2-5 に示 す。土壌試料は最初に 105°C で 24 時間した後,約80 メッシュの篩にかけて礫などを取り除き粉砕し た。粉砕土壌試料 2-20g を秤量し,約0.5 pg の²⁴³Am を回収率モニターとして各試料に添加した。次 に,その後の化学分離において妨害となる有機物を分解するため,磁性の坩堝に移しマッフル炉で 450°C の温度で 5 時間灰化した。抽出における酸の損失を避け,かつ抽出効果を向上させるために, Am の酸抽出はガラスビーカーと時計皿ではなく,しっかりと蓋ができる 120 mL のテフロン容器

(Savillex Corporation, Minnesota, USA)を使用した。このテフロン容器に、20-40 mL の濃硝酸を加え、 ホットプレート上で160°C で4時間以上加熱した。冷却後、上澄み液をフィルター (Advantec filter) で濾過してビーカー (100 mL) に移した。この抽出液を加熱して乾燥させた後、40mL の 1M HNO₃ に再溶解させた。続いてマグネチックスターラーで攪拌しながら Ca 100mg およびシュウ酸 2.5g を添 加した。NH₄OH を添加することにより、溶液の pH を 2.0~2.5 に調整した。30 分間攪拌した後、試料 を遠心分離 (3000 rpm, 20 分間) し、沈殿物を 1%シュウ酸溶液 5mL で洗浄した。次いで、沈殿物を 15mL の濃 HNO₃ に溶解した。さらに蒸発乾固してシュウ酸イオンを破壊した。最後に、試料を 8M HNO₃ 20mL に溶解し、さらに、0.2 g 量の NaNO₂ を添加して、8M の HNO₃ 中の UTEVA 樹脂によって 容易に吸着され得る Pu の酸化状態を Pu (IV) に調整した。

次に、UTEVA + DGA-N による Am と妨害元素の分離を行った。5mL の 8M HNO₃で予め調整した UTEVA + DGA-N 樹脂カートリッジに試料溶液をに通水させる。その後、UTEVA 樹脂カートリッジ を廃棄し、Am 分離をさらに行うために DGA-N 樹脂カートリッジを残した。以下の手順で DGA-N 樹 脂カートリッジから妨害元素を分離した。(1)15mL の 8M HNO₃を用いて Pb、Hg および Pt を分離す る;(2)15mL の 0.5M HNO₃を用いて Tl を分離する;(3)15mL の 0.1M HNO₃を用いて U, Pt および Hf を 除去する;(4)10 mL 0.05 M HNO₃を用いて La, Ce を分離する;(5)10mL の濃 HCl を用いて、Bi、Tl お よび Pb を除去する。

上述したように、UTEVA + DGA-N 樹脂カートリッジを用いて Am の妨害元素を分離後、DGA-N 樹脂カートリッジから Am 分画を 10mL の 0.5M HCI で溶出した。溶出液は蒸発乾固させ、10mL の 2M NH4SCN-0.1M HCOOH で再溶解させる。続いて、TEVA 樹脂カートリッジにより Am と REEs の分離 を行った。5mL 2M NH4SCN-0.1M HCOOH で予め調整を行った TEVA 樹脂カートリッジに Am 分画 試料(10mL の 2M NH4SCN-0.1M HCOOH 中)を通水させる。 次いで、10mL の 1M NH4SCN-0.1M HCOOH により TEVA 樹脂から REEs を除去し,最後に Am を 10mL の 4M HCl で溶離する。DGA-N および TEVA 樹脂からの溶出溶液の容量は,図 4.2-6 に示す Am 溶出曲線に基づいた。TEVA 樹脂か ら共溶出される残留 NH₄SCN を除去するために,8mLの王水を用いて加熱して乾燥させて分解させた。 最後に,試料を SF-ICP-MS 測定のために 1mL の 4%HNO₃に溶解する。

(2) 妨害元素の除染係数, Am の回収率, そして Am の検出下限値測定

土壌標準物質(IAEA-soil-6)を用いて、本方法の妨害元素の除染係数(DF)を求めた。 DF は初期 土壌試料と処理後試料の元素濃度の比とし、Bi, Tl, Hg, Pb, U, Pu の DF はそれぞれ 3.5×10^4 , 2.4 × 10^4 , 1.5×10^4 , 1.2×10^5 , 3.6×10^6 , 7×10^5 であった。

本研究において開発した分析法における Am の回収率は,土壌および堆積物試料に対して非常に安 定している。IAEA-384 (78±3%), IAEA-385 (77±1%), IAEA-375 (82±1%), IAEA-土壌-6 (76± 5%), NIST-4354 (79±6%), NIST-4357 (79±7%),日本の土壌(80±3%)であった。また,本分 析法の検出下限界値 (LOD)は、「操作ブランクの標準偏差の3倍」という定義に基づいて計算され, 1g の土壌サンプルに対して 0.097 fg g⁻¹ (0.012 mBq g⁻¹) である。この LOD は、Pimpl and Higgy (2001)

(0.03 mBq g⁻¹) および Jia ら(1997) (0.034 mBq g⁻¹) によって報告された α 線スペクトロメトリ法より も低かった。本分析法は,優れた特徴(低 LOD,安定した高回収率,妨害元素の高 DF および効果的 なマトリックス効果除去)を有しており,土壌中の超微量レベル²⁴¹Am の分析に適していると考えら れる。

(3) 分析法の妥当性

Amの測定を SF-ICP-MS で行うために開発した本分析法の妥当性を,保証値がある土壌標準物質 (IAEA-soil-6 and IAEA-375),海底堆積物の標準物質(NIST-4357, IAEA-385 and IAEA-384)と湖堆積 物標準物質(NIST-4354)で確認した。保証値や以前に報告された値と本分析法による値を比較した結果 を図 4.2-7 に示す。この結果は,保証値と十分に一致しており,本分析法により土壌試料中の微量な ²⁴¹Am 測定が可能であることを示している。

4.2.2. 畑土壤中²⁴¹Am 濃度測定

4.2.2.1. 測定試料

日本全域(16県:北海道,新潟,富山,京都,三重,福岡,千葉,福井,岐阜,愛知,兵庫,鳥取, 青森,神奈川及び石川)から採取した 20 件の畑土壌試料を²⁴¹Am 測定のために用いた。²⁴¹Am の汚染 源特定と Pu との動態比較のため,²³⁹⁺²⁴⁰Pu 濃度と²⁴⁰Pu/²³⁹Pu 同位体比も測定した。

4.2.2.2 実験手順

土壌試料は最初に 105℃ で 24 時間乾燥した後,80 メッシュの篩にかけて礫などを取り除き粉砕した。粉砕土壌試料 5-10g を秤量し,約 0.5 pg の ²⁴³Am を回収率モニターとして各試料に添加した。次に、その後の化学分離において妨害となる有機物を分解するため、磁性のるつぼに移しマッフル炉で450℃ の温度で 5 時間灰化した。灰化後、本調査において確立した分析法(参照:4.2.1.6)を用いて、²⁴¹Am を分離し SF-ICP-MS により ²⁴¹Am 濃度を測定した。

土壌試料中 Pu 同位体の測定については本報告書第4.5.2.項を参照されたい。

4.2.2.3. 結果および考察

Am は放射性廃棄物の地層処分に係わる安全評価において重要核種の1つである。土壌中の Am 濃

度の精度良い測定は、Amの土壌中挙動や土壌-植物移行の研究において必須条件である。過去に大気 圏内核実験を通じて、Amが環境中に放出された。さらに、短半減期の²⁴¹Pu(T_{1/2}=14.4年)はβ崩壊 により²⁴¹Am(T_{1/2}=433年)となるが、過去に大気中で行われた核実験により²⁴¹Puも環境に導入さ れているため、環境中の²⁴¹Am濃度は着実に増加してゆく。現在、日本の土壌については、グローバ ルフォールアウト起源のプルトニウムの分布状況と環境移行についてのデータが利用可能であるが、 アメリシウムに関してはデータはほとんどない。したがって、日本の環境におけるアメリシウムの挙 動について、さらなる研究が必要とされている。

本調査では、日本全域(16県:北海道、新潟、富山、京都、三重、福岡、千葉、福井、岐阜、愛知、 兵庫,鳥取,青森,神奈川及び石川)から採取した 20 件の畑土試料を用いて,²⁴¹Am 濃度,²³⁹⁺²⁴⁰Pu 濃度と²⁴⁰Pu/²³⁹Pu同位体比の分析を行った。試料採取場所と分析結果を表 4.2-2 に示す。今回の調査結 果から,初めて,日本畑土中の²⁴¹Am 濃度レベル情報が得られた。畑土中の²⁴¹Am 濃度は²³⁹⁺²⁴⁰Pu 濃 度より低く, 0.136から 0.219 mBq/g の範囲であった。青森の多湿黒ボク土試料から, 最高値の 0.219 mBq/g が検出された。20 件の畑土試料の²⁴¹Am 濃度平均値は 0.100 ± 0.047 mBq/g であった。環境試料 中の²⁴¹Am 分析は,濃度が極低レベルであるために一般に困難であり,日本の土壌中の²⁴¹Am 濃度に 関する情報は非常に限られている。Yamamotoら(1983)は、主に1963年と1976年に日本の15地点 で採取された水田の表層土壌 30 サンプル,およびこの 15 地点の中から 2 地点を選択し, 1957 年から 1980年にかけて定期的に採取した土壌試料 15 点についての²⁴¹Am 濃度を測定した。この調査結果か ら,水田土壌中の²⁴¹Am 濃度は 0.030~0.337 mBq/g であることが明らかになった。1963 年に採取した 水田の表層土壌 30 試料中の²⁴¹Am 濃度平均値は 0.163 ± 0.085 mBq/g であった。1976 年採取した水田 の表層土壌 30 試料中²⁴¹Am 濃度平均値は 0.118 ± 0.078 mBg/g であった。本調査で得られた結果と比 較すると、水田の表層土壌より、畑土中²⁴¹Am 濃度平均値はやや低いことが分かった。しかし、畑土 壌と水田の表層土壌の²⁴¹Am 濃度はいずれも森林土壌(0.407~2.701 mBq/g) よりもはるかに低かっ た (Yamamoto et al., 1980)。

²³⁹⁺²⁴⁰Pu 濃度と²⁴⁰Pu/²³⁹Pu 同位体比および²⁴¹Am/²³⁹⁺²⁴⁰Pu activity ratio の測定結果を表 4.2-3 に示す。 調査した16県畑土試料の²⁴⁰Pu/²³⁹Pu 原子数比は, 0.166 から 0.183 の範囲であり,これはグローバ ルフォールアウトの比と同じである (Kelley et al., 1999)。すなわち,これら土壌試料中の Pu の主なソ ースはグローバルフォールアウトであることを示唆している。

本調査で分析した 20 畑土試料中の有機物含有量の範囲は 3.6%~20.2%であった(表 4.2-2)。Pu と ²⁴¹Am は土壌中の有機物に強く吸着するという報告があるが (Ovsiannikova et al., 2010), 図 4.2-8A に示 したとおり,畑土中²⁴¹Am 濃度と有機物含有量には相関が認められなかった。

図 4.2-8B および C に ²⁴¹Am 濃度と ²³⁹⁺²⁴⁰Pu 濃度および ¹³⁷Cs 濃度の相関を示す。図から分かるよう に, ²⁴¹Am 濃度は ²³⁹⁺²⁴⁰Pu 濃度および ¹³⁷Cs 濃度と非常に高い相関がある。これは, 畑土中の ²⁴¹Am と ¹³⁷Cs, Pu 同位体は, 環境動態が非常に相似していることを示唆している。²⁴¹Am/²³⁹⁺²⁴⁰Pu 濃度比は 0.34 ~0.43 であり,非常に狭い範囲であった (表 4.2-3)。神奈川県から採取した未熟低地土試料 1 点だけが 高い濃度比(0.69±0.08)が観測された。この結果は, 他の土壌よりも未熟低地土では Pu の方が ²⁴¹Am よ りも流失しやすいということを示しているが, さらに詳しい調査が必要である。

²⁴¹Am/²³⁹⁺²⁴⁰Pu 濃度比と²⁴¹Am 濃度の相関について,本調査結果と文献値による日本の水田土のデー タを図 4.2-9 に示す。この一点の異常高値を除いて,今年度調査した 19 点の畑土中²⁴¹Am/²³⁹⁺²⁴⁰Pu 濃 度比は 0.39±0.02 であった(図 4.2-9A)。図 4.2-9B は,Yamamoto ら(1983)が調査した秋田と上越の 水田の表層土壌中における²⁴¹Am/²³⁹⁺²⁴⁰Pu 濃度比の時糸列変化(1955-1980)である。図 4.2-9B に見ら れるように、1957 年と 1958 年の土壌試料の²⁴¹Am / ²³⁹⁺²⁴⁰Pu 濃度比(平均 0.44)は、1961 年以降の土 壌試料(各試料についてほぼ同じ値、平均で 0.30)より有意に高い。環境試料中に検出可能なアメリ シウムは,核爆発時に他のプルトニウムと同時に生成された²⁴¹Pu の崩壊によって生成されたと考え られる。よく知られているように,核兵器のテストは広範に行われている 2 つの期間がある。最初の ものは 1952-1958 年のもので,もう一つは 1961-1962 年のものである。いくつかの研究者によって (Hisamatsu et al., 1978; Koide et al., 1981),第1期の核実験によるフォールアウトの²⁴¹Pu/²³⁹⁺²⁴⁰Pu 濃度 比は第2期の値よりも有意に高かいことが知られている。すなわち,図4.2-9Bの「1957」および「1958」 の土壌サンプルに見られる高い²⁴¹Am/²³⁹⁺²⁴⁰Pu 比は,最初の期間の原爆試験に由来するこのような高 い初期²⁴¹Pu/²³⁹⁺²⁴⁰Pu 比に起因していると考えられる。「1961 年以降」の土壌サンプルの²⁴¹Am/²³⁹⁺²⁴⁰Pu 比は,サンプリングの日付にかかわらず同様の値(平均 0.30)を示している。図 4.2-9A に示したよう に、今年度調査した 19 点の畑土中²⁴¹Am/²³⁹⁺²⁴⁰Pu 濃度比(0.39±0.02)は Yamamoto ら(1983)が報告して いる 1960-1980 年代土壌試料より有意に高い。これは、土壌試料中²⁴¹Pu の崩壊によって 1980 年代以 後さらに²⁴¹Am 生成されたと考えられる。

引用文献

- Amoli, H. S., Barker, J. (2012). New approaches for the separation and determination of americium in soil samples using short column chromatography and alpha spectroscopy. Journal of Radioanalytical and Nuclear Chemistry, 293, 731-734.
- Bennett, B. G. (1978). Environmental aspects of americium. No. EML-348. Department of Energy, New York (USA).
- Hang, W., Zhu, L., Zhong, W., & Mahan, C. (2004). Separation of actinides at ultra-trace level from urine matrix using extraction chromatography-inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 19(8), 966-972.
- Hisamatsu, S., Sakanoue, M. (1978). Determination of transuranium elements in a so-called "bikini Ash" sample and in marine sediment samples collected near Bikini Atoll. Health Physics, 35, 301-307.
- Horwitz, E. P., McAlister, D. R., Bond, A. H., & Barrans Jr, R. E. (2005). Novel extraction of chromatographic resins based on tetraalkyldiglycolamides: characterization and potential applications. Solvent Extraction and Ion Exchange, 23(3), 319-344.
- Jia, G., Desideri, D., Guerra, F., Meli, M., & Testa, C. (1997). Determination of plutonium and americium in moss and lichen samples. Journal of Radioanalytical and Nuclear Chemistry, 220(1), 15-19.
- Kazi, Z. H., Cornett, R. J., Zhao, X., & Kieser, W. E. (2015). Comparison of the measurement of Pu and Am isotopes by AMS using fluoride and oxide anion beams. Journal of Analytical Atomic Spectrometry, 30(10), 2235-2240.
- Kelley, J. M., Bond, L. A., and Beasley, T. M. (1999): Global distribution of Pu isotopes and ²³⁷Np, Sci. Total Environ., 237/238, 483-500.
- Koide, M., Goldberg, E. D. (1981). ²⁴¹Pu/^{239,240}Pu ratios in polar glaciers. Earth Planet. Sci. let. 54, 239-247.
- Li, C., Sadi, B., Benkhedda, K., St-Amant, N., Moodie, G., Ko, R. & Kramer, G. (2010). Method comparison for 241Am emergency urine bioassay. Radiation Protection Dosimetry, 175.
- Luisier, F., Corcho Alvarado, J., Steinmann, P., Krachler, M., & Froidevaux, P. (2009). A new method for the determination of plutonium and americium using high pressure microwave digestion and alpha-spectrometry or ICP-SMS. Journal of Radioanalytical and Nuclear Chemistry, 281(3), 425-432.
- Maxwell III, S. L., & Faison, D. M. (2008). Rapid column extraction method for actinides and strontium in fish and other animal tissue samples. Journal of Radioanalytical and Nuclear Chemistry, 275(3), 605-612.

- Maxwell, S. L.; Culligan, B. K.; Noyes, G. W. (2010). Rapid separation method for actinides in emergency soil samples. Radiochim. Acta. 98(12), 793-800.
- Ovsiannikova, S., Papenia, M., Voinikova, K., Brown, J., Skipperud, L., Sokolik, G., Svirschevsky, S. (2010). Migration ability of plutonium and americium in the soils of Polessie State Radiation-Ecological Reserve. J. Radioanal. Nucl. Chem. 286, 409-415.
- Pimpl, M., & Higgy, R. (2001). Improvement of Am and Cm determination in soil samples. Journal of Radioanalytical and Nuclear Chemistry, 248(3), 537-541.
- Pourmand, A., & Dauphas, N. (2010). Distribution coefficients of 60 elements on TODGA resin: application to Ca, Lu, Hf, U and Th isotope geochemistry. Talanta 81, 741-753.
- Prohaska, T., Irrgeher, J., Zitek, A., & Jakubowski, N. (Eds.). (2014). Sector Field Mass Spectometry for Elemental and Isotopic Analysis. Royal Society of Chemistry.
- Qiao, J.; Hou, X.; Roos, P.; Miró, M. (2009). Rapid determination of plutonium isotopes in environmental samples using sequential injection extraction chromatography and detection by inductively coupled plasma mass spectrometry. Anal. Chem. 81(19), 8185-8192.
- Thakur, P., Ballard, S., & Conca, J. L. (2011). Sequential isotopic determination of plutonium, thorium, americium and uranium in the air filter and drinking water samples around the WIPP site. Journal of Radioanalytical and Nuclear Chemistry, 287(1), 311-321.
- Truscott, J. B., Jones, P., Fairman, B. E., & Evans, E. H. (2001). Determination of actinide elements at femtogram per gram levels in environmental samples by on-line solid phase extraction and sector-field-inductively coupled plasma-mass spectrometry. Analytica Chimica Acta, 433(2), 245-253.
- Vajda, N., & Kim, C. K. (2010). Determination of ²⁴¹Am isotope: a review of analytical methodology. Journal of Radioanalytical and Nuclear Chemistry, 284(2), 341-366.
- Varga, Z. (2007). Application of inductively coupled plasma sector field mass spectrometry for low-level environmental americium-241 analysis. Analytica Chimica Acta, 587(2), 165-169.
- Xiao, G., Saunders, D., Jones, R. L., & Caldwell, K. L. (2014). Determination of ²⁴¹Am in urine using sector field inductively coupled plasma mass spectrometry (SF-ICP-MS). Journal of Radioanalytical and Nuclear Chemistry, 301(1), 285-291.
- Xu, Y.; Qiao, J.; Hou, X.; Pan, S.; Roos, P. (2014). Determination of plutonium isotopes (²³⁸Pu, ²³⁹Pu, ²⁴⁰Pu, ²⁴¹Pu) in environmental samples using radiochemical separation combined with radiometric and mass spectrometric measurements. Talanta. 119, 590-595.
- Yamamoto, M., Yamamori, S., Komura, K., & Sakanoue, M. (1980). Behavior of plutonium and americium in soils. Journal of Radiation Research, 21, 204-212.
- Yamamoto, M., Komura, K., & Sakanoue, M. (1983).²⁴¹Am and plutonium in Japanese rice-field surface soils. Journal of Radiation Research, 24(3), 237-249.
- Zheng, J., & Yamada, M. (2008). Isotope dilution sector-field inductively coupled plasma mass spectrometry combined with extraction chromatography for rapid determination of ²⁴¹Am in marine sediment samples: a case study in Sagami Bay, Japan. Journal of Oceanography, 64(4), 541-550.
- Zheng, J., Tagami, K., & Uchida, S. (2013a). Release of plutonium isotopes into the environment from the Fukushima Daiichi nuclear power plant accident: what is known and what needs to be known. Environmental Science & Technology, 47(17), 9584-9595.
- Zheng, J., Tagami, K., Homma-Takeda, S., & Bu, W. (2013b). The key role of atomic spectrometry in radiation protection. Journal of Analytical Atomic Spectrometry, 28(11), 1676-1699.
- Zheng, J., Tagami, K., Watanabe, Y., Uchida, S., Aono, T., Ishii, N. Ihara, S. (2012). Isotopic evidence of plutonium release into the environment from the Fukushima DNPP accident. Scientific Reports, 2:304. doi.10.1038/srep00304.
- 放射線医学総合研究所. (2016). 平成 27 年度 放射性廃棄物共通技術調査等委託事業 放射性核種生物 圈移行評価高度化開発. 千葉.

4.3.米中 Th 濃度の測定

4.3.1. はじめに

地層処分に伴う生物圏での安全評価において、Th は重要核種の1つである。Th の土壌-農作物移行 係数(TF)に関しては、測定法により値が大きく異なる事が報告されている(Wang, et al., 2015)。す なわち、γ線スペクトル分析では、過大評価となる事が指摘されている。したがって、ICP-MS によ る測定が望まれる。

日本の土壌中 Th 濃度は<1-100 mg kg⁻¹の範囲である(Yamasaki et al., 2001; Yoshida et al., 1998)。ま た,農耕地土壌に着目すると内田らの報告では、日本の水田および畑土壌のTh濃度は、それぞれ5.4 mg kg⁻¹ (2.3 – 11 mg kg⁻¹)および 5.0 mg kg⁻¹ (1.2 – 12 mg kg⁻¹)である (Uchida et al. 2007a; Uchida et al. 2007b)。土壌試料に混合酸を加えて全分解し溶液化した後、Th は分離・濃縮を行なわなくても、希釈 するだけで直接 ICP-MS で測定できる。天然の Th は存在比 100%が質量数 232 であり、この質量数に は妨害となる元素は存在しない(Ostapczuk et al., 2010; Sahoo et al., 2011)。すでに ICP-MS による土壌 中の Th 濃度測定は十分に確立されていると言える。一方,米中の濃度は非常に低い。土壌中の濃度 と比較すると数オーダー低く, ng g⁻¹レベル未満となることもある(Uchida et al. 2007b)ため、米試料 中の Th 濃度測定は高精度の分析が要求される。。Th 濃度が低いことに加え,米中でケイ酸塩と結合し ていると考えられるため、米試料中の Th 濃度を精度良く測定することは困難である。一般に、植物 試料の分解には,硝酸のみ,硝酸-過酸化水素の混合酸または王水を使った方法が使われている。しか しながらこれらの分解法では、ケイ酸塩に結合している Th を溶解できないため Th の回収率が低くな ることがある(Feng et al., 1999)。そこで、本調査事業(平成 26 年度)において、米試料中のケイ酸 塩に結合している Th を完全に溶解するために, 硝酸-フッ化水素溶液マイクロウェーブ分解法(平成 26 年度報告書第4.3.2.項参照)を開発した。今年度は、昨年度に開発した分析法を用いて白米と玄米 試料中の高精度 Th 濃度測定を行った。

4.3.2. 測定試料

標準試料である灌木試料(GBW)及びトマトの葉試料(1573a)を分析法の確認のために用いた。 また,米試料として,平成26年度と平成27年度採取した白米試料(20試料)と平成27採取した玄 米試料(10試料)を用いてTh濃度測定を行った。

4.3.3. 実験手順

(1) 試料の前処理

乾燥させた米試料を 30~50g 採取し、ミキサーで粉砕後、粉砕用のメノウ製容器に移し、遊星ボー ルミルにて粉砕を行った。粉砕した試料は 50mL のスクリュー管に入れ保存した。

(2) 米試料の全分解法

概略を以下に記す。

80°C で 3 時間乾燥させ, 放冷後約 500 mg秤量しテフロン製分解容器に入れて, 硝酸を 10mL, フッ 酸を 4mL 加えた。80°C において 10 時間加熱して有機物分解後, 過酸化水素を 1mL 添加する。分解 容器をマイクロウェーブにセットし,約 10 分加熱した。放冷後装置から取り出した試料はそのままホ ットプレート上で 130°C にて蒸発乾固を行った。試料に硝酸 1mL と過酸化水素 0.5mL を添加して残 渣を溶かした後,再度乾固し,最終的に 40%硝酸を 1mL 加え 20mL ポリエチレン製容器に移し,超 純水を添加して全量 20mL とした。この試料母液の硝酸濃度は 2%,元素濃度は,もとの米試料の約 1/40 である。また,標準試料として用いた灌木試料(GBW)及びトマトの葉試料(1573a)も同様の 処理を行った。

(3) ICP-MS の測定試料の調整

ICP-MSの測定において、2%硝酸を用いて、平成26年度白米試料母液を希釈倍率1000倍または平成27年度白米と玄米試料母液を500倍で希釈した。Thの定量は外部検量線法によって行った。検量線作成のため、Th濃度0,0.01,0.1,と0.2 ng mL⁻¹の標準溶液を用いた。測定装置は高分解能 ICP-MS (SF-ICP-MS)を用いた。以下に装置設定条件を示す。

<SF-ICP-MS: Element XR with Jet interface>

- RF Power: 1.3 kW
- プラズマガス: 16 L min⁻¹
- キャリアーガス: 1.0 L min⁻¹
- 補助ガス: 0.85 L min⁻¹
- ネブライザー: Conical concentric ネブライザー
- 低分解能モード: m/△m = 300
- 繰り返し測定回数: Run x pass 15x5 回
- 内標準元素: ²⁰⁹Bi (0.1 ng mL⁻¹)
- 測定元素:²³²Th,²⁰⁹Bi

4.3.4. 結果および考察

本研究で用いた Th の分析法の妥当性を, 保証値がある標準物質(灌木試料 GBW 及びトマトの葉試料 NIST-1573a) で確認を行った。その結果を表 4.3-1 に示す。灌木試料 GBW (n = 2) とトマトの葉試料 NIST-1573a (n = 3)の Th 濃度範囲は, それぞれ 0.075 – 0.079 と 0.099 – 0.136 mg/kg であり, 灌木試料 GBW の保証値 (0.070) やトマトの葉試料 NIST-1573a の information value (0.12)と十分に一致していた。この結果は, 米試料における Th 濃度測定のために用いた本分析法が適応可能であることを示している。

本調査では,前述したように平成26年度と平成27年度に採取した白米試料20点と平成27年度に 採取した玄米試料10点を用いて,Th濃度測定を行った。分析結果を表4.3-2に示す。白米試料20点 のTh濃度範囲は1.4×10⁻⁵から6.7×10⁻⁴ mg/kgであった。最大/最小濃度比は48であった。算術平均値 および幾何平均値は,それぞれ1.8×10⁻⁴と1.0×10⁻⁴ mg/kgであった。平成27年度に採取した玄米試料 10点については,Th濃度範囲は7.7×10⁻⁵から4.7×10⁻⁴ mg/kgであった。最大/最小濃度比は6であった。 算術平均値および幾何平均値は,それぞれ2.1×10⁻⁴と1.8×10⁻⁴ mg/kgであった。

玄米の Th 濃度は白米の Th 濃度とほぼ同じかやや高かった。また,最大/最小濃度比については,玄 米より白米の方が 8 倍高かった。白米の最大/最小濃度比が玄米よりも 8 倍高い理由については不明で ある。もし,糠の Th 濃度が白米よりも高い場合には,精米工程に起因する白米における糠の残留の 変動に起因する可能性があるが,白米と玄米中の Th 濃度を比べると前述したようにそれほど大きな 違いは見られなかった。Uchida ら (2007b) が報告している米中の Th 濃度幾何平均値は,日本の白米

(40 点)が 6.4×10⁴ mg/kg および玄米(37 点)が 5.5×10⁴ mg/kg である。これは、本調査から得られた白米(20 点)と玄米(10 点)中の Th 濃度幾何平均値より 6 倍と 3 倍高かった。Uchida らは四重極の ICP-MS を用いて測定しているため、本調査で開発した分析法-SF-ICP-MS 測定法と比較すると検出限界が高く、検出限界以下のデータが幾つかある。すなわち、測定が可能であった試料だけの平均値

であるために高かくなった可能性がある。

今後はデータをさらに蓄積していき,日本の米中Th濃度の変動範囲を正確に把握する必要がある。 そして,同時に土壌中Th濃度データも蓄積して,Thの土壌-米間移行係数を整備する事が重要である。

引用文献

- Feng, X., Wu, S., Wharmby, A., Wittmeier, A. (1999). Microwave digestion of plant and grain standard reference materials in nitric and hydrofluoric acids for multi-elemental determination by inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom., 1999, 14, 939-946.
- Ostapczuk, Z. P., Dederichs, H., Hobig, J., Lennartz, R., Zoriy, M. (2010). Biomonitoring of environmental pollution by thorium and uranium in selected regions of the Republic of Kazakhstan. J. Environ. Radioact., 2010, 101, 414-420.
- Sahoo, S., Hosoda, M., Kamagata, S., Sorimachi, A., Ishikawa, T., Tokonami, S., Uchida, S. Thorium, uranium and rare earth elements concentration in weathered Japanese soil samples. Progress Nucl. Sci. Technol. 2011, 1, 416-419.
- Uchida, S., Tagami, K., Hirai, I. Soil-to-plant transfer factors of stable elements and naturally occurring radionuclides: (1) Upland Field Crops Collected in Japan, J. Nucl. Sci. Technol., 2007a, 44, 628–640.
- Uchida, S., Tagami, K., Hirai, I. Soil-to-plant transfer factors of stable elements and naturally occurring radionuclides: (2) Rice Collected in Japan, J. Nucl. Sci. Technol., 2007b, 44, 779–790.
- Wang, Z. T., Zheng, J., Tagami, K., & Uchida, S. (2015). Newly derived transfer factors for Th, Am, Pu, and Cl since publication of IAEA TRS No. 472: a review. Journal of Radioanalytical and Nuclear Chemistry, 306(1), 11-20.
- Yamasaki, S., Takeda, A., Nanzyo, M., Taniyama, I., Nakai, M. (2001). Background levels of trace and ultra-trace elements in soils of Japan. Soil Sci. Plant Nutr., 2001, 47, 755-765.
- Yoshida, S., Muramatsu, Y., Tagami, K., Uchida, S. Concentrations of lanthanide elements, Th and U in 77 Japanese surface soils. Environ. Int., 1998, 24, 275-286.

4.4.土壤中塩素の超高精度分析法開発

4.4.1. はじめに

塩素-36 (³⁶Cl) は物理学的半減期 30.1 万年の長半減期核種であり,安定同位体である³⁵Cl (天然存 在度 75.78%)の中性子放射化によって生成される。水中においては陰イオンで存在することから地質 環境中や生活圏において易動性が高く放射性廃棄物処分の安全評価において重要核種とされている。 その土壌-農作物間移行係数 (TF) を求めるにあたり,安定元素をアナログとできることから(放射 線医学総合研究所, 2014),本研究では塩素の分析を行うこととしている。一般に塩素は中性子放射化 法 (NAA)により測定できるが,この分析法は原子炉が必要である。より多くのデータを得るために は,一般実験室でも行える分析法によりデータを蓄積できる方が望ましい。そこで昨年度はトリプル 四重極 ICP-MS の適用と,測定のための試料溶液化について検討を行った。さらに,開発した分析法 を用いて,土壌と作物試料中の塩素濃度を分析して TF を求めた。本研究では塩素を対象としつつも, 同時にヨウ素と,これらの同族元素であることから,化学アナログとして使用とすることが可能かも しれない臭素についても TF データを蓄積することを念頭に,分析方法を検討している。そのため, 酸化力の強い無機酸を用いた分解法を用いず,水酸化テトラメチルアンモニウム (TMAH)を用いて 水溶性~有機物までを溶解する方法を採用している。植物試料のように有機物で構成された試料は溶 解が塩素,臭素およびヨウ素とも分析が可能である(放射線医学総合研究所, 2016)。

しかしながら、土壌中においては鉱物中に取り込まれて溶出しにくい塩素も存在する。昨年度も全 量溶出しているのかどうかについては問題が残った。そこで今年度は塩素濃度既知の土壌試料を TMAH 抽出し、抽出率を調べた。分析法については、溶解した有機物の ICP への影響(例えばイオン 化効率の低下)を減少させるために、有機物分解を試みることで、精度の高い分析が行えるように改 良を加えた。

4.4.2. 土壌試料からの TMAH による塩素抽出率

土壌溶液化について, H26年は TMAH を用いて岩石試料の分析を検討した結果(放射線医学総合研 究所, 2015),ほとんどの塩素が溶出できず定量性が低かったことが明らかとなった。そのため昨年度 は加熱気化法と硝酸抽出法についても検討を行ったが、両分析法とも岩石試料の定量性が一定ではな かった。実際には、土壌鉱物中の構造物として容易に植物等に使われない塩素は、地下水シナリオで 地下水とともに地表に移動してくる塩素とは挙動が異なると考えられる。すなわち、易動性が低い化 学形の塩素を含む全塩素を対象とは考えず、易動性がある塩素のみを測定対象にすることも有効であ ろう。しかしながら、どの程度溶出できるのかについて検討しておく必要がある。

本年度は NAA で CI 濃度を定量した土壌試料 26 検体を用いて検討を行った。その土壌試料中の塩 素濃度を本調査により開発した分析法により定量を試みるとともに、NAA による分析値との比較を行 った。分析手順についてはこれまでに準じており、以下に簡単に記す。土壌試料(粉末,乾燥)を 100 mg 分取し,密閉型テフロン容器(Savillex 製, 6 mL)に 25%TMAH(多摩化学, Tama pureAA-100) を 2 mL, Milli-Q 水を 1 mL 添加して封入した。これを 80℃の電気乾燥機を用いて 16 時間加熱した。 室温まで冷却後、全量を Milli-Q 水を用いて 50 mL 遠沈管に移した。遠心分離(3000 rpm, 10 min.)を 行い、上澄みをさらに 0.45µm の PTFE フィルター(Millipore、マイレクス)を用いてろ過した。ICP-MS 分析前の処理については、第 4.4.3 項に示す。

INAA により全量分析した結果と, TMAH 抽出による結果を比較して図 4.4-1 に示す。得られた値は NAA より低いものであった。TMAH による塩素抽出率を臭素およびヨウ素も比較した結果を図 4.4-2 に示す(Br 及び I の結果は加熱気化-ICP-MS 法による)。塩素の抽出率は平均で 0.35±0.15, Br

は 0.97±0.13, I は 0.83±0.09 であった。これらの結果から、土壌中の塩素は 3 分の 1 程度しか TMAH で抽出できないことがわかった。したがって、TMAH 法で求めた土壌中の濃度は NAA 法よりも低いため、移行係数が高くなることが示唆されたが、オーダーでの違いは無いといえる。

一方,土壌試料からの臭素やヨウ素の抽出率は高い。ヨウ素については Yamada ら(1996)は土壌 中ヨウ素を全量 TMAH で溶出できるとしているが,Takeda ら(2011)は全量溶出できないと考えら れることから,加熱気化法で Br と I の分析を行っている。我々も以前,I の分析では土壌中濃度が低 い場合,完全には抽出できないことを報告している(Tagami et al., 2010)。

4.4.3. TMAH 抽出溶液の ICP-MS 測定前の処理

ICP-MS はアジレント 8800 であり、4 重極マスフィルター2 個の間にオクタポールリアクションセルを搭載しているモデルである。測定条件は昨年度検討し、DL が低かった MS/MS + He (35 -> 35) モードを用いることとした。このモードは He により透過率を下げた上で、さらに MS/MS モードにより2回質量数 35 を選択するのでバックグラウンドが低い。さらに、この条件では Br や I も同時に計測できる。ICP-MS において感度を安定して得るためには、できるだけ有機物濃度が低い方が良い。しかし、TMAH 法は有機物を多く含むことから、その除去について、過酸化水素(H₂O₂)による分解を検討した。

試料溶液として,分析条件と同じ 1%TMAH 溶液を作成し,既知量の Cl, Br, I を添加して母液を調整した。試料量 5 mL (広口タイプ PTFE ジャー, 30 mL) に対し, H₂O₂ (多摩化学, Tama pureAA-100) を 0.1, 0.5, 1.0 mL 添加し,ホットプレートで 100℃にて最大 2.5 時間加熱した。結果を図 4.4-3 に示す。この実験では、3元素とも全て損失することはなかったことがわかる。また、容器の形状について、13 mL の PP チューブをを用いた場合でも 3 元素とも損失が見られなかった (図 4.4-4 塩素のみ表示)。

以上の結果から,TMAH 抽出液に含まれる有機物分解の目的で,0.45µm フィルター後の実試料溶液 5mL を PP チューブに分取し,0.5mL の H₂O₂ を少しずつ添加しながら 100℃で1時間加熱した。この処理により茶色~黒色の試料溶液の色が淡色に変化し,有機物量が減少したものと考えられる。

4.4.4. 農作物および土壌試料中の塩素分析結果と TF

昨年度は、土壌試料について、土壌中の塩素濃度が低かったこともあり定量結果が大きくばらついた(平均約80%のRSD)が、今年度は上述の処理を行うこと、さらに測定の繰り返しを増やすことで、安定して塩素を測定することができるようになり、平均のRSDとして8%とすることができた(表4.4-1)。同様の分析条件で葉菜類(長ネギ、キャベツ、ハクサイ、ホウレンソウ、レタス)を測定したところ、塩素のRSDは低く、精度が向上したといえる(表4.4-2)。ヨウ素や臭素については土壌、葉菜類とも大きく変化はなかったが、低濃度の植物試料については長めに計測時間を設定する等の対応により、十分低いRSDでの定量が期待できる。農作物については、昨年度も標準植物試料を用いて良好の結果が得られており、本法により定量性が高く、かつ精度良く測定できるようになった。

得られたデータを用いて各試料について TF を求めた結果を表 4.4-3 に示す。土壌および植物中濃度の順番は Cl>Br>I と同じである。しかし、土壌中濃度の算術平均値は Cl, Br, I の順に 114, 80, 19 mg/kg と差は大きくないが、葉菜類中濃度の算術平均値は 4540, 30, 0.14 mg/kg と土壌に比べて差が大きい。 そのため、TF 値(乾物ベース)も異なり、58, 0.54, 0.01 となった。これらの値を報告値と比べた結 果を表 4.4-4 に示す。本年度得られた値は、昨年度別のセットの葉菜類で得られた値と類似していた。 Tsukada and Nakamura (1998) や Yuita (1983) は日本国内のデータであり、臭素およびヨウ素の TF は本報告と類似している。塩素の TF については Tsukada and Nakamura (1998)や IAEA (2010)の値と 比較すると、やや高い傾向にあり、本報告では土壌中の塩素を全量定量していないことに起因すると 考えられたものの、既存値は本報告の範囲内であった。一方、Yuita (1983)の報告値から計算した TFに比べると、本報告の塩素のTFは同等かやや低かった。Yuita (1983)が指摘しているように、海 岸線からの距離によって土壌および植物中のハロゲン元素濃度は影響を受けることから、正確なハロ ゲン元素のTFを安定元素により求めるためには、海岸線からの距離について考慮する必要がある。 これまで本報告で採取してきた試料は沿岸域ではないため、影響はより低いと考えられる。

4.4.5. 土壌中塩素の超高精度分析法のまとめ

塩素の移行係数を得るために、塩素の超高精度分析法を開発した。TMAH を用いた土壌中塩素抽出 については全土壌中濃度に対し、平均で35%の抽出率であったが、土壌中の利用可能な塩素を抽出す るという観点からは適切な分析法である。さらに、これまで検討してきた TMAH 法について、試料溶 液を H₂O₂処理することで有機物を分解してから ICP-MS/MS 分析(昨年度分析条件を設定)を行うこ とで、装置のドリフトが減り、繰り返し測定を長時間行えるようになったことから、より精度の高い 分析が可能となった。昨年度までは塩素の測定誤差が平均で約80%もあったが、今年度は平均8%と 減らすことができた。

本分析法で得られる Cl の TF は土壌中 Cl が全量分析できていないことから,やや高めであること が考えられるが,これまで国内で測定された値の範囲内であった。これまでのデータとの整合性とい う観点からは,土壌中塩素全量の定量が望ましい。しかし,安定元素を放射性核種のアナログとして 利用する際,可給態以外のフラクションの取扱をどうするのかについては考慮されていないのが実状 である。実験条件を明記した形でデータを提供することにより,本分析法でも目的に十分適合した値 を報告できるものと考えられる。

引用文献

- 放射線医学総合研究所 (2014).放射性核種生物圈移行評価高度開発(平成25年度報告書)<u>http://www.enecho.meti.go.jp</u> /category/electricity_and_gas/nuclear/rw/library/2013/25-19-1.pdf
- 放射線医学総合研究所 (2015).放射性核種生物圈移行評価高度開発 (平成26年度報告書) <u>http://www.enecho.meti.go.jp</u> /category/electricity_and_gas/nuclear/rw/library/2014/26fy_kyoutuu_seibutuken.pdf
- 放射線医学総合研究所 (2016).放射性核種生物圈移行評価高度開発(平成27年度報告書)<u>http://www.enecho.meti.go.jp</u>/category/electricity_and_gas/nuclear/rw/library/2015/27fy_kyoutuu_seibutuken.pdf
- IAEA (2010): Handbook of parameter values for the prediction of radionuclide transfer in terrestrial and freshwater environments. Technical Report Series No.472.
- Tagami, K., Uchida, S., Takeda, A., Yamasaki, S., Tsuchiya, N. (2010). Estimation of plant-unavailable iodine concentrations in agricultural fields. Soil Sci. Soc. Am. J. 74, 1562-1567.
- Takeda, A., Yamasaki, S., Tsukada, H., Takaku, Y., Hisamatsu, S., Tsuchiya, N. (2011). Determination of total contents of bromine, iodine and several trace elements in soil by polarizing energy-dispersive X-ray fluorescence spectrometry. Soil. Sci. Plant Nutr. 57, 19-28.
- Tsukada, H., Nakamura, Y. (1998). Transfer factors of 31 elements in several agricultural plants collected from 150 farm fields in Aomori, Japan. J. Radioanal. Nucl. Chem. 236, 123-131.
- Yamada, H., Kiriyama, T., Yonebayashi, K. (1996). Determination of total iodine in soil by inductively coupled

plasma mass spectrometry. Soil Sci. Plat Nutr. 42, 859-866.

Yuita, K. (1983). Iodine, bromine and chlorine contents in soils and plants of Japan. III. Iodine, bromine, chlorine contents in the andosols and in plants of Central Honshu. Soil Sci. Plant Nutr. 29, 403-428.

4.5. Puの土壤-米間移行係数データの追加

4.5.1. はじめに

放射性核種の土壌から農作物への移動は、植物中の放射性核種の濃度(Bq/kg 乾燥重量)と土壌中 の放射性核種の比として定義される土壌から植物への移行係数(TF)によって定量化される(ICRU, 2001)。1994年に、IAEAは、自然放射性核種と人工放射性核種の報告されたTFをまとめた技術報告 書(TRS-364)を発表した(IAEA TRS-364, 1994)。その後、IAEAは、さらにTFのデータを追加し、技 術報告書(TRS 472)を発表した(IAEA TRS-472, 2010)。しかしながら、TRS-472では、Puに関して は非常に限定されたTFデータしか報告されておらず、例えば、米や果実のような幾つかの植物種に ついてはそのTFは掲載されていない(Wang et al., 2015a)。米はアジアの食糧構造において重要な役割 を果たしており、土壌から米へのTFデータを補完することが不可欠である。

本調査研究は、平成 25 年度土壌中 Pu 濃度の高精度質量分析法を確立した。さらに、平成 26 年度 に米中 Pu 濃度高精度質量分析法も開発し、平成 27 年度は開発された分析法を用いて、初めて、日本 の水田で生育した米を用いて Pu の土壌-米の TF データを取得した。本年度は、土壌中 Pu 濃度分析に ついて、新しい化学分離法を開発した。この化学分離法を用いることにより、分離工程をこれまで以 上に短くすると同時に回収率を向上することにも成功した。本年度は、改良した土壌 Pu 分析法と平 成 26 年度に確立した米中 Pu 濃度高精度質量分析法を用いて岐阜、富山、千葉と奈良の 4 県の Pu の 土壌-米の TF データを追加した。

4.5.2. 試料の前処理

4.5.2.1. 測定試料

Pu の土壌-米 TF の調査において,福島第一原子力発電所事故前に日本の四つ県から採取した水田 土壌と玄米(4点,試料番号 No.7 - No.10)を用いた。試料採取場所を図 4.5-1 に示す。また,Pu 分析 のクオリティ・コントロールため,土壌標準物質試料 IAEA Soil-6 と JSAC-0471 を用いた。

4.5.2.2. 試薬

実験に使用したすべての試薬(HCl, HNO₃, HF, NaNO₂, NH₄I, H₂O₂, HBr, H₃BO₃, NH₃, FeCl₃, ascorbic acid, TiCl₃, Ca(NO₃)₂, La(NO₃)₃, NH₂OHHCl, Iron (II) sulfamate)は、上述の実験でも用いたように分析用レベルである。イオン交換樹脂はBio-Rad 社製の2種類のイオン交換樹脂, AG 1X8 (100-200 mesh, Cl-form)とAG MP-1M (100-200 mesh, Cl-form),を用いた。Tama Chemicals(東京,日本)から得られた超高純度 HNO₃を、SF-ICP-MS 測定用の最終サンプル溶液の調製に使用した。本研究で使用したEichrom 社製の3つの抽出樹脂(TEVA, UTEVA および DGA(ノーマルタイプ))は、50~100 μ mの粒度を有する2mLのカートリッジに充填されたものである。試料には²⁴²Pu (CRM 130, plutonium spike assay and isotopic standard, New Brunswick Laboratory, USA)を適量スパイクし、回収率測定のために用いた。水はすべて超純水(>18 MΩ cm⁻¹)である。²⁴⁰Pu/²³⁹Pu 原子比認定値付き(0.242)の混合Pu 同位体標準溶液(NBS-947)用いて、マスバイアス補正に使用した。

4.5.2.3. Pu 化学分離と分析

土壌試料については、本年度改良した土壌 Pu 分析法を用いた (図 4.5-2)。最初に、土壌試料 1-2.5 g を秤量(土壌標準物質試料では、0.2 g)し、0.57 pgの²⁴²Pu を回収率モニターとして各試料に添加した。次に、その後の化学分離において妨害となる有機物を分解するため、磁性の坩堝に移しマッフル 炉により 450°C (Wang et al., 2015b)で5時間灰化した。灰化試料を用いて硝酸抽出を行うが、その際、

一般に用いられるガラスビーカーと時計皿で加熱すると酸が損失する上,抽出効果が低くなってしま う。そこで、しっかりと蓋ができる 120 mL のテフロン容器(Savillex Corporation, Minnesota, USA) を 使用した。このテフロン容器に、10 mL の濃硝酸を加え、ホットプレート上で 160°C で少なくとも 4 時間以上加熱した。冷却後、上澄み液をフィルターで濾過して遠心分離管(50 mL)に移した。Milli-Q 水を添加して、試料容量を 35mL(約 3.8M HNO₃)に調整した。次に 100mg の Ca および 100mg の La を添加し、続いて 2mL の 20% TiCl₃を添加し、Pu (IV) を Pu (III)に還元した。46% HF 7mL を注 意深く添加した後、溶液を完全に混合し、15-20 分間静置した。3000rpm で 15 分間遠心分離した後、 上澄み液を捨て、H₃BO₃ 0.5g を添加して生成した沈殿物を 3M HNO₃ 20mL で溶解し、抽出クロマトグ ラフィー分離に供した。

共沈後,抽出クロマトグラフィー分離を行った。Pu の原子価状態は、0.3g の NaNO₂を添加することによって最初に Pu (IV) に調整し、水浴 (40°C) で 0.5 時間加熱した。次いで、サンプルを、真空ボックス上で 10mL の 3M HNO₃で前処理した TEVA 樹脂に通水した。それから、10mL の 3M HNO₃を用いて樹脂上に収着している Ca, Fe および希土類元素 (REEs) を除去し、続いて 40mL の 1M HNO₃を用いて U, Pb, Tl および Pt を除去し、さらに、10mL の 9M HCl Th, Bi, Hf を除去した。Pu の溶 出前に、3M HNO₃ 10mL で前処理した UTEVA 樹脂および DGA 樹脂を TEVA 樹脂に接続した。次い で、Pu (IV) を Pu (III) に還元し、TEVA 樹脂から Pu (III) を溶出させるために、3M HNO₃ - 0.1M アスコルビン酸-0.02M Fe²⁺ (25%鉄スルファミン酸塩から調製) を 20mL 使用した。溶出された Pu (III) 画分は、UTEVA 樹脂を通過し、DGA 樹脂上に保持される。溶出後、TEVA および UTEVA 樹脂を廃棄し、DGA 樹脂上の U, Tl, Pb, Pt, Hf および Fe を除去するために DGA 樹脂を 30mL の 0.1M HNO₃ですすいだ。最後に、DGA 樹脂上の Pu を 20mL の 0.5M HCl-0.1M NH₂OH・HCl で溶出した。 試料をさらに蒸発乾固し、4mL の王水で溶解した。溶解した溶液を 200℃で加熱して乾燥させた後、1mL の濃 HNO₃を加え、これを加熱してほぼ乾燥させた。最後に、試料を 4%HNO₃ 0.7mL に溶解し、SF-ICPMS 測定の試料溶液とした。

玄米試料については,平成26年度開発した米中のPu分析法を用いた。Puの分離と精製工程詳細は, 平成26年度事業報告書第4.2.3.5を参照されたい。

土壌と米中の Pu 分析は, SF-ICP-MS (Element XR)と APEX-Q で行った (Zheng, 2015)。測定におい ては,自立吸引モードを用いた。測定対象のアイソトープ (²³⁸U, ²³⁹Pu, ²⁴⁰Pu, ²⁴¹Pu, ²⁴²Pu) は,ピーク ポッピングモードで測定し,それぞれの質量数において,ピーク幅の 10%で測定を行った。なお,試 料を毎回測定する前に,濃度が 0.02 ng mL⁻¹のウラン標準溶液 (Merck standard) を用いて, SF-ICP-MS の感度調整を行った。SF-ICP-MS を用いた Pu 測定条件の詳細は平成 26 年度事業報告書の表 4.2-1 を 参照されたい。

4.5.3. 結果および考察

4.5.3.1. 土壌サンプル中の Pu 汚染源の識別

²³⁹⁺²⁴⁰Pu と²³⁹Pu 濃度及び²⁴⁰Pu/²³⁹Pu 同位体比の測定結果を表4.5-1 に示す。表4.5-1 には比較のため, 平成 27 年度に測定した試料 1-6 の結果も示した。日本の環境については,三つの Pu 汚染源が報告さ れている。すなわち 1945 年長崎に降下された原子爆弾に関する一連の Pu 汚染 (Yamamoto et al., 1983; Saito-Kokubo et al., 2008),前世紀 60 年代からのグローバルフォールアウト汚染 (UNSCEAR, 1982; Kelley et al., 1999),また,2011 年に起きた福島第一原子力発電所事故による微量 Pu 汚染 (Zheng et al., 2012)である。Pu の汚染ソースを区別するために、²⁴⁰Pu/²³⁹Pu の原子比は非常に重要なパラメータであ る。これらの 3 つの Pu の汚染源の特性 ²⁴⁰Pu/²³⁹Pu 同位体比は大きく異なる。したがって,収集された 土壌試料の Pu 汚染源識別は,それらの²⁴⁰Pu/²³⁹Pu 同位体比を調べることによって達成することができ る。調査した秋田,新潟,富山,岐阜,長崎,福島,千葉と奈良など7県の水田土壌の²⁴⁰Pu/²³⁹Pu 同 位体比は,0.160 から 0.182 の範囲であり,それはグローバルフォールアウトの比と同じである (Kelley et al., 1999)。すなわち,これら土壌試料中のPuの主なソースはグローバルフォールアウトで あることを示唆している。

本研究で得られた²³⁹⁺²⁴⁰Pu 濃度は、0.204 から 0.919 mBq/g の範囲であり、²³⁹Pu 濃度は、0.12 から 0.56 mBq/g の範囲である。日本の水田土壌中のPu 濃度に関する情報は非常に限られている。Yamamoto ら (1983) は、主に 1963 年から 1976 年の間に日本の 15 地点で採取された水田の表層土壌 30 サンプル、およびこの 15 地点の中から 2 地点を選択し、1957 年から 1980 年にかけて定期的に採取した土壌 試料 15 点について ²³⁹⁺²⁴⁰Pu 濃度を測定した。その結果から、水田土壌中の ²³⁹⁺²⁴⁰Pu 濃度は 0.078~1.03 mBq/g であった。本研究で得られた ²³⁹⁺²⁴⁰Pu 濃度は Yamamoto らが報告している濃度と同じレベルで あり、また、農耕土や森林土の典型的なグローバルフォールアウトの値(Muramatsu et al., 2003)の範囲のである。

4.5.3.2. 米中 Pu 濃度

土壌試料中の Pu の測定に比べて、米試料の Pu 濃度は相対的に低いため Pu の測定はより困難であ る。この問題を克服するために、大量の米試料を Pu 測定試料調製のために使用する必要がある。し かし、より大きなサンプルサイズはより大量のマトリックスを伴うため、Pu 化学的分離の回收率を低 下させることになる。結果としては、玄米試料中の典型的な Pu 回収率は土壌試料よりはるかに低く、 約 20~30%であった。したがって、ICP-MS 測定における²³⁹Pu と²⁴⁰Pu 信号強度は比較的低い。特に、 ²⁴⁰Pu の信号強度は、この同位体の正確な測定を妨げ、バックグラウンドに近い。したがって、玄米試 料中の²³⁹Pu 濃度のみ報告する(表 4.5-2)。

表 4.5-2 から分かるように、玄米中の²³⁹Pu 濃度は、 $0.25 \times 10^{-5} - 1.9 \times 10^{-5}$ mBq/g の範囲であり、平均値は 8.5 × 10^{-6} mBq/g であった。それは土壌試料より約5桁低い値である。

4.5.3.3. Puの土壌-米間移行係数

前述したように、Puの土壌-米間のTFのデータは、ほとんど報告されていない。本研究では、平成 27 年度の調査に続いて、水田に採取された玄米試料およびそれらに対応する土壌試料の²³⁹Pu 濃度を 分析することにより、新たなグローバルフォールアウト起源の Pu-TF データを取得した。表 4.5-2 に 示すように、Puの土壌-玄米のTFは4.5×10⁻⁶から1.0×10⁻⁴の範囲であり、その幾何平均値と算数平均 値は、それぞれ 2.7×10⁻⁵と 3.7×10⁻⁵であった。以前に公表されたデータと、本研究で得られた値を比 較すると、本研究における TF データが 1~2 桁低いことがわかった。これはおそらく、異なる Puの ソースおよびサンプリング環境の違いによるものと思われる。表 4.5-3 に示すように、以前報告され たデータは, ^{239,240}Pu 汚染サイト (Duffa ら, 2002), 核実験サイト (Zhang ら, 1989) または ²³⁸Pu スパイク実験より(Adriano et al., 1981)のいずれかから取得された試料である。汚染地域から試料か ら求められた TF には、根からの吸収, すなわち、土壌-米間の移行以外のプロセス, 例えば, re-suspension や表面汚染などにより(Wang et al., 2015a),米試料中のPu濃度が上昇する可能性があり、その場合、 TF が過大評価されることになる。一方, re-suspension や表面汚染以外にも, TF に影響を及ぼす因子 として、エイジング効果が考えられる。すなわち、グローバルフォールアウト起源の Pu では、土壌 に添加されてから数十年以上が経過しており、植物が吸収できるフラクション(バイオアベイラビリ ティ) に存在する Pu が次第に少なくなってきているものと思われる。このように、バイオアベイラ ビリティは時間とともに減少すると考えられている。グローバルフォールアウト起源の Pu の場合, 総存在量の1~4%のみが植物が根から吸収可能であると報告されている(Baeza et al., 2006)。一方,

高いバイオアベイラビリティを有する可溶性形態(例えば (Guillen et al., 2016) により硝酸塩形態)で 添加されたポット実験から得られた TF データは 1~2 桁程度過大評価される可能性がある。放射性廃 棄物の地層処分に係わる長期間の安全評価においては、本研究によって示されたデータは、汚染され た地域の実験と添加されたポット実験から得られた TF 値よりもより現実的であると考えられる。

IAEA TRS-472 では, Pu の土壌-農作物間 TF データを取りまとめているが,前述したように土壌-米間 TF データは示されてはいない (図 4.5-3)。図 4.5-3 には比較ため, TRS-472 に掲載されている葉 菜類 Pu-TF の範囲と本調査により得られた日本の葉菜類の Pu-TF の算術平均値も示した。土壌-穀物(穀 物 食用部分)間 TF データの幾何平均値は 9.5×10⁻⁶ (N=105) であると報告されている(IAEA TRS-472)。 本研究で得られた土壌-玄米間 TF データの幾何平均値 (2.7×10⁻⁵) (n = 10)は信頼性があり, Pu の土壌-米間 TF データベースへの補完することができる。しかし,将来的にこのデータベースを充実するた め,さらにデータを蓄積することが必要である。

引用文献

- Adriano, D.C., McLeod, K.W., Ciravolo, T.G. Plutonium, curium, and other radionuclide uptake by the rice plant from a naturally weathered, contaminated soil. Soil. Sci. 132(1) (1981) 83-88.
- Baeza A, Guillen J, Mietelski JW, Gaca P. Soil to fungi transfer of ⁹⁰Sr, ²³⁹⁺²⁴⁰Pu and ²⁴¹Am. Radiochim Acta. 2006; 94: 75-80.
- Duffa, C., Renaud, P., Goutelard, F. Activities and transfers of Pu and Am in rice samples from Camargue, France. J. Radioanal. Nucl. Chem. 252 (2) (2002) 247-248.
- Guillen J, Munoz G, Baeza A, Salas A, Mocanu N. Attempt to reduce ²³⁹Pu and ²⁴¹Am uptake by wheat plantlets by application of inorganic fertilizers. J Radioanal Nucl Chem. 2016; 1-7.
- IAEA, Handbook of Parameter Values for the Prediction of Radionuclides Transfer in Terrestrial Environments. IAEA-TRS-364, Vienna, 1994.
- IAEA, Handbook of Parameter Values for the Prediction of Radionuclides Transfer in Terrestrial and Freshwater Environments. IAEA-TRS-472, Vienna, 2010.
- ICRU, International commission on radiation units and measurements, Quantities, units and terms in radioecology, ICRU Report 65, J. ICRU 1/2, 2001.
- Kelley, J.M., Bond, L.A., Beasley, T.M. Global distribution of Pu isotopes and 237 Np. Sci. Total Environ. 237 (1999) 483-500.
- Muramatsu, Y., Yoshida, S., Tanaka, A. Determination of Pu concentration and its isotope ratio in Japanese soils by HR-ICP-MS. J. Radioanal. Nucl. Chem. 255(3) (2003) 477-480.
- Saito-Kokubo, Y., Yasuda, K., Magara, M., Miyamoto, Y., Sakurai, S., Usuda, S., Yamazaki, H., Yoshikawa, S., Nagaoka, S., Mitamura, M., Inoue, J., Murakami, A. Depositional records of plutonium and ¹³⁷Cs released from Nagasaki atomic bomb in sediment of Nishiyama reservoir at Nagasaki. J. Environ. Radioact. 99 (2008) 211–217.
- UNSCEAR, Ionizing Radiation: Sources and biological effects. In United Nations Scientific Committee on the Effects of Atomic Radiation, 1982 Report to the General Assembly, New York, 1982
- Wang, Z.T., Zheng, J., Tagami, K., Uchida, S. Newly derived transfer factors for Th, Am, Pu, and Cl since publication of IAEA TRS No. 472: a review. J. Radioanal. Nucl. Chem. 306 (1) (2015a) 11-20.
- Wang, Z.T., Yang, G.S. Zheng, J., Cao, L.G., Yu, H.J., Zhu, Y.B., Tagami, K., Uchida, S. Effect of ashing temperature on accurate determination of plutonium in soil samples. Anal. Chem.87 (2015b) 5511-5515.

- Yamamoto, M., Komura, K., Sakanoue, M. Discrimination of the plutonium due to atomic explosion in 1945 from global fallout plutonium in Nagasaki soil. J. Radiat. Res. 24 (1983) 250–258.
- Zhang, J.J., Wei, J.G., Xu, H., Zhou, W.L. The plutonium (Pu) radiation level in food in the residential areas around the nuclear testing site in Xinjiang. Res. Environ. Sci. 2(2) (1989) 27 31 (In Chinese).
- Zheng, J., Tagami, K., Watanabe, Y., Uchida, S., Aono, T., Ishii, N., Yoshida, S., Kubota, Y., Fuma, S., Ihara, S. Isotopic evidence of plutonium release into the environment from the Fukushima DNPP accident. Sci. Rep. 2 (2012) 304.
- Zheng, J. Evaluation of a new sector-field ICP-MS with Jet Interface for ultra-trace determination of Pu isotopes: from femtogram to attogram levels. J. Nucl. Radiochem. Sci. 15(1) (2015) 7-13.

4. 6. 文献調査による Pu, Am, Th および Cl の土壌-農作物間移行係数

4.6.1. はじめに

2010 年に IAEA は Technical Reports Series No. 472「Handbook of Parameter Values for the Prediction of Radionuclides Transfer in Terrestrial and Freshwater Environments」(IAEA, 2010)を出版し、自然放射性核種および人工放射性核種の土壤-植物移行係数(TF)を提供した。TRS-472のTFデータは様々なソースから引用されており、最も信頼できるソースとしてはレビューが行われている学術誌、次に、科学誌を専門に扱う出版社から出版されている本、さらには学会プロシーディングスや研究所レポートであり、データの重複を避けるために Review paper は含まずにデータ蓄積を行ったものである。データは専門家によって厳密に選択されていることから、TRS-472は、将来に渡って多くのモデルによる放射線影響評価で使用される重要なデータ集であると言える。

しかしながら、このデータ集も完全なものではない。TECDOC-1616 中で TRS-472 をとりまとめた 研究者らが指摘しているように、TF データ登録数は Cs や Sr といった幾つかの元素については多くの 報告値があるが、Th、Pu や Cl といった元素については、データ登録数は統計処理ができるほどの数 はなく、さらに Cu, Ag, Na や W のような元素では、登録数は 100 以下になってしまう (IAEA, 2009)。 本調査研究の目的の一つは、放射性廃棄物処分の生物圏安全評価において重要な放射性核種の環境移 行パラメータを求めることであるが、特に国際的にも、国内的にもデータ数が少なかったり、気候に より変動が認められるものについてはその原因究明をすることが重要であるとの考えから、データを 蓄積しており、得られたデータは将来、このような国際データベースに登録できるように準備してお く必要がある。また、実測データだけではなく、文献調査によって現在報告されているデータを逐次 蓄積し、データ解析を行うことも重要である。

国際的なデータ集である TRS-472 に登録されたデータは 2007 年が取扱最終年であるがそれ以降も, TF に関する多くの研究が行われ,新しいデータが報告されている。文献の最も新しい引用年は 2007 年であるが,時間的な制約もあり,とりまとめが最終段階に入っていた 2006-2007 年のデータは十分 にカバーできていない可能性がある。Wang らは,2007 年から 2014 年の間に,TRS-472 において十分 なデータが収集されていない 4 つの核種 (Pu, Am, Th および Cl) について,新しく公開された TF デ ータを収集し,統計解析を試みている (Wang et al., 2015)。本調査では,さらに最新の文献や中国の 文献から TF を収集し,データ解析を行った。特に Pu, Cl, Am そして Th について,2015 年から 2016 年までに発表された文献から調査した新しい TF に関する要約と統計的な解析を行なった。

4.6.2. データ収集および統計解析

本研究では、ジャーナル、会議の議事録、機関の報告書、中国のデータベースで有用な情報を検索 した。合計で、最近リリースされた8件の論文と2件の以前の中国文献が収集された。具体的には、 Nie et al. (2010)、Tuovinen et al. (2016)、Matveyeva et al. (2015)、Asaduzzaman et al. (2015)、Hossen and Ferdous (2015)、Alsaffar et al. (2016)、Chauhan and Kumar (2015)、Alsaffar et al. (2016)、Mostafa et al. (2016)、Planinsek et al. (2016)、および Yan (2016)の文献は、Th の土壌-植物 TF について新しいデー タを提供している。Todorov および Djingova (2015)、Li et al. (1994) および Guillen ら (2016)の文献は、 新しい Am の TF データを報告している。また、Guillen ら (2016)は、同じ論文に Pu の 2 つの新しい TF データを提示した。さらに、Froehlich らは (2016)、AMS を用いて草試料および対応する土壌試料 について ²³⁹Pu を分析することにより Pu の 2 つの新しい TF データを報告している。これらの全ての 得られたデータを Wang らが作成したデータベースに加え、Wang ら (2015)に記載されているのと 同じ方法で解析した。簡潔には、各植物カテゴリーについて、異なる供給源からの TF を集めて分析 した。幾何平均(GM)と算術平均(AM)の両方を不確実さ,幾何標準偏差(GSD),標準偏差(SD) とともに計算した。最小値と最大値の範囲と、データ数(N)と値評価に使用した参照値も示した。 さらに、各植物カテゴリーの GM 値(すべての土壌タイプ)を以前に発表されたデータと比較した。 収集した文献には、幾つかの植物カテゴリー、例えば、米および非葉菜類、可食部および非可食部の 両方の TF が報告されている。Th、Am、Pu および Cl の解析結果を、それぞれ表 4.6-1~4.6-3 に示す。

4.6.3. IAEA TRS 472 との比較

表 4.6-1 に示すように、草類、葉菜類、穀類、塊茎および水稲の植物群に新たなデータが追加されている。大部分が研究されている草類については、Nie et al. (2010)は、U 鉱山の鉱さい処分場で集められた草や土壌サンプルの Th および U 同位体を分析した。ICP-MS によって測定された Th の TFs は 2.0×10⁻³~4.2×10⁻¹ (n:36)の範囲であり、平均値は 3.6×10⁻²であった。Yan (2016)も、同様に U 鉱山の鉱さい処分場から集めた草類および土壌サンプル (N = 12)の²³²Th 濃度を分析し、Th の TF を算出している。TF-Th の範囲は 1×10⁻²~3.1×10⁻¹ であり、GM が 1.1×10⁻¹ である。

Tuovinen ら(2016) は別の方法によって TF を求めている。U の含量が高い土地から 0.5m³の土壌を 温室に持ってきて、ライシメーターによる栽培実験を行った。Thの測定は ICP-MS で行っている。こ れらの結果は、TFが1.0×10⁻²から5.8×10⁻¹の範囲であり、前述のフィールドデータと比較すると栽 培実験の方がわずかに高かった。Matveyeva et al. (2015)は、α線スペクトロメトリを用いて、U鉱山 地区で収集された土壌および草類試料中の²³²Th,²²⁸Th および²³⁰Th の濃度を調べた。²³²Th の測定デ ータから算出した TF は, 2.0×10⁻³~1.9×10⁻¹の範囲であり, Nie ら(2010) によって報告されたもの に近い値であった。²³⁰Th で決定された TF は,²³²Th の場合とほぼ同じであったが,²²⁸Th の測定結果 から求めた TF は、同じサンプルでほぼ一桁高くなっていた。残念ながら、著者は論文中においてこ の理由について適切な説明をしていない。Thの土壌から米(食用部分)へのTFについて、Asaduzzaman et al. (2015), Alsaffar et al. (2015) および Alsaffar et al. (2016) はそれぞれ 23,3 および 4 つの新しいデー タを報告している。 Alsaffar et al. (2015)の実験では、自然環境下で試料を採取し、y線スペクトロ メトリ法により測定したところ, TF は $4.0 \times 10^{-3} \sim 1.4 \times 10^{-2}$ の範囲であった。また, 稲の Th 分布を示 し(穀物(8%), 籾殻(11%), わら(24%), 根(57%)), Thの大部分が根に集積していることを示 した。Alsaffar et al. (2016)は、Th の土壌-米間 TF に及ぼす肥料の効果をポット実験によって調べた。 ポット実験に用いた土壌は天然の放射能含有量が比較的高い(²³²Th 濃度, 188 Bq/kg)土壌である。彼 らの結果は、米へのThの移行に対する肥料の影響は無視できることを示し、対照および実験群のTF 値はすべて 1.1×10⁻²に近いことを報告している。Asaduzzaman et al. (2015)は、マレーシア半島の北 西部の土壌からの米への²³²Th の移行を調べた。Asaduzzaman らの実験では,高い TF 値(0.18~0.48) が得られている。最近, Hossen と Ferdous (2015) らは y 線スペクトロメトリ法を用いて, 10 種の土 壌から葉菜類(アマランス)のTFを求めている。報告されたTF(0.14-0.5)は, IAEAの推奨値(表 4.6-1) より約2桁高い。Mostafa et al. (2016) はy線スペクトロメトリ法を用いて²³²Thの濃度を分析 することにより、4 つの異なる土壌タイプ(シルト粘土、砂質粘土、粘土の土壌および砂地)からの 小麦のTFを調査した。得られたTF-Thは、IAEA 推奨値よりも高い0.14から1の範囲であった。Planinsek et al. (2016) は通常の土壌よりも高濃度の U を含む U 鉱山の鉱さい処分場土壌を混合したポット実験 により、大根、サボイ、ロケットの TF (²³⁰Th) を調査した。大根葉 (5.8×10⁻⁴~2.0×10⁻²)、サボイ 葉 (6.8×10⁻⁴~1.6×10⁻²), ロケット葉 (1.6×10⁻⁴~ 3~2.03×10⁻²) と大根塊茎 (1.4×10⁻³~2.0×10⁻²) であった。これらの大根の葉および塊茎,およびサボイの葉に対して,Th-TFの幾何平均値は1.5×10-2 である。これらの TF は一般に, IAEA の推奨値(1.2×10⁻³)と比較して,約1桁高い。一方,ロケッ ト葉のTFはIAEAの値と一致していた。

IAEA の推奨値よりも高い TF 値が得られている理由は、測定手法の違いによるものと思われる。 γ 線スペクトロメトリ法は、²³²Th の子孫核種(例えば、²²⁸Ac、²¹²Pb、²⁰⁸Tl)を測定し、放射平衡を仮定して²³²Th 濃度を求めるものである。この仮定は土壌サンプルの²³²Th 測定では成立するが、植物試料においては問題がある。²²⁸Ra および²²⁴Ra の移行係数は通常 Th よりも高いため、植物中では²²⁸Ac、²¹²Pb および²⁰⁸Tl の濃度から計算される Th 濃度は実際の Th 濃度よりも高くなる。その結果、 γ 線スペクトロメトリ法により得られた TF 値は過大評価されることになる(Wang et al, 2015)。

表 4.6-2 に, Li ら (1994), Todorov and Djingova (2015) および Guillen ら (2016) の新しい Am-TF データを追加した結果を示す。Liら (1994)は、3 つの研究炉に隣接する畑土壌および野菜のサンプ ルを採取し、α線スペクトロメトリ法を用いて²⁴¹Am 濃度を測定した。調査された作物にはニンジン、 ナタネ,コショウ,ナス,豆,キュウリ,トマトが含まれており,TFの範囲は6.2×10⁴から5.1×10⁴ である。Todorov と Djingova (2015) は、ライシメーター実験において、5 種類の土壌について、Am の土壌-草類間 TF を報告した。調査された土壌は、草類の栽培前に²⁴¹Am(2000-2500 Bq/kg)をスパ イクし、6ヶ月間栽培を続けた後、採取された草はγ線スペクトロメトリ法による²⁴¹Am 測定が行わ れた。それらの結果(TF: 9.0×10⁻⁵-9.3×10⁻³)は、Amの土壌から草へ移行は土壌中のフルボ酸およ びフミン酸の濃度に依存して異なることを示している。Guillen ら (2016)は、硝酸塩形態の²⁴¹Am を添加したポット実験によって土壌-小麦(非可食部)の TF を調査した。得られた Am-TF 値は根部 で 4.8、芽で 0.2 であり、IAEA 報告の 3.0×10⁻⁷~5.8×10⁻²の範囲より有意に高かった。著者らは、ス パイクされた²⁴¹Am のバイオアベイラビリティが高いために、グローバルフォールアウト起源²⁴¹Am (バイオアベイラビリティがわずか1~4%)に比べて高いTFが得られたと考えている。全体として, 本調査における収集した Am-TF データの大部分は、汚染された場所の現場調査またはスパイクされ た実験から得られたものである (ICRP, 2010; Todorov and Djingova, 2015; Gomez and Brown, 2013, Guillen et al. 2016)

Pu に関しては、今年度は新たに 4 つのデータを追加した(表 4.6-3)。Guillen ら (2016) はスパイク (239 Pu) 実験により得られた小麦の Pu-TF データを 2 つ報告している (根は 1.5, 苗は 0.046 である)。 これらのデータは、IAEA 報告の範囲 (4.4×10^{-7} から 9.0×10^{-4})よりも有意に高かった。さらに、Froehlich ら (2016) によって、2 つの土壌-草類間 TF データ (1.5×10^{-3} および 4.7×10^{-3}) が報告された。これ らのデータは、森林環境において土壌から草への移行を示した TRS-472 の推奨値よりも 1 桁大きい値 であった。

本調査結果とTRS 472 を視覚的に比較するために、Th, Am, および Pu の TF を図 4.6-1 から図 4.6-3 にプロットした。X 軸は植物分類を示し、斜線部分はTRS-472 のデータ範囲を示している。それぞれの点は個々の文献における幾何平均値を示す。図 4.6-1 から分かるように、牧草、葉菜類および非葉菜類の分類のTh-TF はほとんど IAEA のデータと一致している。一方、やや高い TF が根菜類、塊茎類および穀類で観察された。IAEA のデータ範囲を超えた TF は、上述したように作物群以外の要因の影響によるものと考えられる。図 4.6-2 において、Todorov と Djingov (2015)、Li ら (1994) および Guillenら (2016) が提示した新しい Am-TF データは、TRS-472 のデータ範囲内またはその近くにある。図 4.6-3 から、本調査で得られた Pu-TF データのほとんどが IAEA のデータ範囲を超えていることが分かる。これは TRS-472 の登録データ数が少ないことも要因ではないかと思われる。データ数が少ないほどその代表性を低下させる。図 4.6-3 において、新たに報告された牧草と穀類の Pu-TF 値は、TRS-472 の範囲よりもすべて大きいことから、やはりデータ数を充実させることが重要であることを示している。

引用文献

- Alharbi, A., & El-Taher, A. (2013). A Study on Transfer Factors of Radionuclides from Soil to plant. Life Science Journal, 10(2): 532-539
- Alsaffar, M. S., Jaafar, M. S., Kabir, N. A., & Ahmad, N. (2015). Distribution of ²²⁶Ra, ²³²Th, and ⁴⁰K in rice plant components and physico-chemical effects of soil on their transportation to grains. Journal of Radiation Research and Applied Sciences. 8 (3), 300-310.
- Alsaffar, M. S., Suhaimi Jaafar, M., Ahmad Kabir, N., and Nisar, A (2016). Impact of fertilizers on the uptake of ²²⁶Ra, ²³²Th, and ⁴⁰K by potgrown rice plants. Pollution, 2(1): 1-10.
- Asaduzzaman, K., Khandaker, M. U., Amin, Y. M., & Mahat, R. (2015). Uptake and distribution of natural radioactivity in rice from soil in north and west part of peninsular malaysia for the estimation of ingestion dose to man. Annals of Nuclear Energy, 76, 85-93.
- Aswood, M. S., Jaafar, M. S., & Bauk, S. (2013). Assessment of Radionuclide Transfer from Soil to Vegetables in Farms from Cameron Highlands and Penang, (Malaysia) Using Neutron Activation Analysis. Applied Physics Research, 5(5): 85-92
- Rodríguez, P. B., Tomé, F. V., Lozano, J. C., & Fernández, M. P. (2010). Transfer of ²³⁸U, ²³⁰Th, ²²⁶Ra, and ²¹⁰Pb from soils to tree and shrub species in a Mediterranean area. Applied Radiation and Isotopes, 68(6): 1154-1159
- Černe, M., Smodiš, B., Štrok, M., & Jaćimović, R. (2010). Accumulation of ²²⁶Ra, ²³⁸U and ²³⁰Th by wetland plants in a vicinity of U-mill tailings at Žirovski vrh (Slovenia). Journal of Radioanalytical and Nuclear Chemistry, 286(2): 323-327
- Chakraborty, S. R., Azim, R., Rahman, A. K. M. R., & Sarker, R. (2013). Radioactivity Concentrations in Soil and Transfer Factors of Radionuclides from Soil to Grass and Plants in the Chittagong City of Bangladesh. Journal of Physical Science, 24(1): 95-113
- Chauhan, R. P., & Kumar, A. (2015). Soil to plant transfer of alpha activity in potato plants: impact of phosphate fertilizers. Journal of Environmental Health Science and Engineering, 13(1), 1-9.
- Dragović, S., Mihailović, N., & Gajić, B. (2010). Quantification of transfer of ²³⁸U, ²²⁶Ra, ²³²Th, ⁴⁰K and ¹³⁷Cs in mosses of a semi-natural ecosystem. Journal of Environmental Radioactivity, 101(2): 159-164.
- Froehlich, M. B., Dietze, M. M. A., Tims, S. G., & Fifield, L. K. (2016). A comparison of fallout ²³⁶ U and ²³⁹Pu uptake by Australian vegetation. Journal of environmental radioactivity. 151 (3), 558-562.
- Gomez, A., & Brown, J. (2013) Determination of Root Uptake to Vegetables Grown in Soil Contaminated for Twenty-five Years. Health Protection Agency, Oxfordshire.
- Guillén, J., Muñoz, G., Baeza, A., Salas, A., & Mocanu, N (2016). Attempt to reduce ²³⁹Pu and ²⁴¹Am uptake by wheat plantlets by application of inorganic fertilizers. Journal of Radioanalytical and Nuclear Chemistry. 1-7.
- Hossen, M. A., & Ferdous, N. (2015). Determination of Radiological Hazards and the Transfer Factors of Radionulides from Soil to Vegetables in the Southwestern District of Bangladesh. Journal of Physical Science, 26(1), 83-98.
- IAEA (2009) Quantification of Radionuclide Transfer in Terrestrial and Freshwater Environments for Radiological Assessments. IAEA TECDOC-1616, Vienna
- IAEA (2010) Handbook of Parameter Values for the Prediction of Radionuclides Transfer in Terrestrial and Freshwater Environments. IAEA-TRS-472, Vienna
- ICRP, (2009). Environmental Protection: Transfer Parameters for Reference Animals and Plants. ICRP Publication 114, Ann. ICRP 39(6)

- Khan, H. M., Chaudhry, Z. S., Ismail, M., & Khan, K. (2010). Assessment of radionuclides, trace metals and radionuclide transfer from soil to food of Jhangar Valley (Pakistan) using gamma-ray spectrometry. Water, Air, & Soil Pollution, 213: 353-362
- Khan, H. M., Ismail, M., Khan, K., & Akhter, P. (2011). Measurement of radionuclides and gamma-ray dose rate in soil and transfer of radionuclides from soil to vegetation, vegetable of some Northern area of Pakistan using γ-ray spectrometry. Water, Air, & Soil Pollution, 219(1-4): 129-142
- Kritsananuwat, R., Sahoo, S. K., Arae, H., & Fukushi, M. (2014) Distribution of ²³⁸U and ²³²Th in selected soil and plant samples as well as soil to plant transfer factors around Southern Thailand. Journal of Radioanalytical and Nuclear Chemistry, 1-7
- Kumar, A., Singhal, R. K., Preetha, J., Rupali, K., Narayanan, U., Suresh, S., Ranade, A. K. (2008). Impact of tropical ecosystem on the migrational behavior of K-40, Cs-137, Th-232 and U-238 in perennial plants. Water, Air, & Soil Pollution, 192: 293-302
- Lehto, J., Vaaramaa, K., & Leskinen, A. (2013). ¹³⁷Cs, ^{239,240}Pu and ²⁴¹Am in boreal forest soil and their transfer into wild mushrooms and berries. Journal of Environmental Radioactivity, 116: 124-132
- Li, Y. (1994). Investigation of ²⁴¹Am in environmental soil and some biological specimens around China Institute of Atomic Energy. Journal of Isotopes, 7 (2), 86-91. (in Chinese)
- Matveyeva, I., Jacimovic, R., Planinsek, P., Smodis, B., & Burkitbayev, M. (2015). Uptake of uranium, thorium and radium isotopes by plants growing in dam impoundment Tasotkel and the Lower Shu region (Kazakhstan). Radiochimica Acta. DOI: 10.1515/ract-2015-2457
- Mheemeed, A. K., Najam, L. A., & Hussein, A. K. (2014). Transfer factors of ⁴⁰K, ²²⁶Ra, ²³²Th from soil to different types of local vegetables, radiation hazard indices and their annual doses. Journal of Radioanalytical and Nuclear Chemistry, 302(1): 87-96
- Mihaylova, V., Todorov, B., & Djingova, R. (2013). Determination of Uranium and Thorium in soils and plants by ICP-MS. Case study of Buhovo region. Comptes Rendus De L Academie Bulgare Des Sciences, 66(4): 513-518
- Mostafa, A. M. A. (2016). Transfer-factors-of-radionuclides-from-soil-to-wheat-grains. International Journal of Scientific & Engineering Research, 7(2), 642-644.
- Nie, X., Ding, D., Li, G., Gao, B., Wu, Y., Hu, N., & Liu, Y. (2010). Soil radionuclide contamination and radionuclide accumulation characteristics of competitive plants in a uranium tailings repository in south China. Research of Environmental Sciences. 23 (6), 719-725. (in Chinese)
- Oufni, L., Taj, S., Manaut, B., & Eddouks, M. (2011). Transfer of uranium and thorium from soil to different parts of medicinal plants using SSNTD. Journal of Radioanalytical and Nuclear Chemistry, 287(2): 403-410.
- Pallavicini, N. (2011). Activity concentration and transfer factors of natural and artificial radionuclides in the Swedish counties of Uppsala and Jämtland. Swedish University of Agricultural Sciences, Sweden
- Planinšek, P., Smodiš, B., & Benedik, L (2016). Simultaneous determination and uptake assessment of selected radionuclides in plants grown in substrate contaminated with U-mill tailings. Journal of Radioanalytical and Nuclear Chemistry, 1-15.
- Popic, J. M., Salbu, B., Strand, T., & Skipperud, L. (2011). Assessment of radionuclide and metal contamination in a thorium rich area in Norway. Journal of Environmental Monitoring, 13(6): 1730-1738.
- Rodríguez, P. B., Tomé, F. V., Lozano, J. C., & Fernández, M. P. (2010). Transfer of ²³⁸U, ²³⁰Th, ²²⁶Ra, and ²¹⁰Pb from soils to tree and shrub species in a Mediterranean area. Applied Radiation and Isotopes, 68(6): 1154-1159.

- Saeed, M. A., Yusof, S. S., Hossain, I., Ahmed, R., Abdullah, H. Y., Shahid, M., & Ramli, A. T. (2012). Soil to rice transfer factor of the natural radionuclides in Malaysia. Romanian Journal of Physics, 57(9-10): 1417-1424.
- Shanthi, G., Maniyan, C. G., Raj, G. A. G., & Kumaran, J. T. T. (2009). Radioactivity in food crops from high-background radiation area in south west India. Current Science 97(9): 1331-1335.
- Smodiš, B., Štrok, M., & Černe, M. (2012). Radioecology studies in the vicinity of a closed uranium mine. In EPJ Web of Conferences (Vol. 24, p. 06008). EDP Sciences.
- Štrok, M., & Smodiš, B. (2013). Soil-to-plant transfer factors for natural radionuclides in grass in the vicinity of a former uranium mine. Nuclear Engineering and Design, 261: 279-284.
- Todorov, B., & Djingova, R. (2015). Fractionation and Soil-Plant Transfer of ²⁴¹Am in Different Soil Types. Pedosphere, 25(2), 212-219.
- Tuovinen, T. S., Kasurinen, A., Häikiö, E., Tervahauta, A., Makkonen, S., Holopainen, T., & Juutilainen, J. (2016). Transfer of elements relevant to nuclear fuel cycle from soil to boreal plants and animals in experimental meso-and microcosms. Science of the Total Environment, 539, 252-261.
- Wang, Z. T., Zheng, J., Tagami, K., & Uchida, S. (2015). Newly derived transfer factors for Th, Am, Pu, and Cl since publication of IAEA TRS No. 472: a review. Journal of Radioanalytical and Nuclear Chemistry, 306(1), 11-20.
- Yan, X. (2016). Uptake of radionuclide thorium by twelve native plants grown in uranium mill tailings soils from south part of China. Nuclear Engineering & Design, 304, 80-83.
- Zhang, Z. Q., Chen, Y.D., Song, G., Yue, Y.M. (2011) Uptake of Radionuclides from Soil to Plant and the Discovery of ²²⁶Ra, ²³²Th Hyper-accumulator. Environmental Science, 32(4): 1159-1163 (in Chinese).

4.7.まとめ

4.7.1. Am および Cl の超高精度分析

4.7.1.1. 土壌中 Am の超高精度分析法の確立

本年度はまず, DGA-N 樹脂への干渉元素の抽出挙動を系統的に調べ, TEVA 樹脂の Am / REEs 分離 効率を評価し、3 種類の共沈法のマトリックス除去能力を比較検討した。その結果に基づいて、 SF-ICP-MS による大規模土壌試料(2~20g)における²⁴¹Am 測定の分析法を提案した。この方法は, 土壌サンプルからアメリシウムを浸出するために HNO3 浸出を利用する。次に CaC2O4 共沈殿を用い て、Am 分画からマトリックス元素(Na, K, Mg, Al, Fe)を除去し、次いで UTEVA + DGA-N 樹脂 上の Am 干渉元素を分離する。TEVA 樹脂上の REEs をさらに除去した後, Aridus (II)-SF-ICP-MS 分析 システムを用いて²⁴¹Am を測定する。この方法は、妨害元素を除去する優れた能力を示し、特に DF (Pu) (7×10⁵) は²⁴¹Am 分析で報告された最高値であり、この方法は土壌サンプル中の福島原発事故 起源²⁴¹Am を分析することができる。また、提案法は、大量土壌サンプルの ICP-MS による²⁴¹Am 測 定におけるマトリックス効果による干渉を排除している。6 つの標準物質の測定された²⁴¹Am 濃度と 対応する予測²⁴¹Am 濃度との間の一致は,提案された方法の正確さを立証した。Am の化学的回収率 は、土壌試料に対して 76%~82%の範囲安定している。低い LOD(0.012 mBq/g)は、この方法を本 調査・研究事業において実施する土壌試料中²⁴¹Am 分析研究に十分適応できるものである。確立され た超高精度分析法を用いて、本年度、日本16県(北海道、新潟、富山、京都、三重、福岡、千葉、福 井,岐阜,愛知,兵庫,鳥取,青森,神奈川及び石川)から採取した 20 件の畑土試料中の 241 Am 濃度 測定を行った。今回の調査結果から、初めて、日本畑土中の²⁴¹Am 濃度レベル情報を得られた。畑土 中の²⁴¹Am 濃度は²³⁹⁺²⁴⁰Pu 濃度より低く,0.136 から 0.219 mBq/g の範囲であった。

4.7.1.2. 塩素の超高精度分析

塩素の移行係数を得るために、塩素の超高精度分析法を開発した。TMAHを用いた土壌中塩素抽出 は土壌中塩素を全て抽出することはできなかったが、土壌中の利用可能な塩素を抽出するという観点 からは適切な分析法である。さらに、TMAH 抽出溶液を H₂O₂ 処理により有機物を分解してから ICP-MS/MS 分析を行うことで、より精度の高い分析が可能となった。TF は全量抽出できていないの で、中性子放射化による結果と比較するとやや高めであると予想されたが、これまで国内で測定され た値の範囲内であった。

4.7.2. 米中 Th 濃度測定

本調査では、平成 26 年度と平成 27 年度に採取した白米試料 20 点と平成 27 年度に採取した玄米試料 10 点をもちいて、Th 濃度測定を行った。白米試料 20 点中 Th 濃度範囲は 1.4×10⁵ から 6.7×10⁴ mg/kg であった。最大/最小濃度比は 48 であった。算術平均値および幾何平均値は、それぞれ 1.8×10⁴ と 1.0×10⁴ mg/kg であった。平成 27 年度に採取した 10 点玄米試料について、Th 濃度範囲は 7.7×10⁻⁵ から 4.7×10⁻⁴ mg/kg であった。最大/最小濃度比は 6 であった。算術平均値および幾何平均値は、それぞれ 2.1×10⁴ と 1.8×10⁴ mg/kg であった。玄米の Th 濃度は白米の Th 濃度とほぼ同じかやや高かった。まだ、最大/最小濃度比については、玄米より白米の方は 8 倍高かった。今後はデータをさらに蓄積し てゆき、日本の米中 Th 濃度の変動範囲を正確に把握するとともに、土壌中 Th 濃度データも蓄積して、Th の土壌-米間移行係数を取得してゆく必要がある。

4.7.3. Pu の土壌-米間移行係数の収集

日本の 8 つの県から採取した土壌と玄米試料を Pu 分析に供した。土壌試料中の Pu 同位体比 (²⁴⁰Pu/²³⁹Pu 原子数比)は、これらの土壌中の Pu が主にグローバルフォールアウトの Pu であること を示している。得られた Pu 濃度から Pu の土壌-玄米間移行係数(TF)を求めた。玄米の TF の範囲 は、4.5×10⁻⁶から 1.0×10⁴であった。幾何平均値は 2.7×10⁻⁵であった。日本において、玄米の TF-Pu が 得られたのは初めてである。一般に、Pu の TF は十分ではないため、本調査で得られた Pu の TF は 公表されている TF のデータベースを補足するものではあるが、さらに様々な農作物の TF-Pu データ を収集し、データが無い作物種のデータを提供するとともに、存在するデータの代表性を向上させて ゆく必要がある。

このようなデータを収集して我が国独自のデータベース構築を行うとともに,世界的にも数が少な いこれらのデータを今後国際的に提供していくことが重要である。

表 4.2-1 CaC₂O₄ 共沈および UTEVA + DGA-N 樹脂による Am 分離後の 5g JSAC-0471 土壌 サンプル (SF-ICP-MS 測定用 1mL 溶液中)のマトリックス濃度

Matrix	Na	Κ	Mg	Ca	Fe	Al
Concentration (µg/mL)	1.5±0.2	7.6±1.1	0.1 ± 0.0	$1.9{\pm}1.6$	2.2±0.2	1.7 ± 0.4
REEs	La	Ce	Nd	Sm	Dy	
Concentration (µg/mL)	6±2	16±5	66±14	24±2	8±1	

表 4.2-2 畑土試料採取場所及び²⁴¹Am と有機物含有量測定結果

				Organic matter	²⁴¹ Am activity	
Sample code		FAO-UNESCO	Prefecture	(%)	mBq/g	std
EF-SD-01	黒ボク土	Andosol	北海道	18.0	0.067	0.017
EF-SD-06	グライ低地土	Fluvisol	新 潟	8.5	0.154	0.011
EF-SD-07	多湿黒ボク土	Andosol	富山	8.4	0.084	0.012
EF-SD-08	褐色低地土	Cambisol	京 都	3.6	0.036	0.011
EF-SD-09	褐色低地土	Cambisol	三重	5.4	0.089	0.014
EF-SD-10	黒ボク土	Andosol	山口	17.0	0.122	0.015
EF-SD-11	灰色低地土	Fluvisol	福 岡	7.0	0.060	0.010
EF-SD-13	グライ低地土	Fluvisol	北海道	7.1	0.110	0.014
EF-SD-17	グライ低地土	Fluvisol	千葉	20.0	0.058	0.015
EF-SD-18	黒ボク土	Andosol	千葉	14.2	0.113	0.013
EF-SD-21	灰色低地土	Fluvisol	福 井	6.5	0.104	0.015
EF-SD-22	褐色低地土	Cambisol	岐 阜	6.9	0.064	0.012
EF-SD-23	黄色土	Cambisol	愛知	6.6	0.037	0.010
EF-SD-24	灰色低地土	Fluvisol	兵 庫	6.3	0.058	0.011
EF-SD-25	灰色低地土	Fluvisol	鳥 取	8.1	0.099	0.010
EF-SD-29	褐色森林土	Cambisol	北海道	10.8	0.085	0.014
EF-SD-30	多湿黒ボク土	Andosol	青 森	20.2	0.219	0.027
EF-SD-35	未熟低地土	Fluvisol	神奈川	10.2	0.118	0.013
EF-SD-36	多湿黒ボク土	Andosol	新 潟	12.4	0.179	0.019
EF-SD-37	灰色低地土	Fluvisol	石川	6.8	0.139	0.009

				²³⁹⁺²⁴⁰ Pu activity					
Sample code		FAO-UNESC	Prefecture	mBq/g	std	²⁴⁰ Pu/ ²³⁹ Pu	std	²⁴¹ Am/ ²³⁹⁺²⁴⁰ Pu	std
EF-SD-01	黒ボク土	Andosol	北海道	0.182	0.001	0.182	0.015	0.37	0.09
EF-SD-06	グライ低地土	Fluvisol	新 潟	0.384	0.007	0.166	0.016	0.40	0.03
EF-SD-07	多湿黒ボク土	Andosol	富山	0.207	0.002	0.169	0.014	0.41	0.06
EF-SD-08	褐色低地土	Cambisol	京 都	0.105	0.001	0.173	0.018	0.34	0.10
EF-SD-09	褐色低地土	Cambisol	三重	0.227	0.002	0.182	0.015	0.39	0.06
EF-SD-10	黒ボク土	Andosol	山口	0.339	0.005	0.172	0.017	0.36	0.04
EF-SD-11	灰色低地土	Fluvisol	福 岡	0.161	0.001	0.175	0.012	0.37	0.06
EF-SD-13	グライ低地土	Fluvisol	北海道	0.256	0.003	0.172	0.016	0.43	0.05
EF-SD-17	グライ低地土	Fluvisol	千葉	0.159	0.001	0.183	0.019	0.37	0.10
EF-SD-18	黒ボク土	Andosol	千葉	0.290	0.003	0.182	0.013	0.39	0.04
EF-SD-21	灰色低地土	Fluvisol	福 井	0.283	0.002	0.170	0.008	0.37	0.05
EF-SD-22	褐色低地土	Cambisol	岐 阜	0.169	0.001	0.179	0.013	0.38	0.07
EF-SD-23	黄色土	Cambisol	愛知	0.100	0.000	0.180	0.012	0.37	0.10
EF-SD-24	灰色低地土	Fluvisol	兵 庫	0.145	0.001	0.183	0.014	0.40	0.08
EF-SD-25	灰色低地土	Fluvisol	鳥 取	0.254	0.001	0.174	0.008	0.39	0.04
EF-SD-29	褐色森林土	Cambisol	北海道	0.218	0.001	0.180	0.008	0.39	0.06
EF-SD-30	多湿黒ボク土	Andosol	青 森	0.595	0.016	0.178	0.018	0.37	0.05
EF-SD-35	未熟低地土	Fluvisol	神奈川	0.171	0.001	0.177	0.012	0.69	0.08
EF-SD-36	多湿黒ボク土	Andosol	新 潟	0.434	0.008	0.166	0.015	0.41	0.04
EF-SD-37	灰色低地土	Fluvisol	石川	0.325	0.007	0.171	0.022	0.43	0.03

表 4.2-3 畑土中 Pu 同位体および²⁴¹Am/²³⁹⁺²⁴⁰Pu activity 比測定結果

表 4.3-1 標準試料の Th 濃度測定結果

		Th (mg/kg)	std
SRMs	GBW-1	0.075	0.002
	GBW-2	0.079	0.001
	certified value	0.070	0.008
	NIST-1573a-1	0.120	0.001
	NIST-1573a-2	0.136	0.002
	NIST-1573a-3	0.099	0.001
	information value	0.12	

		Th (mg/kg)	std	
H26白米	EP II-CF-1	6.7E-04	4.5E-05	
	EP II-CF-2	ND		
	EP II-CF-3	1.9E-04	1.9E-05	
	EP II-CF-4	4.3E-05	2.0E-05	
	EP II-CF-5	3.0E-05	1.1E-05	
	EP II-CF-6	3.7E-05	1.5E-05	
	EP II-CF-7	3.1E-05	1.1E-05	
	EP II-CF-8	3.6E-04	2.8E-05	
	EP II-CF-9	9.6E-05	2.5E-05	
	EP II-CF-10	ND		
H27 白米	EP II-CF-11	3.7E-04	1.4E-05	
	EP II-CF-12	3.0E-04	1.7E-05	
	EP II-CF-13	2.8E-04	2.6E-05	
	EP II-CF-14	5.1E-05	1.2E-05	
	EP II-CF-15	2.7E-04	2.0E-05	
	EP II-CF-16	ND		
	EP II-CF-17	1.0E-04	1.4E-05	
	EP II-CF-18	2.9E-05	5.6E-06	
	EP II-CF-19	1.2E-04	2.5E-05	
	EP II-CF-20	1.4E-05	7.0E-06	
	Minimum	1.4E-05		
	Maximum	6.7E-04		
	Max./Min.	48		
	Median	9.9E-05		
	Arithmetric mean	1.8E-04		
	Geometric mean	1.0E-04		
H27 玄米	EP II-CF-11	2.9E-04	6.0E-06	
	EP II-CF-12	2.5E-04	4.1E-05	
	EP II-CF-13	4.7E-04	9.5E-06	
	EP II-CF-14	1.4E-04	5.8E-06	
	EP II-CF-15	2.0E-04	1.4E-05	
	EP II-CF-16	7.9E-05	5.6E-06	
	EP II-CF-17	1.7E-04	5.8E-06	
	EP II-CF-18	7.7E-05	5.4E-06	
	EP II-CF-19	2.3E-04	1.1E-05	
	EP II-CF-20	1.5E-04	8.2E-06	
	Minimum	7.7E-05		
	Maximum	4.7E-04		
	Max./Min.	6		
	Median	1.9E-04		
	Arithmetric mean	2.1E-04		
	Geometric mean	1.8E-04		

表 4.3-2 白米と玄米中 Th 濃度測定結果

Code		Cl	mg/kg			Br	mg/kg			Ι	mg/kg	
EFII	Run-1	RSD	Run-2	RSD	Run-1	RSD	Run-2	RSD	Run-1	RSD	Run-2	RSD
SD-1	51	18	29	11	7.3	1	7.2	5	1.9	17	1.8	7
SD-2	62	16	85	1	7.9	1	8.7	5	1.5	11	1.6	9
SD-3	90	15	76	5	113	2	115	3	30	0	29	4
SD-4	106	11	92	2	132	2	132	3	32	1	32	4
SD-5	99	5	88	5	110	1	110	3	32	2	31	4
SD-6	174	3	189	6	41	1	44	3	10	2	11	5
SD-7	222	3	210	4	158	1	161	3	21	1	22	4
SD-8	194	1	192	5	125	1	126	3	18	3	19	4
SD-9	37	18	32	10	54	0	53	5	30	2	29	4
SD-10	136	4	123	7	47	1	47	5	11	3	11	6
H27*	RSD	78	(37-130)	1		2	(0-5)			2	(1-4)	

表 4.4-1 土壌試料中の TMAH 抽出による塩素、臭素およびヨウ素濃度と RSD(%)

*H27 年度に別試料測定した際の結果

表 4.4-2 凍結乾燥農作物試料中の塩素、臭素およびヨウ素濃度と RSD(%)

Code		Cl	mg/kg			Br	mg/kg			Ι	mg/kg	
EFII	Run-1	RSD	Run-2	RSD	Run-1	RSD	Run-2	RSD	Run-1	RSD	Run-2	RSD
CF-1	2530	2	2760	4	8.2	5	8.9	7	-	-	0.026	21
CF-2	6380	2	6310	5	9.1	4	9.0	8	0.033	45	0.026	37
CF-3	1110	5	1060	4	10.4	6	10.0	5	0.037	44	0.022	71
CF-4	4770	4	4530	5	113	6	108	6	0.137	17	0.124	10
CF-5	5180	4	4890	6	46	5	44	7	0.290	9	0.357	5
CF-6	11900	7	11300	5	15.3	7	15.0	6	0.098	22	0.070	41
CF-7	2630	7	2500	4	29	7	28	4	0.104	20	0.101	33
CF-8	2110	6	2030	3	9.3	6	9.3	3	0.128	15	0.189	14
CF-9	5050	10	4720	5	51	8	50	5	0.347	11	0.360	9
CF-10	4760	9	4320	5	12.7	7	13.6	5	0.140	15	0.160	14
H27*	RSD	7	(1-35)			2	(1-10)			19	(4-33)	

*H27年度に別試料測定した際の結果

Code	Cl			Br			Ι		
EFII-	Crop	Soil	TF	Crop	Soil	TF	Crop	Soil	TF
CF-1	2640±120	40±10	66	8.6±0.7	7.3±0.4	1.2	0.026	1.8±0.3	0.014
CF-2	6340±330	73±10	87	9.0±0.8	8.3±0.4	1.1	0.029±0.018	1.6±0.2	0.019
CF-3	1090±70	83±14	13	10.2±0.9	114±4	0.09	0.029±0.022	29.4±1.1	0.001
CF-4	4650±280	99±11	47	110±9	132±5	0.83	0.130±0.026	31.8±1.3	0.004
CF-5	5030±350	94±7	54	45±4	110±3	0.41	0.324±0.033	31.4±1.4	0.010
CF-6	11600±980	181±12	64	15.1±1.4	43±2	0.35	0.084±0.036	10.6±0.5	0.008
CF-7	2560±200	216±11	12	28±3	160±5	0.18	0.103±0.040	21.3±1.0	0.005
CF-8	2070±150	193±11	11	9.3±0.6	125±4	0.07	0.159±0.032	18.7±0.9	0.009
CF-9	4880±550	35±7	141	50±5	54±3	0.93	0.353±0.049	29.3±1.4	0.012
CF-10	4540±490	129±10	35	13.1±1.1	47±3	0.28	0.150±0.031	10.7±0.7	0.014

表 4.4-3 土壌と農作物試料の塩素、臭素およびヨウ素平均濃度と TF

表 4.4-4. 土壌から葉菜類への塩素、臭素およびヨウ素の移行係数

Reference	Cl	Br	Ι
本報告	58 (11 – 141)	0.54 (0.07 – 1.2)	0.010 (0.001 – 0.019)
放医研、2016	42 (9 – 138)	0.69 (0.05 - 3.2)	0.011 (0.002 – 0.038)
Tsukada and Nakamura, 1998	15, 44	0.36, 1.7	0.005, 0.015
Yuita, 1983	127 (10-265)	0.79 (0.36-1.8)	0.011 (0.005-0.028)
TRS-472 (IAEA, 2010)	26 (14 - 48)	-	0.0065

Sample	Prefecture	²³⁹ Pu activity	²³⁹⁺²⁴⁰ Pu	²⁴⁰ Pu/ ²³⁹ Pu
ID		(mBq/g)	activity(mBq/g)	atom ratio
1	Akita	$5.55 \pm 0.15 \times 10^{1}$	$8.85 \pm 0.30 \times 10^{1}$	0.162 ± 0.008
2	Niigata	$2.78 \pm 0.09 \times 10^{\text{-1}}$	$4.48 \pm 0.02 \times 10^{1}$	0.166 ± 0.010
3	Toyama	$2.20 \pm 0.09 \times 10^{1}$	$3.57 \pm 0.10 \times 10^{1}$	0.171 ± 0.008
4	Gifu	$3.62 \pm 0.15 \times 10^{1}$	$6.04 \pm 0.31 \times 10^{1}$	0.182 ± 0.013
5	Nagasaki	$1.47 \pm 0.06 \times 10^{\text{-1}}$	$2.34 \pm 0.11 \times 10^{\text{1}}$	0.160 ± 0.011
6	Fukushima	$2.36 \pm 0.12 \times 10^{1}$	$3.93 \pm 0.30 \times 10^{1}$	0.167 ± 0.012
7	Chiba	$2.32 \pm 0.11 \times 10^{1}$	$3.87 \pm 0.29 \times 10^{1}$	0.181 ± 0.013
8	Toyama	$2.44 \pm 0.08 \times 10^{\text{-1}}$	$3.92 \pm 0.73 \times 10^{1}$	0.165 ± 0.012
9	Gifu	$5.52 \pm 0.33 \times 10^{1}$	$9.19 \pm 0.07 \times 10^{1}$	0.180 ± 0.014
10	Nara	$1.23 \pm 0.03 \times 10^{1}$	$2.04 \pm 0.23 \times 10^{\text{-1}}$	0.179 ± 0.006

表 4.5-1 水田土試料中の Pu 濃度と²⁴⁰Pu/²³⁹Pu 原子数比 (試料 1-6, 平成 27 年度測定; 試料 7-10, 平成 28 年度測定)

Sample ID	Sampling location	²³⁹ Pu in rice (mBq/g)	std	²³⁹ Pu in soil (mBq/g)	std	TF
7 (EF-SD-40)	Chiba	5.3E-06	1.5E-06	2.3E-01	1.1E-02	2.3E-05
8 (EF-SD-42)	Toyama	4.9E-06	1.7E-06	2.4E-01	8.4E-03	2.0E-05
9 (EF-SD-43)	Gifu	2.5E-06	8.9E-07	5.5E-01	3.3E-02	4.5E-06
10 (EF-SD-45)	Nara	1.3E-05	1.1E-06	1.2E-01	2.9E-03	1.0E-04
1 (EP-SD-64)	Akita	1.9E-05	1.7E-05	5.6E-01	1.5E-02	3.5E-05
2 (EP-SD-65)	Niigata	8.0E-06	2.9E-06	2.8E-01	9.0E-03	2.9E-05
3 (EP-SD-66)	Toyama	4.5E-06	1.7E-06	2.2E-01	9.0E-03	2.0E-05
4 (EP-SD-67)	Gifu	9.0E-06	2.2E-06	3.6E-01	1.5E-02	2.5E-05
5 (EP-SD-68)	Nagasaki	1.2E-05	6.5E-06	1.5E-01	6.0E-03	8.2E-05
6 (OK-K2)	Fukushima	6.6E-06	2.5E-06	2.4E-01	1.2E-02	2.8E-05
Remarks						
The ²⁴⁰ Pu/ ²³⁹ Pu a	atom ratio of EF-SD-45	was determined to be	0.195 ± 0.0	49, indicating global fall	out source	
Range of TF of P	u for rice	4.5E-06 - 1.0E-04				
Minimum		4.5E-06				
Maximum		1.0E-04				
Max./Min.		22.7				
Median		2.6E-05				
Arithmetric mean	(AM) of TF	3.7E-05				
Geometric mean ((GM) of TF	2.7E-05				

表 4.5-2 米中の²³⁹Pu 測定結果と Pu の土壌-米間移行係数

表 4.5-3 Pu の土壌-米間移行係数値の比較

Country	Pu source and sampling environment	TF of Pu	Reference
France	^{239,240} Pu contaminated area	1.4 × 10 ⁻³	Duffa et al., 2003
China	Chinese nuclear test site and controlled area	2.0 × 10 ⁻³	Zhang et al., 1989
America	²³⁸ Pu contaminated soil in pot experiment	1.7 × 10 ⁻⁴	Ariano et al., 1981
Japan	Global fallout ^{239,240} Pu in paddy field	$4.5 \times 10^{-6} - 1.0 \times 10^{-4}$	This study

Plant Group	z	AM	SD	GM	GSD	Min.	Max.	TRS 472 GM	Ref. No.	Remark
Grass	183	1.3×10^{-1}	1.4×10 ⁻¹	$6.0{ imes}10^{-2}$	4.4	2.0×10 ⁻³	9.0×10^{-1}	$4.2{\times}10^{-2}$	°Ref (Grass)	Natural field TFs ^a U mine tailing TFs ^c 2016 data entries: 12
Leafy Vegetable	25	1.1×10^{-1}	1.5×10^{-1}	1.5×10^{-2}	22	5.8×10 ⁻⁴	3.4×10^{-1}	1.2×10^{-3}	Hossen, 2015 Planinsek, 2016	Natural field TFs ^a Uranium mine TFs ^b 2016 data entries: 15
Fruit edible part inedible part	18 7	1.5×10^{-1} 1.2×10^{-1}	$4.5{ imes}10^{-1}$ $7.7{ imes}10^{-2}$	$6.0{ imes}10^{-2}$ $9.2{ imes}10^{-2}$	7.0 6.3	2.5×10^{-4} 1.0×10^{-3}	$\begin{array}{c} 1.3\\ 0.7\end{array}$		^f Ref (Fruit)	Natural field TFs ^a Natural field TFs ^a
Non-leafy Vegetable edible part inedible part	43 11	2.3×10^{-1} 3.4×10^{-1}	3.7×10^{-1} 2.7×10^{-1}	2.6×10^{-2} 2.4×10^{-1}	13 3.7	1.9×10^{-4} 3.8×10^{-2}	$1.7\\9.1 imes 10^{-1}$	7.8×10 ⁻⁴ 2.2×10 ⁻³	^g Ref (Non-Leafy Vegetable)	Natural field TFs ^a Natural field TFs ^a
Cereal (except rice)	38	5.5×10 ⁻¹	3.3×10^{-1}	3.5×10^{-1}	12	3.6×10 ⁻⁴	$1.0{\times}10^{0}$	2.1×10^{-3}	^j Ref (Cereal)	Natural field TFs ^a Uranium mine TFs ^b 2016 data entries: 30
Rice edible part inedible part	44 3	5.1×10^{-2} 3.0×10^{-3}	1.0×10^{-1} 2.0×10^{-3}	1.5×10^{-2} 2.5×10^{-3}	7.7 2.0	3.1×10^{-5} 1.0×10^{-3}	$4.8 imes 10^{-1}$ $5.0 imes 10^{-3}$	1.6×10^{-4}	^h Ref (Rice)	Natural field TFs ^a Pot experiment TFs ⁱ 2016 data entries: 4
Tuber edible part inedible part	14 10	1.1×10^{-1} 3.6×10^{-2}	2.5×10^{-1} 2.9×10^{-2}	1.4×10^{-2} 2.9×10^{-2}	47 14	1.4×10^{-3} 1.3×10^{-2}	1.9×10^{-1} 1.2×10^{-1}	2.0×10^{-4} 1.9 × 10^{-2}	Asaduzzaman, 2014, Khan 2010; Chauhan, 2015 Planinsek, 2016	Natural field TFs ^a Uranium mine TFs ^b 2016 data entries: 5
Root crop	9	5.9×10^{-1}	5.5×10^{-1}	4.6×10^{-1}	2.4	2.8×10^{-1}	1.7	$8.0{ imes}10^{-4}$	Asaduzzaman, 2014 Shanthi, 2012	Natural field TFs ^a
Tree	17	1.5×10^{-2}	2.5×10^{-2}	2.8×10^{-3}	12	4.6×10 ⁻⁵	1.0×10^{-1}		Rodriguez, 2010; Popic, 2011; Zhang, 1989	Uranium mine TFs ^b Contaminated area TFs ^d
a: Under natural f b: In an abandone c: In U-mill tailin	ïeld cc d uran g dispc	nditions, TF ium mine, T osal sites, TF	⁴ s were obtain Fs were obtai ⁷ s were obtain	led by examined by	ning ²³² T iining ²³⁰⁻ ning ²³⁰⁻ T	h concentrat Th (or ²³² Th) h concentrat	ions in the pl concentrations in the p	lant and corre ons in the plan lant and corre	sponding soil samples. It and corresponding soil sponding soil samples.	samples.

表 4.6-1 2008-2016 に発表された文献による Th の土壌-植物間移行係数

2010; Dragovic et : 2016. ^f Ref (Fruit): Alharb ^g Ref (Non-Leafy ve ^h Ref (Rice): Asaduz i: In a pot experime. ^j Ref (Cereal):Khan ^j Ref (Cereal):Khan Plant Group Plant Group Grass Leafy Vegetable Mon-leafy Vegetable edible part inedible part Root crop	al., 20 i and] getabl Zama: nu usir nu usir N N N 2010; 2010; 4 4 4	10; Khan et al 31-Taher, 2013 e): Kristsanau a, et al., 2015; ug natural soil, Mihaylova, el AM 0.24 1.2×10 ⁻³ 1.2×10 ⁻³ 1.4×10 ⁻³ 1.3×10 ⁻³ 1.3×10 ⁻³	L, 2011; Oufi x, Kristsanauw wat et al., 201 Alsaffar, et a TFs were ob al., 2013; A al., 2013; A al., 2013; A al., 2013; A al., 2013; A al., 2013; A al., 2013; A 1.4×10^{-3} 1.4×10^{-3} 1.4×10^{-3} 2.5×10^{-6} 2.5×10^{-3}	ni et al., 2011 vat et al., 2014 14; Zhang et a 1., 2015; Krist al., 2015; Krist 1., 2015; Krist al., 2015 608-2016 {Z 608-2016 {Z 6.3×10 ⁻⁵ 6.3×10 ⁻⁵ 6.9×10 ⁻⁴ 1.0×10 ⁻⁵ 6.2×10 ⁻⁵ 6.2×10 ⁻⁵	: : Pallavi 1. : 2011; 1. : 2011; 1. : 2013; M ESD GSD 103 103 103 11 12 12 22 22 103	icini, 2011; S ret al., 2008; Shanthi et al. Shanthi et al., 2014; ² Th concentra iostafa, et a., 5 Min. 9.0×10 ⁻⁵ 3.6×10 ⁻⁶ 8.4×10 ⁻⁶ 6.9×10 ⁻⁶ 6.9×10 ⁻⁶	modis et al., Shanthi et al., 2012; Aswo Shanthi et al. ations in grain 2016. Max. Max. 1.4 4.9×10^{-3} 5.0×10^{-4} 1.3×10^{-5} 5.1×10^{-5} 5.1×10^{-5}	2012; Chakrab 2012 od et al., 2013; 2012; Saeed (, 2012; Saeed (, 2012; Saeed (, 2012; Saeed (, 3.3×10 ⁻² 3.3×10 ⁻² 3.6×10 ⁻⁴ 6.7×10 ⁻⁴ 6.7×10 ⁻⁴	orty et al., 2013; Mheemeed et al., et al., 2012. Alsaff les. 行承数 Ref. No. ICRP,2009 Todorov, 2015 Gomez, 2013, Li, 1994 Li, 1994	Strok and Smodis 2013.Yan, 2014. ar, et al., 2016. ar, et al., 2016. Remark Remark Contaminated area TFs ^a ²⁴¹ Am spiked study TFs ^b Natural field TFs ^d Natural field TFs ^d
Cereal inedible part	7	2.5×10^{0}	$3.3{\times}10^{0}$			2.0×10^{-1}	4.8×10^{0}	7.9×10 ⁻⁵	Guillen,2016	²⁴¹ Am spiked study TFs ^b 2016 data entries: 2
a: In a dune adjace b: In lysimeters spi c: In natural condit d: In natural condit	nt to ked w ions, ions,	sellafield and vith ²⁴¹ Am, TF aggregated TF TFs were obt	a low level v ³ s for Am we ³ s were obtai ained by exar	vaste disposa re obtained b ned by exam nining ²⁴¹ Am	l site, TH y exami ining ²⁴¹ t concen	² s for ²⁴¹ Am ning the ²⁴¹ A Am concentr trations in the	were determine m concentrat ations in the j e plant and co	ned. ion in plant ar plant and corre prresponding s	id soil samples. esponding soil sai oil samples.	nples.

d: In a wetland site contaminated by radioactive waste discharged from a nuclear research facility, TFs for ²³²Th were determined. ^eRef (Grass): Nie, et al., 2010; Tuovinen, et al., 2016; Matveyeva, et al., 2015; ICRP, 2009; Alharbi and El-Taher., 2013; Kristsananuwat et al., 2014; Cerne et al.,

Plant Group	z	AM	SD	GM	GSD	Min.	Max.	TRS 472 GM	Ref. No.	Remark
Grass	20	2.5×10^{-2}	7.8×10^{-2}	2.3×10^{-4}	44	1.1×10^{-6}	3.3×10^{-1}	1.6×10^{-4}	ICRP,2009 Xu, 2009, Li, 2011 Froehlich, 2015	Contaminated area TFs ^a Contaminated area TFs ^b Natural field TFs ^c
Leafy Vegetable Non-leafy Vegetable	ω	1.9×10 ⁻⁵	1.7×10 ⁻⁵	1.5×10 ⁻⁵	2.0	7.9×10 ⁻⁶	1.1×10^{-5}	8.3×10 ⁻⁵	Gomeze, 2013,	Lysimeter study TFs ^d
edible part	1	3.0×10^{-5}	-	-		v	~	6.5×10^{-5}	Lehto, 2013	Natural field TFs ^e
inedible part	m	1.9×10^{-4}	1.2×10^{-4}	1.5×10^{-4}	2.0	6.0×10^{-2}	3.0×10^{-4}		Lehto, 2013	Natural field TFs ^e
Tuber	ω	1.4×10^{-5}	$3.1{ imes}10^{-6}$	1.3×10^{-5}	1.2	1.1×10^{-5}	1.7×10^{-5}	1.1×10^{-4}	Gomeze, 2013,	Lysimeter study TFs ^d
Root crop Cereal	б	2.2×10^{-5}	1.7×10^{-5}	1.6×10^{-5}	2.4	5.1×10^{-6}	3.9×10^{-5}	$3.9{\times}10^{-4}$	Gomeze, 2013,	Lysimeter study TFs ^d
inedible part	7	7.7×10^{-1}	$1.0{ imes}10^{0}$			4.6×10^{-2}	1.5×10^{0}	$4.4{\times}10^{-5}$	Guillen,2016	Lysimeter study TFs ^f 2016 data entries: 2
a: In a dune adjac b. In a contamina	ent to ted are	Sellafield an	d a low level	waste dispos	al site, T	Fs was deter Fs were dete	rmined by ex	amining the 2	^{39,240} Pu concentrati	ions in plant and soil
D: III à CUIITÀIIIIIA				IIIncieal lacin	IV. FU L	בצ אפופ מכופ	TIIIIICU.			

表 4.6-3 2008-2016 に発表された文献による Pu の土壌-植物間移行係数

c: In natural environment, TFs were determined by examining 239 Pu concentrations in the plant and corresponding soil samples d: In lysimeters contaminated with 239,240 Pu, TFs for Pu were obtained by examining the 239,240 Pu concentration in plant and soil samples.

e: In natural conditions, aggregated TFs were obtained by examining ^{239,240}Pu concentrations in the plant and corresponding soil samples. f: In lysimeters contaminated with ²³⁹Pu, TFs for Pu were obtained by examining the ²³⁹Pu concentration in plant and soil samples.

図 4.2-1 高効率試料導入システム(Aridus II)と結合した SF-ICP-MS (Element XR)の概略図

図 4.2-2 様々な濃度の硝酸および塩酸溶液による DGA-N 樹脂の妨害元素の抽出挙動

図 4.2-3 Fe(OH)₃、CaC₂O₄および CaF₂共沈殿(n=3)による共沈降土壌マトリックスの割合

図 4.2-4 DGN 樹脂からの 0.05M HNO₃による Am および REE の溶出曲線 (a) TEVA による分離後の Am および REE の吸着回収(b)

図 4.2-5 SF-ICP-MS による土壌試料の Am 測定の分析法

図 4.2-6 DGA-N 樹脂からの 0.5M HCl および TEVA 樹脂からの 4M HCl による Am の溶出曲線

図 4.2-7 土壌標準物質(IAEA-soil-6 と IAEA-375)、海底堆積物の標準物質(NIST-4357, IAEA-385 および IAEA-384) と湖堆積物標準物質(NIST-4354)中²⁴¹Am 濃度測定値と文献値比較

図 4.2-8 畑土中²⁴¹Am 濃度と有機物含有量、²³⁹⁺²⁴⁰Pu 濃度および¹³⁷Cs 濃度の相関

図 4.2-9 畑土中²⁴¹Am/²³⁹⁺²⁴⁰Pu 濃度比と²⁴¹Am 濃度の相関と 日本水田土中²⁴¹Am/²³⁹⁺²⁴⁰Pu 濃度比文献値の比較

図 4.4-1 中性子放射化法 (NAA) と TMAH 抽出-ICP-MS による 土壌試料中の塩素定量結果の比較

図 4.4-2 土壌試料からの塩素、臭素およびヨウ素の TMAH による抽出率

図 4.4-3 塩素、臭素およびヨウ素を含む 1%TMAH 溶液を 100℃で加熱処理したときの回収率

図 4.4-4 塩素を含む 1%TMAH 溶液を 100℃で加熱処理したときの回収率:容器形状の違い

図 4.5-1 本研究における土壌および米試料採取地点 (1-6, 平成 27 年度調査採取地点; 7-10,本年度調査採取地点)

図 4.5-3 Pu の土壌-農作物間移行係数と IAEA TRS-472 に報告されている値との比較 (紫色ドットは本調査測定結果平均値)

図 4.6-1 2008 年から 2016 年に報告された Th の土壌-農作物間移行係数と IAEA TRS-472 に報告 されている値との比較 (各ドットは個々の文献における幾何平均 TF 値を表し、三角は 2015-2016.2 で公表されたデータを示し、四角は 2016.2-2016.12 で公表されたデータを示 す)。

図 4.6-2 2008 年から 2016 年に報告された Am の土壌-農作物間移行係数と IAEA TRS-472 に報告 されている値との比較(各ドットは個々の文献における幾何平均 TF 値を表し、三角は 2015-2016.2 で公表されたデータを示し、四角は 2016.2-2016.12 で公表されたデータを示 す)。

図 4.6-3 2008 年から 2016 年に報告された Pu の土壌-農作物間移行係数と IAEA TRS-472 に報告 されている値との比較(各ドットは個々の文献における幾何平均 TF 値を表し、三角は 2015-2016.2 で公表されたデータを示し、四角は 2016.2-2016.12 で公表されたデータを示 す)。

第5章 まとめ

5.1.はじめに

原子力発電による電力生産に伴って発生する放射性廃棄物の管理,処理および処分対策は重要な課題である。放射性廃棄物の地層処分に係わる安全評価では、地下の処分場から放射性核種が地下水により移動し、最終的に人間の生活環境を含む生物圏に到達する事が予想される。したがって、その生物圏における核種移行プロセスとこれによる被ばく経路についてモデル化を行い人間への影響を評価することが必要である。長期の安全評価を行うためには、生物圏モデルに使用するデータベースも気候変動等を考慮したものを構築することが必要である。また、¹⁴C等の環境移行に関し、微生物の役割は重要であるが、その影響は温度や栄養分など様々な環境要因に左右される。安全評価においては、その影響を統括的に評価する事が必要である。さらに、Pu、Am、Thおよび塩素(Cl)は放射性廃棄物の地層処分に係わる安全評価において重要な核種である。しかし、その測定は極めて高度な分析技術が要求されることから、核種移行モデルに使用できる環境移行パラメータは十分蓄積されていない。

本調査では,

- (1)気候変動を考慮した環境移行パラメータ(TFおよびKd)データベースの構築
- (2) 放射性炭素の移行パラメータに対する微生物活動の影響調査

(3) 重要核種(Pu, Am, Th および Cl)の超高精度分析による環境移行パラメータ収集

の3つの課題について調査・研究を行い,我が国の環境移行パラメータのデータベースの高度化を行ってきた。さらに,東京電力福島第一原子力発電所事故により環境中に放出された放射性核種の様々 なデータも収集した。

各課題における本年度の成果についてその概要を以下にまとめる。

5.2.気候変動を考慮した環境移行パラメータ(TFおよび Kd)データベースの構築

本課題は、環境移行パラメータ(TF, K_d)に及ぼす気温等の影響評価を行い、気温の影響を受ける 場合には気温条件を項目に加えたデータベースを構築することである。そのためには質の揃ったデー タセットが必要であることから、土壌および農作物の試料収集を行い、元素分析・定量し、土壌―農 作物間移行係数(TF)データを蓄積してきた。また、Csの土壌-土壌溶液間分配係数(K_d)について、 温度を考慮した検討を行った。さらに、長半減期核種である¹³⁵Csを考慮し、その環境移行パラメー タに反映させるために、福島第一原発の事故により環境中に放出された放射性 Cs データに着目して データを収集した。

5.2.1. TF に対する気温の影響に関する文献調査

本年度は、これまでの文献調査結果をデータベースとして供給するために、データとともに記載す る項目の抽出を行った。ただし、文献調査では、気候帯と TF という観点からのデータがほとんどな かったことから、実際には土壌や植物中の元素濃度データや、わが国の環境放射能に関する調査・研 究から得られたグローバルフォールアウト⁹⁰Sr や¹³⁷Cs の土壌および植物中の濃度変化について、気 温の違う地域間で比較した。付属する項目として、データが採取された地点、採取年の情報とデータ ソースを必須としている。他にも項目を挙げているが、これらについては挙げるべき項目の確認を行 い、データ整備していく予定である。

最も重要なことは、入力されたデータに間違いがないかの確認である。これまでは文献検索からデ ータ入力までの作業は個人で行われてきたが、必ず再確認を別の担当者が行うこととする。なお、デ ータ入力の情報についても、データベースに含まれる項目とする。

文献調査データベースの入力を充実させるために、わが国のみならず世界に検索範囲を広げ、異な る気候帯におけるデータ比較が必要である。しかしながら、放射性核種の情報は限られていることか ら、よりデータが多い無機元素に着目して土壌中濃度に関するデータ収集を行い、寒帯、温帯、熱帯、 乾燥地帯のデータを収集することができた。重要核種関連元素である Ni, Sr, Mo および Pb について解 析したところ、Ni については気候帯で有意差が認められたが、その差は2倍以内であり、他の3元素 については有意な差は見られなかった。さらに5つの無機元素(Co, Zn, Cu, As, Cd) についても解析 を行ったが、気候帯別での差は明確ではなく、世界的に土壌中の無機元素濃度はほぼ同程度と考えら れる。

5.2.2. 気温が相対的に低い地域と高い地域における土壌-農作物間移行係数(TF)

平成28年度においても、比較的寒冷地および温暖地において玄米10点(寒冷地5点,温暖地5点) とジャガイモ10点(寒冷地5点,温暖地5点)を採取した。また、これらの収穫期に土壌もサンプリ ングした。本作業は平成26年度より行っており、3年間で得られた玄米-土壌試料のセット、ジャガ イモ-土壌試料のセットは、寒冷地域および温暖地域でそれぞれ15検体ずつとなった。本年度採取し た試料については20元素の濃度測定と、それらを用いて導出したTFをデータベースに追加した。さ らに、前年度採取した試料の希土類元素等の微量元素についてもデータを追加し、これらについても TFを導出してデータベースに追加することができた。データが増えたことから、今年度は平成26-28 年度に収集した土壌試料の物理化学特性を、平成14-18年度に収集した水田および畑土壌データとそ れぞれ比較した。その結果、平成26-28年度に採取した土壌試料の土壌特性は全国データとほぼ差が ないことがわかった。 5.2.3. 環境移行パラメータ(TF)の変動要因の解析

主要な元素(Na, Mg, Al, Si, P, K, Ca, Cr, M, Fe, Co, Ni, Cu, Zn, Sr, Cd, Ba) について, 平成 14-18 年度 に収集したデータと合わせることで, 比較的寒冷な地域と温暖な地域における玄米の TF の差異につ いて検討を行った。稲が栽培される主たる季節である 5-9 月において, 比較的寒冷な地域における気 温は平均 18.4℃であり温暖な地域(25.3℃)と約 7℃の差であった。

データは対数変換してから統計解析を行った。その結果,TFが有意に違う元素(Fe, Zn, p<0.01)も あったが、その幾何平均値の差は小さかった。Pinsonら(2015)の研究により、同じ生育環境条件下 においては、米の品種に関わらずTFが同様の値を示す可能性を示しているが、今回の本調査の結果 はさらに、気温差が7℃ほどある環境条件でも、TFに差を生じることはほとんどないことを示した。 昨年度行った葉菜類の解析結果も同様に、対象元素37元素(Na, Mg, Al, Si, P, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Se, Rb, Sr, Y, Zr, Nb, Mo, Cd, Sn, Sb, Cs, Ba, La, Ce, Sm, Eu, Gd, Pb, Th, U)に対し、気温帯 によってTFには差が生じず、変動要因とならない可能性が高いことを報告している。

しかし,稲は葉菜類よりも生育期間が長い。今回対象としなかった微量元素は必須元素ではないこ とから,根が長期間土壌と接することで,葉菜よりも温度差が生じる可能性がある。今後は微量元素 についての検討が必要である。

ジャガイモについては目標とする,寒冷地域と温暖地域それぞれ 20 試料以上を得た上で解析を実施 予定である(来年度の試料採取後を予定)。

5.2.4. 土壌-土壌溶液間分配係数(Kd)に対する気温の影響調査

本年度は水田土壌 20 試料を用い、30°Cの条件において K_d を測定した。得られたデータをこれまで 採取した 10°C, 23°Cにおける K_d と比較したところ、 K_d の幾何平均値は、10°Cの試料では 3.88×10³、 20°Cの試料では 2.34×10³、30°Cの試料では 1.91×10³となり、気温が高くなることにより K_d が減少する ことがわかった。

フィッティングにより、10℃気温が上昇することで、K_dが約 1000 下がる結果を得た。このような 気温の影響については、土壌微生物活性が関連すると思われるが、30 日間連続振とうし、土壌微生物 活性を高めた試料の結果からは、明確な結果が得られなかった。今回用いた試料は水田土壌であり、 畑土壌と異なる可能性もあることから、今後畑土壌についても同様のことが言えるのかどうかについ て検討する必要がある。

5.2.5. 福島第一原発事故後の放射性 Cs の環境移行調査研究

福島第一原発事故により環境中に放出された放射性セシウムの環境移行に関し、実環境試料中のデータ収集を行うことにより、環境移行パラメータを得ることを目的として調査研究を行った。

植物については、量研機構--放医研の敷地内で採取した草本植物3種類について、2成分(速い移行 成分および遅い移行成分)の指数関数による近似を行ったところ、良好なフィッティング結果が得ら れた。遅い移行成分の半減期から、今後の放射性セシウムの植物中濃度濃度は顕著に減らないことが わかった。そこで長期的な評価を行うために必要な平衡状態にほぼ達していると考えられたことから、 土壌中濃度と平成27-28年度に得られたデータを元に面積当たりの移行係数(T_{ag})を導出し、5.3×10⁻⁵ から1.6×10⁻⁴ m² kg⁻¹を得た。

野生動物については、イノシシ、ニホンジカ、ツキノワグマに着目して調査を実施した。食品モニ タリングデータから、動物中の¹³⁷Cs 濃度は事故後からほとんど減少していないことがわかった。土 壌中濃度モニタリングデータも用い、野生動物肉への T_{ag} を求めた。その結果、イノシシで $3.4 \times 10^{-3} \text{ m}^2$ kg⁻¹、ニホンジカで $5.5 \times 10^{-3} \text{ m}^2 \text{ kg}^{-1}$ 、ツキノワグマで $3.8 \times 10^{-3} \text{ m}^2 \text{ kg}^{-1}$ であり、これらの生物への Cs の 面積当たりの移行係数(T_{ag})は類似していることがわかった。

淡水魚では、海水魚よりも ¹³⁷Cs を濃縮する機構を持つことから、実効半減期が長くなっているこ とが指摘されている。本調査では、新たに印旛沼において測定を開始した。本年度は捕獲した魚の部 位ごとに ¹³⁷Cs を測定することで筋肉により ¹³⁷Cs が蓄積されやすいこと、さらに魚種により筋肉中の ¹³⁷Cs 濃度が異なることを明らかにした。魚種による ¹³⁷Cs 濃度の違いは、食性に依存する可能性が考 えられたことから、 δ^{13} C および δ^{15} N を用いて魚の栄養段階の解析に着手した。これらの周辺情報を 整理することで、平衡状態においていろいろな生態学的地位にある魚の濃縮係数を蓄積して行くこと ができるようになると期待される。

以上のような検討を行うことで、長期的な環境安全評価を行う上で必要な環境移行パラメータの収 集を行い、周辺情報と併せてデータベース化することによって、いろいろな環境条件における情報を 蓄積することができる。しかし、TFやT_{ag}、K_dのデータ収集は未だ不十分であり、今後さらにフィー ルドでのサンプリングと定量分析を行いながら、我が国の環境移行パラメータデータベースを構築す る必要がある。

5.3.放射性炭素の移行パラメータに対する微生物活動の影響調査

本事業は、微生物の代謝活性と¹⁴Cのガス化との関係を踏まえ、ガス化を考慮した環境移行パラメ ータについて検討することを目的としている。本年度は、¹⁴C源の初期濃度と¹⁴Cガス発生量との関係 および¹⁴Cガス発生量に対する温度の効果について調査した。また、微生物の調査では、温度に反応 して微生物群集構造が変化しうるのか、そして¹⁴Cガス化率が異なる土壌の微生物群集構造を調査し、 ¹⁴Cのガス化に重要な役割を担っている可能性がある細菌種の特定を試みた。最後に、農耕地におけ る¹⁴Cの挙動を解析するために水稲全体モデルの精緻化に資する微気象データの取得、およびそれら のデータから得られた移行パラメータをモデルに反映した。

5.3.1. ¹⁴C ガス発生量に関わる要因

¹⁴C 源の初期濃度と ¹⁴C ガス発生量との関係では、地層処分場において金属 TRU 廃棄物から発生する可能性が示唆されている[1,2-¹⁴C]酢酸ナトリウムを用いてトレーサ実験を行った。0.5 g の水田土壌に対して最大 4.2 × 10⁵ Bq の ¹⁴C を添加したが、特に ¹⁴C ガス発生量が抑制されることはなかった。むしろ添加量が多くなることで、発生する ¹⁴C ガスの絶対量が増加することが分かった。一方、4.2 × 10³ Bq/mL 以下の ¹⁴C 濃度であれば、初期添加量に対する ¹⁴C ガスの発生する割合は一定であることが分かった。このことは初期濃度に対する ¹⁴C ガス発生率は、灌漑水から大気への移行パラメータとして利用できる可能性を示唆している。また、¹⁴C ガス発生量に対する温度の効果であるが、25°C から 30°C の範囲であれば初期濃度に対する ¹⁴C ガス発生割合に影響はないが、この温度の範囲外では ¹⁴C ガス の発生する割合が低くなることが分かった。今後は、ガス中の ¹⁴C が農作物へ移行する割合についてデータが収集されることが望まれる。

5.3.2. 水田土壌微生物群集に対する温度効果

昨年度の本事業において,温度は微生物の活動には影響するが,群集構造を変化させるほどの影響 はないことが示された。そこで,温暖な地域と寒冷な地域の水田土壌を用いて,そこに生息する微生 物群集構造に対する温度の効果について調査した。その結果,調査した温度差では微生物群集構造を 変化させるほどの効果がないことが確かめられた。今回の調査では7日培養後の群集構造に関して行 われた。増殖速度の速い微生物にとって7日間は増殖し定常状態に至るのに十分な時間ではあるが, 地層処分の安全評価においてはより長期的な培養を行い微生物群集に対する温度の効果を明らかにす る必要があるかもしれない。そして,放射性核種の挙動に影響する微生物のモニタリング手法の確立 が望まれる。

¹⁴CO₂の発生に寄与する細菌種の推定は、¹⁴Cガス化率の異なる土壌の微生物群集構造を比較し、ガス化率が高い土壌で特異的に検出される細菌種の帰属分類の推定により行った。このような細菌種は確かに存在し、そのうちの4種類について調査したところ、3種類が酢酸を利用する細菌であることが分かった。水田において、一時的に酢酸が蓄積することからも明らかなように、酢酸は微生物にとってそれほど利用しやすい有機物ではない。それにも拘わらず検出できたということは、やはり¹⁴Cガス発生率が高い土壌には酢酸を利用できる種が生きていける環境を提供していることが分かった。残りの1種は酢酸を生産する種であったことから、この土壌では酢酸がうまく循環している可能性が考えられる。

5.3.3. 水稲全体モデルの精緻化

本事業で開発した水稲全体モデルにおいて、近傍大気と環境大気の移行半減期が、イネによる¹⁴C

の蓄積に影響することが示唆されている。本年度,不確実さ伝播解析を行うことにより,改めて近傍 大気と環境大気のガス交換速度が水稲による¹⁴Cの取り込みに影響することが確認できた。したがっ て,近傍大気と環境大気のガス交換をより現実的に評価することによりモデルの精緻化が達成できる といえる。そこで,実際の水田で風向風速データを取得し,近傍大気と環境大気のガス交換の知見と した。調査期間中,群落内の風は群落外の風と比較すると小さく,ほぼ一定方向に流れていることが 分かった。風の流れは地形にもよるため,様々な水田で同様のデータを蓄積することも重要である。 昨年までは群落内の大気(近傍大気)は鉛直方向にガス交換が行われるものとしてモデルを構築して いた。ところが実際の水田で風向・風速データを取得した結果,風は鉛直方向へはほとんど移動せず, 水平方向に移動していることが分かった。この結果を受け,これまでの近傍大気-環境大気移行半減期 の値を見直し,基本解析および感度解析を行った。見直した交換半減期の不確実さ幅では,結果への 影響が敏感であり,より妥当と思われる半減期について検討する必要がある。

5.4. 重要核種(Pu, Am, Th および Cl)の超高精度分析による環境移行パラメータ収集

放射性廃棄物の地層処分場から環境中へ放出された放射性核種は環境の違いによってその動態が大 きく異なると考えられる。従って、我が国の環境移行パラメータを収集・整備する必要がある。平成 14年度から18年度までに放射線医学総合研究所では、生物圏における環境媒体中元素濃度を蓄積し、 土壌-植物間移行係数(TF)や土壌-土壌溶液間分配係数(K_d)等の環境移行パラメータの導出並びに データベース構築を行った。Pu, Am, Th 及び塩素(Cl)は、放射性廃棄物の地層処分に係わる安全評 価上重要核種であるがデータが少ない。その重要核種の測定は極めて高度の分析技術が要求されるた め、核種移行モデルに使用される環境移行パラメータは十分蓄積されていない。

本事業では、データが少なくかつ重要核種、すなわち、Pu, Am, Th 及び塩素について、超高精度分析を開発し、実際の環境試料を分析して、環境移行パラメータ、特に TF を求めることを目的の一つ としている。

5.4.1. Am および Cl の超高精度分析

5.4.1.1. 土壌中 Am の超高精度分析法の確立

本年度は、DGA-N 樹脂への干渉元素の抽出挙動を系統的に調べ、TEVA 樹脂の Am および REEs 分 離効率を評価し、3 種類の共沈法のマトリックス除去能力を比較検討した。その結果に基づいて、 SF-ICP-MS による大規模土壌試料(2~20g)における²⁴¹Am 測定の分析法を提案した。この方法は, 土壌サンプルから Am を浸出するために HNO3 浸出を利用する。次に CaC₂O4 共沈殿を用いて, Am 分 画からマトリックス元素(Na, K, Mg, Al, Fe)を除去し, 次いで UTEVA + DGA-N 樹脂上の Am 干 渉元素を分離する。TEVA 樹脂上の REEs をさらに除去した後, Aridus (II)-SF-ICP-MS 分析システムを 用いて²⁴¹Amを測定する。この分析法は、優れた妨害元素除去能力を示し、特に Pu の除去係数(DF) (7×10⁵)は²⁴¹Am 分析でこれまでに報告された最高値であり、土壌サンプル中の福島原発事故起源 の²⁴¹Am を分析することができる。また、本分析法は、大量土壌サンプルの ICP-MS による²⁴¹Am 測 定におけるマトリックス効果による干渉を排除できるものである。6 つの標準物質を用いて本分析法 の正確さを立証した。測定された²⁴¹Am 濃度と保証値とは十分に一致していた。Am の化学的回収率 は、土壌試料に対して 76%~82%の範囲で安定している。さらに、この分析法の検出下限値(LOD) は非常に低く(0.012 mBq/g),本調査・研究事業において実施する土壌試料中の²⁴¹Am分析研究に十 分適応できるものである。確立された超高精度分析法を用いて、本年度、日本の16県(北海道、新潟、 富山,京都,三重,福岡,千葉,福井,岐阜,愛知,兵庫,鳥取,青森,神奈川及び石川)から採取 した 20 件の畑土試料中の²⁴¹Am 濃度測定を行った。畑土中の²⁴¹Am 濃度は²³⁹⁺²⁴⁰Pu 濃度より低く, 0.136 から 0.219 mBq/g の範囲であった。

5.4.1.2. 土壤中塩素の超高精度分析法開発

塩素のTFを得るために、塩素の超高精度分析法を開発した。TMAHを用いた土壌中塩素抽出は土 壌中塩素を全て抽出することはできなかったが、土壌中の利用可能な塩素を抽出するという観点から は適切な分析法である。さらに、TMAH抽出溶液をH₂O₂処理により有機物を分解してから ICP-MS/MS 分析を行うことで、より精度の高い分析が可能となった。TF は全量抽出できていないので、中性子放 射化による結果と比較するとやや高めであると予想されたが、これまで国内で測定された値の範囲内 であった。

5.4.2. 土壌-米間移行係数の収集

181

本調査では、平成26年度と平成27年度に採取した白米試料20点と平成27年度に採取した玄米試料10点を用いて、Th濃度測定を行った。白米試料20点中Th濃度範囲は1.4×10⁻⁵から6.7×10⁴mg/kgであった。最大/最小濃度比は48であった。算術平均値および幾何平均値は、それぞれ1.8×10⁴と1.0×10⁴mg/kgであった。平成27年度に採取した玄米試料10点のTh濃度範囲は7.7×10⁻⁵から4.7×10⁴mg/kgであった。最大/最小濃度比は6であった。算術平均値および幾何平均値は、それぞれ2.1×10⁴と1.8×10⁴mg/kgであった。玄米のTh濃度は白米のTh濃度とほぼ同じかやや高かった。また、最大/最小濃度比については、玄米より白米の方は8倍高かった。今後はデータをさらに蓄積してゆき、日本の米中Th濃度の変動範囲を正確に把握するとともに、土壌中Th濃度データも蓄積して、Thの土壌・米間移行係数を取得してゆく必要がある。

日本の 8 つの県から採取した土壌と玄米試料を Pu 分析に供した。土壌試料中の Pu 同位体比 (²⁴⁰Pu/²³⁹Pu 原子数比)は、これらの土壌中の Pu が主にグローバルフォールアウトの Pu であること を示している。得られた Pu 濃度から Pu の土壌-玄米間移行係数 (TF) を求めた。玄米の TF の範囲 は、7.0×10⁻⁶ から 1.1×10⁻⁴、幾何平均値は 3.1×10⁻⁵ であった。日本において、米の TF-Pu が得られた のは初めてである。一般に、Pu の TF は十分ではないため、さらに様々な農作物の TF-Pu データを 収集し、データが無い作物種のデータを提供するとともに、存在するデータの代表性を向上させてゆ く必要がある。

このようなデータを収集して我が国独自のデータベース構築を行うとともに,世界的にも数が少な いこれらのデータを今後国際的に提供していくことが重要である。 平成 28 年度放射性核種生物圈移行評価高度化開発評価検討委員会

平成 28 年度放射性核種生物圈移行評価高度化開発評価検討委員会委員

- 石川 奈緒:岩手大学理工学部 システム創成工学科 助教
- 小嵐 淳 :国立研究開発法人 日本原子力研究開発機構 原子力科学研究部門 原子力基礎工学研究センター 環境動態研究グループ 研究主幹
- 坂口 綾 : 筑波大学 数理物質系化学域 准教授
- 颯田 尚哉:岩手大学 農学部 教授
- 高橋 知之:京都大学原子炉実験所 原子力基礎工学研究部門 准教授
- 武田 晃 : (公財) 環境科学技術研究所 環境影響研究部 副主任研究員
- 塚田 祥文:福島大学 環境放射能研究所 教授
- 中尾 淳 :京都府立大学大学院生命環境科学研究科 助教
- 百島 則幸:一般財団法人 九州環境管理協会 理事長 (委員長)

平成28年度放射性核種生物圈移行評価高度化開発評価検討委員会 開催日時

第1回: 平成 28年10月17日~18日

第2回: 平成 29年2月6日~7日

謝 辞

本調査を遂行するにあたり, RI トレーサー実験, 試料前処理および試料調製, 元素分析, データ整 理などの作業において, (株) 東京ニュークリアサービスの小礒 寛之氏, 菊池 洋好氏および小暮 則 和氏の協力を得た。農作物採取および農地採取では(一財)日本土壌協会の、農作物の前処理・分析 および土壌分析では(一財)日本食品分析センターの、さらに、放射性炭素の水稲移行解析モデルの 精緻化においては有限会社ワイファーストの協力を得た。また,中国からの客員協力研究員である門 武博士と実習生である曹 立国氏および倪 有意氏には環境試料中の Pu の濃縮・分離や分析をサポ ートしていただいた。

ここに記して謝意を表する。

調査担当者:
放射線医学総合研究所
廃棄物技術開発研究チーム
内田 滋夫
田上 恵子
石井 伸昌
鄭 建
王 鍾堂
芦田 能美
須相 祐子
内海 弘美