報告書名:管理型処分技術調査等事業 原子力発電所金属廃棄物利用技術開発 報告書 平成 28 年度(1/4)

No.	年度	頁	種類	場所	誤	Ē
1	28	10	表	表 3.2.2-3 供試材の化学	低合金鋼 Ceq.	低合金鋼 Ceq.
				成分(溶鋼分析值)(wt%)	高 P+中 S <u>0.44</u>	高 P+中 S <u>0.43</u>
2	28	10	表	表 3.2.2-3 供試材の化学	炭素鋼 S	炭素鋼 S
				成分(溶鋼分析值)(wt%)	高 P+低 S <u>0.010</u>	高 P+低 S <u>0.011</u>
3	28	11	表	表 3.2.2-4 引張および硬	低合金鋼	低合金鋼
				さ試験結果	冷却速度 降伏点又は 0.2%耐力	冷却速度 降伏点又は 0.2%耐力
					(°C/min) (MPa)	(°C/min) (MPa)
					中 P+中 S 12 [<u>411</u>]	中 P+中 S 12 [<u>483</u>]
4	28	13	表	表 3.2.2-5 シャルピー試	炭素鋼	炭素鋼
				験結果	熱処理冷却速度 −20℃吸収エネルギー	熱処理冷却速度 −20℃吸収エネルギー
					(°C/min) (J)	(°C/min) (J)
					個別	個別
					中 P+中 S 1.5 <u>22</u> , 23	中 P+中 S 1.5 <u>23</u> , 23
5	28	15	义	図 3.2.2-4 溶接試験体:	(a)の試験体寸法	(a)の試験体寸法の修正
				(a)補修溶接模擬試験体、	幅 <u>350</u> 長さ <u>700</u>	幅 <u>330</u> 長さ <u>650</u> , <u>710</u>
				(b)蓋溶接模擬試驗体	(b)の試験体寸法	(b)の試験体寸法の修正
					幅 <u>350</u> 長さ <u>700</u>	幅 <u>330</u> 長さ <u>650</u> , <u>710</u>
6	28	24	表	表 3.2.2-9 静的引張試験	試験温度 伸び	試験温度 伸び
				結果(試験速度:破断まで	(GL= <u>35</u> mm)	(GL= <u>25</u> mm)
				3mm/min一定)	°C %	°C %
					母材 23 <u>12</u>	母材 23 <u>13</u>
7	28	26	表	表 3.2.2-11 母材および	α β	lpha eta
				蓋溶接金属の α と β	蓋溶接金属 <u>587</u> <u>968</u>	蓋溶接金属 <u>576</u> <u>1097</u>
8	28	26	表	表 3.2.2-12 -20℃の静的	ひずみ硬化係数	ひずみ硬化係数
				引張試験から求めたひず	平均值	平均值
				み硬化係数	蓋溶接金属 0.009	蓋溶接金属 <u>0.096</u>

報告書名:管理型処分技術調査等事業 原子力発電所金属廃棄物利用技術開発 報告書 平成 28 年度(2/4)

報告書名:管理型処分技術調査等事業 原子力発電所金属廃棄物利用技術開発 報告書 平成 28 年度(3/4)

報告書名:管理型処分技術調査等事業 原子力発電所金属廃棄物利用技術開発 報告書 平成 28 年度(4/4)

No.	年度	頁	種類	場所	誤	E
15	28	51	文	第1段落の上から7,8行目	蓋溶接未溶着まま: <u>73</u> MPa√m	蓋溶接未溶着まま: <u>76</u> MPa√m
					蓋溶接金属 : <u>51</u> MPa√m	蓋溶接金属 : <u>53</u> MPa√m
16	28	51	表	表 3.2.2-15 各ケースの	ケースA 未溶着	ケースA 未溶着
				脆性破壊評価	$K_{\sigma \max}$ <u>67.3</u>	$K_{\sigma \max}$ <u>80.7</u>
					min. K _{1d} <u>77</u>	min.K _{1d} <u>76</u>
					K _r <u>0.87</u>	K _r <u>1.06</u>
17	28	51	表	表 3.2.2-15 各ケースの	ケース B 未溶着	ケース B 未溶着
				脆性破壊評価	K _{σ max} 19.5	$K_{\sigma \max}$ 19.5
					min. K_{1d} 77	min.K _{1d} <u>76</u>
					K _r <u>0.25</u>	K _r <u>0.26</u>
18	28	51	表	表 3.2.2-15 各ケースの	ケースC 未溶着 溶接金属	ケース C 未溶着 溶接金属
				脆性破壊評価	$K_{\sigma \max}$ <u>16.7</u>	$K_{\sigma \max}$ <u>23.3</u>
					min.K _{1d} <u>77</u> 53	min.K _{1d} <u>76</u> 53
					K _r <u>0.22</u> <u>0.32</u>	K _r <u>0.31</u> <u>0.44</u>
19	28	51	文	第3段落の1行目	表 3.2.2-15 に <u>に</u> よると、ケース A (50mm 厚容器)	表 3.2.2-15 によると、ケース A (50mm 厚容器)の場
					の場合、 <u>溶接未溶着部では K_r<1となり脆性破壊</u>	合、 <u>溶接未溶着部、溶接金属において K_r>1 となり</u> 脆
					は生じないが、今回選定した溶接金属からは脆性	性破壊が発生することになる。
					破壊が発生することになる。	
20	28	51	文	第4段落の2行目	このように、50mm 厚容器に対しては容器形状等の	このように、50mm 厚容器に対しては容器形状等の設
					設計 <u>緒言</u> の見直しによる発生応力の低減や溶接	計 <u>諸元</u> の見直しによる発生応力の低減や溶接条件 <u>の</u>
					条件 <u>を</u> 適正化によ <u>る</u> 溶接金属の靱性を改善して	適正化によ <u>り</u> 溶接金属の靱性を改善していくこと
					いくことで、容器の安全性をより確保していくこ	で、容器の安全性をより確保していくことは可能と
					とは可能と考えられる。	考えられる。
21	28	52	文	第2段落の5行目	・50mm 厚容器は溶接未溶着部から脆性破壊は生じ	・50mm 厚容器は <u>溶接未溶着部、溶接金属から脆性破</u>
					ないが、溶接金属に対しての考慮が必要である。	壊は生ずる結果であった。