平成 27 年度

地層処分技術調査等事業

(岩盤中地下水移行評価確証技術開発)-岩盤中物質移行特性評価技術の確証-

報告書

平成 28 年 3 月

一般財団法人 電力中央研究所

1.	Æ	↑究概要	 1-1
	1.	1 本研究の背景	 1-1
	1.	2 目的	 1-1
	1.	3 全体計画	 1-2
		1.3.1 研究の内容	 1-2
		1.3.2 研究工程	 1-2
	1.	4 本年度の実施概要	 1-3
		1.4.1 トレーサー試験技術の開発	 1-3
		1.4.2 割れ目探査技術の開発	 1-3
		1.4.3 原位置での実証	 1-4
		1.4.4 天然のトレーサーを利用した調査技術の開発	 1-4
2.		、レーサー試験に係わる室内試験	 2-1
	2.	1 背景	 2-1
	2.	2 模擬トレーサー試験	 2-3
		2.2.1 試験方法(模擬孔間式トレーサー試験)	 2-3
		2.2.2 結果と考察(模擬孔間式トレーサー試験)	 2-7
		2.2.3 試験方法(模擬単孔式トレーサー試験)	 2-19
		2.2.4 結果と考察(模擬単孔式トレーサー試験)	 2-20
		2.2.5 まとめ	 2-22
	2.	3 各種割れ目探査技術の室内比較試験	 2-24
		2.3.1 背景および目的	 2-24
		2.3.2 試験モデル	 2-24
		2.3.3 試験方法	 2-27
		2.3.4 試験結果	 2-32
		2.3.5 試験結果の比較	 2-41
	2.	4 蛍光染料の非吸着性トレーサーとしての有用性検討	 2-42
		2.4.1 調査対象とした各蛍光染料の特性について	 2-43
		2.4.2 分析における蛍光染料濃度の変化・ばらつき要因について	 2-43
		2.4.3 吸着以外に蛍光染料濃度に影響を与える要因について	 2-53
		2.4.4 吸着挙動	 2-60
		2.4.5 まとめ	 2-71

目 次

	2.5 室内試験のまとめ	2-72
	2.5.1 室内模擬トレーサー試験	2-72
	2.5.2 割れ目評価試験	2-72
	2.5.3 蛍光染料についての検討	2-72
3.	. ラドン濃度計測による割れ目調査技術の開発	. 3-1
	3.1 はじめに	. 3-1
	3.2 ラドン濃度計測による割れ目幅の推定の概念	. 3-1
	3.3 今年度の実施概要	. 3-2
	3.4 ラドンによる割れ目間隙幅の推定手法の適用性検討	. 3-3
	3.4.1 岩石の物理化学特性	. 3-3
	3.4.2 ラドンフラックスの測定	3-15
	3.5 原位置ラドン濃度計測による割れ目特性の検討	3-20
	3.5.1 坑道における溶存ラドン濃度の分布	3-20
	3.5.2 300m ボーリング横孔における原位置のラドン濃度	3-21
	3.5.3 ラドン循環ポンプの改良	3-23
	3.6 まとめ	3-28
4.	. 割れ目の可視化技術の開発	. 4-1
	4.1 はじめに	. 4-1
	4.2 割れ目の3次元可視化と定量評価	. 4-2
	4.2.1 背景及び目的	. 4-2
	4.2.2 岩石コア	. 4-2
	4.2.3 X線CT スキャナによる撮影	. 4-5
	4.2.4 平面研削及び研削面の撮影	. 4-9
	4.2.5 撮影結果	4-10
	4.2.6 割れ目間隙幅の定量評価	4-20
	4.3 室内レジン注入試験	4-21
	4.3.1 鋼管を用いたレジンの一次元流動試験	4-21
	4.3.2 割れ目内未固結充填物に関する検討	4-26
	4.4 原位置レジン注入装置の設計	4-34
	4.4.1 概念設計	4-34
	4.4.2 装置の基本構造	4-35
	4.4.3 ポンプの選定	4-36

4	. 5	レジ	ジンの物性試験	-43
	4.	5.1	可使時間測定試験 4-	-43
	4.	5.2	粘度測定試験 4-	-46
	4.	5.3	付着強度試験 4-	-51
	4.	5.4	分離確認試験4-	-59
	4.	5.5	レジンの液性 (pH) 測定 4-	-64
	4.	5.6	蛍光剤の検討	-66
4	. 6	まと	: め	-73
5.	適月	用性調	試験場の地質環境調査	5-1
5	. 1	はじ	こめに	5-1
	5.	1.1	瑞浪超深地層研究所の研究施設の概要	5-1
	5.	1.2	深度 500m 研究アクセス南坑道 125m 計測横坑の概要 5	5-1
5	. 2	適用	3性試験場の地質環境調査概要	5-3
	5.	2.1	調査の目的	5-3
	5.	2.2	調査項目	5-3
	5.	2.3	調査手順5	5-5
5	. 3	調査	〔結果5-	-45
	5.	3.1	15MI52 号孔の調査結果 5-	-45
	5.	3.2	15MI53 号孔の調査結果 5-1	.01
	5.	3.3	間隙水圧モニタリング装置の設置 5-1	58
	5.	3.4	ポイント希釈試験結果 5-1	.61
5	. 4	湧水	<割れ目の特徴5-1	74
	5.	4.1	割れ目の密度 5-1	74
	5.	4.2	湧水割れ目の特徴 5-1	.75
	5.	4.3	湧水割れ目の連続性 5-1	77
5	. 5	まと	: め	78
	5.	5.1	ボーリング孔掘削 5-1	78
	5.	5.2	地質学的調査 5-1	78
	5.	5.3	水理学的調査 5-1	.82
	5.	5.4	ポイント希釈試験 5-1	.83
	5.	5.5	湧水割れ目の特徴 5-1	.83
6.	原位	立置	トレーサー試験	5-1

	6.1 はじめに	6-1
	6.2 トレーサー試験装置概要	6-1
	6.2.1 トレーサー試験装置の構成	6-1
	6.2.2 孔内装置の概要	6-3
	6.2.3 トレーサー試験装置の改良	6-4
	6.3 トレーサー試験の概要	6-8
	6.3.1 単孔トレーサー試験	6-9
	6.3.2 孔間トレーサー試験	. 6-12
	6.4 トレーサー試験の原位置適用試験	. 6-16
	6.4.1 適用性試験の対象割れ目	. 6-16
	6.4.2 実施したトレーサー試験	. 6-18
	6.4.3 適用試験での確認項目	. 6-19
	6.4.4 試験準備	. 6-20
	6.4.5 原位置試験結果	. 6-34
	6.4.6 試験装置の適用性の確認	. 6-81
	6.4.7 適用性試験で新たに顕在化した問題点とその対応方針	. 6-86
	6.5 化学分析	. 6-92
	6.5.1 分析項目	. 6-92
	6.5.2 前処理方法	. 6-92
	6.5.3 単孔トレーサー試験の分析結果	. 6-93
	6.5.4 ダイポール試験の分析結果	6-111
	6.6 原位置試験の評価	6-119
	6.6.1 単孔トレーサー試験の評価	6-119
	6.6.2 ダイポール試験の評価	6-160
	6.7 トレーサー試験結果の評価解析	6-165
	6.7.1 単孔トレーサー試験の評価解析	6-165
	6.7.2 孔間トレーサー試験の評価解析	6-188
	6.8 まとめと今後の課題	6-202
	6.8.1 トレーサー試験装置の適用性確認	6-202
	トレーサー試験結果と評価解析	6-203
	6. 8. 2	6-203
7.	天然トレーサーを利用した調査技術の開発	7-1

1 背景	7 - 1
2 研究項目	7-2
3 研究坑道における地下水調査	7-2
7.3.1 瑞浪における地下水調査	7-3
7.3.2 瑞浪における地下水流動・物質移行解析 7	7-27
7.3.3 幌延における地下水調査 7	7-54
7.3.4 幌延における地下水流動・物質移行解析 7	7-72
4 天然トレーサーの調査 7	7-89
7.4.1 希ガス採水方法 7	7-89
7.4.2 速い流れの指標となる物質 7-	-100
7.4.3 遅い流れの指標となる物質 7-	-128
まとめと今後の課題	8-1
1 トレーサー試験に係わる室内試験	8-1
2 ラドン濃度計測による割れ目調査技術の開発	8-2
3 割れ目の可視化技術の開発	8-3
4 適用性試験場の地質環境調査	8-4
5 原位置トレーサー試験	8-5
6 天然トレーサーを利用した調査技術の開発	8-6
7. 7. 7. 7. 7. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8.	 7.1 背景. 7.2 研究項目. 7.3 研究坑道における地下水調査. 7.3.1 瑞浪における地下水調査. 7.3.2 瑞浪における地下水流動・物質移行解析. 7.3.3 幌延における地下水流動・物質移行解析. 7.3.4 幌延における地下水流動・物質移行解析. 7.4 既における地下水流動・物質移行解析. 7.4 天然トレーサーの調査. 7.4.1 希ガス採水方法. 7.4.2 速い流れの指標となる物質. 7- 7.4.3 遅い流れの指標となる物質. 7- 末とめと今後の課題. 8.1 トレーサー試験に係わる室内試験. 8.2 ラドン濃度計測による割れ目調査技術の開発. 8.3 割れ目の可視化技術の開発. 8.5 原位置トレーサー試験. 8.6 天然トレーサーを利用した調査技術の開発.

図目次

⊠ 2.2.1-1	模擬トレーサー試験に用いた柱状岩石充填カラム	. 2-5
⊠ 2.2.1-2	模擬トレーサー試験に用いた柱状岩石充填カラム	. 2-5
送 2.2.2-1	流速 1.0mL/min における重水・Rb・Ba の破過曲線	. 2-7
⊠ 2.2.2-2	流速 0. 1mL/min における重水・Rb・Ba の破過曲線	. 2-8
⊠ 2.2.2-3	流速 0.01mL/min における重水・Rb・Ba の破過曲線	. 2-8
⊠ 2.2.2-4	流速 1.0mL/min における液量と累積回収率の関係	. 2-9
⊠ 2.2.2-5	流速 0.1mL/min における液量と累積回収率の関係	2-10
⊠ 2.2.2-6	流速 0.01mL/min における液量と累積回収率の関係	2-10
⊠ 2.2.2-7	バッチ試験と模擬トレーサー試験の分配係数比較(Rb)	2-11
⊠ 2.2.2-8	バッチ試験と模擬トレーサー試験の分配係数比較(Ba)	2-12
⊠ 2.2.2-9	吉井砂岩流速 1.0mL/min での破過曲線	2-13
⊠ 2.2.2-10	吉井砂岩流速 0.1mL/min での破過曲線	2-14
⊠ 2.2.2-11	吉井砂岩流速 1.0mL/min 試験での Rb のピーク	2-14
⊠ 2.2.2-12	吉井砂岩流速 1.0mL/min 試験における非吸着性トレーサーの破過曲線	2-15
⊠ 2.2.2-13	吉井砂岩流速 0.1mL/min 試験における非吸着性トレーサーの破過曲線	2-16
⊠ 2.2.2-14	花崗岩流速 0.01mL/min 試験における非吸着性トレーサーの破過曲線	2-16
⊠ 2.2.2-15	吉井砂岩流速 0.01mL/min 試験における非吸着性トレーサーの破過曲線	2-17
⊠ 2.2.3-1	模擬単孔式トレーサー試験の試験系概念図	2-20
⊠ 2.2.4-1	模擬単孔式トレーサー試験の結果(流速1.0mL/min)	2-21
⊠ 2.2.4-2	模擬単孔式トレーサー試験の結果(流速 0.1mL/min)	2-21
⊠ 2.2.4-3	模擬単孔式トレーサー試験の結果(流速 0.1mL/min、待機時間 24 時間)	2-22
⊠ 2.3.2-1	一次元モデルの試験装置の概念図	2-24
⊠ 2.3.2-2	ー次元モデルの写真	2-25
⊠ 2.3.2-3	軸対称モデルの概念図	2-26
⊠ 2.3.2-4	軸対称モデルの写真	2-26
⊠ 2.3.3-1	ラドン計測の概念図	2-27
⊠ 2.3.3-2	ラドン濃度の経時変化	2-28
⊠ 2.3.3-3	一次元モデルでの透水試験の概念図	2-29
⊠ 2.3.3-4	高粘性流体注入時の圧力応答の概念図	2-30
図 2.3.3-5	トレーサー注入時の到達時間の概念図	2-31

义	2.3.4-1	一次元モデルにおけるラドン濃度の経時変化	2-32
义	2.3.4-2	平衡値を 3500 Bq/1 とした場合の Rn 濃度の経時変化	2-33
义	2.3.4-3	一次元モデルでの流量と水頭差の関係	2-35
义	2.3.4-4	軸対称モデルでの流量と水頭の関係	2-35
义	2.3.4-5	一次元モデルへの高粘性流体注入試験の概念図	2-36
义	2.3.4-6	一次元モデルへの高粘性流体注入試験の結果	2-37
义	2.3.4-7	軸対称モデルでの高粘性流体注入試験の結果	2-38
义	2.3.4-8	一次元モデルでの試験結果	2-39
义	2.3.4-9	レジンの注入状況と注入結果	2-40
义	2.4.1-1	検討した4種類の蛍光染料の構造式	2-43
义	2.4.2-1	4 種の蛍光染料発光強度の温度依存性	2-45
义	2.4.2-2	フミン酸が共存した場合のみかけの蛍光染料濃度	2-47
义	2.4.2-3	フミン酸が共存した場合のブランク溶液におけるみかけの蛍光染料濃度	2-48
义	2.4.2-4	蛍光光度計での分析セルへの静置時間と蛍光強度の関係	2-49
义	2.4.2-5	他蛍光染料が共存した場合のウラニンのみかけ濃度の変化	2-50
义	2.4.2-6	他蛍光染料が共存した場合のエオシンのみかけ濃度の変化	2-51
义	2.4.2-7	他蛍光染料が共存した場合の NAP のみかけ濃度の変化	2-51
义	2.4.2-8	他蛍光染料が共存した場合の AG のみかけ濃度の変化	2-52
义	2.4.3-1	日光に曝露した蛍光染料における蛍光濃度の変化	2-54
义	2.4.3-2	蛍光灯の光に曝露した蛍光染料における蛍光濃度の変化	2-54
义	2.4.3-3	幌延地域の地下水とウラニンを接触させたときの色の変化	2-56
义	2.4.3-4	変色前後のウラニンの3次元蛍光スペクトル	2-57
义	2.4.4-1	吸着試験時の液相における AG 濃度の経時変化の pH 依存性(幌延岩石)	2-61
义	2.4.4-2	吸着試験時の液相における AG 濃度の経時変化の塩分濃度依存性(幌延岩石)	2-62
义	2.4.4-3	吸着試験時の液相における AG 濃度の経時変化の水銀添加影響(幌延岩石)	2-63
义	2.4.4-4	吸着試験時の液相におけるエオシン濃度の経時変化の pH 依存性(幌延岩石)	2-64
义	2.4.4-5	吸着試験時の液相におけるエオシン濃度の経時変化の水銀影響(幌延岩石).	2-64
义	2.4.4-6	吸着試験時の液相におけるエオシン濃度の経時変化の塩分濃度影響(幌延岩石) 2-65
义	2.4.4-7	吸着試験時の液相における AG 濃度の経時変化の塩分濃度影響(瑞浪岩石)	2-66
义	2.4.4-8	吸着試験時の液相における AG 濃度の経時変化の水銀影響(瑞浪岩石、純水)	2-67
図	2.4.4-9	吸着試験時の液相における AG 濃度の経時変化の水銀影響(瑞浪岩石、海水)	2-67
义	2.4.4-10	吸着試験時の液相における AG 濃度の経時変化のイオン濃度依存性(瑞浪岩石) 2-68

図 2.4.4-11 吸着試験時の液相におけるエオシン濃度の経時変化のpH 依存性(瑞浪岩石) 2-69

図 2.4.4-12 吸着試験時の液相におけるエオシン濃度の経時変化への水銀の影響(瑞浪岩石) 2-69

- 3章 図目次

义	3.2-1 ラ	・ドンによる割れ目幅計測の原理	. 3-2
义	3. 4. 1-1	瑞浪花崗岩の Ca0-Na ₂ 0-K ₂ 0 成分の三角ダイアグラム	3-5
义	3. 4. 1-2	ICP-1501~ICP-1512 の希土類パターン(ME-MS81 の分析値を使用)	. 3-7
义	3. 4. 1-3	ICP-1501~ICP-1512と標準試料および未変質試料の希土類パターンの比較	. 3-7
义	3. 4. 1-4	X線回折分析フロー図	3-9
义	3. 4. 1-5	コアの間隙率と密度の関係	3-12
义	3. 4. 2-1	岩石からのラドンフラックスの測定例	3-15
义	3. 4. 2-2	蛭川花崗岩の試料厚とフラックスの関係	3-18
义	3. 4. 2-3	多胡砂岩の試料厚とフラックスの関係	3-18
义	3. 4. 2-4	藤枝砂岩の試料厚とフラックスの関係	3-18
义	3. 5. 1-1	坑道内ボーリングにおけるラドン濃度測定結果	3-20
义	3. 5. 2-1	各モニタリング区間のラドン濃度測定結果	3-21
义	3. 5. 3-1	ラドン循環試験の概念図	3-23
义	3.5.3-2	改良前・後ポンプボディ図面(左:改良前、右改良後)	3-24
义	3.5.3-3	改良前・後ポンプボディ溶接部の写真(左:改良前、右改良後)	3-24
义	3.5.3-4	ステーターケース図面(上)および写真(左下:改良前、右下:改良後)	3-24
义	3.5.3-5	流路観察タンク図面と写真	3-25
义	3.5.3-6	試験状況と試験管路構成	3-25
义	3.5.3-7	吐出量-圧力グラフ	3-26
义	3.5.3-8	温度-圧力グラフ	3-26
义	3.5.3-9	採水容器試験および加圧状況	3-27
义	3.5.3-10	流路観察タンク圧力グラフ	3-27

⊠ 4.2.2-1	岩石コア(13MI37)作成状況	4-3
⊠ 4.2.2-2	レジン充填コアの包埋固定状況	4-4

図 4.2.3-1	医療用 X 線 CT スキャナの外観 4-5
⊠ 4.2.3-2	高出力 X 線 CT スキャナの外観(テスコ株式会社 HP より) 4-6
⊠ 4.2.3-3	高出力マイクロフォーカス X 線 CT スキャナでの撮影位置(高さ) 4-7
⊠ 4.2.3-4	高出力マイクロフォーカス X 線 CT スキャナでの撮影状況 4-8
⊠ 4.2.5-1	医療用 X 線 CT 画像(1/2) 4-10
⊠ 4.2.5-2	医療用 X 線 CT 画像(2/2) 4-11
⊠ 4.2.5-3	MPR 画像(医療用 X 線 CT 画像) 4-12
⊠ 4.2.5-4	高出力マイクロフォーカス X 線 CT 画像(Case1) 4-13
⊠ 4.2.5-5	高出力マイクロフォーカス X 線 CT 画像(Case2) 4-14
⊠ 4.2.5-6	MPR 画像(高出力マイクロフォーカス X 線 CT 画像 ; Case1) 4-15
⊠ 4.2.5-7	MPR 画像(高出力マイクロフォーカス X 線 CT 画像 ; Case2) 4-16
⊠ 4.2.5-8	デジタルカメラで撮影した研削面 4-17
⊠ 4.2.5-9	研削面画像から再構成した xy-断面 4-18
⊠ 4.2.5-10	イメージスキャナで撮影した研削面(左:xy-断面、右:xz-断面) 4-19
⊠ 4.2.6-1	割れ目間隙幅の測定 4-20
⊠ 4.3.1-1	一次元流動試験で用いた鋼管の温度管理状況 4-22
⊠ 4.3.1-2	鋼管を用いた一次元流動試験での圧力の測定方法 4-23
⊠ 4.3.1-3	1/8inch 鋼管にエポキシ樹脂(主剤)を注入した場合の試験結果 4-24
⊠ 4.3.1-4	1/8inch 鋼管に蛍光レジン(蛍光剤を添加した混合液)を注入した場合の試験結果4-25
⊠ 4.3.2-1	未固結充填物質へのレジン充填状況(研削面画像) 4-26
⊠ 4.3.2-2	円孔割れ目模型の模式図 4-27
⊠ 4.3.2-3	円孔割れ目模型の外観写真 4-28
⊠ 4.3.2-4	割れ目内及び円孔内の砂の充填状況 4-28
⊠ 4.3.2-5	レジン注入試験の状況写真 4-29
⊠ 4.3.2-6	水注入後の割れ目内部の状況写真 4-30
⊠ 4.3.2-7	レジン注入試験後の X 線 CT 画像 4-31
⊠ 4.3.2-8	レジン注入試験後の岩石模型切断面の観察結果(全景) 4-32
⊠ 4.3.2-9	レジン注入試験後の岩石模型切断面の観察結果(詳細) 4-33
⊠ 4.4.2-1	原位置レジン注入装置の簡易フロー図 4-36
⊠ 4.4.3-1	モーノポンプの構造(兵神装備株式会社 HP より) 4-36
⊠ 4.4.3-2	ヘイシンモーノポンプ(12NE06PAX)の外形寸法図 4-37
図 4.4.3-3	スタティックミキサーの構造 4-40

⊠ 4.5.1-1	可使時間測定試験状況	4-44
⊠ 4.5.1-2	10℃環境での可使時間測定結果	4-45
⊠ 4.5.1-3	15、20、25、30℃環境温度での可使時間測定結果	4-45
図 4.5.2-1	粘度測定試験	4-46
⊠ 4.5.2-2	10、15、20、25、30℃の各温度環境における粘度測定結果	4-47
⊠ 4.5.2-3	10℃の温度環境における粘度測定結果	4-48
図 4.5.2-4	15℃の温度環境における粘度測定結果	4-48
図 4.5.2-5	20℃の温度環境における粘度測定結果	4-49
図 4.5.2-6	25℃の温度環境における粘度測定結果	4-49
図 4.5.2-7	30℃の温度環境における粘度測定結果	4-50
図 4.5.3-1	模擬割れ目の作成	4-51
⊠ 4.5.3-2	バルブと鋼製治具の取り付け	4-52
⊠ 4.5.3-3	気中環境における模擬割れ目へのレジン注入	4-53
図 4.5.3-4	水中及び模擬海水中における模擬割れ目へのレジン注入	4-54
図 4.5.3-5	試験用供試体の準備	4-55
図 4.5.3-6	簡易型引張試験器(R-10000ND、サンコーテクノ)	4-56
図 4.5.3-7	付着強度測定結果	4-57
図 4.5.3-8	模擬海水によるレジンの硬化への影響の確認	4-58
図 4.5.4-1	分離確認試験状況(左:蛍光剤無、右:蛍光剤有り)	4-59
⊠ 4.5.4-2	レジンと水の分離状況	4-60
図 4.5.4-3]	oH 測定結果(レジン+水)	4-60
⊠ 4.5.4-4	レジンと模擬海水の分離状況	4-61
図 4.5.4-5	pH 測定結果(レジン+模擬海水)	4-61
⊠ 4.5.4-6	蛍光剤添加済レジンと水の分離状況	4-62
図 4.5.4-7	pH 測定結果(レジン+水+蛍光剤)	4-62
図 4.5.4-8	蛍光剤添加済レジンと模擬海水の分離状況	4-63
図 4.5.4-9	pH 測定結果(レジン+模擬海水+蛍光剤)	4-63
図 4.5.5-1	レジンの pH 測定結果(左:主剤、右:固化剤)	4-64
⊠ 4.5.5-2	主剤と硬化剤の混合物の pH 測定結果	4-65
⊠ 4.5.6-1	主剤にフルオレセインを添加した場合の蛍光の変化(A1)	4-67
⊠ 4.5.6-2	主剤にナフチオン酸ナトリウムを添加した場合の蛍光の変化(A2)	4-67
図 4.5.6-3	主剤にナフタレンジスルホン酸モノカリウムを添加した場合の蛍光の変化(A3)	4-67

図 4.5.6-4	硬化剤にフルオレセインを添加した場合の蛍光の変化(B1)	4-68
図 4.5.6-5	硬化剤にナフチオン酸ナトリウムを添加した場合の蛍光の変化(B2)	4-68
図 4.5.6-6	硬化剤にフタレンジスルホン酸モノカリウムを添加した場合の蛍光の変化(B3)	4-68
図 4.5.6-7	主剤にフルオレセインを添加・撹拌後に硬化剤を添加した場合の蛍光の変化(A1	+B) 4-69
図 4.5.6-8	主剤にナフチオン酸ナトリウムを添加・撹拌後に硬化剤を	4-69
図 4.5.6-9	主剤にフタレンジスルホン酸モノカリウムを添加・撹拌後に	4-69
図 4.5.6-10	硬化剤にフルオレセインを添加・撹拌後に主剤を添加した場合の蛍光の変化(Bi	1+A)
		4-70
図 4.5.6-11	硬化剤にナフチオン酸ナトリウムを添加・撹拌後に主剤	4-70
図 4.5.6-12	主剤にフタレンジスルホン酸モノカリウムを添加・撹拌後に	4-70

- 図 4.5.6-13 室温 10℃湿度 70%の環境で主剤にフルオレセインを添加撹拌後に..... 4-72
- 5章 図目次

义	5.1.2-1	岐阜県瑞浪市における瑞浪超深地層研究所の位置と地下研究施設	5-2
汊	5.1.2-2	深度 500m 研究アクセス南坑道 125m 計測横坑	5-2
义	5.2.2-1	実施フロー	5-4
义	5.2.3-1	ボーリングマシン	5-5
図	5.2.3-2	孔口装置	5-5
汊	5.2.3-3	ボーリングロッド	5-5
汊	5.2.3-4	拡孔用ビット	5-5
汊	5.2.3-5	掘削水用タンク	5-7
汊	5.2.3-6	貯水設備	5-7
汊	5.2.3-7	排水量管理(電磁流量計)	5-7
汊	5.2.3-8	深度 500m ボーリング横坑作業区域概念図	5-8
汊	5.2.3-9	ボーリング資機材配置および掘削水の給排水ルート概要図	5-8
汊	5.2.3-10	ボーリング孔口測量状況	5-9
汊	5. 2. 3-11	1 段目掘削の作業手順 :	5-10
汊	5. 2. 3-12	φ86mm(1段目)掘削状況 ξ	5-11
汊	5.2.3-13	ケーシング挿入状況	5-11
汊	5.2.3-14	コンクリートブロック	5-11
汊	5.2.3-15	グラウト注入状況	5-11
义	5.2.3-16	ガラスマット	5-12

図 5.2.3-17	樹脂の撹拌状況	5-12
⊠ 5.2.3-18	樹脂の含浸状況	5-12
⊠ 5.2.3-19	パッカーセット	5-12
図 5.2.3-20	パッカー挿入状況	5-12
⊠ 5.2.3-21	孔内状況(小型テレビカメラ)	5-12
⊠ 5.2.3-22	孔口装置概要図	5-13
⊠ 5.2.3-23	分光蛍光光度計(F-2700 Fluorescence Spectrophotometer)と蛍光染料濃度	医計測
状況		5-14
⊠ 5.2.3-24	コアへの基準線記入	5-14
⊠ 5.2.3-25	条線およびステップの計測の一例	5-16
⊠ 5.2.3-26	コア写真撮影台	5-18
図 5.2.3-27	コア写真状況の一例	5-18
⊠ 5.2.3-28	キャリパー検層ツール	5-19
図 5.2.3-29	キャリパー検層状況	5-20
図 5.2.3-30	キャリパー検層装置のアーム	5-20
図 5.2.3-31	スポンジパッカーの機能	5-21
⊠ 5.2.3-32	BTV・フローメータ検層装置の概要図	5-21
図 5.2.3-33	測定プローブ (BTV・フローメータ) の挿入状況	5-22
⊠ 5.2.3-34	BTV・フローメータ測定状況	5-22
図 5.2.3-35	透水試験装置の設置概念図	5-24
図 5.2.3-36	透水試験の基本作業フロー	5-26
図 5.2.3-37	間隙水圧測定時の概念	5-28
図 5.2.3-38	定圧試験の概念	5-28
図 5.2.3-39	定流量揚水試験の概念	5-29
図 5.2.3-40	パルス試験の概念	5-29
⊠ 5.2.3-41	Log(t)-s 曲線(左)、Derivative Plot(右)の例	5-31
⊠ 5.2.3-42	Log(tp・Δt/(tp+Δt))-Sr 曲線(上)、Derivative Plot(下)の例	5-32
図 5.2.3-43	Hvorslevのt-Log s曲線	5-33
⊠ 5.2.3-44	Cooper らの曲線一致法	5-34
図 5.2.3-45	村田式デジタルオンラインシステム(写真は動作確認時のもの)	5-34
図 5.2.3-46	BIP-V システム構成	5-35
図 5.2.3-47	面構造の走向傾斜の解析ルーチン	5-36

义	5.2.3-48	幅の計測結果	5-38
义	5.2.3-49	間隙水圧モニタリング装置孔内部	5-39
义	5.2.3-50	間隙水圧モニタリング装置の地上記録装置部	5-39
义	5.2.3-51	間隙水圧モニタリング装置の設置例	5-40
义	5.2.3-52	ポイント希釈試験実施概要図	5-41
义	5.2.3-53	高出力タイプ LED 光源(左) 分光器(右)	5-42
义	5.2.3-54	ポイント希釈試験の試験手順	5-43
义	5.3.1-1	15MI52 号孔の掘削位置および方向	5-45
义	5.3.1-2	15MI52 号孔ロケーシング設置概念図	5-46
义	5.3.1-3	15MI52 号孔の孔口湧水量測定結果	5-47
义	5.3.1-4	15MI52 号孔掘削水のアミノG酸濃度と湧水量	5-48
义	5.3.1-5	ペグマタイト質岩相	5-49
义	5.3.1-6	小規模な MME の例	5-49
义	5.3.1-7	15MI52 号孔ボーリングコア内にみられる有色鉱物の shlieren(左)と	5-50
义	5.3.1-8	7.40~7.50mabh 付近の割れ目沿いの変質状況	5-52
义	5.3.1-9	介在鉱物が認められない例	5-53
义	5.3.1-10	フィルム状介在鉱物の例	5-53
汊	5.3.1-11	介在鉱物がコーティングする例	5-53
义	5.3.1-12	介在鉱物が粘土鉱物の例	5-53
义	5.3.1-13	15MI52 号孔総合柱状図	5-54
汊	5.3.1-14	15MI52 号コア写真(0~9.00mabh)	5-55
义	5.3.1-15	15MI52 号コア写真(9.00~18.00mabh)	5-56
义	5.3.1-16	15MI52 号コア写真(18.00~27.00mabh)	5-57
义	5.3.1-17	15MI52 号コア写真(27.000~30.00mabh)	5-58
义	5.3.1-18	15MI52 号孔キャリパー検層結果	5-59
义	5.3.1-19	15MI52 号孔のフローメータ検層結果	5-61
义	5.3.1-20	15MI52 号孔 15~19mabh 付近の単孔式透水試験深度図	5-62
义	5.3.1-21	15MI52 号孔 21~25mabh 付近の単孔式透水試験深度図	5-62
义	5.3.1-22	15MI52 号孔 26~30mabh 付近の単孔式透水試験深度図	5-63
义	5.3.1-23	15MI52 号孔 1-①区間の試験時における圧力変化	5-65
义	5.3.1-24	15MI52 号孔 1-①区間定流量揚水試験の揚水過程の Derivative Plot	5-66
义	5.3.1-25	15MI52 孔 1-①区間定流量揚水試験の揚水過程の Jacob 法による解析結果	5-66

図 5.3.1-26	15MI52 号孔 1-①区間定流量揚水試験の回復過程の Derivative Plot 5-67
⊠ 5.3.1-27	15MI52 号孔 1-①区間定流量揚水試験の回復過程の Agarwal 法による解析結果 5-67
送 5.3.1-28	15MI52 号孔 2-①区間の試験時の圧力変化 5-68
⊠ 5.3.1-29	15MI52 号孔 2-①区間定流量揚水試験の揚水過程の Derivative Plot 5-69
⊠ 5.3.1-30	15MI52 号孔 2-①区間定流量揚水試験の揚水過程の Jacob 法による解析結果. 5-69
図 5.3.1-31	15MI52 号孔 2-①区間定流量揚水試験の回復過程の Derivative Plot 5-70
⊠ 5.3.1-32	15MI52 号孔 2-①区間定流量揚水試験の回復過程の Agarwal 法による解析結果 5-70
⊠ 5.3.1-33	15MI52 号孔 3-③区間の試験時における圧力変化5-71
図 5.3.1-34	15MI52 号孔 3-③区間定流量揚水試験の揚水過程の Derivative Plot 5-72
⊠ 5.3.1-35	15MI52 号孔 3-③区間定流量揚水試験の揚水過程の Jacob 法による解析結果. 5-72
図 5.3.1-36	15MI52 号孔 3-③区間定流量揚水試験の回復過程の Derivative Plot 5-73
⊠ 5.3.1-37	15MI52 号孔 3-③区間定流量揚水試験の回復過程の Agarwal 法による解析結果 5-73
図 5.3.1-38	15MI52 号孔 4-②区間の試験時における圧力変化5-74
図 5.3.1-39	15MI52 号孔 4-②区間定流量揚水試験の揚水過程の Derivative Plot 5-75
送 5.3.1-40	15MI52 号孔 4-②区間定流量揚水試験の揚水過程の Jacob 法による解析結果. 5-75
図 5.3.1-41	15MI52 号孔 4-②区間定流量揚水試験の回復過程の Derivative Plot 5-76
送 5.3.1-42	15MI52 号孔 4-②区間定流量揚水試験の回復過程の Agarwal 法による解析結果 5-76
送 5.3.1-43	調査域におけるボーリング孔跡平面図(15MI52 号孔) 5-77
送 5.3.1-44	15MI52 号孔のボーリング孔跡図(左右変位推移) 5-78
図 5.3.1-45	15MI52 号孔のボーリング孔跡図(上下変位推移) 5-78
図 5.3.1-46	15MI52 号孔 孔壁展開図 0.00~4.00mabh 5-80
送 5.3.1-47	15MI52 号孔 孔壁展開図 4.00~8.00mabh 5-81
図 5.3.1-48	15MI52 号孔 孔壁展開図 8.00~12.00mabh 5-82
送 5.3.1-49	15MI52 号孔 孔壁展開図 12.00~16.00mabh 5-83
図 5.3.1-50	15MI52 号孔 孔壁展開図 16.00~20.00mabh 5-84
図 5.3.1-51	15MI52 号孔 孔壁展開図 20.00~24.00mabh 5-85
送 5.3.1-52	15MI52 号孔 孔壁展開図 24.00~28.00mabh 5-86
図 5.3.1-53	15MI52 号孔 孔壁展開図 28.00~30.00mabh (撮影は 29.65mabh まで) 5-87
図 5.3.1-54	15MI52 号孔 ステレオネット図 -全岩盤分離面 5-88
⊠ 5.3.1-55	15MI52 号孔 ステレオネット図 -割れ目5-89
図 5.3.1-56	15MI52 号孔 ステレオネット図 -開口割れ目5-90
図 5.3.1-57	15MI52 号孔 ステレオネット図 -鉱物脈 5-91

义	5.3.1-58	15MI52 号孔 詳細観察画像(8.66mabh N28W/82E)	. 5-92
义	5.3.1-59	15MI52 号孔 詳細観察画像(9.30mabh N17W/76W)	. 5-93
义	5.3.1-60	15MI52 号孔 詳細観察画像(9.47mabh N26W/81W)	. 5-94
义	5.3.1-61	15MI52 号孔 詳細観察画像(9.98mabh N34E/87SE)	. 5-95
义	5.3.1-62	15MI52 号孔 詳細観察画像(16.09mabh N23W/78W)	. 5-96
义	5.3.1-63	15MI52 号孔 詳細観察画像(17.59mabh N32E/89NW)	. 5-97
义	5.3.1-64	15MI52 号孔 詳細観察画像(22.40mabh N24E/85E)	. 5-98
义	5.3.1-65	15MI52 号孔 詳細観察画像(23.33mabh N27E/88E)	. 5-99
义	5.3.1-66	15MI52 号孔 詳細観察画像(27.67mabh N36W/82SW)	5-100
义	5.3.2-1	15MI53 号孔の掘削位置および方向	5-101
义	5.3.2-2	15MI53 号孔ロケーシング設置概念図	5-102
汊	5.3.2-3	15MI53 号孔の孔口湧水量測定結果	5-103
义	5.3.2-4	15MI53 号孔掘削中の 15MI52 号孔の水圧挙動	5-104
义	5.3.2-5	15MI52 号孔の間隙水圧モニタリング装置設置状況	5-104
义	5.3.2-6	15MI53 号孔掘削水のアミノ G 酸濃度と湧水量	5-105
义	5.3.2-7	割れ目充填鉱物の例	5-108
义	5.3.2-8	割れ目充填鉱物の例	5-108
义	5.3.2-9	15MI53 号孔総合柱状図	5-109
义	5.3.2-10	15MI53 号コア写真(0~9.00mabh)	5-110
図	5.3.2-11	15MI53 号コア写真(9.00~18.00mabh)	5-111
义	5.3.2-12	15MI53 号コア写真(18.00~27.00mabh)	5-112
义	5.3.2-13	15MI53 号コア写真(27.000~30.00mabh)	5-113
义	5.3.2-14	15MI53 号孔キャリパー検層結果	5-114
义	5.3.2-15	15MI53 号孔のフローメータ検層結果	5-116
図	5.3.2-16	15MI53 号孔 9.0mabh 付近の単孔式透水試験深度図	5-117
义	5.3.2-17	15MI53 号孔 12mabh 付近の単孔式透水試験深度図	5-117
义	5.3.2-18	15MI53 号孔 15mabh 付近の単孔式透水試験深度図	5-118
义	5.3.2-19	15MI53 号孔 20mabh 付近の単孔式透水試験深度図	5-118
义	5.3.2-20	15MI53 号孔 25mabh 付近の単孔式透水試験深度図	5-119
汊	5.3.2-21	15MI53 号孔 1-③区間の試験時における圧力変化	5-121
义	5.3.2-22	15MI53 号孔 1-③区間定流量揚水試験の揚水過程の Derivative Plot	5-122
义	5.3.2-23	15MI53 号孔 1-③区間定流量揚水試験の揚水過程の Jacob 法による解析結果	5-122

义	5.3.2-24	15MI53 号孔 1-③区間定流量揚水試験の回復過程の Derivative Plot	5-123
义	5.3.2-25	15MI53 号孔 1-③区間定流量揚水試験の回復過程の Agarwal 法による解析結果	₹5-123
义	5.3.2-26	15MI53 号孔 1-③区間定流量揚水試験時の 15MI52 号孔の圧力応答結果図	5-124
义	5.3.2-27	15MI53 号孔 2-②区間の試験時の圧力変化	5-125
义	5.3.2-28	15MI53 号孔 2-②区間定流量揚水試験の揚水過程の Derivative Plot	5-125
义	5.3.2-29	15MI53 号孔 2-②区間定流量揚水試験の揚水過程の Jacob 法による解析結果	5-126
义	5.3.2-30	15MI53 号孔 2-②区間定流量揚水試験の回復過程の Derivative Plot	5-126
义	5.3.2-31	15MI53 号孔 2-②区間定流量揚水試験の回復過程の Agarwal 法による解析結果	₹5-127
义	5.3.2-32	15MI53 号孔 2-②区間定流量揚水試験時の 15MI52 号孔の圧力応答結果図	5-127
义	5.3.2-33	15MI53 号孔 3-④区間の試験時における圧力変化	5-128
义	5.3.2-34	15MI53 号孔 3-④区間定流量揚水試験の揚水過程の Derivative Plot	5-129
义	5.3.2-35	15MI53 号孔 3-④区間定流量揚水試験の揚水過程の Jacob 法による解析結果	5-129
义	5.3.2-36	15MI53 号孔 3-④区間定流量揚水試験の回復過程の Derivative Plot	5-130
义	5.3.2-37	15MI53 号孔 3-④区間定流量揚水試験の回復過程の Agarwal 法による解析結果	₹5-130
义	5.3.2-38	15MI53 号孔 3-④区間定流量揚水試験時の 15MI52 号孔の圧力応答結果図	5-131
义	5.3.2-39	15MI53 号孔 4-①区間の試験時における圧力変化	5-132
义	5.3.2-40	15MI53 号孔 4-①区間パルス試験の Cooper 法による解析結果	5-132
义	5.3.2-41	15MI53 号孔で実施した孔間透水試験地点と間隙水圧モニタリング装置の配置	₫5-133
义	5.3.2-42	調査域におけるボーリング孔跡平面図(15MI53 号孔)	5-134
义	5.3.2-43	15MI53 号孔のボーリング孔跡図(左右変位推移)	5-135
义	5.3.2-44	15MI53 号孔のボーリング孔跡図(上下変位推移)	5-135
义	5.3.2-45	15MI53 号孔 孔壁展開図 0.00~4.00mabh	5-137
义	5.3.2-46	15MI53 号孔 孔壁展開図 4.00~8.00mabh	5-138
义	5.3.2-47	15MI53 号孔 孔壁展開図 8.00~12.00mabh	5-139
义	5.3.2-48	15MI53 号孔 孔壁展開図 12.00~16.00mabh	5-140
义	5.3.2-49	15MI53 号孔 孔壁展開図 16.00~20.00mabh	5-141
义	5.3.2-50	15MI53 号孔 孔壁展開図 20.00~24.00mabh	5-142
义	5.3.2-51	15MI53 号孔 孔壁展開図 24.00~28.00mabh	5-143
义	5.3.2-52	15MI53 号孔 孔壁展開図 28.00~30.00mabh (撮影は 29.93mabh まで)	5-144
义	5.3.2-53	15MI53 号孔 ステレオネット図 -全岩盤分離面	5-145
义	5.3.2-54	15MI53 号孔 ステレオネット図 -割れ目	5-146
汊	5.3.2-55	15MI53 号孔 ステレオネット図 -開口割れ目	5-147

义	5.3.2-56	15MI53 号孔 ステレオネット図 -鉱物脈	5-148
义	5.3.2-57	15MI53 号孔 詳細観察画像(9.11mabh N24W/80W)	5-149
义	5.3.2-58	15MI53 号孔 詳細観察画像(11.14mabh N32E/84SE)	5-150
义	5.3.2-59	15MI53 号孔 詳細観察画像(11.33mabh N20W/69W)	5-151
义	5.3.2-60	15MI53 号孔 詳細観察画像(14.67mabh N14W/87W)	5-152
义	5.3.2-61	15MI53 号孔 詳細観察画像(15.07mabh N22W/79W)	5-153
义	5.3.2-62	15MI53 号孔 詳細観察画像(18.97mabh N25W/74W)	5-154
义	5.3.2-63	15MI53 号孔 詳細観察画像(22.61mabh N38W/88NE)	5-155
义	5.3.2-64	15MI53 号孔 詳細観察画像(23.81mabh N52W/82NE)	5-156
义	5.3.2-65	15MI53 号孔 詳細観察画像(26.69mabh N44W/85SW)	5-157
义	5.3.3-1	間隙水圧モニタリング装置	5-158
义	5.3.3-2	間隙水圧モニタリング装置	5-158
义	5.3.3-3	間隙水圧モニタリング装置の孔内部構成図	5-159
义	5.3.3-4	15MI52 号孔の圧力変化	5-160
义	5.3.3-5	15MI53 号孔の圧力変化	5-160
义	5.3.4-1	蛍光濃度センサーの検量線	5-161
义	5.3.4-2	15MI52 号孔 Int1 における試験中の循環流量と試験区間圧力の変化	5-162
义	5.3.4-3	15MI52 号孔 Int1 における蛍光濃度の経時変化	5-162
义	5.3.4-4	15MI52 号孔 Int1 における解析対象範囲の蛍光濃度の経時変化と希釈率	5-163
义	5.3.4-5	15MI52 号孔 Int4 における試験中の循環流量と試験区間圧力の変化	5-164
义	5.3.4-6	15MI52 号孔 Int4 における蛍光濃度の経時変化	5-164
义	5.3.4-7	15MI52 号孔 Int4 における解析対象範囲の蛍光濃度の経時変化と希釈率	5-165
义	5.3.4-8	15MI52 号孔 Int5 における試験中の循環流量と試験区間圧力の変化	5-166
义	5.3.4-9	15MI52 号孔 Int5 における蛍光濃度の経時変化	5-166
义	5.3.4-10	15MI52 号孔 Int5 における解析対象範囲の蛍光濃度の経時変化と希釈率	5-167
义	5.3.4-11	15MI53 号孔 Int2 における試験中の循環流量と試験区間圧力の変化	5-168
义	5. 3. 4-12	15MI53 号孔 Int2 における蛍光濃度の経時変化	5-168
义	5. 3. 4-13	15MI53 号孔 Int2 における解析対象範囲の蛍光濃度の経時変化と希釈率	5-169
义	5.3.4-14	15MI53 号孔 Int4 における試験中の循環流量と試験区間圧力の変化	5-170
义	5.3.4-15	15MI53 号孔 Int4 における蛍光濃度の経時変化	5-170
図	5.3.4-16	15MI53 号孔 Int4 における解析対象範囲の蛍光濃度の経時変化と希釈率	5-171
汊	5.3.4-17	15MI53 号孔 Int5 における試験中の循環流量と試験区間圧力の変化	5-172

図 5.3.4-18	15MI53 号孔 Int5 における蛍光濃度の経時変化 5-172
図 5.3.4-19	15MI53 号孔 Int5 における解析対象範囲の蛍光濃度の経時変化と希釈率 5-173
図 5.4.1-1	コア観察による 15MI52 孔と 15MI53 孔の割れ目密度分布 5-174
図 5.4.2-1	割れ目の特徴別の卓越方向と BIPS 画像(15MI52 号孔) 5-175
図 5.4.2-2	割れ目の特徴別の卓越方向と BIPS 画像(15MI53 号孔) 5-176
図 5.4.2-3	高解像度 BTV による湧水割れ目の特性 5-176
図 5.4.2-4	NE 系の開口割れ目(15MI52 号孔 24.4m N29E/82E)の BISP 画像とコアとの比較5-176
図 5.4.3-1	15MI52 孔と 15MI53 孔の孔間での地質的・水理的に連続性が確認された割れ目5-177
図 5.5.2-1	15MI52 号孔の総合柱状図 5-180
図 5.5.2-2	15MI53 号孔の総合柱状図 5-181

図 6.2.1-1	孔間試験時のトレーサー試験装置構成6-2
図 6.2.2-1	(左)ピストンパッカー、(右)孔口パッカー、中間パッカーとロッド 6-3
図 6.2.3-1	光ケーブルの設計図6-5
図 6.2.3-2	フローセル部の設計外形図6-5
図 6.2.3-3	蛍光フローセル部に接続する光ファイバケーブルの設計図6-6
図 6.2.3-4	フローセル外観
図 6.2.3-5	平成 26 年度まで使用していた挿入ロッド構造図 6-7
図 6.2.3-6	今回変更した挿入ロッド構造図 6-7
図 6.3.1-1	単孔トレーサー試験のトレーサー濃度変化の模式図および破過曲線の例 6-9
図 6.3.1-2	単孔トレーサー試験の配管と手順 6-11
図 6.3.2-1	ダイポール試験の概念 6-12
図 6.3.2-2	ダイポール試験の配管と手順(揚水孔にモニタリング装置を設置した場合). 6-14
図 6.3.2-3	ダイポール試験の配管と手順(揚水孔にトレーサー試験装置を設置した場合) 6-15
図 6.4.1-1	試験対象割れ目とボーリング孔配置の平面図 6-16
図 6.4.1-2	高解像度ボアホール TV カメラによる 12MI31 号孔 21.90mabh の割れ目の画像 . 6-17
図 6.4.1-3	高解像度ボアホール TV カメラによる 12MI31 号孔 21.90mabh の割れ目の画像 . 6-17
図 6.4.4-1	蛍光濃度計測の概念6-20
図 6.4.4-2	(左)高出力タイプ LED 光源 (右)分光器 6-21
図 6.4.4-3	蛍光濃度センサー 6-21
図 6.4.4-4	キャリブレーションの作業状況6-22

図 6.4.4-5	蛍光濃度センサーVer.3.1の検量線(1.5m 光ファイバー使用)	6-23
図 6.4.4-6	蛍光濃度センサーVer.3.1の検量線(50m 光ファイバー使用)	6-23
図 6.4.4-7	蛍光濃度センサーVer.3.0の検量線	6-24
図 6.4.4-8	蛍光濃度センサーVer.1.0の検量線	6-24
図 6.4.4-9	(左)トレーサー試験装置の挿入状況、 (右)ケーブル束を収納した蛇腹管	6-26
図 6.4.4-10	パッカー拡張用タンク	6-27
図 6.4.4-11	圧力計による水位計測の概念図	6-28
⊠ 6.4.4-12	スタンドパイプを用いた水位計測装置の概念図	6-28
図 6.4.4-13	水位計測結果(絶対圧)	6-32
図 6.4.4-14	水位計測結果(水頭差)	6-32
図 6.4.5-1	単孔トレーサー試験における蛍光濃度センサー配置概要図	6-38
⊠ 6.4.5-2	各試験ケースにおける試験区間からフラクションコレクターまでの全容量	6-40
図 6.4.5-3	15S31M1_単孔トレーサー試験結果	6-42
図 6.4.5-4	15S31M2_単孔トレーサー試験結果	6-43
図 6.4.5-5	15S31M3_単孔トレーサー試験結果	6-44
図 6.4.5-6	15S37T4_単孔トレーサー試験結果	6-45
図 6.4.5-7	15S37T5_単孔トレーサー試験結果	6-46
図 6.4.5-8	15S37T6_単孔トレーサー試験結果	6-47
図 6.4.5-9	15S37T7_単孔トレーサー試験結果	6-48
図 6.4.5-10	15S37T8_単孔トレーサー試験結果	6-49
図 6.4.5-11	15S37M9_単孔トレーサー試験結果	6-50
図 6.4.5-12	15S37M10_単孔トレーサー試験結果	6-51
図 6.4.5-13	15S37M11_単孔トレーサー試験結果	6-52
図 6.4.5-14	15S37M12_単孔トレーサー試験結果	6-53
図 6.4.5-15	15S37M13_単孔トレーサー試験結果	6-54
図 6.4.5-16	ダイポール試験における蛍光濃度センサー配置概要図	6-57
図 6.4.5-17	各試験ケースにおける試験区間からフラクションコレクターまでの全容量	6-59
図 6.4.5-18	ダイポール試験 15W3137M1 結果	6-61
図 6.4.5-19	ダイポール試験 15W3137T2 結果	6-63
図 6.4.5-20	ダイポール試験 15W3137T3 結果	6-65
⊠ 6.4.5-21	ダイポール試験 15W3137T4 結果	6-68
図 6.4.5-22	ダイポール試験 15W3137T5 結果	6-70

⊠ 6.4.5-23	ダイポール試験 15W3137T6 結果	6-71
図 6.4.5-24	ダイポール試験 15W3731T7 結果	6-74
⊠ 6.4.5-25	ダイポール試験 15W3137T8 結果	6-76
図 6.4.5-26	ダイポール試験 15W3731T9 結果(流量-圧力のグラフのイベントが抜けていたの	ので
追記).		6-77
⊠ 6.4.5-27	ダイポール試験 15W3731T10 結果	6-80
図 6.4.6-1	ロッド内に収納したチューブ類の断面概念	6-81
図 6.4.6-2	使用したロッドの構造	6-81
図 6.4.6-3	接続箇所を4カ所とした光ファイバーの概念	6-82
図 6.4.6-4	3連パッカーのトレーサー試験装置の設置概念	6-83
図 6.4.6-5	試験期間中の 12MI31 号孔 P2 区間と周辺孔計測区間の水位差	6-85
図 6.4.6-6	試験期間中の 13MI37 号孔 P2 区間と周辺孔計測区間の水位差	6-85
図 6.4.7-1	6 方バルブの内部構造と0 リング破損個所	6-88
図 6.4.7-2	試験区間(メッシュ部)のラバーに付着した細粒分(白色の部分)	6-89
図 6.4.7-3	破損した3番0リングの状態	6-89
図 6.5.3-1	15S31M2 破過曲線(上)および回収率の経時変化(下)	6-97
⊠ 6.5.3-2	15S31M3 破過曲線(上)および回収率の経時変化(下)	6-98
図 6.5.3-3	15S37T5 破過曲線(上)および回収率の経時変化(下)	6-99
⊠ 6.5.3-4	15S37T6 破過曲線(上)および回収率の経時変化(下) 6	-100
図 6.5.3-5	15S37T7 破過曲線(上)および回収率の経時変化(下) 6	-101
図 6.5.3-6	15S37T8 破過曲線(上)および回収率の経時変化(下) 6	-102
図 6.5.3-7	15S37M9 破過曲線(上)および回収率の経時変化(下)6	-103
⊠ 6.5.3-8	15S37M10 破過曲線(上)および回収率の経時変化(下)6	-104
図 6.5.3-9	15S37M11 破過曲線(上)および回収率の経時変化(下) 6	-105
図 6.5.3-10	15S37M12 破過曲線(上)および回収率の経時変化(下) 6	-106
図 6.5.3-11	15S37M13 破過曲線(上)および回収率の経時変化(下) 6	-107
図 6.5.3-12	ウラニン原液濃度の室内分析結果と現地分析結果の比較6	-108
図 6.5.3-13	室内分析結果と現地分析結果のウラニンの破過曲線 6	-109
図 6.5.3-14	室内分析結果と現地分析結果のウラニンの回収率 6	-110
図 6.5.4-1	15T3137T5 破過曲線(上)および回収率の経時変化(下)6	-114
⊠ 6.5.4-2	15T3137T8 破過曲線(上)および回収率の経時変化(下) 6	-115
図 6.5.4-3	15T3731T10 破過曲線(上)および回収率の経時変化(下)6	-116

义	6.5.4-4	ウラニン原液濃度の室内分析結果と現地分析結果の比較	6-117
叉	6.5.4-5	室内分析結果と現地分析結果のウラニンの破過曲線	6-118
义	6.5.4-6	室内分析結果と現地分析結果のウラニンの回収率	6-118
X	6.6.1-1	単孔トレーサー試験における非収着性トレーサーの回収率	6-120
X	6.6.1-2	単孔トレーサー試験における非収着性トレーサーと収着性トレーサーの回収	率の比
	較		6-121
义	6.6.1-3	注入流量と注入量が破過曲線に与える影響(ウラニン)	6-124
叉	6.6.1-4	注入流量と注入量が破過曲線に与える影響(δD)	6-124
叉	6.6.1-5	注入流量と注入量が破過曲線に与える影響(Rb ⁺)	6-125
X	6.6.1-6	注入流量と注入量が破過曲線に与える影響(Ba ²⁺)	6-125
叉	6.6.1-7	注入流量と回収率の関係	6-126
X	6.6.1-8	待機時間による影響(ウラニン)	6-127
义	6.6.1-9	待機時間による影響 (δD)	6-128
叉	6.6.1-10	待機時間による影響(Rb⁺)	6-129
X	6.6.1-11	待機時間による影響 (Ba ²⁺)	6-130
义	6.6.1-12	理論式を用いた非収着性トレーサーの評価結果	6-133
叉	6.6.1-13	理論式を用いた収着性トレーサーの評価結果(Rb⁺)	6-136
义	6. 6. 1-14	理論式を用いた収着性トレーサーの評価結果(Ba ²⁺)	6-137
叉	6.6.1-15	図解法による回収率評価例	6-139
义	6.6.1-16	図解法による回収率計算結果(15S37T5、15S37T6)	6-141
X	6.6.1-17	図解法による回収率計算結果(15S37M9、15S37M10)	6-142
叉	6.6.1-18	単孔トレーサー試験の配管図	6-143
叉	6. 6. 1-19	注入時における蛍光濃度センサーの補正方法	6-144
X	6.6.1-20	注入時蛍光濃度センサー補正結果(15S37T5、15S37T6、5S37T7、5S37T8).	6-145
义	6.6.1-21	注入時蛍光濃度センサー補正結果(15S37M9、15S37M10、5S37M11)	6-146
X	6.6.1-22	注入時蛍光濃度センサー補正結果(15S37M12、15S37M13)	6-147
X	6.6.1-23	注入時のチューブ分散計算方法の一例	6-149
汊	6.6.1-24	注入時のチューブ分散計算結果(15S37T5、15S37T6、15S37T7、15S37T8).	6-150
X	6.6.1-25	注入時のチューブ分散計算結果(15S37M9、15S37M10、15S37M11)	6-151
义	6.6.1-26	注入時のチューブ分散計算結果(15S37M12、15S37M13)	6-152
义	6.6.1-27	単孔トレーサー試験の配管図	6-154
义	6.6.1-28	C3 センサーからフラクションコレクターまでの配管	6-156

义	6.6.1-29	揚水時のチューブ分散評価結果	6-158
义	6.6.2-1	ダイポール試験における非収着性トレーサーの回収率	6-160
义	6.6.2-2	ダイポール試験における収着性トレーサーの回収率	6-161
义	6.6.2-3	ダイポール比が2倍異なる2ケースのウラニンの破過曲線	6-163
义	6.6.2-4	注水・揚水孔が逆でダイポール比が2倍異なる2ケースの破過曲線	6-163
义	6.6.2-5	トレーサー注入時間が異なるケースの比較	6-164
义	6.7.1-1	解析モデル(割れ目モデル)	6-167
义	6.7.1-2	15S37T5の非収着性トレーサー評価解析結果(割れ目モデル)	6-170
义	6.7.1-3	15S37T6 の非収着性トレーサー評価解析結果(割れ目モデル)	6-170
义	6.7.1-4	15S37M9の非収着性トレーサー評価解析結果(割れ目モデル)	6-171
义	6.7.1-5	15S37M10の非収着性トレーサー評価解析結果(割れ目モデル)	6-171
义	6.7.1-6	15S37T5の収着性トレーサー評価解析結果(割れ目モデル)	6-174
义	6.7.1-7	15S37T6の収着性トレーサー評価解析結果(割れ目モデル)	6-175
义	6.7.1-8	15S37M9の収着性トレーサー評価解析結果(割れ目モデル)	6-176
义	6.7.1-9	15S37M10の収着性トレーサー評価解析結果(割れ目モデル)	6-177
义	6.7.1-10	解析モデル(複合モデル)	6-179
义	6.7.1-11	15S37M10の非収着性トレーサー解析結果(複合モデル、集中定数 1.0e-3)	6-183
义	6.7.1-12	15S37M10 の非収着性トレーサー解析結果(複合モデル、集中定数 7.0e-4)	6-184
义	6.7.1-13	15S37M10 の非収着性トレーサー解析結果(複合モデル、集中定数 5.0e-4)	6-185
义	6.7.1-14	15S37M10の収着性トレーサーの解析結果(複合モデル)	6-187
义	6.7.2-1	解析モデル(全体図)	6-190
义	6.7.2-2	解析モデル(拡大図)	6-191
义	6.7.2-3	割れ目内のバックグラウンドの地下水流れの推定結果	6-191
义	6.7.2-4	割れ目内の地下水流速分布の推定結果(15W3137T8 試験)	6-192
义	6.7.2-5	割れ目内の地下水流速分布の推定結果(15W3731T10 試験)	6-192
义	6.7.2-6	ウラニンの破過曲線のフィッティング(15W3137T8 試験)	6-193
义	6.7.2-7	ウラニンの破過曲線のフィッティング(15W3731T10 試験)	6-193
义	6.7.2-8	Rb ⁺ の破過曲線のフィッティング(15W3137T8 試験)	6-194
义	6.7.2-9	割れ目が注水孔と揚水孔の中間で交差する場合	6-196
义	6.7.2-10	割れ目が揚水孔の反対側で交差する場合	6-196
义	6.7.2-11	解析に使用した有限要素メッシュ(割れ目が注水孔と揚水孔の中間で交差する	る場合)
			6-197

図 6.7.2-12	解析に使用した有限要素メッシュ	6-197
図 6.7.2-13	割れ目が注水孔と揚水孔の中間で交差する場合	6-198
図 6.7.2-14	割れ目が注水孔と揚水孔の中間で交差する場合	6-198
図 6.7.2-15	割れ目が注水孔と揚水孔の中間で交差する場合	6-199
図 6.7.2-16	割れ目が注水孔と揚水孔の中間で交差する場合	6-199
図 6.7.2-17	割れ目が揚水孔の反対側で交差する場合(透水量係数:1×10 ⁻⁷ m ² /sec)	6-200
図 6.7.2-18	割れ目が揚水孔の反対側で交差する場合(透水量係数:1×10 ⁻⁸ m ² /sec)	6-200
図 6.7.2-19	割れ目が揚水孔の反対側で交差する場合(透水量係数:1×10 ⁻⁹ m ² /sec)	6-201
図 6.7.2-20	割れ目が揚水孔の反対側で交差する場合(透水量係数:1×10 ⁻¹⁰ m ² /sec)	6-201

図 7.3.1-1	採水地点位置図	. 7-3
図 7.3.1-2	深度 300m ボーリング横坑でのボーリング孔の区間編成図	. 7-4
図 7.3.1-3	深度 500m 研究アクセス南坑道でのボーリング孔の区間編成図	. 7-4
図 7.3.1-4	希ガス採取システムの概念図と銅管	. 7-6
図 7.3.1-5	希ガス採取状況	7-11
図 7.3.1-6	採水状況	7-12
図 7.3.1-7	ヘキサダイアグラムの時間変化	7-18
図 7.3.1-8	浅層水指標の経時変化(³ H と δ D)	7-20
図 7.3.1-9	深層水指標の経時変化(C1 と ⁴ He)	7-21
図 7.3.1-10	前処理方法による ¹⁴ C 濃度の比較	7-22
図 7.3.1-11	同一試料による前処理法による ¹⁴ C とδ ¹³ C の変化	7-23
図 7.3.1-12	補正 ¹⁴ C 算出方法の概念図	7-24
図 7.3.1-13	水素同位体と酸素同位体の関係	7-25
図 7.3.1-14	浅層水流入の概念モデル	7-26
図 7.3.2-1	立坑への湧水量の経時変化	7-28
図 7.3.2-2	主立坑・換気立坑、坑道などへの湧水量	7-29
図 7.3.2-3	主立坑・換気立坑、坑道などへの湧水量の深度方向分布	7-29
図 7.3.2-4	難透水断層を考慮したボーリング孔水圧挙動の分類	7-30
図 7.3.2-5	立坑周辺での地下水湧出と水圧低下の概念図	7-30
⊠ 7.3.2-6	立坑湧水の C1 濃度の経時変化	7-31
図 7.3.2-7	立坑湧水の δ D 濃度深度方向分布の経時変化	7-32

义	7.3.2-8	立坑湧水のδ ¹⁸ 0濃度深度方向分布の経時変化	7-33
义	7.3.2-9	立坑湧水の ³ H濃度深度方向分布の経時変化	7-33
义	7.3.2-10	解析に用いた FEM 解析メッシュ	7-34
义	7.3.2-11	解析モデルで考慮した断層	7-35
义	7.3.2-12	断層交差箇所におけるモデル化の変更点	7-35
义	7.3.2-13	解析の境界条件図	7-37
义	7.3.2-14	立坑周辺の水圧低下量分布	7-40
义	7.3.2-15	立坑周辺ボーリング孔の水圧低下	7-40
义	7.3.2-16	基本ケースでの主立坑と換気立坑での湧水量	7-41
义	7.3.2-17	立坑周辺の浅層水流入分布	7-42
义	7.3.2-18	立坑のδD濃度深度方向分布の経時変化	7-43
义	7.3.2-19	立坑周辺の水圧低下量分布の経時変化	7-45
义	7.3.2-20	研究所周辺での水圧低下の経時変化と計算結果の比較(基本ケース)	7-46
义	7.3.2-21	研究所周辺での水圧低下の経時変化と計算結果の比較(校正ケース)	7-47
义	7.3.2-22	立坑周辺の浅層水の流入率の経時変化	7-49
义	7.3.2-23	立坑のδD濃度深度方向分布の経時変化	7-50
义	7.3.2-24	間隙率に対する感度結果(立坑周辺の浅層水の流入率の経時変化)	7-51
义	7.3.2-25	間隙率に対する感度結果(立坑のδD濃度深度分布の経時変化)	7-52
义	7.3.3-1	幌延深地層研究センターにおける採水地点	7-54
义	7.3.3-2	原位置での希ガス採水方法の概念図	7-55
汊	7.3.3-3	圧力制御式の設置状況	7-56
义	7.3.3-4	循環式の設置状況	7-57
义	7.3.3-5	幌延立坑での水質のヘキサダイアグラム	7-63
义	7.3.3-6	水素酸素同位体の関係	7-64
义	7.3.3-7	幌延研究坑道内での ³⁶ C1/C1 の分布図	7-65
义	7.3.3-8	放射化解析への各元素の寄与率	7-68
义	7.3.3-9	³⁶ C1/C1の平衡値と間隙率および間隙水の C1 濃度の関係	7-68
义	7.3.3-10	幌延研究坑道での ⁴He 濃度の分布	7-70
义	7.3.3-11	東立坑での C1 濃度と C1 同位体の分布	7-71
义	7.3.4-1	立坑掘削の進捗	7-73
义	7.3.4-2	湧水量の時間変化	7-73
汊	7.3.4-3	立坑周辺のボーリング孔における水圧低下	7-74

义	7.3.4-4	立坑周辺での水圧低下の概念図	7-75
义	7.3.4-5	解析に用いた FEM 解析メッシュ	7-76
义	7.3.4-6	断層のモデル化方法の概念図	7-77
义	7.3.4-7	350m 坑道のモデル化	7-77
义	7.3.4-8	全水頭の初期・境界条件の分布図	7-78
义	7.3.4-9	塩分濃度の初期・境界条件の分布図(海水の塩分濃度 19,000mg/ℓ で正規化)	7-79
义	7.3.4-10	水素同位体比 (δD)の初期・境界条件の分布図	7-79
义	7.3.4-11	酸素同位体比(δ ¹⁸ 0)の初期・境界条件の分布図	7-80
义	7.3.4-12	地表面境界条件の感度解析におけるボーリング孔鉛直プロファイル	7-82
义	7.3.4-13	立坑境界条件の感度解析におけるボーリング孔鉛直プロファイル	7-83
义	7.3.4-14	非定常での立坑境界条件の感度解析	7-84
义	7.3.4-15	非定常での透水係数の感度解析結果	7-85
义	7.3.4-16	非定常での比貯留係数の感度解析結果	7-86
义	7.3.4-17	非定常での断層の有無に関する感度解析	7-87
义	7.3.4-18	F1 断層のみの場合の全水頭と C1 濃度の経時変化	7-88
义	7.4.1-1	Sheldon et al.(2003)のサンプラー	7-90
义	7.4.1-2	試作したサンプラー	7-90
义	7.4.1-3	サンプラーの銅管かしめ器	7-91
义	7.4.1-4	原位置平衡式サンプラーによる室内試験写真	7-92
义	7.4.1-5	サンプラー内での圧力の経時変化	7-93
义	7.4.1-6	原位置への平衡式サンプラーの適用方法	7-94
义	7.4.1-7	原位置平衡式サンプラーの適用例	7-95
义	7.4.1-8	サンプラーのシリコンゴムの膨張	7-96
义	7.4.2-1	δDと ³ Hの相関	7-101
义	7.4.2-2	δDとCFC-12との相関	7-102
义	7.4.2-3	δDとSF ₆ との相関	7-102
义	7.4.2-4	1mgの大気由来 C が混入した場合の ¹⁴ C 年代	7-107
义	7.4.2-5	地下水試料におけるガス化法と沈殿法年代の差	7-109
义	7.4.2-6	沈殿法とガス化法におけるδ ¹³ Cおよび ¹⁴ Cの差の関係	7-110
义	7.4.2-7	瑞浪地域の地下水における He 年代と有機 14C 年代の関係(富岡ら 2007 に加筆	e) 7-111
义	7.4.2-8	沈殿法とガス化法におけるδ ¹³ Cおよび ¹⁴ Cの差の関係	7-113
义	7.4.2-9	サイズ排除クロマトグラフィ測定結果(有機物濃縮液)	7-115

义	7.4.2-10	有機物濃縮用試験系の概念図	7-117
义	7. 4. 2–11	クロスフロー方式の概念図	7-117
义	7. 4. 2-12	有機物濃縮に於ける濃縮液の様子	7-118
义	7. 4. 2-13	Sr 樹脂における硝酸濃度とイオン選択性の関係	7-124
义	7.4.3-1	濃度変化を考慮した分別係数の評価方法	7-129
义	7.4.3-2	Through Diffusion 法における試験系の概念図	7-130
义	7.4.3-3	岩石間隙を水で飽和させる試験手順の概念図	7-131
义	7.4.3-4	Through-Diffusion 法による拡散試験結果	7-133
义	7.4.3-5	濃度変化を考慮した同位体分別の標準曲線と実験結果	7-136
义	7.4.3-6	圧縮抽水装置の概念図	7-138
义	7.4.3-7	閉鎖空隙の概念図 (Evbuomwan, 2009 に加筆)	7-139
义	7.4.3-8	重水を含む溶液にコアを浸漬したときの溶液中δDの経時変化	7-140
义	7.4.3-9	圧縮圧力とδD、塩化物イオン濃度、臭化物イオン濃度の関係	7-141
义	7.4.3-10	浸漬後岩石試料における圧縮圧力とδDおよび閉鎖空隙混入割合の関係	7-143
义	7.4.3-11	直接浸漬法の概念図	7-144
义	7.4.3-12	直接浸漬法における岩石を浸漬した溶液の水素酸素同位体比の経時変化	7-145
义	7. 4. 3-13	直接浸漬法における岩石を浸漬した溶液の水素同位体比の経時変化	7-146
义	7.4.3-14	直接浸漬法における岩石を浸漬した溶液の酸素同位体比の経時変化	7-146
义	7.4.3-15	同位体交換法の試験系概念図	7-148
义	7.4.3-16	従来の同位体交換法用試験容器	7-148
义	7.4.3-17	水−水間の同位体交換法における水素酸素同位体比の経時変化(条件1)	7-150
义	7.4.3-18	水−水間の同位体交換法における水素酸素同位体比の経時変化(条件 2)	7-150
义	7. 4. 3-19	水-水間の同位体交換法における水素酸素同位体比の経時変化(条件3)	7-151
义	7.4.3-20	水−水間の同位体交換法における水素酸素同位体比の経時変化(条件 2)	7-151
义	7. 4. 3-21	岩石試料および試験水を入れた分割シャーレの様子	7-152
义	7.4.3-22	同位体交換法における試験水の水素酸素同位体比経時変化(氷河水)	7-153
义	7.4.3-23	同位体交換法における試験水の水素酸素同位体比経時変化(海洋深層水).	7-153
义	7.4.3-24	水蒸気直接測定法に用いたアルミバック	7-157
义	7.4.3-25	実験室標準試料とアルミバック内水蒸気の同位体比の関係	7-158
义	7.4.3-26	アルミバックに封入した水の量と水蒸気の水素酸素同位体比の関係	7-159
义	7.4.3-27	水蒸気直接分析法で評価された凝灰岩の水素酸素同位体比	7-161

表 目 次

1章表目次

表 1.3.2-1	研究工程	1-	-3
-----------	------	----	----

2 章表目次

表 2.2.1-	1 吸着試験に用いた模擬地下水調製用試薬の一覧	2-4
表 2.2.1-2	2 調製した模擬地下水の組成	2-4
表 2.2.1-3	3 使用したトレーサーの一覧	2-6
表 2.2.2-2	1 流速と分配係数の関係	2-12
表 2.3.5-3	1 各種試験における割れ目幅の比較結果 2	2-41
表 2.4.1-2	1 各蛍光染料での発光特性 2	2-43
表 2.4.3-2	1 各蛍光染料の光による減衰係数 2	2-53
表 2.4.3-2	2 地下水と接触後のウラニン濃度のまとめ 2	2-57
表 2.4.3-3	3 冷蔵庫・ガラス容器・ホウ砂水溶液での保管試験の結果	2-59
表 2.4.3-4	4 室温での蛍光濃度分析用試料の保管試験結果 2	2-60

表 3.4.1-1 元素分析試料一覧 3-	-4
表 3.4.1-2 蛍光X線分析による主要構成元素 3-	-4
表 3.4.1-3 微量元素分析(ME-MS61) 3-	-6
表 3. 4. 1-4 微量元素分析(ME-MS81) 3-	-6
表 3.4.1-5 鉱物分析試料 3-	-8
表 3.4.1-6 鉱物分析結果(XRD) 3-1	10
表 3.4.1-7 ラジウム分析結果 3-1	10
表 3.4.1-8 間隙率測定試料一覧と測定結果 3-1	11
表 3.4.1-9 細孔分布測定試料一覧 3-1	12
表 3.4.1-10 細孔分布測定結果 3-1	13
表 3.4.1-11 測定試料一覧と測定結果 3-1	14
表 3.4.2-1 方形岩石試料のサイズと試料数 3-1	16
表 3.4.2-2 各試験試料のフラックス測定結果 3-1	17
表 3.4.2-3 ラドンフラックス測定用のコア試料 3-1	19
表 3.4.2-4 コアによるラドンフラックス測定結果 3-1	19

表 3.5.2-1	各モニタリング区間のラドン濃度測定結果	3-21
表 3.5.2-2	ラドン濃度より算出した割れ目幅	3-22
表 3.5.2-3	主要化学成分、ウラン同位体およびラジウム同位体の測定結果	3-22

4章表目次

表 4.2.3-1	医療用 X 線 CT スキャナでの撮影条件 4-5
表 4.2.3-2	高出力マイクロフォーカス X 線 CT スキャナの仕様 4-6
表 4.2.3-3	高出力マイクロフォーカス X 線 CT スキャナでの撮影条件 4-7
表 4.2.4-1	デジタルカメラによる研削面の撮影条件 4-9
表 4.3.1-1	鋼管を用いた一次元流動試験の条件と数量 4-23
表 4.4.1-1	各サイトで使用したポンプの特徴 4-34
表 4.4.3-1	ポンプの設計仕様 4-38
表 4.4.3-2	試験に用いたステーターの種類と耐食表 4-39
表 4.4.3-3	スタティックミキサー(T3-27 型)設計条件 4-41
表 4.5.2-1	環境温度と可使時間 4-50
表 4.5.3-1	付着強度試験結果 4-56
表 4.5.6-1	トレーサの種類および主剤、硬化剤の組み合わせ
表 4.5.6-2	トレーサの種類および主剤、硬化剤の組み合わせ試験結果 4-71

表 5.2.3-1	主要ボーリング機材一覧表 5-6
表 5.2.3-2	分光蛍光光度計(F-2700 Fluorescence Spectrophotometer)の仕様 5-13
表 5.2.3-3	キャリパー検層装置の性能一覧表 5-19
表 5.2.3-4	BTV カメラの性能一覧表 5-21
表 5.2.3-5	フローメータ検層装置の性能一覧表5-21
表 5.2.3-6	透水試験使用機器一覧表 5-24
表 5.2.3-7	モーノポンプの仕様 5-26
表 5.2.3-8	間隙水圧モニタリング装置の仕様一覧5-40
表 5.2.3-9	蛍光濃度センサーの主な仕様 5-41
表 5.3.1-1	15MI52 号孔の仕様 5-45
表 5.3.1-2	15MI52 号孔掘削時孔口湧水量測定結果 5-47
表 5.3.1-3	15MI52 号孔のフローメータ検層結果一覧 5-60

表 5.3.1-4	15MI52 号孔の単孔式透水試験の結果一覧 5-63
表 5.3.1-5	15MI52 号孔孔間透水試験結果一覧表 5-64
表 5.3.2-1	15MI53 号孔の仕様 5-101
表 5.3.2-2	15MI53 号孔掘削時孔口湧水量測定結果 5-103
表 5.3.2-3	15MI53 号孔のフローメータ検層結果一覧 5-115
表 5.3.2-4	15MI53 号孔の単孔式透水試験の結果一覧 5-119
表 5.3.2-5	15MI53 号孔孔間透水試験結果一覧表 5-120
表 5.3.2-6	孔間透水試験時の 15MI52 号孔の圧力応答結果一覧表 5-133
表 5.3.4-1	ポイント希釈試験結果一覧 5-161
表 5.3.4-2	15MI52 号孔 Int1 の試験条件 5-162
表 5.3.4-3	15MI52 号孔 Int4 の試験条件 5-164
表 5.3.4-4	15MI52 号孔 Int5 の試験条件 5-166
表 5.3.4-5	15MI53 号孔 Int2 の試験条件 5-168
表 5.3.4-6	15MI53 号孔 Int4 の試験条件 5-170
表 5.3.4-7	15MI53 号孔 Int5 の試験条件 5-172
表 5.4.1-1	15MI52 孔と 15MI53 孔の孔間での地質的・水理的に連続性が確認された割れ目5-174
表 5.5.3-1	15MI52 号孔の孔間透水試験結果 5-182
表 5.5.3-2	15MI53 号孔の孔間透水試験結果 5-182

表 6.2.3-1	トレーサー試験装置についての問題点とその対策方法の概要	6-4
表 6.4.2-1	実施した試験一覧	6-18
表 6.4.4-1	蛍光濃度センサーの主な仕様	6-21
表 6.4.4-2	水位計測対象区間	6-29
表 6.4.4-3	12MI31 号孔、13MI37 号孔の試験期間中の主要なイベントログ	6-29
表 6.4.4-4	水位計測期間における条件	6-30
表 6.4.4-5	水位計測値(絶対圧(MPa)) ^{*1,*2}	6-33
表 6.4.4-6	水位計測値(水頭差(m))* ^{1,*2}	6-33
表 6.4.4-7	孔間トレーサー試験の試験区間間および 12MI30-Int3 と 12MI31-D 間の水頭差(m	n)*16-33
表 6.4.5-1	試験名の読み方	6-34
表 6.4.5-2	単孔トレーサー試験実施ケース(試験孔 12MI31)	6-35
表 6.4.5-3	単孔トレーサー試験実施ケース(試験孔 13MI37)	6-36

表 6.4.5-4	試験区間からフラクションコレクターまでの容量	6-39
表 6.4.5-5	13MI37 を揚水孔としたダイポール試験実施ケース	6-55
表 6.4.5-6	12MI31を揚水孔としたダイポール試験実施ケース	6-56
表 6.4.5-7	試験区間からフラクションコレクターまでの容量	6-58
表 6.4.6-1	12MI31 号孔、13MI37 号孔の水圧計測区間一覧	6-83
表 6.5.1-1	分析項目と分析方法	6-92
表 6.5.2-1	希釈方法	6-92
表 6.5.3-1	単孔トレーサー試験の回収率の計算に用いたバックグラウンド濃度	6-93
表 6.5.3-2	12MI31-D1 における回収率	6-94
表 6.5.3-3	13MI37-D1 における回収率	6-95
表 6.5.3-4	フラクションコレクターの設定	6-96
表 6.5.4-1	ダイポール試験の回収率	6-112
表 6.6.1-1	トレーサー注入量 1L の場合における理論式による評価結果	6-134
表 6.6.1-2	トレーサー注入量 2L の場合における理論式による評価結果	6-134
表 6.6.1-3	図解法の計算条件と動水勾配の評価結果	6-140
表 6.6.1-4	注入時の蛍光濃度センサーから計算されるトレーサー注入量	6-147
表 6.6.1-5	各破過曲線のピーク時間	6-155
表 6.6.1-6	揚水時のチューブ分散計算条件	6-157
表 6.7.1-1	評価解析を行う試験条件(割れ目モデル)	6-168
表 6.7.1-2	非収着性トレーサーの評価解析解析条件(割れ目モデル)	6-169
表 6.7.1-3	非収着性トレーサーの評価解析結果(割れ目モデル)	6-169
表 6.7.1-4	割れ目幅を仮定した場合における縦分散長計算結果	6-173
表 6.7.1-5	収着性トレーサーの評価解析結果(割れ目モデル)	6-178
表 6.7.1-6	非収着性トレーサーの解析条件(複合モデル)	6-182

表 7.3.1-1	採水項目と採取目的および取得量	. 7-7
表 7.3.1-2	原位置計測結果	7-11
表 7.3.1-3	立坑内ボーリングから採取した地下水の分析結果	7-13
表 7.3.1-4	主要成分と微量元素の含有量	7-17
表 7.3.1-5	主要な成分の相関分析結果(R ²)	7-24
表 7.3.2-1	瑞浪地域サイトスケールの物性と断層幅	7-38

表 7.3.3-	1 希ガス用銅管の設置と採取時間	. 7-58
表 7.3.3-	2 幌延立坑内ボーリングから採取した地下水試料の分析結果	. 7-59
表 7.3.3-	3 主要鉱物と微量元素の分析結果	. 7-61
表 7.3.3-	4 東立坑でのリーチング結果	. 7-62
表 7.3.3-	5 各元素における質量阻止能と中性子生成速度および吸収断面積	. 7-66
表 7.3.4-	1 解析に用いた物性値	. 7-81
表 7.4.1-	1 サンプラー適用結果	. 7-96
表 7.4.1-	2 脱ガス補正に用いたパラメータ	. 7-98
表 7.4.1-	3 各補正方法による補正結果	. 7-99
表 7.4.2-	1 準備したサンプルの一覧	7-105
表 7.4.2-	2 ガス化法と沈殿法から評価した ¹⁴ ℃の値	7-106
表 7.4.2-	3 実地下水サンプルにおける ¹⁴ C 分析値の比較	7-109
表 7.4.2-	4 有機物濃縮時の状況まとめ	7-119
表 7.4.2-	5 有機物濃縮前後の溶液中イオン・TOC 濃度	7-119
表 7.4.2-	6 DAX への吸着・脱離挙動による瑞浪有機物の分離	7-121
表 7.4.2-	7 サンプルから炭酸沈殿を用いて Sr を抽出した結果	7-123
表 7.4.2-	8 Sr 樹脂処理前後の海水のイオン濃度	7-125
表 7.4.2-	9 Sr 単離操作のまとめ	7-125
表 7.4.2-	10 Sr 抽出・精製の結果得られたサンプルの一覧	7-127
表 7.4.3-	1 拡散試験結果	7-135
表 7.4.3-	2 浸漬前コアを圧縮抽水して得られた間隙水の塩化物・臭化物イオン濃度と水	素酸素
同位体	本比	7-141
表 7.4.3-	3 浸漬前コアを圧縮抽水して得られた間隙水の塩化物・臭化物イオン濃度と水	素酸素
同位体	本比	7-155
表 7.4.3-	4 実験に用いた実験室標準試料の水素酸素同位体比	7-156
表 7.4.3-	5 各評価手法の長所と短所まとめ	7-162

1. 研究概要

1.1 本研究の背景

高レベル放射性廃棄物を地層処分する際の天然バリアの性能評価においては、人工バリアから漏出 した放射性核種が地下水を輸送媒体として生物圏へ移動するといういわゆる「地下水シナリオ」が、重 要なシナリオとなる。そのため、処分施設建設地点の岩盤における物質の移動特性を精度良く把握す ることが重要となる。

岩盤中での物質の移動特性を直接的に測定する手法として、トレーサー物質を含む溶液を岩盤に投入し、岩盤内でのトレーサーの移動量および移動速度を計測するトレーサー試験がある。わが国においては、従来非収着性のトレーサー物質を用いた試験研究はわずかながら行われている(池川ら、1996)。しかし、多くの放射性物質にみられるような収着性を有するトレーサー物質を使用したトレーサー試験が原位置の岩盤を対象として実施された例は、海外では若干あるものの、わが国ではほとんどない(例えば、Winberg et al., 2000:核燃料サイクル開発機構、1999)。そのため、特に収着性物質の岩盤中での移動特性を精度良く把握するためのトレーサー試験技術およびその評価技術を開発しておく必要がある。

また、亀裂を有する岩盤においては、地下水は岩石基質部に比べて透水性の高い割れ目を主に選択 的に流れていく。そのような岩盤中での物質の移動には、割れ目や岩石基質部の様々な幾何形状・化学 特性が関与している。これらの特性値のうち、特に割れ目の幾何形状に関しては、トレーサー試験の結 果を解釈する上で不可欠なものである。そこで、トレーサー試験を補完するために、割れ目の分布や開 ロ幅、割れ目内での流動形態等を推定する技術の開発も必要である。

一方、岩盤中での物質の移動特性を測定する手法としては、前述のように人工的にトレーサーを投入する方法の他に天然に存在するトレーサーを利用する方法もある。天然トレーサーを用いた調査方法は、これまでに地下水年代測定技術として開発してきた(長谷川、2013)。この技術は精密調査段階における調査結果の確認や水みちの評価などにも有効と考えられるため、精密調査段階で適用できるように整備しておく必要がある。

1.2 目的

本研究においては、高レベル放射性廃棄物地層処分の天然バリア性能評価に資するため、岩盤中での特に割れ目を介した物質移動特性を高精度に調査・評価する技術の確立を図る。

1 - 1

1.3 全体計画

1.3.1 研究の内容

本研究においては、岩盤中での特に割れ目を介した溶質移行特性を高精度に調査・評価する以下の技術の開発・確立を行い、原位置試験により国内の地質環境に対する適用性を実証する。

(1) トレーサー試験技術

岩盤中での地下水溶質の移行特性を直接的に測定する手法として、原位置トレーサー試験技術 を開発する。具体的には、放射性核種の多くは岩盤へ収着する性質を有するため、収着性トレーサ ーも使用可能な原位置試験装置の開発を行う。また、地下水溶質の移行には様々なパラメータが 関与するため、トレーサー試験の結果から、それらのパラメータの値を同定する手法も併せて開 発する。特に、これまで開発してきた孔間でのトレーサー試験技術に加えて単孔でのトレーサー 試験技術についても開発する。

(2) 各種割れ目探査技術

トレーサー試験を補完する技術として、溶質の主な移行経路となる岩盤割れ目の幾何形状を推 定するための割れ目探査技術についても併せて開発する。具体的には、溶存ラドン濃度計測によ る割れ目開口幅の調査技術、高粘性流体注入による割れ目内での流動形態に関する調査技術、レ ジン(樹脂)注入による割れ目の可視化技術を開発する。

(3) 天然トレーサーによる調査技術

比較的狭いスケールでの調査となるトレーサー試験を補間するために、天然に存在する物質を トレーサーとみなした物質移行特性の評価技術の開発を行う。具体的には、立坑掘削時の地下水 の水質・地下水年代などの変化、地下水と岩石の相互作用などから、物質移行パラメータを求める 技術を開発する。

1.3.2 研究工程

平成17~24年度の前フェーズでは、トレーサー試験技術について、収着性トレーサーの使用も可能 な原位置試験装置を試作するとともに、試験結果から割れ目の開口幅や分散長等の溶質移行パラメー タを同定する評価手法を開発した。また、トレーサー試験を補完する割れ目探査技術として、割れ目内 地下水の溶存ラドン濃度と岩石表面のラドンフラックスから割れ目開口幅を推定する技術、高粘性流 体の注入により流れの次元や割れ目の開口幅を評価する技術、物理探査(音響トモグラフィ)により割 れ目分布を調査する技術についても、原位置試験装置を試作するとともに、試験手法および試験結果 の評価手法の基本的な整備を終了した。そして、割れ目の分布が比較的単純なスイスのGrimsel Test Siteにおいて適用性試験を実施し、これら試験・探査技術の有効性を示した。

現フェーズでは、研究期間を平成25年度から平成29年度の5ヵ年とし、1.3.1に示した①トレーサ

ー試験技術、②各種割れ目探査技術、③天然トレーサー調査技術について開発・高度化を行うととも に、国内の試験場において原位置試験を行い、我が国の地質環境に対する適用性を実証する。

今フェーズの研究工程を表 1.3.2-1 に示す。

事業項目	平成25年度	平成26年度	平成27年度	平成28年度	平成29年度
トレーサ試験技術の高度化	単孔式・孔間トレーサ試験技術		試験技術		
		ラドン濃度計測	試験技術		
割れ目探査技術の高度化			高粘性流体注入試驗	<u> </u>	
		割れ目可視化	技術		
	(深度 300m)	試験場の地質環境調	周査 (深度500m)		
			単孔式・孔間トレーサ	試験	
		室内	収着・拡散試験		
国内の地下環境への適用	トレーサ試験	予測解析	トレーサ試験	評価解析	
			ラドン濃度言	 測試験	
					高粘性流体注入試験
					樹脂注入試験
	採	水方法の検討			
天然トレーサを利用した調査			幌延・瑞浪での採	水	
技術の開発	評価指標の	周査			
			評価方法の検討		評価方法の提案
物質移行評価手法の体系化					

表 1.3.2-1 研究工程

※ 装置・手法の改良は原位置試験とインタラクティブに実施

1.4 本年度の実施概要

1.4.1 トレーサー試験技術の開発

平成26年度までの原位置トレーサー試験において抽出された、非収着性トレーサーの適用性およ び試験時の割れ目内流速が結果に与える影響等を検討するため、岩石コアを用いた吸着、拡散等の室 内試験を実施する。また、得られた分配係数のデータを整理し、原位置トレーサー試験手法の妥当性を 検討する。

1.4.2 割れ目探査技術の開発

原位置試験場の水理地質環境に合わせた採水のためにボーリング孔内水循環用ポンプなどを改良し つつ、原位置試験場で採水を行い、ラドン濃度を計測するとともに、充填鉱物などの割れ目の地質特性 とラドンフラックスの関係を、岩石コアを用いた室内試験により把握する。国内の種々の岩石を用い て室内ラドン溶解試験を継続し、岩石からのラドンフラックスを把握するとともに、ラドン濃度計測 による割れ目調査が可能な岩種を把握する。

また、原位置試験場で採取される岩石コア等を用いたレジン注入試験を行い、レジンの割れ目への 浸潤特性を把握するとともに、原位置でのレジン注入について試験手順を取りまとめ、原位置レジン 注入装置の概念設計を行う。

さらに、室内において模擬割れ目を作製し、模擬割れ目を対象に高粘性流体注入試験、レジン注入試験などを実施し、その結果に基づいて各試験手法の適用性を比較する。

1.4.3 原位置での実証

(1) 適用性試験場の地質環境調査

平成26年度に引き続き、適用性試験場において、ボーリング孔を掘削し、そのボーリング孔を 利用して従来手法による地質環境調査(コア観察、BTV 検層、フローメータ検層、間隙水圧計測、 透水試験等)を実施し、試験場の地質環境特性を明らかにする。

(2) 予備試験

地質環境調査で抽出された水みち割れ目について、トレーサー試験の対象としての適否を調べ るために、ポイント希釈試験を実施し、試験場周辺岩盤の割れ目を通過する地下水流量を自然状 態(注水・揚水を行わない状態)において計測し、算定する。

(3) 原位置トレーサー試験

平成26年度に年度実施した単孔式・孔間トレーサー試験を通じて抽出された課題に対し、試験装置や試験方法を改良するとともに、試験で比較的地下水流れが緩やかであることが確認され た割れ目を対象として、単孔式トレーサー試験を実施し、試験結果から数値シミュレーションに より対象割れ目の分散長、遅延係数などの物質移行特性を評価する。

また、同割れ目について孔間トレーサー試験を実施し、試験結果に基づく数値シミュレーショ ンにより、ボーリング孔間の水みち割れ目の物質移行特性を評価する。数値シミュレーションで は、単一の割れ目を想定したモデルだけでなく、複数の割れ目を介したトレーサーの移動モデル も考慮する。

1.4.4 天然のトレーサーを利用した調査技術の開発

(1) 岩盤・地下水調査

平成26年度に引き続き、瑞浪超深地層研究所、幌延深地層研究センターの坑道内のボーリン グ孔などにおいて、地下水を採取し、主要溶存イオン、微量元素、塩素同位体、希ガスなどを計測 し、地下水水質・地下水年代の変化を評価する。また、これらの評価に必要な岩石分析(主要鉱物、 微量元素など)を実施する。さらに、立坑周辺を対象とした地下水流動・物質移行解析を行い、地
下水流動や地下水水質・地下水年代の変化について検討する。

(2) 天然トレーサーの調査

平成26年度までに整備してきた希ガス試料の採取方法(圧力制御型、循環型、原位置平衡型) を原位置において適用し、相互比較を行う。また、脱ガスした試料の補正方法について調査し、最 適な補正方法を検討する。水みちの指標(例えば、トリチウム、δD、フロンガスなど)や輸送形 態の指標(特に拡散指標: C1-37、Br-81)となる物質について、分別メカニズムなどの調査を継続 する。 参考文献

- 池川洋二郎,志田原巧,中川加明一郎,日比野敏(1996):液体トレーサーによる不連続性岩盤中の浸 透経路評価,電力中央研究所研究報告 U96006.
- Winberg, A., Andersson, P., Hermanson, J., Byegård, J., Cvetkovic, V., and Birgersson, L. (2000): Äspö Hard Rock Laboratory. Final report of the first stage of the tracer retention understanding experiments, SKB Technical Report TR-00-07.
- 核燃料サイクル開発機構(1999): わが国における高レベル放射性廃棄物地層処分の技術的信頼性-地 層処分研究開発第2次とりまとめ-,分冊1 わが国の地質環境,pp. IV-102-104.

長谷川琢磨(2012):地下水年代測定技術の開発,土木学会誌, Vo. 97, No. 2, pp. 34-35.

2. トレーサー試験に係わる室内試験

2.1 背景

高レベル放射性廃棄物処分の安全評価では、核種が地下水に溶解し地下水流動とともに移動する「地 下水シナリオ」が主要な評価対象であると考えられている。地下水シナリオにおいては、核種の移行 は岩石との相互作用(吸着やマトリクス拡散)による遅延が期待されており、岩石が持つ核種の遅延 能力を評価することが精密調査段階においても重要であると考えられる。

通常岩石による核種移行の遅延能力は、室内で実施されるバッチ試験等の吸着試験で評価される。 日本原子力学会が提案している標準的な手法では(日本原子力学会,2006)岩石を2mm以下の粉末に 粉砕し、1gの岩石粉末に対して10mLの溶液を添加して吸着試験を実施し、吸着試験の結果からある 核種の固液での分配係数を算出する。岩石粉体を用いたバッチ法は比較的実施が容易であることから、 多くの試験で用いられた実績があり、条件を複数変えた試験を同時並行に実施できるなどのメリット がある。一方、上記の粉体を用いるバッチ試験では岩石コアを取得してそれを粉砕するなどの操作が あり、実際の地下環境とは異なる条件で試験を実施することになる。このため、実験室で取得した分 配係数から実際の地下での核種移行を評価するには、なにかしらの方法でこれを規格化し、実スケー ルにスケールアップしていく必要がある。規格化・スケールアップの考え方、例えば岩石1kgあたり の吸着量でスケールアップするのか、実際に流動する地下水が接触する岩石の表面積で規格化しスケ ールアップするのか、はサイト特性にも依存していると考えられ、明確な方針が確定していないのが 現状である。

一方、トレーサー試験においても核種の遅延能力を評価することが可能である。トレーサー試験において、非吸着性トレーサーと吸着性トレーサーの到達時間(あるいはピーク)の差異、あるいはピーク高さの差異を利用してある核種の遅延係数を評価することができる。評価された遅延係数から分配係数を算出することが可能である。トレーサー試験は実際に地下にある割れ目を用いて実施するため、実際の地下環境に近い条件で、割れ目充填鉱物などが付着している実割れ目を使って試験を実施するため、上記の意味からはより処分の安全評価に近い条件で岩石が持つ核種の遅延能力を評価できる手法であると言える。しかし、トレーサー試験ではトレーサーを回収できないと試験の評価が難しくなることから、特に流速の速い場においては十分にトレーサーの回収率が高くなる汲み上げの条件が設定されることが多い。また、回収した後の分析を容易にするといった理由から、吸着性トレーサーの濃度も高めに設定されることが多い。上記のようにトレーサー試験では岩石との接触時間は短めに、トレーサー濃度は高めに設定されることが多く、上記の室内試験等と比較して核種の遅延能力を低く評価する可能性が高い。このため、実際の割れ目を用いることができるというメリットがあるものの、実際に安全評価に使うのに適切な分配係数評価となっているかについては疑問が残る。トレー

サー試験によって核種移行遅延能力を評価するためには、どの程度の時間をかけて、どの程度の濃度 のトレーサーを流せば良いのか、条件が設定できることが望ましい。

上記のようなことから、実現場でトレーサー試験を実施する前に適切な試験条件を決定するために、 室内試験において試験に用いるトレーサーの吸着挙動を把握することが必要である。今年度は特に流 速の依存性に着目し、流速を変えたときの破過曲線・分配係数について検討した。(2.2 室内模擬ト レーサー試験)

また、室内試験では割れ目幅などをある程度任意に設定した状態で試験を実施することが可能であ る。現場試験によって現場の状況を理解するために重要な情報を取得することができるが、評価法に よって差が生じた場合にはそこから先へ議論を進めることが難しくなる。そこで今年度は室内に実規 模で模擬的な割れ目を構築し、模擬的な割れ目に対して種々の割れ目評価手法やトレーサー試験など を適用することにした。予め割れ目幅等の情報は得られているため、例えば割れ目評価手法によって 評価値に差が生じた場合には、「正解」を基準としてある評価手法がどのような値を示しているのか を推察することが可能である。今年度は1次元および2次元の2種類の割れ目モデルを構築して、試 験系を構築することを目的とした検討を行い、予備的にそれらに対して種々の評価法を適用すること とした。(2.3室内模擬割れ目試験)

また、トレーサー試験においては先述のように非吸着性トレーサーと吸着性トレーサーの挙動の差 が、トレーサーの分配係数を算出するために重要である。試験に用いる非吸着性トレーサーとして、 ウラニン、アミノG酸などの蛍光染料がよく用いられる(尾西ほか,1999;栗原ほか,2001;長谷川 ほか,2002;山本ほか,2002)。蛍光染料が頻繁に用いられるのは、低濃度(~1ppb 程度)までの測定 が容易であり、蛍光分光光度計があれば試験現場でも測定が可能であるため、である。一方で蛍光染 料は、溶液の条件によっては岩石に対する非吸着性を維持できない可能性が考えられる。また、本研 究でもトレーサー試験を実施する前に予備的に実施したポンプの駆動試験においては、ポンプを用い て蛍光染料を含む水を循環させた結果、経時的に蛍光染料の強度が低下していく傾向が観察された。 これは、ポンプの特定の部材に蛍光染料が吸着したためであると推察された。このように、「非吸着 性のトレーサー」として取り扱われることが多い蛍光染料であるが、実際には吸着したり蛍光強度が 低下する可能性がある。どのような岩石や部材に対して、どのような溶液条件であれば非吸着性が担 保できないのかを明らかにすることは、今後のトレーサー試験を実施する場合のトレーサー選定にお いて有用である。放射性廃棄物の処分場選定においては、ボーリング孔や地下空洞を掘削して地下水 や岩石コアを取得して調査を実施する。ボーリング孔等を掘削するときには掘削を円滑に実施するた めに粘土等を混入した掘削水を循環させることが多く、掘削水と地下水を区別する目的で掘削水に蛍 光染料を添加することがある。このような使用をする場合も、孔壁や粘土に対して蛍光染料が吸着せ ず、掘削水と蛍光染料が同じように移行することが前提となっている。しかし、前述の例のように蛍

2-2

光染料は粘土等に対しても吸着する可能性が考えられるため、このような使用法においても非吸着性 が担保できる条件について詳細を検討する必要があると考えられる。上記のような理由から、ここで は蛍光染料の種々の固相に対する吸着挙動を明らかにした。また、現場でのサンプル分析や処理法・ サンプルの保管法について適切な条件を設定するため、分析・保管を模擬した試験を実施し、分析や 保管の条件などが蛍光染料の濃度・発光強度に与える影響を明らかにした。(2.4 蛍光染料の特性確 認試験)

2.2 模擬トレーサー試験

先述のように、実際の現場でのトレーサー試験では、試験現場における制約から条件を自由に設定 することが難しい場合がある。バックグランドの流れを制御しない場合には、バックグランドの地下 水流速によって試験を実施するための流速が制限される場合がある。また、工期等の関係から1時間 につき数週間におよぶような試験を実施できないこともある。このため、ここでは流速を大きく変化 させて模擬的なトレーサー試験を実施し、流速と破過曲線・分配係数の関係を明らかにすることを試 みた。さらに、拡散係数の大きな岩石で試験をした場合の破過曲線を取得し、試験時間を十分にとっ て拡散が破過曲線に影響を与える場合、どのような破過曲線が得られるのか実験的に確認した。

2.2.1 試験方法(模擬孔間式トレーサー試験)

室内模擬トレーサー試験は以下のような手順で実施した。

a. 岩石試料の準備

実験には瑞浪地域で取得した花崗岩と、拡散係数が大きな岩石の代表例として吉井砂岩を用いた。花崗岩試料として、2年前に実施したボーリング孔「12MI31号孔」のコアの健岩部を2m程度取得した。上記のコアから外径14mm、長さ70mmの小型のコアを十本以上切りだして、模擬トレーサー試験用の試料とした。吉井砂岩については、購入した岩石コアから外径14mm、長さ70mmの小型のコアを切り出し、試験用の試料とした。それぞれのコアは表面を純水で洗浄した後、真空引きした状態で純水に浸漬し、内部の空隙において空気と水を入れ替えて使用した。

b. 模擬地下水の準備

12MI30 号孔で採水した地下水の分析結果を基にして、12MI30 号孔の主要なイオン濃度を模擬した「模擬地下水」を調製した。模擬地下水調製に用いた試薬とその量を表 2.2.1-1 に示した。表に示した試薬のうち、①に分類したものは 100 倍濃縮液を作製し、その 10mL を 1000mL のメスフラスコ内で 800mL 程度の純水と混ぜ合わせた。CaCl₂および NaHCO₃についてもそれぞれ 100 倍濃縮した溶液を調製し、CaCl₂溶液を加えよく振り混ぜたあと、NaHCO₃溶液を加えてよく振り混ぜた。 このあと、予め秤量した NaSiO₃粉末を少しずつ加えて振り混ぜた。目視で試薬の溶解を確認した 後、溶液を 0.45 μmのフィルタでろ過し、ろ液を模擬地下水として使用した。試薬の量から算出 した各イオンの濃度を表 2.2.1-2 にまとめた。

c. 岩石コアのカラムへの封入

上記の岩石カラムを封入できるアクリル製のカラムを作製した。カラムは 1mm のスペーサーを 備えており(図 2.2.1-1)、岩石をカラムに封入することで岩石表面とアクリル板の間で 1mm の 模擬的な割れ目を作製することができる。

d. 試験系の組み立て

上述のカラムを10本連結して模擬的に長さ70cm、割れ目幅(岩石とアクリル板の間の幅)1mm の模擬的な割れ目を構築した。カラムの上流側にはポンプを、下流側にはフラクションコレクタ を接続した。(図 2.2.1-2)。

薬品名	必要量(g/1L)	分類
Na Cl	0.24	1
Na 2SO4	0.006	1
KCI	0.0012	(1)
MgSO4•7H ₂ O	0.002	1
Na F	0.019	1
Ca Cl ₂	0.08	2
Na HCO ₃	0.045	3
NaSiO₃•9H₂O	0.07	4

表 2.2.1-1 吸着試験に用いた模擬地下水調製用試薬の一覧

表 2.2.1-2 調製した模擬地下水の組成

	イオン濃度(mg/L)								
イオン種類	Na	K	Ca	Mg	Si	F	Cl	SO ₄	HCO ₃
模擬地下水	120.8	0.6	29.5	0.2	6.8	8.5	198.7	4.8	29.9
12MI30平均值	124.7	0.6	28.9	0.2	6.9	8.6	197.3	4.8	32.7

※ カラムにはスペーサーがついており、岩石表面とカラム壁の間には約 1mmの隙間ができるようになっている(右図)。岩石柱を充填したカラム(左図)を連結し、模擬的な岩石割れ目とした 図 2.2.1-1 模擬トレーサー試験に用いた柱状岩石充填カラム

図 2.2.1-2 模擬トレーサー試験に用いた柱状岩石充填カラム

e. 模擬地下水によるコンディショニング

岩石を入れ、10本連結したカラムに約0.5mL/minの速度で模擬地下水を通水した。模擬地下水 は12時間程度、約400mLを通水した。その後流速が所定の値となるようにポンプ出力を調整し、 フラクションコレクタを用いて流速が設定した値であることを確認して、コンディションイング を終了した。

f. 試験溶液の調製

模擬地下水をベースとして、種々のトレーサーのストック溶液を加え、試験溶液を調製した。 試験溶液は試験後に入れたトレーサーの濃度を測定し、目的とした濃度になっていることを確認 した。試験溶液に含まれるトレーサーの種類と濃度を表 2.2.1-3 にまとめた。

g. 試験の実施

カラム手前のバルブを閉鎖した上で、ポンプの吸い込み口を上記の試験溶液へと移し、設定し た流速において 10mL の試験溶液が流れるまでカラムにポンプで試験溶液を送液した。この際、溶 液の吸い込み前後で容器ごと溶液の重量を測定し、カラムに入った試験溶液の量を正確に定量し た。その後溶液の吸い込み口を、純水を染みこませたキムワイプなどで十分に洗浄したあと、吸 い込み口を模擬地下水を入れたタンクに移動させた。ここから模擬地下水を所定の流速で、所定 の量を通液した。カラム内の空間の体積は 50mL 程度であるため、試験溶液を吸わせてから 50mL 程度までは非吸着性のトレーサーであってもカラム下流液から検出されないと考えられる。この ため、最初の 50mL はビーカーにて取得し、その後の液をフラクションコレクタを使って、適切な フラクション毎にサンプルとして取得した。

h. 分析

各フラクションに含まれるトレーサーの濃度を、適切に希釈した上で分析した。トレーサーの うち、ナフチオン酸ナトリウム (NAP) 濃度は蛍光分光光度計を用いて定量した。重水濃度は Liquid-Water Isotope analyzer (Los Gatos Research)を用いて試料の δ D値を測定し、 δ Dの 値から算出した。Rb・Ba・Br の各イオン濃度については ICP-MS を用いて定量した。

トレーサーの種類	トレーサー	濃度	備考
	重水	10 μ L/100 mL	δD=550‰
非吸着性	NAP*	1.0mg/L	
	Br	1.8mg/L	RbBr₂から
吸差性	Rb	2.0mg/L	RbBr₂から
「双伯」エ	Ba	1.0mg/L	CsClから

表 2.2.1-3 使用したトレーサーの一覧

2.2.2 結果と考察(模擬孔間式トレーサー試験)

瑞浪花崗岩において、流速を 1.0mL/min、0.1mL/min、0.01mL/min とした場合の重水・Rb・Ba の破 過曲線を図 2.2.2-1~3 に示した。瑞浪花崗岩においては、重水と他の非吸着性トレーサーの挙動はほ ぼ完全に一致したため(後述)、ここでは重水の結果のみを示している。グラフの縦軸は「回収率」 にしている。これは、カラムに入れた試験溶液に含まれる全ての量に対して、1 つのフラクションで 回収できた割合を示している。流速 0.01mL/min ではフラクションコレクタで設定できる時間の都合に より、他条件より 1 フラクションごとの液量が少ない。このため、グラフ縦軸の値が流速 0.01mL/min で大きく異なっているのはこのためである。

図 2.2.2-1 流速 1.0mL/min における重水・Rb・Baの破過曲線

図 2.2.2-2 流速 0.1mL/min における重水・Rb・Baの破過曲線

図 2.2.2-3 流速 0.01mL/min における重水・Rb・Baの破過曲線

まず非吸着性のトレーサーである重水のピークを見ると、流速が変化してもほとんどそのピーク位 置が変化していないことが分かる。一方、Rbのピークを見ると、流速が遅くなるとピークが発現する 位置が後ろへとずれていることがわかる。非吸着性のトレーサーの位置が流速によってほとんど影響 を受けていないことから、流速が遅いとより遅延の効果が高くなっているものと推察される。さらに、 Baについて見ると流速1.0mL/minのときには非吸着性のトレーサーとほぼ同じ位置にピークが存在し たのに対して、流速0.1mL/minや0.01mL/minの場合にはピークの存在が確認できなくなっている。こ のため、Baにおいては遅延効果における流速依存性が大きいと推察される。

上述のデータを利用して、それぞれの分配係数を算出した。遅延係数やそれを元にした分配係数の算 出方法は様々であるが、ここでは非吸着性のトレーサーと吸着性のトレーサーとで流量に対する累積 の回収率をプロットし、囲まれた部分の面積から分配係数を算出した。非吸着性トレーサーと吸着性 トレーサーとで囲まれる箇所が完全に閉じていない場合には、直前のデータから線形的にデータを外 挿し、面積を算出した。流速1.0、0.1、0.01mL/min それぞれの流量と累積回収率の関係を図2.2.2-4 ~6に示した。

図 2.2.2-4 流速 1.0mL/min における液量と累積回収率の関係

図 2.2.2-5 流速 0.1mL/min における液量と累積回収率の関係

図 2.2.2-6 流速 0.01mL/min における液量と累積回収率の関係

上記のグラフにおいて、重水と吸着性トレーサーの破過曲線とで囲まれる部分の面積から算出した 分配係数の値を表 2.2.2-1 にまとめた。表から分かるように、Rb・Ba ともに見かけの分配係数は流速 の減少とともに増加し、1.0mL/min と 0.01mL/min の場合とで 3~4 倍程度になっている。このため、 上述のような実験で得られたデータから分配係数を算出する場合には、値に流速の依存性があること を認識しておく必要がある。

上記の分配係数をディスク状の岩石試料で取得した分配係数の経時変化と比較した結果を、図 2.2.2-7~8 に示した。図では、模擬トレーサー試験で岩石と溶液が接触している時間を横軸、上述の 分配係数を縦軸にプロットした結果を、ディスク状岩石試料における分配係数の経時変化と併せてプ ロットしている。図から分かるように、模擬トレーサー試験で得られた分配係数の経時変化は、ディ スク状岩石から得られた分配係数の経時変化と近い位置にプロットされた。ディスク状岩石において、 分配係数が経時的に変化する(吸着量が増加する)のは、拡散によって岩石/水の界面から内部へと吸 着したイオンが移動するためであると考えられる。ディスク状の岩石へのイオンの吸着における分配 係数の経時変化が、模擬トレーサー試験で得られた分配係数の経時変化と類似していることから、模 擬トレーサー試験における分配係数の経時変化も岩石内部への拡散の影響によるものであると推察さ れる。

図 2.2.2-7 バッチ試験と模擬トレーサー試験の分配係数比較(Rb)

図 2.2.2-8 バッチ試験と模擬トレーサー試験の分配係数比較(Ba)

	表	2.2.	2 - 1	流速と分配係数の関係
--	---	------	-------	------------

流速(mL/min)	1.0	0.1	0.01
Kd for Rb(g/mL)	0.11	0.18	0.39
Kd for Ba(g/mL)	0.42	0.56	1.77

このため現場のトレーサー試験においても、拡散の影響を捉えられるだけの十分な試験時間を確保 することが望ましいと考えられる。一方、前述のように現場試験において、種々の制約により上記の ような試験時間を十分に確保できない可能性もある。このような場合のために、現場ではできるだけ 流速依存性のデータを取得するとともに、流速依存性のデータから解析的に拡散の影響を評価できる ような手法の確立が必要である。

また、本研究では、分配係数や拡散係数が土岐花崗岩よりも大きいと考えられる、吉井砂岩で同様の試験を実施した。ディスク状の岩石試料を用いて陽イオン交換容量(CEC)を測定したところ、花崗岩では 0.11meq/100g であったのに対し、吉井砂岩では 2.75meq/100g であった。また、塩化物イオンの拡散係数で比較すると、吉井砂岩が 5.0×10⁻¹⁰ (m²/sec)であるのに対して、花崗岩は 1×10⁻¹⁰ (m²/sec) 以下程度と評価された。吉井砂岩と花崗岩における試験結果を比較することで、拡散や分配係数の大 きな岩石では、流速に対してどのような依存性が確認されるのかを知ることが可能である。試験方法 については、前述の花崗岩における手順と同様である。

吉井砂岩における、流速 1.0mL/min および 0.1mL/min で試験を実施したときの、重水・Rb・Baの破 過曲線をそれぞれ図 2.2.2-9 および図 2.2.2-10 に示す。非吸着性のトレーサーである重水のピーク に対して、吸着性のトレーサーの Rb や Ba のピークは相対的に小さくなっており、ピーク形状がシャ ープでなくなっていることがわかる。流速 1.0mL/min の場合にはそれでも Rb についてはピークが観察 されている(図 2.2.2-11)のに対して、流速を 0.1mL/min とすると 300mL 以内の溶液からは有意な濃 度の Rb が検出されなかった。また、1.0mL/min のケースでもピーク形状は立ち上がりに対してテール が長くなっており、拡散等によって Rb の移行が遅延されたと考えられる。ピークトップを比べてみる と、流速 1.0mL/min の場合には非吸着性と吸着性の差がほとんど見られないことがわかる。通常吸着 等による遅延が生じた場合にはピークトップも非吸着性に比べて遅れるはずであり、割れ目幅と流速 の関係によっては、岩石の影響をほとんど受けることなく流れてしまう成分が存在することを示唆し ている。先述のようにトレーサー試験の結果から、遅延係数(分配係数)を算出する方法は様々なも のが考えられるが、ピークトップの遅れを基準にする方法はその代表的な一つと考えて良い。しかし、 本試験で示されたように試験条件によっては岩石に十分な遅延能力があると考えられるにもかかわら ず、ピークトップの遅れはわずかしか観察されない可能性があることが示された。割れ目の中で岩石 の影響を受けずに流れる成分が存在する可能性を考慮して、その他の情報(前述のような累積の回収 率やピーク高さ)から算出される分配係数や遅延係数とも比較し、試験した条件から評価された値が 妥当なものかを評価していく必要がある。

図 2.2.2-9 吉井砂岩流速 1.0mL/min での破過曲線

図 2.2.2-10 吉井砂岩流速 0.1mL/min での破過曲線

図 2.2.2-11 吉井砂岩流速 1.0mL/min 試験での Rb のピーク

吉井砂岩・流速 1.0mL/min および 0.1mL/min で試験を実施した場合の、3 種類の非吸着性トレーサ ーの破過曲線を図 2.2.2-12 および図 2.2.2-13 に、比較のため流速 0.01mL/min で花崗岩において試 験した場合の 3 種類の非吸着性トレーサーの破過曲線を図 2.2.2-14 に示した。まず、花崗岩におい てはナフチオン酸ナトリウム、臭素イオン、重水の間に顕著な差は見受けられない。上述の 3 種の物 質は岩石に対して非吸着性トレーサーとしてはたらくと考えられるが、分子量あるいは水和イオンの 大きさ、および電荷等の違いからナフチオン酸ナトリウムが最も拡散しにくく、ついで臭素イオン、 重水の順に拡散の影響を受けにくいと考えられる。3 種類の非吸着性トレーサーの破過挙動に差異が なかったことから、花崗岩においては拡散の影響はさほど顕著でないことがわかる。一方で、吉井砂 岩においては先述の花崗岩よりも10倍速い流速0.1mL/minの条件であっても3種類の非吸着性トレー サーでは破過挙動に差異が生じており、ナフチオン酸ナトリウム、臭素イオン、重水の順でカラムか ら出てくることがわかる。この順番は拡散係数の小さな順番であり、ナフチオン酸ナトリウムよりも 重水が拡散による影響で遅延されていることがわかる。このように、複数の拡散係数の異なる非吸着 性トレーサーを同時に流すことにより、試験における拡散の影響の有無を判断することが可能である。 改めて流速1.0mL/minの結果を見ると、ナフチオン酸ナトリウムが早めに流出してくる傾向は観察さ れるものの、流速0.1mL/minの場合ほど顕著な傾向は見られていないうえ、ピークトップが出る液量 はほぼ一致している。このことから、流速1.0mL/min程度では少なくとも非吸着性トレーサーでは拡 散の影響はあまり顕著ではないこと、ピークトップが同じ程度であることから岩石とほとんど相互作 用せずにカラムから流れる成分が存在することが示唆された。

図 2.2.2-12 吉井砂岩流速 1.0mL/min 試験における非吸着性トレーサーの破過曲線

図 2.2.2-13 吉井砂岩流速 0.1mL/min 試験における非吸着性トレーサーの破過曲線

図 2.2.2-14 花崗岩流速 0.01mL/min 試験における非吸着性トレーサーの破過曲線

以上のように、分配係数および拡散係数が大きな岩石(吉井砂岩)で模擬トレーサー試験をした結 果、以下のような知見を得た。

- 拡散係数の異なる非吸着性トレーサーは拡散がある試験条件で有意な影響を与えているか を判断するために有用である。
- ② 分配係数や拡散係数の大きな岩石であっても流速が速い場合には吸着性トレーサーのピークトップと非吸着性トレーサーのピークトップ位置がほとんど変わらない場合があることが確認された。これは一部の吸着性イオンはほとんど岩石と相互作用せずに、試験区間を流れるためであると推察される。ピークトップの遅れで遅延係数を算出する場合には留意が必要である。
- ③ 分配係数・拡散係数が大きな岩石で試験時間を長く確保して試験を実施すると、種々の遅延効果によってピークであっても濃度は低下し、正確な分析が難しくなったり、フラクション間のばらつきに埋もれてピーク形状が明確でなくなる、などの現象が観察される(図2.2.2-15に流速0.01mL/minの場合の非吸着性トレーサーの破過曲線を示す)。用いているトレーサーのバックグラウンド濃度や分析に用いている機器に依存するが、試験条件によっては全く破過曲線が捉えられなくなる可能性が出てくる。実際の処分の条件に近いという意味では、流速を遅くして試験することが必要であるが、試験条件によってはまったく情報が得られないという結果になる可能性もあるため、留意が必要である。

図 2.2.2-15 吉井砂岩流速 0.01mL/min 試験における非吸着性トレーサーの破過曲線

花崗岩および吉井砂岩で模擬孔間式トレーサー試験を実施し、主に試験時の流速について依存性を 確認した。花崗岩において、Rb・Baの見かけの分配係数(拡散等の影響を含む)は明確な流速依存性 があることが分かった。このため、処分の安全評価に使えるような分配係数をトレーサー試験で評価 するには、可能な限り実流速に近い、極めて遅い流速での試験が望ましいと考えられる。しかし実際 には現場の条件(バックグランド流れ)や予算等の制約によって、現場で遅い流速での試験を実施で きない場合も想定される。また、流速を遅くした場合、吸着性トレーサーのピークを検出し、破過曲 線を得ることが困難になる可能性もある。このため、分配係数の室内試験での流速依存性、および現 場試験での流速依存性のデータを蓄積し、速い流速から遅い流速での分配係数が「外挿」できるのか、 という方法論を確立することが必要であると考えられる。また、流速を速くした場合には、試験条件 によって、ほとんど非吸着性のトレーサーのピークから遅延せずに吸着性トレーサーのピークが観察 された。これは、流速を速くすると一部の吸着性トレーサーはほとんど岩石と相互作用しないままに 試験系から流出するためであると推察される。このようなケースではピークトップの遅延時間で遅延 係数を算出する場合と、その他の情報から遅延係数を算出する場合とで、遅延係数が大きく異なる可 能性が考えられる。流速依存性を明らかにする場合には、どの情報から遅延係数を算出するのかを含 めて検討が必要であると考えられる。

拡散係数が異なる非吸着性のトレーサーの破過曲線の違いは、実施した試験系で拡散が有意である かを知るために有用な情報である。特に蛍光染料(今回はナフチオン酸ナトリウムを用いた)は分子 量が大きく、一般に他の非吸着性トレーサーと比較して拡散係数が小さい。このため、蛍光染料と陰 イオンあるいは重水を比較することが、拡散の有無の判断には有用であると考えられる。このため、 トレーサー試験で用いるトレーサーには、蛍光染料を含む複数種類の非吸着性トレーサーを添加して おくことが望ましいと考えられる。 2.2.3 試験方法(模擬単孔式トレーサー試験)

単孔式トレーサー試験は一つのボーリング孔からトレーサーを入れ、その後チェイサーを加えた後、 同じ孔から溶液を吸引して採取するトレーサー試験の方法である。現場での単孔式トレーサー試験で は、岩石とトレーサーの接触時間を確保するため、チェイサーを投入した後に「待機時間」を置くこ とがあるが、前述の孔間式トレーサー試験と同様にバックグランドの流速によっては待機時間を十分 に置くことが難しくなる。

ここでは、室内試験で模擬的な単孔式トレーサー試験を実施した。瑞浪地域の花崗岩を用いた試験 において待機時間が試験結果に与える影響を評価するため、待機時間を持たない場合と24時間待機時 間を設けた場合の差を確認する実験を実施した。

模擬単孔式トレーサー試験の手順は以下に示すとおりである。

a. 円柱状岩石/カラムの準備

試験に用いる円柱状の岩石を入れたカラムは、模擬孔間式トレーサー試験で用いたものと同じ ものを使用した。カラムについては模擬孔間式トレーサー試験と同様に、十分量の模擬地下水を 流した後試験に使用した。

b. 試験溶液の添加

実験系のセットアップを図 2.2.3-1 に示した。試験溶液は模擬トレーサー試験に示したのと同様に、表 2.2.1-3 に示した組成のものを用いた。試験流速は 1.0mL/min と 0.1mL/min の 2 つのパターンで実施した。溶液の添加量が 10mL 程度になるように、適切な時間溶液をカラムに入れた。 その後ポンプを止め、カラム入口のバルブを閉鎖した。

c. チェイサーの添加

ポンプの入口を、模擬地下水を満たしたビーカーに移し、ポンプを作動させてカラム入口のバ ルブを開けた。チェイサーの量が 40mL 程度になるように模擬地下水をカラムに流した。24 時間 の待機時間を与えるケースについては、ここでカラムのバルブを全て閉じ、24 時間静置した。

d. ポンプ等のつなぎ替え

今まで溶液を流してきた入口とは反対側のカラムの口にポンプを接続し、カラムの入口側だったところにはフラクションコレクタを接続した(図 2.2.3-1)。

e. 回収試験

今までカラムの出口側だった方から、溶液を入れたのと同じ流速で模擬地下水を送液し、入口 側だった方からでてくる溶液をフラクションコレクタを用いてフラクションに分けて回収した。

f. 分析

試験終了後容器+溶液の重量を測定して、各フラクションで採取した溶液量を評価した。各フラクションをガラスビンに注ぎ分け、Liquid-Water Isotope analyzer (Los Gatos Research)を用

いて試料の & D 値を測定した。また、残りの溶液を適切に希釈し、ICP-MS を用いて Rb あるいは Ba 濃度を測定した。

試験溶液・チェイサー添加時

溶液回収時

図 2.2.3-1 模擬単孔式トレーサー試験の試験系概念図

2.2.4 結果と考察(模擬単孔式トレーサー試験)

流速 0.1mL/min と流速 1.0mL/min で試験を実施した場合の回収した液量とトレーサーの動きの関係 を、それぞれ図 2.2.4-1 および 2 に示した。図から分かるように、流速 0.1mL/min の場合には Ba が Rb よりも早くカラムから出てきており、Rb よりも Ba が強く遅延されたことがわかる。この結果は、 瑞浪花崗岩の岩石においては Ba のほうが Rb よりも分配係数が大きいという、バッチ試験や孔間式模 擬トレーサー試験の結果と整合している。流速 1.0mL/min のケースではピークの高さについては Rb> Ba の傾向がみられたものの、ピーク位置のずれは、0.1mL/min の場合ほど顕著ではない。この結果は 単孔式トレーサー試験においても、結果は流速に対して依存性があることを示している。流速依存性 があることに留意をして、試験条件を慎重に選定する必要がある。

一方、待機時間を 24 時間置いた場合の試験結果を図 2.2.4-3 に示した。回収した液量が 0~20mL の区間に全トレーサーに共通してショルダーのようなものが生じている。全てのトレーサーで同じ挙 動を示していることから、これは 24 時間の間にトレーサーが拡散・分散するなどして生じたものであ ると推察される。しかし、トレーサーのピーク位置については、24 時間の待機時間を入れる場合と入 れない場合とで大きな差がないが、ピーク高さについては 24 時間待機時間を入れた場合の方が減少し ていることがわかる。図 2.2.2-7 および 8 に示したように、バッチ試験においては 24 時間以内では分 配係数に対して大きな時間依存性が見られない。これは、試験に使用した瑞浪地域の花崗岩において は拡散係数が小さく、24時間待機させても分配係数への影響がほとんど無視できる程度であるためと 考えられた。模擬単孔式トレーサー試験のピーク高さに流速依存性が見られた原因については、解析 的手法と合わせて検討していく予定である。

図 2.2.4-1 模擬単孔式トレーサー試験の結果(流速1.0mL/min)

図 2.2.4-2 模擬単孔式トレーサー試験の結果(流速 0.1mL/min)

図 2.2.4-3 模擬単孔式トレーサー試験の結果(流速 0.1mL/min、待機時間 24 時間)

上記の試験結果からわかるように、単孔式トレーサー試験においては Ba であってもピークがはっき りと観察できるのが特徴的である。これは、単孔式試験では、注入孔と同じ孔からサンプルを回収す るためであり、強く吸着するイオンほど注入孔近辺に残留するためである。このため、単孔式トレー サー試験においては、1 つの孔で試験ができるというメリットに加えて、分配係数が高いイオンであ っても比較的高い濃度で回収できる可能性が高いことが挙げられる。孔間式トレーサー試験において は、分配係数が高いイオンは回収孔での濃度低下が大きく、分析の可否によって試験条件を決定する 必要がある可能性があるのに対して、これは大きなメリットであると言える。今後、単孔式トレーサ ー試験のメリット・デメリットをさらに明らかにし、孔間式トレーサー試験との使い分けを議論する ために、単孔式トレーサー試験においても岩石の種類や試験をする条件を増やして、試験を実施して いく予定である。

2.2.5 まとめ

室内の模擬トレーサー試験においては、①流速を変化させた場合の分配係数の変化について情報を 得ること、②岩石の性質が変化した場合の破過曲線の特性について情報を得ること、を目的として、 花崗岩や吉井砂岩を用いて模擬孔間式や模擬単孔式のトレーサー試験を実施した。その結果、以下の ような知見を得た。

- ・ 分配係数の流速依存性:孔間式試験においては、流速を0.01~1.0mL/minまで変えて試験 を実施した。その結果、RbやBaの見かけの分配係数(拡散等の影響を含む)は流速が遅く なるほど大きくなり、0.01mL/minと1.0mL/minで3倍程度の差があることが分かった。実際 の現場では任意の流速で試験が実施できるわけではなく、室内試験や実際の現場試験で試験 流速と分配係数の関係を明らかにし、試験結果から実際に処分の安全評価に用いるパラメー タをどのように設定するかについて今後議論していく必要がある。
- ・ 非吸着性トレーサーの有用性:拡散係数の異なる非吸着性トレーサーを試験に用いること
 で、試験系における拡散の影響を評価することが可能になる。非吸着性トレーサーの中では、
 蛍光染料が他と比べて拡散係数が小さいため、蛍光染料と陰イオンあるいは重水等をトレー
 サーとして用いるのが望ましいと考えられる。
- 試験条件と破過曲線の特性:分配係数・拡散係数が大きな岩石で流速を落として試験を実施すると、吸着性トレーサーの濃度は極端に小さくなり、破過曲線を捉えられないという事態が生じる可能性がある。また、流速が比較的大きな場合には、実際には遅延効果があるにもかかわらず、ピークトップの位置には十分にその効果が表れない結果となる現象が見られた。これは、流速が速い場合には岩石の影響をほとんど受けないままに流出する成分が発生するためと考えられる。このような現象のことも考慮し、どのような試験結果に着目して遅延係数を算出していくのかについては、さらに検討が必要であると考えられる。

 ・ 模擬単孔式トレーサー試験:流速や待機時間を変えることで、破過曲線の形状が変化する ことを明らかにした。今後さらに条件を変えて試験を実施し、単孔式トレーサー試験による 遅延係数評価の精度を高めていく。単孔式トレーサー試験は、分配係数が大きい場合ほど、 注入孔付近にトレーサーが残留するため、分配係数が大きなケースでもトレーサー濃度が極 端に低下するという問題を回避できる可能性があり、このようなメリットについても検討し ていく予定である。

2 - 23

2.3 各種割れ目探査技術の室内比較試験

2.3.1 背景および目的

これまでに割れ目探査技術として、トレーサー試験、高粘性流体注入試験、ラドン濃度計測、レジ ン注入試験などを実施してきた。しかしながら、原位置では様々な要因によりそれぞれの調査結果が +分に比較できていない。このため、室内において各種試験を比較することとした。

ここでは、室内において模擬割れ目を用いて、前述の各種試験を行うことにより、これらの調査結 果で得られる割れ目幅を比較した。

2.3.2 試験モデル

室内試験では、一次元の割れ目モデルと軸対称の割れ目モデルを用いた試験を実施した。これは、 一次元的な流動と二次元的な流動のそれぞれについて試験を実施するためである。三次元は多孔質的 なながれになり可視化が困難なため、試験を実施していない。

一次元モデル

一次元の割れ目モデルは、100×100×1200 mm の棒状の岩石の一面を用いて試験を実施した。 岩石の厚みは、ラドン濃度試験から、厚みが濃度に影響しない幅とした。ここではラドンの飛程 を 50 mm として、100mm とした。試験装置の概要を図 2.3.2-1 に示す。

試験装置は、棒状の岩石の上に、アクリル板を設置した。試験に用いた面は 50×1000 mm であ り、その面は鏡面仕上げを施した。棒状の岩石とアクリル板の間には、ステンレステープを置き、 隙間を作ることにより割れ目を模擬した。なお、隙間からの流出を防ぐためにオーリングを周囲 に設置するとともに、上端と下端に溝を作り、そこにポーラスストーンを設置することにより、 流入出地点とした。岩石とアクリル板の固定には、万力を用いた。一次元モデルは図 2.3.4-1 の ように作成した。前述のようにアクリル板と岩石の間にステンレステープ(厚み一定)を敷くこと により、一定幅の流路を形成した。また、アクリル板と岩石は万力で固定した。

図 2.3.2-1 一次元モデルの試験装置の概念図

図 2.3.2-2 一次元モデルの写真

(2) 軸対称モデル

対称の割れ目モデルは、1200×1200×100 mm の板状の岩石板の上面を用いて試験を実施した。 岩石の厚みを 100mm とした理由は、前述の一次元モデルの通りである。試験装置の概要を図 2.3.2-2 に示す。

試験装置は、一次元モデルと同様に、岩石面の上に、アクリル板を設置した。試験に用いた面 は直径 1000 mm の円であり、その面は鏡面仕上げを施した。岩石には一定の幅の割れ目を模擬す るために、100mm 間隔でネジ受けを設けた。岩石とアクリル板の間には、スペーサーとして厚み が一定のステンレスワッシャーを置き、ネジ受けに上部からネジ締めをした。なお、ネジからの 流出を防ぐためにシールワッシャーをアクリル板上に設置した。流動場を円状にするために、中 心にボーリング孔を模擬した直径 86mm の溝を設け、ポーラスストーンを設置した。また、中心か ら半径 500mm の位置に円状に溝を設け、その外側にはオーリングを設置し、割れ目面からの漏水 を防いだ。

軸対称モデルは図 2.3.2-4のように作成した。このモデルを用いて現在試験を実施している。

図 2.3.2-4 軸対称モデルの写真

2.3.3 試験方法

前述の試験モデルを用いて試験を実施した。試験は、ラドン濃度計測、透水試験、高粘性流体試験、 トレーサー試験、レジン注入の順で実施した。これらの試験方法について以下に示す。

ラドン濃度計測

岩石から発生するラドン濃度の測定には、水を計測する方法と空気を計測する方法の2つの方 法を用いた。水を計測する方法は、図 2.3.3-1に示すアクリル板と岩石で作成した割れ目内に水 を入れ、ラドン濃度が有意あるいは平衡になるのを待ってから、水を取り出して計測する方法で ある。この方法で割れ目の幅を求める。ただし、割れ目の体積が少ないため、十分なサンプルを 採取することが困難な可能性がある。空気中のラドン濃度を計測する方法は、図 2.3.2-1 図 2.3.3-1に示すように、RAD7 (DURRIDEGE Company)を用いて、割れ目内のガスを RAD7 に直接送 り、RAD7 の排気を割れ目に戻すことで連続的に閉空間での計測が可能である。これにより、ラド ンのフラックスを求めることができる。ただし、ラドン濃度計測では空気の場合と水の場合とで は、空気の方がやや大きいラドン濃度が計測されることが分かっている。これは、空気と水とで アクセスできる空隙の径が異なり、空気の方がより細かい割れ目にまで浸入できるためであると 考えられる。また、割れ目面からのラドンフラックスが、割れ目だけでなく RAD7 (内容量約 1L) でも希釈されるため、濃度が薄くなる。このため、これらを補正してフラックスを計測する必要 がある。

図 2.3.3-1 ラドン計測の概念図

このような試験系でラドン濃度の連続計測を行うことで、割れ目内での濃度を計測することが 可能である。試験系内でのラドン濃度の変化は以下の式で与えられ、時間変化は図 2.3.3-2 のよ うになる。

$$\partial C / \partial t = \lambda C + FA$$
 (2.3.3-1)

図 2.3.3-2 ラドン濃度の経時変化

ラドンは半減期が 3.8 日のため、平衡濃度になるまでに 19 日(半減期 5 回分を想定した場合) を要する。連続計測の場合には、濃度の上昇過程を確認することができ、濃度は 3.8 日間で平衡 濃度の半分まで上昇するため、4 日間程度の計測で十分に平衡濃度が予測できると考えられる。 上記の方法でフラックスを求める。さらに、前述の割れ目内に水を満たしてその濃度に基づいて 割れ目幅を以下の式で求めることができる(角森、2009)。

$$b = \frac{2F}{C}$$
(2.3.3-2)

ここに、F はラドンフラックス(n/m2s)、C はラドン濃度(Bq/m3)である。単位 Bq は一秒間に壊 変する原子の個数(n/s)である。

(2) 透水試験

透水試験は、図に示すように試験装置に流量を一定流量で注入し、圧力の安定を確認した後に、 流入口と流出口の水頭差を計測する。定流量注入には、モーノポンプ、水頭差の計測には、圧力 計あるいはマノメーターを用いる。一次元モデルの場合には、透水係数は以下の式で与えられる。

$$k = \frac{Q}{A} \frac{\Delta L}{\Delta H}$$
 or $T = \frac{Q}{W} \frac{\Delta L}{\Delta H}$ $(Q = k \frac{\Delta H}{\Delta L} A = T \frac{\Delta H}{\Delta L} W)$ (2.3.3-3)

ここに、A は流路面積(=bW)、W は割れ目の横幅、ΔL は流路長、ΔH は水頭差である。軸対称モ デルの場合には、透水係数は以下の式で与えられる。

$$k = \frac{Q}{2\pi b\Delta H} \ln(R/r_o) \text{ or } T = \frac{Q}{2\pi\Delta H} \ln(R/r_o) \quad (Q = \frac{2\pi kbH}{\ln(R/r_o)} = \frac{2\pi TH}{\ln(R/r_o)}) \quad (2.3.3-4)$$

ここに、Rは影響圏半径(中心から排水路までの半径)、roは注入孔径(ポーラスストーンの半

径)、ΔHは注入孔径と排水路の水頭差である。

透水試験時には、流量が大きいと乱流になる可能性があるため、流量を変化させて、流量と水 頭差の線形性を確認する必要がある。

透水係数や透水量係数から割れ目幅を求めるには、割れ目幅の3乗則を用いた。これは、水の 流れやすさが割れ目幅の3乗に比例することを利用したものである。割れ目幅の3乗則は以下の 式で表される。

$$T = \frac{\rho g b^3}{12\mu} = \frac{g b^3}{12\nu} \quad (k = \frac{\rho g b^2}{12\mu} = \frac{g b^2}{12\nu})$$
(2.3.3-5)

ここに、T は透水量係数(T=kb)、k は透水係数、 ρ は水の密度、g は重力加速度、b は割れ目幅、 μ は粘性係数、 ν は動粘性係数である。ここに、水の密度は 1 Mg/m³、重力加速度は 9.8 m/s²、 粘性係数は 1.0×10^{-3} Pa·s、動粘性係数は、 1.0×10^{-6} m²/s である。

図 2.3.3-3 一次元モデルでの透水試験の概念図

(3) 高粘性流体注入試験

高粘性流体注入試験は、割れ目に粘性の高い流体を注入することにより、流れの次元や割れ目 幅を評価する方法である。この方法では、割れ目に高粘性流体を一定流量で注入することにより、 図 5.3-3 に示すように、高粘性流体の流動によって注入圧力が変化するとして、割れ目幅を評価 する(長谷川ほか、2007)。

一次元モデルの場合には、高粘性流体注入による圧力の増加は以下のように与えられる(長谷 川ほか、2015)。

$$\frac{\partial h}{\partial t} = \frac{mQ^2}{kA^2} \quad (h = \frac{mQ^2t}{kA^2}) \tag{2.3.3-6}$$

ここに、hは注入圧力(時間の関数)、mは高粘性流体の水に対する粘性倍率、tは時間である。

高粘性流体がモデル全体に行き渡り定常状態に達した場合には、粘性倍率を考慮して水の場合 と同様に、以下のように与えられる(長谷川ほか、2015)。

$$k = \frac{mQ}{A} \frac{\Delta L}{\Delta H}$$
 or $T = \frac{mQ}{W} \frac{\Delta L}{\Delta H}$ (2.3.3-7)

このように、高粘性流体の注入過程の①非定常的な圧力の変化と②定常的な圧力から、透水量 係数が算定でき、割れ目幅を3乗則から求めることが可能である。

同様に、軸対称の場合には以下のように与えられる(長谷川ほか、2015)。

$$\frac{\partial h}{\partial t} = \frac{mQ}{4\pi T} \frac{1}{t} \quad (h = \frac{mQ}{4\pi T} \left[\ln\left(\frac{Q}{\pi b r_o^2}\right) + \ln t \right]) \tag{2.3.3-8}$$

また、軸対称の場合にも一次元モデルの場合と同様に、定常状態に達した場合には、以下のように与えられる。

$$k = \frac{mQ}{2\pi b\Delta H} \ln(R/r_o) \text{ or } T = \frac{mQ}{2\pi\Delta H} \ln(R/r_o)$$
(2.3.3-9)

このように、軸対称モデルにおいても、高粘性流体の注入過程の①非定常的な圧力の変化と② 定常的な圧力から、透水量係数が算定でき、割れ目幅を3乗則から求めることが可能である。

図 2.3.3-4 高粘性流体注入時の圧力応答の概念図

(4) トレーサー試験

トレーサー試験では、割れ目にトレーサーを投入することにより、その到着時間から割れ目幅 を評価することができる。トレーサーの到達と割れ目幅の関係は次式で表すことができる。

b=Qtarr/WL (tarr=WLb/Q)

ここに、tarr はトレーサーの到着時間、W は割れ目の横幅、L は割れ目の長さ、b は割れ目幅、Q は注入流量である。

ただし、トレーサーは割れ目内を移行するため、移流分散現象によって図 2.3.3-4 のように希 釈する。トレーサー到着時刻は、矩形波で入れた場合には、到達のピークが出た時間に対する矩 形波で入れた際の中央時間になる。一定濃度で入れた場合には、投入濃度の半分の濃度になった 時間がトレーサーの到着時間である。

図 2.3.3-5 トレーサー注入時の到達時間の概念図

(5) レジン注入

レジン注入は、時間ともに粘性が増加し、固まる液体(レジン)を割れ目に注入し、固化後に その厚みを調べることにより割れ目幅を評価する方法である。固化するため、試験の最後に実施 する必要がある。

2.3.4 試験結果

ラドン濃度計測結果

前節で示したように、ラドンフラックスを求めるためにラドン濃度を計測した結果を図 2.3.4-1に示す。ここでは、3回の試験結果をあわせて示した。ラドン濃度は時間的に増加し、平 衡値に到達しているように見える。ただし、平衡値に到達するのに約3日しかかかっていない。 ラドンの半減期は3.8日であり、平衡値に対して半減期毎に1/2ずつ漸近していくことを考える とラドンが漏れていると考えられる。ラドンの漏出経路は、一次元モデルのシール部分、あるい は試験装置と RAD7 との接続部分、RAD7 自体、乾燥剤部分などが考えられる。ただし、試験結果 はほぼ同じ増加傾向となっているため、漏気量もラドン濃度に比例し再現性も高い。

試験結果の平衡値を 3500 Bq/1 として、濃度変化を図 2.3.4-2 に示す。この図の縦軸は対数軸 となっており、ラドン濃度は指数関数的に変化していることが分かる。ラドン濃度の変化は、濃 度が低いレベルで変動が大きいが、これは Rn の測定精度が±10%程度であり、試験開始から2日 を経過したラドン濃度は 3000 Bq/1 となっており、±300 Bq/1 程度の誤差を含むため、このよう なバラツキが表れる。ラドン濃度は指数関数的に変化していることから、漏気によって見かけの 半減期が小さくなっているように見える。これは、濃度に比例して漏気が発生していることを意 味しているので、漏気を推定し、漏気がない場合の平衡値を推定することとした。 Rn 濃度の変化は前述のように与えられ、漏気率が濃度に比例すると仮定すると次式で与えられる。

$$\frac{\partial C}{\partial t} = -\lambda C + M - LC = 0 \tag{2.3.4-1}$$

ここに、C は Rn の原子数(atom/m³)、 λ は崩壊定数($1/s: \ln 2/T_{1/2}$)、 $T_{1/2}$ は半減期(s)、M は単位体積あたりの発生速度($atom/m^3s$)、L は漏気率を表す。atomは原子数を表す。

図 2.3.4-1 一次元モデルにおけるラドン濃度の経時変化

図 2.3.4-2 平衡値を 3500 Bq/1 とした場合の Rn 濃度の経時変化

上式を展開し積分すると以下の式が得られる。

$$C = \frac{M}{\lambda + L} \left(1 - \exp(-(\lambda + L)t) \right)$$
(2.3.4-2)

この式は、元の式で壊変定数の λ 部分が(λ +L)に置き換わったものと同じである。このため、 壊変定数が大きくなることにより、漏気がある場合に比べ平衡値が $\lambda/(\lambda$ +L)倍、壊変定数が(λ +L)/ λ 倍になる。

ここで先ほどのグラフからラドンの漏気を含めた半減期を求めると 0.85 日程度となる。これは、 ラドンの半減期の 4.5 分の 1 である。従って、平衡値は実際の平衡値よりも 4.5 分の 1 になって いることがわかる。漏気がない場合の平衡値は、この平衡濃度(3500 Bq/L)の 4.5 倍の 16000 Bq/L となる。

この平衡濃度と容器の体積からラドンフラックスを推定する。まず、ラドンの平衡濃度は、次 式で与えられる。

$$\frac{\partial C}{\partial t} = -(\lambda + L)C + M = 0 \tag{2.3.4-3}$$

ここに、C はラドンの原子数 (atom/m³)、 λ は崩壊定数 (1/s: $\ln 2/T_{1/2}$)、 $T_{1/2}$ は半減期 (s)、M は単 位体積あたりの発生速度 (atom/m³s)を示す。atom は原子数を表す。

実験条件から、以下の関係が導かれる。

$$C = C_s V$$
 (atm) (2.3.4-4a)
 $M = FA$ (atm/s) (2.3.4-4b)

ここに、C_sは試験装置のラドン濃度(atm/m³)、V は試験系の体積(m³)、F は単位面積からのラド ンフラックス(atm/m²s)、A はディスクの面積(m²)である。 このため、フラックスは以下の様に求められる。

$$F = \frac{\left(\lambda + L\right)C_s V}{A} \qquad \left(-\left(\lambda + L\right)C_s V + FA = 0\right) \tag{2.3.4-5}$$

ここに、(λ +L)Cs は単位時間当たりのラドン壊変速度のため Bq/L と同じ意味になる。Cs は 16000 Bq/m³、V は 0.0015 m³、A は 0.05m²のため、フラックスは 480 atm/m²s となる。この値は、 蛭川花崗岩のディスクを用いた試験結果(610 atm/m²s)と整合的である。

割れ目幅は、前述のように以下の式で求められる。

$$b = \frac{2F}{C}$$
(2. 3. 4-5)

ここに、F はラドンフラックス(n/m²s)、C はラドン濃度(Bq/m³)である。単位 Bq は一秒間に壊 変する原子の個数(n/s)である。

次に割れ目幅を求めるために、割れ目に水を入れ、1 日程度安置した後に Rn 濃度を計測した結 果、一次元モデルでは 2460 Bq/m³、2 次元モデルでは 2900Bq/m³であった。ラドン濃度は平衡に到 達した後に計測するのが良いが、室内試験では、花崗岩に水が吸収されて水量が低下するため、 水の安置時間は一日とした。ラドンの増加を考えると一日の安置でラドン濃度は平衡値の 16%程 度まで上昇する。すなわち、これらの濃度を6倍すれば、ラドンの平衡濃度が求められることに なる。さらに、ラドン濃度の計測は、RAD7 を用いて 40ml のサンプルで可能であるが、一次元モ デルでは割れ目の体積が 20ml 程度であり、量的に足りないため、水を添加して分析を実施した。 このため、さらに 2 倍程度希釈される。これらの補正を加えると、一次元モデルと軸対称モデル でそれぞれラドン濃度は 32,000 Bq/m³と 19,000 Bq/m³とになる。この結果に基づいて、式 (2.3.4-5)にラドンフラックス 480 atm/m²s と先の濃度を入れると。割れ目幅は、一次元モデル で 3cm、軸対称モデルでも割れ目幅は 5 cm 程度となる。これは、割れ目幅の設置値 0.5 mm の約 100 倍となる。

このような大きい値になった原因としては、一日程度安置した後に Rn 濃度を計測しており、平 衡濃度を計算するための倍率が高く濃度の精度が低いこと、濃度・水量ともに少ないため分析結 果に誤差が大きいことと、岩石の吸水により完全に飽和にできていないため、ラドンが水とガス に分配し、採取した水のラドン濃度が低下すること(ラドンは常温で水:空気に1:4 で分配され る。このため、1/5 程度の濃度に低下した可能性がある)、上面がアクリルのため、ラドンが上 面から散逸した可能性があることなど考えられる。このため、これらの試験条件を見直していく 必要がある。

2 - 34
(2) 透水試験結果

ー次元モデルでの透水試験結果を図 2.3.4-3 に示す。ここでは、乱流になっていないかを確認 するために、流量を変えて、その際の圧力を求めた。この関係から透水係数を式(2.3.3-3)に基づ いて求めた結果、6.6±0.2×10⁻⁵ m²/s となった。この透水量係数から割れ目幅を式(2.3.3-5)の3 乗則に基づいて求めると 0.44±0.01 mm となる。

図 2.3.4-4 軸対称モデルでの流量と水頭の関係

軸対称モデルでも透水試験結果を図 2.3.4-4 に示す。一次元モデルと同様に、乱流になってい ないかを確認するために、流量を変えて、その際の圧力を求めた。この関係から透水係数を式 (2.3.3-4)に基づいて求めた結果、2.8±0.0×10⁻⁵ m²/s となった。この透水量係数から割れ目幅 を式(2.3.3-5)の3乗則に基づいて求めると0.15±0.0 mm となる。

(3) 高粘性流体注入試験

一次元モデルでの高粘性流体試験の概念図を図 2.3.3-4 に示す。高粘性流体試験は透水試験と 試験形態はほぼ同じであるが、透水試験と異なり、水の代わりに高粘性流体を用い、非定常過程 での注入圧力の変化から割れ目の特性を推定する。

図 2.3.4-5 一次元モデルへの高粘性流体注入試験の概念図

ー次元モデルでの試験結果を図 2.3.4-6 に示す。この試験は高粘性流体の粘性 70 cp、注入流 量 20 ml/min での試験結果である。割れ目幅は 0.5 mm となるように、0.5 mm のスチールテープ を挟んでいる。高粘性流体試験では、異なる粘性の流体を注入するためと非定常課程でも評価す るため、3 種類の方法で割れ目の幅を評価することが可能である。①定常状態の圧力差は、透水 試験と同様に、高粘性流体の粘性のみを考慮して透水係数を求める方法である。②非定常状態の 圧力勾配は、高粘性流体が注入していく際の注入圧力の経時変化から割れ目幅を求める方法であ る。一次元モデルの場合は、高粘性流体の浸潤前線の増加に伴って、流動抵抗が線形に増加する。 このため、流動が一次元であることがわかる。また、圧力勾配から流動抵抗がわかり透水係数と 割れ目幅が算出できる。③到達時間からは、定常になるまでに注入した流量から割れ目の体積を 求める方法である。これに、割れ目の長さ(ΔL)と幅(W)を考慮することにより、割れ目幅が算出 できる。

試験結果から、①定常状態で評価すると、透水量係数は1.0×10⁻⁴ m²/s、割れ目幅0.50 mm、② 非定常状態で評価すると、透水量係数は1.2×10⁻⁴ m²/s、割れ目幅0.52 mm、③到達時間で評価す ると注入体積が43m1のため、注入口と流出口および配管の体積の約5m1を引いて、0.76 mmと評 価される。到達時間で評価した場合に割れ目幅が大きくなるが、これは高粘性流体が割れ目内を 流動する際に、前線付近の高粘性流体が薄まることによって粘性が低下することによって、薄ま

図 2.3.4-6 一次元モデルへの高粘性流体注入試験の結果

軸対称モデルでの試験結果を図 2.3.4-7 に示す。この試験は高粘性流体の粘性 90 cp、注入流 量 30 ml/min での試験結果である。割れ目幅は 0.2 mm となるように、0.2 mm 厚ののステンレス 円形スペーサーを挟んでいる。高粘性流体試験では、一次元の場合と同様に、異なる粘性の流体 を注入するためと非定常課程でも評価するため、3 種類の方法で割れ目の幅を評価することが可 能である。①定常状態の圧力差は、ここでは 6.5~7 m 程度であった。このため、透水量係数は 2.5~2.7×10⁻⁶ m²/s となる。これに基づいて割れ目幅を評価すると、0.15±0.00 mm となる。② 非定常状態の圧力勾配からは、式(2.3.3-8)に示したように、h-log t 紙上で傾きを求める必要が ある。試験結果を h-log t で示した図からもわかるように、傾きは途中で緩やかになるため、時 間とともに透水係数が大きくなっている可能性がある。 特に 200s 以後は、高粘性流体が既に境界 に届いている可能性があるため、100sまでの結果を用いて整理した。この結果、透水量係数は2.7 ±0.2×10⁻⁶ m²/s、これに対応する割れ目幅は 0.15±0.00 mm となる。②非定常状態の圧力勾配か らは、0.09±0.2 mm となった。非定常状態からの割れ目幅の算出は、対数関数上の切片から割れ 目幅を求めるが、h-log t が取り方によって大きく変化するため精度に劣る。③到達時間からの 割れ目幅は、軸対称モデルでは浸潤前線が進むほど圧力変動が小さくなり、識別が困難なため求 めることができなかった。ちなみに、割れ目幅が 0.15~0.20 mm では、230~310s 程度で試験体 が高粘性流体で満たされるためであるが、一次元の場合と同様に混合の影響も受けており明確に

(2)h-log t 表示(片対数軸)図 2.3.4-7 軸対称モデルでの高粘性流体注入試験の結果

(4) トレーサー試験

トレーサーにはウラニンを用い、0.5 ppm のウラニン溶液を 10 ml 注入した。注入速度は 0.1 ml/min と 1 ml/min の 2 パターンで実施した。一次元モデルでの試験結果を図に示す。試験結果 から、ピークが出るまでに 0.1 ml/min では 27 ml、1 ml/min では 31.5 ml となっている。このピ ークが出るまでの体積が割れ目と流入出口と配管の体積であるため、流入出口と配管の体積を差 し引いて、割れ目の体積は 0.1 ml/min では 22 ml、1 ml/min では 26.5 ml となる。このため、割 れ目幅は、0.1 ml/min では 0.44 mm、1 ml/min では 0.53 mm となる。

(2) 1 ml/min での試験結果

図 2.3.4-8 一次元モデルでの試験結果

流量が変わるとピーク位置とピーク濃度が変化するが、原因は不明である。これは流量が少な いほど選択的な経路を通っているのではないかと考えられる。

(5) レジン注入

一次元と軸対称モデルにレジン注入を行った。レジンには信越シリコンの型取りシリコン

KE-12 を用いた。ただし、型取りに用いたシリコンは粘性が高く(カタログ値:10,000 cp)かつ 硬化が早い(約20分)のため、シリンジなどで押し込むことが困難で、一次元モデル二次元モデル ともにシリコンを入れる側と反対側の出口側から真空脱気をしてシリコンを注入した。このため、 割れ目幅はやや狭くなっている可能性がある。シリコン注入時の注入結果を図に示す。シリコン 注入後、一昼夜経過してから上板を外し、一部を剥がしてからレジンの厚みを計測した。計測に は0.01 mm まで計測可能なデジタルノギスを用いた。この結果、割れ目幅は一次元モデルでは0.44 ±0.02 mm、軸対称モデルでは0.24±0.02 mm であった。ただし、シリコンは押さえると少し変形 するため、割れ目幅はやや小さく評価している可能性がある。

(1)レジンの注入状況(白色部分がレジン)

(2)レジンの注入結果(上板を外した後)図 2.3.4-9 レジンの注入状況と注入結果

2.3.5 試験結果の比較

本節では、割れ目の特性を評価する技術の比較を室内において一次元モデルおよび軸対称モデルを 用いて実施した。割れ目幅を比較したものを表 2.3.5-1 に示す。

一次元モデルでは評価結果は良く一致している。トレーサー試験(1 ml/mi)高粘性流体試験の非定常 過程の高粘性流体試験でやや大きくなるが概ね適切に評価できていると考えられる。軸対称モデルで も概ね一致している。ただし、高粘性流体の非定常過程で圧力がやや変動したため割れ目幅がやや小 さく評価されている。レジン注入では微少な割れ目幅を直接計測することが困難であったため、割れ 目幅がやや大きく評価されていると考えられる。軸対称モデルでは、上板を押さえるために、10cm 毎 にネジを設置しているが、岩石に均一にネジを設置する穴を作成することが困難だったため、ややバ ラツキがある結果となっている可能性がある。

ここでは、一律に評価された値のみを示しているが、評価にあたっては、一次元の場合、流路長や 流路幅が分かっていないとほとんどの結果で割れ目幅が算出できない。トレーサー試験と高粘性流体 試験(到達時間)では、割れ目の体積は分かるものの、それを割れ目の面積で割ることによって割れ目 幅が得られる。透水試験、高粘性流体試験(定常状態)でも、割れ目の長さと横幅とを用いている。高 粘性流体(非定常過程)は、割れ目の長さは用いていない。ラドン濃度計測はフラックス推定時に割れ 目の面積を用いているが、割れ目幅算出時には、フラックスとラドン濃度しか用いていない。レジン 注入では、直接割れ目幅がわかるものの、剥がすという作業が必要になる。このため、一概にどの方 法が良いとはいえないが、前提が分かっていれば適切に評価できる可能性が高い。ラドン濃度計測に ついては、室内試験で適切に割れ目幅を求めるには、試験系などをラドンが散逸しないものに変える、 サンプル量を確保するためにより大規模な装置にする、岩盤の給水を防ぐなどが必要である。

試験名	一次元モデル	軸対称モデル	備考
設定値	0.5 mm	0.2 mm	スペーサーの設定
トレーサー試験	0.44 mm:流量1 ml/min	-	トレーサーの破過曲線
	0.53 mm:流量1 ml/min		から体積を推定
透水試験	0.44 mm	0.15 mm	割れ目幅の3乗則から
高粘性流体試験	0.50 mm:定常状態	0.15 mm:定常状態	割れ目幅の3乗則から
	0.52 mm:非定常過程	0.09 mm:非定常過程	圧力勾配から
	0.76 mm:到達時間	評価不能:到達時間	注入量から
Rn 濃度計測	推定困難	推定困難	試験系の見直しが必要
レジン注入	0.44 mm	0.22 mm	

表 2.3.5-1 各種試験における割れ目幅の比較結果

2.4 蛍光染料の非吸着性トレーサーとしての有用性検討

2.1 に記述したように、蛍光染料は取り扱いがしやすく、現場での低濃度での測定が容易であるた め、しばしば非吸着性のトレーサーとして使用され、トレーサー試験の他にボーリング掘削時に用い る掘削水の、地下水や岩石コア間隙水に対する汚染度評価などに用いられている。しかし、実際の現 場においては蛍光染料の投入量と現場で回収された溶液における濃度が整合しないなどの経験が報告 されている。蛍光染料は約100年以上もの間、水の動きを知るための有用なトレーサーとして利用さ れてきた (Flury and Wai, 2003; Mull et al., 1998; Ravbar et al., 2008)。蛍光染料は利用にお いて長い歴史があるにもかかわらず、現場で上記のような問題が起きてしまう理由の一つとして、ど のような使用ができてどのような注意が必要なのか今までの知見がまとまった形で存在しないことと、 蛍光染料の挙動が使用する現場の地下水や岩石の特性に依存性が高いことが挙げられる。そこで今年 度の研究においては、現場での使用から分析までに考えられる蛍光染料濃度が減少する、ばらつきの 要因となりうる事項について、既往の研究の知見をまとめ、既往の研究で不足している箇所について は追加の試験を実施した。さらに、瑞浪地域および幌延地域で取得した岩石や地下水を用いて、蛍光 染料と接触させる試験を実施し、地下水や岩石の特性によって地下水中の蛍光染料濃度が変化する要 因を調べた。

試験に用いた蛍光染料は、ウラニン(3', 6' - ジヒドロキスシスピロ[3H-イソベンゾフラン-1,9' -キサンテン]-3-オンニナトリウム塩) ・エオシン(2',4',5',7' - テトラブロモ -3',6'-ジヒドロキスシスピロ[イソベンゾフラン-1(3H),9' -[9H]キサンテン]-3-オンニ ナトリウム塩) ・ナフチオン酸ナトリウム(4-アミノ-1-ナフタレンスルホン酸-ナトリウム塩四 水和物)・アミノG酸(7-アミノ-1,3-ナフタレンスルホン酸モノカリウム水和物)の4種類であ り、これらはトレーサー試験やボーリング掘削に頻繁に使用される蛍光染料である。

4 種の蛍光染料について、トレーサー試験や掘削水混合割合評価への利用において、結果への影響 が大きいと考えられる、以下の項目について調査および試験結果をまとめた。

- ① 分析:2.4.2
- 吸着以外に濃度に影響を与える要因:2.4.3
- ③ 吸着挙動:2.4.4

2.4.1 調査対象とした各蛍光染料の特性について

調査対象とした各蛍光染料の構造式を図 2.4.1-1 に示した。それぞれの蛍光染料における励起・蛍 光波長を表 2.4.1-1 にまとめる。

図 2.4.1-1 検討した4種類の蛍光染料の構造式

蛍光染料名	励起波長	蛍光波長	10ppbでの蛍光強度*
ウラニン	491 nm	512 nm	4.9
エオシン	515 nm	535 nm	0.7
NAP	315 nm	420 nm	1.8
AG	300 nm	450 nm	1.2

表 2.4.1-1 各蛍光染料での発光特性

*蛍光光度計: FP-8300を用いて、励起側バンド幅 5nm、蛍光側バンド幅 5nm、レスポンス 1sec、感度 Medium で、96 ウェルのセルを用いて分析したときの結果

2.4.2 分析における蛍光染料濃度の変化・ばらつき要因について

蛍光染料が実験の目的通りに挙動したとしても、正しく分析できなければ間違った試験結果を得て しまうことになる。本項では、蛍光染料の分析に影響を与える要因を列挙し、それについての知見を 整理した。また、必要に応じて追加の試験を実施し、既往の知見と併せてまとめた。

(1) サンプルの pH

評価対象とした4つの蛍光染料については、ウラニンの蛍光強度がpHに大きな依存性があるこ とが報告されている(柏谷ら,2010)。これは、ウラニンの溶液中での形態がpHによって変化し、 これが蛍光強度に影響するためである(Smart and Laidlaw, 1977)。ウラニンはpH5~8で蛍光 強度が大きく変化するため、対象とする地下水が上記の範囲にある場合、地下水のpHがわずかに 変化しても蛍光強度が大きく変化する可能性を認識しておく必要がある。一方、エオシン・NAP・ AGの蛍光強度もpHに対して依存性があるが、蛍光強度が大きく変化するのがpH5以下の領域で あるため、地下水への適用を考えると、これらの蛍光染料については特殊な場合を除いて地下水 中では蛍光強度のpH 依存性を考える必要はない。

柏谷ら(2010)で示されているように、全ての蛍光染料について pH8~10 の領域で蛍光強度は最 も高くなるため、pHを9程度に調整して分析すれば最も高い感度で蛍光染料濃度を分析すること ができる。地下水に対し酸やアルカリを添加し、pHを9に調整することはかなり手間をとる作業 であるうえ、pH 調整後のサンプルも空気中の炭酸との相互作用等によって pH が刻々と変化する 可能性がある。このため、簡易にかつ安定的にサンプルの pH を目的の領域に入れてこれを保持す るためには、pH緩衝液を用いるのが良いと考えられる。しかし、緩衝液自体が励起光を受けて蛍 光を発したり、蛍光染料から生じる蛍光をクエンチング(消光)すると、緩衝液を加えることで 蛍光濃度分析結果に影響をおよぼすことになる。このため、使用する緩衝液は、蛍光染料の励起・ 蛍光波長の光に対して吸収等がないものを選定する必要がある。柏谷ら(2010)は、16 種類の緩 衝液について pH の緩衝能力・蛍光特性(励起光や蛍光に対する吸光など)を調べている。 その結 果、種々の模擬地下水や模擬掘削水に対して 0.05M ホウ砂水溶液は高い緩衝能力を示し、試料と ホウ砂水溶液の混合率が9:1~1:1の範囲であればほとんどの試料のpHは9程度になることを 示した。また、ホウ砂水溶液には4種の蛍光染料の励起光・蛍光に対して顕著な吸収等が見られ なかったことが報告されている。この結果から、0.05M ホウ砂水溶液をサンプルとなる溶液と混 合して溶液の pH を 9 付近に調整した上で蛍光強度の分析を実施することで、試料の pH による蛍 光強度への影響を回避することができると考えられる。

一方、光ファイバー等を用いて地下水中の蛍光染料濃度を on-line, in-situ で分析するケース も想定される。このような測定は、試験現場で蛍光染料濃度のピーク等を知ることができるため、 輸送・保管中のサンプルの変質(後述)の影響を受けない、結果に応じた条件の再設定が可能で ある、等のメリットがある。一方で、pH を調整しながら蛍光強度を分析することは難しいため、 地下水が pH5~8 程度の領域にある場合にはウラニン濃度が大きく変化する可能性を認識した上 でデータを取り扱う必要がある。

2-44

(2) サンプルの温度

サンプルの温度についても、蛍光の発光強度に影響があると報告されている(Smart and Laidlaw, 1977)。蛍光強度と温度の関係については、下記の式で記述できる。

 $Fs = F^{n(Ts - T)}$

ここで F: ある温度(T)における蛍光強度、F_s:標準とした温度での蛍光強度、n は温度指数 (Temperature exponent)である。ウラニンおよび AG については、温度指数が報告されており、そ れぞれ-0.0036、-0.0019 である。

エオシンおよび NAP については、該当するデータが既往の研究で見あたらなかったため、以下 のような測定を実施して温度依存性を確認した。試験に使用したのは日本分光社製の蛍光光度計 である FP-8300 に空冷ペルチェセルホルダ EHC-813 を取り付けた分析装置である。濃度が 100 μ g/L になるように調製した溶液の温度をセルホルダで 20・30・40・50℃に調整し、それぞれの温 度における溶液の蛍光強度を比較した。

ウラニン・AG については式からの計算値、エオシン・NAP については上記の実験値をプロット した結果を図 2.4.2-1 に示した。図では 20℃での強度を 100%としたときの、30~50℃の蛍光強 度を示している。NAP は 4 種類の蛍光染料の中で最も測定温度に対する依存性が高く、20℃から 50℃への昇温で蛍光強度が 30%近く減少する。他の 3 種類の蛍光染料は NAP ほど大きくはないが、 それでも温度依存性があり、10℃の温度の差異によって数%程度の強度の違いが生じる。

図 2.4.2-1 4種の蛍光染料発光強度の温度依存性

上記のように蛍光染料における蛍光強度には明確な温度依存性があるため、分析の誤差を少な くするためには標準試料と未知試料測定時の試料の温度差を小さくする必要がある。測定におい ては、例えば、測定装置の設置場所の温度を一定に保つ、冷蔵庫保管した試料は室温に戻して測 定する、ポンプや地熱などの熱源に接触した試料は標準試料と温度を揃える、といった運用上の 留意が必要である。加えて、地表と地下で温度差が生じるような環境において、on-line・in-situ 測定を実施する場合には、地表と地下とで同じ標準試料を測定しても強度に差が生じる可能性を 認識しておく必要がある。

(3) サンプルのイオン濃度

海水あるいは海水と同程度までの塩化ナトリウム・塩化カリウム溶液について、ウラニン・エ オシン・AG・NAP の蛍光強度は塩分濃度の影響を受けないか、受けたとしてもわずかであること が報告されている(Smart and Laidlaw, 1977)。このため、よほど特殊な地下水でない限り、サ ンプルの塩分濃度が蛍光強度測定そのものに影響を及ぼすことはないと考えて良い。

Magale et al., (2008) はさらに高濃度の塩水(死海における水を想定して)における蛍光染料の蛍光強度を調べており、100 g/L(=100,000 mg/L:海水の6倍程度)ではウラニン・NAPの蛍光強度はほとんど変化しないが、エオシンの蛍光強度は30%程度まで低下することを報告している(AG は彼らの試験に使用されていない)。この報告結果から、少なくともウラニン・NAP については、海水よりも高いイオン濃度をもつ地下水に対して蛍光染料を添加した場合でも、補正することなく濃度を定量できると考えられる。

(4) 共存有機物の影響

天然の有機物が共存した場合の影響について明らかにするため、4 種類の蛍光染料の溶液(濃度 100ppb)に対して、フミン酸の濃度が 50~5000ppb となるようにフミン酸ストック溶液を添加し、 蛍光強度を測定する試験を実施した。フミン酸は和光純薬から購入したものを使用した。また、 蛍光染料を加えないブランク溶液に対しても、同様の試験を実施した。図 2.4.2-2 には、フミン 酸の濃度と分析装置で評価された見かけの蛍光染料濃度の関係を示した。さらに図 2.4.2-3 には、 蛍光染料を入れないブランク溶液において、フミン酸濃度とみかけ蛍光染料濃度の関係を示した。 フミン酸が共存する影響としては、蛍光染料が発した蛍光をフミン酸が吸収してみかけ濃度が低 下してしまう効果と、フミン酸が蛍光染料と同じような励起・蛍光を発しみかけ濃度が増加して しまう効果、の2 つが想定された。

まず、ウラニンの結果を見るとブランクにおいてはほぼ 0ppb の値を示し、今回試験に使用した フミン酸はウラニンと同じ蛍光波長を発しないことがわかる。また、実際に蛍光染料とウラニン を共存させた系では、5000ppb までの濃度であればほとんどフミン酸の影響を受けず 100ppb の値 を示すことがわかる。後述のようにエオシンについてはフミン酸濃度の上昇に伴ってみかけの蛍

2-46

光染料濃度が低下する傾向が観察されたため、類似の蛍光波長をもつウラニンについても多少の 蛍光の吸収があるものと考えられる。しかし、前述のようにウラニンは蛍光の強度が強く、影響 が顕著には観察されなかったものと考えられる。一方エオシンは、ブランクにおいては蛍光濃度 が 0ppb 付近と評価されており、フミン酸はエオシンと同じ蛍光波長の光をほとんど発しないこと がわかる。フミン酸とエオシンを共存させた溶液では、フミン酸濃度が 2000ppb を超えるとエオ シンの濃度低下が顕著であることがわかる。このため、エオシンから発せられた蛍光の一部がフ ミン酸によって吸収されていることがわかる。このため、地下水の TOC 濃度が高い場合にはエオ シンは入れた濃度よりも低く評価される可能性がある。

図 2.4.2-2 フミン酸が共存した場合のみかけの蛍光染料濃度

図 2.4.2-3 フミン酸が共存した場合のブランク溶液におけるみかけの蛍光染料濃度

NAP および AG については傾向が類似しており、ブランクにおいて 2000ppb 以上では蛍光染料を 添加していないにもかかわらず有意な濃度の蛍光染料濃度が検出された。5000ppb のフミン酸が 共存した場合、NAP の場合で 27ppb 程度、AG の場合で 12ppb 程度の濃度があるように評価された。 蛍光染料とフミン酸が共存する場合でも、フミン酸濃度が 5000ppb の場合で、NAP と AG がそれぞ れ 23 および 9ppb の濃度が上乗せされて評価された。以上のことから、フミン酸は NAP や AG と同 じような蛍光を発し、共存した場合には濃度が上乗せされる可能性があることが分かった。今回 の試験は 100ppb での分析のため影響は 25%程度のずれで収まっているが、地下水中で使用すると きにはより低い濃度で分析する可能性がある。この場合には、かなり大きな影響がでる可能性が ある。

今回は市販のフミン酸を用いて試験を実施した。共存するフミン酸濃度が2000ppbを超えると エオシン・NAP・AG には顕著な影響が見られた。上記のフミン酸濃度を TOC に換算すると 1000ppb=1ppm 程度であり、地下水として決して異常に濃い TOC 濃度ではない。このため、特に TOC 濃度が高い地下水ではなくても、蛍光染料濃度が影響を受ける可能性があることを認識し、可能 であればバックグランドとしての地下水のみかけの蛍光染料濃度を分析してみるなど、影響を回 避するための操作をしておくことが望ましい。

(5) 分析における光分解

蛍光染料は一般的に光に弱く、日光に曝露することで光分解(photo-degradation)し、蛍光強 度が低下することが報告されている。日光や室内環境での光分解については後述する(2.4.3)。 蛍光染料濃度の蛍光光度計による測定はある波長の光を試料へ照射し、試料から発生するより長 波長の蛍光を観察する。つまり、分析そのものが試料に光をあてる行為であり、蛍光染料が光分 解する可能性がある。

本研究では、測定中の光分解について検討するため、4 つの蛍光染料溶液に対して繰り返し分 析を実施し、測定回数と観察される蛍光強度の関係を調べた。4 つの蛍光染料濃度がそれぞれ 50 µg/1 になるようにホウ砂水溶液で試料を調製し、この試料をセル(石英ガラス製、1cm 角)に 入れて蛍光分光光度計に入れた。分析を実施するのと同様にしてセルに対して励起波長をあて続 け、一定時間が経過した後蛍光波長の強度を測定した。

測定結果を図 2.4.2-4 に示した。図から分かるように、分析中の励起光によっても蛍光染料は 分解し濃度が低下することが分かった。ウラニンやエオシンに比べて、NAP・AG ではより分解速 度が速く、20分間励起光を照射し続けると、蛍光強度が 20%以上低下することがわかった。後述 のように NAP・AG は同じ光に対してであればウラニン・エオシンよりも光に対して耐性があるこ とが確認されている。このため、NAP・AG がウラニン・エオシンと比べて分解速度が大きいのは 励起光の波長が短く、より蛍光染料を分解する能力が高いためであると考えられる。

図 2.4.2-4 蛍光光度計での分析セルへの静置時間と蛍光強度の関係

通常シャッター付きの蛍光光度計を用いた分析において、このように長時間励起光を照射し続ける 可能性は極めて低い。このため、測定中の光分解については考慮する必要がないケースがほとんど であると考えられる。しかし、オンラインで in-situ で測定を実施する場合やシャッターの設定が ない場合には、分析中に値が変化する可能性について考慮する必要がある。また、シャッターの設 定をしないまま分析セルの中にサンプルを入れ、装置内にサンプルを放置することはやはり蛍光濃 度の変化につながる可能性があるため、避けるべきである。

(6) 2種類の蛍光染料が共存する影響

トレーサー試験において、あるいは掘削水評価について2種類以上の蛍光染料を使用したり、意 図せず他の蛍光染料が混入する可能性がある。このような場合に、2種類のトレーサーをそれぞれ 定量可能かを検討しておくことは有用である。ここでは、4種類の蛍光染料のうち1つの蛍光染料 (染料 A とする) 濃度が 10ppb の溶液を調製し、そこに他の3種類の蛍光染料濃度が 10~500ppb となるように添加した場合の、染料 A の見かけの濃度を評価した。結果を図 2.4.2-5~図 2.4.2-8 に示した。

図 2.4.2-5 他蛍光染料が共存した場合のウラニンのみかけ濃度の変化

図 2.4.2-6 他蛍光染料が共存した場合のエオシンのみかけ濃度の変化

図 2.4.2-7 他蛍光染料が共存した場合の NAP のみかけ濃度の変化

図 2.4.2-8 他蛍光染料が共存した場合の AG のみかけ濃度の変化

まずウラニンの結果(図 2.4.2-8)を見ると、エオシンが 200ppb を超えると他の条件に比べて明 らかに高い濃度を示すことがわかる。エオシンが 500ppb の濃度で共存した場合ウラニン濃度に与え る影響は1.5~2.0ppb 程度である。このように、ウラニンはエオシンと励起・蛍光のピークが近く、 ウラニン濃度が10ppbに対してエオシン濃度が 200ppbを上回ってくると測定結果に顕著な影響を与 える。しかし、後述するエオシンの分析影響へのウラニンの影響と比較すると、ウラニンがエオシ ンから受ける影響はわずかであると言える。これは、先述のようにエオシンよりも蛍光の発光強度 が強く、影響を受けにくかったためであると推察される。他の蛍光染料では、ウラニンの場合と比 べて影響が顕著であり、それぞれ蛍光のピークが近い、(ウラニン・エオシン)、(AG・NAP)はお 互いの分析結果に強く干渉していることがわかる。エオシン、AG、NAP それぞれのみかけの濃度は 共存するウラニン、NAP、AG の濃度上昇とともに直線的に増加している。これらの傾きから、共存 した場合の影響について、表のようにまとめるこができる。

NAP と AG についてはピークを計算によって分離し、それぞれの濃度を分析する方法が提案されて いる (Schnegg, 2015) が、現場での実効性等を考えると (ウラニン・エオシン)、 (AG・NAP)の 共存は避けた方が良いと考えられる。 2.4.3 吸着以外に蛍光染料濃度に影響を与える要因について

(1) 光分解

先述のように、蛍光染料が光によって分解することはすでによく知られており、人工の光や太 陽光下における蛍光染料の分解の速度定数が種々の研究で測定されている(表-Smart and Laidlaw, 1977)。これらの研究でも指摘されているように、光分解速度は蛍光染料の濃度と光の 種類・強さに大きく依存しているため、これらの結果や以下に示す実験結果を基に、ある現場や 試験での光分解の影響を定量的に評価することは困難である。しかし、どの程度の時間オーダー で試料を光へ曝露してはいけないのか、を知るためにある特定の条件下での分解速度を示すこと は有用である。

业昭尉冬进/举业氿ᆀ	光による減衰係数*			
兀照别未什/虽兀朱科	アミノG酸	ウラニン	ローダミンB	
日光の6時間照射(100ppb)	1.6 × 10 ⁻²	9.5 × 10 ⁻²	5.5 × 10 ⁻⁴	
60W電球に夜照射(100ppb)	3.7 × 10 ⁻⁴	1.3 × 10 ⁻²	1.5 × 10 ⁻⁴	

表 2.4.3-1 各蛍光染料の光による減衰係数

*光による減衰係数は $F = F_1 \exp(-kt)$ で定義される。ここでF:ある時間での蛍光強度、 F_1 光曝 露前の蛍光強度、t:経過時間、k:減衰係数である。

注)表の情報が記載されている論文には時間・減衰係数の単位が明示されていないが、今回実施した試験結果から h⁻¹であると推察される。

エオシン・NAP では光曝露試験のデータがほとんどないこともあり、ここでは改めて4つの蛍 光染料を日光に曝露する試験を実施した。試験を実施したのは8月、場所は千葉県我孫子市であ り、晴れの日を選んで試験を実施した。4つの蛍光染料の濃度が10mg/Lとなるように、純水で蛍 光染料溶液を調製した後、容量15mLのガラスバイアル(ホウケイ酸ガラス製)に10mLの溶液を 入れ、屋外に静置した。所定の時間経過後に少量のサンプルを取り分けてホウ砂水溶液で希釈し た後、蛍光強度を分析した。さらに、室内で遮光せずに蛍光灯下に静置する試験も併せて実施し た。

日光に曝露したサンプルにおける蛍光強度の経時変化を図 2.4.3-1 に示した。図に示したよう に、ガラス容器に入れたサンプルを晴れの日に屋外に静置した場合、かなり速い速度で蛍光強度 が減少することがわかった。このため、試験に利用するトレーサ溶液や試験後のサンプルを屋外 で日光に曝露するような操作は数分間であっても避けなくてはならない。ただし、濃度が低い領 域では光分解の速度はやや緩やかになるため、濃度が低いサンプルでは光分解の影響は上述した ほどには大きくないと考えられる。また、4 種の蛍光染料とも日光曝露で分解するものの、この

図 2.4.3-1 日光に曝露した蛍光染料における蛍光濃度の変化

室内で蛍光灯に曝露した場合の蛍光強度の変化を図 2.4.3-2 に示した。蛍光灯への曝露であれ ば NAP・AG 濃度にはほとんど影響がない。また、ウラニン・エオシンについても 56 時間の蛍光灯 の光への曝露で、蛍光強度は 5%が減少する程度である。このため、取得したサンプルについて日 光が入らない室内で数分から数十分溶液を蛍光灯に曝して希釈等の操作を実施することは蛍光強 度にほとんど影響を与えないと考えて良い。

図 2.4.3-2 蛍光灯の光に曝露した蛍光染料における蛍光濃度の変化

(2) 地下水との接触による濃度変化

瑞浪地域・幌延地域で取得した地下水と蛍光染料を接触させたところ、瑞浪地域の地下水では 顕著な変化が現れなかったのに対して、幌延地域の地下水と接触させた蛍光染料には変化が生じ た。このため、以下では幌延地下水と蛍光染料を接触させた場合の変化について記述する。

幌延の地下水は立坑内の採取孔から採取したものを使用した。ろ過していない地下水に 5mg/L になるように4種類の蛍光染料を入れて静置したところ、ウラニンだけが1週間後に蛍光濃度が 大きく低下する現象が観察された。さらに詳細を検討するため、ウラニン溶液に対して、以下の ような試験を実施した。ウラニン濃度が変化した原因を明らかにするため、0.45µm フィルタで ろ過前後の地下水、限外ろ過前後の地下水、水銀の添加の有無の条件を変えたサンプルを6種類 準備した。つまり、①未処理の地下水、②①に水銀を添加したもの、③0.45µm のフィルタでろ 過した地下水、④③に水銀を添加したもの、⑤限外ろ過後の地下水、⑥⑤に水銀を添加したもの、 の 6 種類である。これを室温で静置し、ウラニンの色の変化を観察した。色の変化の様子を図 2.4.3-3 に示した。図から分かるように、試験開始後 8 日目くらいから①の条件のサンプルが変 色し、ウラニンの黄色がピンクまたはオレンジに近い色になっていることがわかる。19 日後にそ れぞれのウラニン濃度を分析した結果を表 2.4.3-2 にまとめた。表からわかるように、他の条件 のサンプルがほぼ 5ppm の濃度を保っているのに対し、地下水にそのままウラニンを添加したサン プルだけがウラニン濃度が大きく低下していることが分かる。

変色前後のウラニンについて3次元蛍光を取得した結果を図 2.4.3-4 に示す。最も強度高いピ ークの位置は変色前後で変わりがないが、変色後の3次元蛍光では、変色前には見られなかった 位置にピークが生じていることがわかる。このため、ウラニンの一部が別の蛍光特性をもつ物質 に変質した可能性があると考えられる。上記の試験では、溶液に水銀を添加することでウラニン の変色が観察されなくなった。このため、上述の変化には微生物の影響があるものと考えられる。 また、変色後の溶液を限外ろ過した結果、溶液からピンク色が除去され限外ろ過フィルタユニッ トの表面にピンク色の物質が捕捉された。このことから、変質後のウラニンはある程度の分子量 を持ったコロイドとして存在していることがわかった。さらに、0.45µmのフィルタでろ過する ことで変色が起きなかったことから、変色には0.45µm以上の微粒子または微生物が関与してい る可能性が高いと考えられる。また、変色は1週間以上の時間をかけて起きたことから、変色に 関わる反応は室温では緩やかに起きていると推察される。

今回上記の試験で幌延の地下水では、地下水に含まれているコロイドや微生物によって変色し、 蛍光特性を失うことがわかった。今回の検討だけでは、この原因や対策について十分な情報を得 ることができていない。今後の研究において、さらに情報を取得し、どのような原因で変色が起 きるのかを推定していく予定である。

2-55

図 2.4.3-3 幌延地域の地下水とウラニンを接触させたときの色の変化

条件番号	条件		19日後のウラ
	フィルタ	水銀	ニン濃度(ppm)
1	—	—	0.67
2	_	0	5.17
3	0.45	—	5.00
4	0.45	0	4.98
(5)	限外ろ過	—	5.10
6	限外ろ過	0	4.95

表 2.4.3-2 地下水と接触後のウラニン濃度のまとめ

図 2.4.3-4 変色前後のウラニンの3次元蛍光スペクトル

赤線:変色前 黒線:変色後

(3) 保管方法への依存性

蛍光染料濃度の分析用に取得したサンプルについて、必ずしもすぐに分析できるわけではない。 このため、保管容器や保管状態による蛍光染料濃度の変化について、情報を得ておくことでサン プル採取から分析までどのように保管するべきか、どの程度保管ができるのかを明らかにするこ とができる。

ここではまず、①有機物が吸着しにくいと考えられるガラスビンを使用、②溶液のpHをホウ砂 水溶液で9付近に調整、③冷蔵庫内で保管、という条件で蛍光強度が40日間保たれることを確認 する試験を実施した。具体的には4種類の蛍光染料について濃度10~500ppbに調整したものを冷 蔵庫で約40日間保管し、保管前後の溶液における蛍光強度の比を調べる試験を実施した。結果を 表2.4.3-3にまとめる。表から分かるように、上記の条件ではほぼ40日間に亘って蛍光強度の 値が保たれていることがわかる。エオシンの低濃度で比率が大きく増加しているように見えるの は、エオシンの蛍光強度が弱く、測定におけるバラツキが比率に大きく影響しているためである と考えられる。上記の結果から、冷蔵保管・pHを9に緩衝して保管・ガラスビンを使用して保管、 という3つの条件を満たせば、40日以上は蛍光強度が保たれることが分かった。

次に室温の状態で保管条件を変えて3週間サンプルを保管し、保管前後の蛍光強度を調べる試 験を実施した。変化させた条件は、①蛍光染料濃度(20ppbまたは100ppb)、②液性(模擬地下 水:瑞浪地域の地下水を模擬して試薬を純水に溶解させて調製した溶液、ホウ砂水溶液)、③容 器(ガラス、ポリプロピレン)である。それぞれの条件における3週間前後の濃度を表 2.4.3-4 室温での蛍光濃度分析用試料の保管試験結果にまとめた。表から分かるように、全ての試験条件 において3週間の保管前後での蛍光染料濃度には顕著な変化が認められなかった。このことから、 蛍光染料分析用のサンプルは、室温・PP 容器や遠沈管での保管に3週間程度は耐えうることを確 認することができた。ただし、上記の結果は実験室で調製した模擬的な地下水を用いたものであ る。(2)で示したように、ウラニンは地下水中の微生物の影響を受けて10日程度の時間をかけて 変色した。このため、微生物の影響等がある場合には室温で3週間の保管ができない可能性もあ る。

以上のように、この試験では微生物の影響を受けない場合には、4 種類の蛍光染料は室温で PP 容器内であっても3週間程度は保管に耐えうることを示すことができた。ただし、地下水では微 生物活動等の影響がある可能性が考えられるため、留意が必要である。

2-58

蛍光染料	濃度	開始時強度	40日後の強度	比率(%)
	10 ppb	6.8	6.8	100.3
	20 ppb	13.6	13.5	99.0
ウラニン	50 ppb	34.1	33.3	97.6
.,,,	100 ppb	67.4	66.6	98.9
	200 ppb	134.0	130.0	96.9
	500 ppb	339.7	328.0	96.5
	10 ppb	0.7	0.8	119.7
	20 ppb	1.4	1.6	113.7
T + ? / /	50 ppb	3.4	3.8	112.4
エオノノ	100 ppb	7.1	7.4	104.2
	200 ppb	13.5	14.7	109.0
	500 ppb	33.8	35.6	105.2
NAP	10 ppb	1.1	1.1	99.4
	20 ppb	2.4	2.2	91.1
	50 ppb	6.1	5.6	91.8
NAC	100 ppb	12.0	11.4	95.2
	200 ppb	24.0	23.3	97.1
	500 ppb	60.6	59.4	98.1
AG	10 ppb	1.9	1.9	98.3
	20 ppb	3.9	3.9	99.2
	50 ppb	9.5	9.8	103.3
	100 ppb	19.2	19.7	102.8
	200 ppb	37.6	38.6	102.6
	500 ppb	95.7	97.4	101.8

表 2.4.3-3 冷蔵庫・ガラス容器・ホウ砂水溶液での保管試験の結果

出业边到 夕州来日		条件		3週間後	
虫 兀笨科	宋忤留方	濃度	溶液	容器	蛍光濃度 (%) *
ウラニン	1	20ppb	模擬地下水	ガラス	98.6
	2			PP	99.5
	3		ホウ砂	ガラス	99.5
	4			PP	100.2
	5	100 1	模擬地下水	PP	99.4
	6	addon	ホウ砂	PP	98.9
	1		雄商をする	ガラス	101.0
* + * * *	2	20mmh	 実旗地下小	PP	103.4
	3	Zuppb	ホウ砂	ガラス	102.6
	4			PP	100.6
	5	100ppb	模擬地下水	PP	103.1
	6		ホウ砂	PP	102.5
	1	20ppb	模擬地下水	ガラス	99.7
	2			PP	99.7
	3		ホウ砂	ガラス	99.3
INAF	4			PP	103.8
	5	100mmh	模擬地下水	PP	100.1
	6	Tooppo	ホウ砂	PP	99.1
	1		模擬地下水	ガラス	101.6
AG	2	20ppb		PP	104.3
	3		ホウ砂	ガラス	103.3
	4			PP	106.9
	5	100mm	模擬地下水	PP	101.7
	6	TUUppb	ホウ砂	PP	99.2

表 2.4.3-4 室温での蛍光濃度分析用試料の保管試験結果

2.4.4 吸着举動

ここでは幌延、瑞浪地域の岩石(それぞれ珪藻泥岩、花崗岩)への蛍光染料の吸着挙動を明らかに した。試験はバッチ法で実施した。幌延の岩石は蛍光染料をよく吸着するため、1.0g/50mLの固液比 で実施した。溶液のpH(5・7・9)、添加する溶液の塩分濃度(模擬海水、純水)、水銀添加の有無(微 生物の影響)を変えて試験を実施し、pHや塩分濃度に対する影響および微生物影響の有無についての 情報を得た。さらに、他の吸着材(アルミナ、ケイ砂、合成吸着樹脂、カオリナイト、ベントナイト) との吸着挙動を比較し、どの吸着材への吸着挙動が岩石における吸着挙動と類似しているのかを明ら かにすることで、どの鉱物や成分が蛍光染料の吸着挙動に影響を与えるのかを推察した。

(1) 幌延岩石

AGの幌延岩石に対する吸着試験を実施した場合における、液相の蛍光染料濃度の経時変化を図 2.4.4-1に示した。幌延岩石においては 1g/50mLの固液比で試験を実施した。図から分かるよう に AG はあまり顕著な濃度減少が見られず、80時間をかけて約 5%程度の AG 濃度が減少した。この AG 濃度の減少量についてはあまり明確な pH 依存性は見られなかった。また、塩分濃度に対する 依存性を確認するために、各 pH における海水と純水を用いた試験における結果を図 2.4.4-2 で 比較した。図からわかるように、AG においては塩分濃度に対する依存性も明確ではない。さらに、 図 2.4.4-3 では、水銀のあり/なしで吸着試験時の液相の AG 濃度を比較したが、水銀が入ること によって濃度低下が鈍化するような様子は見られなかった。このため、微生物による影響は少な いものと推察された。

上記のように AG については、80 時間程度の岩石との接触で濃度低下が観察されたが、その割 合は 5%とわずかであった。このため、AG は本質的には幌延岩石に対して吸着が顕著ではなく、 岩石マトリクスへの拡散等が濃度減少の要因であった可能性がある。

図 2.4.4-1 吸着試験時の液相における AG 濃度の経時変化の pH 依存性(幌延岩石)

図 2.4.4-2 吸着試験時の液相における AG 濃度の経時変化の塩分濃度依存性(幌延岩石) *上: pH=5.0、中: pH=7.0、下: pH=9.0 での試験結果

図 2.4.4-3 吸着試験時の液相における AG 濃度の経時変化の水銀添加影響(幌延岩石)

エオシンの幌延岩石に対する吸着試験を実施した場合における、液相の蛍光染料濃度の経時変 化を図 2.4.4-4に示した。図から分かるようにエオシン濃度は初期の6時間程度で大きく減少し、 その後 70時間程度をかけて徐々に濃度が減少する様子が観察された。溶液のpHと吸着量には明 確な依存性があり、pHが低いほど吸着量が大きいことがわかった。pH=5の溶液においては、試験 を実施した条件下で90%を超えるエオシンが岩石に吸着した。pH=9においてはpH=5の場合と比較 して濃度減少は少なく、35~40%程度の濃度低下が見られた。これはAGと比較して顕著に大きな 値であり、AGのほうが絵エオシンよりも非吸着性トレーサーとして振る舞う可能性が高いことを 示している。

また、水銀添加の有無による差異を図で示した。図から分かるように、水銀を添加した場合と 添加しない場合とで、液相におけるエオシン濃度の経時変化には差が見られない。このため、エ オシンの吸着においても微生物の影響はほとんどなかったものと考えられる。さらに、塩分濃度 の依存性を図に示した。図から分かるように、pH=5の条件では明確な濃度依存性は見られなかっ たが、pH=7 および9では塩分濃度が高い方が大きな濃度低下が観察された。

上述のようにエオシンでは、pH が低いほど吸着が顕著であり、さらに塩分濃度が高い方が岩石 への吸着量が増加する傾向が見られた。この傾向は合成吸着樹脂における吸着挙動と類似してい ることから、幌延の岩石においては岩石に含まれる有機物等よる疎水的な吸着が、エオシンの吸 着挙動に対して支配的であると推察された。pH が低く、イオン濃度が高い方が、エオシンはフェ ノール基からHやその他の陽イオンを電離しにくくなり、疎水的な物質に吸着されやすくなる。 一方、幌延岩石に対する AG に吸着が顕著でなかったのは、AG は強酸性であるスルホ基を有して おり液相の pH やイオン濃度にあまり影響を受けずに、H やその他の陽イオンを電離できるためで あると考えられる。

図 2.4.4-4 吸着試験時の液相におけるエオシン濃度の経時変化の pH 依存性(幌延岩石)

図 2.4.4-5 吸着試験時の液相におけるエオシン濃度の経時変化の水銀影響(幌延岩石)

図 2.4.4-6 吸着試験時の液相におけるエオシン濃度の経時変化の塩分濃度影響(幌延岩石)
*上:pH=5.0、中:pH=7.0、下:pH=9.0での試験結果

上記のように、幌延岩石においては岩石中の有機物等に対する疎水的な吸着が、岩石が蛍光染料を吸着する主要なメカニズムであると推察された。上記の吸着はイオン濃度が低いあるいはイオン濃度が高い条件で顕著となるため、pHが低くイオン濃度が高い地下水が比較的有機物を多く含むような岩石と接触しているような系においては、エオシン(あるいは性質が類似するウラニン)の使用には留意が必要である。一方、AGは幌延岩石に対する吸着はエオシンほど顕著ではなく、イオン濃度やpHの条件を変えても、80時間後に液相には95%程度の蛍光染料が残る。このため、試験の用途にもよるが、「ほぼ非吸着性」と考えて扱うことが可能であると考えられた。

(2) 瑞浪岩石

AG の瑞浪岩石に対する吸着試験を実施した場合における、液相の蛍光染料濃度の経時変化を図 2.4.4-7 に示した。図は固液比を 5g/50mL、溶液を純水とした場合の結果である。固液比が上述の 場合、pH=5 の条件以外はほとんど有意な濃度減少が生じておらず、AG はほぼ非吸着性のトレーサ ーとして挙動することが確認された。しかし、pH=5 では顕著な濃度減少が見られ、有意な量の AG が吸着されていることが示唆された。さらに、図 2.4.4-8 には水銀が添加されている場合とされ ていない場合とで、液相中の経緯高染料濃度の経時変化を調べた結果を示した(純水)。図から 分かるように、pH=5 のケースで、水銀を入れない場合の方が入れた場合よりも溶液中の蛍光濃度 減少が大きくなっている。このため、瑞浪の岩石においては、微生物が蛍光染料の吸着挙動に影 響を与える可能性があると考えられる。しかし模擬海水を溶液とした試験ではこのような傾向は 観察されていない(図 2.4.4-9)。このため、水銀を入れる場合と入れない場合の差異について は、再現性を含めてさらに検討していく必要がある。

図 2.4.4-7 吸着試験時の液相における AG 濃度の経時変化の塩分濃度影響(瑞浪岩石)

図 2.4.4-8 吸着試験時の液相における AG 濃度の経時変化の水銀影響(瑞浪岩石、純水)

図 2.4.4-9 吸着試験時の液相における AG 濃度の経時変化の水銀影響(瑞浪岩石、海水)

さらに、図 2.4.4-10 にはイオン濃度依存性を調べるため、濃度の異なる NaCl 溶液を用いて試 験をした場合の、液相中 AG 濃度の経時変化を示した。イオン濃度の依存性を調べるときには、各 条件での差異が分かりやすくなるよう、岩石の量を増やし、10g/50mL の条件で試験を実施してい る。先述の幌延岩石-エオシンのケースでは、イオン濃度が高くなると吸着量が増加する傾向が見 られた。それに対して、瑞浪岩石-AG のケースでは NaCl 濃度が 0.5M に達すると、吸着量が低下 し、液相に残存する蛍光染料の濃度が増加した。このため、幌延岩石と瑞浪岩石とでは、蛍光染 料を吸着するメカニズムが異なると考えられる。

図 2.4.4-10 吸着試験時の液相における AG 濃度の経時変化のイオン濃度依存性(瑞浪岩石)

エオシンの瑞浪岩石に対する吸着挙動の pH 依存性を調べた結果を図に示した。エオシンについ ても pH が低下するとともに、液相の AG 濃度も低下する傾向が確認された。最も吸着が少ない pH=9 の条件においても、固液比 5g/50mL の条件では 15%以上程度の有意な吸着が確認された。また、 純水の試験において水銀添加のあり/なしで液相におけるエオシン濃度を比較したところ、濃度の 経時変化は水銀添加の影響をほとんど受けていないことが分かった。このため、瑞浪岩石ではエ オシンの吸着挙動に対して微生物の影響は少ないと考えて良い。

さらに塩濃度の影響を明らかにするため、図では、pH=5・7・9の条件において純水と海水を溶 液とした場合の結果を比較した。その結果、pH=5 では純水の方が良く吸着しているのに対して、 pH=7 および9 ではあまり依存性が確認できない(pH=9 での再現性は再度確認する必要がある)。 pH=5 で純水の方が吸着量が大きいことから、エオシンは陰イオンとして岩石に吸着している可能 性が高いと考えられた。他吸着材と比較すると、ベントナイトが上記と類似した吸着挙動を示し た。このことから、瑞浪岩石では量は少ないと考えられるが、一部の粘土鉱物への吸着がエオシ ンの吸着挙動を支配している可能性があると考えられた。

図 2.4.4-11 吸着試験時の液相におけるエオシン濃度の経時変化の pH 依存性(瑞浪岩石)

図 2.4.4-12 吸着試験時の液相におけるエオシン濃度の経時変化への水銀の影響(瑞浪岩石)

図 2.4.4-13 吸着試験時の液相におけるエオシン濃度の経時変化へのイオン濃度の影響(瑞浪岩石)
以上のように、幌延岩石および瑞浪岩石を使用して蛍光染料の吸着試験を実施した。上述のように種々のパラメータへの依存性、吸着量などは岩石によって大きく異なっている。共通する傾向として、同じ条件で比較すると、ウラニン・エオシンよりもAG・NAPの方が岩石への吸着に対しては耐性があり、より「非吸着性」として挙動する可能性が高いと考えられる。このため、非吸着性として蛍光染料を利用する、あるいはある程度定量的な評価に用いるのであれば、ウラニン・エオシンよりもAG・NAPを使用する方が良いと考えられる。また、共通する傾向の2点目として、pHが低いと蛍光染料の吸着量が増加する傾向がある点である。このため、対象とする地下水のpHが低い場合には、蛍光染料が非吸着性として挙動しない可能性があることを念頭に試験条件の設定を行う必要がある。

岩石に対する蛍光染料の吸着挙動は、上述の幌延・瑞浪岩石においてもまだそのメカニズムを 解明するための情報が不十分である。また、岩石の種類や条件によって吸着量は大きく異なるた め、トレーサー試験を実施する状況での吸着試験による確認が不可欠であると考えられる。

2.4.5 まとめ

以上のように、蛍光染料をトレーサーとして使用する際の留意点等について情報を得るため、既往 の情報を整理したり、追加で試験を実施して、以下のような情報を得た。

- 分析における留意点: 蛍光染料の分析において誤差が生じる最も大きな要因は pH であり、 ホウ砂水溶液などで pH を 9 付近に緩衝してから分析することが望ましい。また、蛍光強度は 温度に依存する他、分析中の励起光によっても分解することを理解しておく必要がある。
- ② 他有機物の共存:蛍光染料に対してフミン酸が共存した場合、2000ppb以上の濃度だと 100ppbの蛍光染料溶液に対して顕著な影響が生じた。エオシンでは濃度の低下が、NAP・AG では濃度の上昇がみられた。また、(ウラニン・エオシン)、(NAP・AG)それぞれの組み合 わせはお互いの濃度を見かけ上、上昇させるため、基本的には避けた方が良い。
- ③ 地下水との相互作用:幌延地域で取得した地下水について、ウラニンを添加すると2週間 程度でウラニンが変色する様子が観察された。水銀を入れたり、0.45µmのフィルタでろ過 するとこの現象が観察されないことから、この現象には0.45µm以上の大きさの微生物が関 与している可能性がある。このように地下水によっては接触させるだけで傾向が変質する可 能性があるものが存在するため、試験実施に先立つ検討が必要である。
- ④ 保管方法・期間:20ppb以上の濃度を持つ溶液であれば、室温でPP容器の中で、特にpH を緩衝しなかったとしても、3週間程度の保管に耐えうることが分かった。ただし、これは 上述の微生物影響等がない場合であり、実際の地下水では微生物影響を受けないように留意 する(冷蔵するなど)必要がある。

⑤ 吸着:幌延(珪藻泥岩)、瑞浪(花崗岩)の岩石を用いて吸着試験を実施した結果、幌延では疎水的な吸着で、瑞浪では陰イオンとしてのベントナイトへの吸着で、蛍光染料が岩石に吸着する可能性がある。吸着試験についてはデータの拡充などさらなる検討が必要である。

2.5 室内試験のまとめ

以下では室内試験で得られた情報および課題についてまとめた。

2.5.1 室内模擬トレーサー試験

室内模擬トレーサー試験では、小規模なカラムを用いた試験によって主に流速に対する分配係数・ 遅延係数の依存性を調べた。室内試験では、流速が低下するとともに、見かけの分配係数・遅延係数 は増大し、流速依存性があることを示した。

実際のトレーサー試験現場では任意の数値に流速を設定できない可能性があるため、室内試験と実 現場とで流速依存性のデータを蓄積し、実施した条件の試験から実際の処分の安全評価で使用する遅 延・分配係数を推定する方法を確立することが必要であると考えられる。

2.5.2 割れ目評価試験

1 次元あるいは 2 次元割れ目を人工的に構築し、ある程度割れ目幅等を把握した試験系に対して、 種々の割れ目幅評価法(透水試験、模擬トレーサー試験、高粘性流体試験、ラドン濃度測定試験、レ ジン注入試験)を適用し、各試験での割れ目幅評価結果を比較した。その結果、いくつかの方法を除 いてほぼ想定された割れ目幅を評価できることが分かった。

割れ目幅の評価が想定と異なる値を示した試験については、試験系や分析方法に問題があると考え られることから、試験系等を見直すとともに値のズレが試験方法において本質である可能性について 検討する。また、今後の検討においては、割れ目形状を人工的に変えた(傷をつける、あるいはガラ スビーズを敷くなど)割れ目についても試験を実施し、それぞれの方法がどのような値を示すかを明 らかにしていく予定である。

2.5.3 蛍光染料についての検討

トレーサー試験等で非吸着性トレーサーとして使用する蛍光染料について、今までの研究で得られ ている情報を整理すると共に、いくつかの検討を実施した。分析・保管等における留意点についてま とめた他、種々の地下水や岩石と蛍光染料が接触することで起きうる現象についても示した。

今後試験を実施していくサイトでは、地下水や岩石に対して蛍光染料がどのように挙動するかを明 らかにした上で、現場試験を実施する必要がある。 参考文献

- 尾西明生、窪田亮、河西繁、棚瀬充史、井ヶ田徳行(1999):広域地下水流動研究における試錐試験、 JNC-TJ7440 98-002.
- 核燃料サイクル開発機構(1999):地層処分研究開発第2次取りまとめにおける緩衝材への放射性元素の分配係数の設定、JNC TN8400 99-072.
- 栗原正治、山口昌司、名取二郎、濱野幸治、丸山亮、森林成生(2001):正馬様用地における試錐調査 (MIU-4 号孔)、JNC-TJ7440 2002-008.
- 小出馨、前田克彦(2001):東濃地域を対象とした広域地下水流動研究の現状(その2)、サイクル機構技報 12 102-122.

角森史昭:地殻変動に伴う地下水中のラドン濃度変化,地下水学会誌, Vol. 51, No. 1, pp. 49-54, 2009. 長谷川琢磨、田中靖治、西垣誠(2007):高粘性流体の注入による有効間隙率と流れの次元の評価、土 木学会論文集 C、Vo. 63, No. 1.

- 長谷川琢磨・後藤和幸・田中靖治・西垣誠・野原慎太郎(2015):高粘性流体の注入による割れ目の特 性評価法の室内試験での実証、土木学会論文集 C, Vo. 71, No. 2, pp. 55-68.
- 長谷川宏、並木和人、柳澤正行、丸山誠、河村秀紀(2002):超深地層研究所計画における試錐調査、 (浅層試錐調査) JNC-TJ7420 2005-132.
- 土壤標準分析・測定法委員会(編)(1986):土壤標準分析・測定法,日本土壤肥料学会監修,博友社 出版、150-154.
- 日本原子力学会(2006):収着分配係数の測定方法-深地層処分のバリア材を対象とした測定方法の基本手順、日本原子力学会深地層分配係数分科会
- 東原知広,中田弘太郎,長谷川琢磨・後藤和幸(2005):地下水年代測定評価技術の開発(その3), 一岩石柱における溶存 He の拡散係数決定法の提案と陰イオンを用いた拡散係数の間接的評価法の 適用性一.電力中央研究所報告書:N05067.
- 山本卓也、下茂道人、藤原靖、服部弘通、田所輝夫、岩間彦衛、名合牧人、熊本創(2002): 幌延深地 層研究所センターにおける試錐調査(HDB-1 孔) JNC-TJ7420 2005-132.
- Flury, M., Wai, N.N. (2003) Dyes as tracers for vadose zone hydrology, Reviews of Geophysics, 41, 1-37.
- Israelachvili, J., Intermolecular & Surface force 2nd Ed., 1991 Academic Press, London 238.
- Kross, B. M., and Schaefer, R. G., (1987). Experimental measurements of diffusion parameters of light hydrocarbons in water-saturated sedimentary rock-I. A new experimental procedure, Organic Geochemistry, 11, 193-199.
- Kross, B. M., and Schaefer, R. G., (1988). Experimental measurements of diffusion parameters

of light hydrocarbons in water-saturated sedimentary rock-II. Results and geochemical significance, Organic Geochemistry, 12, 91-108.

- Magal, E., Weisbrod, N., Yakirevich, A., Yechieli, Y. (2008) The use of fluorescent dyes as tracers in highly saline groundwater, Journal of Hydrology, 358, 124-133.
- Mull, D. S., Libermann, T. D., Smoot, J. L., and Woosley L. H., (1998) Application of dye-tracing techniques determining solute trasport characteristics of ground water in karst terranes, Rep. EPA904/688-001, U.S. Environ. Prot. Agency, Atlanta, Ga., 1988
- Schnegg, P. A., (2015). A computer method for separating hard to separate dye tracers, Environmental Earth Sciences, 1, 123-130.
- Ravbar, N., Barberá, J.A., Petrič, M., Kogovšek, J., Andreo, B. (2012) The study of hydrodynamic behaviour of a complex karst system under low-flow conditions using natural and artificial tracers (the catchment of the Unica River, SW Slovenia), Environmental Earth Sciences, 65, 2259-2272.
- Smart, P.L., Laidlaw, I.M.S.Schnegg, P. A., (1977). An evaluation of some fluorescent dyes for water tracing, Water Resources Research, 13, 15-33.

3. ラドン濃度計測による割れ目調査技術の開発

3.1 はじめに

岩盤中の割れ目の間隙幅は様々な方法で推定がなされているが、いずれも不確実性が存在する。例 えば、ボアホール TV 計測は、ボーリング孔壁の割れ目の幅を計測するものであるが、掘削によるダメ ージにより、孔壁の割れ目幅は岩盤内部より大きくなり、実際の間隙幅を大きく見積もる傾向がある。 また、割れ目を平行平板の間隙構造モデルとした場合、水理試験によって、水理的開口幅が算出する ことが可能であるが (Snow 1965)、実際の割れ目の間隙構造とは異なる。このほか方法を含めて間隙 幅の推定方法にはそれぞれ不確実性を有しており、決定的な手段は存在しない。このため、様々な手 法を組み合わせて相補的に割れ目の間隙幅を推定することが必要となる。本事業において提案をして いる岩石から発生するラドンを用いる手法は、割れ目間隙中に存在するラドン濃度を計測する手法で ある。ラドンは他の元素との化学的な反応がほとんどなく、緻密な岩石では割れ目表面から発生する と見なせるため、人工のトレーサーとは異なり、繰り返しの測定が可能なパッシブな手法と言える。 また、ボアホール TV と異なり、ボーリング孔壁の箇所のみならず、適切な採水や循環試験によって、 岩盤内の割れ目の間隙水も計測することが可能である。したがって、ラドン濃度計測による間隙幅の 推定方法は既存手法を補うことが可能であるため、本事業ではラドンを用いた割れ目の開ロ幅推定法 の開発と原位置試験での適用性の提示を目指している。

3.2 ラドン濃度計測による割れ目幅の推定の概念

ラドンによる割れ目の幅の評価は、岩盤中に存在するウラン(U-238)の崩壊過程で発生するラド ン(Rn-222)を用いて推定する。ラドンは水溶性でかつ不活性のため、地下水の溶存物質や岩盤を構 成する鉱物との化学反応の影響は受けず、岩盤中の親核種であるラジウム(Ra-226)から反跳して割 れ目の間隙中の地下水へ溶存する。岩盤中のラドンとラジウムとが放射平衡に達していると仮定でき れば、母岩中から地下水へ溶解する時間当たりのラドンの量(ラドンフラックス)も一定と見なすこ とができる。この際、地下水中のラジウムの存在量は非常に低いことから、溶存ラジウムの溶存ラド ン濃度への影響はほとんど無視することができる。実際に、Cecil et al. (1987)によって、地下水 中の溶存ラジウムと溶存ラドンの関係に相関がみとめられないことが知られている。したがって、地 下水中のラドンを用いた割れ目幅の推定では、地下水のラジウムの影響を考慮する必要がなく、岩盤 から発生したものと見なせる。

岩盤中のラジウムから発生し、反跳するラドンの移動距離は小さく、結晶質岩の様な緻密な岩盤においては、地下水に溶存しているラドンは、岩石内で発生して割れ目の表面から地下水中に溶解したものと考えることができる。割れ目を平行平板と仮定し、割れ目表面から供給されるラドンの量と割れ目の面積には図 3.2-1 に示すような関係が成り立つ。本事業で提案する手法は原位置での割れ目間隙

3 - 1

からの採水よりラドン濃度([Rn])を得ると同時に、室内試験によって岩石からのラドン発生量をラ ドンフラックス(F)として得ることで、間隙幅(w)を評価しようとするものである(図 3.2-1)。

図 3.2-1 ラドンによる割れ目幅計測の原理

3.3 今年度の実施概要

本事業ではこれまでラドン濃度計測による割れ目の幅の推定手法を開発し、スイスグリムゼルのテ ストサイトへ適用した。その結果、トレーサー試験、高粘性流体を用いた水理試験から得た間隙幅や、 その後に評価対象の割れ目に樹脂(レジン)を注入後、ボーリング掘削により得たコアなどから評価 した割れ目の間隙と比較し、相補的にラドン濃度計測による割れ目の幅の推定手法の適用性を確認し た。この手法を我が国の岩盤にも適用するためには、代表的な岩石や岩盤での検討を行い、その適用 性を評価していく必要がある。我が国における溶存地下水のラドン濃度は変化に富み、胚胎する地質 によってその濃度が異なる。特に堆積岩地域の地下水のラドン濃度の分布範囲は3オーダーにも及ぶ ために、割れ目間隙幅の推定手法を広く適用するためには、堆積岩への適用性を検討しておく必要が ある。このため、昨年度は、砂岩、泥岩などの堆積岩への適用性を検討するとともに、比較のために 花崗岩についても分析を実施し、間隙率の影響などにより、岩石内部からのラドンの発生がより寄与 していることが想定された。このため、今年度も引き続き堆積岩からのラドンの発生量を検討すると ともに、瑞浪超深地層研究所への適用の準備のため、ラドンフラックスの測定ならびに原位置のラド ン濃度を予備的に検討する。 3.4 ラドンによる割れ目間隙幅の推定手法の適用性検討

3.4.1 岩石の物理化学特性

原位置のラドン濃度による割れ目幅の検討のために、瑞浪超深地層研究所の深度 300m ボーリング 横坑において掘削したボーリングコアの物理化学特性分析を行った。使用したボーリングコアは 12MI30 孔、12MI31 孔、13MI36 孔、13MI37 孔、14MI45 孔の中粒花崗岩(以降、本章では瑞浪花崗岩と 呼称する)である。

3.4.1.1 元素分析

岩石の元素分析においては、主要元素を蛍光 X 線分析 (XRF)で分析中であるとともに、微量元素は、 誘導結合プラズマ質量分析 (ICP-MS) もしくは誘導結合プラズマ発光分析法 (ICP-AES) によって分析中 である。これらの分析はカナダにある ALS Canada Ltd. 社にて、以下の分析コード(パッケージ分析) を使用している。詳細は以下のとおりである。

(1) 蛍光 X 線分析:分析コード ME-XRF06

分析元素:Si0₂, A1₂0₃, Fe₂0₃, Ca0, Mg0, Na₂0, K₂0, Cr₂0₃, Ti0₂, Mn0, P₂0₅, Sr0, Ba0, S0₃, L0I 分析方法:粉末状にした試料について、ホウ酸リチウムを使用して溶融した後、ガラス試料を作 成する。これを蛍光 X 線分析法 (XRF) により試料を酸化物の形で分析する。

(2) 誘導結合プラズマ質量分析法

a. 分析コード MS-MS61

分析元素: Ag, Al, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf, In, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, Re, S, Sb, Sc, Se, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y, Zn, Zr

分析方法:粉末状にした試料を4種混合酸(塩酸・フッ化水素酸、硝酸、過塩素酸)にて溶解した後、酸溶液試料を作成する。これを誘導結合プラズマ質量分析法(ICP-MS)により元素分析した。

b. 分析コード MS-MS81

分析元素:Ba, Ce, Cr, Cs, Dy, Er, Eu, Ga, Gd, Hf, Ho, La, Lu, Nb, Nd, Pr, Rb, Sm, Sn, Sr, Ta, Tb, Th, Tm, U, V, W, Y, Yb, Zr

分析方法:粉末状にした試料をホウ酸リチウムを使用して溶融した後、ガラス試料を作成する。 さらにこのガラス試料を再度粉末化し、酸溶液によって溶解したのちに酸溶液試料を作成する。 これを誘導結合プラズマ質量分析法(ICP-MS)により元素分析した。

(3) 分析試料

分析試料の一覧を表 3.4.1-1 に示す。分析試料は、充填鉱物のある割れ目か、その周辺の母岩 (マトリックス部)であり、多かれ少なかれ変質を被っている。変質の特徴は備考欄に示した。

試料名	孔名および深度	備考 (※充填鉱物は昨年度の鉱物分析結果に基づく)
ICP/XRF-1501	12MI30 6.68m - 6.78m	2条の割れ目に白色鉱物が充填、間の母岩が白化(方解石、スメクタイトを含む)。
ICP/XRF-1502	12MI30 27.00m - 27.23m	暗緑色の充填鉱物伴う割れ目および交差する割れ目(方解石、黄鉄鉱が充填)。
ICP/XRF-1503	12MI31 8.31m - 8.42m	白~淡緑粘土鉱物充填。母岩が白化(スメクタイトを含む)し、細礫化。
ICP/XRF-1504	12MI31 20.37m - 20.44m	暗緑色粘土鉱物充填。破砕固結した個所。変質し緑泥石や方解石が認められる。
ICP/XRF-1505	12MI31 24.31m - 24.47m	暗緑色の充填鉱物伴う割れ目
ICP/XRF-1506	13MI36 3.80m - 4.00m	白色鉱物と淡緑色粘土鉱物(方解石、スメクタイトを含む)が帯状に充填。
ICP/XRF-1507	13MI36 9.09m - 9.25m	母岩が全体に変質(白化)し脆弱(方解石、スメクタイト、緑泥石を含む)
ICP/XRF-1508	13MI37 0.66m - 0.79m	灰白色鉱物(方解石)充填。微細亀裂多数も固結。
ICP/XRF-1509	13MI37 6.86m - 7.00m	白色鉱物および淡緑色粘土鉱物(方解石、スメクタイトを含む)が帯状に充填。
ICP/XRF-1510	14MI49 7.60m - 8.11m	白化変質箇所
ICP/XRF-1511	14MI49 18.52m - 18.74m	暗緑色に変質し破砕。一部粘土化。
ICP/XRF-1512	14MI49 19.76m - 19.90m	暗緑色脈および灰白色鉱物(方解石を含む)。

表 3.4.1-1 元素分析試料一覧

蛍光 X 線と誘導結合プラズマ質量分析は同じ試料を分析する。例えば ICP/XRF-1501 については、蛍光 X 線の結果の表示では XRF-1501 のように付番号し、微量元素の分析結果では ICP-1501 と付番した。

試験岩石の蛍光 X 線分析による主要構成元素を表 3.4.1-2 に示す。各試料ともに主成分は、ケ イ素を最大の主要組成として、ほかにアルミ、カルシウム、カリウムなどで構成される。XRF-1504 (12MI31 20.37m - 20.44m) は通常の花崗岩の組成から大きく外れている。試料は礫などを含む カタクラスティックな岩石で、断層のブレッチャーが固結した様相を呈する。この試料は内部ま で変質しており、昨年度の X 線回折分析では緑泥石や方解石が認められている。このため、Ca0、 Fe₂O₃、 MnO が富化する一方で、SiO₂ が失わたと考えられる。XRF-1501 は方解石とスメクタイト が充填した割れ目に挟まれた白化した母岩で、内部まで変質している。変質によって、CaO の含 有量は大きくなっているが、緑泥石化が著しくないため Fe₂O₃の含有量は他の試料と変わりない。 また SiO₂、Al₂O₃、K₂O が他の試料より少なく、変質作用により失われている。XRF -1501~XRF -1512 の CaO-Na₂O-K₂O 成分三角ダイアグラムを図 3.4.1-1に示す。図 3.4.1-1には併せて、昨年度の ボーリング横坑のボーリングコアを分析した結果(12MI3O 孔、13MI36 孔、13MI 37 孔)を示した。

=== 业) 夕	SiO ₂	Al ₂ 0 ₃	Fe ₂ 0 ₃	Ca0	. MgO	Na₂0	K ₂ 0	Cr_2O_3	: TiO ₂	Mn0	P ₂ O ₅	Sr0	: BaO	Total	E LOI
武科石	%	%	%	%	%	%	%	%	: %	%	%	%	%	%	%
XRF -1501	63.46	11.89	2.68	7.27	0.34	2.54	4.1	<0.01	0.14	0.15	0.034	0.01	0.04	99.48	6.82
XRF -1502	73.31	13.01	2.39	1.33	0.26	3.37	4.76	<0.01	0.14	0.07	0.039	0.01	0.05	99.47	0.73
XRF -1503	72.75	13.12	2.3	1.58	0.37	2.83	4.41	<0.01	0.16	0.08	0.040	0.01	0.05	100.1	2.4
XRF -1504	54.84	15.86	11.81	3.66	0.57	3.96	3.56	<0.01	0.2	0.21	0.051	0.01	0.05	99.38	4.62
XRF -1505	73.69	13.05	2.44	1.24	0.25	3.47	4.61	<0.01	0.15	0.08	0.034	0.01	0.04	99.82	0.75
XRF -1506	72.74	13.29	2.08	1.34	0.27	3.45	4.72	<0.01	0.19	0.07	0.040	0.01	0.05	98.79	0.54
XRF -1507	72.42	13.38	2.22	1.1	0.35	2.94	4.56	<0.01	0.16	0.07	0.039	0.01	0.04	99.24	1.95
XRF -1508	73.69	13.19	2.29	1.41	0.28	3.48	4.59	<0.01	0.16	0.07	0.043	0.01	0.05	99.69	0.42
XRF -1509	74.22	13.05	2.23	1.21	0.3	3.2	4.5	<0.01	0.15	0.07	0.04	0.01	0.04	99.85	0.82
XRF -1510	72.97	12.36	2.44	1.51	0.29	3.13	4.32	<0.01	0.15	0.08	0.038	0.01	0.04	98.75	1.41
XRF -1511	72.85	13.14	3.31	0.77	0.24	3.56	4.47	<0.01	0.15	0.06	0.038	0.01	0.04	99.81	1.16
XRF -1512	71.91	12.77	3.6	1.27	0.38	3.15	4.41	<0.01	0.17	0.12	0.038	0.01	0.04	99.08	1.23

表 3.4.1-2 蛍光 X 線分析による主要構成元素

また、深度 300m 研究アクセス坑道のボーリング(10MI22 孔、13MI24 孔、13MI 25 孔)の分析結 果と、湯口ほか(2010)による土岐花崗岩体の分析結果、および地球化学標準物質を合わせて示 した。この結果によれば、ICP-1501 や ICP-1504 などの方解石を伴いながらマトリックスまで比 較的強く変質している試料以外は、湯口ほか(2010)の土岐花崗岩体の分布範囲内に収まる。ま た、300m 研究アクセス坑道の 10MI22 孔、24 孔、25 孔と大きな違いはない。一方、ほぼ同時期で きたとされる JG-2 の苗木花崗岩に比較して、Ca0 に富んでいる傾向が認められる。

図 3.4.1-1 瑞浪花崗岩の Ca0-Na₂0-K₂0 成分の三角ダイアグラム

左図は2015 年度の結果をプロットしたものである。右図は2015 年度のデータに昨年度実施した300mボーリング横坑のデー タを合わせた結果(赤丸)である。300m研究アクセス坑道のニッチより掘削したボーリング(10MI22 孔、24、25)の結果は (青白抜き丸)で示した。図中の大きな黒線で示した範囲は、湯口ほか(2010)による土岐花崗岩体の分布範囲内を示した ものである。また、比較のために産業技術総合研究所で公開している地球化学標準物質 JG-1(花崗閃緑岩:群馬県沢入産)、 JG-2(花崗岩:岐阜県苗木)、JG-3(花崗閃緑岩:島根県三刀屋)を示した。

誘導結合プラズマ発光分析法による微量成分分析結果を表 3.4.1-3 (ME-MS61) と表 3.4.1-4 (ME-MS81) にそれぞれ示す。微量元素の分析結果をコンドライト規格化した ICP-1601~ICP-1612 の試料の希土類元素 14 元素(La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu)のパタ ーン図を作成した(図 3.4.1-2)。規格化には、Taylor & McLennan(1985)のコンドライト値を採 用した。また、標準試料として花崗岩類の標準試料 JG-1、JG-2、JG-3 と昨年度に瑞浪超深地層研究 所の深度 300m ボーリング横孔の 12MI30 と 13MI36 の変質していない花崗岩のパターンも併せて示し た(図 3.4.1-3)。分析した瑞浪花崗岩はいずれも、日本の花崗岩の特徴である軽希土類(左側)に 富み、Eu 負異常で特徴付けられる。また、ICP-1504 は LREE と HREE ともに大きい値を示し、ICP-1501 は HREE で相対的に大きい値を示す。この 2 つの試料はマトリックスまで変質した試料である。

表 3.4.1-3 微量元素分析(ME	2-MS61)
---------------------	---------

=== 北川 夕	Ag	Al	As	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cs	Cu
武科石.	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
ICP-1501	0.05	5.35	1.9	370	2.46	0.13	4.94	0.04	42.2	1.2	8	15.1	1.7
ICP-1502	0.04	6.66	1.9	470	2.69	31.4	0.94	0.04	53.3	1.1	8 :	5.94	2.5
ICP-1503	0.06	6.57	2	420	2.84	0.31	1.13	0.05	46	1.8	7	7.97	2.3
ICP-1504	0.34	7.32	30.6	400	2. 23	17.35	2.5	0.06	57.3	12.5	6	3.81	471
ICP-1505	0.04	6.61	2.1	400	2. 8	0.23	0.87	0.03	42.8	1.2	9	4.7	3.5
ICP-1506	0.05	6.69	1.5	450	3.46	0.17	0.94	0.07	51.8	1.5	8	7.96	3.4
ICP-1507	0.07	7.02	2.2	420	3.34	0.21	0.81	0.03	45.2	1.5	7	10.35	3. 3
ICP-1508	0.03	6.79	2.6	440	3. 28	0.45	1.01	0.04	47	1.4	7	7.61	4.5
ICP-1509	0.03	6.44	1.4	380	3.11	0.37	0.82	0.07	39.5	1.4	12	7.94	4
ICP-1510	0.05	6.26	2.1	370	2.77	0.6	1.08 :	<0.02	37.3	1.6	9 :	6.02 :	3.7
ICP-1511	0.11	6.5	8.1	380	1.96	3.1	0.53	0. 02	47.5	1.7	7	3.78	96.3
ICP-1512	0.01	7.06	1.2	380	3.28	0.06	0.96	0.05	56.7	1.7	5	3.7	2.9
試料名	Fe	Ga	Ge	Hf	In	K	La	Li	Mg	Mn	Mo	Na	Nb
	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm
ICP-1501	1.79	14.75	0.2	2.5	0.031	3.31	19.4	22	0.16	1140	0.73	1.76	15.4
ICP-1502	1.67	16.85	0.25	1.9	0. 025	4	25.4	50.6	0.14	590	1.22	2.41	13.1
ICP-1503	1.58	16.65	0.26	1.9	0.032	3.65	21.6	34.3	0.19	629	0.86	2.01	13.4
ICP-1504	7.66	22.2	0.21	2.1	0.076	2.92	25.8	113	0.28	1590	1	2.76 -	16.4
ICP-1505	1.69	16.25	0.24	1. /	0.03	3.8	20.5	49.8	0.13	633	0. /1	2.48	12.2
ICP-1506	1.43	17.8	0.3	2.2	0.039	3.99	24.8	40.3	0.14	565	0.76	2.48	14.3
ICP-1507	1.58	17.65	0.28	1.9	0.038	3.88	21.9	37.4	0.19	562	0. /3	2.13	14.1
ICP-1508	1.59	17.35	0.28	1.9	0.036	3.89	22.8	50.1	0.15	592	1.16	2.52	14. /
ICP-1509	1.4/	16.25	0.33	1.8	0.042	3.67	19.5	40.6	0.15	546	1.2	2.22	13. /
ICP-1510	1.68	15.9	0.33	1.5	0.041	3.6	1/.4	32.6	0.15	636	0.97 ;	2.25	13.1
ICP-1511	2.2	14.95	0.31	1.6	0.026	3.55	22.1	36	0.12	449	0.97	2.43	10
1CP-1512	26/	19.55	• 035•	. 19.	0.048	3 95	2/1.	624	022	998 -	0.65 -	243 -	12 /
101 1012	E. 07				- 0.010		2/. 1	02.1					
試料名	Ni	P	Pb	Rb	R	S	Sb	Sc	Se	Sn	Sr	Ta	Te
式料名 IOD 1501	Ni ppm	P ppm	Pb ppm	Rb ppm	R ppm	S ppm	Sb ppm	Sc ppm	Se ppm	Sn ppm	Sr ppm	Ta ppm	Te ppm
武料名 ICP-1501	Ni ppm 0.7	P ppm 160	Pb ppm 25.2	Rb ppm 171	R ppm <0.002	S ppm 0.41	Sb ppm 0.1	Sc ppm 3.3	Se ppm 2	Sn ppm 4.1	Sr ppm 105.5	Ta ppm 1.46	Te ppm <0.05
試料名 ICP-1501 ICP-1502	Ni ppm 0.7 1.1	P ppm 160 190	Pb ppm 25.2 32.1	Rb ppm 171 226	R ppm <0.002 <0.002	S ppm 0.41 0.07	Sb ppm 0.1 0.13	Sc ppm 3.3 3.8	Se ppm 2 1	Sn ppm 4.1 4	Sr ppm 105.5 119.5	Ta ppm 1.46 1.16	Te ppm <0.05 <0.05
試料名 ICP-1501 ICP-1502 ICP-1503	Ni ppm 0.7 1.1 0.7	P ppm 160 190 190	Pb ppm 25.2 32.1 34.4	Rb ppm 171 226 198	R ppm <0.002 <0.002 <0.002	S ppm 0.41 0.07 0.05	Sb ppm 0.1 0.13 0.1	Sc ppm 3.3 3.8 3.9	Se ppm 2 1 2	Sn ppm 4.1 4 4.6	Sr ppm 105.5 119.5 110	Ta ppm 1.46 1.16 1.53	Te ppm <0.05 <0.05 <0.05 <0.05
試料名 ICP-1501 ICP-1502 ICP-1503 ICP-1504 ICP-1505	Ni ppm 0.7 1.1 0.7 0.5	P ppm 160 190 190 210	Pb ppm 25.2 32.1 34.4 15.8	Rb ppm 171 226 198 163.5	R ppm <0.002 <0.002 <0.002 <0.002 <0.002	S ppm 0.41 0.07 0.05 0.55	Sb ppm 0.1 0.13 0.1 0.34	Sc ppm 3.3 3.8 3.9 4.2	Se ppm 2 1 2 2	Sn ppm 4.1 4 4.6 9.1	Sr ppm 105.5 119.5 110 72.2	Ta ppm 1.46 1.16 1.53 1.77	Te ppm <0.05 <0.05 <0.05 <0.05 <0.05
試料名 ICP-1501 ICP-1502 ICP-1503 ICP-1504 ICP-1505	Ni ppm 0.7 1.1 0.7 0.5 0.8	P ppm 160 190 190 210 170	Pb ppm 25.2 32.1 34.4 15.8 29.1	Rb ppm 171 226 198 163.5 219	R ppm <0.002 <0.002 <0.002 <0.002 <0.002 <0.002	S ppm 0.41 0.07 0.05 0.55 0.05	Sb ppm 0.1 0.13 0.1 0.34 0.11	Sc ppm 3.3 3.8 3.9 4.2 3.7	Se ppm 2 1 2 2 1	Sn ppm 4. 1 4. 6 9. 1 4. 3	Sr ppm 105.5 119.5 110 72.2 113	Ta ppm 1.46 1.16 1.53 1.77 1.19	Te ppm <0.05 <0.05 <0.05 <0.05 <0.05 <0.05
試料名 ICP-1501 ICP-1502 ICP-1503 ICP-1504 ICP-1505 ICP-1506 ICP-1507	Ni ppm 0.7 1.1 0.7 0.5 0.8 0.7	P ppm 160 190 190 210 170 180	Pb ppm 25.2 32.1 34.4 15.8 29.1 33 22.8	Rb ppm 171 226 198 163.5 219 227 211	R ppm <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002	S ppm 0.41 0.07 0.05 0.55 0.05 0.02	Sb ppm 0.1 0.13 0.13 0.34 0.11 0.13 0.12	Sc ppm 3.3 3.8 3.9 4.2 3.7 4.1	Se ppm 2 1 2 2 1 2 2	Sn ppm 4. 1 4. 6 9. 1 4. 3 5. 1	Sr ppm 105.5 119.5 110 72.2 113 115.5	Ta ppm 1.46 1.16 1.53 1.77 1.19 1.68	Te ppm <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05
試料名 ICP-1501 ICP-1502 ICP-1503 ICP-1504 ICP-1505 ICP-1505 ICP-1507 ICP-1508	Ni ppm 0.7 1.1 0.7 0.5 0.8 0.7 0.7 0.7	P ppm 160 190 190 210 170 180 180 200	Pb ppm 25.2 32.1 34.4 15.8 29.1 33 33.8 27.8	Rb ppm 171 226 198 163.5 219 227 211 210	R ppm <0.002	S ppm 0. 41 0. 07 0. 05 0. 55 0. 05 0. 05 0. 05 0. 05 0. 05 0. 05 0. 02 0. 04	Sb ppm 0.1 0.13 0.13 0.14 0.34 0.11 0.13 0.12 0.13	Sc ppm 3.3 3.8 3.9 4.2 3.7 4.1 3.9	Se ppm 2 1 2 2 1 2 2 2 2 2 2 2 2	Sn ppm 4. 1 4. 6 9. 1 4. 3 5. 1 4. 4 5. 1 4. 4	Sr ppm 105.5 119.5 119.5 110 72.2 113 115.5 105.5 105.5	Ta ppm 1.46 1.16 1.53 1.77 1.19 1.68 1.5	Te ppm ≪0. 05 ≪0. 05 ≪0. 05 ≪0. 05 ≪0. 05 ≪0. 05 ≪0. 05 ≪0. 05
試料名 ICP-1501 ICP-1502 ICP-1503 ICP-1503 ICP-1504 ICP-1505 ICP-1506 ICP-1507 ICP-1508	Ni ppm 0. 7 1. 1 0. 7 0. 5 0. 8 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 8	P ppm 160 190 210 170 180 180 180 180	Pb Ppm 25.2 32.1 34.4 15.8 29.1 33.3 33.8 27.8 28.8	Rb ppm 171 226 198 163.5 219 227 211 219 207	R ppm <0.002	0. 300 ppm 0. 41 0. 07 0. 05 0. 05 0. 05 0. 02 0. 04 0. 04	Sb ppm 0.1 0.34 0.11 0.34 0.11 0.34 0.13 0.12 0.13	Sc ppm 3.3 3.8 3.9 4.2 3.7 4.1 3.9 4.3	Se ppm 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Sn ppm 4.1 4.6 9.1 4.3 5.1 4.4 4.7 4.4	Sr ppm 105.5 119.5 110 72.2 113 115.5 105.5 121.5 101.5	Ta ppm 1.46 1.16 1.53 1.77 1.9 1.68 1.5 1.67	Te ppm (0.05 (0.05 (0.05 (0.05 (0.05 (0.05 (0.05 (0.05 (0.05) (0.05) (0.05 (0.05)
試料名 ICP-1501 ICP-1502 ICP-1503 ICP-1503 ICP-1505 ICP-1505 ICP-1507 ICP-1507 ICP-1509 ICP-1510	Ni ppm 0. 7 1. 1 0. 7 0. 5 0. 8 0. 7 0. 7 0. 7 0. 6 0. 8 0. 8	P ppm 160 190 210 170 180 180 180 180	Pb ppm 25, 2 32, 1 34, 4 15, 8 29, 1 33 33, 8 27, 8 28, 8 28, 4	Rb ppm 171 226 198 163.5 219 227 211 219 207 193.5	R ppm <0.002	S ppm 0. 41 0. 07 0. 55 0. 55 0. 05 0. 05 0. 05 0. 05 0. 05 0. 05 0. 04 0. 04 0. 07	Sb ppm 0.1 0.34 0.13 0.14 0.15 0.16 0.17 0.18 0.11 0.13 0.12 0.13 0.11	Sc ppm 3.3 3.8 3.9 4.2 3.7 4.1 3.9 4.3 3.6 3.7	Se ppm 2 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Sn ppm 4.1 4.6 9.1 4.3 5.1 4.4 4.7 4.4 4.3	Sr ppm 105.5 119.5 110.5 72.2 113 115.5 105.5 121.5 101.5 103	Ta ppm 1.46 1.16 1.53 1.77 1.9 1.68 1.55 1.67 1.4	Te ppm (0.05 (0.05 (0.05 (0.05 (0.05 (0.05 (0.05 (0.05 (0.05 (0.05) (0.05) (0.05 (0.05)
試料名 ICP-1501 ICP-1502 ICP-1503 ICP-1503 ICP-1503 ICP-1505 ICP-1505 ICP-1507 ICP-1508 ICP-1509 ICP-1511	Ni ppm 0. 7 1. 1 0. 7 0. 5 0. 8 0. 7 0. 7 0. 7 0. 6 0. 8 0. 8 0. 8 0. 7	P ppm 160 190 210 170 180 180 180 180 180 180	Pb ppm 25.2 32.1 34.4 15.8 29.1 33 33.8 27.8 28.8 28.4 14.6	Rb ppm 171 226 198 163.5 219 227 211 219 207 193.5 216	R ppm <0.002	S ppm 0. 41 0. 07 0. 05 0. 55 0. 05 0. 05 0. 05 0. 05 0. 05 0. 04 0. 04 0. 07	Sb ppm 0.1 0.13 0.1 0.34 0.11 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.12	Sc ppm 3.3 3.8 3.9 4.2 3.7 4.1 3.9 4.3 3.6 3.7 3.2	Se ppm 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1	Sn ppm 4.1 4.6 9.1 4.3 5.1 4.4 4.7 4.4 4.7 4.4 4.3 5.5	Sr ppm 105.5 119.5 110.5 72.2 113 115.5 105.5 121.5 101.5 103.5 103.5 103.5	Ta ppm 1.46 1.16 1.53 1.77 1.9 1.68 1.57 1.67 1.67 1.67 1.07	Te ppm <0.05
試料名 ICP-1501 ICP-1502 ICP-1503 ICP-1505 ICP-1505 ICP-1505 ICP-1507 ICP-1507 ICP-1509 ICP-1510 ICP-1511 ICP-1512	Ni ppm 0.7 1.1 0.7 0.5 0.8 0.7 0.6 0.8 0.8 0.7 0.6 0.7	P ppm 160 190 210 170 180 180 180 180 180 180 180	Pb ppm 25. 2 32. 1 34. 4 15. 8 29. 1 33 33. 8 27. 8 28. 8 28. 4 14. 6 21. 1	Rb ppm 171 226 198 163.5 219 227 211 219 207 193.5 216 276	R ppm <0.002	S ppm 0.41 0.07 0.05 0.55 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.02 0.04 0.04 0.07 0.28 0.03	Sb ppm 0.1 0.34 0.11 0.34 0.11 0.34 0.11 0.22 0.11	Sc ppm 3.3 3.8 3.9 4.2 3.7 4.1 3.9 4.3 3.6 3.7 4.3 3.6 3.7 4.3 3.6 3.7 4.3 4.3 5	Se ppm 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Sn ppm 4 1 4 6 9.1 4 3 5.1 4 4 4 7 4 4 4 7 4 4 4 3 5.5 7	Sr ppm 105.5 119.5 110 72.2 113 115.5 105.5 101.5 103 70.5 132	Ta ppm 1.46 1.53 1.77 1.19 1.68 1.5 1.67 1.6 1.46	Te ppm <0.05
ICP-1501 ICP-1502 ICP-1502 ICP-1504 ICP-1504 ICP-1505 ICP-1506 ICP-1507 ICP-1507 ICP-1508 ICP-1509 ICP-1510 ICP-1511 ICP-1512 ICP-151 ICP-151 ICP-151	Ni ppm 0.7 1.1 0.7 0.5 0.8 0.7 0.6 0.8 0.7 0.6 0.8 0.7 0.7	P ppm 160 190 210 170 180 180 200 180 180 180 170 190	Pb ppm 25. 2 32. 1 34. 4 15. 8 29. 1 33 33. 8 27. 8 28. 8 28. 8 28. 4 14. 6 21. 1	Rb ppm 171 226 198 163.5 219 227 211 219 207 193.5 216 276	0.010 R ppm <0.002	S ppm 0. 41 0. 07 0. 05 0. 55 0. 05 0. 05 0. 05 0. 05 0. 05 0. 05 0. 05 0. 05 0. 05 0. 04 0. 07 0. 28 0. 03 W	Sb ppm 0.1 0.33 0.11 0.34 0.11 0.34 0.11 0.34 0.11 0.34 0.11 0.13 0.13 0.13 0.11 0.09 0.22 0.11 Y	Sc ppm 3 3 3 3 3 3 3 3 3 3 3 3 4 3 4 3 4 3 4 3 6 3 7 4 5	Se ppm 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Sn ppm 4.1 4.6 9.1 4.3 5.1 4.4 4.7 4.4 4.7 4.4 4.3 5.5 5.7	Sr ppm 105.5 119.5 110 72.2 113 115.5 105.5 121.5 101.5 103 70.5 132	Ta ppm 1.46 1.53 1.77 1.19 1.68 1.51 1.67 1.67 1.67 1.33	Te ppm <0.05
ICP-1501 ICP-1501 ICP-1502 ICP-1503 ICP-1504 ICP-1505 ICP-1506 ICP-1507 ICP-1508 ICP-1509 ICP-1511 ICP-1512	Ni ppm 0.7 1.1 0.7 0.5 0.8 0.7 0.7 0.6 0.8 0.8 0.8 0.7 0.7 1.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0	P ppm 160 190 210 170 180 180 180 180 180 180 170 190 Ti ppm	Pb ppm 25.2 32.1 34.4 15.8 29.1 33 33.8 27.8 28.8 28.8 28.4 14.6 21.1 TI ppm	Rb ppm 171 226 198 163,5 219 227 211 219 207 193,5 216 276 U ppm	R ppm <0.002	S ppm 0. 41 0. 07 0. 05 0. 55 0. 05 0. 05 0. 05 0. 05 0. 05 0. 05 0. 05 0. 04 0. 04 0. 07 0. 28 0. 03 W DDM	Sb ppm 0.1 0.34 0.13 0.14 0.13 0.13 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.11 0.09 0.22 0.11 Y ppm	Sc ppm 3.3 3.8 3.9 4.2 3.7 4.1 3.9 4.3 3.6 3.7 3.2 4.5 Zn ppm	Se ppm 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Sn ppm 4.1 4.6 9.1 4.3 5.1 4.4 4.7 4.4 4.3 5.5 5.7	Sr ppm 105.5 119.5 110 72.2 113 115.5 105.5 121.5 103 70.5 132	Ta ppm 1.46 1.53 1.77 1.9 1.68 1.5 1.67 1.6 1.33	Te ppm ○0.05 ○0.05 ○0.05 ○0.05 ○0.05 ○0.05 ○0.05 ○0.05 ○0.05 ○0.05 ○0.05 ○0.05 ○0.05 ○0.05 ○0.05 ○0.05 ○0.05
試料名 ICP-1501 ICP-1502 ICP-1504 ICP-1505 ICP-1505 ICP-1505 ICP-1505 ICP-1507 ICP-1507 ICP-1509 ICP-1511 ICP-1512 試料名 ICP-1501	Ni ppm 0.7 1.1 0.7 0.5 0.8 0.7 0.6 0.8 0.8 0.7 0.6 0.8 0.8 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	P ppm 160 190 210 210 170 180 180 180 180 180 170 190 Ti ppm 0.086	Pb ppm 25.2 32.1 34.4 15.8 29.1 33 33.8 27.8 28.4 14.6 21.1 Tl ppm 1.1	Rb ppm 171 226 198 163.5 219 227 211 219 207 193.5 216 276 U ppm 6.4	0 0 R ppm Q0 002 <0	S ppm 0. 41 0. 07 0. 05 0. 55 0. 05 0. 05 0. 05 0. 05 0. 05 0. 05 0. 05 0. 04 0. 04 0. 03 W ppm 2. 5	Sb ppm 0.1 0.34 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.12 0.13 0.12 0.13 0.11 0.09 0.22 0.11 Y ppm 455	Sc ppm 3.3 3.8 3.9 4.2 3.7 4.1 3.9 4.2 3.7 4.1 3.9 4.2 3.7 4.1 3.9 4.2 3.7 4.1 3.9 4.5 Zn ppm 41	Se ppm 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Sn ppm 4.1 4.6 9.1 4.3 5.1 4.4 4.3 5.1 4.4 4.3 5.5 5.7	Sr ppm 105.5 119.5 110 72.2 113 115.5 105.5 121.5 101.5 103.70.5 132	Ta ppm 1. 46 1. 16 1. 53 1. 77 1. 19 1. 68 1. 5 1. 67 1. 67 1. 67 1. 33	Te ppm ⟨0.05
ICP-1501 ICP-1502 ICP-1502 ICP-1504 ICP-1504 ICP-1505 ICP-1506 ICP-1507 ICP-1507 ICP-1507 ICP-1507 ICP-1510 ICP-1511 ICP-1512 試料名 ICP-1501 ICP-1502	Ni ppm 0. 7 1. 1 0. 7 0. 5 0. 8 0. 7 0. 7 0. 6 0. 8 0. 8 0. 7 0. 7 1. 1 0. 7 0.	P ppm 160 190 210 170 180 180 180 180 180 180 180 170 190 Ti ppm 0.086 0.098	Pb ppm 25.2 32.1 34.4 15.8 29.1 33 33.8 27.8 28.4 14.6 21.1 T1 ppm 1.11 1.27	Rb ppm 171 226 198 163.5 219 227 211 219 207 193.5 216 276 U ppm 6.4	R ppm 0.002 0.002	S S ppm 0. 41 0. 07 0. 05 0. 55 0. 05 0. 02 0. 05 0. 04 0. 04 0. 07 0. 28 0. 03 W ppm 2. 5 0. 04 0. 04	Sb ppm 0.1 0.34 0.13 0.13 0.13 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.14 0.15 0.17 0.18 0.19 0.22 0.11 Y ppm 45.5 28.1	Sc ppm 3.3 3.9 4.2 3.9 4.2 3.9 4.3 3.6 3.7 3.2 4.5 Zn ppm 41	Se ppm 2 1 2	Sn Ppm 4 1 4 4 4 6 9 1 4 3 5 1 4 4 4 4 4 3 5 5 5 7	Sr ppm 105.5 119.5 110.72.2 113 115.5 105.5 105.5 105.5 105.5 101.5 103 70.5 132	1a ppm 1.46 1.53 1.77 1.9 1.68 1.5 1.67 1.68 1.33	Te ppm (0.05
it it it it it it it it it it	Ni ppm 0.7 1.1 0.7 0.5 0.8 0.7 0.6 0.8 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	P ppm 190 190 190 210 170 180 180 180 180 180 180 190 170 190 0.086 0.098 0.001	Pb ppm 25.2 32.1 34.4 15.8 29.1 33.3 29.1 33.8 29.1 33.8 27.8 28.8 28.8 28.4 14.6 21.1 TI ppm 1.11 .27 1.1	Rb ppm 171 171 226 198 163.5 219 227 211 219 207 193.5 216 276 U ppm 6.4 4.9 7.2	R ppm Q0.002 002 Q0.002 0002 Q0.002 002	S ppm 0.41 0.07 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.03 W ppm 2.5 0.4 2.3	b b ppm 0.1 0.13 0.1 0.34 0.1 0.13 0.1 0.13 0.11 0.13 0.13 0.11 0.13 0.12 0.13 0.13 0.11 0.02 0.11 Y Ppm ppm 45.5 28.1 32.2	Sc ppm 3.3 3.8 3.9 4.2 3.7 4.1 3.6 3.7 4.3 3.6 3.7 4.5 Zn ppm 41 42 44	Se ppm 2 1 2	Sn ppm 4 4.6 9.1 4.3 5.1 4.4 4.3 5.5 5.7	Sr ppm 105,5 119,5 110,72,2 113 115,5 105,5,5 121,5 103,5 103,5 101,5 103,5 101,5 103,5 113,2	Ia ppm 1.46 1.53 1.77 1.16 1.53 1.77 1.68 1.567 1.67 1.69 1.33	Te ppm 0.05
icP-1501 ICP-1501 ICP-1502 ICP-1502 ICP-1505 ICP-1505 ICP-1505 ICP-1507 ICP-1507 ICP-1510 ICP-1511 ICP-1512 試料名 ICP-1501 ICP-1502 ICP-1503 ICP-1504	Ni ppm 0,7 0,7 1,1 0,7 0,5 0,8 0,7 0,6 0,8 0,7 0,6 0,8 0,7 0,6 0,8 0,7 0,7 0,6 0,8 0,7 0,7 0,7 0,5 0,8 0,7 0,7 0,7 0,5 0,8 0,7 0,7 0,6 0,7 0,6 0,7 0,7 0,6 0,7 0,6 0,7 0,6 0,7 0,6 0,7 0,6 0,7 0,6 0,7 0,6 0,7 0,6 0,7 0,6 0,7 0,6 0,7 0,6 0,7 0,6 0,7 0,6 0,7 0,7 0,6 0,7 0,7 0,6 0,7 0,7 0,6 0,7 0,7 0,7 0,6 0,7 0,7 0,7 0,6 0,7 0,7 0,7 0,6 0,7 0,7 0,7 0,6 0,7 0,7 0,7 0,7 0,6 0,7 0,7 0,7 0,7 0,6 0,8 0,7 0,7 0,7 0,6 0,8 0,7 0,7 0,7 0,6 0,8 0,7 0,7 0,7 0,6 0,8 0,7 0,7 0,7 0,6 0,8 0,7 0,7 0,7 0,6 0,8 0,7 0,7 0,7 0,7 0,6 0,8 0,7 0,7 0,7 0,7 0,7 0,6 0,8 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7	P ppm 160 190 190 210 170 180 180 180 180 180 170 180 180 170 190 71 0.086 0.098 0.101 0.12	Pb ppm 25.2 32.1 34.4 15.8 29.1 33.3 8 27.8 28.4 14.6 21.1 T1 ppm 1.11 1.27 1.1 1.36	Rb ppm 171 226 198 163.5 219 227 219 207 193.5 216 276 U ppm 4.9 7.2 8	R ppm Q002 0002 Q0002 V PPm 9 9 9 12 12	S ppm 0.41 0.07 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.03 W ppm 2.3 1.9 1.9	b b ppm 0.1 0.13 0.1 0.34 0.11 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.14 0.90 0.22 0.11 Y Y ppm 45.5 28.1 32.2 24.9 24.9	Sc Sc ppm 3.3 3.8 3.9 4.2 3.7 3.7 4.1 3.9 4.2 3.7 3.6 3.7 4.5 Zn 7 4.5 Zn 41 42 44 84	Se ppm 2 2 1 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 3 48 48.2 52.8	Sn ppm 4.1 4.4 4.6 9.1 4.3 5.1 4.4 4.7 4.4 4.7 4.4 4.3 5.5 5.7	Sr ppm 105.5 119.5 110 72.2 113 115.5 121.5 105.5 121.5 105.5 103.5 105.5 103.7 105.5 103.7 105.5 103.7 105.5 103.7 105.5 103.7 105.5 105.	Ia ppm 1.46 1.53 1.77 1.19 1.68 1.67 1.67 1.67 1.33	Te ppm <0.05
icP-1501 ICP-1501 ICP-1502 ICP-1502 ICP-1504 ICP-1505 ICP-1505 ICP-1507 ICP-1508 ICP-1509 ICP-1510 ICP-1511 ICP-1511 ICP-1512 試料名 ICP-1502 ICP-1503 ICP-1504 ICP-1504	Ni ppm 0, 7 1, 1 0, 7 0, 5 0, 8 0, 7 0, 6 0, 8 0, 7 0, 6 0, 8 0, 7 0, 6 0, 8 0, 7 0, 7 0, 6 0, 8 0, 7 0, 7 1, 7 1, 7 5 26, 8 25, 2 22, 23 18, 8 18, 9 18, 9	P ppm 160 190 190 210 170 180 180 180 180 180 180 180 190 190 190 0.086 0.001 0.12	Pb ppm 25.2 32.1 34.4 15.8 29.1 33.3 27.8 28.4 14.6 21.1 11 ppm 1.11 ppm 1.27 1.11 3.36	Rb ppm 171 226 198 163.5 219 227 219 207 193.5 216 276 U ppm 6.4 9.7 8 4.2	R ppm Q002 0002 Q0002 0002 Q002 0002 Q002 002 Q002 002 Q002 002 Q02 002 Q03 02	S ppm 0.41 0.07 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.07 0.28 0.03 W ppm 2.5 0.44 0.31 0.9 0.42 0.03 0.42 0.03 0.42 0.43 0.42 0.44 0.42 0.44 0.42 0.44 0.45 0.44 0.45 0.44 0.45 0.44 0.45 0.44 0.45 0.44 0.45 0.45 0.45 0.45	b b ppm 0.1 0.13 0.1 0.34 0.1 0.35 0.1 0.36 0.1 0.37 0.13 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.14 0.99 0.22 0.11 Y Ppm 45.5 28.1 32.2 24.9 25.7 25.7	Sc Sc ppm 3.3 8 3.3 8 3.9 3.7 4.1 3.7 4.3 3.6 3.7 3.4 2.2 4.5 7 3.2 4.5 7 7.1 4.1 4.4 5 4.1 4.5 7 7 4.5 7 7 41 44 84 84 40 40	Se Se ppm 2 1 2 2 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 48.8 48.2 52.8 43 43	Sn ppm 4 4.6 9.1 4.3 5.1 4.4 4.7 4.4 5.5 5.7	Sr ppm 105.5 119.55 110.72.2 113 115.5 105.55 105.55 105.55 105.55 105.55 105.55 105.55 105.55 103.70.55 132	Ia ppm 1.46 1.53 1.77 1.9 1.68 1.67 1.67 1.46 1.33	Te ppm (0, 05 (0, 05 (0, 05 (0, 05 (0, 05 (0, 05 (0, 05 (0, 05 (0, 05 (0, 05 (0, 05 (0, 05 (0, 05 (0, 05 (0, 05 (0, 05 (0, 05 (0, 05 (0, 05
 試料名 CP-1501 CP-1502 CP-1503 CP-1503 CP-1504 CP-1507 CP-1507 CP-1509 CP-1509 CP-1511 CP-1511 CP-1512 試料名 CP-1503 CP-1503 CP-1503 CP-1504 CP-1504 CP-1506	Ni ppm 0.7 1.1 0.5 0.8 0.7 0.6 0.8 0.7 0.6 0.8 0.7 0.6 0.8 0.7 0.7 0.6 0.8 0.7 0.7 0.6 0.8 0.7 0.5 0.8 0.7 0.6 0.8 0.7 0.6 0.8 0.7 0.6 0.8 0.7 0.6 0.8 0.7 0.6 0.8 0.7 0.6 0.8 0.7 0.6 0.8 0.7 0.6 0.8 0.7 0.6 0.8 0.7 0.6 0.8 0.7 0.6 0.8 0.7 0.7 0.6 0.8 0.7 0.7 0.8 0.7 0.7 0.8 0.7 0.7 0.8 0.7 0.7 0.8 0.7 0.7 0.7 0.8 0.7 0.7 0.8 0.7 0.7 0.8 0.7 0.7 0.7 0.8 0.7 0.7 0.7 0.8 0.7 0.7 0.7 0.8 0.7 0.7 0.8 0.7 0.7 0.8 0.8 0.7 0.7 0.8 0.8 0.7 0.7 0.8 0.8 0.7 0.7 0.8 0.8 0.8 0.7 0.7 0.8 0.8 0.8 0.8 0.8 0.7 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8	P ppm 160 190 210 170 180 180 180 180 180 180 180 170 190 0.086 0.098 0.101 0.12 0.095	Pb ppm 25. 2 32. 1 34. 4 15. 8 29. 1 33 33. 8 27. 8 28. 4 14. 6 21. 1 71 71 ppm 1. 11 1. 27 1. 1 1. 36 1. 19 1. 22	Rb ppm 171 226 198 163.5 219 227 211 219 207 193.5 216 276 U ppm 6.4 9.7 2 8 4.2 5.5	R ppm Q0.002 Q0.002 Q0.002 <	S ppm 0.41 0.07 0.05 0.05 0.05 0.02 0.05 0.04 0.04 0.03 W ppm ppm pp pp 2.5 0.4 1.1 9 0.8 1.9 0.8 1.9 0.8 1.9 0.8 1.9 0.8 1.9 0.8 1.9 0.8 1.9 0.8 1.9 0.8 1.9 0.8 1.9 0.8 1.9 0.8 1.9 0.8 1.9 0.8 1.9 0.8 1.9 0.8 1.9 0.8 1.9 1.9 1.9 0.8 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9	Sb ppm 0.1 0.13 0.13 0.14 0.15 0.16 0.17 0.13 0.12 0.13 0.12 0.13 0.11 0.99 0.22 0.11 Y ppm 45.5 28.1 32.2 24.9 25.7 36	Sc Sc ppm 3.3 3.8 3.9 4.2 3.7 4.1 3.9 4.3 3.6 5.5 Zn ppm 41 42 44 84 40 47 7	Se ppm 2 2 1 2 2 2 1 2 2 2 3 5 48.8 4 43.5 5	Sn Sn ppm 4.1 4.4 4.6 9.1 4.3 5.1 4.4 4.3 5.5 5.7 5.7	Sr ppm 105 119,5 119,5 119,5 119,5 119,5 110,5 105,5 121,5 101,5 103 70,5 132	1a ppm 1.46 1.53 1.77 1.9 1.68 1.5 1.67 1.67 1.33	Te ppm (0, 05 (0, 0
icP-1501 ICP-1501 ICP-1502 ICP-1504 ICP-1505 ICP-1505 ICP-1505 ICP-1507 ICP-1509 ICP-1510 ICP-1511 ICP-1512 試料名 ICP-1502 ICP-1503 ICP-1504 ICP-1505 ICP-1505 ICP-1507	Ni ppm 0, 7 0, 5 0, 7 0, 5 0, 8 0, 7 0, 7 0, 6 0, 8 0, 7 0, 7 0, 7 0, 6 0, 8 0, 7 0, 7 0, 7 0, 7 0, 7 0, 7 0, 7 0, 7	P ppm 160 190 190 210 170 180 180 180 180 180 180 180 180 0.08 0.098 0.098 0.101 0.12 0.095 0.1	Pb ppm 25, 2 32, 1 34, 4 15, 8 29, 1 33, 38 27, 8 28, 4 14, 6 21, 1 1, 1 1, 1 1, 1 1, 1 1, 19 1, 15	Rb ppm 171 226 198 219 227 219 207 193.5 216 207 193.5 216 207 193.5 216 207 90 4.4.9 7.2 8 4.2 5.5	R ppm Q002 0002 Q002 Q002 Q02 Q02 Q03 Q02 Q04 Q02 Q05 Q02 Q04 Q02 Q05 Q02 Q04 Q02 Q05 Q02<	S ppm 0.41 0.07 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.07 0.28 0.03 W ppm 0.4 0.4 0.4 0.03 W ppm 0.4 2.3 1.9 0.8 0.6 2	Sb ppm 0.1 0.13 0.13 0.11 0.34 0.11 0.13 0.11 0.13 0.11 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.13 13.2 24.9 25.7 36 32.9	Sc Sc ppm 3.3 3.8 3.3 8 3.9 4.2 3.7 4.1 3.3 7 3.3 4.3 3.6 3.7 3.4 3.7 3.6 3.7 3.2 4.5 Zn 7 3.2 4.1 4.5 Zn pm1 42 44 44 44 40 47 48 4	Se Ppm 2 2 1 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 48.8 48.8 2 52.8 43 51.6 45.7	Sn Sn ppm 4.1 4.4.1 4.6 9.1 4.3 5.1 4.4 4.7 4.4 4.3 5.5 5.7 5.7	Sr ppm 105.5 119.5 110.5 113 115.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 103.70.5 132	Ia ppm 1.46 1.53 1.77 1.19 1.68 1.67 1.67 1.44 1.09 1.33	Te ppm 0.05 0.0
it 試料名 ICP-1501 ICP-1502 ICP-1503 ICP-1504 ICP-1505 ICP-1506 ICP-1507 ICP-1509 ICP-1510 ICP-1511 ICP-1512 試料名 ICP-1503 ICP-1503 ICP-1505 ICP-1505 ICP-1505 ICP-1506 ICP-1508	Ni ppm 0.7 1.1 0.5 0.8 0.7 0.6 0.8 0.7 0.6 0.8 0.7 0.6 0.8 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	P P ppm 160 190 190 190 210 170 180 180 180 180 180 180 0.03 1700 190 Ti ppm 0.086 0.098 0.101 0.12 0.098 0.11 0.012 0.05 0.1 0.12	bit bit Pb ppm 25.2 32.1 34.4 33.1 15.8 29.1 33.3 33.8 27.8 28.8 28.4 14.1 1.11 .27 1.11 .36 1.19 .19 1.22 .15 1.22 .15	Rb ppm 171 178 188 163.5 219 211 219 207 193.5 216 276 9 6.4 9.7 8 4.2 5.5 8.9 8.9	R ppm Q0.002 Q0.002 Q0.002 <	S S ppm 0.41 0.70 0.55 0.55 0.05 0.05 0.02 0.05 0.02 0.05 0.04 0.04 0.07 0.28 0.03 W ppm 2.5 0.4 2.3 1.9 0.8 0.6 2 1.6	Sb ppm 0.1 0.33 0.34 0.13 0.13 0.14 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.14 0.09 0.22 0.11 Y ppm 45.5 28.1 32.2 34.9 35.9	Sc Sc ppm 3.3 3.3 3.8 3.3 3.9 4.2 3.7 3.9 4.2 3.7 3.9 4.3 3.6 3.7 3.2 4.5 7 4.5 7 41 42 44 84 400 47 48 46 46 46	Se ppm 2 2 1 1 2 2 1 2 2 2	Sn Sn ppm 4 1 4 4 6 9 1 4 1 4 3 5 1 4 4 3 5 5 5 5 7 5 7	Sr ppm 105.5 119.5 110.5 110.5 110.7 110.5 105.5 105.5 101.5 103.7 103.7 132. 132.	Ta ppm 1.46 1.50 1.77 1.9 1.68 1.5 1.67 1.46 1.33	Te ppm (0. 05 (0. 05) (0. 05 (0. 05) (0. 05 (0. 05) (0. 0
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Ni ppm 0.7 0.7 1.1 0.5 0.8 0.7 0.6 0.8 0.7 0.6 0.8 0.7 0.6 0.8 0.7 0.6 0.8 0.7 0.6 0.8 0.7 0.5 0.8 0.7 0.5 0.8 0.7 0.5 0.8 0.7 0.5 0.8 0.7 0.5 0.8 0.7 0.5 0.8 0.7 0.5 0.8 0.7 0.5 0.8 0.7 0.6 0.8 0.7 0.6 0.8 0.7 0.5 0.8 0.7 0.6 0.8 0.7 0.6 0.8 0.7 0.7 0.6 0.8 0.7 0.7 0.6 0.8 0.7 0.7 0.6 0.8 0.7 0.7 0.6 0.8 0.7 0.7 0.6 0.8 0.7 0.7 0.6 0.8 0.7 0.7 0.6 0.8 0.7 0.7 0.6 0.8 0.7 0.7 0.6 0.8 0.7 0.7 0.6 0.8 0.7 0.7 0.6 0.8 0.7 0.7 0.6 0.8 0.7 0.7 0.6 0.8 0.7 0.7 0.6 0.8 0.7 0.7 0.6 0.8 0.8 0.2 0.7 0.7 0.6 0.8 0.8 0.2 0.7 0.7 0.6 0.8 0.8 0.2 0.2 0.2 0.8 0.2 0.8 0.8 0.8 0.8 0.2 0.2 0.9 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0	P ppm 160 190 210 170 180 180 180 180 180 180 180 180 180 18	Pb ppm 25. 2 32. 1 34. 4 15. 8 29. 1 33. 3 33. 3 33. 3 27. 8 28. 4 14. 6 21. 1 T1 ppm 1. 11 1. 36 1. 19 1. 2 1. 15 1. 2 1. 15	Rb ppm 171 226 198 163.5 219 227 211 219 207 193.5 216 276 U ppm 6.4 4.9 7.2 8 4.9 7.5 8.9 4.7 6.2	R ppm (0, 002 (0, 002	S ppm 0.41 0.07 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.02 0.05 0.03 W 0.03 W ppm 2.5 0.4 2.3 1.9 0.8 0.8 0.8 2 1.6 0.9	Sb ppm 0.1 0.34 0.13 0.13 0.14 0.13 0.14 0.15 0.16 0.17 0.18 0.11 0.13 0.12 0.13 0.12 0.13 0.14 0.15 0.11 Y ppm 45.5 28.1 32.4.9 24.9 25.7 36 32.9 32.9 27	Sc ppm 3.3 3.8 3.9 4.2 3.7 4.3 3.6 3.7 4.3 3.6 3.7 4.3 3.6 3.7 3.2 4.5 Zn ppm 41 42 44 84 40 47 48 46 49	Se ppm 1 2	Sn Sn ppm 4.1 4.4 4.6 9.1 4.3 5.1 4.4 4.7 4.4 4.3 5.5 5.7 5.7	Sr ppm 105.5 119.5 119.5 119.5 110.7 72.2 113 115.5 105.5 121.5 101.5 103 70.5 132	Ia ppm 1.46 1.16 1.53 1.77 1.9 1.68 1.5 1.67 1.67 1.67 1.33	Te ppm (0, 05 (0, 05) (0, 05 (0, 05) (0, 0
icP-1501 ICP-1502 ICP-1502 ICP-1504 ICP-1505 ICP-1505 ICP-1505 ICP-1507 ICP-1509 ICP-1511 ICP-1512 試料名 ICP-1502 ICP-1502 ICP-1504 ICP-1505 ICP-1505 ICP-1505 ICP-1507 ICP-1507 ICP-1508 ICP-1508 ICP-1508	Ni ppm 0, 7 0, 5 0, 7 0, 5 0, 8 0, 7 0, 7 0, 6 0, 8 0, 7 0, 7 0, 6 0, 8 0, 8 0, 7 0, 7 0, 7 0, 6 0, 8 0, 8 0, 7 0, 7 0, 7 0, 6 0, 8 0, 7 0, 7 0, 7 0, 7 0, 7 0, 7 0, 7 0, 7	P ppm 160 190 190 210 170 180 180 180 180 180 180 180 18	Pb ppm 25, 2 32, 1 34, 4 15, 8 29, 1 33, 38 27, 8 28, 4 14, 6 21, 1 1, 12 1, 11 1, 27 1, 13 6, 1, 19 1, 22 1, 15 1, 22 1, 14 1, 11	Rb ppm 1711 226 198 219 227 219 2211 219 207 193.5 216 276 U ppm 4.9 7.2 8 4.2 5.5 5.5 9 4.7 6.2 4.3	R ppm Q002 0002 Q002 002 Q02 002 Q03 002 Q04 002 Q05 002 Q04 002 Q05 002 Q04 002	S ppm 0.41 0.05 0.55 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.04 0.07 0.28 0.03 W ppm 0.4 2.3 1.9 0.8 0.6 2 1.6 0.9 2.3	b b ppm 0.1 0.13 0.1 0.13 0.1 0.13 0.11 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.14 0.12 0.15 28.1 32.2 28.1 32.9 32.9 27 28.5	Sc ppm 3.3 8 3.9 4.2 3.7 4.1 3.9 4.3 3.6 3.7 4.1 3.9 4.2 3.7 4.1 3.9 4.2 4.5 2n ppm 41 42 44 40 47 48 46 49 52	Se Ppm 2 2 1 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 48.8 48.8 43.2 51.6 45.7 45.1 44.7 38.4 45.7	Sn ppm 4.1 4 4.6 9.1 4.3 5.1 4.4 4.7 4.4 4.3 5.5 5.7	Sr ppm 105.5 119.5 110.5 110.5 110.5 113 115.5 105.5 105.5 105.5 105.5 101.5 103.70.5 132	Ia ppm 1.46 1.53 1.77 1.19 1.68 1.67 1.67 1.44 1.09 1.33	Te ppm (0, 05)
ist料名 iCP-1501 iCP-1502 iCP-1503 iCP-1503 iCP-1505 iCP-1507 iCP-1507 iCP-1507 iCP-1509 iCP-1501 iCP-1501 iCP-1501 iCP-1503 iCP-1503 iCP-1505 iCP-1505 iCP-1505 iCP-1505 iCP-1505 iCP-1506 iCP-1509 iCP-1511 iCP-1509 iCP-1511 iCP-1511 iCP-1511 iCP-1509 iCP-1511 iCP-1511 iCP-1509 iCP-1511 iCP-1519 iCP-1504 iCP-1505 iCP-1505 iCP-1505 iCP-1505 iCP-1505 iCP-1505 iCP-1505 iCP-1507 iCP-1505 iCP-1505 iCP-1505 iCP-1505 iCP-1505 iCP-1505 iCP-1505 iCP-1505 iCP-1505 iCP-1505 iCP-1505 iCP-1505 iCP-1505 iCP-1507 iCP-1508 iCP-1507 iCP-1508 iCP-1509 iCP-1507 iCP-1509 iCP-1507 iCP-1507 iCP-1508 iCP-1508 iCP-1507 iCP-1508 iCP-15	Ni ppm 0.7 1.1 0.5 0.8 0.7 0.6 0.7 0.6 0.7 <	P P ppm 160 190 210 170 180 180 180 180 180 180 180 180 0.03 160 0.086 0.098 0.101 0.12 0.095 0.1 0.10 0.10 0.12 0.095 0.1 0.0095 0.099 0.0997 0.082	Pb ppm 25, 2 32, 1 34, 4 15, 8 29, 1 33 33, 8 27, 8 28, 4 14, 6 21, 1 1, 11 1, 36 1, 12 1, 12 1, 13 1, 12 1, 12 1, 12 1, 12 1, 12 1, 14 1, 13	Rb ppm 171 1226 193 211 219 207 211 219 207 193.5 216 276 276 900 66.4 4.9 7.2 8 4.2 5.5 8.9 4.7 6.2 4.3	R ppm (0, 002 (0, 002	S S ppm 0.41 0.07 0.05 0.55 0.02 0.05 0.05 0.04 0.04 0.03 0.04 0.04 0.03 0.03 0.03 0.04 0.03 0.03 0.04 0.03 0.03 0.04 0.03 0.05 0.04 2.5 0.4 2.3 1.9 0.8 0.6 2 2.3 1.6 0.9 2.3 1.6	Sb ppm 0.1 0.13 0.14 0.13 0.14 0.13 0.14 0.15 0.16 0.17 0.13 0.12 0.13 0.12 0.13 0.12 0.11 0.09 0.22 0.11 Y pm pp pm pom 28.1 32.2 24.9 25.7 36 32.9 32.9 32.9 27 28.5 15	Sc ppm 3.3 3.8 3.9 4.2 3.7 4.3 3.6 3.3.7 4.3 3.6 3.7 4.3 3.6 3.7 4.3 3.6 3.7 3.2 4.3 2.0 7.7 2.2 7.7 4.5 7.7	Se ppm 2 2 1 1 2 2 1 2 2 2 3 4 3 4 3 4 3 4	Sn ppm 4.1 4 4.6 9.1 4.1 4.4 4.3 5.1 4.4 4.3 5.5 5 5.7 5.7	Sr ppm 105,5 119,5 119,5 119,5 119,5 119,5 105,5 121,5 103,70,5 132	ia ppm 1.46 1.53 1.77 1.9 1.68 1.5 1.67 1.33	Te ppm (0, 05) (0, 05) (0, 05) (0, 05) (0, 05) (0, 05) (0, 05) (0, 05) (0, 05) (0, 05) (0, 05) (0, 05) (0, 05) (0, 05) (0, 05) (0, 05)
試料名 ICP-1501 ICP-1502 ICP-1503 ICP-1503 ICP-1503 ICP-1505 ICP-1505 ICP-1507 ICP-1508 ICP-1509 ICP-1510	Ni ppm 0. 7 1. 1 0. 7 0. 5 0. 8 0. 7 0. 7 0. 7 0. 6 0. 8 0. 8 0. 8 0. 7	P ppm 160 190 210 170 180 180 180 180 180 180	Pb ppm 25.2 32.1 34.4 15.8 29.1 33 33.8 27.8 28.8 28.4 14.6	Rb ppm 171 226 198 163.5 219 227 211 219 207 193.5 216	R ppm <0.002	S ppm 0. 41 0. 07 0. 05 0. 55 0. 05 0. 05 0. 05 0. 05 0. 04 0. 04 0. 07	Sb ppm 0.1 0.33 0.1 0.34 0.11 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.12	Sc ppm 3.3 3.8 3.9 4.2 3.7 4.1 3.9 4.3 3.6 3.7 3.2	Se ppm 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1	Sn ppm 4.1 4.6 9.1 4.3 5.1 4.4 4.7 4.4 4.7 4.4 4.3 5.5	Sr ppm 105.5 119.5 110.5 110.72.2 113 115.5 105.5 121.5 101.5 103.5 103.5 70.5	Ta ppm 1.46 1.16 1.53 1.77 1.9 1.68 1.57 1.67 1.67 1.67 1.07	Te ppm <0.05
iCP-1501 ICP-1502 ICP-1502 ICP-1503 ICP-1504 ICP-1505 ICP-1506 ICP-1506 ICP-1509 ICP-1510 ICP-1511 ICP-1512	Ni ppm 0.7 1.1 0.75 0.8 0.7 0.66 0.8 0.7 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	P ppm 160 190 190 210 170 180 180 180 180 180 180 190	Pb ppm 25. 2 32. 1 34. 4 15. 8 29. 1 33 33. 8 27. 8 28. 8 28. 4 28. 4 14. 6 21. 1	Rb ppm 171 226 198 163.5 219 227 211 219 207 193.5 219 207 213 214 219 207 216 276	R ppm <0.002	S ppm 0.41 0.07 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.02 0.05 0.04 0.04 0.04 0.07 0.28 0.03	Sb ppm 0.1 0.34 0.13 0.34 0.13 0.13 0.13 0.13 0.13 0.12 0.13 0.11 0.22 0.11	Sc ppm 3.3 3.8 3.9 4.2 3.7 4.1 3.9 4.3 3.6 3.7 3.6 3.7 3.2 4.5	Se ppm 2 1 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2	Sn ppm 4.1 4.6 9.1 4.3 5.1 4.4 4.7 4.4 4.7 4.4 4.3 5.5 5.5 5.7	Sr ppm 105.5 119.5 110 72.2 113 115.5 105.5 121.5 103.5 103.70.5 70.5 132	Ta ppm 1.46 1.53 1.77 1.9 1.68 1.55 1.67 1.67 1.9 1.33	Te ppm <0.05
iCP-1501 ICP-1502 ICP-1502 ICP-1503 ICP-1504 ICP-1505 ICP-1506 ICP-1507 ICP-1508 ICP-1509 ICP-1510 ICP-1511 ICP-1512 試料名	Ni ppm 0.7 1.1 0.7 0.5 0.8 0.7 0.7 0.6 0.8 0.8 0.8 0.8 0.8 0.7 0.7 0.7	P ppm 160 190 190 210 170 180 180 180 180 180 170 190 Ti	Pb ppm 25.2 32.1 34.4 15.8 29.1 33 33.8 27.8 28.8 28.4 28.4 14.6 21.1 TI	Rb ppm 171 226 198 163.5 219 227 211 219 207 193.5 216 276 U	R ppm <0.002	S ppm 0. 41 0. 07 0. 05 0. 55 0. 05 0. 05 0. 05 0. 02 0. 05 0. 04 0. 04 0. 04 0. 04 0. 04 0. 07 0. 28 0. 03	Sb ppm 0.1 0.34 0.11 0.34 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.11 0.20 0.13 0.11 0.22 0.11 Y	Sc ppm 3.3 3.8 3.9 4.2 3.7 4.3 3.6 3.7 3.2 4.3	Se ppm 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Sn ppm 4.1 4.6 9.1 4.3 5.1 4.4 4.7 4.4 4.7 4.4 4.3 5.5 5.5 5.7	Sr ppm 105.5 119 72.2 113 115.5 105.5 121.5 101.5 103.70.5 132	Ta ppm 1.46 1.53 1.77 1.9 1.68 1.5 1.67 1.67 1.67 1.33	Te ppm <0.05
は 武料名 ICP-1501 ICP-1502 ICP-1503 ICP-1504 ICP-1505 ICP-1506 ICP-1507 ICP-1508 ICP-1509 ICP-1510 ICP-1511 ICP-1511 ICP-1512 試料名	Ni ppm 0.7 1.1 0.7 0.5 0.8 0.7 0.7 0.6 0.8 0.7 0.7 0.6 0.8 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	P ppm 160 190 210 210 210 210 180 180 180 180 180 180 170 190 Ti ppm 0 096	Pb ppm 25.2 32.1 34.4 15.8 29.1 33 33.8 27.8 28.8 28.8 28.4 14.6 21.1 Tl ppm	Rb ppm 171 226 198 163.5 219 227 211 207 193.5 216 276 276 276 276 276 276 9pm 9pm	No No Ppm -0.002 <0.002	S ppm 0. 41 0.07 0.05 0.05 0.05 0.05 0.02 0.04 0.04 0.04 0.04 0.03 W ppm ppm ppm	Sb ppm 0.1 0.34 0.11 0.34 0.11 0.33 0.12 0.13 0.11 0.13 0.11 0.12 0.11 0.09 0.22 0.11 Y ppm pdf	Sc ppm 3.3 3.9 4.2 3.7 4.1 3.9 4.3 3.6 3.7 3.6 3.7 3.6 3.7 3.6 3.7 3.6 3.7 3.6 3.7 3.6 3.7 3.6 3.7 3.6 3.7 3.6 3.7 3.6 3.7 3.6 3.7 3.6 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 <	Se ppm 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Sn ppm 4.1 4.6 9.1 4.3 5.1 4.4 4.7 4.4 4.3 5.5 5.7	Sr ppm 105.5 119.5 110 72.2 113 115.5 105.5 101.5 101.5 101.5 103 70.5 132	Ta ppm 1. 46 1. 53 1. 77 1. 19 1. 68 1. 55 1. 67 1. 67 1. 46 1. 33	Te ppm (0.05
icP-1501 ICP-1501 ICP-1502 ICP-1502 ICP-1504 ICP-1505 ICP-1506 ICP-1507 ICP-1508 ICP-1507 ICP-1510 ICP-1511 ICP-1511 ICP-1512 試料名	Ni ppm 0.7 1.1 0.7 0.5 0.8 0.7 0.6 0.8 0.7 0.6 0.8 0.8 0.7 0.7 Th ppm 17.35 26.8	P ppm 160 190 210 170 180 180 180 180 180 180 180 170 190 Ti ppm 0.086	Pb ppm 25.2 33.1 34.4 15.8 29.1 33 33 33.8 27.8 28.4 14.6 21.1 ppm 1.11 ppm	Rb ppm 171 2266 198 163.5 219 227 211 219 207 193.5 216 276 U ppm 6.4	R ppm 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002	S ppm 0.41 0.07 0.05 0.55 0.05 0.02 0.05 0.02 0.04 0.04 0.07 0.28 0.03 W ppm 2.5 0.04 0.03	Sb ppm 0.13 0.13 0.11 0.34 0.11 0.34 0.13 0.13 0.11 0.09 0.22 0.11 0.12 0.13 0.14 0.15	Sc ppm 3.3 3.8 3.9 4.2 3.7 4.1 3.9 4.3 3.6 3.77 4.1 3.9 4.5 Zn ppm 41	Se ppm 2 1 2 3 48	Sn Ppm 4 1 4 4 4 6 9.1 1 4 3 5.1 4 4.3 5 5.5 5 5.5 5	Sr ppm 105.5 119.5 110.72.2 113.5 115.5 105.5 101.5 101.5 103.70.5 132.	Ia ppm 1.46 1.53 1.77 1.9 1.68 1.5 1.67 1.66 1.40 1.33	Te ppm <0.05
 試料名 ICP-1501 ICP-1502 ICP-1503 ICP-1504 ICP-1506 ICP-1507 ICP-1507 ICP-1509 ICP-1509 ICP-1511 ICP-1511 試料名 ICP-1501 ICP-1503 ICP-1503	Ni ppm 0. 7 1. 1 0. 7 0. 5 0. 8 0. 7 0. 7 0. 6 0. 8 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 8 0. 7 0. 7 0. 7 0. 8 0. 7 0. 7 0. 8 0. 7 0. 7 0. 6 0. 8 0. 7 0. 7 0. 7 0. 8 0. 7 0. 7 0. 8 0. 7 0. 7 0. 6 0. 8 0. 7 0. 7 0. 8 0. 7 0. 7 0. 8 0. 7 0. 7 0. 6 0. 8 0. 7 0.	P ppm 190 190 190 190 190 190 170 180 180 180 180 180 180 190 Ti ppm 0.086 0.098 0.010	Pb ppm 25.2 32.1 32.1 34.4 15.8 29.1 33.3.8 27.8 28.8 28.4 14.6 21.1 TI 1.1 1.27	Rb ppm 171 171 226 198 163.5 219 227 211 207 193.5 216 276 U ppm 6.4 4.9 7	R ppm Q0.002 002 Q0.002 0002 Q0.002 002	S ppm 0.41 0.07 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.04 0.03 W ppm 2.5 0.4 2.5 0.4 2.5	b b ppm 0.1 0.13 0.1 0.34 0.1 0.13 0.11 0.13 0.11 0.13 0.11 0.13 0.11 0.14 0.12 0.11 0.13 0.12 0.13 0.13 0.11 0.90 22 0.11 0.99 0.22 0.11 Y Y ppm 45.5 28.1 32	Sc Sc ppm 3.3 3.8 3.9 4.2 3.7 3.7 4.1 3.9 4.3 4.3 3.6 3.7 3.6 3.7 3.2 4.5 Zn ppm 41 42 44	Se ppm 2 1 2	Sn ppm 4.1 4.4 4.6 9.1 4.3 5.1 4.4 4.4 4.3 5.5 5.7 5.7	Sr Sr ppm 105,5 119,5 110,5 111,5 113,5 105,5,5 101,5 101,5 101,5 103,70,5 132	Ia ppm 1.46 1.53 1.77 1.68 1.5 1.67 1.61 1.33	Te ppm 0.05
icP-1501 ICP-1501 ICP-1502 ICP-1502 ICP-1504 ICP-1505 ICP-1505 ICP-1507 ICP-1507 ICP-1510 ICP-1511 ICP-1511 ICP-1512 試料名 ICP-1502 ICP-1504	Ni ppm 0, 7 0, 7 1, 1 0, 7 0, 5 0, 8 0, 7 0, 6 0, 7 0, 7 0, 7 0, 6 0, 7 0, 7 0, 7 0, 7 0, 6 0, 7 0, 7 0, 7 0, 7 0, 7 0, 6 0, 8 0, 7 0, 7 0, 7 0, 7 0, 6 0, 8 0, 7 0, 7 0, 7 0, 7 0, 7 0, 7 0, 6 0, 8 0, 7 0,	P ppm 160 190 190 210 170 180 180 180 180 180 170 180 180 170 190 71 0.086 0.098 0.101 0.12	Pb ppm 25.2 32.1 34.4 15.8 29.1 33.3 8 27.8 28.4 14.6 21.1 T1 ppm 1.11 1.27 1.1 1.36	Rb ppm 171 226 198 163.5 219 227 211 219 207 193.5 216 276 U ppm 4.9 7.2 8	R ppm Q002 0002 Q0002 V PPm 9 9 9 12 12	S ppm 0.41 0.07 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.03 W ppm 2.3 1.9 1.9	b b ppm 0.1 0.13 0.1 0.34 0.11 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.14 0.90 0.22 0.11 Y Y ppm 45.5 28.1 32.2 24.9 24.9	Sc Sc ppm 3.3 3.8 3.9 4.2 3.7 3.7 4.1 3.9 4.2 3.7 3.6 3.7 4.5 Zn 7 4.5 Zn 41 42 44 84	Se ppm 2 2 1 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 3 48 48.2 52.8	Sn ppm 4.1 4.4 4.6 9.1 4.3 5.1 4.4 4.7 4.4 4.7 4.4 4.3 5.5 5.7	Sr ppm 105.5 119.5 110 72.2 113 115.5 121.5 105.5 121.5 105.5 103.5 105.5 103.7 105.5 103.7 105.5 103.7 105.5 103.7 105.5 103.7 105.5 105.	Ia ppm 1.46 1.53 1.77 1.19 1.68 1.67 1.67 1.67 1.33	Te ppm <0.05
icP-1502 iCP-1501 iCP-1502 iCP-1503 iCP-1504 iCP-1505 iCP-1505 iCP-1507 iCP-1509 iCP-1510 iCP-1511 iCP-1512 試料名 iCP-1502 iCP-1504 iCP-1504 iCP-1504 iCP-1504 iCP-1505	Ni ppm 0, 7 0, 7 1, 1 0, 7 0, 5 0, 8 0, 7 0, 7 0, 6 0, 8 0, 7 0,	P ppm 160 190 190 210 170 180 180 180 180 180 180 180 190 170 190 Ti ppm 0.088 0.098 0.101 0.12 0.095	Pb ppm 25, 2 32, 1 34, 4 15, 8 29, 1 33, 38 27, 8 28, 4 14, 6 21, 1 ppm 1, 16 1, 17 ppm 1, 1, 1 1, 27 1, 36 1, 39	Rb ppm 171 226 198 163.5 219 227 219 227 219 227 219 219 219 207 193.5 216 276 U ppm 6.4 9.7 2.8 4.2	R ppm Q002 002 Q002 0002 Q002 Q002 Q002 Q02 Q002 Q02 Q02 Q02 Q03 Q02 Q04 Q02 Q05 <td< td=""><td>S ppm 0.41 0.07 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.07 0.28 0.03 W ppm 2.5 0.04 0.41 2.3 1.9 0.8</td><td>Sb ppm 0.1 0.13 0.13 0.11 0.13 0.11 0.13 0.11 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.12 1.11 0.22 0.11 1.11 1.12 1.13 1.14 1.15 1.11 1.11 1.12 <td>Sc ppm 3.3 3.8 3.9 4.2 3.7 4.1 3.9 4.3 3.6 3.7 4.3 3.6 3.7 4.1 3.9 4.2 4.4 42 44 40</td><td>Se ppm 2 1 2 1 2</td><td>Sn ppm ppm 4 1 4 4 4 4 6 9 9 1 4 3 5 5 1 4 4 7 4 4 4 3 5 5 5 5 5 7</td><td>Sr ppm 105.5 119.5 110.5 110.5 110.5 110.5 113.115.5 105.5 105.5 105.5 105.5 101.5 103.70.5 113.2</td><td>Ia ppm 1.46 1.53 1.77 1.9 1.68 1.67 1.67 1.44 1.09 1.33</td><td>Te ppm (0, 05) (0, 05) (0, 05) (0, 05) (0, 05) (0, 05) (0, 05) (0, 05) (0, 05) (0, 05) (0, 05) (0, 05) (0, 05) (0, 05) (0, 05) (0, 05) (0, 05) (0, 05) (0, 05)</td></td></td<>	S ppm 0.41 0.07 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.07 0.28 0.03 W ppm 2.5 0.04 0.41 2.3 1.9 0.8	Sb ppm 0.1 0.13 0.13 0.11 0.13 0.11 0.13 0.11 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.12 1.11 0.22 0.11 1.11 1.12 1.13 1.14 1.15 1.11 1.11 1.12 <td>Sc ppm 3.3 3.8 3.9 4.2 3.7 4.1 3.9 4.3 3.6 3.7 4.3 3.6 3.7 4.1 3.9 4.2 4.4 42 44 40</td> <td>Se ppm 2 1 2 1 2</td> <td>Sn ppm ppm 4 1 4 4 4 4 6 9 9 1 4 3 5 5 1 4 4 7 4 4 4 3 5 5 5 5 5 7</td> <td>Sr ppm 105.5 119.5 110.5 110.5 110.5 110.5 113.115.5 105.5 105.5 105.5 105.5 101.5 103.70.5 113.2</td> <td>Ia ppm 1.46 1.53 1.77 1.9 1.68 1.67 1.67 1.44 1.09 1.33</td> <td>Te ppm (0, 05) (0, 05) (0, 05) (0, 05) (0, 05) (0, 05) (0, 05) (0, 05) (0, 05) (0, 05) (0, 05) (0, 05) (0, 05) (0, 05) (0, 05) (0, 05) (0, 05) (0, 05) (0, 05)</td>	Sc ppm 3.3 3.8 3.9 4.2 3.7 4.1 3.9 4.3 3.6 3.7 4.3 3.6 3.7 4.1 3.9 4.2 4.4 42 44 40	Se ppm 2 1 2 1 2	Sn ppm ppm 4 1 4 4 4 4 6 9 9 1 4 3 5 5 1 4 4 7 4 4 4 3 5 5 5 5 5 7	Sr ppm 105.5 119.5 110.5 110.5 110.5 110.5 113.115.5 105.5 105.5 105.5 105.5 101.5 103.70.5 113.2	Ia ppm 1.46 1.53 1.77 1.9 1.68 1.67 1.67 1.44 1.09 1.33	Te ppm (0, 05) (0, 05) (0, 05) (0, 05) (0, 05) (0, 05) (0, 05) (0, 05) (0, 05) (0, 05) (0, 05) (0, 05) (0, 05) (0, 05) (0, 05) (0, 05) (0, 05) (0, 05) (0, 05)
 試料名 CP-1501 CP-1502 CP-1503 CP-1503 CP-1504 CP-1506 CP-1506 CP-1500 CP-1510 CP-1511 CP-1512 試料名 CP-1503 CP-1503 CP-1504 CP-1504 CP-1505 CP-1504 CP-1505 CP-1507 CP-1505 CP-1507 CP-1505 CP-1507 CP-1507 CP-1505 CP-1507 CP-1505 CP-1505	Ni ppm 0.7 1.1 0.5 0.8 0.7 0.6 0.8 0.7 0.6 0.8 0.7 0.6 0.8 0.7 0.7 0.7 0.7 0.7 0.8 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	P ppm 160 190 190 210 170 180 280 180 180 200 180 180 180 180 180 180 180 180 190 Ti ppm 0.086 0.098 0.12 0.095 0.02	Pb ppm 25, 2 32, 1 34, 4 15, 8 29, 1 33 33, 8 27, 8 28, 4 14, 14 121, 1 T1 1, 11 1, 27 1, 11 1, 36 1, 19 1, 19 1, 22	Rb ppm 171 128 163.5 219 211 219 207 193.5 216 276 0 0 6 4.9 7.2 8 4.2 5.5	R ppm Q0.002 Q0.002 Q0.002 <	S S ppm 0.41 0.07 0.05 0.05 0.05 0.05 0.02 0.05 0.04 0.04 0.07 0.05 0.04 0.04 0.07 0.28 0.28 0.03 W ppm ppm ppm 2.5 0.4 2.3 1.9 3.3 0.6 0.6	Sb ppm 0.1 0.13 0.14 0.13 0.14 0.13 0.14 0.13 0.14 0.13 0.12 0.13 0.12 0.13 0.14 0.19 0.11 Y ppm 45.5 28.1 32.2 24.9 25.7 36	Sc Sc ppm 3.3 3.8 3.9 4.1 3.9 4.3 3.6 3.3 3.6 4.1 3.9 4.2 4.1 4.1 3.9 4.5 7 7 3.2 4.5 7 4.1 44 84 40 40 47	Se ppm 2 2 1 1 2 2	Sn ppm 4.1 4.6 9.1 4.3 5.1 4.4 4.3 5.5 5.5 5.7 5.7	Sr ppm 105.5 119.5 110.7 110.7 110.7 115.5 105.5 121.5 101.5 103.7 0.5 132	Ta ppm 1.46 1.5 1.77 1.9 1.68 1.5 1.67 1.33	Te ppm (0. 05 (0. 05) (0. 05 (0. 05) (0. 05 (0. 05) (0. 0
it 試料名 ICP-1501 ICP-1502 ICP-1502 ICP-1504 ICP-1505 ICP-1506 ICP-1507 ICP-1507 ICP-1509 ICP-1510 ICP-1511 ICP-1512 試料名 ICP-1502 ICP-1503 ICP-1503 ICP-1504 ICP-1505 ICP-1506 ICP-1506 ICP-1506 ICP-1506 ICP-1507	Ni ppm 0.7 1.1 0.7 0.5 0.8 0.7 0.6 0.8 0.7 0.6 0.8 0.8 0.7 0.6 0.8 0.8 0.7 0.7 0.5 0.6 0.8 0.7 0.7 0.5 0.8 0.7 0.7 0.5 0.8 0.7 0.7 0.5 0.8 0.7 0.7 0.7 0.5 0.8 0.7 0.7 0.7 0.5 0.8 0.7 0.7 0.7 0.5 0.8 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	P ppm 160 190 190 210 170 180 180 180 180 180 180 180 180 180 18	Pb ppm 25, 2 32, 1 34, 4 15, 8 29, 1 33, 8 27, 8 28, 8 28, 4 14, 6 21, 1 T1 ppm 1, 16 1, 17 ppm 1, 17 1, 17 1, 17 1, 19 1, 25	Rb ppm 171 226 198 163.5 219 207 213.5 216 207 193.5 216 007 193.5 216 007 907 208 90 7.2 8 4.2 5.5 5.8 9	R ppm Q0.002 (0.002 (0.002 <	S ppm 0.41 0.07 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.07 0.03 W ppm 2.5 0.41 0.03 W ppm 2.5 0.4 2.3 1.9 0.8 0.8 0.8 0.6	Sb ppm 0.1 0.13 0.13 0.11 0.34 0.11 0.37 0.12 0.13 0.12 0.13 0.11 0.12 0.13 0.11 0.12 0.13 0.11 0.12 0.13 0.14 0.15 0.11 0.12 0.13 0.14 0.15 0.11 0.12 0.13 0.14 0.15 0.11 132.2 24.9 25.7 32.9 32.9	Sc Sc ppm 3.3 3.3 8 3.3 8 3.3 8 3.3 8 3.3 8 3.3 8 3.3 8 3.3 8 3.3 8 3.3 8 3.3 9 4.2 3.7 4.1 4 41 42 44 40 47 48 48 48	Se ppm 2 2 1 2 2 2 1 2 2 3 51 6 45 7	Sn ppm 4.1 4.4 4.6 9.1 4.3 5.1 4.4 4.7 4.4 5.5 5.7	Sr ppm 105.5 119.5 119.5 110 72.2 113 115.5 105.5 121.5 103 70.5 132	Ia ppm 1.46 1.53 1.77 1.9 1.68 1.77 1.9 1.66 1.53 1.77 1.9 1.67 1.67 1.67 1.67 1.67 1.33	Te ppm 0.05 0.0
icP-1501 iCP-1501 iCP-1502 iCP-1503 iCP-1504 iCP-1505 iCP-1506 iCP-1507 iCP-1507 iCP-1509 iCP-1510 iCP-1511 iCP-1512 試料名 iCP-1503 iCP-1503 iCP-1504 iCP-1505 iCP-1506 iCP-1508 iCP-1508	Ni ppm 0.7 0.5 0.8 0.7 0.5 0.8 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 17.35 26.8 22.2 3 12.4 9 21.6 24.9 20.9	P ppm 160 190 190 190 210 170 180 180 180 180 180 180 180 180 190 190 190 0.086 0.001 0.12 0.095 0.11 0.12 0.10	Pb ppm 25.2 32.1 34.4 15.8 29.1 33.3 27.8 28.4 24.6 27.8 28.8 28.8 28.8 14.6 21.1 T 1.11 ppm 1.17 1.27 1.11 36 1.22 1.15 1.22	Rb ppm 171 226 198 163.5 219 227 219 207 193.5 216 276 U ppm 6.4 9.7.2 8 4.2 5.5 8.9 4.7	R ppm Q0.002 (0.002 (0.002 (0.002 (0.002 (0.002 (0.002 (0.002 (0.002 (0.002 (0.002 (0.002 (0.002 (0.002 (0.002 (0.002 (0.002 (0.002 (0.002 (0.002 (0.002 (0.002 (0.002 (0.002 (0.002 (0.002 (0.002 (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)	S ppm 0.41 0.07 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.04 0.07 0.28 0.03 W ppm 2.5 0.4 2.3 1.9 0.8 0.6 2 1.6	b b ppm 0.1 0.13 0.1 0.34 0.1 0.35 0.1 0.36 0.1 0.37 0.11 0.38 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.14 0.90 0.22 0.11 Y Ppm 45.5 28.1 32.2 24.9 25.7 36 32.9 32.9	Sc ppm 3.3 3.8 3.9 4.2 3.7 4.1 3.9 4.3 3.6 3.7 4.3 3.6 3.7 4.5 Zn ppm 41 44 84 40 47 48 46	Se ppm 2 1 2 1 2	Sn ppm 4 4.6 9.1 4.3 5.1 4.4 4.7 4.4 5.5 5.7	Sr ppm 105.5 119.5 110.5 110.5 110.7 110.5 105.5 105.5 101.5 101.5 103.7 132 132	Ta ppm 1.46 1.51 77 19 1.68 1.57 1.67 1.67 1.33	Te ppm Q0.05 (0.05 (0.05 (0.05 (0.05 (0.05 (0.05 (0.05 (0.05 (0.05 (0.05 (0.05 (0.05 (0.05 (0.05 (0.05 (0.05 (0.05 (0.05 (0.05
は 武料名 ICP-1502 ICP-1502 ICP-1502 ICP-1504 ICP-1505 ICP-1506 ICP-1507 ICP-1507 ICP-1501 ICP-1501 ICP-1501 ICP-1501 ICP-1503 ICP-1503 ICP-1504 ICP-1506 ICP-1507 ICP-1509 ICP-1509	Ni ppm 0.7 0.7 1.1 0.5 0.8 0.7 0.6 0.8 0.7 0.6 0.8 0.8 0.7 0.6 0.8 0.7 0.6 0.8 0.7 0.6 0.8 0.7 0.7 0.5 0.8 0.7 0.5 0.8 0.7 0.5 0.8 0.7 0.5 0.8 0.7 0.5 0.8 0.7 0.5 0.8 0.7 0.5 0.8 0.7 0.7 0.5 0.8 0.7 0.7 0.6 0.8 0.7 0.7 0.6 0.8 0.7 0.7 0.6 0.8 0.7 0.7 0.7 0.6 0.8 0.7 0.7 0.7 0.6 0.8 0.7 0.7 0.7 0.7 0.6 0.8 0.7 0.7 0.7 0.6 0.8 0.8 0.7 0.7 0.7 0.7 0.6 0.8 0.8 0.7 0.7 0.7 0.7 0.6 0.8 0.8 0.7 0.7 0.7 0.7 0.6 0.8 0.8 0.7 0.7 0.7 0.7 0.6 0.8 0.8 0.8 0.8 0.7 0.7 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.2 2.2 2.2 2.2 2.2 0.8 0.2 0.2 0.2 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8	P ppm 160 190 210 170 180 180 180 180 180 180 180 180 180 18	Pb ppm 25, 2 32, 1 34, 4 15, 8 29, 1 33, 3 33, 3 27, 8 28, 8 28, 8 28, 4 14, 6 21, 1 T1 ppm 1, 12 7, 1 1, 27 1, 136 1, 12 1, 15 1, 2 1, 14	Rb ppm 171 226 198 219 227 211 207 213 207 193.5 216 207 193.5 216 0 0 6.4 4.9 7.2 8 4.2 5.5 8.9 4.7 6.2	R ppm Q0.002 0002 Q0.002 002 Q0.002	S ppm 0.41 0.07 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.07 0.28 0.03 W ppm pz 0.4 2.3 1.9 0.8 0.8 0.6 2 1.6 0.9	Sb ppm 0.1 0.13 0.1 0.34 0.11 0.34 0.11 0.35 0.12 0.33 0.12 0.13 0.11 0.99 0.22 0.11 Y ppm 45.5 28.1 32.2 24.9 25.7 36 32.9 32.9 27	Sc Sc ppm 3.3 3.3 8 3.3 8 3.3 8 3.3 8 3.3 8 3.3 8 3.3 8 3.3 8 3.3 9 4.2 3.7 4.5 Zn ppm 41 42 44 40 47 47 48 46 46	Se ppm 2 2 1 2 2 2 1 2 2 2 3 48.8 48.8 2 552.8 43.3 51.6 45.7	Sn ppm 4.1 4 4.6 9.1 4.3 5.1 4.4 4.7 4.4 4.3 5.5 5.7	Sr ppm 105.5 119.5 119.5 110 72.2 113 115.5 105.5 121.5 103 70.5 132	Ia ppm 1.46 1.53 1.77 1.9 1.65 1.67 1.67 1.69 1.33	Te ppm 0.05 0.0
icP-1501 iCP-1502 iCP-1502 iCP-1503 iCP-1504 iCP-1505 iCP-1505 iCP-1507 iCP-1509 iCP-1510 iCP-1511 iCP-1512 試料名 iCP-1502 iCP-1503 iCP-1504 iCP-1505 iCP-1505 iCP-1507 iCP-1508 iCP-1507 iCP-1508	Ni ppm 0, 7 0, 7 1, 1 0, 7 0, 5 0, 8 0, 7 0, 7 0, 6 0, 8 0, 7 0, 7 0, 6 0, 8 0, 7 0, 7 0, 6 0, 8 0, 7 0, 7 0, 7 0, 6 0, 8 0, 7 0,	P ppm 160 190 190 210 170 180 180 180 180 180 180 180 18	Pb ppm 25, 2 32, 1 34, 4 15, 8 29, 1 33, 38 27, 8 28, 4 14, 6 21, 1 1, 14 1, 27 1, 17 1, 19 1, 22 1, 15 1, 22 1, 14	Rb ppm 171 226 198 219 227 219 227 219 227 219 227 219 207 193, 5 216 276 U ppm 6, 4 9, 7, 2 5, 5 8 4, 2 5, 5 9 4, 7 6, 2 4, 3	R ppm Q002 002 Q002 0002 Q002 002 Q002 V Ppm 9 9 9 10 10 0 0	S ppm 0.41 0.07 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.04 0.07 0.28 0.03 W ppm 2.5 0.44 2.3 1.9 0.4 2.3 1.9 0.6 2 1.6 0.9 2	b b ppm 0.1 0.13 0.1 0.34 0.1 0.13 0.11 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.14 0.90 0.22 0.11 Y Ppm 45.5 5 28.1 32.2 24.9 25.7 36 32.9 27 32.9 27 28.5	Sc ppm 3.3 3.8 3.9 4.2 3.7 4.1 3.9 4.3 3.6 3.7 4.1 3.9 4.2 4.1 3.7 4.1 3.6 3.7 3.2 4.5 Zn ppm 41 42 44 40 47 48 46 49 52	Se Ppm 2 2 1 1 2 2 1 2 2 3 48.8 43 51.6 45.1 44.7 7 38.4 4	Sn ppm 4 4.6 9.1 4.3 5.1 4.4 4.7 4.4 5.5 5.7	Sr ppm 105.5 119.5 110.5 110.5 110.5 110.5 105.5 105.5 105.5 105.5 105.5 105.5 101.5 103.70.5 103.70.5 132	Ia ppm 1.46 1.53 1.77 1.9 1.68 1.67 1.67 1.61 1.33	Te ppm (0, 05
icP-1501 iCP-1502 iCP-1502 iCP-1503 iCP-1504 iCP-1507 iCP-1506 iCP-1507 iCP-1509 iCP-1509 iCP-1510 iCP-1512 試料名 iCP-1501 iCP-1503 iCP-1503 iCP-1504 iCP-1504 iCP-1506 iCP-1507 iCP-1509 iCP-1504 iCP-1507 iCP-1504 iCP-1504 iCP-1507 iCP-1504 iCP-1507 iCP-1508 iCP-1504 iCP-1507 iCP-1508 iCP-1507 iCP-1508 iCP-1507 iCP-1507 iCP-1508 iCP-1507 iCP-1508 iCP-1507 iCP-1508 iCP-1507 iCP-1508 iCP-1507 iCP-1508 iCP-1508 iCP-1507 iCP-1508 iCP-1508 iCP-1507 iCP-1508 iCP-1504 iCP-1507 iCP-1508 iCP-1504 iCP-1507 iCP-1508 iCP-1507 iCP-1504 iCP-1507 iCP-1508 iCP-1507 iCP-1508 iCP-1508 iCP-1507 iCP-1508 iCP-1509 iCP-1508	Ni ppm 0.7 1.1 0.7 1.1 0.7 0.6 0.7 0.8 0.9 22.3 16.15 24.7	P ppm 160 190 190 210 170 180 180 180 180 180 180 180 18	Pb ppm 25. 2 32. 1 34. 4 15. 8 29. 1 33. 3 33. 3. 8 27. 8 28. 4 14. 6 21. 1 T1 ppm 1. 11 1. 36 1. 12 1. 15	Rb ppm 171 226 198 163.5 219 227 211 219 207 193.5 216 276 U ppm 6.4 4.9 7.2 8 4.9 7.5 8.9 4.7 6.2 4.3	R ppm (0, 002 (0, 002	S ppm 0.41 0.07 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.02 0.05 0.03 W 0.03 W 0.03 Ppm 2.5 0.4 2.03 1.9 0.8 0.8 2 1.6 2 1.6 2.3 1.6 1.9	Sb ppm 0.1 0.34 0.15 0.16 0.17 0.34 0.13 0.13 0.14 0.13 0.12 0.13 0.12 0.13 0.14 0.15 0.11 0.12 0.13 0.14 0.15 0.11 Y ppm 45.5 28.1 32.2 36 32.9 22.9 32.9 27 28.5 14	Sc Sc ppm 3.3 3.3 3.8 3.3 3.8 3.3 3.8 3.9 4.2 3.7 3.9 4.13 3.9 4.3 3.7 3.2 3.7 3.2 7 4.5 Zn ppm 41 42 44 40 47 48 46 46 49 52 26	Se ppm 2 2 1 1 2 2 1 2 2 2 3 8 45 7 45 7 45 7 38 4 20 4	Sn ppm 4.1 4.4 4.6 9.1 4.3 5.1 4.4 4.3 5.5 5.7	Sr ppm 105.5 119.5 119.5 119.5 119.5 110.7 10.5 101.5 101.5 103.7 132 132 132	1a ppm 1.46 1.16 1.53 1.77 1.9 1.68 1.5 1.67 1.67 1.67 1.33	Te ppm (0, 05 (0, 05) (0, 05 (0, 05) (0, 0
icP-1501 ICP-1502 ICP-1502 ICP-1504 ICP-1505 ICP-1505 ICP-1505 ICP-1507 ICP-1509 ICP-1510 ICP-1511 ICP-1512 試料名 ICP-1502 ICP-1504 ICP-1505 ICP-1505 ICP-1505 ICP-1507 ICP-1507 ICP-1508 ICP-1508 ICP-1510 ICP-1510	Ni ppm 0.7 0.7 1.1 0.7 0.5 0.8 0.7 0.7 0.6 0.8 0.7 0.7 0.6 0.8 0.7 0.7 0.7 0.7 0.6 0.8 0.7 0.7 0.7 0.5 0.8 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	P ppm 160 190 190 210 170 180 180 180 180 180 180 180 18	Pb ppm 25, 2 32, 1 34, 4 15, 8 29, 1 33, 38 27, 8 28, 4 14, 6 21, 1 1, 16 1, 16 1, 17 1, 16 1, 17 1, 16 1, 17 1, 19 1, 22 1, 14 1, 33	Rb ppm 171 226 198 219 227 219 2211 219 2217 219 219 219 207 193.5 216 276 U ppm 6.4.9 7.2 8 4.2 5.5 8.9 4.7 6.2 4.3 8.2	R ppm Q002 002 Q002 0002 Q002 Q002 Q002 Q02 Q002 Q02 Q02 Q02 Q03 Q02 Q04 Q02 Q05 Q02 Q04 Q02 Q05 Q02	S ppm 0.41 0.07 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.04 0.07 0.28 0.03 W ppm 2.5 0.42 3 1.6 0.9 2.1.6 0.9 1.6 0.9 1.6	b b ppm 0.1 0.13 0.1 0.13 0.11 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.14 0.12 0.15 0.12 0.11 0.09 0.22 0.11 Y Ppm 45.5 28.1 32.9 25.7 36 32.9 27 28.5 15 15	Sc ppm 3.3 3.8 3.9 4.2 3.7 4.1 3.9 4.2 3.7 4.1 3.9 4.2 3.7 4.1 3.9 4.2 4.4 4.5 Zn ppm 41 42 44 40 47 48 46 49 52 35	Se Se ppm 2 1 1 2 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 48.8 48.8 43.2 52.8 52.8 43.5 1.6 445.1 1 44.7 7 38.4 39.4	Sn ppm 4.1 4 4.6 9.1 4.3 5.1 4.4 4.7 4.4 4.3 5.5 5.7	Sr ppm 105.5 119.5 110.5 110.5 110.5 110.5 113.115.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.5 103.70.5 132	Ia ppm 1.46 1.53 1.77 1.19 1.68 1.55 1.67 1.61 1.33	Te ppm (0, 05

表 3.4.1-4 微量元素分析 (ME-MS81)

于中心力	Ba	Ce	Cr	Cs	Dy	Er	Eu	Ga	Gd	Hf	Ho	La	Lu	Nb	Nd	Pr
武科石	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
ICP-1501	380	52.6	10	15.4	7.73	5.43	0.58	16.3	6.55	6.1	1.92	26.3	0.99	16.1	23.7	6.2
ICP-1502	408	50.6	10	5.28	4.41	2.88	0.54	15.6	4.11	5.1	1.01	25.8	0.5	11.3	20.9	5.63
ICP-1503	424	47.3	10	7.96	6.08	4. 22	0.56	17.6	5.08	: 6	1.5	23.9	0.69	13.2	20.6	5.42
ICP-1504	414	86.8	10	4.27	8.77	5.78	1.17	24.6	8.4	6.6	2.03	44.9	1.04	18.1	37.5	9.9
ICP-1505	394	48.2	10	5.09	4.63	2.87	0.57	18	4.14	4.8	0.99	24.8	0.52	12.6	20.2	5.64
ICP-1506	426	47.6	20	7.67	6.11	4.27	0.59	17.5	4.94	5.2	1.42	24	0.71	13.8	20.4	5.58
ICP-1507	380	44.3	10	9.32	5.5	3.62	0.48	16.3	4. 22	4.7	1.19	22.4	0.6	12.9	18.5	5.09
ICP-1508	434	48.5	10	7.95	5.85	3.99	0.57	18.5	4.53	5.3	1.41	25	0.68	15.1	20.2	5.42
ICP-1509	364	37.1	10	7.67	5.1	3.45	0.52	16.1	3.89	: 5	1.12	18.5	0.6	13.1	15.8	4.26
ICP-1510	348	40.8	10	5.97	5.25	3.45	0.48	15.9	4. 23	4.5	1.19	20.7	0.59	12.2	17.2	4.6
ICP-1511	358	48.2	10	3.69	5.16	3.65	0.53	14.8	4.6	4.5	1.18	24.5	0.6	11.1	20.4	5.49
ICP-1512	352	54.5	10	3.49	6.24	4.26	0.7	18.7	5.1	5.4	1.5	27.3	0.72	12.5	23	6.14
=== 业1 夕	Rb	Sm	Sn	Sr	Ta	: Tb	Th	Tm	U	: V	W	Υ	Yb	Zr	:	
武州石	ppm	ppm	ppm	ppm	: ppm	ppm	ppm	ppm	ppm	: ppm	ppm	ppm	ppm	ppm		
ICP-1501	208	5.89	5	111.5	1.6	1.21	20.7	0.91	7.72	9	3	59.3	6.15	189		:
ICP-1502	209	4.29	4	105	1.1	0.7	22.4	0.47	4.71	9	1	27.9	3. 28	150		
ICP-1503	218	4.67	5	112	1.5	0.93	26.6	0.67	8.79	11	3	40.3	4.85	170		
ICP-1504	204	8.49	11	76	2	1.39	33.4	0.93	10.4	13	3	62.4	6.73	190		
ICP-1505	239	4.42	5	115.5	1.4	0.76	20.4	0.5	5.47	10	2	28.7	3.45	134		
ICP-1506	229	4.84	6	111.5	1.7	0.93	20. 2	0.67	5.05	9	1	40.4	4.93	135		
ICP-1507	205	4.05	5	96.5	1.4	0.84	22. 5	0.59	7.47	9	3	35.3	4.3	119		
ICP-1508	235	4. 41	6	124.5	1.8	0.92	23.9	0.63	5.96	11	2	40.5	4.99	147		
ICP-1509	209	3.43	5	97.7	1.5	0.79	21	0.52	9.66	: 9	: 1	32.4	3.92	134		
ICP-1510	202	3.87	5	97.9	1.4	0.86	17.7	0.58	5.1	9	3	33.7	4.22	132		
						-				-	-	-			-	
ICP-1511	219	4.8	6	68.6	1.3	0.84	23.5	0.58	8.07	: 8	: 2	34.8	4.18	: 119	:	:

なお、ME-MS61 と ME-MS81 では花崗岩や砂岩の Zr や Hf が ME-MS81 において高い値を示している。 これは、ME-MS81 のアルカリ溶融では、高温融解後にガラス化して酸溶融するために、ジルコンなど の酸に難溶融性の鉱物も溶けているが、ME-MS61 では粉末化した試料をそのまま酸溶融するために十 分溶解していないことが考えられる。ME-MS61 と ME-MS81 については岩石の特徴により長所・短所が あるが、今回の花崗岩試料の Zr や Hf については ME-MS81 の値を採用すべきと考える。

3.4.1.2 鉱物分析

試料とした瑞浪花崗岩については、一般的な変質や脈石鉱物の分布を把握するとともに、ラジウム などのラドンの親核種の富化に影響する変質や鉱物について確認するために実施した。分析において は試料の割れ目充填鉱物とともに割れ目近傍の母岩の変質箇所も試料とする。X 線回折分析の対象と した試料を表 3.4.1-5 に示す。

試料名	孔名および深度	分析部位	備考
XRD-1501	12MI30 6.78m - 6.86m	母岩	やや白化。上部には暗緑色鉱物が充填。
XRD-1502	12MI30 12.44m - 12.55m	母岩	顕著な変質なし。
XRD-1503	12MI3O 21.67m - 21.94m	破砕部	全体に暗緑色化。破砕部は固結した暗灰色断層粘土。
XRD-1504	12MI30 27.00m - 27.19m	母岩+充填鉱物	平行な細脈と暗緑色や白色の充填鉱物を伴う。
XRD-1505	12MI30 27.19m - 27.23m	破砕部	暗緑色~暗灰色で細礫を含む固結破砕部
XRD-1506	12MI30 27.25m - 27.29m	母岩+充填鉱物	割れ目に暗緑色鉱物。母岩はやや白化。
XRD-1507	12MI31 24.31m - 24.47m	充填鉱物+破砕部	暗灰色の固結破砕部。周辺に暗緑色の充填鉱物伴う割れ目。
XRD-1508	13MI36 8.21m - 8.38m	母岩	白化した脆弱な破砕部に割れ目で接する堅岩部。
XRD-1509	13MI36 10.45m - 10.46m	母岩	顕著な変質なし。
XRD-1510	13MI37 13.60m - 13.63m	母岩	顕著な変質なし。
XRD-1511	13MI37 24.55m - 24.65m	母岩	縮緬皺状細脈。
XRD-1512	14MI49 8.00m - 8.17m	母岩+充填鉱物	割れ目間が破砕し白化脆弱。
XRD-1513	14MI49 18.52m - 18.74m	破砕部	暗緑色に変質した固結破砕部。一部粘土化。
XRD-1514	14MI49 19.76m - 19.92m	破砕部	暗緑色に変質した固結破砕部。破砕物質内部に岩片が残存。

表 3.4.1-5 鉱物分析試料

分析方法は下記の通りである。また、図 3.4.1-4 に分析のフロー図を示す。

- (1) 全岩分析方法
 - ① 岩石試料をめのう乳鉢で粉体化し、アルミ試料ホルダーに充填し、分析試料とする。
 - ② 測定回折角(2θ)は3~60°で XRD 分析する。
 - ③ ②の結果、粘土鉱物が認められた場合は、以下の定方位分析をする。
- (2) 定方位分析方法
 - 1Lのビーカーに粉体化した試料を蒸留水とともにいれて十分に攪拌し、試料を分散させる。その後、約4時間静置した後、水面から4.5 cmまでの上ずみを採取する。
 - ② ①の上ずみ液を遠心分離機で試料粒子を沈下させて、スラドグラスに塗り、これを風乾させて試料とする。残った試料は後の分析のため取り置く。
 - ③ 測定回折角(2θ)は3~40°で XRD 分析する。
 - ④ ③の結果、スメクタイトまたは緑泥石の存在が疑われる場合は以下の分析をする。
 - ⑤ スメクタイトが存在する可能性がある場合、③で使用した試料(スライドグラスに塗ったもの)にエチレングリコールを噴霧し、半乾きの状態で XRD 分析する。この際の測定回折角(2θ)は3~40°とする。
 - ⑥ 緑泥石の存在する可能性がある場合、②で取り置いた水ひ試料を6規定の塩酸溶液にいれ、 80℃で湯煎し約2時間静置する。その後、塩酸を良く洗浄してスライドグラスへ塗り、XRD 分析を行なう。この際の測定回折角(20)は3~40°とする。

分析コア試料 → 粉砕 → 粉体試料 → 全岩X線回折分析(1回目分析) 粉体試料を水ひ ← 分析結果:粘土鉱物が存在する可能性あり (4時間静置後、水面から約4.5 cmまでの上ずみ液を採取) 遠心分離機で粘土鉱物を沈殿 スライドグラスに粘土鉱物を塗布し乾かす 定方位試料 定方位X線回折分析(2回目分析) \rightarrow Ţ 定方位試料にエチレングリコールを噴霧 ← 分析結果:スメクタイトの可能性 緑泥石の可能性 \downarrow 定方位試料 → 定方位X線回折分析(3回目分析) 6NのHC1 溶液に入れ、80℃で湯煎 (約2時間静置) 洗浄後スライドグラスに沈殿物を塗布し乾かす 定方位試料 → 定方位X線回折分析(4回目分析)

図 3.4.1-4 X線回折分析フロー図

(3) 分析結果

X線回折分析の結果を表 3.4.1-2 に示す。瑞浪花崗岩については、割れ目充填鉱物と母岩の両 方に、方解石、緑泥石などが認められている。雲母族鉱物が普遍的に認められる。石橋ほか(2014) よれば、変質した母岩や割れ目の充填鉱物には絹雲母が認められるとしており、本分析で認めら れた雲母族の鉱物も絹雲母(セリサイト)であると考えられる。

3.4.1.3 ラジウム分析

ラドンの親核種であるラジウムの含有量について検討するため瑞浪花崗岩のラジウムの分析を実施した。試料は表 3.4.1-1 の元素分析試料と同じものである。ラジウムの分析方法は文部科学省(1990 および 1990)に準拠し、U-8 容器に粉砕した試料岩石を入れて約 1 ヶ月間放置後、Ra-226 と放射平衡 に達した Bi-214 の濃度をガンマ線スペクトロメトリによって測定中した。すなわち、Bi-214 の濃度 をそのまま Ra-226 濃度と読み替えた。また、分析時に同時に得られる Pb-214、Ac-228、Pb-212、Bi-212 の濃度についてもあわせて示す。分析結果を表 3.4.1-7 に示す。

試料名)	孔名および深度	方解石	緑泥石	セリサイト	スメクタイト	黄鉄鉱
XRD-1501	12MI30 6.78m - 6.86m	+	+	+	+	
XRD-1502	12MI30 12.44m - 12.55m					
XRD-1503	12MI30 21.67m - 21.94m	++	O	+		+
XRD-1504	12MI30 27.00m - 27.19m	Ø	+	+		+
XRD-1505	12MI30 27.19m - 27.23m	+	+	+		
XRD-1506	12MI30 27.25m - 27.29m	+	+	+		
XRD-1507	12MI31 24.31m - 24.47m	+	+	+		
XRD-1508	13MI36 8.21m - 8.38m		+			
XRD-1509	13MI36 10.45m - 10.46m					
XRD-1510	13MI37 13.60m - 13.63m					
XRD-1511	13MI37 24.55m - 24.65m	+	+	+		
XRD-1512	14MI49 8.00m - 8.17m	+	+	+	++	
XRD-1513	14MI49 18.52m - 18.74m	+	0	++		
XRD-1514	14MI49 19.76m - 19.92m	+	+	+		

表 3.4.1-6 鉱物分析結果 (XRD)

含有量(相対比較): ②> ○> + + > + 空欄は検知できなかったもの

昨年度のラジウム分析では未変質箇所のラドン濃度は59~70Bq/Kgである。表 3.4.1-7のラジウム の分析結果によれば、ラジウム濃度が高い(Bi-214濃度が高い)のはRA-1501、RA-1507、RA-1511 である。RA-1501は変質し白化した箇所で、昨年度の鉱物分析で方解石とスメクタイトが認められた。 RA-1507は母岩が全体に変質し、脆弱であり、昨年度の鉱物分析では少量ではあるが、方解石やクロ ーライト、セリサイトが認められている。RA-1511は今年度の分析で緑泥石とセリサイトが認められ ている。したがって、ラジウム濃度の高い箇所は変質個所である(ただし、すべての変質箇所でラジ ウム濃度が高いわけはない)。

試料名		U	系列				Th 系列		
	ICP	-MS	γ 線	測定	ICP	-MS		γ 線測定	
	ι	J	Bi-214	Pb-214	T	h	Ac-228	Pb-212	Bi-212
	Bq/kg	mg/kg	Bq/kg	mg/kg	Bq/kg	mg/kg	Bq/kg	Bq/kg	Bq/kg
RA -1501	99.0	7.98	83±1	95±1	65.2	16.1	58±2	65±1	56 ± 5
RA -1502	82.6	6.66	68±1	81±1	91.9	22. 6	84±2	93±1	86±6
RA -1503	71.0	5. 73	65±1	75±1	83. 2	20. 5	82±2	88±1	87±5
RA -1504	75.0	6.04	69±1	84±1	87.1	21.5	81±2	89±1	78±5
RA -1505	76.7	6. 19	55 ± 1	68±1	76.1	18. 7	75±2	84±1	79±5
RA -1506	73. 1	5.89	57±1	67±1	75.7	18.6	76±2	85±1	77±5
RA -1507	114	9.19	102±1	124±1	97.3	24. 0	99±2	110±2	106±7
RA -1508	76.9	6.20	69±1	83±1	79.3	19.5	76±2	84±1	76±5
RA -1509	79.1	6.38	74±1	86±1	80.4	19. 8	76±2	86±1	73±6
RA -1510	76.4	6.16	62±1	71±1	75.8	18.7	69±2	79±1	67±5
RA -1511	140	11.3	115±1	135±1	103	25.5	94±2	106±1	96±6
RA -1512	63.4	5. 12	55±1	66±1	88.1	21.7	79±2	90±1	84±5

表 3.4.1-8 ラジウム分析結果

3.4.1.4 物性測定

昨年度は、間隙率がラドンフラックスへ与える影響を検討した。本年度も継続して間隙率を測定す るとともに、同じくラドンフラックスに影響を与える可能性がある比表面積を測定した。測定は 10cm 程度の試料のバルク密度と間隙率、岩石試料(チップサイズ)の細孔分布測定によるミクロン〜サブ ミクロンオーダーの間隙率と、サブミクロン〜ナノオーダーの比表面積を BET 法によって行った。

(1) 間隙率測定

間隙率測定ではバルクのコア密度と間隙率測定している。測定では JIS A 1110 (2006) に準拠して、粗骨材の密度及び吸水率試験法試料重量を空気中で測定し、2日間蒸留水中で含水させ、水中で試料重量を測定し、表面水を拭き取った後、再度重量を測定した。その後、試料を 105℃ で2日間乾燥させ、乾燥重量を測定した。結果の一覧を表 3.4.1-8 に示すとともに、間隙率と密度の関係を図 3.4.1-5 示す。変質していない試料は、平均密度 0.62g/cm²、間隙率 0.74%であり、間隙率と密度は負の相関関係にある。一方、変質試料はこの相関関係からはずれて、間隙率が大きい傾向にある。このうち PRS-1507 と PRS-1515 の間隙率は大きいが密度は未変質試料と変わりない。一方、PRS-1506、PRS-1516、PRS-1521、PRS-1522 は間隙率も密度も増加しており、変質に伴う鉱物溶脱もしくは鉱物の間隙への充填の状態などが異なると思われる。

		コア	密度	問脳家	吸水率	
試料名	孔名 深度	絶乾	表乾		·2017	備考
		g/cm°	g/cm°	%	%	
PRS-1501	12MI30 8.84m- 8.98m	2.619	2. 626	0.67	0.26	
PRS-1502	12MI30 11.04m-11.18m	2.622	2. 628	0. 70	0.26	
PRS-1503	12MI30 12.84m-12.98m	2.617	2. 625	0.88	0.33	
PRS-1504	12MI30 16.84m-16.98m	2.624	2. 631	0.66	0. 25	
PRS-1505	12MI30 17.20m-17.34m	2. 621	2. 629	0. 75	0. 29	
PRS-1506	12MI30 22.36m-22.50m	2. 705	2. 717	1.13	0. 43	弱変質
PRS-1507	12MI30 22.58m-22.72m	2.626	2.641	1.51	0.57	弱変質
PRS-1508	12MI31 12.84m-12.98m	2.620	2. 627	0. 68	0.26	
PRS-1509	12MI31 13.30m-13.44m	2.623	2.630	0.66	0. 25	
PRS-1510	12MI31 14.17m-14.31m	2.622	2. 629	0.67	0.26	
PRS-1511	12MI31 15.84m-15.98m	2. 623	2. 630	0. 71	0. 27	
PRS-1512	12MI31 23.33m-23.47m	2.624	2.630	0.67	0.26	
PRS-1513	13MI36 2.31m-2.45m	2.615	2. 624	0.83	0. 32	
PRS-1514	13MI36 5.36m-5.50m	2. 693	2. 702	0.82	0. 31	弱変質
PRS-1515	13MI36 10.05m-10.19m	2.618	2. 629	1.08	0. 41	弱変質
PRS-1516	13MI36 10.47m-10.61m	2.679	2. 689	0.93	0.35	弱変質
PRS-1517	13MI36 10.84m-10.98m	2.617	2. 625	0. 82	0.31	
PRS-1518	13MI36 12.38m-12.52m	2.621	2. 629	0.83	0. 32	
PRS-1519	13MI36 20.84m-20.98m	2.615	2. 623	0. 77	0. 29	
PRS-1520	13MI36 21.69m-21.83m	2.620	2. 628	0. 74	0. 28	
PRS-1521	13MI37 4.39m-4.53m	2. 686	2. 698	1.15	0.44	弱変質
PRS-1522	13MI37 7.40m-7.54m	2.678	2. 688	0.94	0.36	弱変質
PRS-1523	13MI37 10.02m-10.16m	2. 620	2. 627	0. 72	0. 28	
PRS-1524	13MI37 13.46m-13.60m	2. 621	2. 627	0.69	0.26	
PRS-1525	13MI37 15.02m-15.16m	2. 620	2. 628	0. 79	0.30	
PRS-1526	13MI37 18.71m-18.85m	2.616	2.624	0.77	0.30	
PRS-1527	13MI37 24.02m-24.16m	2. 621	2. 628	0. 70	0. 27	

表 3.4.1-9 間隙率測定試料一覧と測定結果

網掛け個所は昨年度測定を行ったコア。PRS-1605 は昨年度報告書の瑞浪花崗岩③、PRS-1607 は瑞浪花 崗岩⑤、PRS-1611 は瑞浪花崗岩⑦、PRS-1615 は瑞浪花崗岩⑫、PRS-1618 は瑞浪花崗岩⑭、PRS-1625 は瑞浪花崗岩⑲にそれぞれ対応する。

図 3.4.1-5 コアの間隙率と密度の関係

(2) 細孔分布測定

細孔分布測定は水銀ポロシメータによって測定した。水銀ポロシメータは岩石中の細孔を円柱 状の間隙と仮定し、水銀の表面張力を用いて、水銀の注入圧と試料中の円柱状間隙の直径との相 関関係を利用し、マクロポア(100nm~1000 µ m)の細孔径分布として測定するものである。また、 細孔分布とともに比表面積、気孔率(間隙率)および密度(真密度)も合わせて測定が可能であ る。間隙分布(細孔分布)の測定は島津製作所のPoreSizer9320を使用した。試料容器に対して 相対的に試料サイズが小さい場合は、測定誤差が大きくなるため、容器に入る最大のサイズ(1cm ×1cm×2cm 程度)に試料をトリミングして測定を行なった。細孔分布測定に用いた試料の一覧を 表 3.4.1-9 に示す。網掛けは昨年度に分析した試料である。変質箇所は、割れ目充填鉱物は崩れ やすく測定できないため、充填鉱物がある割れ目面の接する母岩部をトリミングして測定した。

試料名	孔名 深度	備考(記載のないものは未変質試料)
PSD-1501	12MI30 6.78m - 6.86m	やや白化。暗緑色鉱物(方解石、緑泥石、セリサイト)が認められる。
PSD-1502	12MI30 12.44m - 12.55m	
PSD-1503	12MI30 17.20m - 17.34m	
PSD-1504	12MI30 21.67m - 21.94m	全体に暗緑色化。破砕部は固結した暗灰色断層粘土(緑泥石、方解石等)を伴う。
PSD-1505	12MI30 22.54m - 22.77m	脈状に変質。緑泥石等を伴う。
PSD-1506	12MI30 27.00m - 27.19m	平行な割れ目。割れ目には方解石等が充填。
PSD-1507	12MI31 15.84 - 15.98m	
PSD-1508	12MI31 20.37m - 20.44m	脈状に変質し、方解石、緑泥石等を伴う。
PSD-1509	12MI31 24.31m - 24.47m	暗灰色の固結破砕部。充填鉱物(方解石、緑泥石、セリサイト)が認められる
PSD-1510	13MI36 3.80m - 4.00m	方解石、スメクタイトを等伴い粘土状に変質。
PSD-1511	13MI36 8.21m - 8.38m	白化した脆弱な破砕部に割れ目で接する堅岩部で一部に緑泥石が認められる。
PSD-1512	13MI36 9.09m - 9.25m	変質し白化。方解石、緑泥石、セリサイト、スメクタイトが認められる。
PSD-1513	13MI36 10.45m - 10.46m	
PSD-1514	13MI36 12.38m - 12.52m	
PSD-1515	13MI37 0.66m - 0.79m	変質・粘度状。方解石等を伴う
PSD-1516	13MI37 6.86m - 7.00m	高角割れ目沿いに変質。方解石、スメクタイト等が充填する。
PSD-1517	13MI37 13.60m - 13.63m	
PSD-1518	13MI37 24.55m - 24.65m	縮緬皺状細脈。方解石、緑泥石、セリサイトが認められる。
PSD-1519	14MI49 8.00m - 8.17m	割れ目間が破砕し白化脆弱化している。スメクタイト等が存在する。
PSD-1520	14MI49 18.52m - 18.74m	暗緑色に変質した固結破砕部。一部粘土化し、緑泥石とセリサイト等を伴う。
PSD-1521	14MI49 19.90m - 19.92m	暗緑色に変質した岩片を含む固結破砕部。方解石、緑泥石、セリサイトが認められる。

表 3.4.1-10 細孔分布測定試料一覧

測定結果を表 3.4.1-10 に示す。瑞浪花崗岩については変質していない試料は 0.2%~0.9%の範囲 に分布し、平均で 0.5%程度の気孔率が得られている。変質している試料は 0.3%~6.2%の範囲に分 布し、平均で 2.2%気孔率となっており、全体としては変質した試料の間隙率の方が大きく、また、 比表面積も変質していない試料の 0.0115m²/g~0.0315m²/g(平均 0.0193m²/g) に対して、変質試料 は 0.0176m²/g~0.5550m²/g(平均 0.2171m²/g) と、変質試料の方が大きい。また、細孔径の分布か ら見た場合、変質試料は見変質よりも 1~0.1 μ m 径付近の細孔が増加している。間隙率とラジウム 濃度との関係からは、ラジウム濃度が高い PSD-1501 (=RA1501 :83Bq/Kg)、PSD-1504 (=H26 瑞浪 花崗岩④:159Bq/Kg)、PSD-1512 (=RA1507:102q/Kg)の試料は、何れも間隙率が大きい傾向にある。

	かさ		、 丸九平	全細孔	全細孔表	weura	III 192	平均袖 孔直径	wode	12	変員の
試料名	密度	真密度	[間隙率]	体積	面積	体積基準	表面積 基準	4V/A	体積基準	表面積 規準	有=〇
	g/cc	g/cc	%	cc/g	m [*] /g	μm	μm	μm	μm	μm	無=×
PSD-1501	2.5598	2.5765	0. 6483	0.0025	0.0734	0. 2902	0.0566	0. 1380	0.3376	0. 0262	0
PSD-1502	2.6062	2.6303	0.9173	0.0035	0.0219	6.0124	0. 1416	0. 6433	62.3764	0.0603	×
PSD-1503	2.6116	2.6188	0. 2765	0.0011	0.0115	0. 4255	0. 2014	0.3692	0. 4093	0.1743	×
PSD-1504	2.6629	2.7290	2. 4219	0.0091	0. 5398	0. 1165	0.0347	0.0674	0. 1224	0. 0255	0
PSD-1505	2.5929	2.6602	2. 5281	0.0097	0. 0435	112.8530	0. 1732	0.8969	247.9970	0.0666	0
PSD-1506	2. 5945	2.6116	0.6545	0.0025	0. 0357	0. 6217	0. 1111	0. 2829	0. 1903	0.0429	0
PSD-1507	2.6154	2.6259	0. 4003	0.0015	0.0196	0. 4414	0. 1895	0. 3126	0. 2144	0. 2055	×
PSD-1508	2.6967	2.8032	3.7999	0.0141	0. 5482	0. 1381	0.0681	0. 1028	0. 1058	0.0655	0
PSD-1509	2.5895	2.6039	0. 5499	0.0021	0.0176	1. 2083	0. 1803	0. 4837	0. 3006	0. 1239	0
PSD-1510	2. 5811	2. 6298	1.8499	0.0072	0. 1269	0. 4945	0. 1072	0. 2259	0. 7574	0.0385	0
PSD-1511	2.5073	2.6121	4.0101	0.0160	0.0532	3. 9961	0.3179	1. 2021	3. 1701	0. 0981	0
PSD-1612	2.3875	2.5442	6. 1617	0. 0258	0. 4449	3. 1165	0. 0244	0. 2321	5. 1088	0.0209	0
PSD-1513	2.6163	2.6262	0.3750	0.0014	0.0316	0. 2353	0.0989	0. 1815	0.1387	0.0759	×
PSD-1514	2.6151	2.6292	0. 5381	0.0021	0.0182	30.7645	0. 1264	0. 4531	52. 2754	0.0697	×
PSD-1515	2. 5784	2.6168	1.4691	0.0057	0.0443	1. 1312	0. 1997	0. 5139	0. 8587	0.0873	0
PSD-1516	2.5464	2.6088	2.3925	0.0094	0. 5550	0. 2369	0. 0252	0.0677	0. 0251	0. 0225	0
PSD-1517	2. 5957	2.6017	0. 2295	0.0009	0.0132	0. 3011	0.1509	0. 2682	0. 3018	0.1500	×
PSD-1518	2.5954	2.6196	0.9202	0.0035	0.0513	0. 5073	0.1390	0. 2763	0.7093	0.0580	0
PSD-1519	2.5113	2.5733	2.4104	0.0096	0.2070	1.0332	0.0377	0.1855	1.0234	0. 0297	0
PSD-1520	2.5514	2.6352	3.1808	0.0125	0.4916	0. 2043	0.0458	0.1014	0.0661	0.0365	0
DSD-1621	2 6186	2 6272	0 3253	0 0012	0 0240	0 25/7	0 1361	0 1008	0 3303	0 0653	· •

表 3.4.1-11 細孔分布測定結果

亚粉细 :

Mada 2

赤岳の

網掛けは昨年度計測した試料である。今年度の試料付番との関係は以下のとおりである。 PSD-1503=瑞浪花崗岩⑤、PSD-1505=瑞浪花崗岩⑤、PSD-1507=瑞浪花崗岩⑦、PSD-1508=瑞浪花崗岩⑧、PSD-1610=瑞浪花崗岩⑨、 PSD-1512=瑞浪花崗岩⑪、PSD-1514=瑞浪花崗岩⑭、PSD-1515=瑞浪花崗岩⑮、PSD-1616=瑞浪花崗岩⑯

(3) 比表面積測定(BET法)

BET 法による比表面積の測定は BET 1 点法によって実施した。測定には窒素とヘリウムの混合 ガス(N₂:30%、He:70%)を使用した。測定手順は、装置内に混合ガスを連続的に流し、サン プルが入ったU型セルをセットする。セル部を液体窒素温度に冷却すると、混合ガス中の窒素が サンプル表面に吸着され、相対的に混合ガス中の窒素ガス濃度が減少する。窒素ガスの吸着平衡 を待って、窒素ガスの減少を熱伝導度検出器により測定する。次に吸着平衡に達したセル部を常 温に戻すと、窒素ガスの脱離が始まる。この離脱により混合ガス中の窒素濃度が増加する。この 脱離した窒素ガス量を吸着時同様に熱伝導度検出器で測定する。なお、測定試料は岩石を粉砕し、 平均粒径 1.34mm および 0.64mm に調整したものを用いた。比表面積測定の測定試料と測定結果を 表 3.4.1-11 に示す。この結果でよれば、平均粒径 1.34mm および 0.64mm の試料に違いによる試 料間での相対的な比表面積の大きさの割合は変わらない。昨年度の結果を含めて平均粒径が 1.34mm での試料で得た結果を考察した場合、瑞浪花崗岩は未変質部で 0.07 m²/g ~ 0.17 m²/g (平 均 0.12 m²/g) に対して、変質部では 0.07 m²/g~2.29 m²/g (平均 0.66 m²/g) となっており、変 質に伴い生じた粘土鉱物など存在によりマクロポア以下 (100nm) のレベルでも比表面積が増大 していることを示唆している。

	コア試料は孔名_深度		全表面積		比表	
試料名	=+ w1 w5 公案 #0 \ V \ #00				回假	備考
	試料粒径:#97X7#20 平均粒径1.34mm	1 st	2 nd	平均	m²/g	
SSA-1501	12MI30 6.78m - 6.86m	0. 201	0.196	0.199	0. 188	やや白化。暗緑色鉱物(方解石、緑泥石、セリサイト)が認められる。
SSA-1502	12MI30 12.44m - 12.45m	0.100	0.096	0. 098	0.091	
SSA-1503	12MI30 17.20m - 17.34m	0.154	0.173	0.164	0.155	
SSA-1504	12MI30 21.67m - 21.94m	0. 853	0. 857	0. 855	0.806	全体に暗緑色化。破砕部は固結した暗灰色断層粘土(緑泥石、方解石等)を伴う。
SSA-1505	12MI30 22.54m - 22.77m	0.158	0.172	0.165	0. 157	脈状に変質。緑泥石等を伴う。
SSA-1506	12MI30 27.00m - 27.19m	0.663	0.649	0.656	0.611	平行な割れ目。割れ目には方解石等が充填。
SSA-1507	12MI31 15.84m - 15.98m	0.123	0. 121	0.122	0.113	
SSA-1508	12MI31 20.37m - 20.44m	0.465	0.460	0.463	0. 432	脈状に変質し、方解石、緑泥石等を伴う。
SSA-1509	<u>12MI31 24.31m - 24.47m</u>	0.127	0.129	0.128	0.118	暗灰色の固結破砕部。充填鉱物(方解石、緑泥石、セリサイト)が認められる
SSA-1510	13M136 3.80m - 4.00m	0.441	0.462	0.452	0.419	方解石、スメクタイトを等伴い粘土状に変質。
55A-1511	13M136 8.21m - 8.38m	0.145	0.146	0.146	0.135	日化した脈射な破砕部に割れ日で接する堅岩部で一部に緑泥石が認められ る。
SSA-1512	13MI36 9.09m - 9.25m	2. 391	2. 406	2. 399	2. 291	変質し白化。方解石、緑泥石、セリサイト、スメクタイトが認められる。
SSA-1513	13MI36 10.45m - 10.455m	0.071	0.075	0.073	0.103	
SSA-1514	13MI36 12.38m - 12.52m	0. 176	0. 195	0. 186	0. 173	
SSA-1515	13MI37 0.66m - 0.79m	1.100	1.095	1.098	1.030	変質・粘度状。方解石等を伴う
SSA-1516	13MI37 6.86m - 7.00m	1.470	1.462	1.466	1.388	高角割れ目沿いに変質。方解石、スメクタイト等が充填する。
SSA-1517	13MI37 13.60m - 13.63m	0.049	0.050	0.050	0.067	
SSA-1518	13MI37 24.55m - 24.65m	0.100	0. 097	0.099	0.145	縮緬皺状細脈。方解石、緑泥石、セリサイトが認められる。
SSA-1519	14MI49 8.00m - 8.17m	0.700	0. 695	0. 698	1.081	割れ目間が破砕し白化脆弱化している。スメクタイト等が存在する。
SSA-1520	14MI49 18.52m - 18.74m	0. 683	0. 685	0.684	0.977	暗緑色に変質した固結破砕部。一部粘土化し、緑泥石とセリサイト等を伴う。
SSA-1521	14MI49 19.90m - 19.92m	0. 047	0. 053	0. 050	0.067	暗緑色に変質した岩片を含む固結破砕部。方解石、緑泥石、セリサイトが認 められる。
	試料名	全 素面積	法		比表	
	(コア試科は扎名_深	(m ²)			面槓	
	(コア試料は北名_床 度)	(m²)			面槓	備考
	(コア試料はれ名_深 度) 試料粒径:#20>X>#30: 平均粒径 0.64mm	(m²) 1 st	2 nd	平均	面積 m²/g	備考
SSA-1501	(コア試料は孔名_深 度) 試料粒径:#20>X>#30: 平均粒径 0.64mm 12MI30 6.78m - 6.86m	(m ²) 1 st 0. 154	2 nd 0. 152	平均 0.153	面積 m²/g 0.230	備考 やや白化。暗緑色鉱物 (方解石、緑泥石、セリサイト)が認められる。
SSA-1501 SSA-1502	(コア試料は北名_深 度) 試料粒径:#20>X>#30: 平均粒径 0.64mm 12M130 6.78m - 6.86m 12M130 12.44m - 12.45m	(m ²) 1 st 0. 154 0. 075	2 nd 0. 152 0. 082	平均 0.153 0.079	面積 m ² /g 0. 230 0. 119	備考 やや白化。暗緑色鉱物(方解石、緑泥石、セリサイト)が認められる。
SSA-1501 SSA-1502 SSA-1503	(コア試料は北名_深 度) 試料粒径:#20>X>#30: 平均粒径 0.64mm 12MI30 6.78m - 6.86m 12MI30 12.44m - 12.45m 12MI30 17.20m - 17.34m	(m ²) 1 st 0. 154 0. 075 0. 079	2 nd 0. 152 0. 082 0. 096	平均 0.153 0.079 0.088	面積 m ² /g 0.230 0.119 0.130	備考 やや白化。暗緑色鉱物(方解石、緑泥石、セリサイト)が認められる。
SSA-1501 SSA-1502 SSA-1503 SSA-1504	(コア試料は北名_深 度) 試料粒径:#20>X>#30: 平均粒径 0.64mm 12M130 6.78m - 6.86m 12M130 12.44m - 12.45m 12M130 17.20m - 17.34m 12M130 21.67m - 21.94m	(m ²) 1 st 0.154 0.075 0.079 0.582	2 nd 0. 152 0. 082 0. 096 0. 582	平均 0.153 0.079 0.088 0.582	面積 m ² /g 0.230 0.119 0.130 0.877	備考 やや白化。暗緑色鉱物(方解石、緑泥石、セリサイト)が認められる。 全体に暗緑色化。破砕部は固結した暗灰色断層粘土(緑泥石、方解石等)を伴
SSA-1501 SSA-1502 SSA-1503 SSA-1504 SSA-1505	(コノ武科は北石_深 度) 試料粒径:#20>X>#30: 平均粒径 0.64mm 12M130 6.78m - 6.86m 12M130 12.44m - 12.45m 12M130 17.20m - 17.34m 12M130 21.67m - 21.94m	(m ²) 1 st 0. 154 0. 075 0. 079 0. 582 0. 099	2 nd 0. 152 0. 082 0. 096 0. 582 0. 097	平均 0.153 0.079 0.088 0.582 0.098	面積 m ² /g 0.230 0.119 0.130 0.877 0.149	備考 やや白化。暗緑色鉱物(方解石、緑泥石、セリサイト)が認められる。 全体に暗緑色化。破砕部は固結した暗灰色断層粘土(緑泥石、方解石等)を伴 う。 脈状に変質。緑泥石等を伴う。
SSA-1501 SSA-1502 SSA-1503 SSA-1504 SSA-1505	(コノ) 武井(は北名_深 度) 武料粒径:#20>X>#30: 平均粒径 0.64mm 12M130 6.78m - 6.86m 12M130 12.44m - 12.45m 12M130 17.20m - 17.34m 12M130 21.67m - 21.94m 12M130 22.54m - 22.77m	(m ²) 1 st 0. 154 0. 075 0. 079 0. 582 0. 099	2 nd 0. 152 0. 082 0. 096 0. 582 0. 097	平均 0.153 0.079 0.088 0.582 0.098	面積 m ² /g 0.230 0.119 0.130 0.877 0.149	備考 やや白化。暗緑色鉱物(方解石、緑泥石、セリサイト)が認められる。 全体に暗緑色化。破砕部は固結した暗灰色断層粘土(緑泥石、方解石等)を伴う。 脈状に変質。緑泥石等を伴う。
SSA-1501 SSA-1502 SSA-1503 SSA-1503 SSA-1504 SSA-1505 SSA-1506	(コア試料はH142_深 度) 試料粒径:#20>X>#30: 平均粒径0.64mm 12M130 6.78m - 6.86m 12M130 12.44m - 12.45m 12M130 12.44m - 12.45m 12M130 21.67m - 21.94m 12M130 21.67m - 21.94m 12M130 22.54m - 22.77m	(m ²) 1 st 0. 154 0. 075 0. 079 0. 582 0. 099 0. 384	2 nd 0. 152 0. 082 0. 096 0. 582 0. 097 0. 399 0. 399	平均 0.153 0.079 0.088 0.582 0.098 0.392	面積 m ² /g 0.230 0.119 0.130 0.877 0.149 0.603	備考 やや白化。暗緑色鉱物(方解石、緑泥石、セリサイト)が認められる。 全体に暗緑色化。破砕部は固結した暗灰色断層粘土(緑泥石、方解石等)を伴 う。 脈状に変質。緑泥石等を伴う。 平行な割れ目。割れ目には方解石等が充填。
SSA-1501 SSA-1502 SSA-1503 SSA-1504 SSA-1505 SSA-1506 SSA-1506	(コア武科はオロ海)深 度) 試料粒径:#20>X>#30: 平均粒径0.64mm 12M130 6.78m - 6.86m 12M130 12.44m - 12.45m 12M130 12.44m - 12.45m 12M130 21.67m - 21.94m 12M130 21.67m - 21.94m 12M130 22.54m - 22.77m 12M130 27.00m - 27.19m 12M131 15.84m - 15.98m	(m ²) 1 st 0. 154 0. 075 0. 079 0. 582 0. 099 0. 384 0. 092 0. 092	2 nd 0. 152 0. 082 0. 096 0. 582 0. 097 0. 399 0. 082 0. 082	平均 0.153 0.079 0.088 0.582 0.098 0.392 0.087	面積 m ² /g 0.230 0.119 0.130 0.877 0.149 0.603 0.132 0.524	備考 やや白化。暗緑色鉱物(方解石、緑泥石、セリサイト)が認められる。 全体に暗緑色化。破砕部は固結した暗灰色断層粘土(緑泥石、方解石等)を伴う。 脈状に変質。緑泥石等を伴う。 平行な割れ目。割れ目には方解石等が充填。
SSA-1501 SSA-1502 SSA-1503 SSA-1504 SSA-1504 SSA-1506 SSA-1506 SSA-1507 SSA-1508	(コア武科は北石_深 度) 試料粒径:#20>X>#30: 平均粒径 0.64mm 12MI30 6.78m - 6.86m 12MI30 12.44m - 12.45m 12MI30 17.20m - 17.34m 12MI30 21.67m - 21.94m 12MI30 22.54m - 22.77m 12MI30 27.00m - 27.19m 12MI31 15.84m - 15.98m 12MI31 20.37m - 20.44m	(m ²) 1 st 0.154 0.075 0.079 0.582 0.099 0.384 0.092 0.366 0.075	2 nd 0. 152 0. 082 0. 096 0. 582 0. 097 0. 399 0. 082 0. 355 0. 092	平均 0.153 0.079 0.088 0.582 0.988 0.392 0.087 0.361 0.031	曲積 m ² /g 0.230 0.119 0.130 0.877 0.149 0.603 0.132 0.534 0.511	備考 やや白化。暗緑色鉱物(方解石、緑泥石、セリサイト)が認められる。 全体に暗緑色化。破砕部は固結した暗灰色断層粘土(緑泥石、方解石等)を伴う。 脈状に変質。緑泥石等を伴う。 平行な割れ目。割れ目には方解石等が充填。 脈状に変質し、方解石、緑泥石等を伴う。 順広氏の変質し、方解石、緑泥石等を伴う。
SSA-1501 SSA-1502 SSA-1503 SSA-1504 SSA-1505 SSA-1506 SSA-1507 SSA-1508 SSA-1508 SSA-1509	(コア武井はよれ名_深 度) 試料粒径:#20>X>#30: 平均粒径 0.64mm 12M130 6.78m - 6.86m 12M130 12.44m - 12.45m 12M130 17.20m - 17.34m 12M130 21.67m - 21.94m 12M130 22.54m - 22.77m 12M130 27.00m - 27.19m 12M131 15.84m - 15.98m 12M131 20.37m - 20.44m 12M131 2.30m - 4.00m	(m ²) 1 st 0.154 0.075 0.079 0.582 0.099 0.384 0.092 0.366 0.078 0.287	2 nd 0. 152 0. 082 0. 096 0. 582 0. 097 0. 399 0. 082 0. 355 0. 068 0. 9257	平均 0.153 0.079 0.088 0.582 0.098 0.392 0.087 0.361 0.073 0.281	曲積 m ² /g 0.230 0.119 0.130 0.877 0.149 0.603 0.132 0.534 0.111 0.534	備考 やや白化。暗緑色鉱物(方解石、緑泥石、セリサイト)が認められる。 全体に暗緑色化。破砕部は固結した暗灰色断層粘土(緑泥石、方解石等)を伴う。 脈状に変質。緑泥石等を伴う。 平行な割れ目。割れ目には方解石等が充填。 脈状に変質し、方解石、緑泥石等を伴う。 暗灰色の固結破砕部。充填鉱物(方解石、緑泥石、セリサイト)が認められる 吉報王 マメクログ(トを笑供))を発行し、
SSA-1501 SSA-1502 SSA-1503 SSA-1504 SSA-1504 SSA-1505 SSA-1506 SSA-1507 SSA-1508 SSA-1509 SSA-1511	(コア武井14-14-2, 度) 試料粒径:#20>X>#30: 平均粒径 0.64mm 12M130 6.78m - 6.86m 12M130 12.44m - 12.45m 12M130 17.20m - 17.34m 12M130 21.67m - 21.94m 12M130 22.54m - 22.77m 12M130 27.00m - 27.19m 12M131 15.84m - 15.98m 12M131 20.37m - 20.44m 12M136 3.80m - 4.00m	(m ²) 1 st 0.154 0.075 0.079 0.582 0.099 0.384 0.092 0.366 0.078 0.087 0.087	2 nd 0. 152 0. 082 0. 096 0. 582 0. 097 0. 399 0. 082 0. 355 0. 068 0. 357 0. 008	平均 0.153 0.079 0.088 0.582 0.098 0.392 0.087 0.361 0.073 0.362 0.004	曲積 m ² /g 0.230 0.119 0.130 0.877 0.149 0.603 0.132 0.534 0.111 0.535 0.141	備考 やや白化。暗緑色鉱物(方解石、緑泥石、セリサイト)が認められる。 全体に暗緑色化。破砕部は固結した暗灰色断層粘土(緑泥石、方解石等)を伴 う。 脈状に変質。緑泥石等を伴う。 平行な割れ目。割れ目には方解石等が充填。 脈状に変質し、方解石、緑泥石等を伴う。 暗灰色の固結破砕部。充填鉱物(方解石、緑泥石、セリサイト)が認められる 方解石、スメクタイトを等伴い粘土状に変質。
SSA-1501 SSA-1502 SSA-1503 SSA-1504 SSA-1505 SSA-1506 SSA-1507 SSA-1508 SSA-1509 SSA-1510 SSA-1511	(コア武井1は北石_深 度) 試料粒径:#20>X>#30: 平均粒径 0.64mm 12M130 6.78m - 6.86m 12M130 12.44m - 12.45m 12M130 17.20m - 17.34m 12M130 21.67m - 21.94m 12M130 22.54m - 22.77m 12M130 27.00m - 27.19m 12M131 15.84m - 15.98m 12M131 12.37m - 20.44m 12M131 24.31m - 24.47m 13M136 3.80m - 4.00m 13M136 8.21m - 8.37m	(m ²) 1 st 0. 154 0. 075 0. 079 0. 582 0. 099 0. 384 0. 092 0. 366 0. 078 0. 367 0. 089	2 nd 0.152 0.082 0.996 0.582 0.097 0.399 0.082 0.355 0.068 0.357 0.099	平均 0.153 0.079 0.088 0.582 0.988 0.392 0.087 0.361 0.073 0.362 0.094	曲積 m ² /g 0.230 0.119 0.330 0.877 0.149 0.603 0.132 0.534 0.111 0.535 0.141	備考 やや白化。暗緑色鉱物(方解石、緑泥石、セリサイト)が認められる。 全体に暗緑色化。破砕部は固結した暗灰色断層粘土(緑泥石、方解石等)を伴う。 脈状に変質。緑泥石等を伴う。 平行な割れ目。割れ目には方解石等が充填。 脈状に変質し、方解石、緑泥石等を伴う。 暗灰色の固結破砕部。充填鉱物(方解石、緑泥石、セリサイト)が認められる 方解石、スメクタイトを等伴い粘土状に変質。 白化した脆弱な破砕部に割れ目で接する堅岩部で一部に緑泥石が認められ る。
SSA-1501 SSA-1502 SSA-1503 SSA-1504 SSA-1505 SSA-1506 SSA-1507 SSA-1507 SSA-1509 SSA-1509 SSA-1510 SSA-1511 SSA-1511 SSA-1511	(コ) 武料はオロム_深 度) 試料粒径:#20>X>#30: 平均粒径0.64mm 12M130 6.78m - 6.86m 12M130 12.44m - 12.45m 12M130 12.44m - 12.45m 12M130 21.67m - 21.94m 12M130 21.67m - 21.94m 12M130 22.54m - 22.77m 12M130 22.54m - 15.98m 12M131 20.37m - 20.44m 12M131 24.31m - 24.47m 13M136 3.80m - 4.00m 13M136 9.09m - 9.25m	(m ²) 1 ^{et} 0.154 0.075 0.079 0.582 0.099 0.384 0.092 0.366 0.078 0.366 0.078 0.367 0.089 1.100	2 nd 0.152 0.082 0.582 0.097 0.399 0.082 0.355 0.088 0.355 0.068 0.357 0.099 1.119	平均 0.153 0.079 0.088 0.582 0.998 0.392 0.981 0.361 0.361 0.073 0.362 0.094 1.110	曲積 m ² /g 0.230 0.119 0.130 0.877 0.149 0.603 0.132 0.534 0.111 0.535 0.141 1.655	備考 やや白化。暗緑色鉱物(方解石、緑泥石、セリサイト)が認められる。 全体に暗緑色化。破砕部は固結した暗灰色断層粘土(緑泥石、方解石等)を伴う。 脈状に変質。緑泥石等を伴う。 平行な割れ目。割れ目には方解石等が充填。 脈状に変質し、方解石、緑泥石等を伴う。 暗灰色の固結破砕部。充填鉱物(方解石、緑泥石、セリサイト)が認められる 方解石、スメクタイトを等伴い粘土状に変質。 自化した脆弱な破砕部に割れ目で接する堅岩部で一部に緑泥石が認められ。 。 変質し白化。方解石、緑泥石、セリサイト、スメクタイトが認められる。
SSA-1501 SSA-1502 SSA-1503 SSA-1504 SSA-1505 SSA-1506 SSA-1507 SSA-1509 SSA-1509 SSA-1509 SSA-1510 SSA-1511 SSA-1512 SSA-1512	(コ ア武科14742) 度) 試料粒径:#20>X>#30: 平均粒径0.64mm 12M130 6.78m - 6.86m 12M130 12.44m - 12.45m 12M130 12.44m - 12.45m 12M130 21.67m - 21.94m 12M130 21.67m - 21.94m 12M130 22.54m - 22.77m 12M130 27.00m - 27.19m 12M131 12.37m - 20.44m 12M131 24.31m - 24.47m 13M136 3.80m - 4.00m 13M136 3.21m - 8.37m 13M136 9.09m - 9.25m 13M136 10.45m - 10.455m	(m ²) 1 st 0. 154 0. 075 0. 079 0. 582 0. 099 0. 384 0. 092 0. 366 0. 078 0. 367 0. 089 1. 100 0. 064 0. 064	2 nd 0. 152 0. 082 0. 096 0. 582 0. 097 0. 399 0. 082 0. 355 0. 068 0. 357 0. 099 1. 119 0. 070 0. 070	平均 0.153 0.079 0.088 0.582 0.988 0.392 0.087 0.361 0.073 0.361 0.0362 0.094 1.110 0.067	曲積 m ² /g 0.230 0.119 0.130 0.877 0.149 0.603 0.132 0.534 0.111 0.111 0.535 0.141 1.651 0.145	備考 やや白化。暗緑色鉱物(方解石、緑泥石、セリサイト)が認められる。 全体に暗緑色化。破砕部は固結した暗灰色断層粘土(緑泥石、方解石等)を伴 う。 脈状に変質。緑泥石等を伴う。 平行な割れ目。割れ目には方解石等が充填。 脈状に変質し、方解石、緑泥石等を伴う。 暗灰色の固結破砕部。充填鉱物(方解石、緑泥石、セリサイト)が認められる 方解石、スメクタイトを等伴い粘土状に変質。 白化した脆弱な破砕部に割れ目で接する堅岩部で一部に緑泥石が認められる。 変質し白化。方解石、緑泥石、セリサイト、スメクタイトが認められる。
SSA-1501 SSA-1502 SSA-1503 SSA-1504 SSA-1505 SSA-1506 SSA-1507 SSA-1507 SSA-1509 SSA-1509 SSA-1510 SSA-1511 SSA-1511 SSA-1512 SSA-1513 SSA-1514	(コ) 戸試料14.14.2.深 度) 試料粒径:#20>X>#30: 平均粒径0.64mm 12M130 6.78m - 6.86m 12M130 12.44m - 12.45m 12M130 12.44m - 12.45m 12M130 21.67m - 21.94m 12M130 22.54m - 22.77m 12M130 22.54m - 22.77m 12M131 2.43m - 20.44m 12M131 2.43m - 24.47m 13M136 3.80m - 4.00m 13M136 9.09m - 9.25m 13M136 10.45m - 10.455m 13M136 12.38m - 12.52m	(m ²) 1 st 0. 154 0. 075 0. 079 0. 582 0. 099 0. 384 0. 092 0. 367 0. 089 1. 100 0. 664 0. 100	2 nd 0. 152 0. 082 0. 096 0. 582 0. 097 0. 399 0. 082 0. 355 0. 068 0. 357 0. 099 1. 119 0. 070 0. 0990	平均 0.153 0.079 0.088 0.582 0.998 0.392 0.087 0.361 0.073 0.361 0.073 0.362 0.094 1.110 0.067 0.095	曲積 m ² /g 0.230 0.119 0.330 0.877 0.149 0.603 0.132 0.534 0.111 0.535 0.141 1.651 0.100 0.145	備考 やや白化。暗緑色鉱物(方解石、緑泥石、セリサイト)が認められる。 全体に暗緑色化。破砕部は固結した暗灰色断層粘土(緑泥石、方解石等)を伴 う。 脈状に変質。緑泥石等を伴う。 平行な割れ目。割れ目には方解石等が充填。 脈状に変質し、方解石、緑泥石等を伴う。 暗灰色の固結破砕部。充填鉱物(方解石、緑泥石、セリサイト)が認められる 方解石、スメクタイトを等伴い粘土状に変質。 白化した脆弱な破砕部に割れ目で接する堅岩部で一部に緑泥石が認められる。 変質し白化。方解石、緑泥石、セリサイト、スメクタイトが認められる。
SSA-1501 SSA-1502 SSA-1503 SSA-1504 SSA-1505 SSA-1506 SSA-1506 SSA-1507 SSA-1508 SSA-1509 SSA-1510 SSA-1510 SSA-1511 SSA-1512 SSA-1513 SSA-1514 SSA-1515	(コ) 武料はオはオュス 度) 試料粒径:#20>X>#30: 平均粒径0.64mm 12M130 6.78m - 6.86m 12M130 12.44m - 12.45m 12M130 12.44m - 12.45m 12M130 21.67m - 21.94m 12M130 21.67m - 21.94m 12M130 22.54m - 22.77m 12M131 22.54m - 22.77m 12M131 24.37m - 22.44m 12M131 24.31m - 24.47m 13M136 3.80m - 4.00m 13M136 3.21m - 8.37m 13M136 9.09m - 9.25m 13M136 12.38m - 12.52m 13M136 12.38m - 12.52m	(m ²) 1 st 0. 154 0. 075 0. 079 0. 582 0. 099 0. 384 0. 092 0. 366 0. 078 0. 367 0. 089 1. 100 0. 064 0. 100 0. 712	2 nd 0. 152 0. 082 0. 096 0. 582 0. 097 0. 882 0. 355 0. 068 0. 355 0. 068 0. 357 0. 099 1. 119 0. 070 0. 090 0. 723	平均 0.153 0.079 0.088 0.582 0.988 0.392 0.087 0.361 0.073 0.362 0.094 1.110 0.067 0.995 0.718	曲積 m ² /g 0.230 0.119 0.330 0.877 0.149 0.603 0.132 0.534 0.111 0.535 0.141 1.651 0.100 0.145 1.054	備考 やや白化。暗緑色鉱物(方解石、緑泥石、セリサイト)が認められる。 全体に暗緑色化。破砕部は固結した暗灰色断層粘土(緑泥石、方解石等)を伴う。 駆状に変質。緑泥石等を伴う。 平行な割れ目。割れ目には方解石等が充填。 脈状に変質し、方解石、緑泥石等を伴う。 暗灰色の固結破砕部。充填鉱物(方解石、緑泥石、セリサイト)が認められる 方解石、スメクタイトを等伴い粘土状に変質。 白化した脆弱な破砕部に割れ目で接する堅岩部で一部に緑泥石が認められる。 変質し白化。方解石、緑泥石、セリサイト、スメクタイトが認められる。 変質・粘度状。方解石等を伴う
SSA-1501 SSA-1502 SSA-1503 SSA-1504 SSA-1505 SSA-1506 SSA-1506 SSA-1507 SSA-1508 SSA-1509 SSA-1510 SSA-1510 SSA-1511 SSA-1512 SSA-1513 SSA-1515 SSA-1515 SSA-1515	(コノ) 武料14,142 度) 試料粒径:#20>X>#30: 平均粒径0.64mm 12M130 6.78m - 6.86m 12M130 12.44m - 12.45m 12M130 12.44m - 12.45m 12M130 21.67m - 21.94m 12M130 22.54m - 22.77m 12M130 22.54m - 22.77m 12M130 27.00m - 27.19m 12M131 24.31m - 24.47m 13M136 3.80m - 4.00m 13M136 3.80m - 4.00m 13M136 9.09m - 9.25m 13M136 10.45m - 10.455m 13M136 12.38m - 12.52m 13M137 0.66m - 0.79m 13M137 0.66m - 0.79m	(m ²) 1 st 0. 154 0. 075 0. 079 0. 582 0. 099 0. 384 0. 092 0. 366 0. 386 0. 367 0. 089 1. 100 0. 064 0. 100 0. 712 1. 574	2 nd 0.152 0.082 0.096 0.582 0.097 0.399 0.082 0.355 0.068 0.357 0.099 1.119 0.070 0.099 1.119 0.070 0.090	平均 0.153 0.079 0.088 0.582 0.098 0.392 0.087 0.361 0.0361 0.361 0.361 0.362 0.094 1.110 0.067 0.095 0.718 1.551	曲積 m ² /g 0.230 0.119 0.307 0.877 0.149 0.603 0.324 0.534 0.111 1.651 0.535 0.141 1.651 0.100 0.145 1.054 2.445	 備考 やや白化。暗緑色鉱物(方解石、緑泥石、セリサイト)が認められる。 全体に暗緑色化。破砕部は固結した暗灰色断層粘土(緑泥石、方解石等)を伴う。 脈状に変質。緑泥石等を伴う。 平行な割れ目。割れ目には方解石等が充填。 脈状に変質し、方解石、緑泥石等を伴う。 暗灰色の固結破砕部。充填鉱物(方解石、緑泥石、セリサイト)が認められる 方解石、スメクタイトを等伴い粘土状に変質。 白化した脆弱な破砕部に割れ目で接する堅岩部で一部に緑泥石が認められる。 変質し白化。方解石、緑泥石、セリサイト、スメクタイトが認められる。 変質・粘度状。方解石等を伴う 高角割れ目沿いに変質。方解石、スメクタイト等が充填する。
SSA-1501 SSA-1502 SSA-1503 SSA-1504 SSA-1505 SSA-1506 SSA-1507 SSA-1508 SSA-1508 SSA-1508 SSA-1510 SSA-1511 SSA-1512 SSA-1513 SSA-1514 SSA-1515 SSA-1516 SSA-1516	(コ ア 武井 14 14 14 14) 度) 試料粒径:#20>X>#30: 平均粒径 0.64mm 12M130 6.78m - 6.86m 12M130 12.44m - 12.45m 12M130 17.20m - 17.34m 12M130 21.67m - 21.94m 12M130 22.54m - 22.77m 12M130 27.00m - 27.19m 12M130 27.00m - 27.19m 12M131 15.84m - 15.98m 12M131 20.37m - 20.44m 12M136 3.80m - 4.00m 13M136 8.21m - 8.37m 13M136 10.45m - 10.455m 13M136 12.38m - 12.52m 13M137 0.66m - 0.79m 13M137 13.60m - 13.63m	(m ²) 1 st 0.154 0.075 0.079 0.582 0.099 0.384 0.092 0.386 0.078 0.386 0.078 0.386 0.078 0.089 1.100 0.068 0.078 0.089 1.100 0.068 0.075 0.0582 0.092 0.386 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.089 0.089 0.089 0.088 0.078 0.089 0.089 0.088 0.078 0.089 0.088 0.078 0.089 0.088 0.078 0.089 0.088 0.078 0.089 0.089 0.089 0.088 0.078 0.089 0.089 0.089 0.088 0.078 0.089 0.089 0.088 0.078 0.089 0.089 0.089 0.008 0.008 0.068 0.078 0.068 0.078 0.089 0.088 0.088 0.087 0.089 0.066 0.078 0.066 0.078 0.066 0.078 0.066 0.0574 0.066 0.0574 0.066 0.0574 0.066 0.0574 0.0574 0.055 0.05574 0.05774 0.05774 0.05774 0.05774 0.05774 0.05774 0.05774 0.05774 0	2 nd 0.152 0.082 0.096 0.582 0.097 0.399 0.082 0.355 0.068 0.355 0.068 0.355 0.068 0.357 0.099 1.119 0.070 0.099 0.723 1.588 0.0412	平均 0.153 0.079 0.088 0.582 0.098 0.392 0.087 0.361 0.073 0.362 0.094 0.095 0.095 0.718 1.581 0.035	曲積 m ² /g 0.230 0.119 0.337 0.877 0.149 0.603 0.132 0.534 0.141 1.651 0.100 0.145 1.054 2.445 0.054	備考 やや白化。暗緑色鉱物(方解石、緑泥石、セリサイト)が認められる。
SSA-1501 SSA-1502 SSA-1503 SSA-1504 SSA-1505 SSA-1506 SSA-1506 SSA-1506 SSA-1508 SSA-1509 SSA-1510 SSA-1511 SSA-1512 SSA-1513 SSA-1514 SSA-1516 SSA-1517 SSA-1516	(コノア試料14,142_深 度) 試料粒径:#20>X>#30: 平均粒径0.64mm 12M130 6.78m - 6.86m 12M130 12.44m - 12.45m 12M130 12.44m - 12.45m 12M130 21.67m - 21.94m 12M130 21.67m - 21.94m 12M130 22.54m - 22.77m 12M130 22.54m - 22.77m 12M131 2.43m - 20.44m 12M131 2.43m - 20.44m 13M136 3.80m - 4.00m 13M136 8.21m - 8.37m 13M136 9.09m - 9.25m 13M136 10.45m - 10.455m 13M137 6.86m - 7.00m 13M137 13.60m - 13.63m 13M137 13.60m - 13.63m	(m ²) 1 st 0. 154 0. 075 0. 079 0. 582 0. 099 0. 384 0. 092 0. 367 0. 089 1. 100 0. 064 0. 100 0. 712 1. 574 0. 035 0. 120 0. 232	2 nd 0.152 0.092 0.996 0.582 0.097 0.399 0.082 0.355 0.068 0.355 0.068 0.355 0.068 0.355 0.099 1.119 0.070 0.999 0.723 1.588 0.041 0.130 0.611	平均 0.153 0.079 0.088 0.582 0.098 0.392 0.087 0.361 0.073 0.361 0.073 0.362 0.094 1.110 0.067 0.995 0.718 1.581 0.038 0.125	曲積 m ² /g 0.230 0.119 0.330 0.877 0.149 0.603 0.132 0.534 0.111 0.535 0.141 1.651 0.100 0.145 1.054 2.445 0.058 0.190 1.905	 備考 やや白化。暗緑色鉱物(方解石、緑泥石、セリサイト)が認められる。 全体に暗緑色化。破砕部は固結した暗灰色断層粘土(緑泥石、方解石等)を伴う。 ① (一)((1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1
SSA-1501 SSA-1502 SSA-1503 SSA-1504 SSA-1505 SSA-1506 SSA-1506 SSA-1507 SSA-1508 SSA-1509 SSA-1510 SSA-1510 SSA-1511 SSA-1512 SSA-1513 SSA-1514 SSA-1515 SSA-1517 SSA-1518 SSA-1518 SSA-1518	(コノア試料14,14,14,2,2 度) 試料粒径:#20>X>#30: 平均粒径0.64mm 12M130 6.78m - 6.86m 12M130 12.44m - 12.45m 12M130 12.44m - 12.45m 12M130 21.67m - 21.94m 12M130 21.67m - 21.94m 12M130 22.54m - 22.77m 12M130 22.54m - 22.77m 12M131 20.37m - 20.44m 12M131 20.37m - 20.44m 12M131 24.31m - 24.47m 13M136 8.21m - 8.37m 13M136 9.09m - 9.25m 13M136 10.45m - 10.455m 13M137 0.66m - 0.79m 13M137 18.60m - 13.63m 13M137 18.60m - 13.63m 13M137 24.55m - 24.65m 13M137 0.80m - 8.17m	(m ²) 1 st 0. 154 0. 075 0. 079 0. 582 0. 099 0. 384 0. 092 0. 366 0. 078 0. 367 0. 089 1. 100 0. 064 0. 100 0. 712 1. 574 0. 035 0. 120 0. 674 0. 675 0. 675 0. 675 0. 675 0. 674 0. 675 0. 675 0. 675 0. 674 0. 675 0. 675 0. 674 0. 675 0. 675	2 nd 0. 152 0. 082 0. 096 0. 582 0. 097 0. 399 0. 082 0. 355 0. 068 0. 357 0. 099 1. 119 0. 070 0. 723 1. 588 0. 041 0. 130 0. 677 0. 677	平均 0.153 0.079 0.088 0.582 0.098 0.392 0.087 0.361 0.073 0.362 0.094 1.110 0.067 0.095 0.718 1.581 0.038 0.125 0.676 0.676	曲積 m ² /g 0.230 0.119 0.307 0.877 0.149 0.603 0.132 0.534 0.132 0.131 1.651 0.100 0.145 1.054 2.445 0.654 2.445 0.190 1.022	 備考 やや白化。暗緑色鉱物(方解石、緑泥石、セリサイト)が認められる。 全体に暗緑色化。破砕部は固結した暗灰色断層粘土(緑泥石、方解石等)を伴う。 服状に変質。緑泥石等を伴う。 平行な割れ目。割れ目には方解石等が充填。 那状に変質し、方解石、緑泥石等を伴う。 暗灰色の固結破砕部。充填鉱物(方解石、緑泥石、セリサイト)が認められる 方解石、スメクタイトを等伴い粘土状に変質。 白化した脆弱な破砕部に割れ目で接する堅岩部で一部に緑泥石が認められる。 変貫し白化。方解石、緑泥石、セリサイト、スメクタイトが認められる。 変貫・粘度状。方解石等を伴う 高角割れ目沿いに変質。方解石、スメクタイト等が充填する。 縮緬皺状細脈。方解石、緑泥石、セリサイトが認められる。 割れ目間が破砕し自化脆弱化している。スメクタイト等が存在する。 副44日間が破砕し自化脆弱化している。スメクタイト等が存在する。
SSA-1501 SSA-1502 SSA-1503 SSA-1504 SSA-1505 SSA-1506 SSA-1506 SSA-1507 SSA-1508 SSA-1509 SSA-1510 SSA-1510 SSA-1510 SSA-1511 SSA-1512 SSA-1513 SSA-1513 SSA-1514 SSA-1515 SSA-1516 SSA-1518 SSA-1519 SSA-1519 SSA-1519 SSA-1519 SSA-1519	(コ) 戸試料14,142 度) 試料粒径:#20>X>#30: 平均粒径0.64mm 12M130 6.78m - 6.86m 12M130 12.44m - 12.45m 12M130 12.44m - 12.45m 12M130 12.44m - 12.45m 12M130 21.67m - 21.94m 12M130 22.54m - 22.77m 12M130 22.54m - 22.77m 12M131 12.84m - 15.98m 12M131 22.37m - 20.44m 12M131 24.31m - 24.47m 13M136 3.80m - 4.00m 13M136 3.80m - 4.00m 13M136 9.09m - 9.25m 13M136 10.45m - 10.455m 13M137 0.66m - 0.79m 13M137 0.66m - 13.63m 13M137 4.55m - 24.65m 14M149 8.00m - 8.17m 14M149 18.52m - 18.74m	(m ²) 1 st 0. 154 0. 075 0. 079 0. 582 0. 099 0. 384 0. 092 0. 366 0. 078 0. 367 0. 089 1. 100 0. 064 0. 100 0. 712 1. 574 0. 035 0. 120 0. 674 0. 603 0. 054	2 nd 0.152 0.082 0.096 0.582 0.097 0.399 0.082 0.355 0.068 0.357 0.099 1.119 0.070 0.723 1.588 0.041 0.130 0.677 0.607	平均 0.153 0.079 0.088 0.582 0.098 0.392 0.087 0.361 0.073 0.361 0.073 0.362 0.094 1.110 0.067 0.95 0.718 1.581 0.025 0.676 0.655 0.655	曲積 m ² /g 0.230 0.119 0.330 0.877 0.149 0.603 0.32 0.534 0.141 1.651 0.100 0.145 1.054 2.445 0.058 0.190 0.1022 1.055	 備考 やや白化。暗緑色鉱物(方解石、緑泥石、セリサイト)が認められる。 全体に暗緑色化。破砕部は固結した暗灰色断層粘土(緑泥石、方解石等)を伴う。 飯状に変質。緑泥石等を伴う。 平行な割れ目。割れ目には方解石等が充填。 1 2 1 2 1 2 1 2 1 2 2 2 2 2 3 4 2 2 2 3 2 3 4 2 3 4 2 3 4 3 3 4 3 3 4 3 4 4

表 3.4.1-12 測定試料一覧と測定結果

補掛けは存度計測した試料である。今年度の試料付番との関係は以下のとおりである。SSA-1503=瑞浪花崗岩③、SSA-1503=瑞浪花崗岩③、SSA-1505=瑞 浪花崗岩⑤、SSA-1507=瑞浪花崗岩⑦、SSA-1508=瑞浪花崗岩⑧、SSA-1510=瑞浪花崗岩⑨、SSA-1512=瑞浪花崗岩①、SSA-1514=瑞浪花崗岩⑭、SSA-1515 =瑞浪花崗岩⑮、SSA-1516=瑞浪花崗岩⑯ 3.4.2 ラドンフラックスの測定

堆積岩などの間隙率がラドンフラックスへ影響を与える可能性について引き続き検討するために、 室内でのラドンフラックスの測定を行った。また、瑞浪超深地層研究所の深度 300m ボーリング横坑を 用いてラドン濃度による割れ目間隙幅の評価を行うため、原位置の岩石を用いたラドンフラックスの 測定を必要とする。このため、ラドンフラックスの測定として、深度 300m ボーリング横坑に削孔され たボーリング孔のコアを用い、室内試験によりラドンフラックスの測定を求めた。

図 3.4.2-1 岩石からのラドンフラックスの測定例

図 3.4.2-1の写真は気密容器に花崗岩をセットした例である。試料の表面積を実測し、封入後のラ ドン発生量を得て、右上のグラフの関係(傾き=フラックス)を得る。計測は水で浸漬をしない場合 は、静電捕集型計測装置である Rad7 による計測を、容器内を蒸留水で満たした場合は、液体シンチレ ーションカウンター(LSC)による計測を行う。

(1) 多胡砂岩、藤枝砂岩、蛭川花崗岩のフラックスの測定

ラドンフラックスの測定のため、使用した岩石試料は多胡産の砂岩、藤枝産の砂岩である。こ れらの堆積岩と比較のため、蛭川花崗岩を併せて計測した。これらの岩石は昨年度ラドンクラッ クの測定に用いたものと同じものである。多胡産の砂岩は新第三紀前期中新世の中粒〜粗粒砂岩 (以降、多胡砂岩と呼称)であり錆(鉄分の沈殿)が少ない均質なものを試料とした。藤枝産の 砂岩(以降、藤枝砂岩と呼称)は新第三紀前期中新世の細粒~中粒砂岩で膠結が良く、緻密で均 質なものを使用した。蛭川花崗岩は岐阜県中津川に分布する苗木花崗岩体に属するものである。 多胡砂岩、藤枝砂岩、蛭川花崗岩はいずれも方形試料である。

a. 測定試料と測定方法

多胡砂岩、藤枝砂岩、蛭川花崗岩の3種類の岩石試料の厚さ変えてラドン発生量の測定をした。 試料は縦、横の長さは10cmとし、厚さを2cm、4cm、7cm、10cm、14cmと変えた試料を準備した。 また、発生するラドンの総量を増やして計測を容易とするために、サイズの小さい試料ほど試料 数を増やした。また、表3.4.2-1に方形岩石試料のトリミングの寸法と試料数を示す。なお、実 際のフラックスの算定においては、試料の表面積の総和を精度よく算出するために、各試料のサ イズをノギスで実測している。

試験名	: 岩石名	:形状(縦×横×厚さ)	表面積/個	体積/個	個数	ΣS	ΣV
			S (cm ²)	V (cm ³)	n	(cm²) :	(cm ³)
RFHG-1501	蛭川花崗岩	10cm×10cm×2cm	280cm ²	200cm ³	48	15, 078	11, 285
RFHG-1502	: 蛭川花崗岩	10cm × 10cm × 4cm	360cm ²	400cm ³	28	7, 862	11, 737
RFHG-1503	蛭川花崗岩	10cm×10cm×7cm	480cm ²	700cm ³	16	7, 862	11, 609
RFHG-1504	蛭川花崗岩	10cm×10cm×10 cm	600cm ²	1,000cm ³	12	7, 353	12, 385
RFHG-1505	蛭川花崗岩	10cm×10cm×14 cm	760cm ²	1, 400cm ³	8	6, 209	11, 566
RFHG-1506	: 蛭川花崗岩	10cm×10cm×2cm	280cm ²	200cm ³	24	7, 544 🕴	5, 650
RFHG-1507	蛭川花崗岩	10cm×10cm×4cm	360cm ²	400cm ³	14	5, 176	5, 863
RFHG-1508	蛭川花崗岩	10cm×10cm×7cm	480cm ²	700cm ³	8	3, 933	5, 809
RFHG-1509	蛭川花崗岩	10cm×10cm×10 cm	600cm ²	1,000cm ³	6	3, 674	6, 185
RFHG-1510	· 蛭川花崗岩	10cm×10cm×14 cm	760cm ²	1, 400cm ³	4	3, 111	5, 803
RFTS-1501	多胡砂岩	10cm×10cm×2cm	280cm ²	200cm ³	48	14, 797	10, 834
RFTS-1502	多胡砂岩	10cm×10cm×4cm	360cm ²	400cm ³	28	10, 384	11, 920
RFTS-1503	多胡砂岩	10cm×10cm×7cm	480cm ²	700cm ³	16	7, 776	11, 427
RFTS-1504	多胡砂岩	10cm×10cm×10 cm	600cm ²	1,000cm ³	12	7, 258	12, 145
RFTS-1605	多胡砂岩	10cm×10cm×14 cm	760cm ²	1, 400cm ³	8	6, 172	11, 456
RFTS-1506	多胡砂岩	10cm × 10cm × 2cm	280cm ²	200cm ³	24	7, 390	5, 410
RFTS-1507	多胡砂岩	10cm×10cm×4cm	360cm ²	400cm ³	14	5, 065	5, 641
RFTS-1508	多胡砂岩	10cm×10cm×7cm	480cm ²	700cm ³	8	3, 891	5, 719
RFTS-1509	多胡砂岩	10cm×10cm×10 cm	600cm ²	1,000cm ³	6	3, 633	6, 083
RFTS-1510	多胡砂岩	10cm×10cm×14 cm	760cm ²	1, 400cm ³	4	3, 082	5, 717
RFFS-1501	藤枝砂岩	10cm×10cm×2cm	280cm ²	200cm ³	48	15, 250	11, 397
RFFS-1502	藤枝砂岩	$10 \text{cm} \times 10 \text{cm} \times 4 \text{cm}$	360cm ²	400cm ³	28	10, 560	12, 061
RFFS-1503	: 藤枝砂岩	10cm×10cm×7cm	480cm ²	700cm ³	16	7, 933	11, 749
RFFS-1504	藤枝砂岩	10cm×10cm×10 cm	600cm ²	1,000cm ³	12	7, 483	12, 713
RFFS-1505	藤枝砂岩	10cm×10cm×14 cm	760cm ²	1, 400cm ³	8	6, 304	11, 840
RFFS-1506	藤枝砂岩	10cm × 10cm × 2cm	280cm ²	200cm ³	24	7, 620	5, 693
RFFS-1507	藤枝砂岩	10cm × 10cm × 4cm	360cm ²	400cm ³	14	5, 292	6, 053
RFFS-1508	藤枝砂岩	10cm×10cm×7cm	480cm ²	700cm ³	8	3, 738	5, 864
RFFS-1509	藤枝砂岩	10cm×10cm×10 cm	600cm ²	1,000cm ³	6	3, 738	6, 348
RFFS-1510	藤枝砂岩	10cm×10cm×14 cm	760cm ²	1, 400cm ³	4	3, 151	5, 916

表 3.4.2-1 方形岩石試料のサイズと試料数

ΣSおよびΣVは個々の岩石試料の表面積および堆積を実測した総和値である。

b. 多胡砂岩、藤枝砂岩、蛭川花崗岩のラドンフラックスの測定結果

多胡砂岩、藤枝砂岩、蛭川花崗岩のフラックスの測定結果を表 3.4.2-2 に示す。また、図 3.4.2-2、 図 3.4.2-3、図 3.4.2-4 に試料岩石の厚さとフラックスの関係を昨年度の試験データとともに示す。 なお、フラックスは放射平衡に達したタンク内の総ラドン量[Bq]を、試料岩石の試料とした岩石の 表面積[cm²]の総和[cm²]で割ることによって得られる。したがって、この単位は[Bq・cm⁻²]となるが、 [Bq]は1秒間に崩壊で発生する原子数であるため[atoms・s⁻¹]とも記述できるため、フラックス(流 束)という概念からは[Bq・cm⁻²]は[atoms・cm⁻²s⁻¹]と記述することが正しい。しかしながら、ここ ではフラックスの導出の過程が分かるように Bq/ cm²として記述する。

表 3.4.2-2の測定結果によれば蛭川花崗岩は 1.7×10⁻² Bg・cm⁻²~4.0×10⁻² Bg・cm⁻²であり、昨 年度の行った結果とほぼ同じである。この値は岩石の数を半分にしても同様の結果が得られている。 また、厚さ7cm~10cmの間でフラックスが一定になることも昨年度と同じであり、再現性の良い試 験結果が得られた。多胡砂岩は試料数を8個~48個で行った試験で9.2×10⁻⁴ Bg·cm⁻²~は1.8×10⁻³ Bq・cm⁻²である。一方、試料数が4個~24個で行った場合は1.0×10⁻³ Bq・cm⁻²~は2.5×10⁻³ Bq・ cm⁻²とやや大きい。また、厚さ10cm~14cmの間でフラックスが一定となる傾向はあるが、蛭川花崗 岩ほど明瞭でない。藤枝砂岩では試料数を8個~48個で行った試験で1.4×10-3 Bg・cm⁻²~は2.8 ×10⁻³ Bq·cm⁻²である。一方、試料数が4個~24個で行った場合は1.7×10⁻³ Bq·cm⁻²~は4.5×10⁻³ Bq・cm⁻²とやや大きい。また、フラックスが一定となる傾向は不明瞭である。この結果は、花崗岩 に比較して藤枝砂岩や多胡砂岩が間隙率などの影響により岩石内部から発生するラドンがフラッ クスに寄与している可能性を示唆する。ラドンのフラックスを室内試験で評価する際は、試料とな る岩石の厚さに関わらず一定値が得られる厚さの個所での値をフラックスとすべきである。藤枝砂 岩や多胡砂岩など花崗岩に比較し間隙が大きい岩石の場合は、内部からのラドンの発生を考慮し、 より厚みのある岩石試料により、ラドンのフラックスを得るべきと考える。しかしながら、試験の 合理性の観点からは、ハンドリング可能な岩石の厚さには限界があるため、間隙率の大きい堆積岩 については、別の方法でラドンのフラックスを評価する方法を検討する必要があると考えられる。

試験名	岩石名	形状(縦×横×厚さ)	表面積	発生 Rn 量	Igrows	平衡 Rn 量	Flux
			$\Sigma S(cm^2)$	ΣRnt (Bq)	t/te	ΣRn _e (Bq)	F (Bq/cm ²)
RFHG-1501	蛭川花崗岩	10cm×10cm×2cm	15, 078	191.7	0.762	251.6	1.7E-02
RFHG-1502	蛭川花崗岩	10cm×10cm×4cm	7, 862	150.8	0. 720	209. 5	2.7E-02
RFHG-1503	蛭川花崗岩	10cm×10cm×7cm	7, 862	190.2	0.754	252.3	3. 2E-02
RFHG-1504	蛭川花崗岩	: 10cm×10cm×10 cm	7, 353	208. 7	0. 723	288.6	3.9E-02
RFHG-1505	蛭川花崗岩	10cm×10cm×14 cm	6, 209	180. 5	0. 723	249.6	4. 0E-02
RFHG-1506	蛭川花崗岩	10cm×10cm×2cm	7, 544	93.7	0. 720	130. 2	1.7E-02
RFHG-1507	蛭川花崗岩	10cm×10cm×4cm	5, 176	81.9	0. 721	113.7	2. 2E-02
RFHG-1508	蛭川花崗岩	10cm×10cm×7cm	3, 933	101.8	0.722	141.1	3.6E-02
RFHG-1509	蛭川花崗岩	10cm×10cm×10 cm	3, 674	107.4	0. 721	149.0	4. 1E-02
RFHG-1510	蛭川花崗岩	10cm×10cm×14 cm	3, 111	89.0	0. 720	123.6	4. 0E-02
RFTS-1501	多胡砂岩	10cm×10cm×2cm	14, 797	9.8	0. 721	13.6	9. 2E-04
RFTS-1502	多胡砂岩	10cm×10cm×4cm	10, 384	7.6	0. 721	10.5	1.0E-03
RFTS-1503	多胡砂岩	10cm×10cm×7cm	7, 776	8. 2	0.722	11.4	1.5E-03
RFTS-1504	多胡砂岩	10cm×10cm×10 cm	7, 258	9.9	0. 721	13.8	1.9E-03
RFTS-1605	多胡砂岩	10cm×10cm×14 cm	6, 172	7.8	0. 720	10.8	1.8E-03
RFTS-1506	多胡砂岩	10cm×10cm×2cm	7, 390	5.5	0.721	7.6	1.0E-03
RFTS-1507	多胡砂岩	10 cm \times 10 cm \times 4 cm	5, 065	4.8	0.722	6.6	1.3E-03
RFTS-1508	多胡砂岩	10cm×10cm×7cm	3, 891	5.3	0.721	7.3	1.9E-03
RFTS-1509	多胡砂岩	10cm×10cm×10 cm	3, 633	6. 2	0. 721	8.6	2.4E-03
RFTS-1510	多胡砂岩	10cm×10cm×14 cm	3, 082	5.5	0.723	7.6	2.5E-03
RFFS-1501	藤枝砂岩	10cm×10cm×2cm	15, 250	14.7	0.715	20.6	1.4E-03
RFFS-1502	藤枝砂岩	10cm×10cm×4cm	10, 560	12. 2	0.717	17.1	1.6E-03
RFFS-1503	藤枝砂岩	10cm×10cm×7cm	7, 933	13.0	0.720	18.1	2.3E-03
RFFS-1504	藤枝砂岩	10cm×10cm×10 cm	7, 483	12.8	0.724	17.6	2.4E-03
RFFS-1505	藤枝砂岩	10cm×10cm×14 cm	6, 304	12. 8	0. 723	17.7	2.8E-03
RFFS-1506	藤枝砂岩	10cm×10cm×2cm	7, 620	9. 2	0.722	12.7	1.7E-03
RFFS-1507	藤枝砂岩	10cm×10cm×4cm	5, 292	9.3	0.722	12.9	2.4E-03
RFFS-1508	藤枝砂岩	10cm×10cm×7cm	3, 738	8. 8	0.722	12. 2	3. 3E-03
RFFS-1509	藤枝砂岩	10cm×10cm×10 cm	3, 738	9.9	0.721	13.8	3.7E-03
RFFS-1510	藤枝砂岩	10cm×10cm×14 cm	3, 151	9.5	0.721	13.1	4. 2E-03

表 3.4.2-2 各試験試料のフラックス測定結果

図 3.4.2-2 蛭川花崗岩の試料厚とフラックスの関係

図 3.4.2-3 多胡砂岩の試料厚とフラックスの関係

図 3.4.2-4 藤枝砂岩の試料厚とフラックスの関係

(2) 原位置のボーリングコアを用いたフラックスの測定

深度 300m のボーリング横坑道にボーリング掘削されたコアから、試験個所の花崗岩には変質 個所が認められる。また、変質個所は間隙率が大きいことが明らかとなっている。このため、変 質のラドンのフラックスへの影響を検討するため、コアの間隙率測定を行った試料を用いてラド ンフラックスの測定を実施した。測定では、表 3.4.2-3 に示す間隙率の低い試料のグループ (RFTG-1501) と間隙率の高い試料のグループ(RFTG-1502) に分けて、それぞれのフラックスを 求めた。表 3.4.2-4 にコアによるラドンフラックスの測定結果を示す。この結果によれば、間隙 率の低いグループの方がややフラックスは大きいものの、その差は僅かである。今年度のラジウ ム分析からはラジウム濃度が高い試料の多くは変質し、間隙率が大きい傾向が認められるが、変 質試料のすべてが高いラジウム濃度とはなっていないことに留意する必要がある。したがって現 状では明確な相関関係は得られていないため、ラドンの濃度、変質、間隙率、ラジウム濃度につ いては引き続き検討いて行きたい。

			コア	'密度	围动去	ᇟᅶᆓ		
試料名	コナ间原率	孔名 深度	絶乾	表乾	间限半	吸水平	備考	
	则上武科石		g/cm ³	g/cm ³	%	%		
	PRS-1504	12MI30 16.84m-16.98m	2. 624	2.631	0.66	0. 25		
	PRS-1509	12MI31 13.30m-13.44m	2. 623	2.630	0.66	0. 25		
	PRS-1510	12MI31 14.17m-14.31m	2. 622	2. 629	0.67	0.26		
	PRS-1501	12MI30 8.84m- 8.98m	2.619	2. 626	0.67	0.26		
	PRS-1512	12MI31 23.33m-23.47m	2. 624	2.630	0.67	0.26		
RFTG-1501	PRS-1508	12MI31 12.84m-12.98m	2.620	2. 627	0.68	0.26		
	PRS-1524	13MI37 13.46m-13.60m	2.621	2. 627	0.69	0.26		
	PRS-1502	12MI30 11.04m-11.18m	2. 622	2. 628	0. 70	0.26		
	PRS-1527	13MI37 24.02m-24.16m	2. 621	2. 628	0. 70	0. 27		
	PRS-1523	13MI37 10.02m-10.16m	2.620	2. 627	0. 72	0. 28		
	PRS-1520	13MI36 21.69m-21.83m	2.620	2. 628	0.74	0. 28		
	PRS-1519	13MI36 20.84m-20.98m	2.615	2. 623	0.77	0. 29		
	PRS-1526	13MI37 18.71m-18.85m	2.616	2. 624	0.77	0.30		
	PRS-1525	13MI37 15.02m-15.16m	2. 620	2. 628	0. 79	0.30		
	PRS-1517	13MI36 10.84m-10.98m	2.617	2. 625	0.82	0.31		
	PRS-1514	13MI36 5.36m-5.50m	2.693	2.702	0.82	0.31	弱変質	
	PRS-1513	13MI36 2.31m-2.45m	2.615	2. 624	0.83	0.32		
RFTG-1502	PRS-1503	12MI30 12.84m-12.98m	2.617	2.625	0.88	0.33		
	PRS-1516	13MI36 10.47m-10.61m	2.679	2. 689	0.93	0.35	弱変質	
	PRS-1522	13MI37 7.40m-7.54m	2.678	2. 688	0.94	0.36	弱変質	
	PRS-1515	13MI36 10.05m-10.19m	2. 618	2.629	1.08	0.41	弱変質	
]	PRS-1506	12MI30 22.36m-22.50m	2. 705	2. 717	1.13	0.43	弱変質	
]	PRS-1521	13MI37 4.39m-4.53m	2.686	2.698	1.15	0.44	弱変質	
	PRS-1507	12MI30 22.58m-22.72m	2. 626	2. 641	1.51	0.57	弱変質	

表 3.4.2-3 ラドンフラックス測定用のコア試料

網掛け個所は昨年度測定を行ったコア。PRS-1507は昨年度報告書の瑞浪花崗岩⑤、PRS-1515は瑞浪花崗岩⑫、PRS-1525 は瑞浪花崗岩⑬にそれぞれ対応する。

試験名	総表面積	総体積	発生 Rn 量	Igrows	平衡 Rn 量	Flux
	$\Sigma S(cm^2)$	$\Sigma V (cm^3)$	ΣRn t (Bq)	t/te	Σ Rne (Bq)	F (Bq/cm ²)
RFTG-1501	7627	6466	26.8	0.719	37.2	8. 0E-03
RETG-1502	4601	6/18	23.0	0 722	21 0	6 9E-03

表 3.4.2-4 コアによるラドンフラックス測定結果

3.5 原位置ラドン濃度計測による割れ目特性の検討

本事業において原位置のラドン濃度測定による割れ目の間隙幅の評価は、スイスグリムゼルサイト で実施した。グリムゼルの花崗岩は、割れ目密度も小さく、充填鉱物も少ない岩盤であった。我が国 の花崗岩を含む結晶質岩は、グリムゼルに比較して割れ目も多く、割れ目の充填鉱物や変質もまれで はない。このため、GTS で適用したこの技術を我が国の花崗岩としては割れ目や変質状況が一般的な 瑞浪超深地層研究所の深度 300m ボーリング横坑(以降、深度 300m ボーリング横坑と呼称)に適用し、 その適用性を評価するために、昨年度よりその準備として 13MI37 孔での予察的ラドン濃度計測を開始 した。今年度は深度 300m ボーリング横坑に削孔された他のボーリング孔も含めてラドン濃度を計測し、 割れ目の間隙幅の評価手法の適用性を検討し、課題を抽出する。

3.5.1 坑道における溶存ラドン濃度の分布

300m ボーリング横坑でのラドン濃度を計測するに際して、地下施設全体におけるバックグラウンド となるラドン濃度を把握するため、立抗を中心としたラドン濃度測定を行った。計測方法は、液体シ ンチレーションカウンタによって計測した。その結果を図 3.5.1-1 に計測地点と測定結果を示す。ラ ドン濃度は概ね 200~500Bq/L の範囲にある。09MI21-int2 のみ非常に低い値を示すが、昨年度は 173 Bq/L であり、11/16 の再測定では、467±24 Bq/L であり、濃度が安定していない。

図 3.5.1-1 坑道内ボーリングにおけるラドン濃度測定結果 (右図は JAEA 東濃地科学センターHP から引用し一部加筆)

3.5.2 300m ボーリング横孔における原位置のラドン濃度

原位置におけるラドン濃度の測定は深度 300m ボーリング横坑に削孔された 12MI30 孔、12MI31 孔、 13MI36 孔、13MI37 孔、14MI49 からの採水によって行った。各孔にはマルチパカーシステムが入って おり、水みちをパッカーで挟み 6~8 区間が設置され、各区間より採水が可能となっている。採水は 2016 年 1 月 19 日、27 日、28 日に行い、試料を持ち帰り Rad7 によりラドン濃度を計測するとともに、 液体シンチレーションカウンタ(LSC)でもラドン濃度を測定した。表 3.5.2-1 に測定結果を示す。LSC と Rad7 によるラドン濃度違いは、採水量の違い (Rad7 は 200cc~400cc、LSC は 1L~2L) や採水中の ガス溶出が考えられるが、別途実施した Ras7 の長期モニタリングで測定中の挙動が安定していること、 LSC よりも Rad7 が多くの測定結果を得たことから、ここでは Rad7 のデータを用いて検討した。各モ ニタリング区間のラドン濃度測定結果を表 3.5.2-1 に示すとともに、採水個所を図 3.5.2-2 に示す。 ラドン濃度は 172Bq/L~387Bq/L の範囲にあり、図 3.5.2-1 との比較でも特異な値はない。濃度の分布 傾向は、各孔の先端 (int-1) で相対的に濃度が低く見える。各孔の int-1 の近傍では掘削時に大量の 湧水が生じており、この湧水の原因となった水みちの間隙率の大きさや流速の影響も考えられる。

採水区間名	区間上端(m)	区間下端(m)	区間長(m)	Rad7 (Bq/L)	LSC (Bq/L)
12MI30-int2	24. 27	24. 57	0.30	332	277
12MI30-int4	20.19	20.79	0.60	285	265
12MI30-int6	9.59	10. 19	0.60	284	-
12MI31-int1	23.30	26.00	2. 70	172	-
12MI31-int3	20.37	22. 20	1.83	336	332
12MI31-int6	14.07	15.07	1.00	304	-
13MI36-int1	19.82	22.55	2.73	299	192
13MI36-int3	15.60	16.82	1.22	387	315
13MI37-int1	24.62	25.45	0.83	219	-
13MI37-int2	22.82	23. 42	0.60	331	-
14MI49-int1	19.07	22. 47	3. 40	224	_
14MI49-int3	15.40	16.07	2. 78	287	341

表 3.5.2-1 各モニタリング区間のラドン濃度測定結果

LSC:液体シンチレーションカウンタ RAD7:静電捕集型ラドン濃度測定装置

図 3.5.2-2 各モニタリング区間のラドン濃度測定結果

得られたラドン濃度を基づいて、割れ目幅を推定した。なお、ここで求める割れ目幅は、各区間内 に存在する割れ目の間隙幅の総和である。また、割れ目幅の算出に必要とするラドンフラックスは、 今年度ボーリングコアで測定した2つの値を一律に適用した。したがって、推定値は予備的なもので ある。ラドン濃度から算出した割れ目幅を表 3.5.2-2 に示す。まず、室内試験で得たフラックスは、 変質し間隙率が相対的に大きいコアから求めた値は 6.9×10⁻³ Bq/cm² であり、変質がなく間隙率が小 さい試料では 8.0×10⁻³ Bq/cm² であった。このフラックスの値を基に間隙幅を推定すると、変質し間 隙率が相対的に大きい際は0.36mm~0.80mm であり、変質がなく間隙率が小さい場合は0.41mm~0.93mm である。この値は、別途実施したトレーサー試験と比較しても整合的な値が得られている。

乙,区閏夕	上端深度−下端深度			ラドン濃度	間隙幅(mm)		
九:区间石	(m)	-	(m)	(Bq/L)	$6.9 \times 10^{-3} (Bq/cm^2)$	8.0 × $^{-3}$ (Bq/cm ²)	
12MI30-int2	24. 27	1	24. 57	332	0. 42	0. 48	
12MI30-int4	20.19	-	20.79	285	0. 48	0.56	
12MI30-int6	9.59	1	10.19	284	0. 49	0.56	
12MI31-int1	23.30	1	26.00	172	0.80	0.93	
12MI31-int3	20.37	-	22.20	336	0. 41	0. 48	
12MI31-int6	14.07	1	15.07	304	0. 45	0. 53	
13MI36-int1	19.82	1	22.55	299	0.46	0.54	
13MI36-int3	15.60	-	16.82	387	0.36	0. 41	
13MI37-int1	24.62	1	25.45	219	0.63	0. 73	
13MI37-int2	22.82	-	23.42	331	0. 42	0. 48	
	平均			288	0. 50	0. 58	

表 3.5.2-2 ラドン濃度より算出した割れ目幅

また、深度 300m ボーリング横坑の地下水のバックグラウンド情報を取得するために、13MI37 号孔 の int-1 から採取した地下水の、主要化学成分,ウラン同位体 (238U,234U) およびラジウム同位体 (228Ra,226Ra)の測定を実施した。主要化学成分は、ICP 発光分光法およびイオンクロマトグラフ法 により分析を行った。ウラン同位体は、Fe(OH)3 共沈法により回収し、陰イオン交換法のより分離・ 精製した後、電着線源を作製し、α線スペクトロメトリにより測定した。ラジウム同位体は BaSO₄ 共 沈法により回収し、密封容器に入れ1ヶ月間放置した後に、γ線スペクトロメトリにより測定した。 分析結果を表 3.5.2-3 に示す。なお、これらのデータは日本原子力研究開発機構(以下、JAEA)より 提供されたものである。

表 3.5.2-3 主要化学成分、ウラン同位体およびラジウム同位体の測定結果

分析項目	Na ⁺	K*	Mg ²⁺	Ca ²⁺	Sr ²⁺	Ba ²⁺	Mn ²⁺	CI-	SO4 ²⁻	アルカリ度
単位	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	meq/L
測定値	91.7	0.73	0.11	18.8	0.21	0.0009	0.0065	160	3.89	0.65
分析項目	²²⁶ Ra	²²⁸ Ra	²³⁸ U	²²⁸ Ra/ ²²⁶ Ra	²³⁴ U/ ²³⁸ U					
単位	mBq/kg	mBq/kg	mBq/kg	-	-					
測定値	34.9±0.7	75.6±4.1	0.635 ± 0.027	2.17±0.13	3.07±0.11					

3.5.3 ラドン循環ポンプの改良

ラドンから間隙幅を精度よく推定するためには、対象割れ目内で発生ラドン濃度が安定している状態で得ることが望ましい。このため、一定時間(ラドンの放射平衡時間程度)に亘って評価対象の割れ目とこれを繋ぐ2本のボーリング孔を通して地下水を循環し、安定したラドン濃度を得ることを計画している(図 3.5.3-1)。この手法はすでにグリムゼルサイトでも適用している。その際に使用した地下水循環用のポンプは0~1.5 リットル/分可変であり、使用圧力は2.5MPa 程度である。今般このポンプを深度 500m でも適応可能とするため、改良した。

図 3.5.3-1 ラドン循環試験の概念図

(1) 改良内容

深度 500m で使用するために、すなわち 5MPa の水圧がポンプにかかる環境下でポンプの回転が必要なため、ボディの管厚を改良前の 3mm から 5.5mm とし、溶接部を強化した。改良前・後の図面を図 3.5.3-2 に、改良前の溶接部の写真を図 3.5.3-3 に示す。また、改良前は露出したステーター両端の部品を4本の金属シャフトで締結していたが、この構造では 5MPa に対応できない。また、ステーター内外の圧力差が過大となると変形により定流量吐出が困難となる。これらに対処するためステーターケースを製作した。ステーターケースの図面と改良前・後のステーターの写真を図 3.5.3-4 に示す。ステーターケース内部はポンプボディに設けられた連通穴を通してポンプボディ 内部と同圧になるよう設計されおり、これによりステーター内外の圧力差を解消する。このポンプ に接続する採水器および循環用の配管として、Swagelok 社製の採水容器 304L-HDF4-1000 と 304L-HDF4-2250 を各3本、計6本の両端にニードルバルブ(同社製 SS-1RM4) と循環系統へ接続す るための 8mm 管用継手(同社製 SS-8M0-7-4) を取り付けた。

図 3.5.3-2 改良前・後ポンプボディ図面(左:改良前、右改良後)

図 3.5.3-3 改良前・後ポンプボディ溶接部の写真(左:改良前、右改良後)

図 3.5.3-4 ステーターケース図面(上)および写真(左下:改良前、右下:改良後)

また、循環系内に設置し遊離ガスの確認をするための耐圧 5MPa のアクリル製流路観察タンクを製作した。流路観察タンクの図面と写真を図 3.5.3-5 に示す。

図 3.5.3-5 流路観察タンク図面と写真

(2) 動作試験

ポンプの入力側と出力側を接続した試験管路を構成し、5MPa での動作試験を実施した。単純に入 力側と出力側を接続した管路の場合、ローターとステーターによる摩擦熱によって管内圧力が過度 に上昇する。このため冷所に試験管路を設置し、管内水の温度上昇を抑制するため水冷式の冷却部 を設けた。また、熱容量をある程度確保し、管内水の体積変動を吸収する目的で今回制作した流路 観察タンクと 2L 採水容器を使用した。試験状況と試験管路構成を図 3.5.3-6 に示す。

図 3.5.3-6 試験状況と試験管路構成

試験データは試験管路内圧力と流量については自動記録されるが、気温と冷却水水温については 自動記録の機能がないため温度計の表示を目視で時刻と共に記録し、試験終了後に自動記録された データと統合した。気温 9℃、冷却水水温 6℃の状況から初期加圧を行い吐出量を毎分 2500cc に設 定後、継手からの漏水が無いことを確認すると共に温度の影響を把握するため経過観察とした。圧 力低下が見られたが、これは配管の膨張と温度変化によるものと考えられる。開始16時間後に圧 力変動が一定であることが観察されたため試験圧力5MPaに設定し昼夜試験を開始した。一昼夜経 過後、吐出量が毎分2500ccで安定していることを確認した。吐出量と試験管路内圧力のグラフを 図 3.5.3-7に示す。試験中の試験管路内圧力値の平均は5.034MPaであった。圧力変動が見られた が、これは気温の変化によるものと考えられる。温度と試験管路内圧力のグラフを図3.5.3-8に示 す。

図 3.5.3-7 吐出量-圧力グラフ

図 3.5.3-8 温度-圧力グラフ

また、採水容器耐圧試験については、予め満水にした採水容器6本を直列に接続し、5MPa に加 圧。1時間後に採水容器に取り付けたバルブと8mm 管用継手の接続部から漏水が無いことを目視で 確認した。試験状況と加圧状況を図3.5.3-9に示す。流路観察タンクの耐圧試験については、試験 管路に流路観察タンクを接続し、5MPa の圧力を加えて圧力を自動記録しながら昼夜試験を実施し た。0.3MPa 程度の圧力低下が見られたが、漏水が無かったことから観察タンクに使用しているア クリル管及び配管の膨張によるものと考えられる。適時5MPa に加圧し耐圧に問題がないことを確 認した。圧力グラフを図3.5.3-10に示す。

図 3.5.3-9 採水容器試験および加圧状況

図 3.5.3-10 流路観察タンク圧カグラフ

3.6 まとめ

ラドン濃度計測による割れ目の幅の推定手法をグリムゼルへの適用を通して開発した。一方、我が 国の溶存地下水のラドン濃度は変化に富み、胚胎する地質によってその濃度が異なる。特に堆積岩に ついては、地域の地下水のラドン濃度の分布範囲は広く堆積岩への適用性を検討しておく必要があっ た。このため、これまで砂岩、泥岩などの堆積岩への適用性を検討してきたが、今年度はより間隙率 などの影響を受けやすい砂岩について適用を検討した。室内で試料岩石の厚さ少しずつ増加させてラ ドンフラックスを測定したところ、花崗岩では 10cm 未満でフラックスの値が一定となったが、一部の 砂岩試料では14cm以上でも一定になる傾向が認められない。したがって、堆積岩のフラックスを室内 で計測する際は、より厚い試料で行うことが推奨されるが、間隙率が大きい試料については、分厚い 試料を大量に使用して行うことになり、現実的には利便性の面から合理的でないと考える。昨年度の 岩石の分析によって、変質試料の一部にラドンの親核種であるラジウム濃度が高い試料が見つかった。 今年度の分析でも同様な傾向が認められたため、原位置岩盤の変質がラドンの発生に与える影響を検 討することとした。変質試料を含む間隙率の高い試料と、未変質で間隙率の低い試料を二つのグルー プに分けてラドンフラックスを測定した。その結果、両者に顕著な相違が認められなかった。その理 由は変質試料の全てのラジウム濃度が必ずしも高くないことが起因すると考えられた。結論として、 変質を想定する必要がなくなる可能性もあるが、今後はアプローチの方法を変えて、地下水のラドン 濃度が高い試験区間での地質的特徴(変質、間隙率)に基づいた検討し、確認したい。また、300mボ ーリング横坑の各孔のパッカー区間において、原位置のラドン濃度を測定した。その結果、特段の濃 淡はなく、周辺坑道との比較においても一般的なラドン濃度が得られた。各パッカー区間のラドン濃 度に基づき、各区間に1本の開口割れ目が存在すると仮定し、その割れ目幅を推定した。まず、室内 試験で得たフラックスは、変質し間隙率が相対的に大きいコアから求めた値は 6.9×10⁻³ Bq/cm²であ り、変質がなく間隙率が小さい試料では8.0×10⁻³ Bq/cm²であった。このフラックスの値を基に間隙 幅を推定すると、変質し間隙率が相対的に大きい際は 0.36mm~0.80mm であり、変質がなく間隙率が小 さい場合は 0.41mm~0.93mm である。この値は、別途実施したトレーサー試験と比較しても整合的な値 が得られている。しかしながら、この推定は、簡易な採水によって得た溶存ラドン濃度を割れ目内の ラドン濃度と仮定した結果である。ラドンによる間隙幅を精度よく推定するためには、原位置で安定 したラドン濃度を得る必要がある。このため評価対象の割れ目とこれを繋ぐ2本のボーリング孔を通 して地下水を一定期間循環して安定したラドン濃度を得ることを計画している。この手法はすでにグ リムゼルサイトでも実施しているが、瑞浪では深度 500m までを対象とするため、地下水循環用のポン プを改良した。この結果、5MPa まで耐圧性能が得られたため、次年度原位置の適用をしたい。

参考文献

- Snow D. 1965, "A parallel plate model of fractured permeable media, University of California", Berkeley, Ph. D
- Cecil L. D., Smith, R. C. II, Reilly, M. A., and Rose, A. W., 1987, Radium-228 and radium-226 in ground water of the Chickies Formation, southeastern Pennsylvania IN Graves, Barbara, ed., Radon, radium, and other radioactivity in ground water: Chelsea, Michigan, Lewis Publishers, p. 437-447.
- 湯口貴史、 鶴田忠彦、 西山忠男(2010)中部日本土岐花崗岩体の岩相と化学組成の累帯変化 岩石 鉱物科学 39(2), 50-70

地球化学標準物質 https://gbank.gsj.jp/geostandards/

- Taylor, S. R. and McLennan, S. M. (1985). The Continental Crust; Its composition and evolution; an examination of the geochemical record preserved in sedimentary rocks. Blackwell, Oxford. 312.
- 石橋正祐紀、安藤友美、笹尾英嗣、湯口貴史、西本昌司、吉田 英一 (2014) 深部結晶質岩における 割れ目の形成・充填過程と透水性割れ目の地質学的特徴 - 土岐花崗岩を例として - 応用地質 55(4), 156-165
- 文部科学省、1990、ラジウム分析法 放射能測定シリーズ 19
- 文部科学省、1992、ゲルマニウム半導体検出器によるガンマ線スペクトロメトリ 放射能測定法シリ ーズ7 3 訂
- 日本工業規格 2006 JIS A 1110 粗骨材の密度及び吸水率試験法

国立研究開発法人 日本原子力研究開発機構(東濃地科学センターHP)

参照先: https://www.jaea.go.jp/04/tono/miu/miu.html

4. 割れ目の可視化技術の開発

4.1 はじめに

本章の「割れ目の可視化技術」は、割れ目調査技術による割れ目間隙幅の評価結果の妥当性を検証 するために実施される原位置レジン注入試験に関連したものであり、JAEAの瑞浪超深地層研究所坑道 内での適用に向けて、原位置レジン注入試験で用いるレジンの選定、装置の開発、そして、レジンで 充填された割れ目間隙の可視化技術の整備を進めている。

はじめに、レジンの選定では、可使時間が長く、低粘度のエポキシ樹脂系接着剤(以下、レジン) を絞り込み、そのレジンの基本的な特性を把握するための室内試験を行っている。レジンの特性は現 場環境(測定環境)によって大きく変化するため、本年度は、現場環境の温度、地下水等がレジンの 特性に及ぼす影響について検討を行う。具体的な項目は、1)粘度・可使時間測定、2)付着強度測定 試験、3) pHの測定、4) 蛍光剤選定に関する検討、5)分離確認試験である。概要は以下の通り。

1) 粘度·可使時間測定

レジンの粘度や可使時間が現場環境(測定環境)、とくに環境温度によって大きく変化するため、これら物性の温度依存性に関するデータを取得する。

2) 付着強度測定試験

地下水が付着強度に及ぼす影響を把握するために、昨年度と同様に、平行平板の模擬割れ目 を作成し、その割れ目を十分、水および模擬海水になじませた後、レジンを充填させて、建研式 接着力試験器を用いて硬化後の付着強度を測定する。

3) pHの測定

レジンの pH が岩盤に対して影響を及ぼすかを確認するために、主剤、硬化剤、混合液それぞ れの pH を測定する。

4) 蛍光剤選定に関する検討

現在レジンに添加しているフルオレセインナトリウム(ウラニン)が最適なものであるのかを 確認するために実施する。

5) 分離確認試験

現在使用しているレジンの水中不分離性(水中分離抵抗性)を確認する。

っぎに、昨年度、画質やその精度に課題が残った割れ目の画像データの取得については、その取得 方法の最適化および効率化を図り、撮影者の技能に依存しない画像取得が可能かどうかの検討を行う。 本年度は、高出力のマイクロフォーカス X 線源を搭載したマイクロフォーカス X 線 CT スキャナでの 撮影、イメージスキャナによる研削面の画像取得を試みる。

また、レジンの流動特性の検討では、鋼管を用いたレジンの一次元流動試験と割れ目内未固結充填

物に関する検討を実施する。割れ目内未固結充填物に関する検討では、割れ目内に脆弱な未固結充填 物質が存在する場合、レジンがどのように充填されるのか、どのように固化するのかを確認する。

最後に、原位置レジン注入試験装置を試作するために、原位置での地下水圧、レジンの品質確保(再 現性・正確で均一な混合)を考慮して、装置の概念設計を行う。

4.2 割れ目の3次元可視化と定量評価

4.2.1 背景及び目的

昨年度、JAEA 瑞浪超深地層研究所の坑道内で採取した岩石コアにレジンを充填させたものに対して、 医療用 X線 CT スキャナによる可視化、マイクロフォーカス X線 CT スキャナ(最大出力:225kV)によ る可視化、平面研削と研削面の繰り返し撮影による可視化を行ったが、本年度も引き続き、JAEA 瑞浪 超深地層研究所の坑道内で採取した岩石コアにレジンを充填させたものに対して、X線 CT スキャナに よる撮影と平面研削と研削面の繰り返し撮影による割れ面管書きの可視化を行った。

昨年度取得したマイクロフォーカス X 線 CT 画像は、装置特有のノイズ (アーチファクト) により、 良好な画像ではなかったことから、本年度は、高出力のマイクロフォーカス X 線源(最大出力:450kV) を搭載した高出力マイクロフォーカス X 線 CT スキャナによる撮影を行い、比較的寸法の大きな岩石 コアに対して適用できるか検討を行った。また、平面研削と研削面の繰り返し撮影では、撮影者の技 量が画像の質に影響を及ぼすため、撮影者の技量に依存しないイメージスキャナによる割れ目間隙の 可視化についても検討した。

4.2.2 岩石コア

岩石コアは JAEA の瑞浪超深地層研究所の深度 300m ボーリング横坑で掘削された 13MI37 号孔のボ ーリングコア (15.00mabh~16.00mabh) から高角度の割れ目を含む領域 (15.68mabh~15.78mabh) を カットしたものを用いた。ボーリングコアの直径は約 70mm である。以下、岩石コアの名称を「13MI37 コア」で呼ぶこととする。

ボーリングコアからカットした後、それぞれのコアの割れ目部にレジンを充填させた。レジンには 日本シーカのエバーボンド EP-400M を用いた。また、レジンには 100ppm のフルオレセインナトリウ ム (ウラニン)を添加した。

昨年度実施した 12MI30 コアへのレジン充填は、アクリル製の透水セルを用いて行ったが、13MI37 コアへのレジン充填は、図 4.2.2-1 に示すとおり、真空脱気により行った。割れ目は養生テーブを巻 いて固定した。レジンには 100ppm のフルオレセインナトリウム (ウラニン)を添加したものを用い た。 固化後にモールドから取り出した(脱型)岩石コアの周囲の余分なレジンを取り除くために、オー バーコアリングを実施した。最終的に、直径 50mm、高さ 105mm の円柱状に整形した。

割れ目領域の選定

② 割れ目面

③ 養生テープによる固定(流入出箇所はスリットを入れ開放)

④ 真空脱気によるレジン充填

⑤ レジン固化後の岩石コア

⑥ オーバーコアリング及び端面整形

平面研削と研削面の撮影では、平面研削盤に固定するため、岩石コアを鉄板に貼り付ける。これまでは、岩石コアを半割にし、その切断面を鉄板に貼り付けていたが、真空脱気により割れ目内にレジンを充填・固化させた後、割れ目内に充填させたものと同じレジンを用いて、コアを型枠内で包埋固定し、安定なブロック状に成形した。包埋固定用のレジンと真空脱気により割れ目内に充填させたレジンとを区別するために、包埋固定用のレジンにはナフチオン酸ナトリウムを100ppm添加した。

包埋固定の状況を図 4.2.2-2 に示す。型枠はレゴブロックで作成し、脱型のために型枠の内側には テフロンシートを設置している。固化後の写真で、気泡の存在を確認することができるが、これは、 真空脱気による割れ目内へのレジン充填が不完全であったためであると考えられる。

① レジン流し込み直後

② 脱型直前(流し込みから1日経過)

図 4.2.2-2 レジン充填コアの包埋固定状況

4.2.3 X線CTスキャナによる撮影

(1) 医療用 X 線 CT スキャナ

医療用 X 線 CT スキャナは、電力中央研究所が所有する Aquilion64(東芝メディカルシステムズ 株式会社製)を用いた(図 4.2.3-1)。

この装置は、空間分解能が 0.3mm 程度であり、0.2mm 程度の平均割れ目間隙幅を定量的に評価す るには適してはいないが、直径 100mm の岩石コアであっても X 線が透過し鮮明な画像が得られるこ と、時間分解能が高く短時間でのデータ取得が可能であるなど、割れ目間隙を可視化する上では必 要不可欠な装置であると考えられる。

図 4.2.3-1 医療用 X 線 CT スキャナの外観

撮影条件を表 4.2.3-1 に示す。X 線の管電圧は装置で設定できる最大の 135kV とし、管電流については、画像の SN 比が十分得られることを考慮して 300mA とした。その他の設定は、過去の実績を 元に決定した。

管電圧/管電流	135kV/300mA
スライス厚	0. 5mm
照射時間	1秒/回転
画素数	512 x 512pixel
フィルタ関数	FC30
再構成スライス間隔	0. 2mm

表 4.2.3-1 医療用 X線 CT スキャナでの撮影条件

(2) 高出力マイクロフォーカス X線 CT スキャナ

高出力マイクロフォーカス X 線 CT スキャナは、TXS450-ACTIS を用いた。TXS450-ACTIS は、Nikon Metrology 社製の 450kV マイクロフォーカス X 線源を搭載した装置である (図 4. 2. 3-2、表 4. 2. 3-2)。

図 4.2.3-2 高出力 X線 CT スキャナの外観 (テスコ株式会社 HP より)

X 線源(管電圧/焦点寸法)	$450 \mathrm{kV}/30~\mu$ m
撮影範囲	$\Phi600$ mm $ imes 700$ mm
検出器	フラットパネル
スキャン方式	ローテーション/オフセット, コーンビーム

表 4.2.3-2 高出力マイクロフォーカス X線 CT スキャナの仕様

本来、可視化の目的、撮影する対象のサイズ等に応じて、適用可能な X 線 CT スキャナを選択する べきであるが、寸法の大きな試料を高分解能で撮影したいという要求は高く、このスキャナはその 要求に応えた装置であると言える。昨年度、225kV のマイクロフォーカス X 線源を搭載した装置で 撮影を行ったが、装置特有のノイズ (アーチファクト)により鮮明な画像が取得できなかった。最 大出力 450kV は、ミリフォーカス型の産業用 X 線 CT スキャナ (例えば、TOSCANER-24500twin)と同 等の出力であり、ボーリングコアのような大きなサイズの試料に対して X 線の透過が期待でき、ア ーチファクトの少ない画像の取得が期待できる。

撮影条件を表 4.2.3-3 に示す。Case1 は、岩石コア(Φ50mm)が視野サイズに全て収まるように 撮影した条件であり、Case2 は、視野サイズを狭めて撮影した条件である。図 4.2.3-3 に示すとお り、Case1は、岩石コア底面から 39mm~99mm の範囲を撮影したものであり、Case2は、岩石コア底 面から 51mm~87mm の範囲を撮影したものである。画素の辺長は、Case1 で 57μm、Case2 で 34μm である。撮影時の状況写真を図 4.2.3-4 に示す。

	Case1 Case2				
管電圧/管電流	398kV/0.2mA				
SID	800	Omm			
SOD	236mm 146mm				
視野サイズ	58mm	35mm			
スライス幅/ピッチ	0. 2mm/0. 2mm	0.1mm/0.1mm			
ビュー数	1200				
積算枚数	10				
マトリクスサイズ	1024×1024				
撮影時間	54 分				
視野サイズ	58mm 35mm				

表 4.2.3-3 高出力マイクロフォーカス X線 CT スキャナでの撮影条件

Г

図 4.2.3-3 高出力マイクロフォーカス X線 CT スキャナでの撮影位置(高さ)

図 4.2.3-4 高出力マイクロフォーカス X 線 CT スキャナでの撮影状況

4.2.4 平面研削及び研削面の撮影

平面研削および研削面の撮影は、X線CTスキャナによる撮影後に実施した。非磁性体である岩石を 研削盤のマグネットチャックに固定するために、岩石コアを 200mm×150mm×5.70mm の鉄板 (SPHC、 6mm 厚、公差±0.3mm)に接着させた。岩石と鉄板との接着には、エポキシ樹脂系接着剤(ボンドクイ ックメンダー、コニシ株式会社)を用いた。

研削面画像は、岩石コアを一定の間隔(0.5 mm)で平面に研削した後、その断面をイメージスキャ ナとデジタルカメラで撮影して取得した。ただし、撮影間隔は、イメージスキャナについては平面研 削の間隔と同じ 0.5mm 間隔で、デジタルカメラでの撮影では 1.0mm 間隔で行った。

デジタルカメラは、デジタルー眼レフカメラ (D7000、株式会社ニコン)を用いた。レンズは焦点距 離 40mm のマクロレンズ (AF-S DX Micro NIKKOR 40mm f/2.8G、株式会社ニコン)を用いた。また、レ ンズには 410nm 以下の紫外線を吸収する UV カットフィルター (Zeta UV L41、株式会社ケンコー・ト キナー)を取付けた。また、撮影条件は、蛍光灯、紫外線、蛍光灯+紫外線の3つの異なる光源下で行 った。撮影条件は表 4.2.4-1 に示すとおりである。なお、昨年度までは、研削によって生じる微細な キズが写らないように、撮影前に研削面に水を吹きかけ、湿らせることで対応していたが、本年度は 水を吹きかける代わりにシリコンスプレーを塗布することで対応した。

イメージスキャナは A4 フラットベッド GT-X830 (セイコーエプソン株式会社)を用いた。撮影は、 暗幕内でイメージスキャナの光源のみで行い、720dpiの解像度で 48bit の TIFF 画像として取り込ん だ。また、イメージスキャナのガラス台には 0HP シートを置き、岩石コア設置時にガラス面が傷付か ないように努めた。

絞り値 (F値)	f/5.6
ISO 感度	100
シャッタースピード	蛍光灯光源下:1/15秒
	紫外線光源下:1秒
	蛍光灯+紫外線光源下:1秒
測光モード	マルチパターン測光
ピント合わせ	マニュアル
記録画素数	4928×3264 ピクセル
画像解像度	41pixel/mm (24 μ m/pixel)
	※カメラと研削面間固定

表 4.2.4-1 デジタルカメラによる研削面の撮影条件

4.2.5 撮影結果

(1) 医療用 X 線 CT 画像

13MI37 コアを医療用 X 線 CT スキャナで撮影した画像を図 4.2.5-1 および図 4.2.5-2 に示す。ボ ーリング掘削方向を z 軸とし、画像の左から右へ向かう方向を x 軸、画像の上から下に向かう方向 を y 軸とした座標系を設定した。画像のしきい値は WL が 2500、WW が 3000 である (CT の表示範囲: 1000~4000)。

画像では、高密度および平均原子番号の高い物質が白く表示され、割れ目のように密度の低いものは黒く表示されている。z=20mmの画像の右側に、雲母等の白い粒状のものとは別に、帯状を呈した領域が確認できるが、長石に見られる累帯構造であると考えられる。

図 4.2.5-1 医療用 X 線 CT 画像 (1/2)

図 4.2.5-2 医療用 X 線 CT 画像 (2/2)

xy-断面画像から MPR (Multi Planar Reconstruction) 画像を作成した(図 4.2.5-3)。図の上段 が xz-断面、下段が yz-断面である。岩石コアの中心を x 軸および y 軸の原点としている。画像の しきい値は、xy-断面と同じである。

昨年度のもの(12MI30 コア)に比べて、MPR 画像においても割れ目の形状や分布が鮮明である。 撮影前の目視による外観の観察から、割れ目内にレジンが充填されていない箇所が多数見つかっ ていることや、岩石コア作成時に養生テープのみで割れ目面を固定していることなどが影響してい るものと考えられる。

図 4.2.5-3 MPR 画像(医療用 X 線 CT 画像)

(2) 高出力マイクロフォーカス X 線 CT 画像

13MI37 コアを高出力マイクロフォーカス X 線 CT スキャナで撮影した画像を、図 4.2.5-4 および 図 4.2.5-5 に示す。図 4.2.5-4 は撮影条件 Case1 の画像である。画像のしきい値は、WL が 20000、 WW が 10000 である (CT 値の表示範囲:15000~25000)。図 4.2.5-5 は撮影条件 Case2 の画像であ る。画像のしきい値は、WL が 18000、WW が 9000 である (CT 値の表示範囲:13500~22500)。

図 4.2.5-4 高出力マイクロフォーカス X 線 CT 画像 (Case1)

図 4.2.5-5 高出力マイクロフォーカス X 線 CT 画像 (Case2)

どちらの条件の画像も医療用 X 線 CT 画像に比べて割れ目の形状がはっきりと確認することができ、割れ目幅が膨縮している様子も確認できる。

視野サイズを狭めることにより、その形状はさらに鮮明になり、大きな割れ目(主経路)から分 岐する幅の狭い割れ目も可視化できていることが確認できる。また、Case1の z=20mmの画像では、 医療用 X 線 CT 画像でも確認された累帯構造と思われる箇所を確認することができる。

225kVのX線源を搭載したマイクロフォーカスX線CTスキャナで撮影した画像(昨年度の画像) は、装置特有のノイズ(アーチファクト)が入った不鮮明な画像であったが、高出力のマイクロフ ォーカスX線CTスキャナで撮影した画像は、ノイズがほとんど見られず、非常に鮮明な画像が得 られた。 つぎに、撮影で得た xy-断面画像から MPR (Multi Planar Reconstruction) 画像を作成した(図 4.2.5-6、図 4.2.5-7)。

図 4.2.5-6 が Case1 の画像から作成したものであり、図 4.2.5-7 が Case2 の画像から作成したものである。それぞれ、上段が xz-断面、下段が yz-断面である。岩石コアの中心を x 軸および y 軸の原点としている。画像のしきい値は、xy-断面と同じである。

xy-断面内の画素寸法に比べて、スライス幅・ピッチが約3倍の非等方性のボクセルであるが、割れ目の形状に歪みがほとんどなく、鮮明な画像が得られた。

本年度は、直径 50mm の岩石コアを撮影対象としたが、今後、原位置レジン注入試験後にボーリン グ掘削されるコア径 100mm 相当の岩石コアに対して撮影を実施し、今回と同じような鮮明な画像が 取得できるか確認する予定である。

図 4.2.5-6 MPR 画像(高出力マイクロフォーカス X線 CT 画像; Case1)

図 4.2.5-7 MPR 画像(高出力マイクロフォーカス X線 CT 画像; Case2)

(3) 研削面画像(デジタルカメラ)

平面研削し、その研削面をデジタルカメラで撮影した画像を図4.2.5-8に示す。左側が蛍光灯光 源下で撮影したもの、中央が蛍光灯と紫外線を照射して撮影したもの、右側が紫外線のみを照射し て撮影したものである。なお、X線CT画像の座標と一致させるため、左右を反転させて表示してい る。赤丸で囲った領域はレジンが充填されていない領域である。このレジンが充填されていない箇 所は各所で確認された。紫外線の画像で緑色を呈している箇所が、真空脱気で充填された箇所であ り、青色の箇所は、ブロック状に成形した際に浸入し充填された箇所である。割れ目の連続性が途 切れている箇所が、割れ目が閉塞している箇所もあるが、そのほとんどは、レジンが全く充填され ていない箇所である。真空引きでレジンを充填させることは、今後避けるべきであろう。

X線 CT 画像で帯状の白色の領域が確認されていたが、研削面画像からそれが長石であることが確認できる。

図 4.2.5-8 デジタルカメラで撮影した研削面

研削面画像は、CT 画像での xz-断面に対応している。研削間隔が 1.0mm と非常に幅があるが、研 削面画像から xy-断面に相当するが像を作成した。その結果を図 4.2.5-9 に示す。研削間隔が荒い ため、割れ目の分布等、鮮明な画像は得られていないが、xy-断面上でのレジンの充填状況や割れ目 の分布などを確認することができる。

研削によって生じる微細なキズが画像に写り込まないように、本年度は、水で湿らせるのではな

く、シリコンスプレーを吹きかけることで艶を出し、研削によって生じる微細な傷が画像に写り込 まないようにした。水で湿らせる場合、撮影までに時間がかかると、研削面が乾燥してしまい、キ ズが画像に写り込んでしまうことがある。撮影者にとってはそれが一種のストレスであり、画像の 質にも影響する。シリコンスプレーを吹きかける方法は、非常に簡便であり、乾燥の心配をする必 要がない。本年度の画像は、そのことが影響して比較的良好な画像が得られた。

平面研削の繰り返しによる研削面の画像取得は、時間と労力を要することから、撮影者にとって 楽な方法を模索することも重要であると考えられる。

図 4.2.5-9 研削面画像から再構成した xy-断面

本年度の研削面画像とは異なり、昨年度の研削面画像(12MI30 コア)は、割れ目だけでなく割れ 目の周囲もウラニンの蛍光色で発光していたが、これは、レジン充填前に割れ目を満たしていた 10%濃度のNaI水溶液が影響していたものと思われる。後述の塩分影響確認試験の箇所で詳細につ いては説明するが、レジンは塩分の影響を受けて、硬化不良を引き起こすことがわかっており、昨 年度の画像で確認された割れ目領域以外の蛍光は、この硬化不良を引き起こした箇所を、水を使っ て研削したことにより蛍光剤が割れ目以外にも分散したこと(コンタミネーション)が原因である と考えらえる。

地下水中の塩分は硬化不良を引き起こすだけではなく、その後の割れ目の可視化にも悪影響を及 ぼす。どの程度の塩分濃度がレジンの硬化不良を引き起こすのかは明らかになっていないが、原位 置レジン注入試験では、割れ目内の地下水を清水置換することは必須事項であると考えられる。 (4) 研削面画像(イメージスキャナ)

イメージスキャナで撮影した研削面画像を図 4.2.5-10 に示す。今回は、色調を補正するなどの処 理は行っていない。なお、デジタルカメラで撮影した画像と同様に、X線 CT 画像の座標と一致させ るため、左右を反転させて表示している。

イメージスキャナでの研削面の画像取得は、0.5mmの研削ごとに行っている。したがって、xy-断 面については、0.5mm 間隔の研削面を重ね合わせて作成しているため、デジタルカメラでの画像に 比べて、輪郭が鮮明である。デジタルカメラでの研削面の撮影も0.5mm 間隔で行えば、同程度の精 度のものが取得できると思われる。デジタルカメラでの撮影は、3つの光源を用いて撮影している ため、ピント合わせが難しく、一定の品質の画像が得られないことが課題であった。イメージスキ ャナは、ピント合わせといった煩雑な手続きが不要であるため、撮影者の技量によらず一定の品質 の画像取得が可能である。ただし、一般に販売されているイメージスキャナでは、紫外線光原下の 撮影はできないが、紫外線光源を搭載したイメージスキャナも販売されているので、デジタルカメ ラでの撮影と平行して、どちらの撮影方法が割れ目間隙の可視化に有効であるのか、今後検討して いく予定である。

図 4.2.5-10 イメージスキャナで撮影した研削面(左:xy-断面、右:xz-断面)

4.2.6 割れ目間隙幅の定量評価

13MI37 コアのレジン充填状況が思った以上に悪く、充填されていない箇所が多かったため、割れ目 間隙幅は、任意の5断面を選択し、それぞれの断面で10箇所測定した。撮影箇所と結果を示した画像 を図4.2.6-1に例示する。画面上で割れ目が平行になるように画像を回転させて幅を測定した。割れ 目の経路は、必ずしもx軸に沿っていないので、幅の測定は、割れ目の経路に合わせて、画像中の矢 印で示したように測定した。各断面での平均値は、0.32mm、0.31mm、0.53mm、0.33mm、0.28mm であっ た。ボアホール TV で計測した幅や昨年度の測定結果に比べて幅が大きい。岩石コア作成時の固定の方 法などが強く影響しているものと思われ、実際(原位置に存在していたとき)は測定された幅よりも 小さい幅であったと考えられる。

4.3 室内レジン注入試験

本年度は、レジン注入試験の原位置適用前の検討として、レジンの流動特性を把握するために、鋼 管を用いたレジンの一次元流動試験と割れ目内未固結充填物に関する検討を実施した。以下にその検 討内容および結果を示す。

4.3.1 鋼管を用いたレジンの一次元流動試験

(1) 試験概要

原位置レジン注入試験では、レジンが可使時間以内にできるだけ広範囲に行き渡ることが望まれ るが、2 液混合物であり、混合後に 2 液が反応し粘度が変化するレジンがどのように割れ目内を流 動するかは明らかになっていない。

レジンと同じく高い粘度を有する高粘性流体については、室内および原位置での試験は実施済み であり、粘度のみに着目すると、高粘性流体試験での知見がレジンの流動特性を把握する上で有用 であると考えられる。

そこで本年度は、高粘性流体で行った室内試験の内、もっとも単純かつ容易に実施できる鋼管を用いた一次元流動試験を実施した。

一次元流動を模擬した鋼管に粘度の高い流体を定流量で注入した場合、注入圧力は時間に対して 線形に増加する。高粘性流体試験の室内での検討では、その圧力データから管径を評価できること を明らかにしている。また、鋼管内に水がある場合、浸潤前線付近の高粘性流体と水との混合によ り、水がない場合と比べて圧力勾配が小さくなり鋼管の出口までの時間が遅くなるという知見も得 られている。したがって、主剤と硬化剤を混合するレジンにおいても、鋼管内の流体によりレジン の分離が引き起こす可能性が考えられる。

本試験は、可使時間以内の注入であれば高粘性流体と同様の取り扱いが可能なのか、管内に流体 が満たされていた場合、主剤と硬化剤が分離するのかなど、今後予定している原位置レジン注入試 験で想定される不確実性を最小限に抑えるための基礎資料を提供する目的で実施した。

(2) 試験方法

試験では、1/8inch の鋼管(内径:1.76mm、Swagelock 製)を用いた。長さは、2m の鋼管を2本 接続した延長 4m の鋼管である。試験では、室内の温度はエアコンで25℃になるようにコントロー ルしているが、水中のほうが空気中よりも温度変化が少ないためこの鋼管を螺旋状に変形させ水を 張ったドラム缶に沈めて実施した(図4.3.1-1)。

この鋼管にレジンを定流量で注入し、注入圧力の経時変化から、水との混合の程度を評価すると ともに、レジンが硬化する過程で注入圧力がどのように変化するかを把握する。試験では、主剤と 硬化剤を混合させたもの(レジン)と主剤のみの2つの流体を使用する。主剤および硬化剤は日本

4 - 21

シーカ社製のエバーボンド EP-400M を用いた。また、レジンには 100ppm のウラニンを添加した。

鋼管内は、空気、水、模擬海水、IPA(500mlの水と500mlのIPAを混合したもの)の4種類の流体で管内を飽和させた状態で実施した。なお、試験はそれぞれ3度繰返して実施し、再現性の確認も行った。

ポンプは、レジンポンプ試作前ということもあり、また、使用後の洗浄不備によるポンプの故障 を避けるために、シリンジ(注射器)を押すタイプのシリンジポンプ(Model44、HARVARD APPARATUS) を使用した。シリンジについてもスレンレス製が望ましいが、今回はプラスチック製のシリンジ (50m1)を用いた。なお、主剤と硬化剤の混合は手動で行った。

シリンジと鋼管との接続は、ルアーロック基注射針を用いた。針部は 1/8 inch の鋼管と接続しや すいように、鋼管と同じ径の 1/8 inch に加工したもの使用した(図 4.3.1-2)。

圧力の測定は、ルアーロック基注射針と鋼管との接続部で行った。圧力計は定格容量 1MPa のフラ ッシュダイヤフラム型の圧力計(PCM-10KH、共和電業)を用いた。デッドボリュームを小さくする ために、図 4.3.1-2 の右側に示す Swagelok 社製のアダプターを使用した。流量は、すべての実験で 5m1/min 一定とし、流動中の圧力変化をデータロガーに収録した。

試験の数量および条件を表 4.3.1-1 に示す。

図 4.3.1-1 一次元流動試験で用いた鋼管の温度管理状況

図 4.3.1-2 鋼管を用いた一次元流動試験での圧力の測定方法

注入流体	管内条件	試験時の水温	数 量	
	空気		3	
子刘	水		3	
主剤	模擬海水		3	
	IPA(濃度 44%)	0.0°C	3	
	空気	23 C	3	
兴业1/22/2	水		3	
重元レンン	模擬海水		3	
	IPA (濃度 44%)		3	

表 4.3.1-1 鋼管を用いた一次元流動試験の条件と数量

(3) 試験結果

主剤を用いた一次元流動試験の結果を図4.3.1-3示す。図は一定流量で主剤を注入した場合の注 入圧力と時間の関係を示したものである。時間の経過とともにほぼ線形に圧力が上昇し、管内から 主剤が排出されると圧力が一定に推移している様子が確認できる。空気の条件で多少再現性が低い が、それぞれの条件で再現性の良い結果が得られた。なお、結果は示さないが、空気の条件下での 測定結果と過年度測定した主剤の粘度から管径を評価した結果、試験に使用した管径と概ね一致し ていることを確認している。

模擬海水の条件で定常圧力が空気・水の条件に比べて低くなっているが、原因は不明である。管内を IPA で満たした条件では、主剤が浸潤フロント付近で溶解したためか、圧力勾配がその他の条件に比べて小さく、また、出口までの到達時間が不明瞭である。スイスのグリムゼル試験場で実施された原位置レジン注入試験では、割れ目面の接着性を改善するために、レジン注入前に IPA を注

入している。今回の結果は、そのことを検証できたものと考えられる。

本事業で選定したレジンにおいても IPA がプライマーとして機能するものと考えられるが、坑道 内での IPA の取り扱いは難しいため、今後予定している原位置レジン注入試験で使用するかは、種々 の検討結果を含めて慎重に判断していきたい。

図 4.3.1-3 1/8inch 鋼管にエポキシ樹脂(主剤)を注入した場合の試験結果

蛍光レジンを用いた一次元流動試験の結果を図 4.3.1-4 に示す。試験に用いた蛍光レジンは、空 気の条件を除く全てのケースで同じものを用いて、空気、水、模擬海水、IPA の順に試験を行った。 混合時間や混合方法などは統一したが、空気の条件での結果を見て分かるように再現性は低い。し たがって、空気の条件以外の結果については、参考として空気の条件で測定した結果を合わせて表 示している。また、圧力が定常に達した後、圧力が低下していたり、圧力が脈動している様子が確 認できるが、これは、本試験で用いたプラスチック製のシリンジが圧力に耐え切れず、変形もしく はシリンジから外れたためである。

主剤を用いた一次元流動試験の結果との大きな相違は、混合開始から時間が経過するに従って、 管内での圧力の勾配や定常圧力が上昇していることである。試験自体はレジンの可使時間以内に終 了しているが、主剤と硬化剤との反応が進み、管内でのレジンの粘度が上昇したことによるもので あると考えられる。しかし、試験に用いたシリンジの材質等、試験の精度に問題があるので、今後、 試験の精度の向上を図り、再度検討していく予定である。 管内を IPA で満たした条件では、主剤での試験同様、圧力勾配がその他の条件に比べて小さく、 また、出口までの到達が不明瞭である。レジン(主として主剤)が浸潤フロント付近で溶解したた めであると考えられる。

- 4.3.2 割れ目内未固結充填物に関する検討
 - (1) 検討の背景及び目的

割れ目内には充填物質が存在する場合があり、流入粘土や断層粘土の未固結なものから、低温性・ 熱水性の充填物質の固結したものまで、その形態は様々である。原位置レジン注入試験では、これ ら割れ目内の充填物質も可能な限り天然の状態で回収することも目的としている。しかし、図 4.3.2-1 に示すように、割れ目内に未固結の充填物質(断層角礫や断層ガウジ)が存在する場合、 レジンによる接着がうまくいかず、コア回収時(ボーリング掘削時)に岩石基質部から分離する可 能性があることが、スイスのグリムゼル試験場で回収されたレジンが充填されたコアで明らかにな っている(二次レジンはコア回収後に充填させたレジン)。

そこで、本検討では、割れ目内に脆弱な未固結充填物質が存在する場合、レジンがどのように充 填されるのか、どのように固化するのかを確認するために、岩石模型を用いた室内レジン注入試験 を実施した。

図 4.3.2-1 未固結充填物質へのレジン充填状況(研削面画像)

(2) 岩石模型

試験に用いた岩石模型の模式図を図 4.3.2-2 に、外観写真を図 4.3.2-3 に示す。

岩石模型は直径 100mm、高さ 200mm の円柱状の稲田花崗岩を半割にした 2 対の岩石からなる。片 一方の岩石は、幅 80mm、高さ 200mm の領域を研削により 0.5mm 掘り下げている。したがって、2 対 の岩石を重ね合わせたときに、0.5mm 幅の平行平板割れ目(模擬割れ目)が形成される。また、片 側の端面の中央には直径 21mm、高さ 40mm の円孔を設けられている。

試験を実施するにあたり、0.5mm幅の割れ目を保持するために、2対の岩石が接触する箇所にグリースを塗布し、岩石模型の周方向5箇所をホースバンドで締め付けた。

つづいて、模擬割れ目内には未固結の充填物質として砂(珪砂8号)を円孔部および割れ目部に 模型の側面をハンマーで叩きながら充填させた。なお、割れ目内及び円孔内の砂の充填状況の確認 を複数回実施し、均一に充填されていることを確認している(図4.3.2-4)。

図 4.3.2-2 円孔割れ目模型の模式図

図 4.3.2-3 円孔割れ目模型の外観写真

図 4.3.2-4 割れ目内及び円孔内の砂の充填状況

(3) 試験方法

割れ目と円孔に砂を充填させた岩石模型を2枚のアクリル板の間に設置し、4本のステンレス製 のロッド(全ネジ)で固定した。アクリル板には0リング用の溝と0リング、水およびレジンの流 入・排出のためのチューブ継手が取り付けられている。また、岩石模型の両端面には、充填させた 乾燥砂が、水注入前に排出されないようにろ紙を貼り付けた。なお、水およびレジンの注入にはシ リンジポンプ(Harvard Apparatus 44)を用いた。レジン注入試験の状況写真を図4.3.2-5に示す。

まず、岩石模型の上側(円孔部)から 1.0ml/min の流量で水を注入し、砂で充填された箇所を水 で飽和させた。水注入後の割れ目内部の状況写真を図 4.3.2-6 に示す。図から水は割れ目内の砂を 洗い流さず、隅々まで行き渡っていることが確認できる。なお、砂の飽和状況については本試験前 に複数回行い、再現性を確認している。

つぎに、100ppmのウラニンを添加したレジンを岩石模型の上側(円孔部)から1.0ml/minの流量 で注入した。レジンの注入は主剤と硬化剤の混合開始から10分経過した時点で注入を開始し(主剤 と硬化剤の混合時間は3分)、その後、約80mlのレジンを注入した。

図 4.3.2-5 レジン注入試験の状況写真

図 4.3.2-6 水注入後の割れ目内部の状況写真

(4) 試験結果

レジン注入試験後に撮影した X 線 CT 画像を図 4.3.2-7 に示す。画像のしきい値は WL が 1000、WW が 3000 である(CT 値の表示範囲:1500~2500)。上段 2 枚の画像が円柱軸に直交する断面を可視 化した画像(xy-断面)であり、下段左側が、岩石模型の中心を通り、割れ目に沿った測線上の断面 (xz-断面)、下段右側が、岩石模型の中心を通り、割れ目に直交する測線上の断面(yz-断面)で ある。

X線CT画像は白黒濃淡画像であり、密度が高い領域が白色、低い領域が黒色で表示される。

xz-断面は割れ目に沿った測線上の断面であることから、両端の比較的白い領域(岩質部)を除い て、割れ目内の砂の充填状況を示している。このうち、黒色の領域は砂が流出した領域であり、暗 灰色の領域は、砂の充填率が低い領域である。なお、レジンを約42ml 注入した時点で、岩石模型下 側から砂が流出していることを確認している。

0.5mmの隙間に砂を一定の相対密度で充填させることは難しく、図 4.3.2-4 で示したように砂が 均一に充填されているように見えても、局所的に相対密度が低い不均一な領域が存在したものと考 えられ、レジンの粘度に依存した注入圧力によりその相対密度の低い領域の砂を洗い流したために このような流れ場が形成されたものと考えられる。

図 4.3.2-7 レジン注入試験後の X 線 CT 画像

X線 CT での撮影を終えた5日後、割れ目に直交する方向を切断し、その切断面を観察した。その 結果を図 4.3.2-8 および図 4.3.2-9 に示す。図中の赤丸は、割れ目内の砂が押し流され、ほぼレジ ンのみが充填されている箇所を示しており、この箇所は X線 CT 画像での暗灰色の領域と一致して いる。切断面の画像からもレジン注入により砂が押し出されたことを確認することができる。

(上段: 蛍光灯、中段: 蛍光灯+紫外線、下段: 紫外線)図 4.3.2-8 レジン注入試験後の岩石模型切断面の観察結果(全景)

(上段:紫外線、下段:蛍光灯+紫外線)図 4.3.2-9 レジン注入試験後の岩石模型切断面の観察結果(詳細)

砂のように透水性の高い物質が割れ目内に充填されていることは考えにくく、同様の充填物質の 洗い流しがレジン注入による生じるかは疑問であるが、充填物質が押し流された場合、レジンが本 来の水みちとは違った経路を辿る可能性も考えられるため、レジンの注入圧管理は慎重に行う必要 がある。

切断後も砂の流出はなく、形状を維持しており、接着性については良好である。なお、レジンの 詳しい充填状況については、切断後の岩石模型を研削することで確認する予定である。また、円孔 部の砂の蛍光状態を見る限り、浸潤フロント近傍が周囲に比べて蛍光していることから、蛍光剤が レジンから分離している可能性が高い。レジン注入試験では、蛍光の有無によりレジンがどの程度 の隙間まで充填可能であったかを判断するため、場合によっては誤った解釈をしてしまう可能性が ある。レジンからの蛍光剤の分離については、今後さらなる検討が必要であると考えられる。今後 の課題としたい。

4.4 原位置レジン注入装置の設計

4.4.1 概念設計

(1) はじめに

試作を検討している原位置レジン注入装置は、蛍光剤を添加した低粘度のエポキシ樹脂系接着剤 を岩盤中の割れ目へ効率よく、広範囲に注入できることを目標としている。また、極力レジン注入 により割れ目内の充填物質が押し流されず、結果、原位置の状態で回収できるように、流量および 圧力を精度よく制御できることを目指している。

過去に原位置レジン注入試験で使用したポンプの特徴は表 4.4.1-1 に示すとおりであり、ポンプ の制御方式は、流量制御と圧力制御に大別される。流量制御方式を採用した場合、主剤と硬化剤の 安定した混合が自動で行える利点を有するが、一定流量での注入であるため、定常圧力が対象割れ 目の幅、レジンの粘度変化に依存し、想定よりも大きなものになる可能性がある。その結果、岩盤 を破壊し、新規の割れ目を生じさせるリスクを内包する。

一方、圧力制御方式を採用した場合、注入圧力を設定できるので、注入圧力が想定を超えて大き くなる心配はないが、主剤と硬化剤の混合を手動で行う必要がある。手動による混合は作業者の技 量に依り、正確かつ均一に混合できない可能性が高く、レジンの注入時間の管理やレジンの硬化不 良などに影響する恐れがある。本事業も含めて地層処分関連技術においては、どの事業者が実施し ても同様の結果が得られることが望ましく、作業者の技量に依存する不確実性は極力排除する必要 がある。

以上の文献調査からも明らかなように、それぞれのポンプには一長一短があるが、本事業で試作 を検討している原位置レジン注入試験装置は、レジンの品質を一定に保つことに重点を置き、流量 制御方式のポンプを採用して開発を進めることとした。

	サイト	種類	制御方式	混合方式
GTS		低粘度 2 液ディスペンサ	流量制御	自動
	フェーズ1	ハンドポンプ	手動制御	手動
釜石	フェーズ2	低粘度 2 液ディスペンサ	流量制御	自動
		圧力容器+窒素ガス	圧力制御	手動
Äspö	パイロット	ピストンポンプ	流量制御	自動
HRL	本試験	、験 圧力容器+窒素ガス		手動

表 4.4.1-1 各サイトで使用したポンプの特徴

(2) 設計条件

文献調査の結果やこれまで開発してきた各種装置(トレーサー試験装置など)の耐圧性能を受けて、基本的には以下の諸条件を考慮して、概念設計を進めることとした。

- ① 主剤と硬化剤を配合比(重量比)に沿って混合しつつ連続して注入できる装置であること。
- ② 主剤と硬化剤の混合比を保ちつつ、任意の速度で注入できること(可変速仕様)。
- 5MPa の環境下で動作可能であること。
- ④ 異常な圧力上昇を防ぐための圧力制御が可能であること(吐出圧力が地下水圧との差圧で 1MPaを超えないこと)。
- ⑤ 注入速度、注入量、吐出圧力を一定の精度で数値管理できること。
- ⑥ 作業完了後は、アセトンなどの溶剤で回路全体を洗浄し、関連部品の硬化、温度低下による 固着を防止することが可能なもの。
- ⑦ 主剤及び硬化剤を貯蔵する容器(20L)を備えること。
- ⑧ 混合液へのエアー混入を防ぐための対策を講じること。

4.4.2 装置の基本構造

装置の基本構造として、原位置レジン注入装置の簡易フロー図を図4.4.2-1に示す。

原位置レジン注入装置は、主剤・硬化剤それぞれを貯蔵するための容器、主剤・硬化剤それぞれを 移送するため2台のポンプ(それを駆動させる駆動機を含む)、主剤と硬化剤を正確かつ均一に混合 するためのミキサー部、そしてフロー図には記載されていないが制御盤からなる。

貯蔵容器の容量は、レジンが注入孔から同心円状に広がっていくとし場合、割れ目の平均間隙幅 0.2mm、注入範囲(半径)を4mと仮定すると、約10Lのレジンが必要となる。そのため、容器の容量 は、少なくともポンプを駆動させてから一度に注入できる量として、必要量の約2倍となる20Lを貯 蔵できるようにする。

流量の制御は、流量指示調節計(FIC)、電磁流量計(F1)、インバーター(INV)から構成される PID 制御方式で行うこととした。ポンプの運転は制御盤に組み込まれたシーケンサによるプログラム コントロール方式を採用する。

ミキサー部は、駆動部分が全くない静止型混合撹拌器(スタティックミキサー)を用いたインライ ン方式を採用する。インライン方式はバッチ方式に比べ、混合達成に必要なエネルギーが小さく、再 現性に優れた正確で均一な混合が可能な方式である。また、スタティックミキサーの前後に圧力計を 配置し、スタティックミキサー内の圧力損失を監視することで、異常圧力に対応することとする。

また、装置内を窒素ガスでパージ可能とし、混合液へのエアー混入を防ぐ。

図 4.4.2-1 原位置レジン注入装置の簡易フロー図

- 4.4.3 ポンプの選定
 - (1) ポンプの仕様

ポンプは無脈動・連続移送、回転速度の制御により吐出量を瞬時に変更できるヘイシンモーノポンプを採用した(図 4.4.3-1)。

図 4.4.3-1 モーノポンプの構造(兵神装備株式会社 HP より)

ヘイシンモーノポンプは、回転容積式一軸偏心ねじポンプに分類されるポンプであり、断面が真 円である一条の金属製雄ねじ(ローター)が、断面が長円である二条の弾性材質雌ねじ(ステータ ー)の中で偏心回転することによって、水状から高粘・高濃度液、スラリー、気泡含有液、粉体ま で移送することができる。ローターとステーターとの間に生じる空間の容積は、どの断面をとって も一定であるため、ポンプー回転あたりの吐出量も一定となる。原位置レジン注入試験装置では、 主剤と硬化剤を配合比(重量比)に沿って混合しつつ連続して注入でき、さらに、主剤と硬化剤の 混合比を保ちつつ、任意の速度で注入できることが求められるため、ローターの回転制御だけで混 合比、吐出量を容易に調整できる同ポンプは最適であると考えられる。

吐出量は最小 2m1/min~最大 400m³/h までを選択でき、この吐出量はローター径等のポンプの諸元(ポンプの型式)と回転速度から決まる。吐出圧力はローター・ステーターの長さ(段数)により決定され(ただし、液体の性状による制約あり)、段数が多いほど吐出圧力は大きくなる。

原位置レジン注入試験で対象とする割れ目は、平均間隙幅を 0.2mm 程度であり、レジンの粘度を 150mPa・s、可使時間(注入時間)を 100分、レジンの到達距離(半径)を 4m と仮定した上で、最 大吐出量を 100m1/min とした。また、瑞浪超深地層研究所の深度 500m 坑道内で計測されている地 下水圧が 3.6MPa 程度であることから、吐出圧は 5.0MPa まで対応できるものとした。

以上、最大の吐出量および吐出圧から、ポンプの型式は「12NE06PAX」とした(図 4.4.3-2)。

図 4.4.3-2 ヘイシンモーノポンプ (12NE06PAX) の外形寸法図

ポンプの性能を表 4.4.3-1 に示す。主剤と硬化剤を混合させた混合液の吐出量が 23~100ml/min であり、下限流量が多少大きく、幅の狭い割れ目間隙へ注入可能か危ぶまれるが、軸を回転させる サーボモータへの回転数を低下させることにより、5ml/min 程度まで対応できる可能性がある。し かし、同ポンプでの高圧微小量制御での実績が少なく、微小量制御下では脈動を引き起こす可能性 も考えられることから、試作前にテスト機を用いた検証試験を実施する予定である。

項目	内容		設計仕様			
		主剤	ビスフェノールF型エポキシ樹脂			
	使用流体	硬化剤	変性脂環式アミン 変性脂肪族アミン			
		主剤	180±70 mPa•s			
使用条件	流体粘度	硬化剤	40±20 mPa•s			
		混合液	100±40 mPa•s			
		主剤	1.15 g/cm ³			
	流体密度	硬化剤	0.97 g/cm ³			
		混合液	1.11 g/cm ³			
	刑士	主剤				
	空八	硬化剤	12NEU0PAX			
		主剤	17.25~75 ml/min			
	吐出量	硬化剤	5.75~25 ml/min			
ポンプ能力		混合液	23~100 ml/min			
		主剤				
	虹山庄	硬化剤	取入 DMPa			
		主剤	05 400 : -1			
	凹転述度	硬化剤	$25 \sim 409 \text{ min}^{-1}$			
	王二十	主剤	RX57-AM71-3.79			
駆動機	型式 	硬化剤	RX57-AM71-5.5			
(減速機)	一 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	主剤				
	電源	硬化剤	1 AUZUUV×60HZ、 3 作目、 0.4KW			

表 4.4.3-1 ポンプの設計仕様

(2) ステーターの耐液性

モーノポンプの主要部品であるステーターは、移送させる流体に応じた材質を選定する必要があ る。そこで、ステーターの耐液性を調べるために、移送流体であるエバーボンド EP-400M の主剤、 硬化剤それぞれに対して、浸漬試験(加硫ゴム及び熱可塑性ゴム—耐液性の求め方(JIS K 6258)) を実施した。JIS K 6258:2003 は、加硫ゴムおよび熱可塑性ゴム(以下、加硫ゴムという)を各種 液体に浸漬し、浸漬前と浸漬後の寸法、質量、体積、表面積および機械的声質の変化を測定するこ とによって、各種液体による影響(耐液性)を求める方法について規定したものである。

ステーターの選定にあたり、4 種類の材料について浸漬試験を実施し、重量変化率、体積変化率、 硬さ変化、液色変化より、A(良)・B(可)・C(不可)の三段階の判定を行った。浸漬温度は常温 で、浸漬時間は7日間とした。重量測定にはメトラー・トレド株式会社製の分析天秤(XP204)を用 いた。硬さ変化の測定には、高分子計器株式会社製のゴム硬度計アスカーA型とゴム硬度計用定圧 荷重器 CL-150 を用いた。

結果、主剤・硬化剤ともに、全ての材質でA判定であった。そのため、長期での耐食性を考慮した場合、フッ素ゴムよりも EPDM の方が優れていることから EPDM を採用することとした。なお、参考までに浸漬試験に用いたステーターの種類と耐食表を表4.4.3-2 に示す。なお、ここで示したステーターの材質や液体は公開されているものの一部である。詳細は兵神装備株式会社のホームページを参照されたい。

		各種液体に対応する適応性 ((⑨優れている 〇普通 ×使用不可)								
一般名称	JIS 略号	水	植物油	芳香族化合物	アルコール 類	低濃度無機酸	ケトン類	高濃度無機酸	低濃度アルカリ類	高濃度アルカリ類
エチレンプロピレンゴム	EPDM	Ø	×	×	Ø	0	×	0	0	Ø
フッ素ゴム	FKM (バイトン)	Ø	0	0	0	0	×	0	0	0
	FKM(特殊バイトン)	Ø	0	0	0	0	×	0	0	0
	FFKM(特殊フッ素ゴム)	Ø	0	0	0	0	Ø	0	0	O

表 4.4.3-2 試験に用いたステーターの種類と耐食表
(3) スタティックミキサーの選定

スタティックミキサーの選定の前に、スタティックミキサーの特性について詳述する(東山 1990)。

前述したようにスタティックミキサー自体には全く動く部分がなく、流体が管内部に固定された エレメントと呼ばれる箇所を通過するだけで混合の目的が達成される。また、撹拌所要動力である 圧力損失が比較的小さく、流体、ガス、固体のほとんどの組み合わせの混合に使用することができ る。したがってスタティックミキサーでは、口径、エレメント数等を調整することにより混合の目 的である溶解、抽出、ガス吸収などの操作を行うことができる。

スタティックミキサーの構造は、図4.4.3-3に示すように、長方形の板を左右逆方向に180度ね じったエレメントを必要な数だけ管内に交互に配列したものである。エレメントはねじれ方向によ り右エレメント(図中のリボン状の形をしたもの)と左エレメント(図中の楕円状の形をしたもの) があり、各エレメントの寸法は、エレメント径の1.5倍を基本としている。必要とされるエレメン ト数は、流体の性状やプロセスの目的により様々に変化する。例えば、高粘性流体の場合は18エレ メント、主剤と硬化剤を混合するエポキシ樹脂系接着剤の場合は24エレメント程度必要とされて いる。

図 4.4.3-3 スタティックミキサーの構造

スタティックミキサーを通過する流体は、エレメントにより①流れの分割、②流れの反転、③流 れの転換の3つの混合作用を受けて混合が進行する。

①流れの分割は、流体が一つのエレメントを通過するごとに2分割される作用である。すなわち、 エレメントを通過するたびに流れは指数関数的に分割される。分割数をN、エレメント数をnとす ると、N=2ⁿの式で表される。

②流れの反転は、スタティックミキサーのエレメントが右捻り、左捻りと交互に配列されている ため、1エレメントごとに回転方向が替わり、急激な慣性力の反転を受け、乱流撹拌される作用で ある。

③流れの転換は、流体がエレメント内のねじれ面に沿って管中央部から壁部へ、管壁部から中央 部へと並び替えられる作用である。

以上の混合作用により、流体はミキサー内で混合され、その結果として半径方向で流体の性状は

均一化されピストン流れに近い理想的流れとなる。また、管内を流れる流体の状態を表わすのに、 レイノルズ数が用いられる。スタティックミキサーにおける流体の流れの状態もレイノルズ数を基 本として考えることができ、レイノルズ数が、混合のエネルギーの大きさを表わす慣性力(分子) と混合に対する抵抗を表わす粘性力(分母)との比であるから、まずレイノルズ数によって混合の 対象が乱流混合か層流混合かを区別することができる。乱流混合であれば、混合に必要なエネルギ ーは十分与えられていると考えて良いため、エレメント数の少ないミキサーが選定される。一方、 高粘度流体(レジンなど)は層流混合であるので、混合のためのエネルギーが限られる。したがっ て、エレメント数を多く設けて、流体をずれ応力により引き伸ばし、切断し、重ね合わせることの 繰り返しで混合しなければならない。

以上のスタティックミキサーの特性を考慮して、

表 4.4.3-3 に示す混合する流体(EP-400M)の粘度、比重、流量、想定の配管径などの条件から適合するスタティックミキサーを選定した。なお、スタティックミキサーは株式会社ノリタケカンパ ニーリミテドが製造・販売するものの中から選定した。

流体名		A –	- B -	→ C		
		主剤	硬化剤	混合液		
流量	(m1/min)	$17.25 \sim 75$	5.75~25	23~100		
密度	(g/cm^3)	1.15	0.97	1.11		
粘度	(mPa•s)	$250(180\pm70)$	$60(40\pm 20)$	$140(100\pm40)$		
温度	(°C)	20				
圧力	(MPaG)	5. 0				
管内流速	(cm/s)	4. 2~18. 4				
せん断速度	(1/s)	99~431				
Re 数	(-)	0.78~3.4				
計算圧力損失	(MPa)	0.02~0.07				

表 4.4.3-3 スタティックミキサー(T3-27型)設計条件

スタティックミキサーの選定では、ミキサーの内径とエレメント数を決定した。

内径については、本装置で制御する流量が小さいため、数あるミキサーの中で最小口径のもの(T シリーズ、T3)を選定した。また、表 4.4.3-3に記載の最小流量でポンプを運転した場合であって も、せん断速度が10以上であり、混合性については問題ないと判断した。 つぎに、エレメント数をレイノルズ数から決定した。株式会社ノリタケカンパニーリミテドレイ では、レイノルズ数が 10 以下の場合はエレメント数を 24 と規定しており、T シリーズのミキサー では、エレメント数が 27 である T3-27 が選定された。

本装置は 5MPa の環境下で動作可能であることを要求しているが、T3-27 は耐圧 10MPa 以上である ことから要求性能を十分満たしており、耐圧性能についても問題ないと判断した。

(4) まとめ

原位置レジン注入試験装置を試作するために、原位置での地下水圧、レジンの品質確保(再現性・ 正確で均一な混合)を考慮して、装置の概念設計を行った。無脈動・連続移送、高い定量性、回転 速度の制御により吐出量変更が瞬時に行える2台のモーノポンプとスタティックミキサーを採用す ることで、再現性に優れ、正確で均一な混合が可能な装置が試作できることが分かった。ただし、 高圧微小量制御については脈動を引き起こす可能性が考えられ、問題点の洗い出し解決策を検討す るために検証実験を実施する計画である。余談になるが、本装置をレジン製造装置として位置づけ るのであれば、本装置の吐出口を圧力容器に接続し、同装置で均一に混合されたレジンを圧力容器 に一定量貯留した後、圧力容器内のレジンを窒素ガス等で加圧すれば、圧力制御でのレジン注入も 可能であると考えられる。

4.5 レジンの物性試験

昨年度は原位置レジン注入試験に使用するレジンの要求性能を決定する上での参考資料を得る目 的で、選定したレジンの物性試験を実施し、その結果、EP-400M の2種類で二液混合型の熱硬化性エ ポキシ樹脂系接着剤を選定した。EP-400M は昨年度の検討で可使試験や粘度試験などで、原位置試験 への適用レジンとして最有力としたものであり、今年度はさらに測定項目も加えて適用性について確 認する。

4.5.1 可使時間測定試験

原位置環境(温度)による変化が、原位置レジン注入試験に使用するレジンに及ぼす影響を検討す る目的で、選定したレジンの可使時間を測定した。選定したレジンは二液混合型の熱硬化性エポキシ 樹脂系接着剤である。このタイプのレジンは、エポキシ樹脂(主剤)と硬化剤とを混ぜ合わせると重合 反応により発熱をしながら粘度が上昇していく。したがって、この反応による発熱の経過変化を測定 することによって、可使時間を測定することが可能となる。そこで、可使時間を温度上昇法により測 定した。測定にはデータロガー(TR-71Ui、株式会社ティアンドデイ)と温度センサー(TR-1320、株式会 社ティアンドデイ)を用い、混合物の試料 300g を 500m1 のポリ容器に採取し、試料の中央部に温度セ ンサーを設置後、一定時間間隔(1秒)で試料の発熱温度を測定した(図 4.5.1-1)。

なお、温度上昇法とは主剤と硬化剤を混合した後の温度変化から可使時間を求める方法である。測 定開始時間は混合開始からとし、発熱温度が急速に立ち上がる試料は、その立ち上がり時間の70%を 可使時間とする。発熱温度の急速な立ち上がりがない試料は、最高発熱温度到達時間の50%を可使時 間とする。本検討で使用したレジンは、発熱温度が急速に立ち上がる試料であったため、可使時間は その立ち上がり時間の70%とした。試験では恒温恒湿室を用い、環境湿度を50%に設定した。環境温 度は10、15、20、25、30℃の5条件とし、それぞれの条件下で3回測定を行った。

10℃の測定・計測結果のプロファイルを図 4.5.1-2 に示す。環境温度 10℃条件の測定は硬化温度ま で上昇せず温度の低下が認められた。この際のレジン表面はゴムの様な弾力がある状態で完全に硬化 していない。15、20、25、30℃の測定・計測結果のプロファイルを図 4.5.1-3 に示す。また、環境温 度 15、20、25、30℃の 4 条件は 155℃で平行に推移しているが、これは温度センサーの限界値が 155℃ までであるためである。固化しなかった 10℃条件を除き、環境温度が高いほど、レジン温度の上昇が 早くなる傾向が認められる。具体的な可視時間については粘度測定試験で述べる。

① データロガー

③ 測定状況

② 温度センサー

④ 恒温恒湿槽

図 4.5.1-1 可使時間測定試験状況

図 4.5.1-2 10℃環境での可使時間測定結果

図 4.5.1-3 15、20、25、30℃環境温度での可使時間測定結果

4.5.2 粘度測定試験

原位置環境(温度)が原位置レジン注入試験に使用するレジンに及ぼす影響を検討する目的で、RP-400Mの粘度を測定した。粘度測定試験状況を図4.5.2-1に示す。

① 計測風景

③ スピンドル (左:LV1、右:LV2)

④ 恒温恒湿槽

測定にはデジタルB型粘度計(LV DV-II+Pro、Brookfield Engineering Laboratories, Inc.)を用 いた。この粘度計は、液体中のスピンドル(回転子)を一定角速度で回転させた時のトルクを測定し て見掛けの粘度を測定するものである。オプションのソフトウェア『Rheocal32』を用いることで、無 段での回転速度の切替え、測定条件の設定、データの収録が可能である。測定は、試料を 500ml のガ ラス製のグリフォンビーカに採取し、試料の中心にスピンドルを取り付けた粘度計を設置して行われ る。また、スピンドルの保護及び安定した測定を行う為に粘度計にはガードが取り付けられている。 この粘度計には RTD 温度センサーが取り付けられ、粘度の測定と同時に温度の測定も行われる。なお、 この粘度計の精度はトルクのフルスケールの±1%である。この粘度計には標準で、4 つのスピンドル (LV1、LV2、LV3、LV4)が付属している。それぞれのスピンドルで測定できる粘度範囲は回転数に応 じて決まっているため、試料の粘度と量に応じて、今回の検討ではLV1 とLV2 を用いた。レジン(混合物)の粘度は、主剤と硬化剤を混合した直後の粘度を測定するのではなく、粘度が急上昇する直前までを連続して測定した。その際、回転数を 10rpm とし、連続回転させながら 1 分毎の粘度を測定した。 環境温度は 10、15、20、25、30℃の 5 条件とし、恒温恒湿槽を用い環境温度を制御しつつ、それぞれの条件下で 3 回測定を行った。なお、湿度は 50%とした。

粘度の測定結果を図 4.5.2-2~図 4.5.2-7 に示す。環境温度 10℃条件の測定は当初スピンドル LV1 を使用したが測定限界を超えたため、スピンドル LV2 を使用して再度測定したが LV2 の測定限界も超 えた為、試験を終了した。環境温度 15、20、25、30℃の 4 条件はスピンドル LV1 を使用して測定した。

図 4.5.2-2 10、15、20、25、30℃の各温度環境における粘度測定結果

図 4.5.2-3 10℃の温度環境における粘度測定結果

図 4.5.2-4 15℃の温度環境における粘度測定結果

図 4.5.2-5 20℃の温度環境における粘度測定結果

図 4.5.2-6 25℃の温度環境における粘度測定結果

図 4.5.2-7 30℃の温度環境における粘度測定結果

可視時間を粘度が急激に上昇する時点と仮定して、硬化しない 10℃を除いて検討した結果を表 4.5.2-1 に示した。15℃は 250 分付近と思われるが、温度の急上昇の時間が明瞭でない。この 15℃を 除き、20℃から 30℃の間では可使時間(分)で 1.8~2.2 倍、粘度で 2.3 倍~5.7 倍と異なる。以上をこ とからまた、これらの粘度および可使時間の組み合わせから地下水の温度(約 20℃)の条件下で管理 することが最適であることが分かった。

環境温度	可使時間(分)とレジンの温度(℃)および粘度(m・pa・s)						
(°C)	最短可視時間			亅	最長可視時間		
	時間	温度	粘度	時間	温度	粘度	
15	-250	-102	-510	-250	-90	-450	
20	170	73	230	175	70	230	
25	117	72	140	123	66	150	
30	81	75	90	93	73	100	

表 4.5.2-1 環境温度と可使時間

()は温度の急上昇個所が不明瞭のため参考値とする

4.5.3 付着強度試験

付着強度試験では、水および海水がレジンの付着強度に及ぼす影響を検討する。試験には、気中、 水中、模擬海水中の3条件下において模擬割れ目にレジンを充填した試料を用いた。レジンの付着強 度の計測は建研式接着力試験器を用いて行い、日本工業規格 JIS A 6909 に準拠して実施した。

(1) 模擬割れ目作成方法

模擬割れ目の作成手順を以下に示す。

- 30.0cm×30.0cm×6.0cmの花崗岩盤の四隅に 1.0mmのステンレス製スペーサーを置き、そ の上に、中央に直径 20mm の円孔を設けた 30.0cm×30.0cm×3.0cm の花崗岩盤を重ね合わせ た(図4.5.3-1)。
- ・ 模擬試料の上部には、レジン注入用ミニチュアボールバルブ (AML11、OKD)と鋼製治具(フ ィラーアタッチメント R-10000ND)を取り付けた(図4.5.3-2)。鋼製治具は治具接着面およ び供試体接着面を研磨・除油した後に、強力接着剤(ボンド クイックメンダー #16351、コ ニシ)を使用して接着した。また、バルブはパテで固定した。

①花崗岩盤(下

③ 花崗岩盤(上部)

② スペーサーの設置

④ 模擬割れ目

図 4.5.3-1 模擬割れ目の作成

① 鋼製治具接着箇所

② 供試体への鋼製治具の接着

③ バルブの取付けと固定

図 4.5.3-2 バルブと鋼製治具の取り付け

(2) 気中環境下でのレジン注入方法

気中環境下でのレジンの注入方法を以下に示す。また、レジンの注入作業の状況を図 4.5.3-3 に示す。

- ・ 36.0cm×36.0cm×10.5cmのアクリル5面体水槽(小)に模擬割れ目岩盤試料を設置。
- ・ 岩盤試料に取り付けたバルブにマイクロシリンジポンプ(IC3100 (KDS100)、kd Scientific)を接続し、レジンを注入。
- 注入するレジンは 100ppm 濃度のフルオレセインを添加した EP-400M とし、注入流量は 300ml/h とした。
- ・ 模擬割れ目からレジンが流出するのを確認した後、パテで模擬割れ目を塞ぎ、注入側のバルブを閉鎖。バルブ閉鎖後、10日間養生した。

① アクリル水槽(小)への供試体の設置

③ シリンジポンプによるレジン注入

② レジン注入用マイクロシリンジポンプ

④レジンの流出防止と気中養生状

図 4.5.3-3 気中環境における模擬割れ目へのレジン注入

(3) 水中及び模擬海水中でのレジン注入方法

水中及び模擬海水中でのレジン注入方法を以下に示す。また、レジンの注入作業の状況を図 4.5.3-4 に示す。

- アクリル水槽(大)の中にアクリル水槽(小)を設置し、そのアクリル水槽(小)の中央
 に模擬割れ目岩盤試料を設置。
- ・ アクリル水槽(小)に水(蒸留水)または模擬海水(MARINE ART SF-1、富田製薬)を岩盤 試料が浸かるまで注入し、1週間養生した。
- ・ 岩盤試料に取り付けたバルブにマイクロシリンジポンプ(IC3100 (KDS100)、kd Scientific)を接続し、レジンを注入。
- 注入するレジンは 100ppm 濃度のフルオレセインを添加した EP-400M とし、注入流量は 300m1/h とした。
- ・ 紫外線ランプを照射しながら模擬割れ目からレジンが流出するのを確認した後、模擬割れ
 目縁水中ボンド(Three Bond エポキシ系水中硬化型充填接着剤 2083L)で塞ぎ、注入側のバルブを閉鎖。バルブ閉鎖後、10日間養生した。

① 水槽内への供試体設置状況

② 供試体へのレジンの注入状況

③ 紫外線ランプによるレジンの流出の確認

④ レジンの養生状況(10日間)

図 4.5.3-4 水中及び模擬海水中における模擬割れ目へのレジン注入

(4) 付着強度試験準備

レジン注入後、10日間養生した試料は側面のパテ(または水中ボンド)を除去し、CT撮影をし て割れ目へのレジンの注入状況を確認した。CT撮影の結果、水中および模擬海水中でレジンを 注入した試料ではレジン内に気泡が散見された。ただし、それらは微細であったことや、レジ ンと水(または模擬海水)がムラなく混ざっていたことから、強度の相対的な比較においては影 響がないものと判断した。

側面のパテ(または水中ボンド)を除去してから、さらに10日間の養生後に大型切断機で岩盤 試料を切断し、試験用供試体の準備を完了した。

① レジン流出防止用パテの取り外し

③ 切断部の近影写真

②供試体の切断(スリットの挿入)

④ 簡易型引張試験用の供試体の完成

図 4.5.3-5 試験用供試体の準備

(5) 付着強度試験結果

付着強度の測定には簡易型引張試験器 (R-10000ND、サンコーテクノ)を使用した (図 4.5.3-6)。 試験器は水準器を使用して水平にセットした。

付着強度試験の結果を表 4.5.3-1 に示す。また、試験後の破断面の状況を図 4.5.3-7 に示す。 試験の結果、気中および水中環境下でレジンを注入した試料では、予想以上にレジンの強度 があり、花崗岩とレジンの界面が破壊する前に岩の破壊がみられた。

一方、模擬海水中ではレジンと花崗岩の界面破壊を確認した。

① 簡易型引張試験器

② 供試体への設置状況

図 4.5.3-6 簡易型引張試験器(R-10000ND、サンコーテクノ)

試験名	姜牛彊培		付着	昏強度(N∕m	n^2)	포바		
	食土垛児	1	2	3	4	平均		
15-4-1-01	気中	5.04	4.86	5.13	5.77	5.2		
15-4-1-02	水 (淡水)	5.55	5.09	5.97	4.77	5.35		
15-4-1-03	模擬海水	1.21	2.02	1.21	3.06	1.88		

表 4.5.3-1 付着強度試験結果

※赤字:レジンに気泡が混入

※ ①~④は図4.4.3-7の写真と対応

試験結果 (気中①)

試験結果 (気中③)

試験結果 (模擬海水中①)

試験結果(模擬海水中③)

試験結果 (気中②)

試験結果 (水中①)

試験結果 (模擬海水中②)

試験結果(模擬海水中④)

図 4.5.3-7 付着強度測定結果

(6) 模擬海水によるレジン硬化への影響

付着強度試験の結果、模擬海水中でレジンを注入した際に付着強度が低下することが確認された。この結果をうけ、模擬海水中ではレジンの硬化に影響がでることを改めて確認するために、水(蒸留水)および模擬海水(MARINE ART SF-1、富田製薬)の2種類の液体それぞれ100mlの中に200mlのレジンを投入してレジンの硬化状況を確認した。なお、付着強度試験と試験条件を そろえるために100ppm 濃度のフルオレセインの添加も行った。

試験の結果、水にレジンを投入した試料は問題なく硬化したが、模擬海水と混ぜた後で発熱 はするものの十分に硬化しないことが認められた(図 4.5.3-8)。

レジン投入直後(水+レジン)

③ レジン投入直後(水+模擬海水)

② レジン硬化後 (水+レジン)

レジン硬化後(水+模擬海水)

図 4.5.3-8 模擬海水によるレジンの硬化への影響の確認

以上の結果から、化石海水など海水の影響の強い地下水環境では、十分な付着強度が得られ ない可能性があると判断する。

対策として、割れ目中の地下水を淡水で置き換えることが考えられる。また、グルムゼルで 実施したレジン注入試験では、岩盤の濡れ性を良くするために IPA (イソプロピルアルコール) を用いた実績もある。ただし、IPA には引火性があり、坑道内で使用制限される場合も多く、原 位置での使用を考慮する際は、この点も含めて慎重に検討していきたい。 4.5.4 分離確認試験

原位置でのレジン注入試験では、レジンの主剤、硬化剤、蛍光剤の3者が地下水中に溶け出さない 程度の水中不分離性を有していることが望ましいが、現状では、レジン注入試験で要求される低粘度 (100cP 程度)のレンジは存在しない。したがって、分離することを前提に、分離の程度や地下水の 水質による分離のし易さを事前に把握しておく必要がある。水が硬化反応中のレジンに及ぼす影響を 検討する目的で、レジンの濁度及びpH値を測定した。測定は水及び模擬海水(MARINE ART SF-1、富田 製薬)の2 種類の流体を使用し、流体 1000ml が入ったメスシリンダーにマイクロシリンジポンプ (IC3100 (KDS100)、kd Scientific)を用いレジンを 300ml/hの速度で 500ml 投入し、分離が生じるか をデジタルカメラで定点撮影した。ガラス電極法による pH メータ(TPX-999i、株式会社東興科学研究 所)と pH 電極(PCE-90CW、株式会社東興科学研究所)を用い pH 値を測定した。蛍光剤無と 100ppm 濃度 のフルオレセインを添加したレジンの2条件を行い、蛍光剤を添加したレジンを使用した試験時は暗 室内で紫外線を照射しながら行った(図4.5.4-1)。

図 4.5.4-1 分離確認試験状況(左:蛍光剤無、右:蛍光剤有り)

レジンと水の分離状況の画像を図 4.5.4-2 に、pH 測定のデータを図 4.5.4-3 に示す。また、レジン と模擬海水の分離状況の画像を図 4.5.4-4 に、その pH 測定のデータを図 4.5.4-5 に示す。蛍光剤添 加済の試験については、蛍光剤添加済レジンと水の分離状況の画像を図 4.5.4-6 に、pH 測定のデータ を図 4.5.4-7 に示す。また、蛍光剤添加済レジンと模擬海水の分離状況の画像を図 4.5.4-8 に、pH 測 定のデータを図 4.5.4-9 に示す。

水および模擬海水中へ蛍光レジンを投入し確認したが、綺麗に相分離しており、主剤と硬化剤の分離はそれほど生じていないものと考えられる。むしろレジン中の蛍光剤が水に溶けやすいため、レジンに添加した一部の蛍光剤のみが分離している可能性が高い。また、レジン注入後の水もしくは模擬海水のpH は 10~11 であり、蛍光剤の消光は認められなかった。

① レジン注入開始

レジン注入1時間後

レジン注入2時間後

④ レジン注入2時間30分後

図 4.5.4-3 pH 測定結果 (レジン+水)

① レジン注入開始

レジン注入1時間後

③ レジン注入2時間後

④ レジン注入2時間30分後

図 4.5.4-4 レジンと模擬海水の分離状況

図 4.5.4-5 pH 測定結果 (レジン+模擬海水)

① レジン注入開始

レジン注入1時間後

レジン注入2時間後

④ レジン注入2時間30分後

図 4.5.4-6 蛍光剤添加済レジンと水の分離状況

図 4.5.4-7 pH 測定結果 (レジン+水+蛍光剤)

レジン注入開始

レジン注入1時間後

レジン注入2時間後

④ レジン注入2時間30分後

図 4.5.4-8 蛍光剤添加済レジンと模擬海水の分離状況

図 4.5.4-9 pH 測定結果(レジン+模擬海水+蛍光剤)

4.5.5 レジンの液性 (pH) 測定

原位置レジン注入試験に使用するレジンは、周辺環境(岩盤等)への影響を最小限に抑える低アルカリ性である事が望ましい。そこで選定したレジンのpHを測定した。

測定にはガラス電極法による pH メータ(TPX-999i、株式会社東興科学研究所)と pH 電極(PCE-90CW、 株式会社東興科学研究所)を用い、レジン試料 200g を 300ml のガラスビーカーに採取し、試料の中央 部に pH 電極を設置、試料の pH 値を測定した。また、比較として pH 1-11 (Type TC、No. 2611 628、 Whatman)、 pH 5-8 (Duotest 903 04、MACHEREY-NAGEL)、 pH 7-10 (Duotest 903 05、MACHEREY-NAGEL) の 3 種類の pH 試験紙を用意した。測定は主剤、硬化剤、主剤と硬化剤の混合物それぞれの条件を 3 回 ずつ行った。混合物に関しては一定時間間隔で硬化するまでの径時変化を測定した。

測定の結果、ガラス電極法ではレジンの pH 値は正しく測定できなかった。これはレジンの粘度が高いために液落式のガラス電極では測定できなかったためと思われる。よって pH 試験紙の結果のみを 採用した。

図 4.5.5-1 レジンの pH 測定結果(左:主剤、右:固化剤)

主剤、硬化剤のpH測定結果を図 4.5.5-1 を示す。計測環境は室内温度 23.1℃湿度 22%で行った。主 剤のpH値は 3回とも 5.6~5.9、硬化剤は 3回とも 8.5~8.8を指示した。また、主剤と硬化剤の混合 物のpH測定結果を図 4.5.5-2 に示す。混合物は 10分間隔で硬化するまでの径時変化を測定した。計 測環境は 1回目と 2回目は室内温度 23.1℃湿度 21%。3回目は室内温度 23.1℃湿度 22%で行った。そ れぞれのレジン混合直後(計測開始時)と硬化直前の画像を以下に示す。硬化時間(計測時間)は 1 回目が 160分、2回目、3回目が 150分。pH 濃度は 3回目とも 8.8 で硬化までほぼ変化が無かった。3 回目の硬化時のみ 9.1 でやや上がっているが、大きな変化ではないと考える。

① 1回目 混合後1分後

① 2回目 混合後1分後

② 1 回目 混合後 160 分後

② 2 回目 混合後 160 分後

① 3回目 混合後1分後

② 3 回目 混合後 160 分後

図 4.5.5-2 主剤と硬化剤の混合物の pH 測定結果

4.5.6 蛍光剤の検討

原位置のレジン注入試験での使用を検討しているレジン(1次レジン)に蛍光剤を添加し、割れ目の 間隙が小さくとも、ボアホール TV 計測やコア調査で、間隙のある割れ目の検出が容易となることを目 指している。また、コアリング後に新たにレジン(2次レジン)を注入し、2次レジンが注入され人為 的な割れ目と、コアリング前から存在した割れ目に注入されたレジン(1次レジン)とを区別するた めに、複数の蛍光剤を使い分けることも検討している。蛍光剤はこれまでの試験に使用してきたフル オレセインに加えて、ナフチオン酸ナトリウム、ナフタレンジスルホン酸モノカリウムを加えての3 種類を候補とした。

試験ではそれぞれをレジン主剤へ3種類の蛍光剤の添加した場合(A1, A2, A3)、硬化剤へ3種類の 蛍光剤の添加した場合(B1, B2, B3)を最初に実施した。次に、主剤と3種類の蛍光剤をそれぞれ混合 した後で硬化剤を加えた場合(A1+B, A2+B, A3+B)と、硬化剤と3種類の蛍光剤をそれぞれ混合し た後で主剤を加えた場合(B1+A, B2+A, B3+A)を実施した。試験におけるトレーサと主剤および硬 化剤の組み合わせを表4.5.6-1に示す。蛍光剤はいずれも100ppmの濃度になるよう調合し添加した。 また、主剤もしくは硬化剤へ蛍光剤を添加する際は、攪拌時間は15分とし、主剤と硬化剤の攪拌時間 は5分とした。試験は恒温恒湿槽内で室温23℃、湿度50%の環境を維持して行った。試験では、蛍光 剤の発光の変化を観察することで、トレーサの適用性を確認した。このため、混合後の試料を30分毎 に撮影し24時間継続した。撮影時は、恒温恒湿槽内を消灯し、蛍光剤の励起光として、紫外線のみを 照射して撮影した。

トレーサ	主剤(A)	硬化剤(B)	主剤(A) + 硬化剤(B)	硬化剤(A) +主剤(B)
フルオレセイン(1)	A1	B1	A1+B	B1+A
ナフチオン酸ナトリウム(2)	A2	B2	A2+B	B2+A
「ナフタレンジスルホン酸 モノカリウム(3)	A3	B3	A3+B	B3+A

表 4.5.6-1 トレーサの種類および主剤、硬化剤の組み合わせ

例えば、「B3」の場合は硬化剤にナフタレンジスルホン酸モノカリウムを添加して経過観察し、また、 「B2+A」の場合は、硬化剤にナフチオン酸ナトリウムを添加・撹拌後に主剤を添加し観察する。

主剤と蛍光剤の組み合わせ(A1~A3)の試験結果を図 4.5.6-1~図 4.5.6-3 に、また硬化剤と蛍光剤 の組み合わせ(B1~B3)の試験結果を図 4.5.6-4~図 4.5.6-6 にそれぞれ示す。主剤にそれぞれのトレ ーサを添加した後で硬化剤を添加する組み合わせ(A1+B~A3+B)の試験結果を図 4.5.6-7~図 4.5.6-9 に、また、硬化剤にそれぞれのトレーサを添加した後で主剤を添加する組み合わせ(B1+A~B3+A)の 試験結果を図 4.5.6-10~図 4.5.6-12 にそれぞれ示す。

図 4.5.6-1 主剤にフルオレセインを添加した場合の蛍光の変化(A1)

図 4.5.6-2 主剤にナフチオン酸ナトリウムを添加した場合の蛍光の変化(A2)

図 4.5.6-3 主剤にナフタレンジスルホン酸モノカリウムを添加した場合の蛍光の変化(A3)

図 4.5.6-4 硬化剤にフルオレセインを添加した場合の蛍光の変化(B1)

図 4.5.6-5 硬化剤にナフチオン酸ナトリウムを添加した場合の蛍光の変化(B2)

図 4.5.6-6 硬化剤にフタレンジスルホン酸モノカリウムを添加した場合の蛍光の変化(B3)

図 4.5.6-7 主剤にフルオレセインを添加・撹拌後に硬化剤を添加した場合の蛍光の変化(A1+B)

図 4.5.6-8 主剤にナフチオン酸ナトリウムを添加・撹拌後に硬化剤を 添加した場合の蛍光の変化(A2+B)

図 4.5.6-9 主剤にフタレンジスルホン酸モノカリウムを添加・撹拌後に 硬化剤を添加した場合の蛍光の変化(A3+B)

図 4.5.6-10 硬化剤にフルオレセインを添加・撹拌後に主剤を添加した場合の蛍光の変化(B1+A)

図 4.5.6-11 硬化剤にナフチオン酸ナトリウムを添加・撹拌後に主剤 を添加した場合の蛍光の変化(B2+A)

図 4.5.6-12 主剤にフタレンジスルホン酸モノカリウムを添加・撹拌後に 硬化剤を添加した場合の蛍光の変化(B3+A)

蛍光剤の種類および主剤、硬化剤の組み合わせ試験結果を表 4.5.6-2 に示す。主剤への蛍光剤の添加 (A1~A3) については、主剤が青の蛍光色を有しており、フルオレセインの場合 (A1) は黄緑色を 呈するが、発光は強くない。ナフチオン酸ナトリウムやナフタレンジスルホン酸モノカリウムの添加 (A2 および A3) については、蛍光色が主剤と同色であるため発光しているか不明であるが、前述のレジンの液性 (pH) 測定から、主剤は弱酸性であり、そのために発光していない可能性がある。

硬化剤への蛍光剤の添加(B1~B3)については、全て添加・撹拌直後から発光した。硬化剤はレジンの液性(pH)測定から、弱アルカリ性であり、蛍光剤の発光の妨げにならなかったと考えられる。

主剤へ蛍光剤を添加した後に硬化剤を添加した場合(A1+B~A3+B)は、撹拌直後~30分で発光したが、 2時間~2.5時間で消光した。硬化剤へ蛍光剤を添加後に主剤を添加した場合(B1+A~B3+A)は、撹拌直 後に発光したが、2時間~2.5時間で消光した。したがって、蛍光剤の種類に関わらず、主剤と硬化剤 の混合させた場合は消光する。この原因として主剤と硬化剤との混合では、レジンの可使試験などか ら容器内のレジンの温度は 155℃以上に発熱することが分かっており、この発熱が影響していること が疑われる。

トレーサ	試験前の 蛍光色(*)	発現 蛍光色	発光時間	備考
主剤+フルオレセイン (A1)	青	黄緑	2 時間~	蛍光剤添加後 0~2 時間で徐々に発光する。
主剤+ナフチオン酸ナトリ ウム (A2)	青	-	_	添加・撹拌直後に主剤の蛍光色(青)が淡 くなるが不明瞭。発光しているか不明。
主剤+ナフタレンジスルホ ン酸モノカリウム (A3)	青	-	_	主剤の蛍光色に変化がない様に見える。 発光しているか不明。
硬化剤+フルオレセイン (B1)	黄緑	黄色	0分~	添加・撹拌直後から発光。
硬化剤+ナフチオン酸ナト リウム (A2)	黄緑	水色	0分~	添加・撹拌直後から発光。
硬化剤+ナフタレンジスル ホン酸モノカリウム (B3)	黄緑	水色	2 時間~	添加・撹拌直後から発光。
主剤+フルオレセイン+硬 化剤 (A1+B)	青	黄色	30 分~ 1.5 時間	2時間以降は全体に消光し、僅かに上部の み水色に発光。
主剤+ナフチオン酸ナトリ ウム+硬化剤 (A2+B)	青	水色	0 分~ 1.5 時間	2時間以降は全体に消光し、僅かに上部の み水色に発光。
主剤+ナフタレンジスルホ ン酸モノカリウム+硬化剤 (A3+B)	青	水色	0 分~ 2 時間	硬化剤添加・撹拌直後は黄緑色。2.5時間 以降は全体に消光し、僅かに上部のみ水 色に発光。
硬化剤+フルオレセイン+ 主剤 (B1+A)	黄緑	黄色	0 分~ 2 時間	2.5時間以降は全体に消光し、僅かに上部 のみ水色に発光。
硬化剤+ナフチオン酸ナト リウム+主剤 (B2+A)	黄緑	水色	0 分~ 2 時間	2.5時間以降は全体に消光し、僅かに上部 のみ水色に発光。
硬化剤+ナフタレンジスル ホン酸モノカリウム+主剤 (B3+A)	黄緑	水色	0 分~ 2 時間	2.5時間では僅かに蛍光が残る。3時間以 降は全体に消光し、僅かに上部のみ水色 に発光。

表 4.5.6-2 トレーサの種類および主剤、硬化剤の組み合わせ試験結果

*「試験前の蛍光色」:紫外線照射下では EP-400M の主剤は青色、硬化剤は黄緑色の蛍光を発する。

蛍光剤の消光の原因が発熱であるかを確認するために、環境温度を下げることで発熱を抑制した状態で予備な試験を行った。恒温恒湿槽を用いて室温 10℃湿度、70%の環境を維持したもとで、主剤にフルオレセインを添加、撹拌後に硬化剤を添加し、24 時間における蛍光の変化を観察した。試験結果を図 4.5.6-13 に示す。蛍光剤は硬化剤を添加、撹拌直後から蛍光を発しており 24 時間後も消光していない。この結果から、蛍光剤の消光は主剤と硬化剤との混合に伴う発熱の影響の可能性が高い。原位置試験では岩盤や地下水によってレジンが冷却されるため、100℃を超える高温になることは考えにくいが、蛍光が発現可能な温度の限界については今後確認することが必要と考える。

図 4.5.6-13 室温 10℃湿度 70%の環境で主剤にフルオレセインを添加撹拌後に

硬化剤を添加した場合の蛍光の変化

4.6 まとめ

レジン注入試験の原位置適用前の検討として、レジンの流動特性を把握するために、鋼管を用いたレジンの一次元流動試験と割れ目内未固結充填物に関する検討を実施した。

鋼管を用いたレジンの一次元流動試験では、主剤と混合液(主剤と硬化剤の混合液)の2つの流体 を用いて、鋼管内が空気、水、模擬海水、IPA(イソプロビルアルコール)の4条件下で、それぞれ3 回ずつ実施した。ポンプの耐圧性能が低く定量性に欠けるが、以下の知見が得られた。主剤は IPAを 除く流体では大きな違いは認められなかったが、鋼管内が IPA の場合、浸潤フロント付近で樹脂が溶 解したためか、圧力勾配がその他の条件に比べて小さく、出口までの到達時間に遅れが生じた。混合 液についても同様の結果が得られた。また、混合液は3回の計測で混合開始時刻が同じものを使用し、 硬化に伴う流動の違いを確認した。その結果、混合液の硬化が進むに連れて、圧力勾配が大きくなり、 定常圧力も増加した。しかし、本試験は可使時間以内に完了しており、圧力が増加した理由は不明で ある。このため、耐圧性能が高いポンプを用いて再検討することを今後の課題とする。なお、IPA に ついては可燃性のため、坑道内での使用が制限される可能性もあり、原位置での適用を考慮する際は 技術的な観点のみなならずこの点も含めて慎重に検討していきたい。

割れ目内未固結充填物に関する検討では、割れ目内に脆弱な未固結充填物質が存在する場合、レジ ンがどのように充填されるのか、どのように固化するのかを確認するために、岩石模型を用いた室内 レジン注入試験を実施した。岩石模型は平行平板割れ目と円孔を有し、その中に砂を充填させたもの を用いた。割れ目内の砂を水で満たした後、レジンの注入を行った。レジン注入の中盤辺りで砂の流 出が確認された。レジン充填・固化後に X 線 CT スキャナにより内部観察と切断による切断面の観察 からも砂の流出が確認され、その形状はチャネリング状であった。これは、流入口付近で充填が比較 的緩い箇所の砂をレジンが押し流したことにより生じたものと考えられ、本来の水みちとは違った経 路である可能性が高いと思われる。接着性については、切断後に砂の流出はなく、形状を維持してお り良好であった。円孔部に充填した砂の領域では、蛍光剤の分離と思われる結果が得られた。今後、 この切断された岩石模型を研削にかけ、より詳しいレジンの充填状況を確認する予定である。

原位置レジン注入試験装置を試作するために、原位置での地下水圧、レジンの品質確保(再現性・ 正確で均一な混合)を考慮して、装置の概念設計を行った。無脈動・連続移送、高い定量性、回転速 度の制御により吐出量変更が瞬時に行える2台のモーノポンプとスタティックミキサーを採用するこ とで、再現性に優れ、正確で均一な混合が可能な装置が試作できることが分かった。ただし、高圧微 小量制御については脈動を引き起こす可能性が考えられ、問題点の洗い出し解決策を検討するために 検証実験を実施する計画である。今後、本装置の詳細設計、試作あたっては、本概念設計をベースに 細かな仕様や条件を付け加えて開発を進めていく予定である。

レジン特性については、現場環境(測定環境)によって大きく変化するため、本年度は、現場環

4 - 73

境の温度、地下水等がレジンの特性に及ぼす影響について検討を行った。はじめに、レジンの粘度と 可使時間の環境温度の影響について検討するために、本年度は恒温恒湿槽内で、10℃~30℃までを 5℃間隔で温度を制御し測定を実施した。その結果、温度が上昇するに従って、粘度は低下し、逆に 可使時間については短くなることを確認した。温度の違いにより、粘度については最大で約2.3 倍~ 5.7 倍程度変化すること、可使時間については最大で約1.8~2.2 倍程度変化することが明らかにな った。また、これらの粘度および可使時間の組み合わせから地下水の温度(約20℃)の条件下で管 理することが最適であることが分かった。

っぎに、割れ目内の地下水の存在がレジンの接着強度に与える影響を調査するために、昨年度同 様、花崗岩の盤石間の1mmの隙間にレジンを注入し硬化後に引き剥がす試験により評価した。本年度 は隙間が空気、水、模擬海水の3条件下で十分に養生した後、レジンを注入して行った。その結果、 模擬海水の条件下で明らかな強度低下が認められた。100mlの模擬海水を入れた容器に300gのレジ ンを投入し、固化させた結果、レジンは硬化不良を引き起こしたことから、塩分がレジンの硬化や接 着強度に悪影響を及ぼすことが分かった。水の条件下でも接着強度の低下を期待したが、その影響は 認められなかった。試験体のスケール、水の流動の有無が影響しているものと考えられ、今回の結果 が必ずしも水の影響が認められないとは判断できないが、原位置でのレジン注入で割れ目内の流体を 十分に置換してやれば、接着強度は模擬海水ほど低下する恐れはないものと考えられる。

pHの測定では、主剤が弱酸性、硬化剤が弱アルカリ性を示した。混合液については弱アルカリ性 を示し、硬化までほとんど変化はなかった。また、蛍光剤の発光はpHに依存する。したがって、こ の主剤と硬化剤の極性の違いが、主剤と硬化剤で発光に違いが見られたものと考えられる。さらに、 容器内でレジンを混合した場合、155℃以上に発熱する。蛍光剤を添加したレジンでは、レジンの高 温に達した付近で消光しており、反応熱の影響を受けることが分かった。ただし、割れ目は反応熱が 放散してしまう放熱系であると考えられ、容器内で見られるほど温度が上昇しない可能性が高い。こ の点については次年度検証する計画である。レジンの分離について、水および模擬海水中へ蛍光レジ ンを投入し確認したが、レジンが分離したというよりも、蛍光剤が水に溶けやすいため一部の蛍光剤 のみが分離している可能性が高く、主剤と硬化剤の分離はそれほど生じていないものと考えられる。

4 - 74

参考文献

テスコ株式会社ホームページ:http://www.tesco-ndt.co.jp/

兵神装備株式会社ホームページ:http://www.heishin.jp/

株式会社ノリタケカンパニーリミテドホームページ:http://www.noritake.co.jp/

東山明(1990):スタティックミキサーの特性と応用例、素材物性学雑誌,第3巻,第1号,126-135.
5. 適用性試験場の地質環境調査

5.1 はじめに

本事業において開発した各種調査技術を、平成 20 年より割れ目の分布が比較的単純なスイスの Grimsel Test Site に適用し、平成 24 年度までに技術の有効性をほぼ確認することができた。次の目 標は、日本国内の岩盤に対してもこれらの技術が適用できることを示すことである。日本国内の岩盤 を対象として調査として、これまで平成 24 年度~平成 27 年度にかけて、JAEA 瑞浪超深地層研究所の 深度 300m で適用性試験場の地質環境調査とトレーサー試験を実施している。

本章では、適用性試験場として選んだ JAEA 瑞浪超深地層研究所の深度 500m に分布する土岐黒雲母 花崗岩を対象にした地質環境調査について報告する。

5.1.1 瑞浪超深地層研究所の研究施設の概要

超深地層研究所計画は、JAEAにより進められてきた結晶質岩と淡水系地下水を対象とした深地層の 研究施設計画である。瑞浪超深地層研究所の研究坑道については、平成24年度までに立坑部は深度 約500mまで達し、平成25年度には深度500mステージの水平坑道の掘削を終了している(JAEA東濃 地科学センターHP)。瑞浪超深地層研究所の位置と研究坑道の構造図を図5.1.2-1に示す。本研究所 周辺の地質は、基盤をなす白亜紀後期~古第三紀前期の土岐花崗岩体を新第三紀中新世の堆積岩(瑞 浪層群)と新第三紀中新世~第四紀更新世の砂礫層が不整合に覆っている(糸魚川,1980)。研究所 用地周辺における瑞浪層群の層厚は百数十mであり、深度500m研究アクセス南坑道125m計測横坑は 土岐花崗岩体中に建設されている(川本,窪島,村上,石橋,笹尾,2014)。なお、土岐花崗岩につ いては、JAEAで実施した瑞浪超深地層研究所およびその周辺の土岐花崗岩についての調査の結果、低 角度傾斜(0~30°傾斜)の割れ目の密度が深度によって異なることから、上部割れ目帯、下部割れ目 低密度帯に分類されている(松岡,ほか,2005)。また、立坑掘削時の壁面観察等の結果では、深度 320m 以深から低角度割れ目の出現頻度が小さくなり、深度460m 以深ではほとんど無くなることが確 認されている(鶴田,笹尾,川本,窪島,石橋,2013)。

5.1.2 深度 500m 研究アクセス南坑道 125m 計測横坑の概要

深度 500m 研究アクセス南坑道 125m 計測横坑は換気立坑中心から南側坑道沿い約 125m に位置する。 深度 500m 研究アクセス南坑道 125m 計測横坑は高さ約 3.5m、坑道幅約 4.5m、長さ約 15.5m の横坑で、 研究アクセス南坑道に直行に交差している(図 5.1.2-2)。

深度 500m 研究アクセス南坑道の壁面地質調査で得られたデータに基づく割れ目の方位は、北東走向の高角度割れ目が卓越し、付随的に北西走向の高角度割れ目が分布している。なお、同坑道に分布

5 - 1

図 5.1.2-1 岐阜県瑞浪市における瑞浪超深地層研究所の位置と地下研究施設

(JAEA 東濃地科学センターHP から引用し一部加筆)

図 5.1.2-2 深度 500m 研究アクセス南坑道 125m 計測横坑

5.2 適用性試験場の地質環境調査概要

5.2.1 調査の目的

本調査は、国内の地質環境を対象としたトレーサー試験装置等の適用試験を実施する場の地質環境特性を把握することを目的とする。

なお、トレーサー試験装置等の適用性試験を実施するためには、以下に示す割れ目の条件が望ましい。

- 単一割れ目
- ・ 割れ目が 2~4m は連続していること
- ・ 割れ目の透水量係数が 1×E-07m²/sec オーダー程度
- 坑道壁面からの距離深度で 30m 以内(最大 50m)

5.2.2 調査項目

トレーサー試験装置等の適用試験を実施するのに適した割れ目を検出することを目的とし以下の調 査を実施した。なお、実施フローを図 5.2.2-1 に示す。

- ・ 新規に2本のボーリング孔を掘削した。
- ・ 掘削したボーリング孔を対象に、BTV 検層や水理試験等の各種検層・試験を実施し、トレ ーサー試験等の対象となりえる湧水割れ目を抽出した。
- トレーサー試験等の対象となりえる湧水割れ目を対象に、間隙水圧モニタリング装置を設置した。
- ・ 間隙水圧モニタリング装置の区間でポイント希釈試験を実施した。

図 5.2.2-1 実施フロー

5.2.3 調査手順

- 5.2.3.1 ボーリング調査
 - (1) ボーリング掘削位置の設定

ボーリング孔の位置や方向・伏角は、過去に JAEA で実施された先行ボーリング調査(川本,ほか,2014a)や坑道壁面地質調査(川本,窪島,村上,石橋,笹尾,2014),(川本,ほか,2014b)の結果を基に設定した。なお、ボーリング孔の位置や方向・伏角の設定の基準は以下の通りとした。

- ・ 割目が比較的少ないと考えられるエリア
- ・ 大量湧水の可能性が少ないと考えるエリア
- ・ 過去の調査で確認された割目の走向傾斜を基に、これに交差する方向・伏角
- 敷地境界を越えない位置や方向
- (2) 主要ボーリング資機材

表 5.2.3-1 にボーリング作業で使用した主要資機材の一覧示す。図 5.2.3-1 にボーリングマシン を、図 5.2.3-2 に孔口装置を、図 5.2.3-3 にボーリングロッドを、図 5.2.3-4 にボーリングビッ トを示す。

図 5.2.3-1 ボーリングマシン

図 5.2.3-3 ボーリングロッド

図 5.2.3-2 孔口装置

図 5.2.3-4 拡孔用ビット (上から**Φ**140mm,127mm,101mm)

品名	型式	数量	単位	寸法 (H×W×L)	重量	備考
ボーリングマシン	東邦地下工機 D2-K-92	1	台	1570 × 870 × 1546	750 Kg	能力 250m モーター含む(7.5kW)
ボーリングポンプ	東邦地下工機 BG-5C	1	台	1610 × 600 × 715	205 Kg	最大圧力 3.1MPa モーター含む(3.7kW)
日鋼	150H	4	本	L=1.5m	180 Kg	ボーリングマシン架台用
日鋼	150H	2	本	L=3.0m	180 Kg	ボーリングマシン架台用
ロッド類	NQ ロッド × 2.0m	15	本	L=2.0m	240 Kg	掘削用
ロッド類	NQ ロッド	2	本	L=1.0m	16 Kg	
ロッド類	T40.5 ロッド	10	本	L=3.0m	150 Kg	検層用
コアチューブ	¢86mm	1	本	L=1.68m	7 Kg	掘削用 インナーチューフ [*] 1.0m
ケーシング類	¢114.3mm	6	本	L=1.5m	60 Kg	
タンク類	泥水分離タンク	1	台	600 × 600 × 1220		
タンク類	泥水分離タンク	1	台	760 × 870 × 1070		
タンク類	貯水タンク	1	台	760 × 870 × 1070		排水貯水用
タンク類	半ドラム缶	1	台			孔口出口 中継用タンク
足場パイプ	¢48.6mm L=3m	10	本	2.5kg/m	25 Kg	
足場パイプ	¢48.6mm L=2.5m以下	30	本	延べ 30m	75 Kg	
クランプ	<i>ф</i> 48.6mm(直交、自在)	60	個	0.5kg/個	30 Kg	
水中ポンプ	1 吋 100V 用	2	台		50 Kg	
ホース類	1-1/2 吋 サクションライ ン	1	本	5m	3 Kg	
ホース類	1 吋 デリベリライン	1	本	10m	10 Kg	
ホース類	2 吋 サニーホース	1	本	50m	30 Kg	
道具類・吊り具類	スイヘ・ル、ケーシング・パント・、 パイプレンチ・滑車	1	式		150 Kg	
孔口装置	メインハ゛ルフ゛、フ゜リヘ゜ンタ゛ー	1	式		100 Kg	

表 5.2.3-1 主要ボーリング機材一覧表

(3) 資機材の搬入・仮設

深度 500m 研究アクセス南坑道 125m 計測横坑における仮設計画(資機材の配置、掘削水の給排水 ルート)の概念図を図 5.2.3-8~図 5.2.3-9 に示す。ボーリング掘削の際に孔口から出る掘削水は、 泥水分離用タンクやスライム溜め用の半切りドラム缶を継由し、さらに掘削水の貯水用ノッチタン クでスライムを分離した後に掘削水として再利用した(図 5.2.3-5)。湧水で掘削水が増加した場 合は一時貯水し上澄みを排水した。また、一時貯水の許容量を超える可能性がある作業時には、換 気立坑近くの貯水設備で一時貯水させた(図 5.2.3-6)。

排水量は電磁流量計で計測した(図 5.2.3-7)。

図 5.2.3-5 掘削水用タンク

図 5.2.3-6 貯水設備

図 5.2.3-7 排水量管理(電磁流量計)

図 5.2.3-8 深度 500m ボーリング横坑作業区域概念図

※ 貯水設備は深度 500m 研究アクセス南坑道 20m ボーリング横坑に設置した

図 5.2.3-9 ボーリング資機材配置および掘削水の給排水ルート概要図

(4) ボーリングの孔口測量

調査位置座標を測量した。座標は世界測地系座標を用いた。

図 5.2.3-10 ボーリング孔口測量状況

- (5) ボーリング掘削
- a. ボーリング掘削の概要

掘削は二重管普通工法(外径 86mm、コア径:72mm)で坑内湧水を用いた清水掘削とした。

掘削編成は、ビット(外径 86mm)×コアチューブ(二重管)×ロッドを基本編成とした。ビット はインプリタイプを使用することとし、ロッドは坑内レイアウトの制約から、0.5m、1.0m、2.0mの ものを使用した。

掘削によって発生したスライムは、土嚢袋等に集積し、産業廃棄物として適切に処分した。

b. 1段目(坑道掘削損傷領域部)の掘削

坑道周辺には、坑道掘削時に発生した掘削損傷領域(以下、EDZ と示す)が存在する。ボーリン グ掘削で発生する湧水が EDZ を介し逸水するのを防ぐために、本業務では湧水対策としてクイック ライナーを施した後に孔ロケーシングを設置した。このロ元から割れ目が減少するまでの範囲を 1 段目の掘削とした。1 段目掘削の手順は次の通りである(図 5.2.3-11)。

- ③ 湧水対策工 (クイックライナー工)
- ④ 孔ロケーシング設置(先端にモルタルブロック、ラバーパッキンの装着、エア抜き用 SUS パイプ配管、グラウト注入用 φ 15 mm鉄管の配管) (図 5.2.3-13)
- ⑤ 壁面にコンクリートブロックを打設し硬化養生後、グラウトポンプを用いて水中グラウト 材を孔底側から注入(図 5.2.3-14、図 5.2.3-15)
- ⑥ エア抜き用高圧チューブからのグラウトの還流を確認後に、SUS パイプとグラウト注入管

のバルブを閉鎖

- ⑦ 孔底のグラウトを 20 cm程度浚渫(掘削)し、グラウト注入管を回収
- ⑧ ケーシングにフランジを取り付けケーシング内に水を充填し、テストポンプにてケーシン グ内に 5MPa 加圧して 10 分間の圧力保持を確認

図 5.2.3-11 1段目掘削の作業手順

図 5.2.3-12 φ86mm (1段目) 掘削状況

図 5.2.3-13 ケーシング挿入状況

図 5.2.3-14 コンクリートブロック

図 5.2.3-15 グラウト注入状況

なお、③のクイックライナー工法はボーリング孔壁にパッチ(ガラスマットに樹脂材を塗布したもの)を張り付けことにより、止水と孔壁保護をすることを目的としたものである。設置手順を以下に示す。

- ・ 対象ボーリング孔に対し、穴パスとノギスにより内径の測定を行う
- ・ 内径の測定結果より、ガラスマットの幅を計算し切断(図 5.2.3-16)
- 樹脂(主剤・硬化剤)を撹拌(図 5.2.3-17)
- ・ ガラスマットへ樹脂を含浸(図 5.2.3-18)
- ガラスマットをパッカーにセット(図 5.2.3-19)
- ボーリング孔へパッカーを挿入(図 5.2.3-20)
- ・ パッカーを拡張させ、圧力を保持
- ・ 圧力を保持したまま、硬化養生
- ・ パッカーを収縮させ、パッカーをボーリング孔より回収
- ・ 小型テレビカメラにより、施工状況及び深度の確認(図 5.2.3-21)

図 5.2.3-16 ガラスマット

図 5.2.3-17 樹脂の撹拌状況

図 5.2.3-18 樹脂の含浸状況

図 5.2.3-19 パッカーセット

図 5.2.3-20 パッカー挿入状況

図 5.2.3-21 孔内状況 (小型テレビカメラ)

c. 2段目の掘削

2段目の掘削は、\$\phi 86mmのコアバレルを用いてコア採取しながら掘削を行った。掘削中は最大 5MPa の水圧を伴う湧水が予想されたため、突発性湧水発生時の孔口からの湧水突出を抑えるために、孔 ロにはプリベンダーおよび、ゲートバルブからなる孔口装置を設置した(図 5.2.3-22)。掘削中の 湧水量を把握するために、1 掘進長ごとに掘削水の影響が無視できると判断された時点(具体的に は孔口から流出する水量がほぼ安定したとみなされた時点)の孔口から出る湧水を測定した。湧水 量の測定は、孔口からの湧水をバケツ等で受けて、計量カップ等を用いて計量した。

図 5.2.3-22 孔口装置概要図

d. 掘削水のトレーサー(アミノG酸)濃度管理

ボーリング掘削時に使用する掘削水や孔内洗浄等孔内で使用する全ての水には、蛍光染料の「7-アミノ-1,3-ナフタレンジスルホン酸モノカリウム水和物」(以後、アミノG酸)を濃度が5mg/L±10% となるように添加した。アミノG酸を添加した掘削水は、掘削直前に横坑内に設置した掘削水用タ ンクで作成し、作成時には分光蛍光光度計(日立製作所社製 F-2700 Fluorescence Spectrophotometer、表 5.2.3-2、図 5.2.3-23)により濃度分析を行った。掘削中は、1 掘進毎な いし1時間以下の間隔でリターン水をサンプリングし、アミノG酸の濃度が5mg/Lの±10%以内の範 囲にあることを確認した。掘削のリターン水のアミノG酸の濃度が指定濃度範囲外となった場合は、 掘削を一時中断し蛍光染料濃度を調整した。

項目	內容
操作方式	スタンドアロン または PC制御
光源	150Wキセノンランプ (オゾン 自己解消ランプハウス)
测光方式	単色光モニター比演算測光方式
感度	水のラマン光S/N800以上(RMS) バンドパス5nm レスポンス2s
スリット	2.5、5、10、20 n m(励起・蛍光例とも)
波長走查速度	60~3,000nm/min(4段)+PC制御のみ12,000nm/min
大きさ/質量	600mm (W) ×503mm (D) ×343mm (H) /約41kg
電源	AC100, 115, 220, 230, 240V 50/60HZ, 400VA

表 5.2.3-2 分光蛍光光度計 (F-2700 Fluorescence Spectrophotometer)の仕様

5 - 13

図 5.2.3-23 分光蛍光光度計 (F-2700 Fluorescence Spectrophotometer) と蛍光染料濃度計測状況

5.2.3.2 コア観察

(1) コアの回収

調査ボーリング孔の掘削作業は、コアバレル分の掘削(基本的に掘削長 1.0m)が終了する毎にロッドの揚管を行い、コアバレルを回収してボーリングコアの取り出しを行った。

コアバレル内から取り出したボーリングコアは、①コアの上下方向の取り間違いを防ぐ、②コ アの連続性を保持して割れ目方向をある程度把握する事を目的として、コアパックを取り外した ボーリングコアの表面に基準線の記入を行った(図 5.2.3-24)。基準線はまず赤線の記入を先 に行い、次いでボーリングコアの上下方向の判定のために赤色の基準線から浅い深度側を上側に 見てコアに向かって右側に 1cm 程度間隔を開けた位置に青線の記入を平行に行った。基準線を記 入する際は、先に採取したボーリングコアがある場合はそのコアの下端面と新たに採取したコア の上端面の割れ目を合わせて、連続線として記入を行った。また、基準線には記録上番号を付与 し、ボーリングコアの欠損やコアバレル内でのコア共回りなどで割れ目同士がきちんと合わない 事態が生じた場合には、新規に基準線を引き直し、新たな番号を付与することとした。

図 5.2.3-24 コアへの基準線記入

基準線の記入が終了した後に岩石カッターを用いて長さ 1m 毎にボーリングコアの切断を行った。

1m 毎に切断したボーリングコアは、コア箱1箱あたり長さ3m分(1列1m×3列)の収納が可能 な木製コア箱に基準線をコア箱の表面側になるように収納した。コア箱の内面にはボーリングコ アの破損を防ぐ目的でビニルシートを敷きコアを収納した。なお、コアの回収ができなかった区 間には、相当する部分に深度を記入した発砲スチロール等をコア箱内に収めることとした。また、 室内試験のためサンプリングを行った箇所についても同様の措置を行った。

(2) コア記載

岩芯地質記載は、JAEAの岩芯地質記載要領 (鶴田, ほか, 2012)に従い、以下の留意事項に注意 し、1/20スケールでコア記載を行った。

- ① コア記載はコア箱を並べて行った。
- ② 観察に際しては、ボーリング日報を参照しながら実施し、特に掘削中に逸水や湧水が生じた箇所のコアについては入念に割れ目の状態を観察した。
- ③ コア記載は原則 1/20 スケールで行い、割れ目の多い箇所等により 1/20 スケールでは記載 できない場合は 1/10 スケール等に縮尺を変更し記載を行った。
- (3) コア記載の補足事項

コア記載は、JAEAの岩芯地質記載要領に準拠して実施したが、本マニュアルに示されていない細部の記載上の判断基準について以下に補足する。

a. 割目の角度

割れ目の角度は孔芯に直行する面と割れ目との交差角(孔芯と平行な割れ目が割れ目角度90°)で 表した。

b. 条線

条線およびステップの計測の一例を図 5.2.3-25に示す。条線は、割れ目の走向線を基準とし、左 右下側に0~90°で記述した。(a)の例では「SL(L60)」と記述する。ステップ構造を持つ場合は 「ST(L60)」と示し、その形状から水平方向の移動センスを判断し備考欄に「右ズレ」または「左 ズレ」の記述を示した。

図 5.2.3-25 条線およびステップの計測の一例

c. 割目成因

割れ目の成因は、せん断による割れ目(Shear: S)、引張による割れ目(Tension: T)を次のように分類・記載した。

- 割れ目面に鏡肌・条線を伴う場合や明らかな変位が認められる場合および断層岩(断層ガ ウジ、断層角礫、カタクラサイト等)を伴う場合は「せん断による割れ目:S」と分類した。
- ② これに対し、上記の構造をもたず、岩盤のほぼ水平な初生構造(後述)に伴う剥離面は、 「引張による割れ目:T」と記載した。
- ③ 以上の判断がつかないケースでは、せん断あるいは引張による割れ目として、成因を「S or
 T」と記載した。つまり、断層やせん断節理が「成因 S」で、節理や断層に付随する割れ目が「成因 S or T」の割れ目となる。
- ④ 岩芯尻、リフター部分で破損した割れ目、コアチューブの中での回転等による「掘削誘発 割れ目 (Drilling induced fracture)」は成因を D(Drilling induced の略)として記載した。
 これは、新鮮な破断面で上下を密着・接合できる場合に限っている。
- ⑤ このほか、引張による割れ目か掘削時の割れ目かが判断できない場合があり、これは「T orD」と記載した。
- (4) 総合柱状図

コア観察結果から孔毎に総合柱状図を作成した。総合柱状図には、変質、岩盤等級、RQDおよび割 れ目の分布状況等を示した。以下にこれらの項目について補則する。 a. 変質

岩石が広範囲に被った変質の強弱についてバーで表示した。変質の強弱の基準は、記載マニュア ルの「割れ目沿いの母岩の変質」で基準とする個々の鉱物の評価方法を用いて、mスケール程度の 区間を総合的に評価した。

b. 割れ目沿いの母岩の変質

割れ目沿いに変質が認められた場合、セリサイト、緑泥石、粘土化等についての深度分布を示した。

c. 割れ目充填物

割れ目を充填する変質鉱物のうち、方解石、緑泥石、粘土等の深度分布を示した。

d. 割れ目密度

コア観察時に分離している割れ目の本数を示した。構造性の割れ目と掘削中の破壊による割れ目 とを区分して示した。

e. 割れ目角度別密度

1m毎の割れ目本数を30度区切りの角度別に示した。割れ目の角度は孔芯に直行する面と割れ目との交差角で表したものである。

f. 割れ目成因別密度

1m毎の割れ目本数を成因別に示した。

g. 断層岩及び断層岩の幅

断層岩を断層ガウジ、断層角礫およびカタクラサイトに区分し、その深度分布と断層岩の幅につ いて示した。

(5) コアの写真撮影

コア写真撮影の手順を以下に示す。

- ① コア記載を行う前に写真撮影を実施した。
- ② コア写真撮影にはデジタルカメラ(1200万画素以上)を使用し、図 5.2.3-26に示すコア写 真撮影台を用いて写真撮影を行った。
- ③ コア写真には孔番と深度表示を行い、カラーチャートをつけた状態で写真撮影を行った(図
 5.2.3-27)。
- (6) コアの収納

コア写真撮影およびコア記載の際に取り出したコアは、作業終了後速やかにコア箱へ収納し

た。

高さ1.8m×幅2.0m×奥行1.0m

図 5.2.3-26 コア写真撮影台

図 5.2.3-27 コア写真状況の一例

5.2.3.3 キャリパー検層

キャリパー検層(X-Y 孔径検層)は、孔径の変化を深度に対して連続的に測定記録し、孔内における空洞、崩壊の位置やその形状・程度を把握できるほか、その検層結果は、孔径による補正を必要と する他の検層結果の解釈等に用いられる。

孔径検層に用いられる測定器は、地上(ここでは、深度 500m ボーリング横坑坑道内を示す)から の遠隔操作により測定用アームの開閉を行う。測定はアームを閉じた状態で孔内に測定器を降下し、 測定区間の最深部となる箇所でアームを開き、測定器を捲き上げながら、孔壁の凹凸によるアームの 開閉状況から、孔径の変化を測定した。

一般に破砕帯や断層、軟弱地質においては、孔壁が崩壊し易く孔径拡大が顕著に認められる。また、 孔径検層から得られた測定値より孔内容量等を算出し、セメンチング作業の情報として利用する事も できる。

キャリパー検層装置の性能を表 5.2.3-3 に、キャリパー検層装置を図 5.2.3-28 に、キャリパー検 層装置の挿入状況を図 5.2.3-29 に、キャリパー検層装置のアーム部を図 5.2.3-30 に示す。

項目	性能
適応孔径	∲ 70~140mm
プローブ全長	2.53 m
プローブ外径	ϕ 66 mm
測定最大深度	500m
測定方式	4アーム式
測定誤差	1 mm以内
深度測定精度	0.25 mm/パルス [※]

表 5.2.3-3 キャリパー検層装置の性能一覧表

※ 深度測定プーリーユニットの精度

図 5.2.3-28 キャリパー検層ツール

図 5.2.3-29 キャリパー検層状況

図 5.2.3-30 キャリパー検層装置のアーム (開いた状態)

5.2.3.4 BTV・フローメータ検層

(1) 装置概要

ボアホールテレビ(以下、BTV)検層は、電力中央研究所で開発した BTV 機能付きフローメータ検 層装置を用いて、孔口マニホールドの先端深度から孔底までの範囲で実施した。BTV カメラで撮影 した孔内壁面画像を BIP システムにより画像解析し、各孔の岩盤分離面について、深度、方向(走 向・傾斜)、区分、開口幅または充填幅、分離面形状および状態を記載した。

BTV機能付きフローメータ検層装置は、BTVカメラを装備しており、検層と同時に孔壁の状況を観察可能である。BTVカメラは、㈱レアックス社製の BIP システムを使用した。BTVカメラの性能を表 5.2.3-4 に示す。

フローメータ検層装置は、検層プローブ部(フローメータプローブ、BTV カメラ、ケーブル)、 地上コントロール部(ウィンチコントローラー、ケーブルドラム)、地上計測部(パソコン、ビデ オデッキ等)によって構成される。フローメータ検層装置の性能を表 5.2.3-5 示す。

検層プローブ部はボーリングロッドに接続し、孔内の移動はボーリングマシンを使用した。セン タライザーは、検層プローブ部を孔中心に保つためのツールである。センタライザーおよびラバー ディスクは、プローブ移動時のスポンジパッカーの摩耗を低減する効果がある。

フローメータプローブのスポンジパッカーは、地下水を流速センサー部へ効率よく誘導し、また センサーを孔内中央部に保つ機能がある(図 5.2.3-31)。

BTV・フローメータ検層装置全体の検層装置の概要図を図 5.2.3-32 に示す。

表 5.2.3-4 BTV カメラの性能一覧表

項目	性能	
画像取得方式	側方展開画像	
画像精度	0.5mm(<i>ϕ</i> 60mm)360°円周	
色解像度	R•G•B 各8bit	
深度測定精度	0.25 mm/パルス [※]	

※ 深度測定プーリーユニットの精度

表 5.2.3-5 フローメータ検層装置の性能一覧表

項目	性能
適応孔径	ϕ 66 \sim 200mm
プローブ全長	3.15m(BTVユニットを含む)
プローブ外径	ϕ 50mm
測定最大深度	500m
測定範囲(流速)	1~2000 mm/sec [*]
付属性能	BIPシステム

※ 流速測定範囲は流量計単体としての性能

図 5.2.3-32 BTV・フローメータ検層装置の概要図

- (2) BTV 検層
- a. 検層準備

測定開始の直前にボーリング孔内を洗浄した。

b. 撮影準備

撮影準備として、外部装置に孔内に挿入する測定プローブを接続し、通電して機材の動作確認を 行った。

機材動作の確認後は、測定プローブをボーリング孔内に挿入し(図 5.2.3-33)、押し込みに使用 するロッドをプローブに接続し、孔内が測定可能な状態にあるかどうかをモニター上で確認した。

図 5.2.3-33 測定プローブ (BTV・フローメータ)の挿入状況

c. 孔壁画像撮影

モニター上で孔壁が十分に撮影可能な状態にあることを確認した後、孔壁画像撮影を開始した (図 5.2.3-34)。

撮影された画像は、MOディスクまたは、ハードディスクにデジタル情報として記録し、VTR 装置 によりバックアップ画像として記録した。

孔壁画像撮影は、プローブに接続したロッドを、ウインチまたは人力により孔底まで押込み、孔 底より低速(1.5m/min以下)で引き抜くことにより行った。

図 5.2.3-34 BTV・フローメータ測定状況

d. 記録データの確認・機材回収

孔壁画像撮影の終了後、取得データ(VTR 他)の精度や確度等の最終確認を行い、機材を回収して解体を行った。

- (3) フローメータ検層
- a. フローメータ検層の実施概要

フローメータ検層は、前述した BTV 機能付きフローメータ検層装置を用いて、孔ロマニホールド の先端深度からから孔底までの範囲で 1m 毎に流速を計測した。計測に際しては孔口からの湧水量 とフローメータから得られた流量を確認し、ダイバーターの効果を確認して作業した。

流速変化(アノマリー)が得られた深度では、BTV 機能を用いて割れ目を確認しながら測定間隔 を調節し割れ目との関係を調査した。

b. フローメータ検層の実施手順

フローメータ検層は BTV 検層の後に実施した。ボーリング孔の孔口から孔底にかけては BTV 検層 を実施、孔底から孔口にかけてはフローメータ検層を実施した。実施手順は次のとおりとした。

(a) 検層準備

孔口に検層装置を設置し、孔口からの湧水量とフローメータから得られた流量を確認し、ダイバ ーターの効果を確認した。

(b) 検層の実施

検層の実施手順としては、以下に示すとおりである。

- 流量計のキャリブレーションを実施。
- 所定の深度まで検層装置を挿入する。
- ③ 検層装置を静止させ、流量測定値が安定するまで待機し、安定後の数値を記録する。
- ④ 以後、1mごとに上記手順(静止から測定)をケーシング下端部まで繰り返す。
- (c) 記録データの確認

フローメータ検層の終了後、取得データの概算換算流量とキャリブレーション用湧水量を比較し 測定結果を確認した。

5.2.3.5 透水試験(単孔式、孔間)

透水試験数は、1 孔当り 4 カ所程度を基本とし、深度、試験方法等については、掘削時の水圧応答、 フローメータ検層および BTV からの情報を基に設定した。

単孔式透水試験は、間隙水圧の安定を待たずにパッカー拡張後から定圧揚水を実施し、間隙水圧モ ニタリング結果から透水量係数を計算した。孔間透水試験は、間隙水圧モニタリングを翌朝まで行い、 間隙水圧の安定を確認した後に定流量ポンプ(モーノポンプ)を使用して定流量揚水試験を実施した。 なお、単孔式透水試験の結果で、透水量係数が低く(1E-9 m²/sec オーダーを目安) 湧水量が少ない(100mL/min 以下を目安) 場合は、パルス試験を実施した。

(1) 透水試験の使用機器

透水試験に使用する機器の一覧を表 5.2.3-6 に示す。

分類	装置	主要部品数量等	仕様	
孔内部	パッカーユニット	3台	スライド式 適用孔径 ф 86mm	
	ストレーナ	ステンレス製ガス管	3/4"ガスネジ	
中継部	JFT ロッド	長さ:2mおよび1m	外形φ42.7mm 内径φ35.8mm	
		人ナンレス製	理結部 φ 49.0mm	
	パッカー用	約 50m	ナイロン製 4×2.5mm	
	チューブ	(切断可)		
	圧力用チューブ	11	11	
地上部	電磁流量計	1台	MAX:30L/min 精度 FS:0.1%	
	モーノポンプ	1台	MAX: 2L/min	
	データ収録用 PC	ノートパソコン		
	データロガー	キーエンス NR1000		
	チャンバータンク	3台	パッカー拡張用	
	圧力計	3 台	ひずみ型 MAX:5MPa	
	ロ元バルブ	1 台	ボールバルブ	

表 5.2.3-6 透水試験使用機器一覧表

(2) 透水試験方法

a. 装置構成と機能・役割

調査現場は、深度 500m の坑道内に位置しており、常時ボーリング孔から地下水が湧水する状況に あるため、孔内に設置する装置は湧水を想定して圧力計やバルブ等の部品を孔外に配置するシンプ ルな構造とした。透水試験装置は、ロ元パッカーを含めたトリプルパッカー式であり試験区間の水 圧 P2、試験区間より下方の水圧 P1 および、試験区間上方の水圧 P3 が同時に観測できる装置を使用 した。透水試験の装置設置の概念を図 5.2.3-35 に示す。

図 5.2.3-35 透水試験装置の設置概念図

以下に透水試験装置の各主要機器の役割を示す。

① パッカー

パッカーは、ロ元パッカーを含めたトリプルパッカー式であり拡張して遮水域を設置するこ とで試験区間を形成した。拡張は、パッカー拡張用タンクの水を高圧窒素ガス等で加圧して行 った。パッカー圧力はタンクに取り付けたブルドン管圧力計で確認した。

② JFT ロッド/ストレーナ

ロッドは、継手部は0リングによるシール機能を有する。パッカー挿入ツール・挿入尺度と しての役割、および透水試験時の導水パイプとして利用した。

ストレーナは穴あきパイプを使用した。ロッド(孔外)と試験区間の導水を行うために設置 した。

③ 圧力ライン(圧力計測用)、パッカーライン(パッカー拡張用)

P1、P2、P3 圧力計用およびパッカー拡張用として、内径 2.5mm のチューブを使用した。ロッドに抱き合わせて挿入し、各計測区間に繋がる圧力ラインは地上の圧力計に接続し、パッカーラインは拡張用タンクに接続する。

④ 口元バルブ

ロッドロ元に手動のボールバルブを設置し、試験区間からの流路の開放/閉鎖を行う。透水 試験の開始・停止等の主要な役割を担う。

⑤ 圧力計

圧力ラインの先端に取り付け、P1、P2、P3 試験区間の水圧を計測する。圧力データはデータ ロガーを介してパソコンに記録される。

⑥ パッカー拡張用タンク

パッカー拡張用の水タンクで、タンク内の水位を目視確認できる目盛りを取り付けており、 タンク内の残水量が把握できる。

⑦ データロガー

圧力データ、流量データ(使用時)を処理する。

⑧ データ収録 PC

圧力データ、流量データを収集、保存、グラフ表示を行う。

⑨ モーノポンプ

定流量揚水試験に使用し、ローターの回転数を一定にして定流量制御を行う。モーノポンプ の仕様を表 5.2.3-7 に示す。

① 電磁流量計

流量の経時変化を記録する。

項目	性能		
形式	ヘイシンモーノポンプ 12NE04	ヘイシンモーノポンプ 9NE10	
吐出量	5.8 ~ 100mL/min	100 ~ 2000mL∕min	
吐出圧	max1.8MPa	max5.0MPa	
回転速度	26~615min	27~600min	
駆動機	インバーター制御モーター	インバーター制御モーター	
モーター電源	AC200V/60Hz/三相	AC200V/60Hz/三相	
インバーター電源	AC200V/50Hz/単相	AC200V/50Hz/単相	

表 5.2.3-7 モーノポンプの仕様

b. 透水試験の手順

一般的な透水試験フローを図 5.2.3-36 に示す。

今回実施した単孔式透水試験は、湧水割れ目の特定とその割れ目の概略な透水量係数を求めるため、間隙水圧測定の安定を待たずにパッカー拡張後から定圧揚水試験とした。

孔間透水試験は、間隙水圧測定を翌朝まで実施した後に定流量ポンプ(モーノポンプ)を使用し て定流量揚水試験を実施した。なお、湧水量が少なく、定流量試験の実施が不可能(流量制御下限 (100mL/min)の都合で流量が安定しない等)な場合はパルス試験を実施した。

図 5.2.3-36 透水試験の基本作業フロー

図 5.2.3-36のフローに示す作業の概要を以下に示す。

 ① 装置挿入

挿入は、深度間違いのないよう所定のロッド本数、パッカー編成および残尺を確認の上挿入 した。

② パッカー拡張 (INF)

湧水圧による試験装置の浮き上がり防止のため、ロッド残尺部に固定したバンド等を介して、 レバーブロックでアンカーを取り、ロ元バルブを開放したままパッカーを拡張した。拡張の完 了は、圧力変化やタンクの水量より確認した。拡張圧力は、水圧+1.0MPa 前後とした。

③ 間隙水圧測定 (PSR)

ロ元バルブを閉鎖し、区間を完全閉鎖した時点から間隙水圧の測定を開始した。今回単孔式 透水試験においては、水圧安定までは確認せずに次試験へ移行した。

④ 定圧揚水試験(HW/HWS)

定圧揚水試験は単孔式透水試験で実施した。試験は試験区間のロ元バルブを全開放し、流量 制御を行わないで排水して湧水量を計測する。湧水量が約 50L/min 以下であれば、内管抵抗が 少なく実施可能と考える。

⑤ 定流量揚水試験 (RW/RWS)

定流量揚水試験は、モーノポンプをロ元バルブに接続し、試験区間から一定流量で揚水して いる過程の水圧変化の計測と、ポンプ停止して後の水圧回復過程を計測する。

パルス試験 (PW)

パルス試験は、単孔式透水試験の結果で、透水量係数が低く湧水量が少ない場合で、定流量 揚水試験の実施が不可能と判断した場合に実施した。試験は、ロ元バルブを開閉して試験区間 の圧力を減圧させ、その後の回復過程を計測する。

⑦ パッカー収縮 (DEF)

水理試験の終了後、パッカー拡張用タンク内の窒素ガスを排気し、パッカーを収縮させた。 タンクの戻り液量から収縮の確認を行った。パッカーの収縮を確認した後に、固定用のアンカ ーを外した。

⑧ 設置位置の移設

深度移設は、目的の位置までロッドの追加、あるいは抜管して行った。

⑨ 装置回収

試験後、装置を抜管した。

- c. 試験方法
- (a) 間隙水圧測定 (PSR)

パッカー拡張後、ロ元バルブを閉鎖して圧力ライン(測定ライン)のチューブ内のエア抜きを行った。エア抜き完了後、圧力計ライン末端に取り付けた圧力ラインバルブを閉じて区間を完全閉鎖し、本測定を行った。間隙水圧測定方法の概念図を図 5.2.3-37 に示す。

図 5.2.3-37 間隙水圧測定時の概念

(b) 定圧揚水試験(HW/HWS)

定圧試験は、排水水頭を一定として流量変化を測定する試験である。ロッドロ元のレベルは一定 であるため、ロ元バルブを全開放とすればそのまま定水頭となる。所定時間排水後は、バルブを閉 鎖して回復試験とした。定圧試験方法の概念図を図 5.2.3-38 に示す。

図 5.2.3-38 定圧試験の概念

(c) 定流量揚水試験/回復試験(RW/RWS)

定流量試験は、排水流量を一定に保ち圧力変化を測定する試験である。対象区間の湧水量に対し て、モーノポンプで定流量制御により排水量を調整して試験を行った。所定時間まで排水した後、 ポンプを停止し回復試験へ移行した。原則試験区間の水圧が初期圧まで収束、もしくは排水時間と 同じ時間経過をもって試験終了とした。透水係数は排水過程、回復過程のそれぞれより算出できる。 定流量揚水試験方法の概念図を図 5.2.3-39 に示す。

図 5.2.3-39 定流量揚水試験の概念

(d) パルス試験 (PW)

パルス試験は、水圧収束を測定する試験である。試験は、間隙水圧に対し水頭差(水位差)を与 えた状態で、ロ元バルブあるいは圧力ラインのバルブの開閉操作により区間を瞬間的に減圧させ、 試験初期の間隙水圧(以後、初期圧)への収束過程を測定する。原則初期圧まで収束すれば試験は 終了である。試験水頭差は、初期圧と操作したバルブ高さとの差となる。同試験は、試験に伴う水 の移動量が少なく、且つ水圧収束は早いので透水性の低い箇所での試験に適している。パルス試験 方法の概念図を図 5.2.3-40に示す。

図 5.2.3-40 パルス試験の概念

d. データ整理・解析

圧力計により測定されたデータは整理した後に、各試験に対する解析を行った。各解析は『地 盤調査の方法と解説』 (地盤工学会, 2013)を参考にした。

(a) 定圧揚水試験(HW)の解析

定圧揚水試験(HW)の排水過程の解析は、Hvorslevの定常法を用いた。以下に解析手順を述べる。

- ① ロ元バルブより湧水する地下水の平均湧水量を計測した。
- ② 試験開始前の P1 圧力を計測し、口元の圧力が 0 となるよう圧力値を水位に換算する。
- ③ 以下の式より透水量係数 T を算出する。

$$T = \frac{Q \times ln[(m \times L/(2r)) + \{1 + (m \times L/(2r))^2 \\ 2\pi \times \Delta s\}}{2\pi \times \Delta s}$$
ここに、
T :透水量係数 (m²/ sec)
 Δs :水位低下量 (m)
L :試験区間長 (m)
Q : 平均流量 (m³/ sec)
m :縦横方向の透水係数比 (通常は1)
r :試錐孔半径 (m)

(b) 定流量揚水試験(RW)の解析

定流量試験は、Cooper-Jacob 法を用いて行う。図 5.2.3-41 に Log(t/r²)-s 曲線と Derivative Plot の例を示し、以下に解析手順を述べる。

}1/2]

- 片対数グラフの対数目盛り X 軸に t (sec) を、算術目盛り Y 軸に初期水位からの水位低下量 s(m)をとり、Log(t/r²)-s 曲線を作成する。同時に、両対数グラフの X 軸に t (sec) を、Y 軸 に水位低下量 s(m)、および Y2 軸に ds/dLn(t)をとり、Log(t/r²)-s 曲線のプロットの傾き を示す Derivative Plot を作成する。
- ② Derivative Plot より、Log(t/r²) s 曲線の直線勾配に対応する時間の ds/dLn(t)は、ほぼ一定値を示す。これより、Log(t/r²) s 曲線の直線勾配を選定する。
- ③ 選定した Log(t/r²) s 曲線の直線勾配の、1 サイクル間における水位差Δs(m)を求め、以下の左式より透水量係数を算出する。
- ④ Log(t/r²)-s曲線の直線勾配の延長が、Δs = 0と交わる点(t/r²)0(sec)を求め、以下の 右式より貯留係数Sを算出する。

$$T = \frac{2.3 \cdot Q}{4\pi \cdot \Delta s} \qquad \qquad S = 2.25 \cdot T \cdot (t/r^2)_0$$

ここに、

- *T* : 透水量係数 (m²/sec)
- S : 貯留係数 (-)
- *Q* : 平均流量 (m³/sec)
- *Δs* : Log(t)の1サイクル間における水位低下量 (m)
- (t/r²)₀ : s=0 における経過時間 (sec)
 - r :ボーリング孔半径 (m)

図 5.2.3-41 Log(t)-s曲線(左)、Derivative Plot(右)の例

(c) 回復試験の解析 (RWS)

RW 試験後の回復過程の解析は、貯留係数が得られる Agarwal 法の解析式を用いた。

図 5.2.3-42 に回復過程の Log(tp・Δt/(tp+Δt))-Sr 曲線、Derivative Plot の例を示し、以下に解析手順を述べる。

- 片対数グラフの対数目盛りX軸に Agarwal の等価時間 tp·Δt/(tp+Δt) (sec)を、算術目盛 りY軸に水位回復量 Sr(m)をとり、Log(tp·Δt/(tp+Δt))-Sr 曲線を作成する。同時に、両対 数グラフのX軸に同じく等価時間 tp·Δt/(tp+Δt)をY軸に水位回復量 Sr(m)、および、Y2軸 に dSr/dLn(e、t)をとり、Log(tp·Δt/(tp+Δt))-Sr 曲線のプロットの傾きを示す Derivative Plot を作成する。
- ② Derivative Plot より選定した Log($tp \cdot \Delta t/(tp + \Delta t)$) Sr 曲線の直線勾配の、1 サイクル間 における水位差 Δ Sr(m)を求め、以下の左式より透水量係数を算出する。
- ③ Log(tp·Δt/(tp+Δt))-Sr 曲線の直線勾配の延長が、Sr = 0 と交わる点 tp·Δt/(tp+Δt)0
 (sec)を求め、以下の右式より貯留係数 S を算出する。

$$T = \frac{2.3 \cdot Q}{4\pi \cdot \Delta Sr} \qquad S = \frac{2.25 \cdot T}{r_w^2} \cdot (tp \cdot \Delta t / (tp + \Delta t))_0$$

ここに、

Т :透水量係数 (m²/sec) S : 貯留係数 (-) : Log(tp· Δ t/(tp+ Δ t))の1サイクル間における水位回復量 (m) ΔSr :試錐孔半径 (m) Γ_{w} : 平均流量 (m³/sec) Q $tp \cdot \Delta t/(tp + \Delta t)_0$: Sr=0 における tp · $\Delta t/(tp + \Delta t)$ (sec) tp : 湧水時間 (湧水停止時間) (sec) △t : 回復過程(湧水停止後)の経過時間 (sec) *Ss* :比貯留係数 [=*S* / *L*] : 透水係数 $\begin{bmatrix} =T / L \end{bmatrix}$ k : 試験区間長(m) L

図 5.2.3-42 Log(tp・Δt/(tp+Δt))-Sr 曲線(上) 、Derivative Plot(下)の例

(d) パルス試験 (PW) の解析

直線勾配法の orslev の解析式と、曲線一致法の Cooper らの解析式を用いた。

なお、解析式の選択は以下の通り行った。

- Hvorslev 法の t-Log(s) グラフが凹形状となる要因が岩盤の貯留性によるものであれば、
 基本的には Cooper 法を採用。
- ② 貯留係数比 α が 1E-03 より大きい場合は、Cooper 法を適用し、小さい場合は、Hvorslev 法を適用。
- 1) Hvorslev の解析方法

Hvorslevの解析式は、貯留性の影響を受けていないと判断される場合に適用した。本式は、半 無限の深さと幅の帯水層を仮定している。以下に解析手順を述べる。

- 「 片対数グラフの算術目盛り X 軸に時間 t (sec)を、対数目盛り Y 軸に平衡水位に対する水位
 差 s (m)をとり、図 5.2.3-43 に示すような t-Log(s) 曲線を作成し、図中のプロットに直線
 勾配が認められることを確認した。
- ② 得られた直線の任意の2点の座標から直線の勾配を求め、次式より透水係数を算出した。

$$k = \frac{(2R_w)^2 \cdot Ln(m \cdot L/r)}{8L(t_2 - t_1)} \cdot Ln(s_1 / s_2)$$

ここに、

k :透水係数 (m/sec)
 R_w : ピエゾメーター管内半径 (m)
 r :試錐孔の半径 (m)
 m :鉛直方向の透水係数比 (通常は1:等方性)
 L :試験区間長 (m)
 t :経過時間 (sec)
 s :経過時間に対応する平衡水位との水位差 (m)
 ※注 パルス法の解析では仮想半径をピエゾメーター管内半径とする。

図 5.2.3-43 Hvorslevのt-Log s曲線

2) Cooper らの解析方法

Cooper らの解析式は、地盤の貯留性の影響を受けて t-Log(s)曲線に明確な直線がみられない時に適用した。以下に解析手順を述べる。

- 平衡水位に対する、試験中の水位差 s(m)と試験開始時の水位差 s₀(m)を求め、さらに水位 差比 s/s₀を求めた。
- ② 片対数グラフの対数目盛り X 軸に経過時間 t (sec)を、算術目盛り Y 軸に水位差比 s/s₀をとって、実測データを Log(t) s/s₀のグラフにプロットした。
- ③ 図 5.2.3-44 に示す標準曲線群を実測データと同じスケールで準備した。
- ④ 片方のグラフを時間軸方向(横軸)に平行移動させ、測定値と最も合致する標準曲線を選び、この標準曲線に対応するαと、任意の合致点に対応する時間軸座標β₀とt₀の値を読み 取り、次式より透水係数と比貯留係数を算出した。

$$k = \frac{R_w^2 \cdot \beta_0}{L \cdot t_0} \qquad Ss = \frac{R_w^2 \cdot \alpha}{L \cdot r_w^2}$$

ここに、

k :透水係数(m/sec)
R_w : ピゾメエーター管内半径(m)
r_w : 試錐孔の半径(m)
L : 試験区間長(m)
Ss : 比貯留係数(1/m)
t₀ : 時間(sec)
a : 貯留係数によって変化する係数[=S・(r_w/R_w)²]
β₀: 透水係数によって変化する係数[=T・t₀/R_w²]
※注 パルス法の解析仮想半径をピエゾメーター管内半径とする。

5.2.3.6 高精度孔曲がり検層

高精度孔曲り検層は、ボーリング孔がどのような方向に掘削されたかを詳細に確認するために実施 した。

高精度孔曲がり検層には村田式デジタルオンラインシステム(図 5.2.3-45、方位センサー精度: ±0.3°、傾斜センサー精度:±0.1°、分解能0.01°)を用いた。当システムは3軸構成角速度セン サー・磁気センサーを備えたプローブを孔内に挿入し、特定深度における傾斜角と方位角を計測して 距離換算を行い、孔の曲がり具合を確認するものである。

測定は孔口から孔底(プローブの計測最大深度で可)までを連続的に深度 50 cmごとに行い、3 次元 での孔跡を計測した。

図 5.2.3-45 村田式デジタルオンラインシステム(写真は動作確認時のもの)

5.2.3.7 高解像度 BTV 検層

(1) 装置の概要

ボアホール TV 装置は,株式会社レアックス社製 BIP-V を使用し,ボーリング孔の壁面観察をお こなった。本システムは、展開画像記録装置(以下 ODS)、詳細観察記録装置(以下 DVS(HR-BTV)) から構成される。ODS では、ボーリング孔壁の全周を連続孔壁面展開画像として観察記録をおこな うことができ、DVS では、前方視カメラと側方視カメラの組み合わせにより割れ目の詳細な観察を おこなうことができる。

0DS により取得されたデータは室内解析システムのディスプレイ上に表示し、割れ目の走向傾斜 計測などの解析をおこなうことが可能である。

DVS により取得されたデータは、VTR に記録されるほか、現場で必要個所をキャプチャー記録す ることもできる。システム構成は図 5.2.3-46 に示すとおり、現場システムと室内システムから構 成される。

図 5.2.3-46 BIP-V システム構成

- (2) 0DS(BIPS)画像解析方法
- a. 画像処理および割れ目データの取得

岩盤分離面の走向傾斜の測定は、画像データを読み出して室内解析システムのディスプレイ上に 表示し、孔壁との切合線として示される岩盤分離面にフィットするトレースライン(サインカーブ) を求めることにより行う(図 5.2.3-47)。

計算された該当面の走向傾斜はディスプレイに表示され、ファイルに記録される。また、開口幅 もポイントした2点間の実距離として示される。

図 5.2.3-47 面構造の走向傾斜の解析ルーチン

b. 深度

深度は岩盤分離面の出現上端、消滅下端、および中間深度によって示す。

c. 区分

面要素は以下の5つに区分する。

- 初生構造:堆積岩の層理・葉理、火山岩や深成岩などに見られる流理構造、変成岩に見られる片理構造、岩相境界等
- ② 開口割れ目:割れ目のうち画像上で1mm以上の開口性が認められ、開口幅の測定が可能な もの。
- ③ 割れ目:画像上 50%以上連続している割れ目。
- ④ 破砕部:破砕した部分が5cm以上の幅を持つ場合。
⑤ 鉱物脈:鉱物が脈状に割れ目を充填しているもの。

d. 開口幅または充填幅

幅 1mm 以上の分離面の開口幅、鉱物脈、破砕部の充填幅は最大傾斜位置(孔軸に対する最大交差角位置)において、境界面の上・下盤の正距離とする。

e. 分離面形状

面要素の形状について、以下の3つに区分した。

- ① Plane: 岩盤分離面がきれいなサインカーブを描くもの。
- ② angulated:岩盤分離面が曲がっている、ゆがんでいるもの。
- ③ step: 岩盤分離面が階段状になっているもの。
- f. 状態

面要素について以下に示す事項を状態として記載した。

- ① 区分が開口割れ目、割れ目の場合:角礫状、細片状、派生割れ目付随など。
- ② 区分が破砕部の場合:上盤、下盤。
- ③ 区分が初生構造の場合:層理、片理、葉理、流理、岩相境界。
- ④ 区分が鉱物脈の場合:白色鉱物、緑色鉱物、黄色鉱物、石英、方解石など。
- (3) 0DS データ解析方法
- a. ステレオネット図(ウルフネット下半球)

ステレオネット図は以下のものを作成した。

- πダイヤグラム:極をウルフネットにプロットしたもの。
- ② カウントプロット:投影面内のグリッド上で、投影面外周の10分の1の小円内にある極の
 個数(あるいは全体の個数に対する百分率)をプロットしたもの。
- ③ コンターマップ:カウントダイアグラムを元に等分布線を画いたもの。
- ④ ローズダイアグラム:走向の頻度を10度刻みで示したもの。
- ⑤ 大円:投影点を連ねた線で、傾斜の構造を示したもの。
- b. 岩盤分離面一覧表

取得された各岩盤分離面は、深度・走向傾斜・方位傾斜・区分・開口幅などの情報をとりまとめ、 岩盤分離面一覧表を作成した。また、DVS 画像により計測された開口幅を記載した。

c. 孔壁展開画像記録

観察ボーリング孔についてコンピューター上で表示および出力するため、ハードディスクに記録 した。

d. 孔壁展開画像インデックスプリント

全体のイメージをつかみ易くするため、縮小した孔壁展開画像インデックスプリント(A4横)を作

成した。また、孔壁展開画像カラープリント上に記載している走向傾斜の引き出し線が、どの岩盤 分離面かを判り易くするためトレースラインを描いた。

(4) VS(HR-BTV)画像解析方法

a. 幅の計測方法

DVS 画像の解析は ODS 解析を補助し、より詳細な岩盤分離面の特性を得ることを目的とした。

岩盤分離面のうち開口割れ目を対象に、0.1mm 精度で割れ目幅を計測した。幅の計測箇所は最大 傾斜位置(孔軸に対する最大交差角位置)の2か所を基本とし、幅が一定でない場合は、さらに2か 所以上の箇所で計測し、その平均値を岩盤分離面一覧表に記載した。

幅の計測値の精度を確認するため、スケールプレートを孔口にセットし別途撮影、計測した。計 測結果を図 5.2.3-48 に示す。画像がやや見にくいが、これは孔内より気泡が出ていることにより、 スケールプレートに気泡が付着したためである。

180 度(孔壁上側)

90度(孔壁右側)

270 度(孔壁右側)

図 5.2.3-48 幅の計測結果

b. 詳細観察シート(開口割れ目詳細観察結果)

DVS の観察対象区間のうち、単項式透水試験の結果透水性が認められ、且つ開口幅の計測が可能 な割れ目については、幅を計測した箇所を展開画像上に明示した、詳細観察シートを A3 横で作成 した。幅の計測は対象開口割れ目1本に対して 36 度刻みに 10 箇所計測した。 c. 開口割れ目の全周画像

各孔で対象となった開口割れ目に対し、DVS 画像のキャプチャーデータを合成し、全周画像を作成した。

5.2.3.8 間隙水圧モニタリング装置の設置および観測

間隙水圧モニタリング装置を図 5.2.3-49 と図 5.2.3-50 に、間隙水圧モニタリング装置の主な仕様を表 5.2.3-8 に、設置例を図 5.2.3-51 に示す。

間隙水圧モニタリング装置は各種調査結果をもとに、トレーサー試験を実施するに適すると考えら れる割れ目が観測できるように設置した。

図 5.2.3-49 間隙水圧モニタリング装置孔内部

図 5.2.3-50 間隙水圧モニタリング装置の地上記録装置部

大項目		項目	主な仕様		
	外径		φ76mm(製作時) φ86mm(拡張時)		
パッカーユニット	長さ		1840mm		
	最大使用差	臣	1.5MPa		
	拡張方式		水拡張		
	外径		φ76mm(最大外径)		
ロッド	長さ(定尺)		2000mm、1000mm		
	長さ(調整)	用)	1700mm		
中継ぎ用チューブ	間隙水圧測	定用	ϕ 6×4mm、耐圧5.0MPa		
	採水用		φ6×4mm、耐圧5.0MPa		
	パッカー拡	張用	φ4×2.5mm、耐圧5.OMPa		
		製造元	Honeywell社		
	圧力計	レンジ	0~7.0MPa(間隙水圧計測用) 0~10.0MPa(パッカー拡張圧計測用) 0~0.2MPa(大気圧計測用)		
		精度	±0.1%		
		製造元、型番	KEYENCE社、FD-SS2A		
間隙水圧計測装置		レンジ	0~2000mL/min		
	流量計	精度	±1%(0~500mL/min) ±4%(500~2000mL/min) ※下限値は約10mL/min		
		使用圧力範囲	5MPa以下		
	A/D計測	製造元、型番	Agilent Technologies社、34980A		
	ユニット	計測プログラム	最大80ch収録可能		

表 5.2.3-8 間隙水圧モニタリング装置の仕様一覧

試験区間	Int6		Int5 Int4		t4	Int3		Int2		Int1		
深度(mabh)	上端	下端	上端	下端	上端	下端	上端	下端	上端	下端	上端	下端
	2.800	7.300	8.500	13.100	14.300	17.900	19.100	21.700	22.900	25.500	26.700	30.000
区間長(m)	4.500		4.600 3.600		500	2.600		2.600		3.300		

図 5.2.3-51 間隙水圧モニタリング装置の設置例

5.2.3.9 ポイント希釈試験

ポイント希釈試験とは、試験区間内をトレーサー溶液で満たした後に自然の流速によりトレーサー 溶液が希釈される過程を計測することで地下水の自然の流下速度を把握するための試験である。 以下に試験方法について示す。

(1) 試験概要

ポイント希釈試験は15MI52 号孔および15MI53 号孔に設置した間隙水圧モニタリング装置の観 測区間にて実施した。トレーサー濃度計測は、トレーサー溶液を地上〜観測区間内の配管に循環 させ、地上に設置した蛍光センサーを用いて測定した。

ポイント希釈試験の実施概要を図 5.2.3-52 に示す。また、今回使用した蛍光濃度センサーの仕様を表 5.2.3-9 に、光源と分光器の写真を図 5.2.3-53 に示す。

図 5.2.3-52 ポイント希釈試験実施概要図

項目	Ver. 3. 0
特色	・耐圧性能向上 ・光ファイバーとセンサー部が分離 可能な構造
材質	接液部:SUS304 窓 材:サファイアガラス
サイズ(mm) 流路×幅 ₄×幅 в	82 × 26 × 26
流路径(mm)	φ4
重量	126 g
光コネクター	ST(レセプタクル)
配管コネクター	ϕ 6mm

表 5.2.3-9 蛍光濃度センサーの主な仕様

図 5.2.3-53 高出力タイプ LED 光源(左) 分光器(右)

- (2) 試験手順
- a. 試験準備

試験の準備は以下の通り行った。

- ① トレーサー溶液の作成を行った。試験で用いるトレーサーはウラニンを使用した。ウラニン溶液の濃度は約 2mg/L とした。
- ② 蛍光セルの原位置で採水した地下水を用いて蛍光セルごとにキャリブレーション(検量線の作成)を行った。
- ③ 試験を実施する間隙水圧モニタリング装置の観測区間に繋がる揚水側と注水側のライン双 方に蛍光セルを設置して、両セルの間にトレーサー置換タンクと循環用のポンプを設置した。
- ④ 試験区間から湧水する地下水を用いて地上部の配管内の気泡を除去した。
- b. 試験手順

ポイント希釈試験は以下の手順に従い実施した。図 5.2.3-54 に作業の概念図を示す。なお、試験はトレーサー溶液が十分に希釈されるまで継続した。

- 孔内装置および地上配管のエア抜きを行い、トレーサー置換タンクにトレーサーを、地下 水タンクに地下水を充填した。
- ② プランジャーポンプ(HPLC ポンプ)を用いて、試験区間と地上部配管内の地下水を一定の 流量で循環させ流れ場を形成した。
- ③ 配管内の流速が安定したことを確認した後、トレーサーが試験区間へ流れるようにバルブ を切り替え、トレーサータンク内のトレーサー溶液を試験区間の地下水と置換した。
- ④ 蛍光セルでの計測値が安定した時点で、希釈試験を開始するためにトレーサー置換タンクのバルブを循環側に切り替え、トレーサー濃度が自然の地下水の流速で希釈される過程を蛍光セルで計測した。
- ⑤ トレーサー溶液が十分に希釈されたことを確認し、試験を終了した。

図 5.2.3-54 ポイント希釈試験の試験手順

(3) 地下水流量の算出方法

地下水流量の算出式を式(i)、式(ii)に示す。

$$Q_{bh} = V \cdot \frac{d\ln(C/C_0)}{dt} \quad \dots \quad (i)$$

*Q*_{bh}:地下水流量(mL/min)

- V :区間容量(mL)
- C :時刻 t における試験区間内のトレーサー濃度(mg/L)
- C₀ : 初期のトレーサー濃度(mg/L)
- *t* :時刻(min)

$$q_f = \frac{Q_{bh}}{\alpha \cdot 2r_w} \qquad \cdots \qquad (\text{ ii })$$

- q_f : 岩盤割れ目内の単位幅あたりに流れる地下水流量(mL/min/m)
- *Q_{bh}* :地下水流量(mL/min)
- α :集水効果を表す係数(2.0 (m⁻¹))
- *r_w* :ボーリング孔半径 (m)

5.3 調査結果

5.3.1 15MI52 号孔の調査結果

5.3.1.1 ボーリング掘削位置の設定

ボーリング掘削位置は、先行ボーリングの結果 (川本,ほか,2014a)、大量湧水が確認された割 れ目帯を避け、かつ、坑道掘削中の壁面観察 (川本,ほか,2014b)で湧水が少ない地点を選定した (大量湧水は各種検層に支障があるため、壁面湧水は1段目掘削のケーシング設置作業に支障がある ため)。

ボーリング掘削方向は深度 500m の坑道壁面地質調査で得られたデータ(川本, 窪島, 村上, 石橋, 笹尾, 2014)を基に、NW系、NE系のいずれとも交差する N75°W とした。伏角についても、高角度割 れ目が多いことから、水平から下向き 30°を計画した。

15MI52 号孔の仕様一覧を表 5.3.1-1 に、掘削位置や方向図を図 5.3.1-1 に示す。

孔名	15MI52 号孔
掘削方法	オールコア、清水掘削
主要孔径	86mm
掘削長	30.00mabh
掘削方向	鉛直方向:−30° (下向き) 水平方向:方位 №75° W
掘削位置	X=-69128.358 Y=6337.315 Z=-498.487 (世界測地系)

表 5.3.1-1 15MI52 号孔の仕様

図 5.3.1-1 15MI52 号孔の掘削位置および方向

5.3.1.2 ボーリング孔掘削

(1) 1段目掘削

1 段目の掘削は、孔口から EDZ の影響と考えられる割れ目が減少する範囲までとした。採取した コアの割れ目状況から、孔口ケーシングのセメントによる固定に配慮し、1 段目掘削は 2.845mabh までとした。

掘削は掘削外径 ϕ 86mm、コア径 ϕ 72mm でコア採取を行った。コア採取後は ϕ 86mm→ ϕ 101.0mm→ ϕ 127.0mm→ ϕ 141.0mm ダイヤモンドビットを用いて3段階で拡孔した。

本業務ではボーリング掘削で発生する湧水が EDZ を介し逸水するのを防ぐために、湧水対策とし てクイックライナーエ(パッチ)を施した後に孔ロケーシングを設置した。孔ロケーシング挿入後 は、クイックライナーとケーシングを固定するため空隙部にグラウト材を充填した。グラウト材の 硬化養生後、加圧試験(水圧 5MPa を 10 分間維持)を行い、遮水性能を確認した。

図 5.3.1-2 15MI52 号孔ロケーシング設置概念図

(2) 2段目掘削

2 段目の掘削は、突発的な湧水量の増加に備えて孔口にプリベンダーおよびゲートバルブからな る孔口装置を設置した。掘削中の大量湧水等の作業上の支障はなく、掘削予定深度の 30.00mabh ま で掘削を完了した。また、掘削中に孔壁崩壊の症状となり得る送水圧の上昇、リターン水の白濁、 回転数の低下は確認されなかった。

(3) コア採取率

孔口~30.00mabh までの掘削に対して、全深度でコア採取率100%であった。

(4) 掘削時の湧水量

掘削時に1掘進長ごとに孔口からの湧水量を測定した。測定結果を表 5.3.1-2 および、図 5.3.1-3 に示す。測定湧水量は掘削深度までの累積した湧水量を示し、区間湧水量はボーリングの 1 掘進毎の湧水量を示す。

掘削終了後の全体湧水量は 4.00L/min であった。また、掘削区間ごとに 0.5L/min 以上の湧水量が

認められたのは、以下の4区間であった。

- 9.55mabh~10.50mabh (0.97L/min)
- 13.29mabh~14.05mabh (0.60L/min)
- 16.45mabh~17.19mabh (0.70L/min)
- 23.30mabh~24.31mabh (1.00L/min)

掘	削区	間	測定湧水量	区間湧水量	
	mabh	1	L/min	L/min	
0.00	~	0.60	0.50	0.50	16
0.60	~	1.50	0.50	0.00	17
1.50	~	2.50	0.50	0.00	18
2.50	~	3.10	0.50	0.00	18
3.10	~	3.19	0.50	0.00	19
3.19	~	4.05	0.07	-0.43	21
4.05	~	5.05	0.15	0.08	21
5.05	~	5.93	0.17	0.02	22
5.93	~	6.97	0.17	0.00	23
6.97	~	7.81	0.20	0.03	24
7.81	~	8.83	0.39	0.19	25
8.83	~	9.55	0.88	0.49	26
9.55	~	10.50	1.85	0.97	27
10.50	~	11.45	1.92	0.07	28
11.45	~	12.35	1.60	-0.32	29
12.35	~	13.29	1.40	-0.20	
13.29	~	14.05	2.00	0.60	
14.05	~	15.05	2.20	0.20	

表 5.3.1-2 15MI52 号孔掘削時孔口湧水量測定結果

掘	削区	間	測定湧水量	区間湧水量
	mabh		L/min	L/min
16.45	~	17.19	3.20	0.70
17.19	~	18.05	3.00	-0.20
18.05	~	18.94	2.70	-0.30
18.94	~	19.95	3.00	0.30
19.95	~	21.01	3.20	0.20
21.01	~	21.97	3.00	-0.20
21.97	~	22.87	3.00	0.00
22.87	~	23.30	3.00	0.00
23.30	~	24.31	4.00	1.00
24.31	~	25.10	4.00	0.00
25.10	~	26.10	3.70	-0.30
26.10	~	27.10	3.70	0.00
27.10	~	28.10	3.90	0.20
28.10	~	29.10	3.70	-0.20
29.10	~	30.00	4.00	0.30

図 5.3.1-3 15MI52 号孔の孔口湧水量測定結果

(5) 掘削水の蛍光染料の濃度管理

ボーリング掘削水には蛍光染料であるアミノG酸をトレーサー剤として添加して掘削を行った。 掘削中は1時間以下の間隔でリターン水をサンプリングし、濃度が5mg/L±10%以内の範囲にあるこ とを確認した。

図 5.3.1-4 にアミノG酸濃度と湧水量の深度変化を示す。

濃度測定の結果、5mg/L±10%の範囲を外れた場合には掘削を中断し濃度調整に努めた。なお、添加したアミノG酸の総量は4.70gであった。

図 5.3.1-4 15MI52 号孔掘削水のアミノG酸濃度と湧水量

5.3.1.3 コア観察結果

調査ボーリング孔 15MI52 号孔 (L=30.00mabh)の掘削で得られたボーリングコアの観察結果を以下に まとめた。

(1) 岩相

15MI52 号孔の 0.00~0.09mabh は立坑掘削時に伴う吹付けコンクリートである。

0.09~30.00mabh は主に粗粒~中粒の黒雲母花崗岩である。等粒状~斑状を呈し主要な造岩鉱物は石英・カリ長石・斜長石・黒雲母で、ごく微細な角閃石を含む。これ以外に石英脈が厚さ数 cm で散見された。

局所的にペグマタイト質の岩相(28.44~28.56mabh 付近)を示す部位や、小規模な MME の包有 (18.59mabh 付近)、有色鉱物の縞状・線上配列(shlieren)(23.10~23.20mabh)が認められたが、 アプライト脈やペグマタイト脈の貫入、塩基性岩の貫入はみられず、概ね均質な岩相と判断した。

図 5.3.1-5 に 15MI52 号孔ボーリングコア内にみられるペグマタイト質岩相を、図 5.3.1-6 に 15MI52 号孔ボーリングコア内にみられる小規模な MME の例、図 5.3.1-7 に 15MI52 号孔ボーリン グコア内にみられる有色鉱物の shlieren と坑道壁面の同組織を示す。

図 5.3.1-5 ペグマタイト質岩相 (15MI52 号孔 28.44~28.56mabh 付近)

図 5.3.1-6 小規模な MME の例 (15MI52 号孔 18.59mabh 付近)

 図 5.3.1-7 15MI52 号孔ボーリングコア内にみられる有色鉱物の shlieren(左)と 坑道壁面で観察した同組織(右)

(2) 風化の程度

15MI52 号孔の主要造岩鉱物の風化はほとんど認められなかった。ごく一部の区間に中程度に風化が進む「 γ 」に該当する部位が認められたが、概ね「 α 」~「 β 」に該当する。

1.36~1.50mabh、7.44~7.49mabh、8.68~8.75mabh の局部的な区間で、数 cm 間隔で同傾斜の 割れ目が集中しており、この区間については、中ぐらいの風化程度である「γ」に該当する。

(3) 岩級等級

15MI52 号孔のボーリングコアの大部分は、岩盤分類上良好である「B」級に分類されると判断した。

EDZ に該当すると考えられる 0.30mabh 付近までは割れ目の発達が顕著であることから、「CL」級に相当すると判断した。また、1.36~1.50mabh の区間においても割れ目が発達し、風化の程度もや や進んでいることから「CL」級と判断した。

これ以外の区間においては岩盤分類上良好である「B」級が大部分を占め、数 10cm~100cm 単位で「CH」級~「CM」級が分布する。

22.50mabh 付近を境とし、以深のコアにおいては割れ目の分布がやや多くなる傾向がみられ、「CH」 ~ 「CM」に該当すると判断した。

(4) 最大コア長と RQD

15MI52 号孔のボーリングコアにおける最大コア長の最小値は 27cm、最大値は 85cm であった。 RQD の値は最小 60%、最大 101%であった。RQD に関しては 0.00~2.00mabh の区間において 60%前 後の相対的に低い値を示した。これは、岩盤分類と同様に EDZ を反映しているためと考える。 2.00mabh 以深のボーリングコアにおいては、RQD の値は概ね 79~95%の値を示した。 (5) 割れ目密度

割れ目密度はボーリングコア長 1m あたりの割れ目本数で定義した(割れ目の成因(自然・人為的)は考慮していない)。

15MI52 号孔のボーリングコアにおける割れ目密度は 1~12(本/m)を示した。このうち 0.00~ 2.00mabh の区間の割れ目密度は 11~12(本/m)を示し、これ以深の区間と比較しても大きな値を 示した。これは、EDZ を反映しているためと考える。この区間以外では概ね 2~6(本/m)の値を示 した。22.00mabh 以深ではわずかに割れ目密度が増加する傾向がみられた。

(6) 割れ目記載

15MI52 号孔のボーリングコアにおける割れ目毎の①傾斜角度、②成因、③割れ目の変質程度を 計測・観察して掘削長との関係について検討した。

割れ目の傾斜角度は 70°以下が主であり、掘削長との間に明瞭な相関関係はみられない。 24.00mabh以深のボーリングコアにおいては傾斜角度が 20°~30°傾斜の割れ目が卓越する傾向 がみられた。なお、割れ目の傾斜角度はボーリングコアの長軸方向と直交する面を「0°」とした (長軸と並行な割れ目が「90°」)。

割れ目の成因については「S:剪断割れ目」が一番多く、次いで「D:掘削割れ目」、「T:引張割 れ目」となり、最も少ない物が「SorT、TorD:不明」となる。掘削長との関係は「S:剪断割れ目」 に関しては掘削長が深くなるにつれて増加する傾向が認められる。また、「T:引張割れ目」につ いては 12.00~23.00mabh 区間においては観察されない特徴がある。

「水酸化鉄」・「赤鉄鉱」・「緑泥石」・「セリサイト」・「粘土鉱物」の生成、「溶脱」の 程度に基づく割れ目表面における変質程度と掘削長との間には概ね明瞭な相関関係は認められ ない。「緑泥石」の生成については 0.00~12.00mabh と 17.00~30.00mabh にかけて 2 つのピー クが認められた。「溶脱」に関しては掘削長 19.50mabh 以深で強くなる傾向を示した。

(7) 割れ目沿いの変質

15MI52 号孔のボーリングコアは母岩全体に及ぶ広範囲の変質は被っていない。変質は石英脈の 貫入に伴う貫入面に並行な範囲や、開口割れ目・潜在割れ目を中心とした最大でも幅 30mm 程度(両 側で 60mm)の限定的な範囲である。

ボーリングコアの表面において主要造岩鉱物であるカリ長石・斜長石の周辺部がやや不明瞭と なったり、カリ長石がより強いピンク色を呈したり、斜長石の白濁化や淡緑白色を呈する様子が 認められた。また、一部の黒雲母は緑泥石化している様子がみられた。

図 5.3.1-8 に掘削長 7.40~7.50mabh 付近の割れ目沿いの変質状況を示す。

図 5.3.1-8 7.40~7.50mabh 付近の割れ目沿いの変質状況

15MI52 号孔においては、変質によって主要造岩鉱物である黒雲母の緑泥石化と斜長石のセリサ イト化が認められた。斜長石のセリサイト化の程度は弱く、変質により斜長石の周縁部の一部が セリサイト化したものや斜長石の白濁化が認められる程度である。黒雲母の緑泥石化に関しても 概ね弱いものであるが、22.35~23.28mabh にかけての割れ目の一部は、変質により黒雲母が完全 に緑泥石に置き換わっており、変質の程度は強いと判断した。また、26.70mabh 以深では全体的 に割れ目沿いの変質の程度がやや強い。

(8) 割れ目の介在鉱物

割れ目の介在鉱物としては、方解石・緑泥石が多くみられた。産状としては、割れ目表面にフィルム状に付着する様子や、割れ目表面全体をコーティングする様子が認められた。

この他の介在鉱物としては淡緑灰色・明白灰色を帯びる粘土鉱物が割れ目内を充填するのが観 察される。スメクタイトなどの熱水変質作用に伴う粘土鉱物と考えられ、希塩酸の滴下により発 泡することから方解石等の炭酸塩鉱物も含有されると考えられる。また、一部の割れ目表面には ごく微細な黄鉄鉱の付着が認められた。

図 5.3.1-9 に介在鉱物が認められない割れ目の例を、図 5.3.1-10 にフィルム状の介在鉱物の 例、図 5.3.1-11 に介在鉱物(緑泥石)がコーティングする割れ目の例、図 5.3.1-12 に介在鉱物 が粘土鉱物の例を示す。

図 5.3.1-9 介在鉱物が認められない例 (15MI52 号孔 13.85 mabh 割れ目)

図 5.3.1-10 フィルム状介在鉱物の例 (15MI52 号孔 16.03mabh 割れ目)

図 5.3.1-11 介在鉱物がコーティングする例 (15MI52 号孔 22.350mabh 割れ目)

図 5.3.1-12 介在鉱物が粘土鉱物の例 (15MI52 号孔 24.36mabh 割れ目)

(9) 統合柱状図

ボーリングコア観察結果に基づき掘削深度とコアの性状変化(風化・変質・RQD)、亀裂本数・ 傾斜角との関係を総合柱状図として取りまとめた。図 5.3.1-13 に 15MI52 号孔の総合柱状図を示 す。また、15MI52 号孔のコア写真を図 5.3.1-14~図 5.3.1-17 に示す。

図 5.3.1-13 15MI52 号孔総合柱状図

図 5.3.1-14 15MI52 号コア写真 (0~9.00mabh)

図 5.3.1-15 15MI52 号コア写真 (9.00~18.00mabh)

図 5.3.1-16 15MI52 号コア写真 (18.00~27.00mabh)

図 5.3.1-17 15MI52 号コア写真 (27.000~30.00mabh)

5.3.1.4 キャリパー検層結果

掘削終了後に孔径を把握するためにキャリパー検層を実施した。15MI52 号孔のキャリバー検層結果 を図 5.3.1-18 に示す。3.19mabh まで孔ロケーシング~グラウト区間である。深度 3.0mabh 付近で孔 径が拡孔しているが、これはグラウトの硬化区間に該当し、掘削時のロッドの昇降が影響し損傷した と考えられる。それ以降は特に目立った拡孔部分は認められない。

図 5.3.1-18 15MI52 号孔キャリパー検層結果

5.3.1.5 BTV・フローメータ検層結果

15MI52 号孔のフローメータ検層結果の一覧を表 5.3.1-3 に、検層結果を図 5.3.1-19 に示す。検層 結果から流量変化が見られた深度は 8.90~10.70mabh、14.80~18.20mabh、23.00~24.20mabh、およ び 27.20~28.70mabh の 4 深度である。

流量変化が認められた4深度のうち8.90~10.70mabh間にはBTVから5本の割れ目が認められ、流量変化量は0.8L/minであった。14.80~18.20mabhではBTVから3本の割れ目が認められ、流量変化量は0.7L/minであった。23.00~24.20mabhでは、BTVから1本の割れ目が認められ、流量変化量は0.6L/minであった。そして、27.20~28.70mabhでは、BTVから1本の割れ目が認められ、流量変化量は0.7L/minであった。

	桧層区間	流量変化占	流量変化量	コア観察結里から一致
孔名	(mabh)	《mabh》	灬重叉10重 (I∕min)	する割れ日番号
	(1110011)	(mabili)	(=,)	0-52
				0-53
		0 0 1 0 7	0.0	0-54
		8.9~10.7	0.8	0-55
				1-1
				1-2
15MI52				1-18
				1-20
		14.8 ~ 18.2	0.7	1-22
			0.7	1-23
	3 22~28 72			1-24
1010102	5.22 20.72			1-25
				2-13
		23.0~24.2	0.6	2-14
				2-16
				2-32
				2-33
				2-34
		27.2 ~ 28.7	0.7	2-36
				2-37
				2-38
				2-39

表 5.3.1-3 15MI52 号孔のフローメータ検層結果一覧

図 5.3.1-19 15MI52 号孔のフローメータ検層結果

5.3.1.6 透水試験結果(単孔式、孔間)

(1) 単孔式透水試験結果

試験対象とする割れ目は、コア観察やBTVの画像、フローメータ検層結果および掘削時の湧水量 変化から、透水性の割れ目と思われる 9mabh、16mabh、24mabh および 27mabh 付近の割れ目とした。 単孔式の透水試験は、抽出した割れ目の深度と湧水量を詳細に把握し、概略的な透水量係数を得る 目的で実施し、その結果から孔間透水試験区間を選定した。単孔式透水試験の試験実施深度と湧水 量を図 5.3.1-20~図 5.3.1-22 に示し、試験結果を表 5.3.1-4 に示す

図 5.3.1-20 15MI52 号孔 15~19mabh 付近の単孔式透水試験深度図

図 5.3.1-21 15MI52 号孔 21~25mabh 付近の単孔式透水試験深度図

図 5.3.1-22 15MI52 号孔 26~30mabh 付近の単孔式透水試験深度図

	試験	深度	区間長		透水量係数	湧水量	圧力
試験番号	上端 mabh	下端 mabh	m	割れ目番号	m²/sec	L/min	M P a
1-1	27.30	27.97	0.67	2-32~2-34	1.21E-08	0.58	3.4392
1-2	28.52	30.00	1.48	2-39~2-45	1.34E-09	0.05	3.4392
1-3	27.30	30.00	2.70	2-32~2-45	1.25E-08	0.40	3.4392
1-④	26.82	27.49	0.67	2-30~2-33	6.24E-10	0.03	3.4392
2-①	23.90	24.57	0.67	2-16,2-18	6.19E-09	0.30	3.4692
2-2	23.23	23.90	0.67	2-13~2-15	2.07E-09	0.10	3.4692
2-3	23.53	24.20	0.67	2-15,2-16	6.19E-09	0.30	3.4692
2-④	23.03	23.70	0.67	2-12~2-14	3.31E-09	0.16	3.4692
3-①	17.25	17.92	0.67	1-24,1-25	5.41E-09	0.26	3.4362
3-②	17.00	17.67	0.67	1-22~1-25,1"-3,1"-4	6.87E-09	0.33	3.4362
3-3	15.95	16.62	0.67	1-20,1-21	8.34E-09	0.40	3.4362
3-④	16.25	16.92	0.67	1-21	2.09E-10	0.01	3.4362
3-5	15.20	15.87	0.67	1-18,1-19	6.25E-09	0.30	3.4362
4-①	10.10	10.77	0.67	1-2	3.12E-09	0.15	3.3711
4-2	9.00	9.67	0.67	0-50 ~ 0-53	1.00E-08	0.48	3.3711
4-3	8.30	8.97	0.67	0-45~0-48	3.75E-09	0.18	3.3711
4-④	9.40	10.07	0.67	0-52~0-55,1-1	1.66E-08	0.80	3.3711
4-5	9.70	10.37	0.67	0-55,1-1,1-2	1.62E-08	0.78	3.3711

表 5.3.1-4 15MI52 号孔の単孔式透水試験の結果一覧

: 孔間透水試験の実施区間

(2) 孔間透水試驗結果

透水試験結果を表 5.3.1-5 に示す。単孔式透水試験結果から選定した4深度において孔間透水試 験を実施した。孔間透水試験は定流量揚水試験を実施した。試験中は間隙水圧モニタリング装置の サンプリングインターバルを5秒に変更して孔間透水試験時の水圧応答を計測した。

なお、単孔透水試験と孔間透水試験で透水量係数を比較すると、孔間透水試験での結果の方が大 きい値が得られた。単孔透水試験では孔口の圧力を0として水圧差を求めており、試験区間の割れ 目におけるスキン効果を考慮できないため、このような差となったと考えられる。

	計解	涩由	反問F	問防水圧	添水昌仮粉	添水反数			通业量	ᄖᅭᆇᆖ
			区间衣	间隙小压	迈小里保致 迈小保致			扬小里		
試験番号	上端 (mabh)	下端 (mabh)	(m)	(MPa)	$T(m^2/sec)$	k(m/sec)	試験方法	解析方法	(L/min)	(L/min)
					6.33E-09	9.44E-09	RW1	Jacob		0.1578
1_1	27.20	27 07		2 4 2 0 2	6.83E-09	1.02E-08	RWS1	Agarwal	0.500	I
1-0	27.30	27.97		3.4392	2.76E-08	4.12E-08	RW2	Jacob	0.580	0.1578
					5.93E-08	8.93E-08	RWS2	Agarwal		-
2-1	22.00	24 57		3 4602	9.46E-08	1.41E-07	RW1	Jacob	0 200	0.0876
2 🕕	23.90	24.37	0.67	J.409Z	8.47E-08	1.26E-07	RWS1	Agarwal	0.000	-
			0.07		4.86E-08	7.26E-08	RW1	Jacob		0.1020
2_2	15.05	16.60		2 4 2 6 2	1.80E-07	2.69E-07	RWS1	Agarwal	0.400	I
3-(3)	10.90	10.90 10.02		3.4362	7.55E-09	1.13E-08	RW2	Jacob	0.400	0.1020
					7.31E-09	1.09E-08	RWS2	Agarwal		-
1-2	0.00	0.67		2 2711	1.58E-07	2.35E-07	RW1	Jacob	0.490	0.1356
4 2	9.00	9.07		3.3711	4.55E-07	6.79E-07	RWS1	Agarwal	0.460	-

表 5.3.1-5 15MI52 号孔孔間透水試験結果一覧表

※透水量係数の太文字を代表値とした。

a. 1-①区間(27.30~27.97mabh)の透水試験結果

No.1 区間の湧水量は 0.58L/min であり、揚水量約 0.16L/min の定流量揚水試験を実施した。試験区間 P2 の圧力変化を図 5.3.1-23 に示す。

揚水過程の Derivative Plot を図 5.3.1-24 に、Jacob 法による解析結果を図 5.3.1-25 に、回 復過程の Derivative Plot を図 5.3.1-26 に、Agarwal 法による解析結果を図 5.3.1-27 に示す。

Derivative Plot より揚水過程では t=1E+2~5E+2 および t=5E+3 付近で 2 つの直線勾配が認め られ、回復過程では t=1E+2 および t=5E+3 付近で 2 つの直線勾配が認められる。

揚水過程において、図 5.3.1-25 に示す直線勾配から Jacob の式を用いて透水量係数 T を求めると遠方では T=2.76E-8 (m²/sec)、近傍では T=6.33E-9 (m²/sec)が得られた。

また、回復過程においても図 5.3.1-27 に示す直線勾配から Agarwal の式を用いて透水量係数 T を求めると遠方では T=5.93E-8 (m²/sec)、近傍では T=6.83E-9(m²/sec)が得られた。

透水量係数の代表値は、遠方が周辺水理場の代表的な透水量係数と考え、より自然状態に近い と考えられる回復過程の透水量係数 T=5.93E-8 (m²/sec)を採用した。

経時変化

図 5.3.1-23 15MI52 号孔 1-①区間の試験時における圧力変化

図 5.3.1-24 15MI52 号孔 1-①区間定流量揚水試験の揚水過程の Derivative Plot

図 5.3.1-25 15MI52 孔 1-①区間定流量揚水試験の揚水過程の Jacob 法による解析結果

図 5.3.1-26 15MI52 号孔 1-①区間定流量揚水試験の回復過程の Derivative Plot

図 5.3.1-27 15MI52 号孔 1-①区間定流量揚水試験の回復過程の Agarwal 法による解析結果

b. 2-①区間(23.90~24.57mabh)の透水試験結果

2-①区間の湧水量は 0.30L/min であり、揚水量約 0.09L/min の定流量揚水試験を実施した。試験区間 P2 の圧力変化を図 5.3.1-28 に示す。

揚水過程のDerivative Plot を図 5.3.1-29 に、Jacob 法による解析結果を図 5.3.1-30 に、回 復過程のDerivative Plot を図 5.3.1-31 に、Agarwal 法による解析結果を図 5.3.1-32 に示す。。 Derivative Plot より揚水過程では t=1E+3 付近で直線勾配が認められ、回復過程では t=1E+2~ 1E+3 付近で直線勾配が認められる。

揚水過程において、図 5.3.1-30 に示すように直線勾配が見出され、Jacob の式を用いて透水 量係数 T を求めると T=9.46E-8 (m²/sec)が得られた。

また、回復過程において図 5.3.1-32 に示す直線勾配から Agarwal の式を用いて透水量係数 T を求めると T=8.47E-8(m²/sec)が得られた。

透水量係数の代表値は、より自然状態に近いと考えられる回復過程の透水量係数 T=8.47E-8 (m²/sec)を採用した。

経時変化

図 5.3.1-28 15MI52 号孔 2-①区間の試験時の圧力変化

図 5.3.1-29 15MI52 号孔 2-①区間定流量揚水試験の揚水過程の Derivative Plot

図 5.3.1-30 15MI52 号孔 2-①区間定流量揚水試験の揚水過程の Jacob 法による解析結果

図 5.3.1-31 15MI52 号孔 2-①区間定流量揚水試験の回復過程の Derivative Plot

図 5.3.1-32 15MI52 号孔 2-①区間定流量揚水試験の回復過程の Agarwal 法による解析結果

c. 3-③区間(15.95~16.62mabh)の透水試験結果

3-③区間の湧水量は 0.40 L/min であり、揚水量約 0.10L/min の定流量揚水試験を実施した。
 試験区間 P2 の圧力変化図 5.3.1-33 に示す。揚水過程の Derivative Plot を図 5.3.1-34 に、
 Jacob 法による解析結果を図 5.3.1-35に、回復過程の Derivative Plot を図 5.3.1-36 に、Agarwal
 法による解析結果図を図 5.3.1-37 に示す。

Derivative Plot より揚水過程では t=1E+1~1E+2 付近および t=1E+3 付近で 2 つの直線勾配が 認められ、回復過程では t=5E+1 付近および t=1E+3 付近で 2 つの直線勾配が認められる。

揚水過程において、図 5.3.1-35 に示す直線勾配が見出され、Jacob の式を用いて透水量係数 T を求めると遠方では T=4.86E-8 (m²/sec)、近傍では T=7.55E-9 (m²/sec)が得られた。

また、回復過程においても図 5.3.1-37 に示す直線勾配が見出すことができ、Agarwal の式を 用いて透水量係数 T を求めると遠方では T=1.80E-7(m²/sec) 、近傍では T=7.31E-9(m²/sec)が得 られた。

透水量係数の代表値は、遠方が周辺水理場の代表的な透水量係数と考え、より自然状態に近い と考えられる回復過程の透水量係数 T=1.80E-7 (m²/sec)を採用した。

図 5.3.1-33 15MI52 号孔 3-③区間の試験時における圧力変化

図 5.3.1-34 15MI52 号孔 3-③区間定流量揚水試験の揚水過程の Derivative Plot

図 5.3.1-35 15MI52 号孔 3-③区間定流量揚水試験の揚水過程の Jacob 法による解析結果

図 5.3.1-36 15MI52 号孔 3-③区間定流量揚水試験の回復過程の Derivative Plot

図 5.3.1-37 15MI52 号孔 3-③区間定流量揚水試験の回復過程の Agarwal 法による解析結果

d. 4-②区間(9.90~9.67mabh)の透水試験結果

4-②区間の湧水量は 0.48L/min であり、揚水量約 0.14L/min の定流量揚水試験を実施した。
試験区間 P2 の圧力変化を図 5.3.1-38 に示す。揚水過程の Derivative Plot を図 5.3.1-39 に、
Jacob 法による解析結果を図 5.3.1-40 に、回復過程の Derivative Plot を図 5.3.1-41 に、Agarwal
法による解析結果図を図 5.3.1-42 に示す。

Derivative Plot より揚水過程では t=1E+2 付近で直線勾配が認められ、回復過程では t=1E+2 ~1E+3 付近で直線勾配が認められる。

揚水過程において、図 5.3.1-40 に示す直線勾配が見出され、Jacob の式を用いて透水量係数 T を求めると T=1.58E-07 (m²/sec)が得られた。

また、回復過程においても図 5.3.1-42 に示す直線勾配が見出すことができ、Agarwal の式を 用いて透水量係数 T を求めると T=4.55E-07(m²/sec)が得られた。

透水量係数の代表値は、より自然状態に近いと考えられる回復過程の透水量係数 T=4.55E-7 (m²/sec)を採用した。

図 5.3.1-38 15MI52 号孔 4-2)区間の試験時における圧力変化

図 5.3.1-39 15MI52 号孔 4-②区間定流量揚水試験の揚水過程の Derivative Plot

図 5.3.1-40 15MI52 号孔 4-②区間定流量揚水試験の揚水過程の Jacob 法による解析結果

図 5.3.1-41 15MI52 号孔 4-②区間定流量揚水試験の回復過程の Derivative Plot

図 5.3.1-42 15MI52 号孔 4-②区間定流量揚水試験の回復過程の Agarwal 法による解析結果

5.3.1.7 高精度孔曲検層結果

15MI52 号孔において、高精度孔曲り検層を深度 0.00~30.00mabh において実施した。

検層結果は傾斜が下向き 30°の計画に対し実測で下向き 29.41°、方位角が №75° Wの計画に対し実 測で №76.62° W であった。

調査域におけるボーリング孔跡平面図を図 5.3.1-43 に示す。また、ボーリング孔跡の計画と実績の差を図 5.3.1-44~図 5.3.1-45 に示す。

図 5.3.1-43 調査域におけるボーリング孔跡平面図(15MI52 号孔)

図 5.3.1-44 15MI52 号孔のボーリング孔跡図(左右変位推移)

図 5.3.1-45 15MI52 号孔のボーリング孔跡図(上下変位推移)

5.3.1.8 高解像度 BTV 検層結果

BIPS 計測を実施した 15MI52 号孔の孔内展開画像を割れ目の方向と共に図 5.3.1-46~図 5.3.1-53 に示す。

BIPS 計測で得られた割れ目情報は、全岩盤分離面、割れ目、開口割れ目、鉱物脈として、それぞれ 統計的に整理した。整理した結果を図 5.3.1-54~図 5.3.1-57 に示す。

BIPS 計測で確認した全岩盤分離面の内、湧水伴う開口割目について詳細観察を行った。詳細観察の 結果を図 5.3.1-58~図 5.3.1-66 に示す。

図 5.3.1-46 15MI52 号孔 孔壁展開図 0.00~4.00mabh

タイトル:高解像度BTV調査 孔番:15MI52

図 5.3.1-47 15MI52 号孔 孔壁展開図 4.00~8.00mabh

タイトル:高解像度BTV調査 孔番:15MI52

図 5.3.1-48 15MI52 号孔 孔壁展開図 8.00~12.00mabh

-

•

タイトル:高解像度BTV調査 孔番 : 15MI52

図 5.3.1-49 15MI52 号孔 孔壁展開図 12.00~16.00mabh

タイトル:高解像度BTV調査 孔番 : 15MI52

図 5.3.1-50 15MI52 号孔 孔壁展開図 16.00~20.00mabh

-

•

タイトル:高解像度BTV調査 孔番 : 15MI52

図 5.3.1-51 15MI52 号孔 孔壁展開図 20.00~24.00mabh

-

•

タイトル:高解像度BTV調査 孔番 : 15MI52

図 5.3.1-52 15MI52 号孔 孔壁展開図 24.00~28.00mabh

-

図 5.3.1-53 15MI52 号孔 孔壁展開図 28.00~30.00mabh (撮影は 29.65mabh まで)

図 5.3.1-54 15MI52 号孔 ステレオネット図 -全岩盤分離面-

図 5.3.1-55 15MI52 号孔 ステレオネット図 -割れ目-

図 5.3.1-56 15MI52 号孔 ステレオネット図 -開口割れ目-

図 5.3.1-57 15MI52 号孔 ステレオネット図 -鉱物脈-

図 5.3.1-58 15MI52 号孔 詳細観察画像(8.66mabh N28W/82E)

図 5.3.1-59 15MI52 号孔 詳細観察画像(9.30mabh N17W/76W)

図 5.3.1-60 15MI52 号孔 詳細観察画像(9.47mabh N26W/81W)

図 5.3.1-61 15MI52 号孔 詳細観察画像(9.98mabh N34E/87SE)

図 5.3.1-62 15MI52 号孔 詳細観察画像(16.09mabh N23W/78W)

図 5.3.1-63 15MI52 号孔 詳細観察画像(17.59mabh N32E/89NW)

開口幅計測結果 N32E 89NW

図 5.3.1-64 15MI52 号孔 詳細観察画像 (22.40mabh N24E/85E)

図 5.3.1-65 15MI52 号孔 詳細観察画像(23.33mabh N27E/88E)

図 5.3.1-66 15MI52 号孔 詳細観察画像(27.67mabh N36W/82SW)

- 5.3.2 15MI53 号孔の調査結果
- 5.3.2.1 ボーリング掘削位置の設定

ボーリング掘削位置、方向、伏角は 15MI53 号孔の調査結果を基に設定した。 ボーリング掘削方向は N75°Wとした。伏角は水平から下向き 30°を計画した。 15MI53 号孔の仕様一覧を表 5.3.2-1に、掘削位置や方向図を図 5.3.2-1に示す。

孔名	15MI53 号孔		
掘削方法	オールコア、清水掘削		
主要孔径	86mm		
掘削長	30.00mabh		
掘削方向	鉛直方向:-30° (下向き) 水平方向:方位 N75° W		
掘削位置	X=-69129.989 Y=6337.608 Z=-498.692 (世界測地系)		

表 5.3.2-1 15MI53 号孔の仕様

図 5.3.2-1 15MI53 号孔の掘削位置および方向

5.3.2.2 ボーリング孔掘削

(1) 1段目掘削

1 段目の掘削は、孔口から EDZ の影響と考えられる割れ目が減少する範囲までとした。採取した コアの亀裂状況から、孔口ケーシングのセメントによる固定に配慮し、Φ141mm 掘削は 2.925mabh までとした。

掘削は掘削外径 ϕ 86mm、コア径 ϕ 72mm でコア採取を行った。コア採取後は ϕ 86mm→ ϕ 101.0mm→ ϕ 127.0mm→ ϕ 141.0mm ダイヤモンドビットを用いて3段階で拡孔した。

本業務ではボーリング掘削で発生する湧水が EDZ を介し逸水するのを防ぐために、湧水対策とし てクイックライナーエ(パッチ)を施した後に孔ロケーシングを設置した。孔ロケーシング挿入後 は、クイックライナーとケーシングを固定するため空隙部にグラウト材を充填した。グラウト材の 硬化養生後、加圧試験(水圧 5MPa を 10 分間維持)を行い、遮水性能を確認した。

孔口ケーシングの設置概念図を図 5.3.2-2 に示す。

図 5.3.2-2 15MI53 号孔ロケーシング設置概念図

(2) 2段目掘削

2 段目の掘削は、突発的な湧水量の増加に備えて孔口にプリベンダーおよびゲートバルブからな る孔口装置を設置した。掘削中の大量湧水等の作業上の支障はなく、掘削予定深度の 30.00mabh ま で掘削を完了した。また、掘削中に孔壁崩壊の症状となり得る送水圧の上昇、リターン水の白濁、 回転数の低下は確認されなかった。

(3) コア採取率

孔口~30.00mabh までの掘削に対して、全深度でコア採取率 100% であった。

(4) 掘削時の湧水量

掘削時に1掘進長ごとに孔口からの湧水量を測定した。測定結果を表 5.3.2-2 および図 5.3.2-3 に示す。測定湧水量は掘削深度までの累積した湧水量を示し、区間湧水量はボーリングの1掘進毎 の湧水量を示す。

掘削終了後の全体湧水量は 4.00L/min であった。また、掘削区間ごとに 0.5L/min 以上の湧水量

が認められたのは、以下の3区間であった。

- 8.60mabh~9.58mabh (1.21L/min)
- 10.58mabh~11.57mabh (2.80L/min)
- 14.05mabh~15.09mabh (0.90L/min)

掘削区間			測定湧水量	区間湧水量
mabh			L/min	L/min
0.00	~	0.80	0.00	0.00
0.80	~	1.80	0.00	0.00
1.80	~	2.30	0.00	0.00
2.30	~	2.53	0.00	0.00
2.53	~	3.27	0.00	0.00
3.27	~	3.97	0.07	0.07
3.97	~	4.85	0.18	0.11
4.85	~	5.88	0.27	0.09
5.88	~	6.88	0.27	0.00
6.88	~	7.60	0.28	0.01
7.60	~	8.60	0.29	0.01
8.60	~	9.58	1.50	1.21
9.58	~	10.58	1.60	0.10
10.58	~	11.57	4.40	2.80
11.57	~	12.25	4.50	0.10
12.25	~	13.17	4.10	-0.40
13.17	~	14.05	4.00	-0.10
14.05	~	15.09	4.90	0.90

表 5.3.2-2 15MI53 号孔掘削時孔口湧水量測定結果

掘削区間			測定湧水量	区間湧水量			
mabh			L/min	L/min			
15.09	~	15.90	4.70	-0.20			
15.90	~	16.65	4.70	0.00			
16.65	~	17.69	4.80	0.10			
17.69	~	18.70	4.80	0.00			
18.70	~	19.70	5.00	0.20			
19.70	~	20.70	4.90	-0.10			
20.70	~	21.70	5.00	0.10			
21.70	~	22.70	5.10	0.10			
22.70	~	23.70	5.20	0.10			
23.70	~	24.70	5.20	0.00			
24.70	~	25.70	5.30	0.10			
25.70	~	26.70	5.20	-0.10			
26.70	~	27.68	5.20	0.00			
27.68	~	28.68	5.20	0.00			
28.68	~	29.35	5.20	0.00			
29.35	~	30.00	5.10	-0.10			

:1段目の掘削範囲

図 5.3.2-3 15MI53 号孔の孔口湧水量測定結果

(5) 15MI53 号孔掘削中の 15MI52 号孔の水圧挙動

15MI53 号孔掘削時における 15MI52 号孔の水圧挙動を示す。水圧の応答としては深度 9mabh 付近、深度 11mabh 付近、深度 15mabh 付近、深度 18~20mabh 付近、深度 27~29mabh 付近の 5 深度 でとくに大きな水圧変化が見られた。

図 5.3.2-4 15MI53 号孔掘削中の 15MI52 号孔の水圧挙動

(6) 掘削水の蛍光染料の濃度管理

ボーリング掘削水には蛍光染料であるアミノG酸をトレーサー剤として添加して掘削を行った。 掘削中は1時間以下の間隔でリターン水をサンプリングし、濃度が5mg/L±10%以内の範囲にあるこ とを確認した。

アミノG酸濃度と湧水量の深度変化を図 5.3.2-6 に示す。

15MI53 号孔においてトレーサー濃度管理を行った深度は、孔口から 30.00mabh までである。

孔口~10.45mabh 間では湧水は認められず、濃度調整の結果、概ね5mg/L±10%の範囲に収めることが出来た。なお、添加したアミノG酸の総量は4.70gであった。

図 5.3.2-6 15MI53 号孔掘削水のアミノG酸濃度と湧水量

5.3.2.3 コア観察結果

調査ボーリング孔 15MI53 号孔 (L=30.00mabh)の掘削で得られたボーリングコアの観察結果を以下に まとめた。

(1) 岩相

15MI53 号孔の 0.00~0.27mabh は立坑掘削時に伴うインバートコンクリートおよび吹付けコン クリートである。0.27~30.00mabh は粗粒~中粒の黒雲母花崗岩である。等粒状~斑状を呈し主 要な造岩鉱物は石英・カリ長石・斜長石・黒雲母で、ごく微細な角閃石を含む。

15MI52 号孔と同様にアプライト脈やペグマタイト脈、塩基性岩の貫入などはボーリングコア全体を通じてみられず均質な岩相と判断できる。

これ以外に石英脈と方解石脈が厚さ数 cm で散見される。10.45~10.47mabh、10.48~10.53mabh に比較的厚い石英脈の貫入が認められる。

(2) 風化の程度

15MI53 号孔に主要造岩鉱物の風化はほとんど認められず、ほぼ全区間を通じて未風化である 「α」に該当する。

横坑施工時の吹付けコンクリートの背面側にあたる 0.27mabh~0.33mabh の区間が、わずかに 風化が進む「β」に該当する。これ以外には、1.80~1.90mabh および 8.55~8.65mabh で割れ目 に沿ってわずかに風化が進んでおり、また、10.94~11.70mabh で同じ傾斜の亀裂が卓越し割れ目 本数もやや多いことから、風化区分「β」に分類される。

(3) 岩級等級

15MI53 号孔のボーリングコアは、「B」級主体で、一部が「CH」級に分類されると評価した。

22.60mabh までは「B」級に該当する区間が優勢であるが、22.60mabh 以深の区間では「CH」級に 該当する(ごく一部は「CM級」)区間が優勢となる。

(4) 最大コア長と RQD

15MI53 号孔の最大コア長は最小 15cm、最大で 70cm であった。RQD の値は最小 0%、最大 100% であった。RQD に関しては掘削長 11.00~12.00mabh、23.00~24.00mabh、27.00~28.00mabh の 3 区間において 43~60%と相対的に低い値を示す。このうち、11.00~12.00mabh と 27.00~28.00mabh の区間では、石英脈の貫入に伴い母岩の変質や脈に並行な割れ目が卓越して発達しており、この ことが RQD の値が周辺の区間と比較して相対的に低い理由として考えられる。これらの 3 区間以 外では RQD の値は概ね 80~100%の値を示す。

(5) 割れ目密度

割れ目密度はボーリングコア長 1m あたりの割れ目本数で定義した(割れ目の成因(自然・人為的)は考慮していない)。

15MI53 号孔の割れ目密度は 1~9(本/m)の範囲を示す。15MI52 号孔とは異なり、調査ボーリン グ孔ロ元付近においても割れ目密度が小さく、EDZ の影響は認められない。8.00~9.00mabh、11.00 ~12.00mabh の区間では割れ目密度の値が 8(本/m)、27.00~28.00mabh の区間では割れ目密度の 値が 9(本/m)を示すが、相対的に大きな値を示すのはこの 3 区間に限定される。

(6) 割れ目記載

15MI53 号孔のボーリングコアにおける割れ目毎の①傾斜角度、②成因、③割れ目の変質程度を 計測・観察して掘削長との関係について検討した。

割れ目の傾斜角度については、70°以上の傾斜角を有する高角度割れ目も数本ではあるが分布 する。掘削長と割れ目の傾斜角の間には明瞭な相関関係は認められないが、15mabh以深のボーリ ングコアにおいては 0°~40°傾斜の比較的低角度の割れ目が卓越する傾向がみられた。なお、 割れ目の傾斜角度はボーリングコアの長軸方向と直交する面を「0°」とした(長軸と並行な割れ 目が「90°」)。

割れ目の成因については「T:引張割れ目」が一番多く、次いで「D:掘削割れ目」、「SorT、TorD: 不明」と続き最も少ないのが「S:剪断割れ目」となる。また、「S:剪断割れ目」に関しては14mabh 以深のボーリングコアでは観察されない特徴がある。

「水酸化鉄」・「赤鉄鉱」・「緑泥石」・「セリサイト」・「粘土鉱物」の生成、「溶脱」の 程度に基づく割れ目表面における変質程度と掘削長との間には明瞭な相関関係は認められない。 ただし「水酸化鉄」と「溶脱」の程度に関しては 21mabh 以深のボーリングコアにおいて程度が 強くなる傾向を示した。

一方、「緑泥石」の生成については口元に近い 2.00~7.00mabh 付近にかけて程度が強い傾向 が認められた。

(7) 割れ目沿いの変質

15MI53 号孔のボーリングコアは母岩全体に及ぶ広範囲の変質は被っていない。変質の範囲は石 英脈貫入に伴う並行な範囲や、開口割れ目・潜在割れ目を中心とした範囲に限定される。変質の 影響が認められる範囲は最大でも幅 100mm 程度である。

変質を受ける部分では主要造岩鉱物のカリ長石・斜長石の斑晶周辺部がやや不明瞭となるもの や、カリ長石がより強いピンク色を呈する様子、斜長石の白濁化(セリサイト化)・淡緑白色を呈 する様子が認められた。

15MI53 号孔のボーリングコアにおいては 2.60~2.78mabh、10.43~10.63mabh、27.48~27.89mah の範囲において石英脈の貫入に伴う変質が認められた。これ以外では 8.53~8.66mabh、11.07~ 11.12mabh、23.29~23.36mabh、26.21~26.30mabhの範囲で割れ目沿いの母岩変質が認められた。

(8) 割れ目の介在鉱物

15MI53 号孔のボーリングコアでは、割れ目の介在鉱物として方解石・緑泥石が多くみられ、産 状は、割れ目表面にフィルム状に付着する様子や割れ目表面全体をコーティングする様子が観察 された。この他の介在鉱物としては、希塩酸の滴下で発泡する淡緑灰色・明白灰色を帯びた粘土 鉱物が、割れ目に付着する様子が観察された。また、一部の割れ目表面にはごく微細な黄鉄鉱の 付着や黄緑色~明緑色を帯びる微細な緑簾石の付着が認められた。

図 5.3.2-7 に割れ目充填鉱物の例(緑泥石)を、図 5.3.2-8 に割れ目充填鉱物の例(緑簾石)を 示す。

図 5.3.2-7 割れ目充填鉱物の例(15MI53 号孔 緑泥石)

図 5.3.2-8 割れ目充填鉱物の例 (15MI53 号孔 緑簾石)

(9) 統合柱状図

ボーリングコア観察結果に基づき掘削深度とコアの性状変化(風化・変質・RQD)、亀裂本数・ 傾斜角との関係を総合柱状図として取りまとめた。図 5.3.2-9 に 15MI53 号孔の総合柱状図を示 す。また、15MI53 号孔のコア写真を図 5.3.2-10~図 5.3.2-13 に示す。

図 5.3.2-9 15MI53 号孔総合柱状図

図 5.3.2-10 15MI53 号コア写真 (0~9.00mabh)

図 5.3.2-11 15MI53 号コア写真 (9.00~18.00mabh)

図 5.3.2-12 15MI53 号コア写真 (18.00~27.00mabh)

図 5.3.2-13 15MI53 号コア写真 (27.000~30.00mabh)

5.3.2.4 キャリパー検層結果

掘削終了後に孔径を把握するためにキャリパー検層を実施した。15MI53 号孔のキャリバー検層結果 を図 5.3.2-14 に示す。3.27mabh まで孔ロケーシング~グラウト区間である。3.00mabh 付近で孔径が 拡孔しているが、これはグラウトの硬化区間に該当し、掘削時のロッドの昇降が影響し損傷したと考 えられる。それ以降は特に目立った拡孔部分は認められない。

図 5.3.2-14 15MI53 号孔キャリパー検層結果

5.3.2.5 BTV・フローメータ検層結果

15MI53 号孔のフローメータ検層結果の一覧を表 5.3.2-3 に、検層結果を図 5.3.2-15 に示す。検層 結果から流量変化が見られた深度は 9.20~11.20mabh、14.80~15.20mabh、18.20~18.90mabh の 3 深 度である。

流量変化が認められた 3 深度のうち 9.20~11.20mabh 間には BTV から 1 本の割れ目が認められ、流 量変化量は 2.8L/min であった。また、14.80~15.20mabh では BTV から 4 本の割れ目が認められ、流 量変化量は 0.6L/min であった。18.20~18.90mabh では、BTV から 1 本の割れ目が認められ、流量変化 量は 0.5L/min であった。なお、BTV 検層の結果、10 mabh 付近から溶存ガスの湧出が確認された。

고 夕	検層区間	流量変化点	流量変化量	コア観察結果から一致	
11-1	(mabh)	(mabh)	(L∕min)	する割れ目番号	
				0-37	
				0-38	
				0-39	
				0-40	
				0-41	
	3.22~28.65	9.2~11.2	2.8	1-1	
15MI53				1-2	
				1-3	
				1-5	
				1-6	
				1-7	
				1-8	
		14 8~15 2	0.6	1-27	
		14.0**15.2	0.0	1-28	
				1-36	
				1-37	
		18.2 ~ 18.9	0.5	1-38	
				1-39	
				1-40	

表 5.3.2-3 15MI53 号孔のフローメータ検層結果一覧

図 5.3.2-15 15MI53 号孔のフローメータ検層結果

5.3.2.6 透水試験結果(単孔式、孔間)

(1) 単孔式透水試験結果

試験対象とする割れ目は、コア観察やBTVの画像、フローメータ検層結果および掘削時の湧水量 変化より、透水性の割れ目と思われる 9mabh、12mabh、15mabh、20mabh および 25mabh 付近の割れ 目を抽出した。

単孔式の透水試験は、抽出した割れ目の深度と湧水量を詳細に把握し、概略的な透水量係数を得る目的で実施し、その結果から孔間透水試験区間を選定した。単孔式透水試験の試験実施深度と湧水量を図 5.3.2-16~図 5.3.2-20 に示し、試験結果を表 5.3.2-4 に示す。

図 5.3.2-16 15MI53 号孔 9.0mabh 付近の単孔式透水試験深度図

図 5.3.2-17 15MI53 号孔 12mabh 付近の単孔式透水試験深度図

図 5.3.2-18 15MI53 号孔 15mabh 付近の単孔式透水試験深度図

図 5.3.2-19 15MI53 号孔 20mabh 付近の単孔式透水試験深度図

図 5.3.2-20 15MI53 号孔 25mabh 付近の単孔式透水試験深度図

	試験深度		区間長		透水量係数	湧水量	圧力
試験番号	上端 mabh	下端 mabh)	m	割れ目番号	m²/sec	L/min	MP a
1-①	12.30	12.97	0.67	1-18~1-20	6.63E-10	0.03	3.45493
1-2	11.50	12.17	0.67	1-12~1-16	2.27E-09	0.11	3.45493
1-3	10.83	11.50	0.67	1-5~1-11	5.12E-08	2.47	3.45493
1-④	10.10	10.77	0.67	1-2,1-3	2.70E-09	0.13	3.45493
1-5	8.75	9.42	0.67	0-36~0-39	1.37E-08	0.66	3.45493
1-6	8.09	8.75	0.67	0-29~0-35	4.14E-10	0.02	3.45493
2-①	15.20	15.87	0.67	1-29~1-32	6.70E-09	0.33	3.52785
2-2	14.90	15.57	0.67	1-28	1.42E-08	0.70	3.52785
2-3	14.23	14.90	0.67	1-25~1-27	3.04E-09	0.15	3.52785
2-④	10.45	11.12	0.67	1-5~1-8	3.18E-09	1.56	3.52785
3-①	22.13	22.80	0.67	2-9~2-11	1.84E-09	0.09	3.49821
3-②	20.88	21.55	0.67	2-6,2-7	1.02E-10	0.01	3.49821
3-3	19.73	20.40	0.67	2-1~2-4	2.46E-10	0.01	3.49821
3-4	18.80	20.40	0.67	1-39,1-40	5.93E-09	0.29	3.49821
4-①	26.36	27.03	0.67	2-29~2-33	1.42E-09	0.07	3.55055
4-2	23.50	24.17	0.67	2-16~2-19	1.85E-09	0.09	3.55055

表 5.3.2-4 15MI53 号孔の単孔式透水試験の結果一覧

: 孔間透水試験の実施区間

(2) 孔間透水試驗結果

透水試験結果を表 5.3.2-5 に示す。単孔式透水試験結果から選定した4深度において孔間透水試 験を実施した。孔間透水試験は試験番号1-③、2-③、3-④では定流量揚水試験を実施し、試験番号 4-①ではパルス試験を実施した。

なお、単孔透水試験と孔間透水試験で透水量係数を比較すると、孔間透水試験での結果の方が大 きい値が得られた。単孔透水試験では孔口の圧力を0として水圧差を求めており、試験区間の割れ 目におけるスキン効果を考慮できないため、このような差となったと考えられる。

	試験深度		区間長	間隙水圧	透水量係数	透水係数			湧水量	揚水量
試験番号	上端 (mabh)	下端 (mabh)	(m)	(MPa)	T(m ² /sec)	k(m/sec)	試験方法	解析方法	(L/min)	(L/min)
1-③ 10.8			0.67	3.4549	1.14E-06	1.70E-06	RW1	Jacob	2.470	0.1380
	10.02	11 50			9.49E-07	1.42E-06	RWS1	Agarwal		-
	10.03	11.50			6.88E-07	1.03E-06	RW2	Jacob		0.1380
					7.07E-07	1.05E-06	RWS2	Agarwal		I
2-② 14				3.5279	1.51E-07	2.25E-07	RW1	Jacob	0.700	0.0770
	14.00	15 57			3.44E-08	5.13E-08	RWS1	Agarwal		-
	14.90	5 15.57			3.31E-08	4.94E-08	RW2	Jacob		0.0770
					1.67E-07	2.50E-07	RWS2	Agarwal		I
3-④	18.80	19.47		3.4982	4.97E-07	7.41E-07	RW	Jacob	0.290	0.0196
					2.21E-07	3.30E-07	RWS	Agarwal		I
4-(1)	26.36	27.03		3.5506	2.69E-09	4.01E-09	PW	Cooper	0.070	_

表 5.3.2-5 15MI53 号孔孔間透水試験結果一覧表

※透水量係数の太文字を代表値とした。

a. 1-③区間(10.83~11.50mabh)の透水試験結果

1-③区間の湧水量は 2.47L/min であり、揚水量約 0.14L/min の定流量揚水試験を実施した。試験区間 P2 の圧力変化を図 5.3.2-21 に示す。

揚水過程の Derivative Plot を図 5.3.2-22 に、Jacob 法による解析結果を図 5.3.2-23 に、回 復過程の Derivative Plot を図 5.3.2-24 に、Agarwal 法による解析結果を図 5.3.2-25 に示す。

Derivative Plot より揚水過程では t=5E+1 および t=5E+2 付近で 2 つの直線勾配が認められ、 回復過程では t=5E+1 および t=1E+3 付近で 2 つの直線勾配が認められる。

揚水過程において、図 5.3.2-23 に示す直線勾配から Jacob の式を用いて透水量係数 T を求め ると遠方では T=1.14E-6(m²/sec)、近傍では T=6.88E-7(m²/sec)が得られた。また、回復過程にお いても図 5.3.2-25 に示す直線勾配から Agarwal の式を用いて透水量係数 T を求めると遠方では T=9.49E-7 (m²/sec)、近傍では T=7.07E-7 (m²/sec)が得られた。

揚水過程において、図 5.3.2-23 に示す直線勾配から Jacob の式を用いて透水量係数 T を求めると T=1.14E-6(m²/sec)が得られた。

透水量係数の代表値は、遠方が周辺水理場の代表的な透水量係数とみなし、より自然状態に近いと考えられる回復過程の透水量係数 T=9.49E-7 (m²/sec)を採用した。

15MI52 号孔の圧力応答結果を図 5.3.2-26 に示す。透水試験時で最も圧力が応答した区間は 15MI52 号孔の Int5 (8.50~13.10mabh) で 0.021MPa 程度であった。

15MI53_1208_1.JFT

図 5.3.2-21 15MI53 号孔 1-③区間の試験時における圧力変化

図 5.3.2-22 15MI53 号孔 1-③区間定流量揚水試験の揚水過程の Derivative Plot

図 5.3.2-23 15MI53 号孔 1-③区間定流量揚水試験の揚水過程の Jacob 法による解析結果

図 5.3.2-24 15MI53 号孔 1-③区間定流量揚水試験の回復過程の Derivative Plot

図 5.3.2-25 15MI53 号孔 1-③区間定流量揚水試験の回復過程の Agarwal 法による解析結果

図 5.3.2-26 15MI53 号孔 1-3区間定流量揚水試験時の 15MI52 号孔の圧力応答結果図

b. 2-②区間(14.90~15.57mabh)の透水試験結果

2-②区間の湧水量は 0.70L/min であり、揚水量約 0.08L/min の定流量揚水試験を実施した。試験区間 P2 の圧力変化を図 5.3.2-27 に示す。

揚水過程のDerivative Plot を図 5.3.2-28 に、Jacob 法による解析結果を図 5.3.2-29 に、回 復過程のDerivative Plot を図 5.3.2-30 に、Agarwal 法による解析結果を図 5.3.2-31 に示す。

Derivative Plot より揚水過程では t=5E+1 および t=5E+3 付近で2つの直線勾配が認められ、 回復過程では t=5E+1 および t=1E+3 付近で2つの直線勾配が認められる。

揚水過程において、図 5.3.2-29 に示す直線勾配から Jacob の式を用いて透水量係数 T を求めると遠方では T=1.51E-7 (m²/sec)、近傍では T=3.31E-8 (m²/sec)が得られた。

また、回復過程においても図 5.3.2-31 に示す直線勾配から Agarwal の式を用いて透水量係数 T を求めると遠方では T=1.08E-7 (m²/sec)、近傍では T=3.44E-8(m²/sec)が得られた。

水量係数の代表値は、遠方が周辺水理場の代表的な透水量係数とみなし、より自然状態に近い と考えられる回復過程の透水量係数 T=1.08E-7 (m²/sec)を採用した。

15MI52 号孔の圧力応答結果を図 5.3.2-32 に示す。透水試験時で最も圧力が応答した区間は 15MI52 号孔の Int4 (14.30~17.90mabh) で 0.111MPa 程度であった。

15MI53_1209_1.JFT

経時変化

図 5.3.2-27 15MI53 号孔 2-②区間の試験時の圧力変化

図 5.3.2-28 15MI53 号孔 2-②区間定流量揚水試験の揚水過程の Derivative Plot

15MI53_1209_1.JFT

図 5.3.2-29 15MI53 号孔 2-②区間定流量揚水試験の揚水過程の Jacob 法による解析結果

図 5.3.2-30 15MI53 号孔 2-②区間定流量揚水試験の回復過程の Derivative Plot

図 5.3.2-31 15MI53 号孔 2-②区間定流量揚水試験の回復過程の Agarwal 法による解析結果

図 5.3.2-32 15MI53 号孔 2-②区間定流量揚水試験時の 15MI52 号孔の圧力応答結果図

c. 3-④区間(18.80~19.47mabh)の透水試験結果

3-④区間の湧水量は 0.29 L/min であり、揚水量約 0.02L/min の定流量揚水試験を実施した。 試験区間 P2 の圧力変化を図 5.3.2-33 に示す。

揚水過程の Derivative Plot を図 5.3.2-34 に、Jacob 法による解析結果を図 5.3.2-35 に、回 復過程の Derivative Plot を図 5.3.2-36 に、Agarwal 法による解析結果を図 5.3.2-37 に示す。

Derivative Plot より揚水過程では t=1E+2~1E+3 付近で直線勾配が認められ、回復過程では t= 1E+3 付近で直線勾配が認められる。

揚水過程において、図 5.3.2-35 に示す直線勾配から Jacob の式を用いて透水量係数 T を求めると T=4.97E-7(m²/sec)が得られた。

また、回復過程においても図 5.3.2-37 に示す直線勾配か Agarwal の式を用いて透水量係数 T を求めると T=2.21E-7 (m²/sec)が得られた。

透水量係数の代表値は、より自然状態に近いと考えられる回復過程の透水量係数 T=2.21E-7 (m²/sec)とした。

15MI52 号孔の圧力応答結果を図 5.3.2-38 に示す。透水試験時で最も圧力が応答した区間は 15MI52 号孔の Int3 (19.10~21.70mabh) で 0.014MPa 程度であった。

図 5.3.2-33 15MI53 号孔 3-④区間の試験時における圧力変化

図 5.3.2-34 15MI53 号孔 3-④区間定流量揚水試験の揚水過程の Derivative Plot

図 5.3.2-35 15MI53 号孔 3-④区間定流量揚水試験の揚水過程の Jacob 法による解析結果

図 5.3.2-36 15MI53 号孔 3-④区間定流量揚水試験の回復過程の Derivative Plot

図 5.3.2-37 15MI53 号孔 3-④区間定流量揚水試験の回復過程の Agarwal 法による解析結果

図 5.3.2-38 15MI53 号孔 3-④区間定流量揚水試験時の 15MI52 号孔の圧力応答結果図

d. 4-①区間(9.90~9.67mabh)の透水試験結果

4-①区間は上述の単孔式透水試験時に得られた透水量係数が低く(1.85E-9 m²/sec) 湧水量が 少ない(0.07L/min) いことから、定流量揚水試験が実施できないと判断し、パルス試験を実施 した。試験区間 P2 の圧力変化を図 5.3.2-39 に示す。

Cooper 法による解析結果を図 5.3.2-40 に示す。測定値と最も合致する標準曲線を選び、この 標準曲線に対応する α と、任意の合致点に対応する時間軸座標 β 0 と t0 の値を読み取り透水量係 数 T を求めると T=2.69E-9(m²/sec)が得られた。

なお、パルス試験は瞬時に行う試験のため、15MI52号孔への圧力応答は確認されなかった。

経時変化

図 5.3.2-39 15MI53 号孔 4-①区間の試験時における圧力変化

図 5.3.2-40 15MI53 号孔 4-①区間パルス試験の Cooper 法による解析結果

(3) 孔間透水試験中の15MI52 号孔の水圧挙動

孔間透水試験時の 15MI52 号孔の圧力応答結果を表 5.3.2-6 に示す。間隙水圧の変動は、孔間 透水試験の対象とする割れ目の走向と連続すると考えられる区間で最も大きく確認された。また、 連続すると考えられる区間以外については、間隙水圧の変動が非常に小さかった。

表 5.3.2-6 孔間透水試験時の 15MI52 号孔の圧力応答結果一覧表

	15MI52(MPa)									
試験番号	Int1	Int2	Int3	Int4	Int5	Int6				
	26.70~30.00(mabh)	22.90~25.50mabh	19.10~21.70mabh	14.30~17.90mabh	8.50~13.10mabh	2.80~7.30mabh				
15MI53号孔 1-③	0.004	0.000	0.004	0.004	0.001	0.000				
10.83~11.50mabh	0.004	0.003	0.004	0.004	0.021	0.003				
15MI53号孔 2-②	0.006	0.004	0.017	0.111	0.003	亦れたし				
14.90~24.57mabh	0.000	0.004	0.017	0.111	0.003	変化なし				
15MI53号孔 3-④	赤ルた	亦んたい ホルナい		0.004	0.002	ホルた				
18.80~19.47mabh	変化なし	変化なし	0.014	0.004	0.002	変化なし				
15MI53号孔 4-①			_		_					
26.36~27.03mabh	-	-	-	-	-	_				

[単位:MPa]

図 5.3.2-41 15MI53 号孔で実施した孔間透水試験地点と間隙水圧モニタリング装置の配置

5.3.2.7 高精度孔曲検層結果

15MI53 号孔において、高精度孔曲り検層を深度 0.00~30.00mabh において実施した。

検層結果は傾斜が下向き 30°の計画に対し実測で下向き 27.61°、方位角が №75° Wの計画に対し実 測で №75.17° W であった。

調査域におけるボーリング孔跡平面図を図 5.3.2-42 に示す。また、ボーリング孔跡の計画と実績の差を図 5.3.2-43~図 5.3.2-44 に示す。

図 5.3.2-42 調査域におけるボーリング孔跡平面図(15MI53 号孔)

図 5.3.2-43 15MI53 号孔のボーリング孔跡図(左右変位推移)

図 5.3.2-44 15MI53 号孔のボーリング孔跡図(上下変位推移)

5.3.2.8 高解像度 BTV 検層結果

BIPS 計測を実施した 15MI53 号孔の孔内展開画像を割れ目の方向と共に図 5.3.2-45~図 5.3.2-52 に示す。

BIPS 計測で得られた割れ目情報は、全岩盤分離面、割れ目、開口割れ目、鉱物脈として、それぞれ 統計的に整理した。整理した結果を図 5.3.2-53~図 5.3.2-56 に示す。

BIPS 計測で確認した全岩盤分離面の内、湧水伴う開口割目について詳細観察を行った。詳細観察の 結果を図 5.3.2-57~図 5.3.2-65 に示す。

図 5.3.2-45 15MI53 号孔 孔壁展開図 0.00~4.00mabh

図 5.3.2-46 15MI53 号孔 孔壁展開図 4.00~8.00mabh

図 5.3.2-47 15MI53 号孔 孔壁展開図 8.00~12.00mabh

図 5.3.2-48 15MI53 号孔 孔壁展開図 12.00~16.00mabh

図 5.3.2-49 15MI53 号孔 孔壁展開図 16.00~20.00mabh

図 5.3.2-50 15MI53 号孔 孔壁展開図 20.00~24.00mabh

図 5.3.2-51 15MI53 号孔 孔壁展開図 24.00~28.00mabh

孔方位:285 孔倾斜:-28

図 5.3.2-52 15MI53 号孔 孔壁展開図 28.00~30.00mabh (撮影は 29.93mabh まで)

図 5.3.2-53 15MI53 号孔 ステレオネット図 -全岩盤分離面-

図 5.3.2-54 15MI53 号孔 ステレオネット図 -割れ目-

図 5.3.2-55 15MI53 号孔 ステレオネット図 -開口割れ目-

5-147

図 5.3.2-56 15MI53 号孔 ステレオネット図 -鉱物脈-

5-148

図 5.3.2-57 15MI53 号孔 詳細観察画像(9.11mabh N24W/80W)

図 5.3.2-58 15MI53 号孔 詳細観察画像(11.14mabh N32E/84SE)

図 5.3.2-59 15MI53 号孔 詳細観察画像 (11.33mabh N20W/69W)

図 5.3.2-60 15MI53 号孔 詳細観察画像 (14.67mabh N14W/87W)

図 5.3.2-61 15MI53 号孔 詳細観察画像 (15.07mabh N22W/79W)

図 5.3.2-62 15MI53 号孔 詳細観察画像 (18.97mabh N25W/74W)

図 5.3.2-63 15MI53 号孔 詳細観察画像 (22.61mabh N38W/88NE)

図 5.3.2-64 15MI53 号孔 詳細観察画像 (23.81mabh N52W/82NE)

図 5.3.2-65 15MI53 号孔 詳細観察画像 (26.69mabh N44W/85SW)

5.3.3 間隙水圧モニタリング装置の設置

15MI52 号孔および 15MI53 号孔に間隙水圧モニタリング装置を設置した。設置状況の写真を図 5.3.3-1、図 5.3.3-2 に示す。再設置および設置した間隙水圧モニタリング装置の構成図を図 5.3.3-3 に示す。構成図に示す深度はボーリング孔口を基準とした。

間隙水圧モニタリング装置設置後の水圧経時変化図を図 5.3.3-4~図 5.3.3-5 に示す。

図中の凡例にある P(点線)はパッカー圧力を示し、Int(実線)は間隙圧力を示す。図中のイベントとは、ボーリング掘削、各種検層および各種試験を示し圧力が影響したものである。また、図中の装置不具合による欠測は現場休工日から始まっており、原因は不明である。なお、プログラムの再起動により不具合は改善されている。

図 5.3.3-1 間隙水圧モニタリング装置

図 5.3.3-2 間隙水圧モニタリング装置 設置状況

図 5.3.3-3 間隙水圧モニタリング装置の孔内部構成図

図 5.3.3-4 15MI52 号孔の圧力変化

図 5.3.3-5 15MI53 号孔の圧力変化

5.3.4 ポイント希釈試験結果

間隙水圧モニタリング装置の測定区間を用いてポイント希釈試験を実施した。試験結果を以下に示 す。

(1) 蛍光センサーのキャリブレーション結果

蛍光センサーのキャリブレーションは、複数濃度に作成したトレーサー溶液を蛍光濃度センサーにて計測し、その蛍光強度(counts)と、蛍光分光光度計にて計測した蛍光濃度の関係から検量線を作成した。蛍光濃度センサーの検量線を図 5.3.4-1 に示す。

図 5.3.4-1 蛍光濃度センサーの検量線

(2) ポイント希釈試験結果

ポイント希釈試験は 15MI52 号孔の Int1、Int4、Int5 と 15MI53 号孔の Int2、Int4、Int5 の計 6 区間で実施した。

試験結果一覧を表 5.3.4-1 に示す。また、各試験区間の結果を以下に示す。

	孔通過流量 Q _{bh} (mL/min)	単位幅流量 qf (mL/min/m)
15MI52 int1	2.469	0.106
15MI52 int4	3.080	0.132
15MI52 int5	2.744	0.118
15MI53 int2	0.042	0.002
15MI53 int4	3.930	0.169
15MI53 int5	3.073	0.132

表 5.3.4-1 ポイント希釈試験結果一覧

a. 15MI52 号孔 Int1

15MI52 号孔 Int1 の試験条件を表 5.3.4-2 に、試験中におけるトレーサー溶液の循環流量と試験区間圧力の経時変化を図 5.3.4-2、蛍光濃度の経時変化を図 5.3.4-3 に示す。

	15MI52				
対象区間			Int1		
封殿区明	上端深度	mabh	26.70		
武	下端深度	mabh	30.00		
	開始	-	1/18 11:30		
試験時間	終了 -		1/19 9:28		
	実施時間	-	21:58		
トレーサー	ウラニン	mg/L	2.04		
	循環流量	mL/min	120		
条件	トレーサー注入	min	155		

表 5.3.4-2 15MI52 号孔 Int1 の試験条件

図 5.3.4-3 15MI52 号孔 Int1 における蛍光濃度の経時変化

本試験の区間容量は 19214mL である(内、チューブの容量は 1195mL)。区間容量が大きいこと から、一部のデータで濃度分散の影響がみられた。このため、蛍光濃度が安定した領域を解析の 対象とした(希釈開始後 630min から 930 min まで)。解析の対象とした範囲の蛍光濃度の経時 変化を図 5.3.4-4 に示す。

※ 図の近似直線は最小二乗法による。

図 5.3.4-4 15MI52 号孔 Int1 における解析対象範囲の蛍光濃度の経時変化と希釈率

上記のデータを基に算出した希釈率は以下の通りである。

$$\frac{d\ln(C/C_0)}{dt} = |\mathbf{a}| \approx 1.3 \times 10^{-4}$$

よって、自然状態での地下水通過流量および岩盤割れ目内の単位幅あたりに流れる地下水流量は、次式により 0.106mL/min/m となる。

 $Q_{bh} = -V \times \frac{d\ln(C/C_0)}{dt} = 19,214 \times 1.3 \times 10^{-4} \approx 2.469 [mL/min]$

$$q_f = \frac{Q_{bh}}{\alpha \times 2r} = \frac{2.469}{2 \times 0.086} = 0.106 [mL/min/m]$$

b. 15MI52 号孔 Int4

15MI52 号孔 Int4 の試験条件を表 5.3.4-3 に、試験中におけるトレーサー溶液の循環流量と試験区間圧力の経時変化を図 5.3.4-5、蛍光濃度の経時変化を図 5.3.4-6 に示す。

	15MI52				
対象区間			Int4		
封殿区間	上端深度	mabh	14.30		
武殿区间	下端深度	mabh	17.90		
	開始	-	1/14 13:10		
試験時間	終了	-	1/15 8:30		
	実施時間	-	19:20		
トレーサー	ウラニン	mg/L	2.15		
	循環流量	mL/min	120		
条件	トレーサー注入 時間	min	160		

表 5.3.4-3 15MI52 号孔 Int4 の試験条件

図 5.3.4-5 15MI52 号孔 Int4 における試験中の循環流量と試験区間圧力の変化

5 - 164

本試験の区間容量は 10733mL である(内、チューブの容量は 943mL)。区間容量が大きいこと から、一部のデータで濃度分散の影響がみられた。このため、蛍光濃度が安定した領域を解析の 対象とした(希釈開始後 530min から 880min まで)。解析の対象とした範囲の蛍光濃度の経時変 化を図 5.3.4-7 に示す。

※ 図の近似直線は最小二乗法による。

図 5.3.4-7 15MI52 号孔 Int4 における解析対象範囲の蛍光濃度の経時変化と希釈率

上記のデータを基に算出した希釈率は以下の通りである。

$$\frac{d\ln(C/C_0)}{dt} = |\mathbf{a}| \approx 2.9 \times 10^{-4}$$

よって、自然状態での地下水通過流量および岩盤割れ目内の単位幅あたりに流れる地下水流量は、次式により 0.132mL/min/m となる。

 $Q_{bh} = -V \times \frac{d \ln(C/C_0)}{dt} = 10,733 \times 2.9 \times 10^{-4} \approx 3.080 [mL/min]$

$$q_f = \frac{Q_{bh}}{\alpha \times 2r} = \frac{3.080}{2 \times 0.086} = 0.132 [mL/min/m]$$

c. 15MI52 号孔 Int5

15MI52 号孔 Int5 の試験条件を表 5.3.4-4 に、試験中におけるトレーサー溶液の循環流量と試験区間圧力の経時変化を図 5.3.4-8、蛍光濃度の経時変化を図 5.3.4-9 に示す。

5	15MI52		
対	対象区間		
封殿区間	上端深度	mabh	8.50
武 厥 △ 印]	下端深度	mabh	13.10
	開始		1/19 15:15
試験時間	終了	-	1/20 8:25
	実施時間	-	17.10
トレーサー	ウラニン mg/L		2.10
	循環流量	mL/min	120
条件	トレーサー注入 時間	min	150

表 5.3.4-4 15MI52 号孔 Int5の試験条件

図 5.3.4-9 15MI52 号孔 Int5 における蛍光濃度の経時変化

本試験の区間容量は 13542mL である(内、チューブの容量は 818mL)。区間容量が大きいこと から、一部のデータで濃度分散の影響がみられた。このため、蛍光濃度が安定した領域を解析の 対象とした(希釈開始後 612min から 852 min まで)。解析の対象とした範囲の蛍光濃度の経時 変化を図 5.3.4-10 に示す。

※ 図の近似直線は最小二乗法による。

図 5.3.4-10 15MI52 号孔 Int5 における解析対象範囲の蛍光濃度の経時変化と希釈率

上記のデータを基に算出した希釈率は以下の通りである。

$$\frac{d\ln(C/C_0)}{dt} = |\mathbf{a}| \approx 2.0 \times 10^{-4}$$

よって、自然状態での地下水通過流量および岩盤割れ目内の単位幅あたりに流れる地下水流量は、次式により 0.118mL/min/mmL/min/m となる。

$$Q_{bh} = -V \times \frac{d\ln(C/C_0)}{dt} = 13,542 \times 2.0 \times 10^{-4} \approx 2.744 [mL/min]$$
$$q_f = \frac{Q_{bh}}{\alpha \times 2r} = \frac{2.744}{2 \times 0.086} = 0.118 [mL/min/m]$$

d. 15MI53 号孔 Int2

15MI53 号孔 Int2 の試験条件を表 5.3.4-5 に、試験中におけるトレーサー溶液の循環流量と試験区間圧力の経時変化を図 5.3.4-11、蛍光濃度の経時変化を図 5.3.4-12 に示す。

対象孔			15MI53
対象区間			Int2
封殿区開	上端深度	mabh	23.00
民家区间	下端深度	mabh	24.60
	開始	-	1/25 16:00
試験時間	終了	-	1/26 8:30
	実施時間	-	16:30
トレーサー	ウラニン	mg/L	2.01
	循環流量	mL/min	120
条件	トレーサー注入 時間	min	153

表 5.3.4-5 15MI53 号孔 Int2の試験条件

図 5.3.4-11 15MI53 号孔 Int2 における試験中の循環流量と試験区間圧力の変化

本試験の区間容量は 9276mL である(内、チューブの容量は 1132mL)。区間容量が大きいこと から、一部のデータで濃度分散の影響がみられた。このため、蛍光濃度が安定した領域を解析の 対象とした(希釈開始後 542min から 742 min まで)。解析の対象とした範囲の蛍光濃度の経時 変化を図 5.3.4-13 に示す。

※ 図の近似直線は最小二乗法による。

図 5.3.4-13 15MI53 号孔 Int2 における解析対象範囲の蛍光濃度の経時変化と希釈率

上記のデータを基に算出した希釈率は以下の通りである。

$$\frac{d\ln(C/C_0)}{dt} = |\mathbf{a}| \approx 4.6 \times 10^{-6}$$

よって、自然状態での地下水通過流量および岩盤割れ目内の単位幅あたりに流れる地下水流量は、次式により 0.002mL/min/m となる。

$$Q_{bh} = -V \times \frac{d\ln(C/C_0)}{dt} = 9,276 \times 4.6 \times 10^{-6} \approx 0.042 [mL/min]$$
$$q_f = \frac{Q_{bh}}{\alpha \times 2r} = \frac{0.042}{2 \times 0.086} = 0.002 [mL/min/m]$$

e. 15MI53 号孔 Int4

15MI53 号孔 Int4 の試験条件を表 5.3.4-6 に、試験中におけるトレーサー溶液の循環流量と試験区間圧力の経時変化を図 5.3.4-14、蛍光濃度の経時変化を図 5.3.4-15 に示す。

対象孔			15MI53	
対象区間			Int4	
封殿区開	上端深度	mabh	13.40	
	下端深度	mabh	17.00	
	開始		1/20 14:55	
試験時間	終了	-	1/21 8:06	
	実施時間 -		17:11	
トレーサー	ウラニン	mg/L	2.10	
	循環流量	mL/min	120	
条件	トレーサー注入 時間	min	155	

表 5.3.4-6 15MI53 号孔 Int4 の試験条件

図 5.3.4-14 15MI53 号孔 Int4 における試験中の循環流量と試験区間圧力の変化

本試験の区間容量は 10708mL である(内、チューブの容量は 918mL)。区間容量が大きいこと から、一部のデータで濃度分散の影響がみられた。このため、蛍光濃度が安定した領域を解析の 対象とした(希釈開始後 625min から 925 min まで)。解析の対象とした範囲の蛍光濃度の経時 変化を図 5.3.4-16 に示す。

※ 図の近似直線は最小二乗法による。

図 5.3.4-16 15MI53 号孔 Int4 における解析対象範囲の蛍光濃度の経時変化と希釈率

上記のデータを基に算出した希釈率は以下の通りである。

$$\frac{d\ln(C/C_0)}{dt} = |\mathbf{a}| \approx 3.7 \times 10^{-4}$$

よって、自然状態での地下水通過流量および岩盤割れ目内の単位幅あたりに流れる地下水流量は、次式により 0.169mL/min/m となる。

 $Q_{bh} = -V \times \frac{d \ln(C/C_0)}{dt} = 10,708 \times 3.7 \times 10^{-4} \approx 3.930 [mL/min]$

$$q_f = \frac{Q_{bh}}{\alpha \times 2r} = \frac{3.930}{2 \times 0.086} = 0.169[mL/min/m]$$

f. 15MI53 号孔 Int5

15MI53 号孔 Int5 の試験条件を表 5.3.4-7 に、試験中におけるトレーサー溶液の循環流量と試験区間圧力の経時変化を図 5.3.4-17、蛍光濃度の経時変化を図 5.3.4-18 に示す。

	15MI53				
対象区間			Int5		
封殿区明	上端深度	mabh	7.60		
武	下端深度	mabh	12.20		
	開始	-	1/21 15:00		
試験時間	終了	-	1/22 8:05		
	実施時間	-	17:05		
トレーサー	トレーサー ウラニン		1.93		
	循環流量	mL/min	120		
条件	トレーサー注入 時間	min	155		

表 5.3.4-7 15MI53 号孔 Int5の試験条件

本試験の区間容量は 13510mL である(内、チューブの容量は 786mL)。区間容量が大きいこと から、一部のデータで濃度分散の影響がみられた。このため、蛍光濃度が安定した領域を解析の 対象とした(希釈開始後 540min から 840 min まで)。解析の対象とした範囲の蛍光濃度の経時 変化を図 5.3.4-19 に示す。

※ 図の近似直線は最小二乗法による。

図 5.3.4-19 15MI53 号孔 Int5 における解析対象範囲の蛍光濃度の経時変化と希釈率

上記のデータを基に算出した希釈率は以下の通りである。

.

$$\frac{d\ln(C/C_0)}{dt} = |\mathbf{a}| \approx 2.3 \times 10^{-4}$$

よって、自然状態での地下水通過流量および岩盤割れ目内の単位幅あたりに流れる地下水流量は、次式により 0.132mL/min/m となる。

$$Q_{bh} = -V \times \frac{d\ln(C/C_0)}{dt} = 13,510 \times 2.3 \times 10^{-4} \approx 3.073 [mL/min]$$
$$q_f = \frac{Q_{bh}}{\alpha \times 2r} = \frac{3.073}{2 \times 0.086} = 0.132 [mL/min/m]$$

5.4 湧水割れ目の特徴

5.4.1 割れ目の密度

15MI52 号孔と 15MI53 号孔のコア観察で得られた割れ目の密度分布を図 5.4.1-1 に示す。ボーリン グの掘削方向を坑道で認められる NE および NW の高傾斜の割れ目に対して、交差角度を大きくするよ う掘削したため、また、両孔間が 2m 以下と近いこともあり、コアで認められる割れ目は、両孔を横断 する割れ目が多く、このために両孔の割れ目の密度分布の増減パターンは類似したものとなっている。 15MI52 号孔と 15MI53 号孔のコアの割れ目の密度を深度 300m ボーリング横坑の結果と比較した結果を 表 5.4.1-1 に示す。両孔の割れ目の密度は 4.3 本/m であり、300m ボーリング横坑は 7.2~8.0 本/m であることから、4 割~5 割程も割れ目が少ない。このことは、上部の割れ目帯を抜け、後述する低角 度の割れ目が出現しなくなったためと考えられる。

図 5.4.1-1 コア観察による 15MI52 孔と 15MI53 孔の割れ目密度分布

表 5.4.1-1 15MI52 孔と 15MI53 孔の孔間での地質的・水理的に連続性が確認された割れ目

	深度 500m		 深度 300m				
ボーリング 孔名	15MI52	15MI53	12MI30	12MI31	13MI37	13MI36	14MI49
割れ目密度 (N/m)	4. 3	4. 3	7. 8	7. 0	7. 2	8. 0	7. 0

5.4.2 湧水割れ目の特徴

15MI52 号孔と 15MI53 号孔の BTV 検層(BIPS)によって計測した割れ目の方向は、両孔ともに NE および NW 走向の高傾斜割れ目が卓越する(図 5.4.2-1、図 5.4.2-2)。また、深度 300m ボーリング横 坑で認められた低傾斜の割れ目がないこと、割れ目密度(コア)が半減していることから、当該ボーリングは上部割れ目帯を抜けた個所で削孔されたものと判断する。

両孔の開口性などの割れ目の特性を卓越方向で検討すると、1mm 以上の幅を有する鉱物充填割れ目 はNE 走向の割れ目のみである。開口割れ目はNE とNW 走向の割れ目の両方に認められる。さらに、こ の開口割れ目を水理試験結果と対比した結果、水みちと判断された割れ目(湧水割れ目)の多くはNW 走向の割れ目であった(割れ目から多数の気泡が出ていることから湧水割れ目と推定したものも含ま れる)。この湧水割れ目を詳細に観察すると、割れ目の形状は湾曲状やステップ状で、開口は部分的 であり、その幅は不均一であることが確認できた。また、割れ目周辺の母岩はあまり変質していない ため、割れ目が形成された時期は相対的に新しい可能性があると考える(図 5.4.2-3)。

一方、NE 走向の開口割れ目は、BTV で観察するとシャープな分離面を有し、壁面に全体にわたり均 一に開口していることや、周辺の母岩の変質が認められることを特徴とするが、ボーリングコアの観 察結果では開口せず鉱物などが充填している場合が多い(図 5.4.2-4)。これは、NE 走向の開口割れ 目は、BTV では開口割れ目として観察されるが、実態は開口せず鉱物などが充填した充填割れ目であ り、掘削時等の水流等により脆弱な充填鉱物が失われたと考える。

図 5.4.2-1 割れ目の特徴別の卓越方向と BIPS 画像(15MI52 号孔)

図 5.4.2-3 高解像度 BTV による湧水割れ目の特性

割れ目でコア(左)では鉱物が充 填しているが、BIPS 画像(右)では開口している

図 5.4.2-4 NE 系の開口割れ目(15MI52 号孔 24.4m N29E/82E)の BISP 画像とコアとの比較

5.4.3 湧水割れ目の連続性

掘削中や透水試験中等で確認したボーリング孔間での間隙水圧の応答や、割れ目の形状や走向傾斜、 コアや高解像度 BTV 検層での観察結果等から湧水割れ目の連続性について検討した。この結果、15MI52 号孔と15MI53号孔との地質的・水理的に連続すると割れ目を3本確認することができた(図 5.4.3-1)。 また、この 3 本の割れ目は間隙水圧の応答が単一であることが確認できており(図 5.3.2-4、表 5.3.2-6)、それぞれ単一な割れ目として連続していると思われる。

図 5.4.3-1 15MI52 孔と 15MI53 孔の孔間での地質的・水理的に連続性が確認された割れ目

5.5 まとめ

「平成 27 年度地層処分技術調査等事業(岩盤中地下水移行評価確証技術開発)」において、国内 の適用性試験場の地質環境を対象として、トレーサー試験装置等の適用試験を実施する場の地質環境 特性を把握することが求められている。JAEA が研究調査を実施している瑞浪超深地層研究所の深度 500m 研究アクセス南坑道 125m 計測横坑において、トレーサー試験装置等の実施に適した割れ目を検 出することを目的として、2本のボーリング孔の掘削作業と掘削したボーリング孔を用いた各種検層、 透水試験、ポイント希釈試験、間隙水圧モニタリング装置の設置・計測を行った。

調査の結果、掘削中や透水試験中等で確認したボーリング孔間での間隙水圧の応答や、割れ目の形 状や走向傾斜から、水理的に連続していると判断できる割れ目を複数本確認した。また、これらの割 れ目は間隙水圧の応答が単一であることが確認できたことから、水理的に連続した単一割れ目が確認 できたと評価している。また、透水量係数も 10⁻⁷~10⁻⁸ オーダーの割れ目が主体であり、トレーサー 試験等の適用性試験の場として適当であると判断する。

ただし、深度 500m 研究アクセス南坑道 125m 計測横坑においては、当該 2 孔のボーリング調査結果 しか得られておらず、割れ目の規模やバックグラウンドの地下水流れ等を推定するには情報が不足し ている。このため、来年度以降においてもボーリング孔を追加する必要があると考える。

以下に、試験毎の調査結果についてまとめる。

5.5.1 ボーリング孔掘削

以下にボーリング孔掘削についてまとめる。

- ボーリング孔掘削は、15MI52 号孔、15MI53 号孔ともに掘削径をφ86mm としコア径φ72mm
 でコア採取を行った。
- ・ 湧水対策としてクイックライナーを施した後に孔口ケーシングを設置した。
- ・ 15MI52 号孔の掘削終了後の全体湧水量は 4.00L/min であった。
- ・ 15MI53 号孔の掘削終了後の全体湧水量は 5.00L/min であった。
- コア採取率は、全区間において100%であった。

5.5.2 地質学的調查

地質学的調査について以下にまとめる。

- ・ 採取したコアは、主に粗粒~中粒の黒雲母花崗岩である。
- ・ 等粒状~斑状を呈し主要な造岩鉱物は石英・カリ長石・斜長石・黒雲母で、ごく微細な角
 関石を含む。これ以外に石英脈が厚さ数 cm で散見される。また、これ以外に石英脈が厚さ数 cm で散見される。

- ・ 採取したコアは母岩全体に及ぶ広範囲の変質は被っていない。変質は石英脈の貫入に伴う 貫入面に並行な範囲や、開口割れ目・潜在割れ目を中心とした範囲に限定される。
- ・ 15MI52 号孔の岩盤分類は、掘削長 0.30mabh 付近までは割れ目の発達が顕著であることからわずかに劣悪と判断できる「CL」級に相当すると判断した。また、同1.36~1.50mabhの区間においても亀裂が発達し、風化の程度もやや進んでいることから「CL」級と判断した。これ以外の区間においては岩盤分類上良好である「B」級が大部分を占め、数10cm~100cm単位でやや良好である「CH」級~中ぐらいにあたる「CM」級が分布する。掘削長 22.50mabh 付近を境とし、以深のコアにおいては割れ目の分布がやや多くなるため、「CH」~「CM」に該当すると判断した。
- 15MI53 号孔の岩盤分類は、掘削長 22.60mabh までは「B級」に該当する区間が優勢であるが、掘削長 22.60mabh 以深の区間では「CH級」に該当する(ごく一部は「CM級」)区間が優勢となる。

コア観察結果に基づき掘削深度とコアの性状変化(風化・変質・RQD)、亀裂本数・傾斜角との関係 を総合柱状図として取りまとめた。併せて掘削時の区間湧水量と掘削終了後に行った各種検層結果、 透水試験結果から求めた透水量係数を総合柱状図に取りまとめた。図 5.5.2-1 に 15MI52 号孔の総合 柱状図を示し、図 5.5.2-2 に 15MI53 号孔の総合柱状図を示す。

図 5.5.2-1 15MI52 号孔の総合柱状図

図 5.5.2-2 15MI53 号孔の総合柱状図

5.5.3 水理学的調查

水理学的調査について以下にまとめる。

(1) 15MI52 号孔

フローメータ検層を実施した結果、8.9~10.7mabh (0.8L/min)、14.8~18.2mabh (0.7L/min)、 23.0~24.2mabh (0.6L/min)、27.2~28.7mabh (0.7L/min)の4深度において流量変化が確認さ れた。

湧水割れ目を特定する単孔式透水試験は、9mabh、16mabh、24mabh および 27mabh 付近の割れ目
を対象に実施した。その結果より 9.00~9.67mabh(割れ目番号 0-50~0-53)、15.95~16.62mabh
(割れ目番号 1-20, 1-21)、23.90~24.57mabh(割れ目番号 2-16, 2-18)および 27.30~27.97mabh
(割れ目番号 2-32~2-34)の4深度を選定し孔間透水試験を実施した(表 5.5.3-1)。

表 5.5.3-1 15MI52 号孔の孔間透水試験結果

試験番号	試験深度		区間長	間隙水圧	透水量係数	透水係数		
	上端 (mabh)	下端 (mabh)	(m)	(MPa)	$T(m^2/sec)$	k(m/sec)	試験方法	解析方法
1-①	27.30	27.97	0.67	3.4392	5.93E-08	8.93E-08	RWS2	Agarwal
2-①	23.90	24.57		3.4692	8.47E-08	1.26E-07	RWS1	Agarwal
3-3	15.95	16.62		3.4362	1.80E-07	2.69E-07	RWS1	Agarwal
4-2	9.00	9.67		3.3711	4.55E-07	6.79E-07	RWS1	Agarwal

(2) 15MI53 号孔

フローメータ検層を実施した結果、9.2~11.2mabh (2.8L/min)、14.8~15.2mabh (0.6L/min)、 18.2~18.9mabh (0.5L/min)、23.30~24.31mabh (1.0L/min)の4深度において流量変化が確認 された。

湧水割れ目を特定する単孔式透水試験は、9mabh、12mabh、15mabh、20mabh および25mabh 付近の割れ目を対象に実施した。その結果より 10.83~11.50mabh(割れ目番号 1-5~1-11)、14.90~15.57mabh(割れ目番号 1-28)、18.80~20.40mabh(割れ目番号 1-39,1-40)および 26.36~27.03mabh(割れ目番号 2-29~2-33)の4深度を選定し孔間透水試験を実施した(表 5.5.3-2)。

表 5.5.3-2 15MI53 号孔の孔間透水試験結果

試験番号	試験深度		区間長	間隙水圧	透水量係数	透水係数		
	上端 (mabh)	下端 (mabh)	(m)	(MPa)	T(m²/sec)	k(m/sec)	試験方法	解析方法
1-3	10.83	11.50	0.67	3.4549	9.49E-07	1.42E-06	RWS1	Agarwal
2-2	14.90	15.57		3.5279	1.67E-07	2.50E-07	RWS2	Agarwal
3-④	18.80	19.47		3.4982	2.21E-07	3.30E-07	RWS	Agarwal
4-①	26.36	27.03		3.5506	2.69E-09	4.01E-09	PW	Cooper

- 5.5.4 ポイント希釈試験
 - ポイント希釈試験結果について以下にまとめる。
 - ・ 15MI52 号孔および 15MI53 号孔において、ウラニンをトレーサーとしたポイント希釈試験 を実施した。両孔ともに間隙水圧モニタリング装置の区間を用い合計6区間で試験を実施し た。
 - ・ ウラニン濃度希釈過程を追跡したところ、6 区間とも区間容量の大きさが影響し一部のデ
 ータで濃度分散の影響が表れたと考えられる。安定した領域を解析対象とし自然通過流量は
 0.042~3.080mL/min を示した。
- 5.5.5 湧水割れ目の特徴

15MI52 号孔および 15MI53 号孔で確認した湧水割れ目の特徴について以下にまとめる。

- ・ 当該掘削個所は深度 300m ボーリング横坑に比較して割れ目密度(コア)が4割から5割程 度少なく、また、BTV 検層の結果で割れ目の卓越方向に低角な割れ目は認められないことか ら、下部割れ目帯に位置すると判断する。
- ・ 当該掘削個所の割れ目の卓越方向はNEとNWの高傾斜の割れ目である。
- このうち NW 方向の割れ目が水みちとなっており、割れ目の形状が湾曲状やステップ状で、
 開口は部分的であり、その幅は不均一な特徴を有する。
- 一方、NE方向の開口割れ目は脆弱な充填物が掘削時に失われたもので、本来は充填割れ目であったと推定される。
- ・ 15MI52 孔と 15MI53 孔の孔間での地質的・水理的に連続性が確認された割れ目は 3 本程度 あり、それぞれ1本の割れ目で孔間を繋いでいると考えられる。

参考文献

国立研究開発法人 日本原子力研究開発機構(東濃地科学センターHP)

参照先: https://www.jaea.go.jp/04/tono/miu/miu.html

糸魚川淳二. (1980). 瑞浪地域の地質. 瑞浪市化石博物館専報.

- 松岡稔幸, 熊崎直樹, 三枝博光, 佐々木圭一, 遠藤令誕, 天野健治. (2005). 繰返しアプローチに基づく地質構造のモデル化 (Step1 および Step2). 核燃料サイクル開発機構.
- 川本康司, 窪島光志, 村上裕晃, 石橋正裕紀, 笹尾英嗣. (2014). 超深地層研究所計画 地質・地質 構造に関する調査研究―深度 500m ステージの地質・地質構造―. 独立行政法人日本原子力開発機 構.
- 川本康司,黒岩弘,山田信人,大貫賢二,大森一秋,竹内竜史,...渡辺和彦. (2014a). 深度 500m 研究アクセス南坑道における先行ボーリング調査報告書 (12MI32 号孔). 独立行政法人日本原子力 研究開発機構.
- 川本康司,村上裕晃,石橋正裕紀,笹尾英嗣,渡辺和彦,見掛信一郎,池田幸喜. (2014b). 超深地 層研究所計画 瑞浪超深地層研究所 500m ステージの壁面地質調査データ集. JAEA-Data/Code, 独 立行政法人日本原子力研究開発機構.
- 地盤工学会. (2013). 地盤調査の方法と解説. 地盤工学会.
- 鶴田忠彦,笹尾英嗣,川本康司,窪島光志,石橋正祐紀.(2013).超深地層研究所計画 地質・地質構 造に関する調査研究-深度 300m から 500m までの地質・地質構造-. JAEA-Research,独立行政法 人日本原子力研究開発機構.
- 鶴田忠彦,武田匡樹,上野孝志,大丸修二,徳安真吾,尾上博則,...田上雅彦. (2012). 超深地 層研究所計画 主立坑断層を対象としたボーリング調査結果報告書. JAEA-Technology, 独立行政 法人日本原子力研究開発機構.